xref: /llvm-project-15.0.7/clang/lib/AST/Decl.cpp (revision 746bb5e4)
1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Decl subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/PrettyPrinter.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/IdentifierTable.h"
29 #include "clang/Basic/Module.h"
30 #include "clang/Basic/Specifiers.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Frontend/FrontendDiagnostic.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include <algorithm>
35 
36 using namespace clang;
37 
38 Decl *clang::getPrimaryMergedDecl(Decl *D) {
39   return D->getASTContext().getPrimaryMergedDecl(D);
40 }
41 
42 // Defined here so that it can be inlined into its direct callers.
43 bool Decl::isOutOfLine() const {
44   return !getLexicalDeclContext()->Equals(getDeclContext());
45 }
46 
47 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
48     : Decl(TranslationUnit, nullptr, SourceLocation()),
49       DeclContext(TranslationUnit), Ctx(ctx), AnonymousNamespace(nullptr) {
50   Hidden = Ctx.getLangOpts().ModulesLocalVisibility;
51 }
52 
53 //===----------------------------------------------------------------------===//
54 // NamedDecl Implementation
55 //===----------------------------------------------------------------------===//
56 
57 // Visibility rules aren't rigorously externally specified, but here
58 // are the basic principles behind what we implement:
59 //
60 // 1. An explicit visibility attribute is generally a direct expression
61 // of the user's intent and should be honored.  Only the innermost
62 // visibility attribute applies.  If no visibility attribute applies,
63 // global visibility settings are considered.
64 //
65 // 2. There is one caveat to the above: on or in a template pattern,
66 // an explicit visibility attribute is just a default rule, and
67 // visibility can be decreased by the visibility of template
68 // arguments.  But this, too, has an exception: an attribute on an
69 // explicit specialization or instantiation causes all the visibility
70 // restrictions of the template arguments to be ignored.
71 //
72 // 3. A variable that does not otherwise have explicit visibility can
73 // be restricted by the visibility of its type.
74 //
75 // 4. A visibility restriction is explicit if it comes from an
76 // attribute (or something like it), not a global visibility setting.
77 // When emitting a reference to an external symbol, visibility
78 // restrictions are ignored unless they are explicit.
79 //
80 // 5. When computing the visibility of a non-type, including a
81 // non-type member of a class, only non-type visibility restrictions
82 // are considered: the 'visibility' attribute, global value-visibility
83 // settings, and a few special cases like __private_extern.
84 //
85 // 6. When computing the visibility of a type, including a type member
86 // of a class, only type visibility restrictions are considered:
87 // the 'type_visibility' attribute and global type-visibility settings.
88 // However, a 'visibility' attribute counts as a 'type_visibility'
89 // attribute on any declaration that only has the former.
90 //
91 // The visibility of a "secondary" entity, like a template argument,
92 // is computed using the kind of that entity, not the kind of the
93 // primary entity for which we are computing visibility.  For example,
94 // the visibility of a specialization of either of these templates:
95 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
96 //   template <class T, bool (&compare)(T, X)> class matcher;
97 // is restricted according to the type visibility of the argument 'T',
98 // the type visibility of 'bool(&)(T,X)', and the value visibility of
99 // the argument function 'compare'.  That 'has_match' is a value
100 // and 'matcher' is a type only matters when looking for attributes
101 // and settings from the immediate context.
102 
103 const unsigned IgnoreExplicitVisibilityBit = 2;
104 const unsigned IgnoreAllVisibilityBit = 4;
105 
106 /// Kinds of LV computation.  The linkage side of the computation is
107 /// always the same, but different things can change how visibility is
108 /// computed.
109 enum LVComputationKind {
110   /// Do an LV computation for, ultimately, a type.
111   /// Visibility may be restricted by type visibility settings and
112   /// the visibility of template arguments.
113   LVForType = NamedDecl::VisibilityForType,
114 
115   /// Do an LV computation for, ultimately, a non-type declaration.
116   /// Visibility may be restricted by value visibility settings and
117   /// the visibility of template arguments.
118   LVForValue = NamedDecl::VisibilityForValue,
119 
120   /// Do an LV computation for, ultimately, a type that already has
121   /// some sort of explicit visibility.  Visibility may only be
122   /// restricted by the visibility of template arguments.
123   LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
124 
125   /// Do an LV computation for, ultimately, a non-type declaration
126   /// that already has some sort of explicit visibility.  Visibility
127   /// may only be restricted by the visibility of template arguments.
128   LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit),
129 
130   /// Do an LV computation when we only care about the linkage.
131   LVForLinkageOnly =
132       LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit
133 };
134 
135 /// Does this computation kind permit us to consider additional
136 /// visibility settings from attributes and the like?
137 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
138   return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
139 }
140 
141 /// Given an LVComputationKind, return one of the same type/value sort
142 /// that records that it already has explicit visibility.
143 static LVComputationKind
144 withExplicitVisibilityAlready(LVComputationKind oldKind) {
145   LVComputationKind newKind =
146     static_cast<LVComputationKind>(unsigned(oldKind) |
147                                    IgnoreExplicitVisibilityBit);
148   assert(oldKind != LVForType          || newKind == LVForExplicitType);
149   assert(oldKind != LVForValue         || newKind == LVForExplicitValue);
150   assert(oldKind != LVForExplicitType  || newKind == LVForExplicitType);
151   assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
152   return newKind;
153 }
154 
155 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
156                                                   LVComputationKind kind) {
157   assert(!hasExplicitVisibilityAlready(kind) &&
158          "asking for explicit visibility when we shouldn't be");
159   return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
160 }
161 
162 /// Is the given declaration a "type" or a "value" for the purposes of
163 /// visibility computation?
164 static bool usesTypeVisibility(const NamedDecl *D) {
165   return isa<TypeDecl>(D) ||
166          isa<ClassTemplateDecl>(D) ||
167          isa<ObjCInterfaceDecl>(D);
168 }
169 
170 /// Does the given declaration have member specialization information,
171 /// and if so, is it an explicit specialization?
172 template <class T> static typename
173 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
174 isExplicitMemberSpecialization(const T *D) {
175   if (const MemberSpecializationInfo *member =
176         D->getMemberSpecializationInfo()) {
177     return member->isExplicitSpecialization();
178   }
179   return false;
180 }
181 
182 /// For templates, this question is easier: a member template can't be
183 /// explicitly instantiated, so there's a single bit indicating whether
184 /// or not this is an explicit member specialization.
185 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
186   return D->isMemberSpecialization();
187 }
188 
189 /// Given a visibility attribute, return the explicit visibility
190 /// associated with it.
191 template <class T>
192 static Visibility getVisibilityFromAttr(const T *attr) {
193   switch (attr->getVisibility()) {
194   case T::Default:
195     return DefaultVisibility;
196   case T::Hidden:
197     return HiddenVisibility;
198   case T::Protected:
199     return ProtectedVisibility;
200   }
201   llvm_unreachable("bad visibility kind");
202 }
203 
204 /// Return the explicit visibility of the given declaration.
205 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
206                                     NamedDecl::ExplicitVisibilityKind kind) {
207   // If we're ultimately computing the visibility of a type, look for
208   // a 'type_visibility' attribute before looking for 'visibility'.
209   if (kind == NamedDecl::VisibilityForType) {
210     if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) {
211       return getVisibilityFromAttr(A);
212     }
213   }
214 
215   // If this declaration has an explicit visibility attribute, use it.
216   if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
217     return getVisibilityFromAttr(A);
218   }
219 
220   // If we're on Mac OS X, an 'availability' for Mac OS X attribute
221   // implies visibility(default).
222   if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
223     for (const auto *A : D->specific_attrs<AvailabilityAttr>())
224       if (A->getPlatform()->getName().equals("macosx"))
225         return DefaultVisibility;
226   }
227 
228   return None;
229 }
230 
231 static LinkageInfo
232 getLVForType(const Type &T, LVComputationKind computation) {
233   if (computation == LVForLinkageOnly)
234     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
235   return T.getLinkageAndVisibility();
236 }
237 
238 /// \brief Get the most restrictive linkage for the types in the given
239 /// template parameter list.  For visibility purposes, template
240 /// parameters are part of the signature of a template.
241 static LinkageInfo
242 getLVForTemplateParameterList(const TemplateParameterList *Params,
243                               LVComputationKind computation) {
244   LinkageInfo LV;
245   for (const NamedDecl *P : *Params) {
246     // Template type parameters are the most common and never
247     // contribute to visibility, pack or not.
248     if (isa<TemplateTypeParmDecl>(P))
249       continue;
250 
251     // Non-type template parameters can be restricted by the value type, e.g.
252     //   template <enum X> class A { ... };
253     // We have to be careful here, though, because we can be dealing with
254     // dependent types.
255     if (const NonTypeTemplateParmDecl *NTTP =
256             dyn_cast<NonTypeTemplateParmDecl>(P)) {
257       // Handle the non-pack case first.
258       if (!NTTP->isExpandedParameterPack()) {
259         if (!NTTP->getType()->isDependentType()) {
260           LV.merge(getLVForType(*NTTP->getType(), computation));
261         }
262         continue;
263       }
264 
265       // Look at all the types in an expanded pack.
266       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
267         QualType type = NTTP->getExpansionType(i);
268         if (!type->isDependentType())
269           LV.merge(type->getLinkageAndVisibility());
270       }
271       continue;
272     }
273 
274     // Template template parameters can be restricted by their
275     // template parameters, recursively.
276     const TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(P);
277 
278     // Handle the non-pack case first.
279     if (!TTP->isExpandedParameterPack()) {
280       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
281                                              computation));
282       continue;
283     }
284 
285     // Look at all expansions in an expanded pack.
286     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
287            i != n; ++i) {
288       LV.merge(getLVForTemplateParameterList(
289           TTP->getExpansionTemplateParameters(i), computation));
290     }
291   }
292 
293   return LV;
294 }
295 
296 /// getLVForDecl - Get the linkage and visibility for the given declaration.
297 static LinkageInfo getLVForDecl(const NamedDecl *D,
298                                 LVComputationKind computation);
299 
300 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
301   const Decl *Ret = nullptr;
302   const DeclContext *DC = D->getDeclContext();
303   while (DC->getDeclKind() != Decl::TranslationUnit) {
304     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
305       Ret = cast<Decl>(DC);
306     DC = DC->getParent();
307   }
308   return Ret;
309 }
310 
311 /// \brief Get the most restrictive linkage for the types and
312 /// declarations in the given template argument list.
313 ///
314 /// Note that we don't take an LVComputationKind because we always
315 /// want to honor the visibility of template arguments in the same way.
316 static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
317                                                 LVComputationKind computation) {
318   LinkageInfo LV;
319 
320   for (const TemplateArgument &Arg : Args) {
321     switch (Arg.getKind()) {
322     case TemplateArgument::Null:
323     case TemplateArgument::Integral:
324     case TemplateArgument::Expression:
325       continue;
326 
327     case TemplateArgument::Type:
328       LV.merge(getLVForType(*Arg.getAsType(), computation));
329       continue;
330 
331     case TemplateArgument::Declaration:
332       if (NamedDecl *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) {
333         assert(!usesTypeVisibility(ND));
334         LV.merge(getLVForDecl(ND, computation));
335       }
336       continue;
337 
338     case TemplateArgument::NullPtr:
339       LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility());
340       continue;
341 
342     case TemplateArgument::Template:
343     case TemplateArgument::TemplateExpansion:
344       if (TemplateDecl *Template =
345               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
346         LV.merge(getLVForDecl(Template, computation));
347       continue;
348 
349     case TemplateArgument::Pack:
350       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
351       continue;
352     }
353     llvm_unreachable("bad template argument kind");
354   }
355 
356   return LV;
357 }
358 
359 static LinkageInfo
360 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
361                              LVComputationKind computation) {
362   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
363 }
364 
365 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
366                         const FunctionTemplateSpecializationInfo *specInfo) {
367   // Include visibility from the template parameters and arguments
368   // only if this is not an explicit instantiation or specialization
369   // with direct explicit visibility.  (Implicit instantiations won't
370   // have a direct attribute.)
371   if (!specInfo->isExplicitInstantiationOrSpecialization())
372     return true;
373 
374   return !fn->hasAttr<VisibilityAttr>();
375 }
376 
377 /// Merge in template-related linkage and visibility for the given
378 /// function template specialization.
379 ///
380 /// We don't need a computation kind here because we can assume
381 /// LVForValue.
382 ///
383 /// \param[out] LV the computation to use for the parent
384 static void
385 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
386                 const FunctionTemplateSpecializationInfo *specInfo,
387                 LVComputationKind computation) {
388   bool considerVisibility =
389     shouldConsiderTemplateVisibility(fn, specInfo);
390 
391   // Merge information from the template parameters.
392   FunctionTemplateDecl *temp = specInfo->getTemplate();
393   LinkageInfo tempLV =
394     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
395   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
396 
397   // Merge information from the template arguments.
398   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
399   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
400   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
401 }
402 
403 /// Does the given declaration have a direct visibility attribute
404 /// that would match the given rules?
405 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
406                                          LVComputationKind computation) {
407   switch (computation) {
408   case LVForType:
409   case LVForExplicitType:
410     if (D->hasAttr<TypeVisibilityAttr>())
411       return true;
412     // fallthrough
413   case LVForValue:
414   case LVForExplicitValue:
415     if (D->hasAttr<VisibilityAttr>())
416       return true;
417     return false;
418   case LVForLinkageOnly:
419     return false;
420   }
421   llvm_unreachable("bad visibility computation kind");
422 }
423 
424 /// Should we consider visibility associated with the template
425 /// arguments and parameters of the given class template specialization?
426 static bool shouldConsiderTemplateVisibility(
427                                  const ClassTemplateSpecializationDecl *spec,
428                                  LVComputationKind computation) {
429   // Include visibility from the template parameters and arguments
430   // only if this is not an explicit instantiation or specialization
431   // with direct explicit visibility (and note that implicit
432   // instantiations won't have a direct attribute).
433   //
434   // Furthermore, we want to ignore template parameters and arguments
435   // for an explicit specialization when computing the visibility of a
436   // member thereof with explicit visibility.
437   //
438   // This is a bit complex; let's unpack it.
439   //
440   // An explicit class specialization is an independent, top-level
441   // declaration.  As such, if it or any of its members has an
442   // explicit visibility attribute, that must directly express the
443   // user's intent, and we should honor it.  The same logic applies to
444   // an explicit instantiation of a member of such a thing.
445 
446   // Fast path: if this is not an explicit instantiation or
447   // specialization, we always want to consider template-related
448   // visibility restrictions.
449   if (!spec->isExplicitInstantiationOrSpecialization())
450     return true;
451 
452   // This is the 'member thereof' check.
453   if (spec->isExplicitSpecialization() &&
454       hasExplicitVisibilityAlready(computation))
455     return false;
456 
457   return !hasDirectVisibilityAttribute(spec, computation);
458 }
459 
460 /// Merge in template-related linkage and visibility for the given
461 /// class template specialization.
462 static void mergeTemplateLV(LinkageInfo &LV,
463                             const ClassTemplateSpecializationDecl *spec,
464                             LVComputationKind computation) {
465   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
466 
467   // Merge information from the template parameters, but ignore
468   // visibility if we're only considering template arguments.
469 
470   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
471   LinkageInfo tempLV =
472     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
473   LV.mergeMaybeWithVisibility(tempLV,
474            considerVisibility && !hasExplicitVisibilityAlready(computation));
475 
476   // Merge information from the template arguments.  We ignore
477   // template-argument visibility if we've got an explicit
478   // instantiation with a visibility attribute.
479   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
480   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
481   if (considerVisibility)
482     LV.mergeVisibility(argsLV);
483   LV.mergeExternalVisibility(argsLV);
484 }
485 
486 /// Should we consider visibility associated with the template
487 /// arguments and parameters of the given variable template
488 /// specialization? As usual, follow class template specialization
489 /// logic up to initialization.
490 static bool shouldConsiderTemplateVisibility(
491                                  const VarTemplateSpecializationDecl *spec,
492                                  LVComputationKind computation) {
493   // Include visibility from the template parameters and arguments
494   // only if this is not an explicit instantiation or specialization
495   // with direct explicit visibility (and note that implicit
496   // instantiations won't have a direct attribute).
497   if (!spec->isExplicitInstantiationOrSpecialization())
498     return true;
499 
500   // An explicit variable specialization is an independent, top-level
501   // declaration.  As such, if it has an explicit visibility attribute,
502   // that must directly express the user's intent, and we should honor
503   // it.
504   if (spec->isExplicitSpecialization() &&
505       hasExplicitVisibilityAlready(computation))
506     return false;
507 
508   return !hasDirectVisibilityAttribute(spec, computation);
509 }
510 
511 /// Merge in template-related linkage and visibility for the given
512 /// variable template specialization. As usual, follow class template
513 /// specialization logic up to initialization.
514 static void mergeTemplateLV(LinkageInfo &LV,
515                             const VarTemplateSpecializationDecl *spec,
516                             LVComputationKind computation) {
517   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
518 
519   // Merge information from the template parameters, but ignore
520   // visibility if we're only considering template arguments.
521 
522   VarTemplateDecl *temp = spec->getSpecializedTemplate();
523   LinkageInfo tempLV =
524     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
525   LV.mergeMaybeWithVisibility(tempLV,
526            considerVisibility && !hasExplicitVisibilityAlready(computation));
527 
528   // Merge information from the template arguments.  We ignore
529   // template-argument visibility if we've got an explicit
530   // instantiation with a visibility attribute.
531   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
532   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
533   if (considerVisibility)
534     LV.mergeVisibility(argsLV);
535   LV.mergeExternalVisibility(argsLV);
536 }
537 
538 static bool useInlineVisibilityHidden(const NamedDecl *D) {
539   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
540   const LangOptions &Opts = D->getASTContext().getLangOpts();
541   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
542     return false;
543 
544   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
545   if (!FD)
546     return false;
547 
548   TemplateSpecializationKind TSK = TSK_Undeclared;
549   if (FunctionTemplateSpecializationInfo *spec
550       = FD->getTemplateSpecializationInfo()) {
551     TSK = spec->getTemplateSpecializationKind();
552   } else if (MemberSpecializationInfo *MSI =
553              FD->getMemberSpecializationInfo()) {
554     TSK = MSI->getTemplateSpecializationKind();
555   }
556 
557   const FunctionDecl *Def = nullptr;
558   // InlineVisibilityHidden only applies to definitions, and
559   // isInlined() only gives meaningful answers on definitions
560   // anyway.
561   return TSK != TSK_ExplicitInstantiationDeclaration &&
562     TSK != TSK_ExplicitInstantiationDefinition &&
563     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
564 }
565 
566 template <typename T> static bool isFirstInExternCContext(T *D) {
567   const T *First = D->getFirstDecl();
568   return First->isInExternCContext();
569 }
570 
571 static bool isSingleLineLanguageLinkage(const Decl &D) {
572   if (const LinkageSpecDecl *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
573     if (!SD->hasBraces())
574       return true;
575   return false;
576 }
577 
578 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
579                                               LVComputationKind computation) {
580   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
581          "Not a name having namespace scope");
582   ASTContext &Context = D->getASTContext();
583 
584   // C++ [basic.link]p3:
585   //   A name having namespace scope (3.3.6) has internal linkage if it
586   //   is the name of
587   //     - an object, reference, function or function template that is
588   //       explicitly declared static; or,
589   // (This bullet corresponds to C99 6.2.2p3.)
590   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
591     // Explicitly declared static.
592     if (Var->getStorageClass() == SC_Static)
593       return LinkageInfo::internal();
594 
595     // - a non-volatile object or reference that is explicitly declared const
596     //   or constexpr and neither explicitly declared extern nor previously
597     //   declared to have external linkage; or (there is no equivalent in C99)
598     if (Context.getLangOpts().CPlusPlus &&
599         Var->getType().isConstQualified() &&
600         !Var->getType().isVolatileQualified()) {
601       const VarDecl *PrevVar = Var->getPreviousDecl();
602       if (PrevVar)
603         return getLVForDecl(PrevVar, computation);
604 
605       if (Var->getStorageClass() != SC_Extern &&
606           Var->getStorageClass() != SC_PrivateExtern &&
607           !isSingleLineLanguageLinkage(*Var))
608         return LinkageInfo::internal();
609     }
610 
611     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
612          PrevVar = PrevVar->getPreviousDecl()) {
613       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
614           Var->getStorageClass() == SC_None)
615         return PrevVar->getLinkageAndVisibility();
616       // Explicitly declared static.
617       if (PrevVar->getStorageClass() == SC_Static)
618         return LinkageInfo::internal();
619     }
620   } else if (const FunctionDecl *Function = D->getAsFunction()) {
621     // C++ [temp]p4:
622     //   A non-member function template can have internal linkage; any
623     //   other template name shall have external linkage.
624 
625     // Explicitly declared static.
626     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
627       return LinkageInfo(InternalLinkage, DefaultVisibility, false);
628   } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
629     //   - a data member of an anonymous union.
630     const VarDecl *VD = IFD->getVarDecl();
631     assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
632     return getLVForNamespaceScopeDecl(VD, computation);
633   }
634   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
635 
636   if (D->isInAnonymousNamespace()) {
637     const VarDecl *Var = dyn_cast<VarDecl>(D);
638     const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
639     if ((!Var || !isFirstInExternCContext(Var)) &&
640         (!Func || !isFirstInExternCContext(Func)))
641       return LinkageInfo::uniqueExternal();
642   }
643 
644   // Set up the defaults.
645 
646   // C99 6.2.2p5:
647   //   If the declaration of an identifier for an object has file
648   //   scope and no storage-class specifier, its linkage is
649   //   external.
650   LinkageInfo LV;
651 
652   if (!hasExplicitVisibilityAlready(computation)) {
653     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
654       LV.mergeVisibility(*Vis, true);
655     } else {
656       // If we're declared in a namespace with a visibility attribute,
657       // use that namespace's visibility, and it still counts as explicit.
658       for (const DeclContext *DC = D->getDeclContext();
659            !isa<TranslationUnitDecl>(DC);
660            DC = DC->getParent()) {
661         const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
662         if (!ND) continue;
663         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
664           LV.mergeVisibility(*Vis, true);
665           break;
666         }
667       }
668     }
669 
670     // Add in global settings if the above didn't give us direct visibility.
671     if (!LV.isVisibilityExplicit()) {
672       // Use global type/value visibility as appropriate.
673       Visibility globalVisibility;
674       if (computation == LVForValue) {
675         globalVisibility = Context.getLangOpts().getValueVisibilityMode();
676       } else {
677         assert(computation == LVForType);
678         globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
679       }
680       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
681 
682       // If we're paying attention to global visibility, apply
683       // -finline-visibility-hidden if this is an inline method.
684       if (useInlineVisibilityHidden(D))
685         LV.mergeVisibility(HiddenVisibility, true);
686     }
687   }
688 
689   // C++ [basic.link]p4:
690 
691   //   A name having namespace scope has external linkage if it is the
692   //   name of
693   //
694   //     - an object or reference, unless it has internal linkage; or
695   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
696     // GCC applies the following optimization to variables and static
697     // data members, but not to functions:
698     //
699     // Modify the variable's LV by the LV of its type unless this is
700     // C or extern "C".  This follows from [basic.link]p9:
701     //   A type without linkage shall not be used as the type of a
702     //   variable or function with external linkage unless
703     //    - the entity has C language linkage, or
704     //    - the entity is declared within an unnamed namespace, or
705     //    - the entity is not used or is defined in the same
706     //      translation unit.
707     // and [basic.link]p10:
708     //   ...the types specified by all declarations referring to a
709     //   given variable or function shall be identical...
710     // C does not have an equivalent rule.
711     //
712     // Ignore this if we've got an explicit attribute;  the user
713     // probably knows what they're doing.
714     //
715     // Note that we don't want to make the variable non-external
716     // because of this, but unique-external linkage suits us.
717     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) {
718       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
719       if (TypeLV.getLinkage() != ExternalLinkage)
720         return LinkageInfo::uniqueExternal();
721       if (!LV.isVisibilityExplicit())
722         LV.mergeVisibility(TypeLV);
723     }
724 
725     if (Var->getStorageClass() == SC_PrivateExtern)
726       LV.mergeVisibility(HiddenVisibility, true);
727 
728     // Note that Sema::MergeVarDecl already takes care of implementing
729     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
730     // to do it here.
731 
732     // As per function and class template specializations (below),
733     // consider LV for the template and template arguments.  We're at file
734     // scope, so we do not need to worry about nested specializations.
735     if (const VarTemplateSpecializationDecl *spec
736               = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
737       mergeTemplateLV(LV, spec, computation);
738     }
739 
740   //     - a function, unless it has internal linkage; or
741   } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
742     // In theory, we can modify the function's LV by the LV of its
743     // type unless it has C linkage (see comment above about variables
744     // for justification).  In practice, GCC doesn't do this, so it's
745     // just too painful to make work.
746 
747     if (Function->getStorageClass() == SC_PrivateExtern)
748       LV.mergeVisibility(HiddenVisibility, true);
749 
750     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
751     // merging storage classes and visibility attributes, so we don't have to
752     // look at previous decls in here.
753 
754     // In C++, then if the type of the function uses a type with
755     // unique-external linkage, it's not legally usable from outside
756     // this translation unit.  However, we should use the C linkage
757     // rules instead for extern "C" declarations.
758     if (Context.getLangOpts().CPlusPlus &&
759         !Function->isInExternCContext()) {
760       // Only look at the type-as-written. If this function has an auto-deduced
761       // return type, we can't compute the linkage of that type because it could
762       // require looking at the linkage of this function, and we don't need this
763       // for correctness because the type is not part of the function's
764       // signature.
765       // FIXME: This is a hack. We should be able to solve this circularity and
766       // the one in getLVForClassMember for Functions some other way.
767       QualType TypeAsWritten = Function->getType();
768       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
769         TypeAsWritten = TSI->getType();
770       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
771         return LinkageInfo::uniqueExternal();
772     }
773 
774     // Consider LV from the template and the template arguments.
775     // We're at file scope, so we do not need to worry about nested
776     // specializations.
777     if (FunctionTemplateSpecializationInfo *specInfo
778                                = Function->getTemplateSpecializationInfo()) {
779       mergeTemplateLV(LV, Function, specInfo, computation);
780     }
781 
782   //     - a named class (Clause 9), or an unnamed class defined in a
783   //       typedef declaration in which the class has the typedef name
784   //       for linkage purposes (7.1.3); or
785   //     - a named enumeration (7.2), or an unnamed enumeration
786   //       defined in a typedef declaration in which the enumeration
787   //       has the typedef name for linkage purposes (7.1.3); or
788   } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
789     // Unnamed tags have no linkage.
790     if (!Tag->hasNameForLinkage())
791       return LinkageInfo::none();
792 
793     // If this is a class template specialization, consider the
794     // linkage of the template and template arguments.  We're at file
795     // scope, so we do not need to worry about nested specializations.
796     if (const ClassTemplateSpecializationDecl *spec
797           = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
798       mergeTemplateLV(LV, spec, computation);
799     }
800 
801   //     - an enumerator belonging to an enumeration with external linkage;
802   } else if (isa<EnumConstantDecl>(D)) {
803     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
804                                       computation);
805     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
806       return LinkageInfo::none();
807     LV.merge(EnumLV);
808 
809   //     - a template, unless it is a function template that has
810   //       internal linkage (Clause 14);
811   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
812     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
813     LinkageInfo tempLV =
814       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
815     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
816 
817   //     - a namespace (7.3), unless it is declared within an unnamed
818   //       namespace.
819   } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
820     return LV;
821 
822   // By extension, we assign external linkage to Objective-C
823   // interfaces.
824   } else if (isa<ObjCInterfaceDecl>(D)) {
825     // fallout
826 
827   // Everything not covered here has no linkage.
828   } else {
829     // FIXME: A typedef declaration has linkage if it gives a type a name for
830     // linkage purposes.
831     return LinkageInfo::none();
832   }
833 
834   // If we ended up with non-external linkage, visibility should
835   // always be default.
836   if (LV.getLinkage() != ExternalLinkage)
837     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
838 
839   return LV;
840 }
841 
842 static LinkageInfo getLVForClassMember(const NamedDecl *D,
843                                        LVComputationKind computation) {
844   // Only certain class members have linkage.  Note that fields don't
845   // really have linkage, but it's convenient to say they do for the
846   // purposes of calculating linkage of pointer-to-data-member
847   // template arguments.
848   //
849   // Templates also don't officially have linkage, but since we ignore
850   // the C++ standard and look at template arguments when determining
851   // linkage and visibility of a template specialization, we might hit
852   // a template template argument that way. If we do, we need to
853   // consider its linkage.
854   if (!(isa<CXXMethodDecl>(D) ||
855         isa<VarDecl>(D) ||
856         isa<FieldDecl>(D) ||
857         isa<IndirectFieldDecl>(D) ||
858         isa<TagDecl>(D) ||
859         isa<TemplateDecl>(D)))
860     return LinkageInfo::none();
861 
862   LinkageInfo LV;
863 
864   // If we have an explicit visibility attribute, merge that in.
865   if (!hasExplicitVisibilityAlready(computation)) {
866     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
867       LV.mergeVisibility(*Vis, true);
868     // If we're paying attention to global visibility, apply
869     // -finline-visibility-hidden if this is an inline method.
870     //
871     // Note that we do this before merging information about
872     // the class visibility.
873     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
874       LV.mergeVisibility(HiddenVisibility, true);
875   }
876 
877   // If this class member has an explicit visibility attribute, the only
878   // thing that can change its visibility is the template arguments, so
879   // only look for them when processing the class.
880   LVComputationKind classComputation = computation;
881   if (LV.isVisibilityExplicit())
882     classComputation = withExplicitVisibilityAlready(computation);
883 
884   LinkageInfo classLV =
885     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
886   // If the class already has unique-external linkage, we can't improve.
887   if (classLV.getLinkage() == UniqueExternalLinkage)
888     return LinkageInfo::uniqueExternal();
889 
890   if (!isExternallyVisible(classLV.getLinkage()))
891     return LinkageInfo::none();
892 
893 
894   // Otherwise, don't merge in classLV yet, because in certain cases
895   // we need to completely ignore the visibility from it.
896 
897   // Specifically, if this decl exists and has an explicit attribute.
898   const NamedDecl *explicitSpecSuppressor = nullptr;
899 
900   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
901     // If the type of the function uses a type with unique-external
902     // linkage, it's not legally usable from outside this translation unit.
903     // But only look at the type-as-written. If this function has an
904     // auto-deduced return type, we can't compute the linkage of that type
905     // because it could require looking at the linkage of this function, and we
906     // don't need this for correctness because the type is not part of the
907     // function's signature.
908     // FIXME: This is a hack. We should be able to solve this circularity and
909     // the one in getLVForNamespaceScopeDecl for Functions some other way.
910     {
911       QualType TypeAsWritten = MD->getType();
912       if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
913         TypeAsWritten = TSI->getType();
914       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
915         return LinkageInfo::uniqueExternal();
916     }
917     // If this is a method template specialization, use the linkage for
918     // the template parameters and arguments.
919     if (FunctionTemplateSpecializationInfo *spec
920            = MD->getTemplateSpecializationInfo()) {
921       mergeTemplateLV(LV, MD, spec, computation);
922       if (spec->isExplicitSpecialization()) {
923         explicitSpecSuppressor = MD;
924       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
925         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
926       }
927     } else if (isExplicitMemberSpecialization(MD)) {
928       explicitSpecSuppressor = MD;
929     }
930 
931   } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
932     if (const ClassTemplateSpecializationDecl *spec
933         = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
934       mergeTemplateLV(LV, spec, computation);
935       if (spec->isExplicitSpecialization()) {
936         explicitSpecSuppressor = spec;
937       } else {
938         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
939         if (isExplicitMemberSpecialization(temp)) {
940           explicitSpecSuppressor = temp->getTemplatedDecl();
941         }
942       }
943     } else if (isExplicitMemberSpecialization(RD)) {
944       explicitSpecSuppressor = RD;
945     }
946 
947   // Static data members.
948   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
949     if (const VarTemplateSpecializationDecl *spec
950         = dyn_cast<VarTemplateSpecializationDecl>(VD))
951       mergeTemplateLV(LV, spec, computation);
952 
953     // Modify the variable's linkage by its type, but ignore the
954     // type's visibility unless it's a definition.
955     LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
956     if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
957       LV.mergeVisibility(typeLV);
958     LV.mergeExternalVisibility(typeLV);
959 
960     if (isExplicitMemberSpecialization(VD)) {
961       explicitSpecSuppressor = VD;
962     }
963 
964   // Template members.
965   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
966     bool considerVisibility =
967       (!LV.isVisibilityExplicit() &&
968        !classLV.isVisibilityExplicit() &&
969        !hasExplicitVisibilityAlready(computation));
970     LinkageInfo tempLV =
971       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
972     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
973 
974     if (const RedeclarableTemplateDecl *redeclTemp =
975           dyn_cast<RedeclarableTemplateDecl>(temp)) {
976       if (isExplicitMemberSpecialization(redeclTemp)) {
977         explicitSpecSuppressor = temp->getTemplatedDecl();
978       }
979     }
980   }
981 
982   // We should never be looking for an attribute directly on a template.
983   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
984 
985   // If this member is an explicit member specialization, and it has
986   // an explicit attribute, ignore visibility from the parent.
987   bool considerClassVisibility = true;
988   if (explicitSpecSuppressor &&
989       // optimization: hasDVA() is true only with explicit visibility.
990       LV.isVisibilityExplicit() &&
991       classLV.getVisibility() != DefaultVisibility &&
992       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
993     considerClassVisibility = false;
994   }
995 
996   // Finally, merge in information from the class.
997   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
998   return LV;
999 }
1000 
1001 void NamedDecl::anchor() { }
1002 
1003 static LinkageInfo computeLVForDecl(const NamedDecl *D,
1004                                     LVComputationKind computation);
1005 
1006 bool NamedDecl::isLinkageValid() const {
1007   if (!hasCachedLinkage())
1008     return true;
1009 
1010   return computeLVForDecl(this, LVForLinkageOnly).getLinkage() ==
1011          getCachedLinkage();
1012 }
1013 
1014 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1015   StringRef name = getName();
1016   if (name.empty()) return SFF_None;
1017 
1018   if (name.front() == 'C')
1019     if (name == "CFStringCreateWithFormat" ||
1020         name == "CFStringCreateWithFormatAndArguments" ||
1021         name == "CFStringAppendFormat" ||
1022         name == "CFStringAppendFormatAndArguments")
1023       return SFF_CFString;
1024   return SFF_None;
1025 }
1026 
1027 Linkage NamedDecl::getLinkageInternal() const {
1028   // We don't care about visibility here, so ask for the cheapest
1029   // possible visibility analysis.
1030   return getLVForDecl(this, LVForLinkageOnly).getLinkage();
1031 }
1032 
1033 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1034   LVComputationKind computation =
1035     (usesTypeVisibility(this) ? LVForType : LVForValue);
1036   return getLVForDecl(this, computation);
1037 }
1038 
1039 static Optional<Visibility>
1040 getExplicitVisibilityAux(const NamedDecl *ND,
1041                          NamedDecl::ExplicitVisibilityKind kind,
1042                          bool IsMostRecent) {
1043   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1044 
1045   // Check the declaration itself first.
1046   if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1047     return V;
1048 
1049   // If this is a member class of a specialization of a class template
1050   // and the corresponding decl has explicit visibility, use that.
1051   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND)) {
1052     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1053     if (InstantiatedFrom)
1054       return getVisibilityOf(InstantiatedFrom, kind);
1055   }
1056 
1057   // If there wasn't explicit visibility there, and this is a
1058   // specialization of a class template, check for visibility
1059   // on the pattern.
1060   if (const ClassTemplateSpecializationDecl *spec
1061         = dyn_cast<ClassTemplateSpecializationDecl>(ND))
1062     return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
1063                            kind);
1064 
1065   // Use the most recent declaration.
1066   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1067     const NamedDecl *MostRecent = ND->getMostRecentDecl();
1068     if (MostRecent != ND)
1069       return getExplicitVisibilityAux(MostRecent, kind, true);
1070   }
1071 
1072   if (const VarDecl *Var = dyn_cast<VarDecl>(ND)) {
1073     if (Var->isStaticDataMember()) {
1074       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1075       if (InstantiatedFrom)
1076         return getVisibilityOf(InstantiatedFrom, kind);
1077     }
1078 
1079     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1080       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1081                              kind);
1082 
1083     return None;
1084   }
1085   // Also handle function template specializations.
1086   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) {
1087     // If the function is a specialization of a template with an
1088     // explicit visibility attribute, use that.
1089     if (FunctionTemplateSpecializationInfo *templateInfo
1090           = fn->getTemplateSpecializationInfo())
1091       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1092                              kind);
1093 
1094     // If the function is a member of a specialization of a class template
1095     // and the corresponding decl has explicit visibility, use that.
1096     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1097     if (InstantiatedFrom)
1098       return getVisibilityOf(InstantiatedFrom, kind);
1099 
1100     return None;
1101   }
1102 
1103   // The visibility of a template is stored in the templated decl.
1104   if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(ND))
1105     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1106 
1107   return None;
1108 }
1109 
1110 Optional<Visibility>
1111 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1112   return getExplicitVisibilityAux(this, kind, false);
1113 }
1114 
1115 static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl,
1116                                    LVComputationKind computation) {
1117   // This lambda has its linkage/visibility determined by its owner.
1118   if (ContextDecl) {
1119     if (isa<ParmVarDecl>(ContextDecl))
1120       DC = ContextDecl->getDeclContext()->getRedeclContext();
1121     else
1122       return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
1123   }
1124 
1125   if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC))
1126     return getLVForDecl(ND, computation);
1127 
1128   return LinkageInfo::external();
1129 }
1130 
1131 static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
1132                                      LVComputationKind computation) {
1133   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1134     if (Function->isInAnonymousNamespace() &&
1135         !Function->isInExternCContext())
1136       return LinkageInfo::uniqueExternal();
1137 
1138     // This is a "void f();" which got merged with a file static.
1139     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1140       return LinkageInfo::internal();
1141 
1142     LinkageInfo LV;
1143     if (!hasExplicitVisibilityAlready(computation)) {
1144       if (Optional<Visibility> Vis =
1145               getExplicitVisibility(Function, computation))
1146         LV.mergeVisibility(*Vis, true);
1147     }
1148 
1149     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1150     // merging storage classes and visibility attributes, so we don't have to
1151     // look at previous decls in here.
1152 
1153     return LV;
1154   }
1155 
1156   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
1157     if (Var->hasExternalStorage()) {
1158       if (Var->isInAnonymousNamespace() && !Var->isInExternCContext())
1159         return LinkageInfo::uniqueExternal();
1160 
1161       LinkageInfo LV;
1162       if (Var->getStorageClass() == SC_PrivateExtern)
1163         LV.mergeVisibility(HiddenVisibility, true);
1164       else if (!hasExplicitVisibilityAlready(computation)) {
1165         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1166           LV.mergeVisibility(*Vis, true);
1167       }
1168 
1169       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1170         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1171         if (PrevLV.getLinkage())
1172           LV.setLinkage(PrevLV.getLinkage());
1173         LV.mergeVisibility(PrevLV);
1174       }
1175 
1176       return LV;
1177     }
1178 
1179     if (!Var->isStaticLocal())
1180       return LinkageInfo::none();
1181   }
1182 
1183   ASTContext &Context = D->getASTContext();
1184   if (!Context.getLangOpts().CPlusPlus)
1185     return LinkageInfo::none();
1186 
1187   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1188   if (!OuterD)
1189     return LinkageInfo::none();
1190 
1191   LinkageInfo LV;
1192   if (const BlockDecl *BD = dyn_cast<BlockDecl>(OuterD)) {
1193     if (!BD->getBlockManglingNumber())
1194       return LinkageInfo::none();
1195 
1196     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1197                          BD->getBlockManglingContextDecl(), computation);
1198   } else {
1199     const FunctionDecl *FD = cast<FunctionDecl>(OuterD);
1200     if (!FD->isInlined() &&
1201         !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1202       return LinkageInfo::none();
1203 
1204     LV = getLVForDecl(FD, computation);
1205   }
1206   if (!isExternallyVisible(LV.getLinkage()))
1207     return LinkageInfo::none();
1208   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1209                      LV.isVisibilityExplicit());
1210 }
1211 
1212 static inline const CXXRecordDecl*
1213 getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
1214   const CXXRecordDecl *Ret = Record;
1215   while (Record && Record->isLambda()) {
1216     Ret = Record;
1217     if (!Record->getParent()) break;
1218     // Get the Containing Class of this Lambda Class
1219     Record = dyn_cast_or_null<CXXRecordDecl>(
1220       Record->getParent()->getParent());
1221   }
1222   return Ret;
1223 }
1224 
1225 static LinkageInfo computeLVForDecl(const NamedDecl *D,
1226                                     LVComputationKind computation) {
1227   // Objective-C: treat all Objective-C declarations as having external
1228   // linkage.
1229   switch (D->getKind()) {
1230     default:
1231       break;
1232     case Decl::ParmVar:
1233       return LinkageInfo::none();
1234     case Decl::TemplateTemplateParm: // count these as external
1235     case Decl::NonTypeTemplateParm:
1236     case Decl::ObjCAtDefsField:
1237     case Decl::ObjCCategory:
1238     case Decl::ObjCCategoryImpl:
1239     case Decl::ObjCCompatibleAlias:
1240     case Decl::ObjCImplementation:
1241     case Decl::ObjCMethod:
1242     case Decl::ObjCProperty:
1243     case Decl::ObjCPropertyImpl:
1244     case Decl::ObjCProtocol:
1245       return LinkageInfo::external();
1246 
1247     case Decl::CXXRecord: {
1248       const CXXRecordDecl *Record = cast<CXXRecordDecl>(D);
1249       if (Record->isLambda()) {
1250         if (!Record->getLambdaManglingNumber()) {
1251           // This lambda has no mangling number, so it's internal.
1252           return LinkageInfo::internal();
1253         }
1254 
1255         // This lambda has its linkage/visibility determined:
1256         //  - either by the outermost lambda if that lambda has no mangling
1257         //    number.
1258         //  - or by the parent of the outer most lambda
1259         // This prevents infinite recursion in settings such as nested lambdas
1260         // used in NSDMI's, for e.g.
1261         //  struct L {
1262         //    int t{};
1263         //    int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1264         //  };
1265         const CXXRecordDecl *OuterMostLambda =
1266             getOutermostEnclosingLambda(Record);
1267         if (!OuterMostLambda->getLambdaManglingNumber())
1268           return LinkageInfo::internal();
1269 
1270         return getLVForClosure(
1271                   OuterMostLambda->getDeclContext()->getRedeclContext(),
1272                   OuterMostLambda->getLambdaContextDecl(), computation);
1273       }
1274 
1275       break;
1276     }
1277   }
1278 
1279   // Handle linkage for namespace-scope names.
1280   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1281     return getLVForNamespaceScopeDecl(D, computation);
1282 
1283   // C++ [basic.link]p5:
1284   //   In addition, a member function, static data member, a named
1285   //   class or enumeration of class scope, or an unnamed class or
1286   //   enumeration defined in a class-scope typedef declaration such
1287   //   that the class or enumeration has the typedef name for linkage
1288   //   purposes (7.1.3), has external linkage if the name of the class
1289   //   has external linkage.
1290   if (D->getDeclContext()->isRecord())
1291     return getLVForClassMember(D, computation);
1292 
1293   // C++ [basic.link]p6:
1294   //   The name of a function declared in block scope and the name of
1295   //   an object declared by a block scope extern declaration have
1296   //   linkage. If there is a visible declaration of an entity with
1297   //   linkage having the same name and type, ignoring entities
1298   //   declared outside the innermost enclosing namespace scope, the
1299   //   block scope declaration declares that same entity and receives
1300   //   the linkage of the previous declaration. If there is more than
1301   //   one such matching entity, the program is ill-formed. Otherwise,
1302   //   if no matching entity is found, the block scope entity receives
1303   //   external linkage.
1304   if (D->getDeclContext()->isFunctionOrMethod())
1305     return getLVForLocalDecl(D, computation);
1306 
1307   // C++ [basic.link]p6:
1308   //   Names not covered by these rules have no linkage.
1309   return LinkageInfo::none();
1310 }
1311 
1312 namespace clang {
1313 class LinkageComputer {
1314 public:
1315   static LinkageInfo getLVForDecl(const NamedDecl *D,
1316                                   LVComputationKind computation) {
1317     if (computation == LVForLinkageOnly && D->hasCachedLinkage())
1318       return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1319 
1320     LinkageInfo LV = computeLVForDecl(D, computation);
1321     if (D->hasCachedLinkage())
1322       assert(D->getCachedLinkage() == LV.getLinkage());
1323 
1324     D->setCachedLinkage(LV.getLinkage());
1325 
1326 #ifndef NDEBUG
1327     // In C (because of gnu inline) and in c++ with microsoft extensions an
1328     // static can follow an extern, so we can have two decls with different
1329     // linkages.
1330     const LangOptions &Opts = D->getASTContext().getLangOpts();
1331     if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1332       return LV;
1333 
1334     // We have just computed the linkage for this decl. By induction we know
1335     // that all other computed linkages match, check that the one we just
1336     // computed also does.
1337     NamedDecl *Old = nullptr;
1338     for (auto I : D->redecls()) {
1339       NamedDecl *T = cast<NamedDecl>(I);
1340       if (T == D)
1341         continue;
1342       if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1343         Old = T;
1344         break;
1345       }
1346     }
1347     assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1348 #endif
1349 
1350     return LV;
1351   }
1352 };
1353 }
1354 
1355 static LinkageInfo getLVForDecl(const NamedDecl *D,
1356                                 LVComputationKind computation) {
1357   return clang::LinkageComputer::getLVForDecl(D, computation);
1358 }
1359 
1360 std::string NamedDecl::getQualifiedNameAsString() const {
1361   std::string QualName;
1362   llvm::raw_string_ostream OS(QualName);
1363   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1364   return OS.str();
1365 }
1366 
1367 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1368   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1369 }
1370 
1371 void NamedDecl::printQualifiedName(raw_ostream &OS,
1372                                    const PrintingPolicy &P) const {
1373   const DeclContext *Ctx = getDeclContext();
1374 
1375   if (Ctx->isFunctionOrMethod()) {
1376     printName(OS);
1377     return;
1378   }
1379 
1380   typedef SmallVector<const DeclContext *, 8> ContextsTy;
1381   ContextsTy Contexts;
1382 
1383   // Collect contexts.
1384   while (Ctx && isa<NamedDecl>(Ctx)) {
1385     Contexts.push_back(Ctx);
1386     Ctx = Ctx->getParent();
1387   }
1388 
1389   for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
1390        I != E; ++I) {
1391     if (const ClassTemplateSpecializationDecl *Spec
1392           = dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
1393       OS << Spec->getName();
1394       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1395       TemplateSpecializationType::PrintTemplateArgumentList(OS,
1396                                                             TemplateArgs.data(),
1397                                                             TemplateArgs.size(),
1398                                                             P);
1399     } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
1400       if (P.SuppressUnwrittenScope &&
1401           (ND->isAnonymousNamespace() || ND->isInline()))
1402         continue;
1403       if (ND->isAnonymousNamespace())
1404         OS << "(anonymous namespace)";
1405       else
1406         OS << *ND;
1407     } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
1408       if (!RD->getIdentifier())
1409         OS << "(anonymous " << RD->getKindName() << ')';
1410       else
1411         OS << *RD;
1412     } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
1413       const FunctionProtoType *FT = nullptr;
1414       if (FD->hasWrittenPrototype())
1415         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1416 
1417       OS << *FD << '(';
1418       if (FT) {
1419         unsigned NumParams = FD->getNumParams();
1420         for (unsigned i = 0; i < NumParams; ++i) {
1421           if (i)
1422             OS << ", ";
1423           OS << FD->getParamDecl(i)->getType().stream(P);
1424         }
1425 
1426         if (FT->isVariadic()) {
1427           if (NumParams > 0)
1428             OS << ", ";
1429           OS << "...";
1430         }
1431       }
1432       OS << ')';
1433     } else {
1434       OS << *cast<NamedDecl>(*I);
1435     }
1436     OS << "::";
1437   }
1438 
1439   if (getDeclName())
1440     OS << *this;
1441   else
1442     OS << "(anonymous)";
1443 }
1444 
1445 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1446                                      const PrintingPolicy &Policy,
1447                                      bool Qualified) const {
1448   if (Qualified)
1449     printQualifiedName(OS, Policy);
1450   else
1451     printName(OS);
1452 }
1453 
1454 static bool isKindReplaceableBy(Decl::Kind OldK, Decl::Kind NewK) {
1455   // For method declarations, we never replace.
1456   if (ObjCMethodDecl::classofKind(NewK))
1457     return false;
1458 
1459   if (OldK == NewK)
1460     return true;
1461 
1462   // A compatibility alias for a class can be replaced by an interface.
1463   if (ObjCCompatibleAliasDecl::classofKind(OldK) &&
1464       ObjCInterfaceDecl::classofKind(NewK))
1465     return true;
1466 
1467   // A typedef-declaration, alias-declaration, or Objective-C class declaration
1468   // can replace another declaration of the same type. Semantic analysis checks
1469   // that we have matching types.
1470   if ((TypedefNameDecl::classofKind(OldK) ||
1471        ObjCInterfaceDecl::classofKind(OldK)) &&
1472       (TypedefNameDecl::classofKind(NewK) ||
1473        ObjCInterfaceDecl::classofKind(NewK)))
1474     return true;
1475 
1476   // Otherwise, a kind mismatch implies that the declaration is not replaced.
1477   return false;
1478 }
1479 
1480 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1481   return true;
1482 }
1483 static bool isRedeclarableImpl(...) { return false; }
1484 static bool isRedeclarable(Decl::Kind K) {
1485   switch (K) {
1486 #define DECL(Type, Base) \
1487   case Decl::Type: \
1488     return isRedeclarableImpl((Type##Decl *)nullptr);
1489 #define ABSTRACT_DECL(DECL)
1490 #include "clang/AST/DeclNodes.inc"
1491   }
1492   llvm_unreachable("unknown decl kind");
1493 }
1494 
1495 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1496   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1497 
1498   // Never replace one imported declaration with another; we need both results
1499   // when re-exporting.
1500   if (OldD->isFromASTFile() && isFromASTFile())
1501     return false;
1502 
1503   if (!isKindReplaceableBy(OldD->getKind(), getKind()))
1504     return false;
1505 
1506   // Inline namespaces can give us two declarations with the same
1507   // name and kind in the same scope but different contexts; we should
1508   // keep both declarations in this case.
1509   if (!this->getDeclContext()->getRedeclContext()->Equals(
1510           OldD->getDeclContext()->getRedeclContext()))
1511     return false;
1512 
1513   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
1514     // For function declarations, we keep track of redeclarations.
1515     // FIXME: This returns false for functions that should in fact be replaced.
1516     // Instead, perform some kind of type check?
1517     if (FD->getPreviousDecl() != OldD)
1518       return false;
1519 
1520   // For function templates, the underlying function declarations are linked.
1521   if (const FunctionTemplateDecl *FunctionTemplate =
1522           dyn_cast<FunctionTemplateDecl>(this))
1523     return FunctionTemplate->getTemplatedDecl()->declarationReplaces(
1524         cast<FunctionTemplateDecl>(OldD)->getTemplatedDecl());
1525 
1526   // Using shadow declarations can be overloaded on their target declarations
1527   // if they introduce functions.
1528   // FIXME: If our target replaces the old target, can we replace the old
1529   //        shadow declaration?
1530   if (auto *USD = dyn_cast<UsingShadowDecl>(this))
1531     if (USD->getTargetDecl() != cast<UsingShadowDecl>(OldD)->getTargetDecl())
1532       return false;
1533 
1534   // Using declarations can be overloaded if they introduce functions.
1535   if (auto *UD = dyn_cast<UsingDecl>(this)) {
1536     ASTContext &Context = getASTContext();
1537     return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1538            Context.getCanonicalNestedNameSpecifier(
1539                cast<UsingDecl>(OldD)->getQualifier());
1540   }
1541   if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1542     ASTContext &Context = getASTContext();
1543     return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1544            Context.getCanonicalNestedNameSpecifier(
1545                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1546   }
1547 
1548   // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
1549   // We want to keep it, unless it nominates same namespace.
1550   if (auto *UD = dyn_cast<UsingDirectiveDecl>(this))
1551     return UD->getNominatedNamespace()->getOriginalNamespace() ==
1552            cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
1553                ->getOriginalNamespace();
1554 
1555   if (!IsKnownNewer && isRedeclarable(getKind())) {
1556     // Check whether this is actually newer than OldD. We want to keep the
1557     // newer declaration. This loop will usually only iterate once, because
1558     // OldD is usually the previous declaration.
1559     for (auto D : redecls()) {
1560       if (D == OldD)
1561         break;
1562 
1563       // If we reach the canonical declaration, then OldD is not actually older
1564       // than this one.
1565       //
1566       // FIXME: In this case, we should not add this decl to the lookup table.
1567       if (D->isCanonicalDecl())
1568         return false;
1569     }
1570   }
1571 
1572   // It's a newer declaration of the same kind of declaration in the same scope,
1573   // and not an overload: we want this decl instead of the existing one.
1574   return true;
1575 }
1576 
1577 bool NamedDecl::hasLinkage() const {
1578   return getFormalLinkage() != NoLinkage;
1579 }
1580 
1581 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1582   NamedDecl *ND = this;
1583   while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
1584     ND = UD->getTargetDecl();
1585 
1586   if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1587     return AD->getClassInterface();
1588 
1589   return ND;
1590 }
1591 
1592 bool NamedDecl::isCXXInstanceMember() const {
1593   if (!isCXXClassMember())
1594     return false;
1595 
1596   const NamedDecl *D = this;
1597   if (isa<UsingShadowDecl>(D))
1598     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1599 
1600   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1601     return true;
1602   if (const CXXMethodDecl *MD =
1603           dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1604     return MD->isInstance();
1605   return false;
1606 }
1607 
1608 //===----------------------------------------------------------------------===//
1609 // DeclaratorDecl Implementation
1610 //===----------------------------------------------------------------------===//
1611 
1612 template <typename DeclT>
1613 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1614   if (decl->getNumTemplateParameterLists() > 0)
1615     return decl->getTemplateParameterList(0)->getTemplateLoc();
1616   else
1617     return decl->getInnerLocStart();
1618 }
1619 
1620 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1621   TypeSourceInfo *TSI = getTypeSourceInfo();
1622   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1623   return SourceLocation();
1624 }
1625 
1626 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1627   if (QualifierLoc) {
1628     // Make sure the extended decl info is allocated.
1629     if (!hasExtInfo()) {
1630       // Save (non-extended) type source info pointer.
1631       TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1632       // Allocate external info struct.
1633       DeclInfo = new (getASTContext()) ExtInfo;
1634       // Restore savedTInfo into (extended) decl info.
1635       getExtInfo()->TInfo = savedTInfo;
1636     }
1637     // Set qualifier info.
1638     getExtInfo()->QualifierLoc = QualifierLoc;
1639   } else {
1640     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1641     if (hasExtInfo()) {
1642       if (getExtInfo()->NumTemplParamLists == 0) {
1643         // Save type source info pointer.
1644         TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1645         // Deallocate the extended decl info.
1646         getASTContext().Deallocate(getExtInfo());
1647         // Restore savedTInfo into (non-extended) decl info.
1648         DeclInfo = savedTInfo;
1649       }
1650       else
1651         getExtInfo()->QualifierLoc = QualifierLoc;
1652     }
1653   }
1654 }
1655 
1656 void DeclaratorDecl::setTemplateParameterListsInfo(
1657     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1658   assert(!TPLists.empty());
1659   // Make sure the extended decl info is allocated.
1660   if (!hasExtInfo()) {
1661     // Save (non-extended) type source info pointer.
1662     TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1663     // Allocate external info struct.
1664     DeclInfo = new (getASTContext()) ExtInfo;
1665     // Restore savedTInfo into (extended) decl info.
1666     getExtInfo()->TInfo = savedTInfo;
1667   }
1668   // Set the template parameter lists info.
1669   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1670 }
1671 
1672 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1673   return getTemplateOrInnerLocStart(this);
1674 }
1675 
1676 namespace {
1677 
1678 // Helper function: returns true if QT is or contains a type
1679 // having a postfix component.
1680 bool typeIsPostfix(clang::QualType QT) {
1681   while (true) {
1682     const Type* T = QT.getTypePtr();
1683     switch (T->getTypeClass()) {
1684     default:
1685       return false;
1686     case Type::Pointer:
1687       QT = cast<PointerType>(T)->getPointeeType();
1688       break;
1689     case Type::BlockPointer:
1690       QT = cast<BlockPointerType>(T)->getPointeeType();
1691       break;
1692     case Type::MemberPointer:
1693       QT = cast<MemberPointerType>(T)->getPointeeType();
1694       break;
1695     case Type::LValueReference:
1696     case Type::RValueReference:
1697       QT = cast<ReferenceType>(T)->getPointeeType();
1698       break;
1699     case Type::PackExpansion:
1700       QT = cast<PackExpansionType>(T)->getPattern();
1701       break;
1702     case Type::Paren:
1703     case Type::ConstantArray:
1704     case Type::DependentSizedArray:
1705     case Type::IncompleteArray:
1706     case Type::VariableArray:
1707     case Type::FunctionProto:
1708     case Type::FunctionNoProto:
1709       return true;
1710     }
1711   }
1712 }
1713 
1714 } // namespace
1715 
1716 SourceRange DeclaratorDecl::getSourceRange() const {
1717   SourceLocation RangeEnd = getLocation();
1718   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1719     // If the declaration has no name or the type extends past the name take the
1720     // end location of the type.
1721     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1722       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1723   }
1724   return SourceRange(getOuterLocStart(), RangeEnd);
1725 }
1726 
1727 void QualifierInfo::setTemplateParameterListsInfo(
1728     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1729   // Free previous template parameters (if any).
1730   if (NumTemplParamLists > 0) {
1731     Context.Deallocate(TemplParamLists);
1732     TemplParamLists = nullptr;
1733     NumTemplParamLists = 0;
1734   }
1735   // Set info on matched template parameter lists (if any).
1736   if (!TPLists.empty()) {
1737     TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1738     NumTemplParamLists = TPLists.size();
1739     std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1740   }
1741 }
1742 
1743 //===----------------------------------------------------------------------===//
1744 // VarDecl Implementation
1745 //===----------------------------------------------------------------------===//
1746 
1747 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1748   switch (SC) {
1749   case SC_None:                 break;
1750   case SC_Auto:                 return "auto";
1751   case SC_Extern:               return "extern";
1752   case SC_PrivateExtern:        return "__private_extern__";
1753   case SC_Register:             return "register";
1754   case SC_Static:               return "static";
1755   }
1756 
1757   llvm_unreachable("Invalid storage class");
1758 }
1759 
1760 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1761                  SourceLocation StartLoc, SourceLocation IdLoc,
1762                  IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1763                  StorageClass SC)
1764     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1765       redeclarable_base(C), Init() {
1766   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1767                 "VarDeclBitfields too large!");
1768   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1769                 "ParmVarDeclBitfields too large!");
1770   static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1771                 "NonParmVarDeclBitfields too large!");
1772   AllBits = 0;
1773   VarDeclBits.SClass = SC;
1774   // Everything else is implicitly initialized to false.
1775 }
1776 
1777 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1778                          SourceLocation StartL, SourceLocation IdL,
1779                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1780                          StorageClass S) {
1781   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1782 }
1783 
1784 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1785   return new (C, ID)
1786       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1787               QualType(), nullptr, SC_None);
1788 }
1789 
1790 void VarDecl::setStorageClass(StorageClass SC) {
1791   assert(isLegalForVariable(SC));
1792   VarDeclBits.SClass = SC;
1793 }
1794 
1795 VarDecl::TLSKind VarDecl::getTLSKind() const {
1796   switch (VarDeclBits.TSCSpec) {
1797   case TSCS_unspecified:
1798     if (!hasAttr<ThreadAttr>() &&
1799         !(getASTContext().getLangOpts().OpenMPUseTLS &&
1800           getASTContext().getTargetInfo().isTLSSupported() &&
1801           hasAttr<OMPThreadPrivateDeclAttr>()))
1802       return TLS_None;
1803     return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
1804                 LangOptions::MSVC2015)) ||
1805             hasAttr<OMPThreadPrivateDeclAttr>())
1806                ? TLS_Dynamic
1807                : TLS_Static;
1808   case TSCS___thread: // Fall through.
1809   case TSCS__Thread_local:
1810     return TLS_Static;
1811   case TSCS_thread_local:
1812     return TLS_Dynamic;
1813   }
1814   llvm_unreachable("Unknown thread storage class specifier!");
1815 }
1816 
1817 SourceRange VarDecl::getSourceRange() const {
1818   if (const Expr *Init = getInit()) {
1819     SourceLocation InitEnd = Init->getLocEnd();
1820     // If Init is implicit, ignore its source range and fallback on
1821     // DeclaratorDecl::getSourceRange() to handle postfix elements.
1822     if (InitEnd.isValid() && InitEnd != getLocation())
1823       return SourceRange(getOuterLocStart(), InitEnd);
1824   }
1825   return DeclaratorDecl::getSourceRange();
1826 }
1827 
1828 template<typename T>
1829 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
1830   // C++ [dcl.link]p1: All function types, function names with external linkage,
1831   // and variable names with external linkage have a language linkage.
1832   if (!D.hasExternalFormalLinkage())
1833     return NoLanguageLinkage;
1834 
1835   // Language linkage is a C++ concept, but saying that everything else in C has
1836   // C language linkage fits the implementation nicely.
1837   ASTContext &Context = D.getASTContext();
1838   if (!Context.getLangOpts().CPlusPlus)
1839     return CLanguageLinkage;
1840 
1841   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
1842   // language linkage of the names of class members and the function type of
1843   // class member functions.
1844   const DeclContext *DC = D.getDeclContext();
1845   if (DC->isRecord())
1846     return CXXLanguageLinkage;
1847 
1848   // If the first decl is in an extern "C" context, any other redeclaration
1849   // will have C language linkage. If the first one is not in an extern "C"
1850   // context, we would have reported an error for any other decl being in one.
1851   if (isFirstInExternCContext(&D))
1852     return CLanguageLinkage;
1853   return CXXLanguageLinkage;
1854 }
1855 
1856 template<typename T>
1857 static bool isDeclExternC(const T &D) {
1858   // Since the context is ignored for class members, they can only have C++
1859   // language linkage or no language linkage.
1860   const DeclContext *DC = D.getDeclContext();
1861   if (DC->isRecord()) {
1862     assert(D.getASTContext().getLangOpts().CPlusPlus);
1863     return false;
1864   }
1865 
1866   return D.getLanguageLinkage() == CLanguageLinkage;
1867 }
1868 
1869 LanguageLinkage VarDecl::getLanguageLinkage() const {
1870   return getDeclLanguageLinkage(*this);
1871 }
1872 
1873 bool VarDecl::isExternC() const {
1874   return isDeclExternC(*this);
1875 }
1876 
1877 bool VarDecl::isInExternCContext() const {
1878   return getLexicalDeclContext()->isExternCContext();
1879 }
1880 
1881 bool VarDecl::isInExternCXXContext() const {
1882   return getLexicalDeclContext()->isExternCXXContext();
1883 }
1884 
1885 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
1886 
1887 VarDecl::DefinitionKind
1888 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
1889   // C++ [basic.def]p2:
1890   //   A declaration is a definition unless [...] it contains the 'extern'
1891   //   specifier or a linkage-specification and neither an initializer [...],
1892   //   it declares a static data member in a class declaration [...].
1893   // C++1y [temp.expl.spec]p15:
1894   //   An explicit specialization of a static data member or an explicit
1895   //   specialization of a static data member template is a definition if the
1896   //   declaration includes an initializer; otherwise, it is a declaration.
1897   //
1898   // FIXME: How do you declare (but not define) a partial specialization of
1899   // a static data member template outside the containing class?
1900   if (isStaticDataMember()) {
1901     if (isOutOfLine() &&
1902         (hasInit() ||
1903          // If the first declaration is out-of-line, this may be an
1904          // instantiation of an out-of-line partial specialization of a variable
1905          // template for which we have not yet instantiated the initializer.
1906          (getFirstDecl()->isOutOfLine()
1907               ? getTemplateSpecializationKind() == TSK_Undeclared
1908               : getTemplateSpecializationKind() !=
1909                     TSK_ExplicitSpecialization) ||
1910          isa<VarTemplatePartialSpecializationDecl>(this)))
1911       return Definition;
1912     else
1913       return DeclarationOnly;
1914   }
1915   // C99 6.7p5:
1916   //   A definition of an identifier is a declaration for that identifier that
1917   //   [...] causes storage to be reserved for that object.
1918   // Note: that applies for all non-file-scope objects.
1919   // C99 6.9.2p1:
1920   //   If the declaration of an identifier for an object has file scope and an
1921   //   initializer, the declaration is an external definition for the identifier
1922   if (hasInit())
1923     return Definition;
1924 
1925   if (hasAttr<AliasAttr>())
1926     return Definition;
1927 
1928   if (const auto *SAA = getAttr<SelectAnyAttr>())
1929     if (!SAA->isInherited())
1930       return Definition;
1931 
1932   // A variable template specialization (other than a static data member
1933   // template or an explicit specialization) is a declaration until we
1934   // instantiate its initializer.
1935   if (isa<VarTemplateSpecializationDecl>(this) &&
1936       getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
1937     return DeclarationOnly;
1938 
1939   if (hasExternalStorage())
1940     return DeclarationOnly;
1941 
1942   // [dcl.link] p7:
1943   //   A declaration directly contained in a linkage-specification is treated
1944   //   as if it contains the extern specifier for the purpose of determining
1945   //   the linkage of the declared name and whether it is a definition.
1946   if (isSingleLineLanguageLinkage(*this))
1947     return DeclarationOnly;
1948 
1949   // C99 6.9.2p2:
1950   //   A declaration of an object that has file scope without an initializer,
1951   //   and without a storage class specifier or the scs 'static', constitutes
1952   //   a tentative definition.
1953   // No such thing in C++.
1954   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
1955     return TentativeDefinition;
1956 
1957   // What's left is (in C, block-scope) declarations without initializers or
1958   // external storage. These are definitions.
1959   return Definition;
1960 }
1961 
1962 VarDecl *VarDecl::getActingDefinition() {
1963   DefinitionKind Kind = isThisDeclarationADefinition();
1964   if (Kind != TentativeDefinition)
1965     return nullptr;
1966 
1967   VarDecl *LastTentative = nullptr;
1968   VarDecl *First = getFirstDecl();
1969   for (auto I : First->redecls()) {
1970     Kind = I->isThisDeclarationADefinition();
1971     if (Kind == Definition)
1972       return nullptr;
1973     else if (Kind == TentativeDefinition)
1974       LastTentative = I;
1975   }
1976   return LastTentative;
1977 }
1978 
1979 VarDecl *VarDecl::getDefinition(ASTContext &C) {
1980   VarDecl *First = getFirstDecl();
1981   for (auto I : First->redecls()) {
1982     if (I->isThisDeclarationADefinition(C) == Definition)
1983       return I;
1984   }
1985   return nullptr;
1986 }
1987 
1988 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
1989   DefinitionKind Kind = DeclarationOnly;
1990 
1991   const VarDecl *First = getFirstDecl();
1992   for (auto I : First->redecls()) {
1993     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
1994     if (Kind == Definition)
1995       break;
1996   }
1997 
1998   return Kind;
1999 }
2000 
2001 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2002   for (auto I : redecls()) {
2003     if (auto Expr = I->getInit()) {
2004       D = I;
2005       return Expr;
2006     }
2007   }
2008   return nullptr;
2009 }
2010 
2011 bool VarDecl::isOutOfLine() const {
2012   if (Decl::isOutOfLine())
2013     return true;
2014 
2015   if (!isStaticDataMember())
2016     return false;
2017 
2018   // If this static data member was instantiated from a static data member of
2019   // a class template, check whether that static data member was defined
2020   // out-of-line.
2021   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2022     return VD->isOutOfLine();
2023 
2024   return false;
2025 }
2026 
2027 VarDecl *VarDecl::getOutOfLineDefinition() {
2028   if (!isStaticDataMember())
2029     return nullptr;
2030 
2031   for (auto RD : redecls()) {
2032     if (RD->getLexicalDeclContext()->isFileContext())
2033       return RD;
2034   }
2035 
2036   return nullptr;
2037 }
2038 
2039 void VarDecl::setInit(Expr *I) {
2040   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2041     Eval->~EvaluatedStmt();
2042     getASTContext().Deallocate(Eval);
2043   }
2044 
2045   Init = I;
2046 }
2047 
2048 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
2049   const LangOptions &Lang = C.getLangOpts();
2050 
2051   if (!Lang.CPlusPlus)
2052     return false;
2053 
2054   // In C++11, any variable of reference type can be used in a constant
2055   // expression if it is initialized by a constant expression.
2056   if (Lang.CPlusPlus11 && getType()->isReferenceType())
2057     return true;
2058 
2059   // Only const objects can be used in constant expressions in C++. C++98 does
2060   // not require the variable to be non-volatile, but we consider this to be a
2061   // defect.
2062   if (!getType().isConstQualified() || getType().isVolatileQualified())
2063     return false;
2064 
2065   // In C++, const, non-volatile variables of integral or enumeration types
2066   // can be used in constant expressions.
2067   if (getType()->isIntegralOrEnumerationType())
2068     return true;
2069 
2070   // Additionally, in C++11, non-volatile constexpr variables can be used in
2071   // constant expressions.
2072   return Lang.CPlusPlus11 && isConstexpr();
2073 }
2074 
2075 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2076 /// form, which contains extra information on the evaluated value of the
2077 /// initializer.
2078 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2079   EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
2080   if (!Eval) {
2081     Stmt *S = Init.get<Stmt *>();
2082     // Note: EvaluatedStmt contains an APValue, which usually holds
2083     // resources not allocated from the ASTContext.  We need to do some
2084     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2085     // where we can detect whether there's anything to clean up or not.
2086     Eval = new (getASTContext()) EvaluatedStmt;
2087     Eval->Value = S;
2088     Init = Eval;
2089   }
2090   return Eval;
2091 }
2092 
2093 APValue *VarDecl::evaluateValue() const {
2094   SmallVector<PartialDiagnosticAt, 8> Notes;
2095   return evaluateValue(Notes);
2096 }
2097 
2098 namespace {
2099 // Destroy an APValue that was allocated in an ASTContext.
2100 void DestroyAPValue(void* UntypedValue) {
2101   static_cast<APValue*>(UntypedValue)->~APValue();
2102 }
2103 } // namespace
2104 
2105 APValue *VarDecl::evaluateValue(
2106     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2107   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2108 
2109   // We only produce notes indicating why an initializer is non-constant the
2110   // first time it is evaluated. FIXME: The notes won't always be emitted the
2111   // first time we try evaluation, so might not be produced at all.
2112   if (Eval->WasEvaluated)
2113     return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
2114 
2115   const Expr *Init = cast<Expr>(Eval->Value);
2116   assert(!Init->isValueDependent());
2117 
2118   if (Eval->IsEvaluating) {
2119     // FIXME: Produce a diagnostic for self-initialization.
2120     Eval->CheckedICE = true;
2121     Eval->IsICE = false;
2122     return nullptr;
2123   }
2124 
2125   Eval->IsEvaluating = true;
2126 
2127   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2128                                             this, Notes);
2129 
2130   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2131   // or that it's empty (so that there's nothing to clean up) if evaluation
2132   // failed.
2133   if (!Result)
2134     Eval->Evaluated = APValue();
2135   else if (Eval->Evaluated.needsCleanup())
2136     getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated);
2137 
2138   Eval->IsEvaluating = false;
2139   Eval->WasEvaluated = true;
2140 
2141   // In C++11, we have determined whether the initializer was a constant
2142   // expression as a side-effect.
2143   if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2144     Eval->CheckedICE = true;
2145     Eval->IsICE = Result && Notes.empty();
2146   }
2147 
2148   return Result ? &Eval->Evaluated : nullptr;
2149 }
2150 
2151 bool VarDecl::checkInitIsICE() const {
2152   // Initializers of weak variables are never ICEs.
2153   if (isWeak())
2154     return false;
2155 
2156   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2157   if (Eval->CheckedICE)
2158     // We have already checked whether this subexpression is an
2159     // integral constant expression.
2160     return Eval->IsICE;
2161 
2162   const Expr *Init = cast<Expr>(Eval->Value);
2163   assert(!Init->isValueDependent());
2164 
2165   // In C++11, evaluate the initializer to check whether it's a constant
2166   // expression.
2167   if (getASTContext().getLangOpts().CPlusPlus11) {
2168     SmallVector<PartialDiagnosticAt, 8> Notes;
2169     evaluateValue(Notes);
2170     return Eval->IsICE;
2171   }
2172 
2173   // It's an ICE whether or not the definition we found is
2174   // out-of-line.  See DR 721 and the discussion in Clang PR
2175   // 6206 for details.
2176 
2177   if (Eval->CheckingICE)
2178     return false;
2179   Eval->CheckingICE = true;
2180 
2181   Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2182   Eval->CheckingICE = false;
2183   Eval->CheckedICE = true;
2184   return Eval->IsICE;
2185 }
2186 
2187 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2188   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2189     return cast<VarDecl>(MSI->getInstantiatedFrom());
2190 
2191   return nullptr;
2192 }
2193 
2194 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2195   if (const VarTemplateSpecializationDecl *Spec =
2196           dyn_cast<VarTemplateSpecializationDecl>(this))
2197     return Spec->getSpecializationKind();
2198 
2199   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2200     return MSI->getTemplateSpecializationKind();
2201 
2202   return TSK_Undeclared;
2203 }
2204 
2205 SourceLocation VarDecl::getPointOfInstantiation() const {
2206   if (const VarTemplateSpecializationDecl *Spec =
2207           dyn_cast<VarTemplateSpecializationDecl>(this))
2208     return Spec->getPointOfInstantiation();
2209 
2210   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2211     return MSI->getPointOfInstantiation();
2212 
2213   return SourceLocation();
2214 }
2215 
2216 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2217   return getASTContext().getTemplateOrSpecializationInfo(this)
2218       .dyn_cast<VarTemplateDecl *>();
2219 }
2220 
2221 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2222   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2223 }
2224 
2225 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2226   if (isStaticDataMember())
2227     // FIXME: Remove ?
2228     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2229     return getASTContext().getTemplateOrSpecializationInfo(this)
2230         .dyn_cast<MemberSpecializationInfo *>();
2231   return nullptr;
2232 }
2233 
2234 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2235                                          SourceLocation PointOfInstantiation) {
2236   assert((isa<VarTemplateSpecializationDecl>(this) ||
2237           getMemberSpecializationInfo()) &&
2238          "not a variable or static data member template specialization");
2239 
2240   if (VarTemplateSpecializationDecl *Spec =
2241           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2242     Spec->setSpecializationKind(TSK);
2243     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2244         Spec->getPointOfInstantiation().isInvalid())
2245       Spec->setPointOfInstantiation(PointOfInstantiation);
2246   }
2247 
2248   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2249     MSI->setTemplateSpecializationKind(TSK);
2250     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2251         MSI->getPointOfInstantiation().isInvalid())
2252       MSI->setPointOfInstantiation(PointOfInstantiation);
2253   }
2254 }
2255 
2256 void
2257 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2258                                             TemplateSpecializationKind TSK) {
2259   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2260          "Previous template or instantiation?");
2261   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2262 }
2263 
2264 //===----------------------------------------------------------------------===//
2265 // ParmVarDecl Implementation
2266 //===----------------------------------------------------------------------===//
2267 
2268 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2269                                  SourceLocation StartLoc,
2270                                  SourceLocation IdLoc, IdentifierInfo *Id,
2271                                  QualType T, TypeSourceInfo *TInfo,
2272                                  StorageClass S, Expr *DefArg) {
2273   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2274                                  S, DefArg);
2275 }
2276 
2277 QualType ParmVarDecl::getOriginalType() const {
2278   TypeSourceInfo *TSI = getTypeSourceInfo();
2279   QualType T = TSI ? TSI->getType() : getType();
2280   if (const DecayedType *DT = dyn_cast<DecayedType>(T))
2281     return DT->getOriginalType();
2282   return T;
2283 }
2284 
2285 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2286   return new (C, ID)
2287       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2288                   nullptr, QualType(), nullptr, SC_None, nullptr);
2289 }
2290 
2291 SourceRange ParmVarDecl::getSourceRange() const {
2292   if (!hasInheritedDefaultArg()) {
2293     SourceRange ArgRange = getDefaultArgRange();
2294     if (ArgRange.isValid())
2295       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2296   }
2297 
2298   // DeclaratorDecl considers the range of postfix types as overlapping with the
2299   // declaration name, but this is not the case with parameters in ObjC methods.
2300   if (isa<ObjCMethodDecl>(getDeclContext()))
2301     return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
2302 
2303   return DeclaratorDecl::getSourceRange();
2304 }
2305 
2306 Expr *ParmVarDecl::getDefaultArg() {
2307   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2308   assert(!hasUninstantiatedDefaultArg() &&
2309          "Default argument is not yet instantiated!");
2310 
2311   Expr *Arg = getInit();
2312   if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
2313     return E->getSubExpr();
2314 
2315   return Arg;
2316 }
2317 
2318 SourceRange ParmVarDecl::getDefaultArgRange() const {
2319   if (const Expr *E = getInit())
2320     return E->getSourceRange();
2321 
2322   if (hasUninstantiatedDefaultArg())
2323     return getUninstantiatedDefaultArg()->getSourceRange();
2324 
2325   return SourceRange();
2326 }
2327 
2328 bool ParmVarDecl::isParameterPack() const {
2329   return isa<PackExpansionType>(getType());
2330 }
2331 
2332 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2333   getASTContext().setParameterIndex(this, parameterIndex);
2334   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2335 }
2336 
2337 unsigned ParmVarDecl::getParameterIndexLarge() const {
2338   return getASTContext().getParameterIndex(this);
2339 }
2340 
2341 //===----------------------------------------------------------------------===//
2342 // FunctionDecl Implementation
2343 //===----------------------------------------------------------------------===//
2344 
2345 void FunctionDecl::getNameForDiagnostic(
2346     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2347   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2348   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2349   if (TemplateArgs)
2350     TemplateSpecializationType::PrintTemplateArgumentList(
2351         OS, TemplateArgs->data(), TemplateArgs->size(), Policy);
2352 }
2353 
2354 bool FunctionDecl::isVariadic() const {
2355   if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
2356     return FT->isVariadic();
2357   return false;
2358 }
2359 
2360 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2361   for (auto I : redecls()) {
2362     if (I->Body || I->IsLateTemplateParsed) {
2363       Definition = I;
2364       return true;
2365     }
2366   }
2367 
2368   return false;
2369 }
2370 
2371 bool FunctionDecl::hasTrivialBody() const
2372 {
2373   Stmt *S = getBody();
2374   if (!S) {
2375     // Since we don't have a body for this function, we don't know if it's
2376     // trivial or not.
2377     return false;
2378   }
2379 
2380   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2381     return true;
2382   return false;
2383 }
2384 
2385 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2386   for (auto I : redecls()) {
2387     if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed ||
2388         I->hasAttr<AliasAttr>()) {
2389       Definition = I->IsDeleted ? I->getCanonicalDecl() : I;
2390       return true;
2391     }
2392   }
2393 
2394   return false;
2395 }
2396 
2397 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2398   if (!hasBody(Definition))
2399     return nullptr;
2400 
2401   if (Definition->Body)
2402     return Definition->Body.get(getASTContext().getExternalSource());
2403 
2404   return nullptr;
2405 }
2406 
2407 void FunctionDecl::setBody(Stmt *B) {
2408   Body = B;
2409   if (B)
2410     EndRangeLoc = B->getLocEnd();
2411 }
2412 
2413 void FunctionDecl::setPure(bool P) {
2414   IsPure = P;
2415   if (P)
2416     if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2417       Parent->markedVirtualFunctionPure();
2418 }
2419 
2420 template<std::size_t Len>
2421 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2422   IdentifierInfo *II = ND->getIdentifier();
2423   return II && II->isStr(Str);
2424 }
2425 
2426 bool FunctionDecl::isMain() const {
2427   const TranslationUnitDecl *tunit =
2428     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2429   return tunit &&
2430          !tunit->getASTContext().getLangOpts().Freestanding &&
2431          isNamed(this, "main");
2432 }
2433 
2434 bool FunctionDecl::isMSVCRTEntryPoint() const {
2435   const TranslationUnitDecl *TUnit =
2436       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2437   if (!TUnit)
2438     return false;
2439 
2440   // Even though we aren't really targeting MSVCRT if we are freestanding,
2441   // semantic analysis for these functions remains the same.
2442 
2443   // MSVCRT entry points only exist on MSVCRT targets.
2444   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2445     return false;
2446 
2447   // Nameless functions like constructors cannot be entry points.
2448   if (!getIdentifier())
2449     return false;
2450 
2451   return llvm::StringSwitch<bool>(getName())
2452       .Cases("main",     // an ANSI console app
2453              "wmain",    // a Unicode console App
2454              "WinMain",  // an ANSI GUI app
2455              "wWinMain", // a Unicode GUI app
2456              "DllMain",  // a DLL
2457              true)
2458       .Default(false);
2459 }
2460 
2461 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2462   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2463   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2464          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2465          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2466          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2467 
2468   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2469     return false;
2470 
2471   const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
2472   if (proto->getNumParams() != 2 || proto->isVariadic())
2473     return false;
2474 
2475   ASTContext &Context =
2476     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2477       ->getASTContext();
2478 
2479   // The result type and first argument type are constant across all
2480   // these operators.  The second argument must be exactly void*.
2481   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2482 }
2483 
2484 bool FunctionDecl::isReplaceableGlobalAllocationFunction() const {
2485   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2486     return false;
2487   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2488       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2489       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2490       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2491     return false;
2492 
2493   if (isa<CXXRecordDecl>(getDeclContext()))
2494     return false;
2495 
2496   // This can only fail for an invalid 'operator new' declaration.
2497   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2498     return false;
2499 
2500   const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>();
2501   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 2 || FPT->isVariadic())
2502     return false;
2503 
2504   // If this is a single-parameter function, it must be a replaceable global
2505   // allocation or deallocation function.
2506   if (FPT->getNumParams() == 1)
2507     return true;
2508 
2509   // Otherwise, we're looking for a second parameter whose type is
2510   // 'const std::nothrow_t &', or, in C++1y, 'std::size_t'.
2511   QualType Ty = FPT->getParamType(1);
2512   ASTContext &Ctx = getASTContext();
2513   if (Ctx.getLangOpts().SizedDeallocation &&
2514       Ctx.hasSameType(Ty, Ctx.getSizeType()))
2515     return true;
2516   if (!Ty->isReferenceType())
2517     return false;
2518   Ty = Ty->getPointeeType();
2519   if (Ty.getCVRQualifiers() != Qualifiers::Const)
2520     return false;
2521   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2522   return RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace();
2523 }
2524 
2525 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
2526   return getDeclLanguageLinkage(*this);
2527 }
2528 
2529 bool FunctionDecl::isExternC() const {
2530   return isDeclExternC(*this);
2531 }
2532 
2533 bool FunctionDecl::isInExternCContext() const {
2534   return getLexicalDeclContext()->isExternCContext();
2535 }
2536 
2537 bool FunctionDecl::isInExternCXXContext() const {
2538   return getLexicalDeclContext()->isExternCXXContext();
2539 }
2540 
2541 bool FunctionDecl::isGlobal() const {
2542   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
2543     return Method->isStatic();
2544 
2545   if (getCanonicalDecl()->getStorageClass() == SC_Static)
2546     return false;
2547 
2548   for (const DeclContext *DC = getDeclContext();
2549        DC->isNamespace();
2550        DC = DC->getParent()) {
2551     if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
2552       if (!Namespace->getDeclName())
2553         return false;
2554       break;
2555     }
2556   }
2557 
2558   return true;
2559 }
2560 
2561 bool FunctionDecl::isNoReturn() const {
2562   return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2563          hasAttr<C11NoReturnAttr>() ||
2564          getType()->getAs<FunctionType>()->getNoReturnAttr();
2565 }
2566 
2567 void
2568 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
2569   redeclarable_base::setPreviousDecl(PrevDecl);
2570 
2571   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
2572     FunctionTemplateDecl *PrevFunTmpl
2573       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
2574     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
2575     FunTmpl->setPreviousDecl(PrevFunTmpl);
2576   }
2577 
2578   if (PrevDecl && PrevDecl->IsInline)
2579     IsInline = true;
2580 }
2581 
2582 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
2583 
2584 /// \brief Returns a value indicating whether this function
2585 /// corresponds to a builtin function.
2586 ///
2587 /// The function corresponds to a built-in function if it is
2588 /// declared at translation scope or within an extern "C" block and
2589 /// its name matches with the name of a builtin. The returned value
2590 /// will be 0 for functions that do not correspond to a builtin, a
2591 /// value of type \c Builtin::ID if in the target-independent range
2592 /// \c [1,Builtin::First), or a target-specific builtin value.
2593 unsigned FunctionDecl::getBuiltinID() const {
2594   if (!getIdentifier())
2595     return 0;
2596 
2597   unsigned BuiltinID = getIdentifier()->getBuiltinID();
2598   if (!BuiltinID)
2599     return 0;
2600 
2601   ASTContext &Context = getASTContext();
2602   if (Context.getLangOpts().CPlusPlus) {
2603     const LinkageSpecDecl *LinkageDecl = dyn_cast<LinkageSpecDecl>(
2604         getFirstDecl()->getDeclContext());
2605     // In C++, the first declaration of a builtin is always inside an implicit
2606     // extern "C".
2607     // FIXME: A recognised library function may not be directly in an extern "C"
2608     // declaration, for instance "extern "C" { namespace std { decl } }".
2609     if (!LinkageDecl) {
2610       if (BuiltinID == Builtin::BI__GetExceptionInfo &&
2611           Context.getTargetInfo().getCXXABI().isMicrosoft() &&
2612           isInStdNamespace())
2613         return Builtin::BI__GetExceptionInfo;
2614       return 0;
2615     }
2616     if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
2617       return 0;
2618   }
2619 
2620   // If the function is marked "overloadable", it has a different mangled name
2621   // and is not the C library function.
2622   if (hasAttr<OverloadableAttr>())
2623     return 0;
2624 
2625   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2626     return BuiltinID;
2627 
2628   // This function has the name of a known C library
2629   // function. Determine whether it actually refers to the C library
2630   // function or whether it just has the same name.
2631 
2632   // If this is a static function, it's not a builtin.
2633   if (getStorageClass() == SC_Static)
2634     return 0;
2635 
2636   return BuiltinID;
2637 }
2638 
2639 
2640 /// getNumParams - Return the number of parameters this function must have
2641 /// based on its FunctionType.  This is the length of the ParamInfo array
2642 /// after it has been created.
2643 unsigned FunctionDecl::getNumParams() const {
2644   const FunctionProtoType *FPT = getType()->getAs<FunctionProtoType>();
2645   return FPT ? FPT->getNumParams() : 0;
2646 }
2647 
2648 void FunctionDecl::setParams(ASTContext &C,
2649                              ArrayRef<ParmVarDecl *> NewParamInfo) {
2650   assert(!ParamInfo && "Already has param info!");
2651   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
2652 
2653   // Zero params -> null pointer.
2654   if (!NewParamInfo.empty()) {
2655     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
2656     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
2657   }
2658 }
2659 
2660 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
2661   assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
2662 
2663   if (!NewDecls.empty()) {
2664     NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
2665     std::copy(NewDecls.begin(), NewDecls.end(), A);
2666     DeclsInPrototypeScope = llvm::makeArrayRef(A, NewDecls.size());
2667     // Move declarations introduced in prototype to the function context.
2668     for (auto I : NewDecls) {
2669       DeclContext *DC = I->getDeclContext();
2670       // Forward-declared reference to an enumeration is not added to
2671       // declaration scope, so skip declaration that is absent from its
2672       // declaration contexts.
2673       if (DC->containsDecl(I)) {
2674           DC->removeDecl(I);
2675           I->setDeclContext(this);
2676           addDecl(I);
2677       }
2678     }
2679   }
2680 }
2681 
2682 /// getMinRequiredArguments - Returns the minimum number of arguments
2683 /// needed to call this function. This may be fewer than the number of
2684 /// function parameters, if some of the parameters have default
2685 /// arguments (in C++) or are parameter packs (C++11).
2686 unsigned FunctionDecl::getMinRequiredArguments() const {
2687   if (!getASTContext().getLangOpts().CPlusPlus)
2688     return getNumParams();
2689 
2690   unsigned NumRequiredArgs = 0;
2691   for (auto *Param : params())
2692     if (!Param->isParameterPack() && !Param->hasDefaultArg())
2693       ++NumRequiredArgs;
2694   return NumRequiredArgs;
2695 }
2696 
2697 /// \brief The combination of the extern and inline keywords under MSVC forces
2698 /// the function to be required.
2699 ///
2700 /// Note: This function assumes that we will only get called when isInlined()
2701 /// would return true for this FunctionDecl.
2702 bool FunctionDecl::isMSExternInline() const {
2703   assert(isInlined() && "expected to get called on an inlined function!");
2704 
2705   const ASTContext &Context = getASTContext();
2706   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
2707       !hasAttr<DLLExportAttr>())
2708     return false;
2709 
2710   for (const FunctionDecl *FD = getMostRecentDecl(); FD;
2711        FD = FD->getPreviousDecl())
2712     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
2713       return true;
2714 
2715   return false;
2716 }
2717 
2718 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
2719   if (Redecl->getStorageClass() != SC_Extern)
2720     return false;
2721 
2722   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
2723        FD = FD->getPreviousDecl())
2724     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
2725       return false;
2726 
2727   return true;
2728 }
2729 
2730 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
2731   // Only consider file-scope declarations in this test.
2732   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
2733     return false;
2734 
2735   // Only consider explicit declarations; the presence of a builtin for a
2736   // libcall shouldn't affect whether a definition is externally visible.
2737   if (Redecl->isImplicit())
2738     return false;
2739 
2740   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
2741     return true; // Not an inline definition
2742 
2743   return false;
2744 }
2745 
2746 /// \brief For a function declaration in C or C++, determine whether this
2747 /// declaration causes the definition to be externally visible.
2748 ///
2749 /// For instance, this determines if adding the current declaration to the set
2750 /// of redeclarations of the given functions causes
2751 /// isInlineDefinitionExternallyVisible to change from false to true.
2752 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
2753   assert(!doesThisDeclarationHaveABody() &&
2754          "Must have a declaration without a body.");
2755 
2756   ASTContext &Context = getASTContext();
2757 
2758   if (Context.getLangOpts().MSVCCompat) {
2759     const FunctionDecl *Definition;
2760     if (hasBody(Definition) && Definition->isInlined() &&
2761         redeclForcesDefMSVC(this))
2762       return true;
2763   }
2764 
2765   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2766     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
2767     // an externally visible definition.
2768     //
2769     // FIXME: What happens if gnu_inline gets added on after the first
2770     // declaration?
2771     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
2772       return false;
2773 
2774     const FunctionDecl *Prev = this;
2775     bool FoundBody = false;
2776     while ((Prev = Prev->getPreviousDecl())) {
2777       FoundBody |= Prev->Body.isValid();
2778 
2779       if (Prev->Body) {
2780         // If it's not the case that both 'inline' and 'extern' are
2781         // specified on the definition, then it is always externally visible.
2782         if (!Prev->isInlineSpecified() ||
2783             Prev->getStorageClass() != SC_Extern)
2784           return false;
2785       } else if (Prev->isInlineSpecified() &&
2786                  Prev->getStorageClass() != SC_Extern) {
2787         return false;
2788       }
2789     }
2790     return FoundBody;
2791   }
2792 
2793   if (Context.getLangOpts().CPlusPlus)
2794     return false;
2795 
2796   // C99 6.7.4p6:
2797   //   [...] If all of the file scope declarations for a function in a
2798   //   translation unit include the inline function specifier without extern,
2799   //   then the definition in that translation unit is an inline definition.
2800   if (isInlineSpecified() && getStorageClass() != SC_Extern)
2801     return false;
2802   const FunctionDecl *Prev = this;
2803   bool FoundBody = false;
2804   while ((Prev = Prev->getPreviousDecl())) {
2805     FoundBody |= Prev->Body.isValid();
2806     if (RedeclForcesDefC99(Prev))
2807       return false;
2808   }
2809   return FoundBody;
2810 }
2811 
2812 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
2813   const TypeSourceInfo *TSI = getTypeSourceInfo();
2814   if (!TSI)
2815     return SourceRange();
2816   FunctionTypeLoc FTL =
2817       TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>();
2818   if (!FTL)
2819     return SourceRange();
2820 
2821   // Skip self-referential return types.
2822   const SourceManager &SM = getASTContext().getSourceManager();
2823   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
2824   SourceLocation Boundary = getNameInfo().getLocStart();
2825   if (RTRange.isInvalid() || Boundary.isInvalid() ||
2826       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
2827     return SourceRange();
2828 
2829   return RTRange;
2830 }
2831 
2832 bool FunctionDecl::hasUnusedResultAttr() const {
2833   QualType RetType = getReturnType();
2834   if (RetType->isRecordType()) {
2835     const CXXRecordDecl *Ret = RetType->getAsCXXRecordDecl();
2836     const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(this);
2837     if (Ret && Ret->hasAttr<WarnUnusedResultAttr>() &&
2838         !(MD && MD->getCorrespondingMethodInClass(Ret, true)))
2839       return true;
2840   }
2841   return hasAttr<WarnUnusedResultAttr>();
2842 }
2843 
2844 /// \brief For an inline function definition in C, or for a gnu_inline function
2845 /// in C++, determine whether the definition will be externally visible.
2846 ///
2847 /// Inline function definitions are always available for inlining optimizations.
2848 /// However, depending on the language dialect, declaration specifiers, and
2849 /// attributes, the definition of an inline function may or may not be
2850 /// "externally" visible to other translation units in the program.
2851 ///
2852 /// In C99, inline definitions are not externally visible by default. However,
2853 /// if even one of the global-scope declarations is marked "extern inline", the
2854 /// inline definition becomes externally visible (C99 6.7.4p6).
2855 ///
2856 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
2857 /// definition, we use the GNU semantics for inline, which are nearly the
2858 /// opposite of C99 semantics. In particular, "inline" by itself will create
2859 /// an externally visible symbol, but "extern inline" will not create an
2860 /// externally visible symbol.
2861 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
2862   assert(doesThisDeclarationHaveABody() && "Must have the function definition");
2863   assert(isInlined() && "Function must be inline");
2864   ASTContext &Context = getASTContext();
2865 
2866   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2867     // Note: If you change the logic here, please change
2868     // doesDeclarationForceExternallyVisibleDefinition as well.
2869     //
2870     // If it's not the case that both 'inline' and 'extern' are
2871     // specified on the definition, then this inline definition is
2872     // externally visible.
2873     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
2874       return true;
2875 
2876     // If any declaration is 'inline' but not 'extern', then this definition
2877     // is externally visible.
2878     for (auto Redecl : redecls()) {
2879       if (Redecl->isInlineSpecified() &&
2880           Redecl->getStorageClass() != SC_Extern)
2881         return true;
2882     }
2883 
2884     return false;
2885   }
2886 
2887   // The rest of this function is C-only.
2888   assert(!Context.getLangOpts().CPlusPlus &&
2889          "should not use C inline rules in C++");
2890 
2891   // C99 6.7.4p6:
2892   //   [...] If all of the file scope declarations for a function in a
2893   //   translation unit include the inline function specifier without extern,
2894   //   then the definition in that translation unit is an inline definition.
2895   for (auto Redecl : redecls()) {
2896     if (RedeclForcesDefC99(Redecl))
2897       return true;
2898   }
2899 
2900   // C99 6.7.4p6:
2901   //   An inline definition does not provide an external definition for the
2902   //   function, and does not forbid an external definition in another
2903   //   translation unit.
2904   return false;
2905 }
2906 
2907 /// getOverloadedOperator - Which C++ overloaded operator this
2908 /// function represents, if any.
2909 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
2910   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
2911     return getDeclName().getCXXOverloadedOperator();
2912   else
2913     return OO_None;
2914 }
2915 
2916 /// getLiteralIdentifier - The literal suffix identifier this function
2917 /// represents, if any.
2918 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
2919   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
2920     return getDeclName().getCXXLiteralIdentifier();
2921   else
2922     return nullptr;
2923 }
2924 
2925 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
2926   if (TemplateOrSpecialization.isNull())
2927     return TK_NonTemplate;
2928   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
2929     return TK_FunctionTemplate;
2930   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
2931     return TK_MemberSpecialization;
2932   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
2933     return TK_FunctionTemplateSpecialization;
2934   if (TemplateOrSpecialization.is
2935                                <DependentFunctionTemplateSpecializationInfo*>())
2936     return TK_DependentFunctionTemplateSpecialization;
2937 
2938   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
2939 }
2940 
2941 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
2942   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
2943     return cast<FunctionDecl>(Info->getInstantiatedFrom());
2944 
2945   return nullptr;
2946 }
2947 
2948 void
2949 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
2950                                                FunctionDecl *FD,
2951                                                TemplateSpecializationKind TSK) {
2952   assert(TemplateOrSpecialization.isNull() &&
2953          "Member function is already a specialization");
2954   MemberSpecializationInfo *Info
2955     = new (C) MemberSpecializationInfo(FD, TSK);
2956   TemplateOrSpecialization = Info;
2957 }
2958 
2959 bool FunctionDecl::isImplicitlyInstantiable() const {
2960   // If the function is invalid, it can't be implicitly instantiated.
2961   if (isInvalidDecl())
2962     return false;
2963 
2964   switch (getTemplateSpecializationKind()) {
2965   case TSK_Undeclared:
2966   case TSK_ExplicitInstantiationDefinition:
2967     return false;
2968 
2969   case TSK_ImplicitInstantiation:
2970     return true;
2971 
2972   // It is possible to instantiate TSK_ExplicitSpecialization kind
2973   // if the FunctionDecl has a class scope specialization pattern.
2974   case TSK_ExplicitSpecialization:
2975     return getClassScopeSpecializationPattern() != nullptr;
2976 
2977   case TSK_ExplicitInstantiationDeclaration:
2978     // Handled below.
2979     break;
2980   }
2981 
2982   // Find the actual template from which we will instantiate.
2983   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
2984   bool HasPattern = false;
2985   if (PatternDecl)
2986     HasPattern = PatternDecl->hasBody(PatternDecl);
2987 
2988   // C++0x [temp.explicit]p9:
2989   //   Except for inline functions, other explicit instantiation declarations
2990   //   have the effect of suppressing the implicit instantiation of the entity
2991   //   to which they refer.
2992   if (!HasPattern || !PatternDecl)
2993     return true;
2994 
2995   return PatternDecl->isInlined();
2996 }
2997 
2998 bool FunctionDecl::isTemplateInstantiation() const {
2999   switch (getTemplateSpecializationKind()) {
3000     case TSK_Undeclared:
3001     case TSK_ExplicitSpecialization:
3002       return false;
3003     case TSK_ImplicitInstantiation:
3004     case TSK_ExplicitInstantiationDeclaration:
3005     case TSK_ExplicitInstantiationDefinition:
3006       return true;
3007   }
3008   llvm_unreachable("All TSK values handled.");
3009 }
3010 
3011 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
3012   // Handle class scope explicit specialization special case.
3013   if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3014     return getClassScopeSpecializationPattern();
3015 
3016   // If this is a generic lambda call operator specialization, its
3017   // instantiation pattern is always its primary template's pattern
3018   // even if its primary template was instantiated from another
3019   // member template (which happens with nested generic lambdas).
3020   // Since a lambda's call operator's body is transformed eagerly,
3021   // we don't have to go hunting for a prototype definition template
3022   // (i.e. instantiated-from-member-template) to use as an instantiation
3023   // pattern.
3024 
3025   if (isGenericLambdaCallOperatorSpecialization(
3026           dyn_cast<CXXMethodDecl>(this))) {
3027     assert(getPrimaryTemplate() && "A generic lambda specialization must be "
3028                                    "generated from a primary call operator "
3029                                    "template");
3030     assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() &&
3031            "A generic lambda call operator template must always have a body - "
3032            "even if instantiated from a prototype (i.e. as written) member "
3033            "template");
3034     return getPrimaryTemplate()->getTemplatedDecl();
3035   }
3036 
3037   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3038     while (Primary->getInstantiatedFromMemberTemplate()) {
3039       // If we have hit a point where the user provided a specialization of
3040       // this template, we're done looking.
3041       if (Primary->isMemberSpecialization())
3042         break;
3043       Primary = Primary->getInstantiatedFromMemberTemplate();
3044     }
3045 
3046     return Primary->getTemplatedDecl();
3047   }
3048 
3049   return getInstantiatedFromMemberFunction();
3050 }
3051 
3052 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3053   if (FunctionTemplateSpecializationInfo *Info
3054         = TemplateOrSpecialization
3055             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3056     return Info->Template.getPointer();
3057   }
3058   return nullptr;
3059 }
3060 
3061 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
3062     return getASTContext().getClassScopeSpecializationPattern(this);
3063 }
3064 
3065 const TemplateArgumentList *
3066 FunctionDecl::getTemplateSpecializationArgs() const {
3067   if (FunctionTemplateSpecializationInfo *Info
3068         = TemplateOrSpecialization
3069             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3070     return Info->TemplateArguments;
3071   }
3072   return nullptr;
3073 }
3074 
3075 const ASTTemplateArgumentListInfo *
3076 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3077   if (FunctionTemplateSpecializationInfo *Info
3078         = TemplateOrSpecialization
3079             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3080     return Info->TemplateArgumentsAsWritten;
3081   }
3082   return nullptr;
3083 }
3084 
3085 void
3086 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3087                                                 FunctionTemplateDecl *Template,
3088                                      const TemplateArgumentList *TemplateArgs,
3089                                                 void *InsertPos,
3090                                                 TemplateSpecializationKind TSK,
3091                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
3092                                           SourceLocation PointOfInstantiation) {
3093   assert(TSK != TSK_Undeclared &&
3094          "Must specify the type of function template specialization");
3095   FunctionTemplateSpecializationInfo *Info
3096     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3097   if (!Info)
3098     Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
3099                                                       TemplateArgs,
3100                                                       TemplateArgsAsWritten,
3101                                                       PointOfInstantiation);
3102   TemplateOrSpecialization = Info;
3103   Template->addSpecialization(Info, InsertPos);
3104 }
3105 
3106 void
3107 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3108                                     const UnresolvedSetImpl &Templates,
3109                              const TemplateArgumentListInfo &TemplateArgs) {
3110   assert(TemplateOrSpecialization.isNull());
3111   DependentFunctionTemplateSpecializationInfo *Info =
3112       DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3113                                                           TemplateArgs);
3114   TemplateOrSpecialization = Info;
3115 }
3116 
3117 DependentFunctionTemplateSpecializationInfo *
3118 DependentFunctionTemplateSpecializationInfo::Create(
3119     ASTContext &Context, const UnresolvedSetImpl &Ts,
3120     const TemplateArgumentListInfo &TArgs) {
3121   void *Buffer = Context.Allocate(
3122       totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3123           TArgs.size(), Ts.size()));
3124   return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3125 }
3126 
3127 DependentFunctionTemplateSpecializationInfo::
3128 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3129                                       const TemplateArgumentListInfo &TArgs)
3130   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3131 
3132   NumTemplates = Ts.size();
3133   NumArgs = TArgs.size();
3134 
3135   FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3136   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3137     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3138 
3139   TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3140   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3141     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3142 }
3143 
3144 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3145   // For a function template specialization, query the specialization
3146   // information object.
3147   FunctionTemplateSpecializationInfo *FTSInfo
3148     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3149   if (FTSInfo)
3150     return FTSInfo->getTemplateSpecializationKind();
3151 
3152   MemberSpecializationInfo *MSInfo
3153     = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
3154   if (MSInfo)
3155     return MSInfo->getTemplateSpecializationKind();
3156 
3157   return TSK_Undeclared;
3158 }
3159 
3160 void
3161 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3162                                           SourceLocation PointOfInstantiation) {
3163   if (FunctionTemplateSpecializationInfo *FTSInfo
3164         = TemplateOrSpecialization.dyn_cast<
3165                                     FunctionTemplateSpecializationInfo*>()) {
3166     FTSInfo->setTemplateSpecializationKind(TSK);
3167     if (TSK != TSK_ExplicitSpecialization &&
3168         PointOfInstantiation.isValid() &&
3169         FTSInfo->getPointOfInstantiation().isInvalid())
3170       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3171   } else if (MemberSpecializationInfo *MSInfo
3172              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3173     MSInfo->setTemplateSpecializationKind(TSK);
3174     if (TSK != TSK_ExplicitSpecialization &&
3175         PointOfInstantiation.isValid() &&
3176         MSInfo->getPointOfInstantiation().isInvalid())
3177       MSInfo->setPointOfInstantiation(PointOfInstantiation);
3178   } else
3179     llvm_unreachable("Function cannot have a template specialization kind");
3180 }
3181 
3182 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3183   if (FunctionTemplateSpecializationInfo *FTSInfo
3184         = TemplateOrSpecialization.dyn_cast<
3185                                         FunctionTemplateSpecializationInfo*>())
3186     return FTSInfo->getPointOfInstantiation();
3187   else if (MemberSpecializationInfo *MSInfo
3188              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3189     return MSInfo->getPointOfInstantiation();
3190 
3191   return SourceLocation();
3192 }
3193 
3194 bool FunctionDecl::isOutOfLine() const {
3195   if (Decl::isOutOfLine())
3196     return true;
3197 
3198   // If this function was instantiated from a member function of a
3199   // class template, check whether that member function was defined out-of-line.
3200   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3201     const FunctionDecl *Definition;
3202     if (FD->hasBody(Definition))
3203       return Definition->isOutOfLine();
3204   }
3205 
3206   // If this function was instantiated from a function template,
3207   // check whether that function template was defined out-of-line.
3208   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3209     const FunctionDecl *Definition;
3210     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3211       return Definition->isOutOfLine();
3212   }
3213 
3214   return false;
3215 }
3216 
3217 SourceRange FunctionDecl::getSourceRange() const {
3218   return SourceRange(getOuterLocStart(), EndRangeLoc);
3219 }
3220 
3221 unsigned FunctionDecl::getMemoryFunctionKind() const {
3222   IdentifierInfo *FnInfo = getIdentifier();
3223 
3224   if (!FnInfo)
3225     return 0;
3226 
3227   // Builtin handling.
3228   switch (getBuiltinID()) {
3229   case Builtin::BI__builtin_memset:
3230   case Builtin::BI__builtin___memset_chk:
3231   case Builtin::BImemset:
3232     return Builtin::BImemset;
3233 
3234   case Builtin::BI__builtin_memcpy:
3235   case Builtin::BI__builtin___memcpy_chk:
3236   case Builtin::BImemcpy:
3237     return Builtin::BImemcpy;
3238 
3239   case Builtin::BI__builtin_memmove:
3240   case Builtin::BI__builtin___memmove_chk:
3241   case Builtin::BImemmove:
3242     return Builtin::BImemmove;
3243 
3244   case Builtin::BIstrlcpy:
3245   case Builtin::BI__builtin___strlcpy_chk:
3246     return Builtin::BIstrlcpy;
3247 
3248   case Builtin::BIstrlcat:
3249   case Builtin::BI__builtin___strlcat_chk:
3250     return Builtin::BIstrlcat;
3251 
3252   case Builtin::BI__builtin_memcmp:
3253   case Builtin::BImemcmp:
3254     return Builtin::BImemcmp;
3255 
3256   case Builtin::BI__builtin_strncpy:
3257   case Builtin::BI__builtin___strncpy_chk:
3258   case Builtin::BIstrncpy:
3259     return Builtin::BIstrncpy;
3260 
3261   case Builtin::BI__builtin_strncmp:
3262   case Builtin::BIstrncmp:
3263     return Builtin::BIstrncmp;
3264 
3265   case Builtin::BI__builtin_strncasecmp:
3266   case Builtin::BIstrncasecmp:
3267     return Builtin::BIstrncasecmp;
3268 
3269   case Builtin::BI__builtin_strncat:
3270   case Builtin::BI__builtin___strncat_chk:
3271   case Builtin::BIstrncat:
3272     return Builtin::BIstrncat;
3273 
3274   case Builtin::BI__builtin_strndup:
3275   case Builtin::BIstrndup:
3276     return Builtin::BIstrndup;
3277 
3278   case Builtin::BI__builtin_strlen:
3279   case Builtin::BIstrlen:
3280     return Builtin::BIstrlen;
3281 
3282   default:
3283     if (isExternC()) {
3284       if (FnInfo->isStr("memset"))
3285         return Builtin::BImemset;
3286       else if (FnInfo->isStr("memcpy"))
3287         return Builtin::BImemcpy;
3288       else if (FnInfo->isStr("memmove"))
3289         return Builtin::BImemmove;
3290       else if (FnInfo->isStr("memcmp"))
3291         return Builtin::BImemcmp;
3292       else if (FnInfo->isStr("strncpy"))
3293         return Builtin::BIstrncpy;
3294       else if (FnInfo->isStr("strncmp"))
3295         return Builtin::BIstrncmp;
3296       else if (FnInfo->isStr("strncasecmp"))
3297         return Builtin::BIstrncasecmp;
3298       else if (FnInfo->isStr("strncat"))
3299         return Builtin::BIstrncat;
3300       else if (FnInfo->isStr("strndup"))
3301         return Builtin::BIstrndup;
3302       else if (FnInfo->isStr("strlen"))
3303         return Builtin::BIstrlen;
3304     }
3305     break;
3306   }
3307   return 0;
3308 }
3309 
3310 //===----------------------------------------------------------------------===//
3311 // FieldDecl Implementation
3312 //===----------------------------------------------------------------------===//
3313 
3314 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
3315                              SourceLocation StartLoc, SourceLocation IdLoc,
3316                              IdentifierInfo *Id, QualType T,
3317                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3318                              InClassInitStyle InitStyle) {
3319   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3320                                BW, Mutable, InitStyle);
3321 }
3322 
3323 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3324   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3325                                SourceLocation(), nullptr, QualType(), nullptr,
3326                                nullptr, false, ICIS_NoInit);
3327 }
3328 
3329 bool FieldDecl::isAnonymousStructOrUnion() const {
3330   if (!isImplicit() || getDeclName())
3331     return false;
3332 
3333   if (const RecordType *Record = getType()->getAs<RecordType>())
3334     return Record->getDecl()->isAnonymousStructOrUnion();
3335 
3336   return false;
3337 }
3338 
3339 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3340   assert(isBitField() && "not a bitfield");
3341   Expr *BitWidth = static_cast<Expr *>(InitStorage.getPointer());
3342   return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
3343 }
3344 
3345 unsigned FieldDecl::getFieldIndex() const {
3346   const FieldDecl *Canonical = getCanonicalDecl();
3347   if (Canonical != this)
3348     return Canonical->getFieldIndex();
3349 
3350   if (CachedFieldIndex) return CachedFieldIndex - 1;
3351 
3352   unsigned Index = 0;
3353   const RecordDecl *RD = getParent();
3354 
3355   for (auto *Field : RD->fields()) {
3356     Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
3357     ++Index;
3358   }
3359 
3360   assert(CachedFieldIndex && "failed to find field in parent");
3361   return CachedFieldIndex - 1;
3362 }
3363 
3364 SourceRange FieldDecl::getSourceRange() const {
3365   switch (InitStorage.getInt()) {
3366   // All three of these cases store an optional Expr*.
3367   case ISK_BitWidthOrNothing:
3368   case ISK_InClassCopyInit:
3369   case ISK_InClassListInit:
3370     if (const Expr *E = static_cast<const Expr *>(InitStorage.getPointer()))
3371       return SourceRange(getInnerLocStart(), E->getLocEnd());
3372     // FALLTHROUGH
3373 
3374   case ISK_CapturedVLAType:
3375     return DeclaratorDecl::getSourceRange();
3376   }
3377   llvm_unreachable("bad init storage kind");
3378 }
3379 
3380 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
3381   assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
3382          "capturing type in non-lambda or captured record.");
3383   assert(InitStorage.getInt() == ISK_BitWidthOrNothing &&
3384          InitStorage.getPointer() == nullptr &&
3385          "bit width, initializer or captured type already set");
3386   InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
3387                                ISK_CapturedVLAType);
3388 }
3389 
3390 //===----------------------------------------------------------------------===//
3391 // TagDecl Implementation
3392 //===----------------------------------------------------------------------===//
3393 
3394 SourceLocation TagDecl::getOuterLocStart() const {
3395   return getTemplateOrInnerLocStart(this);
3396 }
3397 
3398 SourceRange TagDecl::getSourceRange() const {
3399   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
3400   return SourceRange(getOuterLocStart(), E);
3401 }
3402 
3403 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
3404 
3405 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
3406   TypedefNameDeclOrQualifier = TDD;
3407   if (const Type *T = getTypeForDecl()) {
3408     (void)T;
3409     assert(T->isLinkageValid());
3410   }
3411   assert(isLinkageValid());
3412 }
3413 
3414 void TagDecl::startDefinition() {
3415   IsBeingDefined = true;
3416 
3417   if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) {
3418     struct CXXRecordDecl::DefinitionData *Data =
3419       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
3420     for (auto I : redecls())
3421       cast<CXXRecordDecl>(I)->DefinitionData = Data;
3422   }
3423 }
3424 
3425 void TagDecl::completeDefinition() {
3426   assert((!isa<CXXRecordDecl>(this) ||
3427           cast<CXXRecordDecl>(this)->hasDefinition()) &&
3428          "definition completed but not started");
3429 
3430   IsCompleteDefinition = true;
3431   IsBeingDefined = false;
3432 
3433   if (ASTMutationListener *L = getASTMutationListener())
3434     L->CompletedTagDefinition(this);
3435 }
3436 
3437 TagDecl *TagDecl::getDefinition() const {
3438   if (isCompleteDefinition())
3439     return const_cast<TagDecl *>(this);
3440 
3441   // If it's possible for us to have an out-of-date definition, check now.
3442   if (MayHaveOutOfDateDef) {
3443     if (IdentifierInfo *II = getIdentifier()) {
3444       if (II->isOutOfDate()) {
3445         updateOutOfDate(*II);
3446       }
3447     }
3448   }
3449 
3450   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
3451     return CXXRD->getDefinition();
3452 
3453   for (auto R : redecls())
3454     if (R->isCompleteDefinition())
3455       return R;
3456 
3457   return nullptr;
3458 }
3459 
3460 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
3461   if (QualifierLoc) {
3462     // Make sure the extended qualifier info is allocated.
3463     if (!hasExtInfo())
3464       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3465     // Set qualifier info.
3466     getExtInfo()->QualifierLoc = QualifierLoc;
3467   } else {
3468     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
3469     if (hasExtInfo()) {
3470       if (getExtInfo()->NumTemplParamLists == 0) {
3471         getASTContext().Deallocate(getExtInfo());
3472         TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
3473       }
3474       else
3475         getExtInfo()->QualifierLoc = QualifierLoc;
3476     }
3477   }
3478 }
3479 
3480 void TagDecl::setTemplateParameterListsInfo(
3481     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
3482   assert(!TPLists.empty());
3483   // Make sure the extended decl info is allocated.
3484   if (!hasExtInfo())
3485     // Allocate external info struct.
3486     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3487   // Set the template parameter lists info.
3488   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
3489 }
3490 
3491 //===----------------------------------------------------------------------===//
3492 // EnumDecl Implementation
3493 //===----------------------------------------------------------------------===//
3494 
3495 void EnumDecl::anchor() { }
3496 
3497 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
3498                            SourceLocation StartLoc, SourceLocation IdLoc,
3499                            IdentifierInfo *Id,
3500                            EnumDecl *PrevDecl, bool IsScoped,
3501                            bool IsScopedUsingClassTag, bool IsFixed) {
3502   EnumDecl *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
3503                                         IsScoped, IsScopedUsingClassTag,
3504                                         IsFixed);
3505   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3506   C.getTypeDeclType(Enum, PrevDecl);
3507   return Enum;
3508 }
3509 
3510 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3511   EnumDecl *Enum =
3512       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
3513                            nullptr, nullptr, false, false, false);
3514   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3515   return Enum;
3516 }
3517 
3518 SourceRange EnumDecl::getIntegerTypeRange() const {
3519   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
3520     return TI->getTypeLoc().getSourceRange();
3521   return SourceRange();
3522 }
3523 
3524 void EnumDecl::completeDefinition(QualType NewType,
3525                                   QualType NewPromotionType,
3526                                   unsigned NumPositiveBits,
3527                                   unsigned NumNegativeBits) {
3528   assert(!isCompleteDefinition() && "Cannot redefine enums!");
3529   if (!IntegerType)
3530     IntegerType = NewType.getTypePtr();
3531   PromotionType = NewPromotionType;
3532   setNumPositiveBits(NumPositiveBits);
3533   setNumNegativeBits(NumNegativeBits);
3534   TagDecl::completeDefinition();
3535 }
3536 
3537 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
3538   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
3539     return MSI->getTemplateSpecializationKind();
3540 
3541   return TSK_Undeclared;
3542 }
3543 
3544 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3545                                          SourceLocation PointOfInstantiation) {
3546   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
3547   assert(MSI && "Not an instantiated member enumeration?");
3548   MSI->setTemplateSpecializationKind(TSK);
3549   if (TSK != TSK_ExplicitSpecialization &&
3550       PointOfInstantiation.isValid() &&
3551       MSI->getPointOfInstantiation().isInvalid())
3552     MSI->setPointOfInstantiation(PointOfInstantiation);
3553 }
3554 
3555 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
3556   if (SpecializationInfo)
3557     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
3558 
3559   return nullptr;
3560 }
3561 
3562 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3563                                             TemplateSpecializationKind TSK) {
3564   assert(!SpecializationInfo && "Member enum is already a specialization");
3565   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
3566 }
3567 
3568 //===----------------------------------------------------------------------===//
3569 // RecordDecl Implementation
3570 //===----------------------------------------------------------------------===//
3571 
3572 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
3573                        DeclContext *DC, SourceLocation StartLoc,
3574                        SourceLocation IdLoc, IdentifierInfo *Id,
3575                        RecordDecl *PrevDecl)
3576     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
3577   HasFlexibleArrayMember = false;
3578   AnonymousStructOrUnion = false;
3579   HasObjectMember = false;
3580   HasVolatileMember = false;
3581   LoadedFieldsFromExternalStorage = false;
3582   assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
3583 }
3584 
3585 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3586                                SourceLocation StartLoc, SourceLocation IdLoc,
3587                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
3588   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
3589                                          StartLoc, IdLoc, Id, PrevDecl);
3590   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3591 
3592   C.getTypeDeclType(R, PrevDecl);
3593   return R;
3594 }
3595 
3596 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
3597   RecordDecl *R =
3598       new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
3599                              SourceLocation(), nullptr, nullptr);
3600   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3601   return R;
3602 }
3603 
3604 bool RecordDecl::isInjectedClassName() const {
3605   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
3606     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
3607 }
3608 
3609 bool RecordDecl::isLambda() const {
3610   if (auto RD = dyn_cast<CXXRecordDecl>(this))
3611     return RD->isLambda();
3612   return false;
3613 }
3614 
3615 bool RecordDecl::isCapturedRecord() const {
3616   return hasAttr<CapturedRecordAttr>();
3617 }
3618 
3619 void RecordDecl::setCapturedRecord() {
3620   addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
3621 }
3622 
3623 RecordDecl::field_iterator RecordDecl::field_begin() const {
3624   if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
3625     LoadFieldsFromExternalStorage();
3626 
3627   return field_iterator(decl_iterator(FirstDecl));
3628 }
3629 
3630 /// completeDefinition - Notes that the definition of this type is now
3631 /// complete.
3632 void RecordDecl::completeDefinition() {
3633   assert(!isCompleteDefinition() && "Cannot redefine record!");
3634   TagDecl::completeDefinition();
3635 }
3636 
3637 /// isMsStruct - Get whether or not this record uses ms_struct layout.
3638 /// This which can be turned on with an attribute, pragma, or the
3639 /// -mms-bitfields command-line option.
3640 bool RecordDecl::isMsStruct(const ASTContext &C) const {
3641   return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
3642 }
3643 
3644 void RecordDecl::LoadFieldsFromExternalStorage() const {
3645   ExternalASTSource *Source = getASTContext().getExternalSource();
3646   assert(hasExternalLexicalStorage() && Source && "No external storage?");
3647 
3648   // Notify that we have a RecordDecl doing some initialization.
3649   ExternalASTSource::Deserializing TheFields(Source);
3650 
3651   SmallVector<Decl*, 64> Decls;
3652   LoadedFieldsFromExternalStorage = true;
3653   Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
3654     return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
3655   }, Decls);
3656 
3657 #ifndef NDEBUG
3658   // Check that all decls we got were FieldDecls.
3659   for (unsigned i=0, e=Decls.size(); i != e; ++i)
3660     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
3661 #endif
3662 
3663   if (Decls.empty())
3664     return;
3665 
3666   std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
3667                                                  /*FieldsAlreadyLoaded=*/false);
3668 }
3669 
3670 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
3671   ASTContext &Context = getASTContext();
3672   if (!Context.getLangOpts().Sanitize.hasOneOf(
3673           SanitizerKind::Address | SanitizerKind::KernelAddress) ||
3674       !Context.getLangOpts().SanitizeAddressFieldPadding)
3675     return false;
3676   const auto &Blacklist = Context.getSanitizerBlacklist();
3677   const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this);
3678   // We may be able to relax some of these requirements.
3679   int ReasonToReject = -1;
3680   if (!CXXRD || CXXRD->isExternCContext())
3681     ReasonToReject = 0;  // is not C++.
3682   else if (CXXRD->hasAttr<PackedAttr>())
3683     ReasonToReject = 1;  // is packed.
3684   else if (CXXRD->isUnion())
3685     ReasonToReject = 2;  // is a union.
3686   else if (CXXRD->isTriviallyCopyable())
3687     ReasonToReject = 3;  // is trivially copyable.
3688   else if (CXXRD->hasTrivialDestructor())
3689     ReasonToReject = 4;  // has trivial destructor.
3690   else if (CXXRD->isStandardLayout())
3691     ReasonToReject = 5;  // is standard layout.
3692   else if (Blacklist.isBlacklistedLocation(getLocation(), "field-padding"))
3693     ReasonToReject = 6;  // is in a blacklisted file.
3694   else if (Blacklist.isBlacklistedType(getQualifiedNameAsString(),
3695                                        "field-padding"))
3696     ReasonToReject = 7;  // is blacklisted.
3697 
3698   if (EmitRemark) {
3699     if (ReasonToReject >= 0)
3700       Context.getDiagnostics().Report(
3701           getLocation(),
3702           diag::remark_sanitize_address_insert_extra_padding_rejected)
3703           << getQualifiedNameAsString() << ReasonToReject;
3704     else
3705       Context.getDiagnostics().Report(
3706           getLocation(),
3707           diag::remark_sanitize_address_insert_extra_padding_accepted)
3708           << getQualifiedNameAsString();
3709   }
3710   return ReasonToReject < 0;
3711 }
3712 
3713 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
3714   for (const auto *I : fields()) {
3715     if (I->getIdentifier())
3716       return I;
3717 
3718     if (const RecordType *RT = I->getType()->getAs<RecordType>())
3719       if (const FieldDecl *NamedDataMember =
3720           RT->getDecl()->findFirstNamedDataMember())
3721         return NamedDataMember;
3722   }
3723 
3724   // We didn't find a named data member.
3725   return nullptr;
3726 }
3727 
3728 
3729 //===----------------------------------------------------------------------===//
3730 // BlockDecl Implementation
3731 //===----------------------------------------------------------------------===//
3732 
3733 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
3734   assert(!ParamInfo && "Already has param info!");
3735 
3736   // Zero params -> null pointer.
3737   if (!NewParamInfo.empty()) {
3738     NumParams = NewParamInfo.size();
3739     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
3740     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3741   }
3742 }
3743 
3744 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
3745                             bool CapturesCXXThis) {
3746   this->CapturesCXXThis = CapturesCXXThis;
3747   this->NumCaptures = Captures.size();
3748 
3749   if (Captures.empty()) {
3750     this->Captures = nullptr;
3751     return;
3752   }
3753 
3754   this->Captures = Captures.copy(Context).data();
3755 }
3756 
3757 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
3758   for (const auto &I : captures())
3759     // Only auto vars can be captured, so no redeclaration worries.
3760     if (I.getVariable() == variable)
3761       return true;
3762 
3763   return false;
3764 }
3765 
3766 SourceRange BlockDecl::getSourceRange() const {
3767   return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
3768 }
3769 
3770 //===----------------------------------------------------------------------===//
3771 // Other Decl Allocation/Deallocation Method Implementations
3772 //===----------------------------------------------------------------------===//
3773 
3774 void TranslationUnitDecl::anchor() { }
3775 
3776 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
3777   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
3778 }
3779 
3780 void ExternCContextDecl::anchor() { }
3781 
3782 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
3783                                                TranslationUnitDecl *DC) {
3784   return new (C, DC) ExternCContextDecl(DC);
3785 }
3786 
3787 void LabelDecl::anchor() { }
3788 
3789 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3790                              SourceLocation IdentL, IdentifierInfo *II) {
3791   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
3792 }
3793 
3794 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3795                              SourceLocation IdentL, IdentifierInfo *II,
3796                              SourceLocation GnuLabelL) {
3797   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
3798   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
3799 }
3800 
3801 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3802   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
3803                                SourceLocation());
3804 }
3805 
3806 void LabelDecl::setMSAsmLabel(StringRef Name) {
3807   char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
3808   memcpy(Buffer, Name.data(), Name.size());
3809   Buffer[Name.size()] = '\0';
3810   MSAsmName = Buffer;
3811 }
3812 
3813 void ValueDecl::anchor() { }
3814 
3815 bool ValueDecl::isWeak() const {
3816   for (const auto *I : attrs())
3817     if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
3818       return true;
3819 
3820   return isWeakImported();
3821 }
3822 
3823 void ImplicitParamDecl::anchor() { }
3824 
3825 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
3826                                              SourceLocation IdLoc,
3827                                              IdentifierInfo *Id,
3828                                              QualType Type) {
3829   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type);
3830 }
3831 
3832 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
3833                                                          unsigned ID) {
3834   return new (C, ID) ImplicitParamDecl(C, nullptr, SourceLocation(), nullptr,
3835                                        QualType());
3836 }
3837 
3838 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
3839                                    SourceLocation StartLoc,
3840                                    const DeclarationNameInfo &NameInfo,
3841                                    QualType T, TypeSourceInfo *TInfo,
3842                                    StorageClass SC,
3843                                    bool isInlineSpecified,
3844                                    bool hasWrittenPrototype,
3845                                    bool isConstexprSpecified) {
3846   FunctionDecl *New =
3847       new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
3848                                SC, isInlineSpecified, isConstexprSpecified);
3849   New->HasWrittenPrototype = hasWrittenPrototype;
3850   return New;
3851 }
3852 
3853 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3854   return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
3855                                   DeclarationNameInfo(), QualType(), nullptr,
3856                                   SC_None, false, false);
3857 }
3858 
3859 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3860   return new (C, DC) BlockDecl(DC, L);
3861 }
3862 
3863 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3864   return new (C, ID) BlockDecl(nullptr, SourceLocation());
3865 }
3866 
3867 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
3868                                    unsigned NumParams) {
3869   return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
3870       CapturedDecl(DC, NumParams);
3871 }
3872 
3873 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3874                                                unsigned NumParams) {
3875   return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
3876       CapturedDecl(nullptr, NumParams);
3877 }
3878 
3879 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
3880                                            SourceLocation L,
3881                                            IdentifierInfo *Id, QualType T,
3882                                            Expr *E, const llvm::APSInt &V) {
3883   return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
3884 }
3885 
3886 EnumConstantDecl *
3887 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3888   return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
3889                                       QualType(), nullptr, llvm::APSInt());
3890 }
3891 
3892 void IndirectFieldDecl::anchor() { }
3893 
3894 IndirectFieldDecl *
3895 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
3896                           IdentifierInfo *Id, QualType T, NamedDecl **CH,
3897                           unsigned CHS) {
3898   return new (C, DC) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
3899 }
3900 
3901 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
3902                                                          unsigned ID) {
3903   return new (C, ID) IndirectFieldDecl(nullptr, SourceLocation(),
3904                                        DeclarationName(), QualType(), nullptr,
3905                                        0);
3906 }
3907 
3908 SourceRange EnumConstantDecl::getSourceRange() const {
3909   SourceLocation End = getLocation();
3910   if (Init)
3911     End = Init->getLocEnd();
3912   return SourceRange(getLocation(), End);
3913 }
3914 
3915 void TypeDecl::anchor() { }
3916 
3917 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
3918                                  SourceLocation StartLoc, SourceLocation IdLoc,
3919                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
3920   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
3921 }
3922 
3923 void TypedefNameDecl::anchor() { }
3924 
3925 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
3926   if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
3927     auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
3928     auto *ThisTypedef = this;
3929     if (AnyRedecl && OwningTypedef) {
3930       OwningTypedef = OwningTypedef->getCanonicalDecl();
3931       ThisTypedef = ThisTypedef->getCanonicalDecl();
3932     }
3933     if (OwningTypedef == ThisTypedef)
3934       return TT->getDecl();
3935   }
3936 
3937   return nullptr;
3938 }
3939 
3940 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3941   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
3942                                  nullptr, nullptr);
3943 }
3944 
3945 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
3946                                      SourceLocation StartLoc,
3947                                      SourceLocation IdLoc, IdentifierInfo *Id,
3948                                      TypeSourceInfo *TInfo) {
3949   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
3950 }
3951 
3952 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3953   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
3954                                    SourceLocation(), nullptr, nullptr);
3955 }
3956 
3957 SourceRange TypedefDecl::getSourceRange() const {
3958   SourceLocation RangeEnd = getLocation();
3959   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
3960     if (typeIsPostfix(TInfo->getType()))
3961       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3962   }
3963   return SourceRange(getLocStart(), RangeEnd);
3964 }
3965 
3966 SourceRange TypeAliasDecl::getSourceRange() const {
3967   SourceLocation RangeEnd = getLocStart();
3968   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
3969     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3970   return SourceRange(getLocStart(), RangeEnd);
3971 }
3972 
3973 void FileScopeAsmDecl::anchor() { }
3974 
3975 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
3976                                            StringLiteral *Str,
3977                                            SourceLocation AsmLoc,
3978                                            SourceLocation RParenLoc) {
3979   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
3980 }
3981 
3982 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
3983                                                        unsigned ID) {
3984   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
3985                                       SourceLocation());
3986 }
3987 
3988 void EmptyDecl::anchor() {}
3989 
3990 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3991   return new (C, DC) EmptyDecl(DC, L);
3992 }
3993 
3994 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3995   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
3996 }
3997 
3998 //===----------------------------------------------------------------------===//
3999 // ImportDecl Implementation
4000 //===----------------------------------------------------------------------===//
4001 
4002 /// \brief Retrieve the number of module identifiers needed to name the given
4003 /// module.
4004 static unsigned getNumModuleIdentifiers(Module *Mod) {
4005   unsigned Result = 1;
4006   while (Mod->Parent) {
4007     Mod = Mod->Parent;
4008     ++Result;
4009   }
4010   return Result;
4011 }
4012 
4013 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4014                        Module *Imported,
4015                        ArrayRef<SourceLocation> IdentifierLocs)
4016   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
4017     NextLocalImport()
4018 {
4019   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4020   SourceLocation *StoredLocs = getTrailingObjects<SourceLocation>();
4021   std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4022                           StoredLocs);
4023 }
4024 
4025 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4026                        Module *Imported, SourceLocation EndLoc)
4027   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
4028     NextLocalImport()
4029 {
4030   *getTrailingObjects<SourceLocation>() = EndLoc;
4031 }
4032 
4033 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
4034                                SourceLocation StartLoc, Module *Imported,
4035                                ArrayRef<SourceLocation> IdentifierLocs) {
4036   return new (C, DC,
4037               additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4038       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4039 }
4040 
4041 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
4042                                        SourceLocation StartLoc,
4043                                        Module *Imported,
4044                                        SourceLocation EndLoc) {
4045   ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4046       ImportDecl(DC, StartLoc, Imported, EndLoc);
4047   Import->setImplicit();
4048   return Import;
4049 }
4050 
4051 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4052                                            unsigned NumLocations) {
4053   return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4054       ImportDecl(EmptyShell());
4055 }
4056 
4057 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
4058   if (!ImportedAndComplete.getInt())
4059     return None;
4060 
4061   const SourceLocation *StoredLocs = getTrailingObjects<SourceLocation>();
4062   return llvm::makeArrayRef(StoredLocs,
4063                             getNumModuleIdentifiers(getImportedModule()));
4064 }
4065 
4066 SourceRange ImportDecl::getSourceRange() const {
4067   if (!ImportedAndComplete.getInt())
4068     return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
4069 
4070   return SourceRange(getLocation(), getIdentifierLocs().back());
4071 }
4072