1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Decl subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Decl.h" 14 #include "Linkage.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTDiagnostic.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/ASTMutationListener.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/CanonicalType.h" 21 #include "clang/AST/DeclBase.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/DeclOpenMP.h" 25 #include "clang/AST/DeclTemplate.h" 26 #include "clang/AST/DeclarationName.h" 27 #include "clang/AST/Expr.h" 28 #include "clang/AST/ExprCXX.h" 29 #include "clang/AST/ExternalASTSource.h" 30 #include "clang/AST/ODRHash.h" 31 #include "clang/AST/PrettyDeclStackTrace.h" 32 #include "clang/AST/PrettyPrinter.h" 33 #include "clang/AST/Redeclarable.h" 34 #include "clang/AST/Stmt.h" 35 #include "clang/AST/TemplateBase.h" 36 #include "clang/AST/Type.h" 37 #include "clang/AST/TypeLoc.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/IdentifierTable.h" 40 #include "clang/Basic/LLVM.h" 41 #include "clang/Basic/LangOptions.h" 42 #include "clang/Basic/Linkage.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/NoSanitizeList.h" 45 #include "clang/Basic/PartialDiagnostic.h" 46 #include "clang/Basic/Sanitizers.h" 47 #include "clang/Basic/SourceLocation.h" 48 #include "clang/Basic/SourceManager.h" 49 #include "clang/Basic/Specifiers.h" 50 #include "clang/Basic/TargetCXXABI.h" 51 #include "clang/Basic/TargetInfo.h" 52 #include "clang/Basic/Visibility.h" 53 #include "llvm/ADT/APSInt.h" 54 #include "llvm/ADT/ArrayRef.h" 55 #include "llvm/ADT/None.h" 56 #include "llvm/ADT/Optional.h" 57 #include "llvm/ADT/STLExtras.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/StringSwitch.h" 61 #include "llvm/ADT/Triple.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstddef> 68 #include <cstring> 69 #include <memory> 70 #include <string> 71 #include <tuple> 72 #include <type_traits> 73 74 using namespace clang; 75 76 Decl *clang::getPrimaryMergedDecl(Decl *D) { 77 return D->getASTContext().getPrimaryMergedDecl(D); 78 } 79 80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const { 81 SourceLocation Loc = this->Loc; 82 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation(); 83 if (Loc.isValid()) { 84 Loc.print(OS, Context.getSourceManager()); 85 OS << ": "; 86 } 87 OS << Message; 88 89 if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) { 90 OS << " '"; 91 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true); 92 OS << "'"; 93 } 94 95 OS << '\n'; 96 } 97 98 // Defined here so that it can be inlined into its direct callers. 99 bool Decl::isOutOfLine() const { 100 return !getLexicalDeclContext()->Equals(getDeclContext()); 101 } 102 103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx) 104 : Decl(TranslationUnit, nullptr, SourceLocation()), 105 DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {} 106 107 //===----------------------------------------------------------------------===// 108 // NamedDecl Implementation 109 //===----------------------------------------------------------------------===// 110 111 // Visibility rules aren't rigorously externally specified, but here 112 // are the basic principles behind what we implement: 113 // 114 // 1. An explicit visibility attribute is generally a direct expression 115 // of the user's intent and should be honored. Only the innermost 116 // visibility attribute applies. If no visibility attribute applies, 117 // global visibility settings are considered. 118 // 119 // 2. There is one caveat to the above: on or in a template pattern, 120 // an explicit visibility attribute is just a default rule, and 121 // visibility can be decreased by the visibility of template 122 // arguments. But this, too, has an exception: an attribute on an 123 // explicit specialization or instantiation causes all the visibility 124 // restrictions of the template arguments to be ignored. 125 // 126 // 3. A variable that does not otherwise have explicit visibility can 127 // be restricted by the visibility of its type. 128 // 129 // 4. A visibility restriction is explicit if it comes from an 130 // attribute (or something like it), not a global visibility setting. 131 // When emitting a reference to an external symbol, visibility 132 // restrictions are ignored unless they are explicit. 133 // 134 // 5. When computing the visibility of a non-type, including a 135 // non-type member of a class, only non-type visibility restrictions 136 // are considered: the 'visibility' attribute, global value-visibility 137 // settings, and a few special cases like __private_extern. 138 // 139 // 6. When computing the visibility of a type, including a type member 140 // of a class, only type visibility restrictions are considered: 141 // the 'type_visibility' attribute and global type-visibility settings. 142 // However, a 'visibility' attribute counts as a 'type_visibility' 143 // attribute on any declaration that only has the former. 144 // 145 // The visibility of a "secondary" entity, like a template argument, 146 // is computed using the kind of that entity, not the kind of the 147 // primary entity for which we are computing visibility. For example, 148 // the visibility of a specialization of either of these templates: 149 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); 150 // template <class T, bool (&compare)(T, X)> class matcher; 151 // is restricted according to the type visibility of the argument 'T', 152 // the type visibility of 'bool(&)(T,X)', and the value visibility of 153 // the argument function 'compare'. That 'has_match' is a value 154 // and 'matcher' is a type only matters when looking for attributes 155 // and settings from the immediate context. 156 157 /// Does this computation kind permit us to consider additional 158 /// visibility settings from attributes and the like? 159 static bool hasExplicitVisibilityAlready(LVComputationKind computation) { 160 return computation.IgnoreExplicitVisibility; 161 } 162 163 /// Given an LVComputationKind, return one of the same type/value sort 164 /// that records that it already has explicit visibility. 165 static LVComputationKind 166 withExplicitVisibilityAlready(LVComputationKind Kind) { 167 Kind.IgnoreExplicitVisibility = true; 168 return Kind; 169 } 170 171 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D, 172 LVComputationKind kind) { 173 assert(!kind.IgnoreExplicitVisibility && 174 "asking for explicit visibility when we shouldn't be"); 175 return D->getExplicitVisibility(kind.getExplicitVisibilityKind()); 176 } 177 178 /// Is the given declaration a "type" or a "value" for the purposes of 179 /// visibility computation? 180 static bool usesTypeVisibility(const NamedDecl *D) { 181 return isa<TypeDecl>(D) || 182 isa<ClassTemplateDecl>(D) || 183 isa<ObjCInterfaceDecl>(D); 184 } 185 186 /// Does the given declaration have member specialization information, 187 /// and if so, is it an explicit specialization? 188 template <class T> static typename 189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type 190 isExplicitMemberSpecialization(const T *D) { 191 if (const MemberSpecializationInfo *member = 192 D->getMemberSpecializationInfo()) { 193 return member->isExplicitSpecialization(); 194 } 195 return false; 196 } 197 198 /// For templates, this question is easier: a member template can't be 199 /// explicitly instantiated, so there's a single bit indicating whether 200 /// or not this is an explicit member specialization. 201 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { 202 return D->isMemberSpecialization(); 203 } 204 205 /// Given a visibility attribute, return the explicit visibility 206 /// associated with it. 207 template <class T> 208 static Visibility getVisibilityFromAttr(const T *attr) { 209 switch (attr->getVisibility()) { 210 case T::Default: 211 return DefaultVisibility; 212 case T::Hidden: 213 return HiddenVisibility; 214 case T::Protected: 215 return ProtectedVisibility; 216 } 217 llvm_unreachable("bad visibility kind"); 218 } 219 220 /// Return the explicit visibility of the given declaration. 221 static Optional<Visibility> getVisibilityOf(const NamedDecl *D, 222 NamedDecl::ExplicitVisibilityKind kind) { 223 // If we're ultimately computing the visibility of a type, look for 224 // a 'type_visibility' attribute before looking for 'visibility'. 225 if (kind == NamedDecl::VisibilityForType) { 226 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) { 227 return getVisibilityFromAttr(A); 228 } 229 } 230 231 // If this declaration has an explicit visibility attribute, use it. 232 if (const auto *A = D->getAttr<VisibilityAttr>()) { 233 return getVisibilityFromAttr(A); 234 } 235 236 return None; 237 } 238 239 LinkageInfo LinkageComputer::getLVForType(const Type &T, 240 LVComputationKind computation) { 241 if (computation.IgnoreAllVisibility) 242 return LinkageInfo(T.getLinkage(), DefaultVisibility, true); 243 return getTypeLinkageAndVisibility(&T); 244 } 245 246 /// Get the most restrictive linkage for the types in the given 247 /// template parameter list. For visibility purposes, template 248 /// parameters are part of the signature of a template. 249 LinkageInfo LinkageComputer::getLVForTemplateParameterList( 250 const TemplateParameterList *Params, LVComputationKind computation) { 251 LinkageInfo LV; 252 for (const NamedDecl *P : *Params) { 253 // Template type parameters are the most common and never 254 // contribute to visibility, pack or not. 255 if (isa<TemplateTypeParmDecl>(P)) 256 continue; 257 258 // Non-type template parameters can be restricted by the value type, e.g. 259 // template <enum X> class A { ... }; 260 // We have to be careful here, though, because we can be dealing with 261 // dependent types. 262 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 263 // Handle the non-pack case first. 264 if (!NTTP->isExpandedParameterPack()) { 265 if (!NTTP->getType()->isDependentType()) { 266 LV.merge(getLVForType(*NTTP->getType(), computation)); 267 } 268 continue; 269 } 270 271 // Look at all the types in an expanded pack. 272 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { 273 QualType type = NTTP->getExpansionType(i); 274 if (!type->isDependentType()) 275 LV.merge(getTypeLinkageAndVisibility(type)); 276 } 277 continue; 278 } 279 280 // Template template parameters can be restricted by their 281 // template parameters, recursively. 282 const auto *TTP = cast<TemplateTemplateParmDecl>(P); 283 284 // Handle the non-pack case first. 285 if (!TTP->isExpandedParameterPack()) { 286 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), 287 computation)); 288 continue; 289 } 290 291 // Look at all expansions in an expanded pack. 292 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); 293 i != n; ++i) { 294 LV.merge(getLVForTemplateParameterList( 295 TTP->getExpansionTemplateParameters(i), computation)); 296 } 297 } 298 299 return LV; 300 } 301 302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { 303 const Decl *Ret = nullptr; 304 const DeclContext *DC = D->getDeclContext(); 305 while (DC->getDeclKind() != Decl::TranslationUnit) { 306 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) 307 Ret = cast<Decl>(DC); 308 DC = DC->getParent(); 309 } 310 return Ret; 311 } 312 313 /// Get the most restrictive linkage for the types and 314 /// declarations in the given template argument list. 315 /// 316 /// Note that we don't take an LVComputationKind because we always 317 /// want to honor the visibility of template arguments in the same way. 318 LinkageInfo 319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args, 320 LVComputationKind computation) { 321 LinkageInfo LV; 322 323 for (const TemplateArgument &Arg : Args) { 324 switch (Arg.getKind()) { 325 case TemplateArgument::Null: 326 case TemplateArgument::Integral: 327 case TemplateArgument::Expression: 328 continue; 329 330 case TemplateArgument::Type: 331 LV.merge(getLVForType(*Arg.getAsType(), computation)); 332 continue; 333 334 case TemplateArgument::Declaration: { 335 const NamedDecl *ND = Arg.getAsDecl(); 336 assert(!usesTypeVisibility(ND)); 337 LV.merge(getLVForDecl(ND, computation)); 338 continue; 339 } 340 341 case TemplateArgument::NullPtr: 342 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType())); 343 continue; 344 345 case TemplateArgument::Template: 346 case TemplateArgument::TemplateExpansion: 347 if (TemplateDecl *Template = 348 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) 349 LV.merge(getLVForDecl(Template, computation)); 350 continue; 351 352 case TemplateArgument::Pack: 353 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation)); 354 continue; 355 } 356 llvm_unreachable("bad template argument kind"); 357 } 358 359 return LV; 360 } 361 362 LinkageInfo 363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, 364 LVComputationKind computation) { 365 return getLVForTemplateArgumentList(TArgs.asArray(), computation); 366 } 367 368 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, 369 const FunctionTemplateSpecializationInfo *specInfo) { 370 // Include visibility from the template parameters and arguments 371 // only if this is not an explicit instantiation or specialization 372 // with direct explicit visibility. (Implicit instantiations won't 373 // have a direct attribute.) 374 if (!specInfo->isExplicitInstantiationOrSpecialization()) 375 return true; 376 377 return !fn->hasAttr<VisibilityAttr>(); 378 } 379 380 /// Merge in template-related linkage and visibility for the given 381 /// function template specialization. 382 /// 383 /// We don't need a computation kind here because we can assume 384 /// LVForValue. 385 /// 386 /// \param[out] LV the computation to use for the parent 387 void LinkageComputer::mergeTemplateLV( 388 LinkageInfo &LV, const FunctionDecl *fn, 389 const FunctionTemplateSpecializationInfo *specInfo, 390 LVComputationKind computation) { 391 bool considerVisibility = 392 shouldConsiderTemplateVisibility(fn, specInfo); 393 394 // Merge information from the template parameters. 395 FunctionTemplateDecl *temp = specInfo->getTemplate(); 396 LinkageInfo tempLV = 397 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 398 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 399 400 // Merge information from the template arguments. 401 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; 402 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 403 LV.mergeMaybeWithVisibility(argsLV, considerVisibility); 404 } 405 406 /// Does the given declaration have a direct visibility attribute 407 /// that would match the given rules? 408 static bool hasDirectVisibilityAttribute(const NamedDecl *D, 409 LVComputationKind computation) { 410 if (computation.IgnoreAllVisibility) 411 return false; 412 413 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) || 414 D->hasAttr<VisibilityAttr>(); 415 } 416 417 /// Should we consider visibility associated with the template 418 /// arguments and parameters of the given class template specialization? 419 static bool shouldConsiderTemplateVisibility( 420 const ClassTemplateSpecializationDecl *spec, 421 LVComputationKind computation) { 422 // Include visibility from the template parameters and arguments 423 // only if this is not an explicit instantiation or specialization 424 // with direct explicit visibility (and note that implicit 425 // instantiations won't have a direct attribute). 426 // 427 // Furthermore, we want to ignore template parameters and arguments 428 // for an explicit specialization when computing the visibility of a 429 // member thereof with explicit visibility. 430 // 431 // This is a bit complex; let's unpack it. 432 // 433 // An explicit class specialization is an independent, top-level 434 // declaration. As such, if it or any of its members has an 435 // explicit visibility attribute, that must directly express the 436 // user's intent, and we should honor it. The same logic applies to 437 // an explicit instantiation of a member of such a thing. 438 439 // Fast path: if this is not an explicit instantiation or 440 // specialization, we always want to consider template-related 441 // visibility restrictions. 442 if (!spec->isExplicitInstantiationOrSpecialization()) 443 return true; 444 445 // This is the 'member thereof' check. 446 if (spec->isExplicitSpecialization() && 447 hasExplicitVisibilityAlready(computation)) 448 return false; 449 450 return !hasDirectVisibilityAttribute(spec, computation); 451 } 452 453 /// Merge in template-related linkage and visibility for the given 454 /// class template specialization. 455 void LinkageComputer::mergeTemplateLV( 456 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec, 457 LVComputationKind computation) { 458 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 459 460 // Merge information from the template parameters, but ignore 461 // visibility if we're only considering template arguments. 462 463 ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 464 LinkageInfo tempLV = 465 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 466 LV.mergeMaybeWithVisibility(tempLV, 467 considerVisibility && !hasExplicitVisibilityAlready(computation)); 468 469 // Merge information from the template arguments. We ignore 470 // template-argument visibility if we've got an explicit 471 // instantiation with a visibility attribute. 472 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 473 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 474 if (considerVisibility) 475 LV.mergeVisibility(argsLV); 476 LV.mergeExternalVisibility(argsLV); 477 } 478 479 /// Should we consider visibility associated with the template 480 /// arguments and parameters of the given variable template 481 /// specialization? As usual, follow class template specialization 482 /// logic up to initialization. 483 static bool shouldConsiderTemplateVisibility( 484 const VarTemplateSpecializationDecl *spec, 485 LVComputationKind computation) { 486 // Include visibility from the template parameters and arguments 487 // only if this is not an explicit instantiation or specialization 488 // with direct explicit visibility (and note that implicit 489 // instantiations won't have a direct attribute). 490 if (!spec->isExplicitInstantiationOrSpecialization()) 491 return true; 492 493 // An explicit variable specialization is an independent, top-level 494 // declaration. As such, if it has an explicit visibility attribute, 495 // that must directly express the user's intent, and we should honor 496 // it. 497 if (spec->isExplicitSpecialization() && 498 hasExplicitVisibilityAlready(computation)) 499 return false; 500 501 return !hasDirectVisibilityAttribute(spec, computation); 502 } 503 504 /// Merge in template-related linkage and visibility for the given 505 /// variable template specialization. As usual, follow class template 506 /// specialization logic up to initialization. 507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV, 508 const VarTemplateSpecializationDecl *spec, 509 LVComputationKind computation) { 510 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 511 512 // Merge information from the template parameters, but ignore 513 // visibility if we're only considering template arguments. 514 515 VarTemplateDecl *temp = spec->getSpecializedTemplate(); 516 LinkageInfo tempLV = 517 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 518 LV.mergeMaybeWithVisibility(tempLV, 519 considerVisibility && !hasExplicitVisibilityAlready(computation)); 520 521 // Merge information from the template arguments. We ignore 522 // template-argument visibility if we've got an explicit 523 // instantiation with a visibility attribute. 524 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 525 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 526 if (considerVisibility) 527 LV.mergeVisibility(argsLV); 528 LV.mergeExternalVisibility(argsLV); 529 } 530 531 static bool useInlineVisibilityHidden(const NamedDecl *D) { 532 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. 533 const LangOptions &Opts = D->getASTContext().getLangOpts(); 534 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) 535 return false; 536 537 const auto *FD = dyn_cast<FunctionDecl>(D); 538 if (!FD) 539 return false; 540 541 TemplateSpecializationKind TSK = TSK_Undeclared; 542 if (FunctionTemplateSpecializationInfo *spec 543 = FD->getTemplateSpecializationInfo()) { 544 TSK = spec->getTemplateSpecializationKind(); 545 } else if (MemberSpecializationInfo *MSI = 546 FD->getMemberSpecializationInfo()) { 547 TSK = MSI->getTemplateSpecializationKind(); 548 } 549 550 const FunctionDecl *Def = nullptr; 551 // InlineVisibilityHidden only applies to definitions, and 552 // isInlined() only gives meaningful answers on definitions 553 // anyway. 554 return TSK != TSK_ExplicitInstantiationDeclaration && 555 TSK != TSK_ExplicitInstantiationDefinition && 556 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); 557 } 558 559 template <typename T> static bool isFirstInExternCContext(T *D) { 560 const T *First = D->getFirstDecl(); 561 return First->isInExternCContext(); 562 } 563 564 static bool isSingleLineLanguageLinkage(const Decl &D) { 565 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) 566 if (!SD->hasBraces()) 567 return true; 568 return false; 569 } 570 571 /// Determine whether D is declared in the purview of a named module. 572 static bool isInModulePurview(const NamedDecl *D) { 573 if (auto *M = D->getOwningModule()) 574 return M->isModulePurview(); 575 return false; 576 } 577 578 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) { 579 // FIXME: Handle isModulePrivate. 580 switch (D->getModuleOwnershipKind()) { 581 case Decl::ModuleOwnershipKind::Unowned: 582 case Decl::ModuleOwnershipKind::ModulePrivate: 583 return false; 584 case Decl::ModuleOwnershipKind::Visible: 585 case Decl::ModuleOwnershipKind::VisibleWhenImported: 586 return isInModulePurview(D); 587 } 588 llvm_unreachable("unexpected module ownership kind"); 589 } 590 591 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) { 592 // Internal linkage declarations within a module interface unit are modeled 593 // as "module-internal linkage", which means that they have internal linkage 594 // formally but can be indirectly accessed from outside the module via inline 595 // functions and templates defined within the module. 596 if (isInModulePurview(D)) 597 return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false); 598 599 return LinkageInfo::internal(); 600 } 601 602 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) { 603 // C++ Modules TS [basic.link]/6.8: 604 // - A name declared at namespace scope that does not have internal linkage 605 // by the previous rules and that is introduced by a non-exported 606 // declaration has module linkage. 607 // 608 // [basic.namespace.general]/p2 609 // A namespace is never attached to a named module and never has a name with 610 // module linkage. 611 if (isInModulePurview(D) && 612 !isExportedFromModuleInterfaceUnit( 613 cast<NamedDecl>(D->getCanonicalDecl())) && 614 !isa<NamespaceDecl>(D)) 615 return LinkageInfo(ModuleLinkage, DefaultVisibility, false); 616 617 return LinkageInfo::external(); 618 } 619 620 static StorageClass getStorageClass(const Decl *D) { 621 if (auto *TD = dyn_cast<TemplateDecl>(D)) 622 D = TD->getTemplatedDecl(); 623 if (D) { 624 if (auto *VD = dyn_cast<VarDecl>(D)) 625 return VD->getStorageClass(); 626 if (auto *FD = dyn_cast<FunctionDecl>(D)) 627 return FD->getStorageClass(); 628 } 629 return SC_None; 630 } 631 632 LinkageInfo 633 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D, 634 LVComputationKind computation, 635 bool IgnoreVarTypeLinkage) { 636 assert(D->getDeclContext()->getRedeclContext()->isFileContext() && 637 "Not a name having namespace scope"); 638 ASTContext &Context = D->getASTContext(); 639 640 // C++ [basic.link]p3: 641 // A name having namespace scope (3.3.6) has internal linkage if it 642 // is the name of 643 644 if (getStorageClass(D->getCanonicalDecl()) == SC_Static) { 645 // - a variable, variable template, function, or function template 646 // that is explicitly declared static; or 647 // (This bullet corresponds to C99 6.2.2p3.) 648 return getInternalLinkageFor(D); 649 } 650 651 if (const auto *Var = dyn_cast<VarDecl>(D)) { 652 // - a non-template variable of non-volatile const-qualified type, unless 653 // - it is explicitly declared extern, or 654 // - it is inline or exported, or 655 // - it was previously declared and the prior declaration did not have 656 // internal linkage 657 // (There is no equivalent in C99.) 658 if (Context.getLangOpts().CPlusPlus && 659 Var->getType().isConstQualified() && 660 !Var->getType().isVolatileQualified() && 661 !Var->isInline() && 662 !isExportedFromModuleInterfaceUnit(Var) && 663 !isa<VarTemplateSpecializationDecl>(Var) && 664 !Var->getDescribedVarTemplate()) { 665 const VarDecl *PrevVar = Var->getPreviousDecl(); 666 if (PrevVar) 667 return getLVForDecl(PrevVar, computation); 668 669 if (Var->getStorageClass() != SC_Extern && 670 Var->getStorageClass() != SC_PrivateExtern && 671 !isSingleLineLanguageLinkage(*Var)) 672 return getInternalLinkageFor(Var); 673 } 674 675 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; 676 PrevVar = PrevVar->getPreviousDecl()) { 677 if (PrevVar->getStorageClass() == SC_PrivateExtern && 678 Var->getStorageClass() == SC_None) 679 return getDeclLinkageAndVisibility(PrevVar); 680 // Explicitly declared static. 681 if (PrevVar->getStorageClass() == SC_Static) 682 return getInternalLinkageFor(Var); 683 } 684 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) { 685 // - a data member of an anonymous union. 686 const VarDecl *VD = IFD->getVarDecl(); 687 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!"); 688 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage); 689 } 690 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"); 691 692 // FIXME: This gives internal linkage to names that should have no linkage 693 // (those not covered by [basic.link]p6). 694 if (D->isInAnonymousNamespace()) { 695 const auto *Var = dyn_cast<VarDecl>(D); 696 const auto *Func = dyn_cast<FunctionDecl>(D); 697 // FIXME: The check for extern "C" here is not justified by the standard 698 // wording, but we retain it from the pre-DR1113 model to avoid breaking 699 // code. 700 // 701 // C++11 [basic.link]p4: 702 // An unnamed namespace or a namespace declared directly or indirectly 703 // within an unnamed namespace has internal linkage. 704 if ((!Var || !isFirstInExternCContext(Var)) && 705 (!Func || !isFirstInExternCContext(Func))) 706 return getInternalLinkageFor(D); 707 } 708 709 // Set up the defaults. 710 711 // C99 6.2.2p5: 712 // If the declaration of an identifier for an object has file 713 // scope and no storage-class specifier, its linkage is 714 // external. 715 LinkageInfo LV = getExternalLinkageFor(D); 716 717 if (!hasExplicitVisibilityAlready(computation)) { 718 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) { 719 LV.mergeVisibility(*Vis, true); 720 } else { 721 // If we're declared in a namespace with a visibility attribute, 722 // use that namespace's visibility, and it still counts as explicit. 723 for (const DeclContext *DC = D->getDeclContext(); 724 !isa<TranslationUnitDecl>(DC); 725 DC = DC->getParent()) { 726 const auto *ND = dyn_cast<NamespaceDecl>(DC); 727 if (!ND) continue; 728 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) { 729 LV.mergeVisibility(*Vis, true); 730 break; 731 } 732 } 733 } 734 735 // Add in global settings if the above didn't give us direct visibility. 736 if (!LV.isVisibilityExplicit()) { 737 // Use global type/value visibility as appropriate. 738 Visibility globalVisibility = 739 computation.isValueVisibility() 740 ? Context.getLangOpts().getValueVisibilityMode() 741 : Context.getLangOpts().getTypeVisibilityMode(); 742 LV.mergeVisibility(globalVisibility, /*explicit*/ false); 743 744 // If we're paying attention to global visibility, apply 745 // -finline-visibility-hidden if this is an inline method. 746 if (useInlineVisibilityHidden(D)) 747 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 748 } 749 } 750 751 // C++ [basic.link]p4: 752 753 // A name having namespace scope that has not been given internal linkage 754 // above and that is the name of 755 // [...bullets...] 756 // has its linkage determined as follows: 757 // - if the enclosing namespace has internal linkage, the name has 758 // internal linkage; [handled above] 759 // - otherwise, if the declaration of the name is attached to a named 760 // module and is not exported, the name has module linkage; 761 // - otherwise, the name has external linkage. 762 // LV is currently set up to handle the last two bullets. 763 // 764 // The bullets are: 765 766 // - a variable; or 767 if (const auto *Var = dyn_cast<VarDecl>(D)) { 768 // GCC applies the following optimization to variables and static 769 // data members, but not to functions: 770 // 771 // Modify the variable's LV by the LV of its type unless this is 772 // C or extern "C". This follows from [basic.link]p9: 773 // A type without linkage shall not be used as the type of a 774 // variable or function with external linkage unless 775 // - the entity has C language linkage, or 776 // - the entity is declared within an unnamed namespace, or 777 // - the entity is not used or is defined in the same 778 // translation unit. 779 // and [basic.link]p10: 780 // ...the types specified by all declarations referring to a 781 // given variable or function shall be identical... 782 // C does not have an equivalent rule. 783 // 784 // Ignore this if we've got an explicit attribute; the user 785 // probably knows what they're doing. 786 // 787 // Note that we don't want to make the variable non-external 788 // because of this, but unique-external linkage suits us. 789 790 // We need variables inside OpenMP declare target directives to be visible. 791 if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Var)) 792 return LinkageInfo::external(); 793 794 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) && 795 !IgnoreVarTypeLinkage) { 796 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); 797 if (!isExternallyVisible(TypeLV.getLinkage())) 798 return LinkageInfo::uniqueExternal(); 799 if (!LV.isVisibilityExplicit()) 800 LV.mergeVisibility(TypeLV); 801 } 802 803 if (Var->getStorageClass() == SC_PrivateExtern) 804 LV.mergeVisibility(HiddenVisibility, true); 805 806 // Note that Sema::MergeVarDecl already takes care of implementing 807 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have 808 // to do it here. 809 810 // As per function and class template specializations (below), 811 // consider LV for the template and template arguments. We're at file 812 // scope, so we do not need to worry about nested specializations. 813 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 814 mergeTemplateLV(LV, spec, computation); 815 } 816 817 // - a function; or 818 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 819 // In theory, we can modify the function's LV by the LV of its 820 // type unless it has C linkage (see comment above about variables 821 // for justification). In practice, GCC doesn't do this, so it's 822 // just too painful to make work. 823 824 if (Function->getStorageClass() == SC_PrivateExtern) 825 LV.mergeVisibility(HiddenVisibility, true); 826 827 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 828 // merging storage classes and visibility attributes, so we don't have to 829 // look at previous decls in here. 830 831 // In C++, then if the type of the function uses a type with 832 // unique-external linkage, it's not legally usable from outside 833 // this translation unit. However, we should use the C linkage 834 // rules instead for extern "C" declarations. 835 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) { 836 // Only look at the type-as-written. Otherwise, deducing the return type 837 // of a function could change its linkage. 838 QualType TypeAsWritten = Function->getType(); 839 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) 840 TypeAsWritten = TSI->getType(); 841 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 842 return LinkageInfo::uniqueExternal(); 843 } 844 845 // Consider LV from the template and the template arguments. 846 // We're at file scope, so we do not need to worry about nested 847 // specializations. 848 if (FunctionTemplateSpecializationInfo *specInfo 849 = Function->getTemplateSpecializationInfo()) { 850 mergeTemplateLV(LV, Function, specInfo, computation); 851 } 852 853 // - a named class (Clause 9), or an unnamed class defined in a 854 // typedef declaration in which the class has the typedef name 855 // for linkage purposes (7.1.3); or 856 // - a named enumeration (7.2), or an unnamed enumeration 857 // defined in a typedef declaration in which the enumeration 858 // has the typedef name for linkage purposes (7.1.3); or 859 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) { 860 // Unnamed tags have no linkage. 861 if (!Tag->hasNameForLinkage()) 862 return LinkageInfo::none(); 863 864 // If this is a class template specialization, consider the 865 // linkage of the template and template arguments. We're at file 866 // scope, so we do not need to worry about nested specializations. 867 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { 868 mergeTemplateLV(LV, spec, computation); 869 } 870 871 // FIXME: This is not part of the C++ standard any more. 872 // - an enumerator belonging to an enumeration with external linkage; or 873 } else if (isa<EnumConstantDecl>(D)) { 874 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), 875 computation); 876 if (!isExternalFormalLinkage(EnumLV.getLinkage())) 877 return LinkageInfo::none(); 878 LV.merge(EnumLV); 879 880 // - a template 881 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 882 bool considerVisibility = !hasExplicitVisibilityAlready(computation); 883 LinkageInfo tempLV = 884 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 885 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 886 887 // An unnamed namespace or a namespace declared directly or indirectly 888 // within an unnamed namespace has internal linkage. All other namespaces 889 // have external linkage. 890 // 891 // We handled names in anonymous namespaces above. 892 } else if (isa<NamespaceDecl>(D)) { 893 return LV; 894 895 // By extension, we assign external linkage to Objective-C 896 // interfaces. 897 } else if (isa<ObjCInterfaceDecl>(D)) { 898 // fallout 899 900 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 901 // A typedef declaration has linkage if it gives a type a name for 902 // linkage purposes. 903 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 904 return LinkageInfo::none(); 905 906 } else if (isa<MSGuidDecl>(D)) { 907 // A GUID behaves like an inline variable with external linkage. Fall 908 // through. 909 910 // Everything not covered here has no linkage. 911 } else { 912 return LinkageInfo::none(); 913 } 914 915 // If we ended up with non-externally-visible linkage, visibility should 916 // always be default. 917 if (!isExternallyVisible(LV.getLinkage())) 918 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); 919 920 // Mark the symbols as hidden when compiling for the device. 921 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice) 922 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false); 923 924 return LV; 925 } 926 927 LinkageInfo 928 LinkageComputer::getLVForClassMember(const NamedDecl *D, 929 LVComputationKind computation, 930 bool IgnoreVarTypeLinkage) { 931 // Only certain class members have linkage. Note that fields don't 932 // really have linkage, but it's convenient to say they do for the 933 // purposes of calculating linkage of pointer-to-data-member 934 // template arguments. 935 // 936 // Templates also don't officially have linkage, but since we ignore 937 // the C++ standard and look at template arguments when determining 938 // linkage and visibility of a template specialization, we might hit 939 // a template template argument that way. If we do, we need to 940 // consider its linkage. 941 if (!(isa<CXXMethodDecl>(D) || 942 isa<VarDecl>(D) || 943 isa<FieldDecl>(D) || 944 isa<IndirectFieldDecl>(D) || 945 isa<TagDecl>(D) || 946 isa<TemplateDecl>(D))) 947 return LinkageInfo::none(); 948 949 LinkageInfo LV; 950 951 // If we have an explicit visibility attribute, merge that in. 952 if (!hasExplicitVisibilityAlready(computation)) { 953 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) 954 LV.mergeVisibility(*Vis, true); 955 // If we're paying attention to global visibility, apply 956 // -finline-visibility-hidden if this is an inline method. 957 // 958 // Note that we do this before merging information about 959 // the class visibility. 960 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) 961 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 962 } 963 964 // If this class member has an explicit visibility attribute, the only 965 // thing that can change its visibility is the template arguments, so 966 // only look for them when processing the class. 967 LVComputationKind classComputation = computation; 968 if (LV.isVisibilityExplicit()) 969 classComputation = withExplicitVisibilityAlready(computation); 970 971 LinkageInfo classLV = 972 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); 973 // The member has the same linkage as the class. If that's not externally 974 // visible, we don't need to compute anything about the linkage. 975 // FIXME: If we're only computing linkage, can we bail out here? 976 if (!isExternallyVisible(classLV.getLinkage())) 977 return classLV; 978 979 980 // Otherwise, don't merge in classLV yet, because in certain cases 981 // we need to completely ignore the visibility from it. 982 983 // Specifically, if this decl exists and has an explicit attribute. 984 const NamedDecl *explicitSpecSuppressor = nullptr; 985 986 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 987 // Only look at the type-as-written. Otherwise, deducing the return type 988 // of a function could change its linkage. 989 QualType TypeAsWritten = MD->getType(); 990 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 991 TypeAsWritten = TSI->getType(); 992 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 993 return LinkageInfo::uniqueExternal(); 994 995 // If this is a method template specialization, use the linkage for 996 // the template parameters and arguments. 997 if (FunctionTemplateSpecializationInfo *spec 998 = MD->getTemplateSpecializationInfo()) { 999 mergeTemplateLV(LV, MD, spec, computation); 1000 if (spec->isExplicitSpecialization()) { 1001 explicitSpecSuppressor = MD; 1002 } else if (isExplicitMemberSpecialization(spec->getTemplate())) { 1003 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); 1004 } 1005 } else if (isExplicitMemberSpecialization(MD)) { 1006 explicitSpecSuppressor = MD; 1007 } 1008 1009 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 1010 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 1011 mergeTemplateLV(LV, spec, computation); 1012 if (spec->isExplicitSpecialization()) { 1013 explicitSpecSuppressor = spec; 1014 } else { 1015 const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 1016 if (isExplicitMemberSpecialization(temp)) { 1017 explicitSpecSuppressor = temp->getTemplatedDecl(); 1018 } 1019 } 1020 } else if (isExplicitMemberSpecialization(RD)) { 1021 explicitSpecSuppressor = RD; 1022 } 1023 1024 // Static data members. 1025 } else if (const auto *VD = dyn_cast<VarDecl>(D)) { 1026 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD)) 1027 mergeTemplateLV(LV, spec, computation); 1028 1029 // Modify the variable's linkage by its type, but ignore the 1030 // type's visibility unless it's a definition. 1031 if (!IgnoreVarTypeLinkage) { 1032 LinkageInfo typeLV = getLVForType(*VD->getType(), computation); 1033 // FIXME: If the type's linkage is not externally visible, we can 1034 // give this static data member UniqueExternalLinkage. 1035 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) 1036 LV.mergeVisibility(typeLV); 1037 LV.mergeExternalVisibility(typeLV); 1038 } 1039 1040 if (isExplicitMemberSpecialization(VD)) { 1041 explicitSpecSuppressor = VD; 1042 } 1043 1044 // Template members. 1045 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 1046 bool considerVisibility = 1047 (!LV.isVisibilityExplicit() && 1048 !classLV.isVisibilityExplicit() && 1049 !hasExplicitVisibilityAlready(computation)); 1050 LinkageInfo tempLV = 1051 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 1052 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 1053 1054 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) { 1055 if (isExplicitMemberSpecialization(redeclTemp)) { 1056 explicitSpecSuppressor = temp->getTemplatedDecl(); 1057 } 1058 } 1059 } 1060 1061 // We should never be looking for an attribute directly on a template. 1062 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); 1063 1064 // If this member is an explicit member specialization, and it has 1065 // an explicit attribute, ignore visibility from the parent. 1066 bool considerClassVisibility = true; 1067 if (explicitSpecSuppressor && 1068 // optimization: hasDVA() is true only with explicit visibility. 1069 LV.isVisibilityExplicit() && 1070 classLV.getVisibility() != DefaultVisibility && 1071 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { 1072 considerClassVisibility = false; 1073 } 1074 1075 // Finally, merge in information from the class. 1076 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); 1077 1078 // We need variables inside OpenMP declare target directives to be visible. 1079 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1080 if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) 1081 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); 1082 1083 return LV; 1084 } 1085 1086 void NamedDecl::anchor() {} 1087 1088 bool NamedDecl::isLinkageValid() const { 1089 if (!hasCachedLinkage()) 1090 return true; 1091 1092 Linkage L = LinkageComputer{} 1093 .computeLVForDecl(this, LVComputationKind::forLinkageOnly()) 1094 .getLinkage(); 1095 return L == getCachedLinkage(); 1096 } 1097 1098 ReservedIdentifierStatus 1099 NamedDecl::isReserved(const LangOptions &LangOpts) const { 1100 const IdentifierInfo *II = getIdentifier(); 1101 1102 // This triggers at least for CXXLiteralIdentifiers, which we already checked 1103 // at lexing time. 1104 if (!II) 1105 return ReservedIdentifierStatus::NotReserved; 1106 1107 ReservedIdentifierStatus Status = II->isReserved(LangOpts); 1108 if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) { 1109 // This name is only reserved at global scope. Check if this declaration 1110 // conflicts with a global scope declaration. 1111 if (isa<ParmVarDecl>(this) || isTemplateParameter()) 1112 return ReservedIdentifierStatus::NotReserved; 1113 1114 // C++ [dcl.link]/7: 1115 // Two declarations [conflict] if [...] one declares a function or 1116 // variable with C language linkage, and the other declares [...] a 1117 // variable that belongs to the global scope. 1118 // 1119 // Therefore names that are reserved at global scope are also reserved as 1120 // names of variables and functions with C language linkage. 1121 const DeclContext *DC = getDeclContext()->getRedeclContext(); 1122 if (DC->isTranslationUnit()) 1123 return Status; 1124 if (auto *VD = dyn_cast<VarDecl>(this)) 1125 if (VD->isExternC()) 1126 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC; 1127 if (auto *FD = dyn_cast<FunctionDecl>(this)) 1128 if (FD->isExternC()) 1129 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC; 1130 return ReservedIdentifierStatus::NotReserved; 1131 } 1132 1133 return Status; 1134 } 1135 1136 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const { 1137 StringRef name = getName(); 1138 if (name.empty()) return SFF_None; 1139 1140 if (name.front() == 'C') 1141 if (name == "CFStringCreateWithFormat" || 1142 name == "CFStringCreateWithFormatAndArguments" || 1143 name == "CFStringAppendFormat" || 1144 name == "CFStringAppendFormatAndArguments") 1145 return SFF_CFString; 1146 return SFF_None; 1147 } 1148 1149 Linkage NamedDecl::getLinkageInternal() const { 1150 // We don't care about visibility here, so ask for the cheapest 1151 // possible visibility analysis. 1152 return LinkageComputer{} 1153 .getLVForDecl(this, LVComputationKind::forLinkageOnly()) 1154 .getLinkage(); 1155 } 1156 1157 LinkageInfo NamedDecl::getLinkageAndVisibility() const { 1158 return LinkageComputer{}.getDeclLinkageAndVisibility(this); 1159 } 1160 1161 static Optional<Visibility> 1162 getExplicitVisibilityAux(const NamedDecl *ND, 1163 NamedDecl::ExplicitVisibilityKind kind, 1164 bool IsMostRecent) { 1165 assert(!IsMostRecent || ND == ND->getMostRecentDecl()); 1166 1167 // Check the declaration itself first. 1168 if (Optional<Visibility> V = getVisibilityOf(ND, kind)) 1169 return V; 1170 1171 // If this is a member class of a specialization of a class template 1172 // and the corresponding decl has explicit visibility, use that. 1173 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 1174 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); 1175 if (InstantiatedFrom) 1176 return getVisibilityOf(InstantiatedFrom, kind); 1177 } 1178 1179 // If there wasn't explicit visibility there, and this is a 1180 // specialization of a class template, check for visibility 1181 // on the pattern. 1182 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 1183 // Walk all the template decl till this point to see if there are 1184 // explicit visibility attributes. 1185 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl(); 1186 while (TD != nullptr) { 1187 auto Vis = getVisibilityOf(TD, kind); 1188 if (Vis != None) 1189 return Vis; 1190 TD = TD->getPreviousDecl(); 1191 } 1192 return None; 1193 } 1194 1195 // Use the most recent declaration. 1196 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) { 1197 const NamedDecl *MostRecent = ND->getMostRecentDecl(); 1198 if (MostRecent != ND) 1199 return getExplicitVisibilityAux(MostRecent, kind, true); 1200 } 1201 1202 if (const auto *Var = dyn_cast<VarDecl>(ND)) { 1203 if (Var->isStaticDataMember()) { 1204 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); 1205 if (InstantiatedFrom) 1206 return getVisibilityOf(InstantiatedFrom, kind); 1207 } 1208 1209 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var)) 1210 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(), 1211 kind); 1212 1213 return None; 1214 } 1215 // Also handle function template specializations. 1216 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) { 1217 // If the function is a specialization of a template with an 1218 // explicit visibility attribute, use that. 1219 if (FunctionTemplateSpecializationInfo *templateInfo 1220 = fn->getTemplateSpecializationInfo()) 1221 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), 1222 kind); 1223 1224 // If the function is a member of a specialization of a class template 1225 // and the corresponding decl has explicit visibility, use that. 1226 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); 1227 if (InstantiatedFrom) 1228 return getVisibilityOf(InstantiatedFrom, kind); 1229 1230 return None; 1231 } 1232 1233 // The visibility of a template is stored in the templated decl. 1234 if (const auto *TD = dyn_cast<TemplateDecl>(ND)) 1235 return getVisibilityOf(TD->getTemplatedDecl(), kind); 1236 1237 return None; 1238 } 1239 1240 Optional<Visibility> 1241 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { 1242 return getExplicitVisibilityAux(this, kind, false); 1243 } 1244 1245 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC, 1246 Decl *ContextDecl, 1247 LVComputationKind computation) { 1248 // This lambda has its linkage/visibility determined by its owner. 1249 const NamedDecl *Owner; 1250 if (!ContextDecl) 1251 Owner = dyn_cast<NamedDecl>(DC); 1252 else if (isa<ParmVarDecl>(ContextDecl)) 1253 Owner = 1254 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext()); 1255 else 1256 Owner = cast<NamedDecl>(ContextDecl); 1257 1258 if (!Owner) 1259 return LinkageInfo::none(); 1260 1261 // If the owner has a deduced type, we need to skip querying the linkage and 1262 // visibility of that type, because it might involve this closure type. The 1263 // only effect of this is that we might give a lambda VisibleNoLinkage rather 1264 // than NoLinkage when we don't strictly need to, which is benign. 1265 auto *VD = dyn_cast<VarDecl>(Owner); 1266 LinkageInfo OwnerLV = 1267 VD && VD->getType()->getContainedDeducedType() 1268 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true) 1269 : getLVForDecl(Owner, computation); 1270 1271 // A lambda never formally has linkage. But if the owner is externally 1272 // visible, then the lambda is too. We apply the same rules to blocks. 1273 if (!isExternallyVisible(OwnerLV.getLinkage())) 1274 return LinkageInfo::none(); 1275 return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(), 1276 OwnerLV.isVisibilityExplicit()); 1277 } 1278 1279 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D, 1280 LVComputationKind computation) { 1281 if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 1282 if (Function->isInAnonymousNamespace() && 1283 !isFirstInExternCContext(Function)) 1284 return getInternalLinkageFor(Function); 1285 1286 // This is a "void f();" which got merged with a file static. 1287 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 1288 return getInternalLinkageFor(Function); 1289 1290 LinkageInfo LV; 1291 if (!hasExplicitVisibilityAlready(computation)) { 1292 if (Optional<Visibility> Vis = 1293 getExplicitVisibility(Function, computation)) 1294 LV.mergeVisibility(*Vis, true); 1295 } 1296 1297 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 1298 // merging storage classes and visibility attributes, so we don't have to 1299 // look at previous decls in here. 1300 1301 return LV; 1302 } 1303 1304 if (const auto *Var = dyn_cast<VarDecl>(D)) { 1305 if (Var->hasExternalStorage()) { 1306 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var)) 1307 return getInternalLinkageFor(Var); 1308 1309 LinkageInfo LV; 1310 if (Var->getStorageClass() == SC_PrivateExtern) 1311 LV.mergeVisibility(HiddenVisibility, true); 1312 else if (!hasExplicitVisibilityAlready(computation)) { 1313 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation)) 1314 LV.mergeVisibility(*Vis, true); 1315 } 1316 1317 if (const VarDecl *Prev = Var->getPreviousDecl()) { 1318 LinkageInfo PrevLV = getLVForDecl(Prev, computation); 1319 if (PrevLV.getLinkage()) 1320 LV.setLinkage(PrevLV.getLinkage()); 1321 LV.mergeVisibility(PrevLV); 1322 } 1323 1324 return LV; 1325 } 1326 1327 if (!Var->isStaticLocal()) 1328 return LinkageInfo::none(); 1329 } 1330 1331 ASTContext &Context = D->getASTContext(); 1332 if (!Context.getLangOpts().CPlusPlus) 1333 return LinkageInfo::none(); 1334 1335 const Decl *OuterD = getOutermostFuncOrBlockContext(D); 1336 if (!OuterD || OuterD->isInvalidDecl()) 1337 return LinkageInfo::none(); 1338 1339 LinkageInfo LV; 1340 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) { 1341 if (!BD->getBlockManglingNumber()) 1342 return LinkageInfo::none(); 1343 1344 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), 1345 BD->getBlockManglingContextDecl(), computation); 1346 } else { 1347 const auto *FD = cast<FunctionDecl>(OuterD); 1348 if (!FD->isInlined() && 1349 !isTemplateInstantiation(FD->getTemplateSpecializationKind())) 1350 return LinkageInfo::none(); 1351 1352 // If a function is hidden by -fvisibility-inlines-hidden option and 1353 // is not explicitly attributed as a hidden function, 1354 // we should not make static local variables in the function hidden. 1355 LV = getLVForDecl(FD, computation); 1356 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) && 1357 !LV.isVisibilityExplicit() && 1358 !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) { 1359 assert(cast<VarDecl>(D)->isStaticLocal()); 1360 // If this was an implicitly hidden inline method, check again for 1361 // explicit visibility on the parent class, and use that for static locals 1362 // if present. 1363 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1364 LV = getLVForDecl(MD->getParent(), computation); 1365 if (!LV.isVisibilityExplicit()) { 1366 Visibility globalVisibility = 1367 computation.isValueVisibility() 1368 ? Context.getLangOpts().getValueVisibilityMode() 1369 : Context.getLangOpts().getTypeVisibilityMode(); 1370 return LinkageInfo(VisibleNoLinkage, globalVisibility, 1371 /*visibilityExplicit=*/false); 1372 } 1373 } 1374 } 1375 if (!isExternallyVisible(LV.getLinkage())) 1376 return LinkageInfo::none(); 1377 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), 1378 LV.isVisibilityExplicit()); 1379 } 1380 1381 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D, 1382 LVComputationKind computation, 1383 bool IgnoreVarTypeLinkage) { 1384 // Internal_linkage attribute overrides other considerations. 1385 if (D->hasAttr<InternalLinkageAttr>()) 1386 return getInternalLinkageFor(D); 1387 1388 // Objective-C: treat all Objective-C declarations as having external 1389 // linkage. 1390 switch (D->getKind()) { 1391 default: 1392 break; 1393 1394 // Per C++ [basic.link]p2, only the names of objects, references, 1395 // functions, types, templates, namespaces, and values ever have linkage. 1396 // 1397 // Note that the name of a typedef, namespace alias, using declaration, 1398 // and so on are not the name of the corresponding type, namespace, or 1399 // declaration, so they do *not* have linkage. 1400 case Decl::ImplicitParam: 1401 case Decl::Label: 1402 case Decl::NamespaceAlias: 1403 case Decl::ParmVar: 1404 case Decl::Using: 1405 case Decl::UsingEnum: 1406 case Decl::UsingShadow: 1407 case Decl::UsingDirective: 1408 return LinkageInfo::none(); 1409 1410 case Decl::EnumConstant: 1411 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration. 1412 if (D->getASTContext().getLangOpts().CPlusPlus) 1413 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation); 1414 return LinkageInfo::visible_none(); 1415 1416 case Decl::Typedef: 1417 case Decl::TypeAlias: 1418 // A typedef declaration has linkage if it gives a type a name for 1419 // linkage purposes. 1420 if (!cast<TypedefNameDecl>(D) 1421 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 1422 return LinkageInfo::none(); 1423 break; 1424 1425 case Decl::TemplateTemplateParm: // count these as external 1426 case Decl::NonTypeTemplateParm: 1427 case Decl::ObjCAtDefsField: 1428 case Decl::ObjCCategory: 1429 case Decl::ObjCCategoryImpl: 1430 case Decl::ObjCCompatibleAlias: 1431 case Decl::ObjCImplementation: 1432 case Decl::ObjCMethod: 1433 case Decl::ObjCProperty: 1434 case Decl::ObjCPropertyImpl: 1435 case Decl::ObjCProtocol: 1436 return getExternalLinkageFor(D); 1437 1438 case Decl::CXXRecord: { 1439 const auto *Record = cast<CXXRecordDecl>(D); 1440 if (Record->isLambda()) { 1441 if (Record->hasKnownLambdaInternalLinkage() || 1442 !Record->getLambdaManglingNumber()) { 1443 // This lambda has no mangling number, so it's internal. 1444 return getInternalLinkageFor(D); 1445 } 1446 1447 return getLVForClosure( 1448 Record->getDeclContext()->getRedeclContext(), 1449 Record->getLambdaContextDecl(), computation); 1450 } 1451 1452 break; 1453 } 1454 1455 case Decl::TemplateParamObject: { 1456 // The template parameter object can be referenced from anywhere its type 1457 // and value can be referenced. 1458 auto *TPO = cast<TemplateParamObjectDecl>(D); 1459 LinkageInfo LV = getLVForType(*TPO->getType(), computation); 1460 LV.merge(getLVForValue(TPO->getValue(), computation)); 1461 return LV; 1462 } 1463 } 1464 1465 // Handle linkage for namespace-scope names. 1466 if (D->getDeclContext()->getRedeclContext()->isFileContext()) 1467 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage); 1468 1469 // C++ [basic.link]p5: 1470 // In addition, a member function, static data member, a named 1471 // class or enumeration of class scope, or an unnamed class or 1472 // enumeration defined in a class-scope typedef declaration such 1473 // that the class or enumeration has the typedef name for linkage 1474 // purposes (7.1.3), has external linkage if the name of the class 1475 // has external linkage. 1476 if (D->getDeclContext()->isRecord()) 1477 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage); 1478 1479 // C++ [basic.link]p6: 1480 // The name of a function declared in block scope and the name of 1481 // an object declared by a block scope extern declaration have 1482 // linkage. If there is a visible declaration of an entity with 1483 // linkage having the same name and type, ignoring entities 1484 // declared outside the innermost enclosing namespace scope, the 1485 // block scope declaration declares that same entity and receives 1486 // the linkage of the previous declaration. If there is more than 1487 // one such matching entity, the program is ill-formed. Otherwise, 1488 // if no matching entity is found, the block scope entity receives 1489 // external linkage. 1490 if (D->getDeclContext()->isFunctionOrMethod()) 1491 return getLVForLocalDecl(D, computation); 1492 1493 // C++ [basic.link]p6: 1494 // Names not covered by these rules have no linkage. 1495 return LinkageInfo::none(); 1496 } 1497 1498 /// getLVForDecl - Get the linkage and visibility for the given declaration. 1499 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D, 1500 LVComputationKind computation) { 1501 // Internal_linkage attribute overrides other considerations. 1502 if (D->hasAttr<InternalLinkageAttr>()) 1503 return getInternalLinkageFor(D); 1504 1505 if (computation.IgnoreAllVisibility && D->hasCachedLinkage()) 1506 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); 1507 1508 if (llvm::Optional<LinkageInfo> LI = lookup(D, computation)) 1509 return *LI; 1510 1511 LinkageInfo LV = computeLVForDecl(D, computation); 1512 if (D->hasCachedLinkage()) 1513 assert(D->getCachedLinkage() == LV.getLinkage()); 1514 1515 D->setCachedLinkage(LV.getLinkage()); 1516 cache(D, computation, LV); 1517 1518 #ifndef NDEBUG 1519 // In C (because of gnu inline) and in c++ with microsoft extensions an 1520 // static can follow an extern, so we can have two decls with different 1521 // linkages. 1522 const LangOptions &Opts = D->getASTContext().getLangOpts(); 1523 if (!Opts.CPlusPlus || Opts.MicrosoftExt) 1524 return LV; 1525 1526 // We have just computed the linkage for this decl. By induction we know 1527 // that all other computed linkages match, check that the one we just 1528 // computed also does. 1529 NamedDecl *Old = nullptr; 1530 for (auto I : D->redecls()) { 1531 auto *T = cast<NamedDecl>(I); 1532 if (T == D) 1533 continue; 1534 if (!T->isInvalidDecl() && T->hasCachedLinkage()) { 1535 Old = T; 1536 break; 1537 } 1538 } 1539 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); 1540 #endif 1541 1542 return LV; 1543 } 1544 1545 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) { 1546 NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D) 1547 ? NamedDecl::VisibilityForType 1548 : NamedDecl::VisibilityForValue; 1549 LVComputationKind CK(EK); 1550 return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility 1551 ? CK.forLinkageOnly() 1552 : CK); 1553 } 1554 1555 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const { 1556 Module *M = getOwningModule(); 1557 if (!M) 1558 return nullptr; 1559 1560 switch (M->Kind) { 1561 case Module::ModuleMapModule: 1562 // Module map modules have no special linkage semantics. 1563 return nullptr; 1564 1565 case Module::ModuleInterfaceUnit: 1566 return M; 1567 1568 case Module::GlobalModuleFragment: { 1569 // External linkage declarations in the global module have no owning module 1570 // for linkage purposes. But internal linkage declarations in the global 1571 // module fragment of a particular module are owned by that module for 1572 // linkage purposes. 1573 if (IgnoreLinkage) 1574 return nullptr; 1575 bool InternalLinkage; 1576 if (auto *ND = dyn_cast<NamedDecl>(this)) 1577 InternalLinkage = !ND->hasExternalFormalLinkage(); 1578 else { 1579 auto *NSD = dyn_cast<NamespaceDecl>(this); 1580 InternalLinkage = (NSD && NSD->isAnonymousNamespace()) || 1581 isInAnonymousNamespace(); 1582 } 1583 return InternalLinkage ? M->Parent : nullptr; 1584 } 1585 1586 case Module::PrivateModuleFragment: 1587 // The private module fragment is part of its containing module for linkage 1588 // purposes. 1589 return M->Parent; 1590 } 1591 1592 llvm_unreachable("unknown module kind"); 1593 } 1594 1595 void NamedDecl::printName(raw_ostream &os) const { 1596 os << Name; 1597 } 1598 1599 std::string NamedDecl::getQualifiedNameAsString() const { 1600 std::string QualName; 1601 llvm::raw_string_ostream OS(QualName); 1602 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1603 return QualName; 1604 } 1605 1606 void NamedDecl::printQualifiedName(raw_ostream &OS) const { 1607 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1608 } 1609 1610 void NamedDecl::printQualifiedName(raw_ostream &OS, 1611 const PrintingPolicy &P) const { 1612 if (getDeclContext()->isFunctionOrMethod()) { 1613 // We do not print '(anonymous)' for function parameters without name. 1614 printName(OS); 1615 return; 1616 } 1617 printNestedNameSpecifier(OS, P); 1618 if (getDeclName()) 1619 OS << *this; 1620 else { 1621 // Give the printName override a chance to pick a different name before we 1622 // fall back to "(anonymous)". 1623 SmallString<64> NameBuffer; 1624 llvm::raw_svector_ostream NameOS(NameBuffer); 1625 printName(NameOS); 1626 if (NameBuffer.empty()) 1627 OS << "(anonymous)"; 1628 else 1629 OS << NameBuffer; 1630 } 1631 } 1632 1633 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const { 1634 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy()); 1635 } 1636 1637 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS, 1638 const PrintingPolicy &P) const { 1639 const DeclContext *Ctx = getDeclContext(); 1640 1641 // For ObjC methods and properties, look through categories and use the 1642 // interface as context. 1643 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) { 1644 if (auto *ID = MD->getClassInterface()) 1645 Ctx = ID; 1646 } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) { 1647 if (auto *MD = PD->getGetterMethodDecl()) 1648 if (auto *ID = MD->getClassInterface()) 1649 Ctx = ID; 1650 } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) { 1651 if (auto *CI = ID->getContainingInterface()) 1652 Ctx = CI; 1653 } 1654 1655 if (Ctx->isFunctionOrMethod()) 1656 return; 1657 1658 using ContextsTy = SmallVector<const DeclContext *, 8>; 1659 ContextsTy Contexts; 1660 1661 // Collect named contexts. 1662 DeclarationName NameInScope = getDeclName(); 1663 for (; Ctx; Ctx = Ctx->getParent()) { 1664 // Suppress anonymous namespace if requested. 1665 if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) && 1666 cast<NamespaceDecl>(Ctx)->isAnonymousNamespace()) 1667 continue; 1668 1669 // Suppress inline namespace if it doesn't make the result ambiguous. 1670 if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope && 1671 cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope)) 1672 continue; 1673 1674 // Skip non-named contexts such as linkage specifications and ExportDecls. 1675 const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx); 1676 if (!ND) 1677 continue; 1678 1679 Contexts.push_back(Ctx); 1680 NameInScope = ND->getDeclName(); 1681 } 1682 1683 for (const DeclContext *DC : llvm::reverse(Contexts)) { 1684 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { 1685 OS << Spec->getName(); 1686 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 1687 printTemplateArgumentList( 1688 OS, TemplateArgs.asArray(), P, 1689 Spec->getSpecializedTemplate()->getTemplateParameters()); 1690 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 1691 if (ND->isAnonymousNamespace()) { 1692 OS << (P.MSVCFormatting ? "`anonymous namespace\'" 1693 : "(anonymous namespace)"); 1694 } 1695 else 1696 OS << *ND; 1697 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) { 1698 if (!RD->getIdentifier()) 1699 OS << "(anonymous " << RD->getKindName() << ')'; 1700 else 1701 OS << *RD; 1702 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1703 const FunctionProtoType *FT = nullptr; 1704 if (FD->hasWrittenPrototype()) 1705 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); 1706 1707 OS << *FD << '('; 1708 if (FT) { 1709 unsigned NumParams = FD->getNumParams(); 1710 for (unsigned i = 0; i < NumParams; ++i) { 1711 if (i) 1712 OS << ", "; 1713 OS << FD->getParamDecl(i)->getType().stream(P); 1714 } 1715 1716 if (FT->isVariadic()) { 1717 if (NumParams > 0) 1718 OS << ", "; 1719 OS << "..."; 1720 } 1721 } 1722 OS << ')'; 1723 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) { 1724 // C++ [dcl.enum]p10: Each enum-name and each unscoped 1725 // enumerator is declared in the scope that immediately contains 1726 // the enum-specifier. Each scoped enumerator is declared in the 1727 // scope of the enumeration. 1728 // For the case of unscoped enumerator, do not include in the qualified 1729 // name any information about its enum enclosing scope, as its visibility 1730 // is global. 1731 if (ED->isScoped()) 1732 OS << *ED; 1733 else 1734 continue; 1735 } else { 1736 OS << *cast<NamedDecl>(DC); 1737 } 1738 OS << "::"; 1739 } 1740 } 1741 1742 void NamedDecl::getNameForDiagnostic(raw_ostream &OS, 1743 const PrintingPolicy &Policy, 1744 bool Qualified) const { 1745 if (Qualified) 1746 printQualifiedName(OS, Policy); 1747 else 1748 printName(OS); 1749 } 1750 1751 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) { 1752 return true; 1753 } 1754 static bool isRedeclarableImpl(...) { return false; } 1755 static bool isRedeclarable(Decl::Kind K) { 1756 switch (K) { 1757 #define DECL(Type, Base) \ 1758 case Decl::Type: \ 1759 return isRedeclarableImpl((Type##Decl *)nullptr); 1760 #define ABSTRACT_DECL(DECL) 1761 #include "clang/AST/DeclNodes.inc" 1762 } 1763 llvm_unreachable("unknown decl kind"); 1764 } 1765 1766 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const { 1767 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); 1768 1769 // Never replace one imported declaration with another; we need both results 1770 // when re-exporting. 1771 if (OldD->isFromASTFile() && isFromASTFile()) 1772 return false; 1773 1774 // A kind mismatch implies that the declaration is not replaced. 1775 if (OldD->getKind() != getKind()) 1776 return false; 1777 1778 // For method declarations, we never replace. (Why?) 1779 if (isa<ObjCMethodDecl>(this)) 1780 return false; 1781 1782 // For parameters, pick the newer one. This is either an error or (in 1783 // Objective-C) permitted as an extension. 1784 if (isa<ParmVarDecl>(this)) 1785 return true; 1786 1787 // Inline namespaces can give us two declarations with the same 1788 // name and kind in the same scope but different contexts; we should 1789 // keep both declarations in this case. 1790 if (!this->getDeclContext()->getRedeclContext()->Equals( 1791 OldD->getDeclContext()->getRedeclContext())) 1792 return false; 1793 1794 // Using declarations can be replaced if they import the same name from the 1795 // same context. 1796 if (auto *UD = dyn_cast<UsingDecl>(this)) { 1797 ASTContext &Context = getASTContext(); 1798 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) == 1799 Context.getCanonicalNestedNameSpecifier( 1800 cast<UsingDecl>(OldD)->getQualifier()); 1801 } 1802 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) { 1803 ASTContext &Context = getASTContext(); 1804 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) == 1805 Context.getCanonicalNestedNameSpecifier( 1806 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier()); 1807 } 1808 1809 if (isRedeclarable(getKind())) { 1810 if (getCanonicalDecl() != OldD->getCanonicalDecl()) 1811 return false; 1812 1813 if (IsKnownNewer) 1814 return true; 1815 1816 // Check whether this is actually newer than OldD. We want to keep the 1817 // newer declaration. This loop will usually only iterate once, because 1818 // OldD is usually the previous declaration. 1819 for (auto D : redecls()) { 1820 if (D == OldD) 1821 break; 1822 1823 // If we reach the canonical declaration, then OldD is not actually older 1824 // than this one. 1825 // 1826 // FIXME: In this case, we should not add this decl to the lookup table. 1827 if (D->isCanonicalDecl()) 1828 return false; 1829 } 1830 1831 // It's a newer declaration of the same kind of declaration in the same 1832 // scope: we want this decl instead of the existing one. 1833 return true; 1834 } 1835 1836 // In all other cases, we need to keep both declarations in case they have 1837 // different visibility. Any attempt to use the name will result in an 1838 // ambiguity if more than one is visible. 1839 return false; 1840 } 1841 1842 bool NamedDecl::hasLinkage() const { 1843 return getFormalLinkage() != NoLinkage; 1844 } 1845 1846 NamedDecl *NamedDecl::getUnderlyingDeclImpl() { 1847 NamedDecl *ND = this; 1848 while (auto *UD = dyn_cast<UsingShadowDecl>(ND)) 1849 ND = UD->getTargetDecl(); 1850 1851 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) 1852 return AD->getClassInterface(); 1853 1854 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND)) 1855 return AD->getNamespace(); 1856 1857 return ND; 1858 } 1859 1860 bool NamedDecl::isCXXInstanceMember() const { 1861 if (!isCXXClassMember()) 1862 return false; 1863 1864 const NamedDecl *D = this; 1865 if (isa<UsingShadowDecl>(D)) 1866 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1867 1868 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) 1869 return true; 1870 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction())) 1871 return MD->isInstance(); 1872 return false; 1873 } 1874 1875 //===----------------------------------------------------------------------===// 1876 // DeclaratorDecl Implementation 1877 //===----------------------------------------------------------------------===// 1878 1879 template <typename DeclT> 1880 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { 1881 if (decl->getNumTemplateParameterLists() > 0) 1882 return decl->getTemplateParameterList(0)->getTemplateLoc(); 1883 return decl->getInnerLocStart(); 1884 } 1885 1886 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { 1887 TypeSourceInfo *TSI = getTypeSourceInfo(); 1888 if (TSI) return TSI->getTypeLoc().getBeginLoc(); 1889 return SourceLocation(); 1890 } 1891 1892 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const { 1893 TypeSourceInfo *TSI = getTypeSourceInfo(); 1894 if (TSI) return TSI->getTypeLoc().getEndLoc(); 1895 return SourceLocation(); 1896 } 1897 1898 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 1899 if (QualifierLoc) { 1900 // Make sure the extended decl info is allocated. 1901 if (!hasExtInfo()) { 1902 // Save (non-extended) type source info pointer. 1903 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1904 // Allocate external info struct. 1905 DeclInfo = new (getASTContext()) ExtInfo; 1906 // Restore savedTInfo into (extended) decl info. 1907 getExtInfo()->TInfo = savedTInfo; 1908 } 1909 // Set qualifier info. 1910 getExtInfo()->QualifierLoc = QualifierLoc; 1911 } else if (hasExtInfo()) { 1912 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 1913 getExtInfo()->QualifierLoc = QualifierLoc; 1914 } 1915 } 1916 1917 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) { 1918 assert(TrailingRequiresClause); 1919 // Make sure the extended decl info is allocated. 1920 if (!hasExtInfo()) { 1921 // Save (non-extended) type source info pointer. 1922 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1923 // Allocate external info struct. 1924 DeclInfo = new (getASTContext()) ExtInfo; 1925 // Restore savedTInfo into (extended) decl info. 1926 getExtInfo()->TInfo = savedTInfo; 1927 } 1928 // Set requires clause info. 1929 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause; 1930 } 1931 1932 void DeclaratorDecl::setTemplateParameterListsInfo( 1933 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1934 assert(!TPLists.empty()); 1935 // Make sure the extended decl info is allocated. 1936 if (!hasExtInfo()) { 1937 // Save (non-extended) type source info pointer. 1938 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1939 // Allocate external info struct. 1940 DeclInfo = new (getASTContext()) ExtInfo; 1941 // Restore savedTInfo into (extended) decl info. 1942 getExtInfo()->TInfo = savedTInfo; 1943 } 1944 // Set the template parameter lists info. 1945 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 1946 } 1947 1948 SourceLocation DeclaratorDecl::getOuterLocStart() const { 1949 return getTemplateOrInnerLocStart(this); 1950 } 1951 1952 // Helper function: returns true if QT is or contains a type 1953 // having a postfix component. 1954 static bool typeIsPostfix(QualType QT) { 1955 while (true) { 1956 const Type* T = QT.getTypePtr(); 1957 switch (T->getTypeClass()) { 1958 default: 1959 return false; 1960 case Type::Pointer: 1961 QT = cast<PointerType>(T)->getPointeeType(); 1962 break; 1963 case Type::BlockPointer: 1964 QT = cast<BlockPointerType>(T)->getPointeeType(); 1965 break; 1966 case Type::MemberPointer: 1967 QT = cast<MemberPointerType>(T)->getPointeeType(); 1968 break; 1969 case Type::LValueReference: 1970 case Type::RValueReference: 1971 QT = cast<ReferenceType>(T)->getPointeeType(); 1972 break; 1973 case Type::PackExpansion: 1974 QT = cast<PackExpansionType>(T)->getPattern(); 1975 break; 1976 case Type::Paren: 1977 case Type::ConstantArray: 1978 case Type::DependentSizedArray: 1979 case Type::IncompleteArray: 1980 case Type::VariableArray: 1981 case Type::FunctionProto: 1982 case Type::FunctionNoProto: 1983 return true; 1984 } 1985 } 1986 } 1987 1988 SourceRange DeclaratorDecl::getSourceRange() const { 1989 SourceLocation RangeEnd = getLocation(); 1990 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 1991 // If the declaration has no name or the type extends past the name take the 1992 // end location of the type. 1993 if (!getDeclName() || typeIsPostfix(TInfo->getType())) 1994 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 1995 } 1996 return SourceRange(getOuterLocStart(), RangeEnd); 1997 } 1998 1999 void QualifierInfo::setTemplateParameterListsInfo( 2000 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 2001 // Free previous template parameters (if any). 2002 if (NumTemplParamLists > 0) { 2003 Context.Deallocate(TemplParamLists); 2004 TemplParamLists = nullptr; 2005 NumTemplParamLists = 0; 2006 } 2007 // Set info on matched template parameter lists (if any). 2008 if (!TPLists.empty()) { 2009 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()]; 2010 NumTemplParamLists = TPLists.size(); 2011 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists); 2012 } 2013 } 2014 2015 //===----------------------------------------------------------------------===// 2016 // VarDecl Implementation 2017 //===----------------------------------------------------------------------===// 2018 2019 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { 2020 switch (SC) { 2021 case SC_None: break; 2022 case SC_Auto: return "auto"; 2023 case SC_Extern: return "extern"; 2024 case SC_PrivateExtern: return "__private_extern__"; 2025 case SC_Register: return "register"; 2026 case SC_Static: return "static"; 2027 } 2028 2029 llvm_unreachable("Invalid storage class"); 2030 } 2031 2032 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC, 2033 SourceLocation StartLoc, SourceLocation IdLoc, 2034 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 2035 StorageClass SC) 2036 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), 2037 redeclarable_base(C) { 2038 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned), 2039 "VarDeclBitfields too large!"); 2040 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned), 2041 "ParmVarDeclBitfields too large!"); 2042 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned), 2043 "NonParmVarDeclBitfields too large!"); 2044 AllBits = 0; 2045 VarDeclBits.SClass = SC; 2046 // Everything else is implicitly initialized to false. 2047 } 2048 2049 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, 2050 SourceLocation StartL, SourceLocation IdL, 2051 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 2052 StorageClass S) { 2053 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S); 2054 } 2055 2056 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2057 return new (C, ID) 2058 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr, 2059 QualType(), nullptr, SC_None); 2060 } 2061 2062 void VarDecl::setStorageClass(StorageClass SC) { 2063 assert(isLegalForVariable(SC)); 2064 VarDeclBits.SClass = SC; 2065 } 2066 2067 VarDecl::TLSKind VarDecl::getTLSKind() const { 2068 switch (VarDeclBits.TSCSpec) { 2069 case TSCS_unspecified: 2070 if (!hasAttr<ThreadAttr>() && 2071 !(getASTContext().getLangOpts().OpenMPUseTLS && 2072 getASTContext().getTargetInfo().isTLSSupported() && 2073 hasAttr<OMPThreadPrivateDeclAttr>())) 2074 return TLS_None; 2075 return ((getASTContext().getLangOpts().isCompatibleWithMSVC( 2076 LangOptions::MSVC2015)) || 2077 hasAttr<OMPThreadPrivateDeclAttr>()) 2078 ? TLS_Dynamic 2079 : TLS_Static; 2080 case TSCS___thread: // Fall through. 2081 case TSCS__Thread_local: 2082 return TLS_Static; 2083 case TSCS_thread_local: 2084 return TLS_Dynamic; 2085 } 2086 llvm_unreachable("Unknown thread storage class specifier!"); 2087 } 2088 2089 SourceRange VarDecl::getSourceRange() const { 2090 if (const Expr *Init = getInit()) { 2091 SourceLocation InitEnd = Init->getEndLoc(); 2092 // If Init is implicit, ignore its source range and fallback on 2093 // DeclaratorDecl::getSourceRange() to handle postfix elements. 2094 if (InitEnd.isValid() && InitEnd != getLocation()) 2095 return SourceRange(getOuterLocStart(), InitEnd); 2096 } 2097 return DeclaratorDecl::getSourceRange(); 2098 } 2099 2100 template<typename T> 2101 static LanguageLinkage getDeclLanguageLinkage(const T &D) { 2102 // C++ [dcl.link]p1: All function types, function names with external linkage, 2103 // and variable names with external linkage have a language linkage. 2104 if (!D.hasExternalFormalLinkage()) 2105 return NoLanguageLinkage; 2106 2107 // Language linkage is a C++ concept, but saying that everything else in C has 2108 // C language linkage fits the implementation nicely. 2109 ASTContext &Context = D.getASTContext(); 2110 if (!Context.getLangOpts().CPlusPlus) 2111 return CLanguageLinkage; 2112 2113 // C++ [dcl.link]p4: A C language linkage is ignored in determining the 2114 // language linkage of the names of class members and the function type of 2115 // class member functions. 2116 const DeclContext *DC = D.getDeclContext(); 2117 if (DC->isRecord()) 2118 return CXXLanguageLinkage; 2119 2120 // If the first decl is in an extern "C" context, any other redeclaration 2121 // will have C language linkage. If the first one is not in an extern "C" 2122 // context, we would have reported an error for any other decl being in one. 2123 if (isFirstInExternCContext(&D)) 2124 return CLanguageLinkage; 2125 return CXXLanguageLinkage; 2126 } 2127 2128 template<typename T> 2129 static bool isDeclExternC(const T &D) { 2130 // Since the context is ignored for class members, they can only have C++ 2131 // language linkage or no language linkage. 2132 const DeclContext *DC = D.getDeclContext(); 2133 if (DC->isRecord()) { 2134 assert(D.getASTContext().getLangOpts().CPlusPlus); 2135 return false; 2136 } 2137 2138 return D.getLanguageLinkage() == CLanguageLinkage; 2139 } 2140 2141 LanguageLinkage VarDecl::getLanguageLinkage() const { 2142 return getDeclLanguageLinkage(*this); 2143 } 2144 2145 bool VarDecl::isExternC() const { 2146 return isDeclExternC(*this); 2147 } 2148 2149 bool VarDecl::isInExternCContext() const { 2150 return getLexicalDeclContext()->isExternCContext(); 2151 } 2152 2153 bool VarDecl::isInExternCXXContext() const { 2154 return getLexicalDeclContext()->isExternCXXContext(); 2155 } 2156 2157 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); } 2158 2159 VarDecl::DefinitionKind 2160 VarDecl::isThisDeclarationADefinition(ASTContext &C) const { 2161 if (isThisDeclarationADemotedDefinition()) 2162 return DeclarationOnly; 2163 2164 // C++ [basic.def]p2: 2165 // A declaration is a definition unless [...] it contains the 'extern' 2166 // specifier or a linkage-specification and neither an initializer [...], 2167 // it declares a non-inline static data member in a class declaration [...], 2168 // it declares a static data member outside a class definition and the variable 2169 // was defined within the class with the constexpr specifier [...], 2170 // C++1y [temp.expl.spec]p15: 2171 // An explicit specialization of a static data member or an explicit 2172 // specialization of a static data member template is a definition if the 2173 // declaration includes an initializer; otherwise, it is a declaration. 2174 // 2175 // FIXME: How do you declare (but not define) a partial specialization of 2176 // a static data member template outside the containing class? 2177 if (isStaticDataMember()) { 2178 if (isOutOfLine() && 2179 !(getCanonicalDecl()->isInline() && 2180 getCanonicalDecl()->isConstexpr()) && 2181 (hasInit() || 2182 // If the first declaration is out-of-line, this may be an 2183 // instantiation of an out-of-line partial specialization of a variable 2184 // template for which we have not yet instantiated the initializer. 2185 (getFirstDecl()->isOutOfLine() 2186 ? getTemplateSpecializationKind() == TSK_Undeclared 2187 : getTemplateSpecializationKind() != 2188 TSK_ExplicitSpecialization) || 2189 isa<VarTemplatePartialSpecializationDecl>(this))) 2190 return Definition; 2191 if (!isOutOfLine() && isInline()) 2192 return Definition; 2193 return DeclarationOnly; 2194 } 2195 // C99 6.7p5: 2196 // A definition of an identifier is a declaration for that identifier that 2197 // [...] causes storage to be reserved for that object. 2198 // Note: that applies for all non-file-scope objects. 2199 // C99 6.9.2p1: 2200 // If the declaration of an identifier for an object has file scope and an 2201 // initializer, the declaration is an external definition for the identifier 2202 if (hasInit()) 2203 return Definition; 2204 2205 if (hasDefiningAttr()) 2206 return Definition; 2207 2208 if (const auto *SAA = getAttr<SelectAnyAttr>()) 2209 if (!SAA->isInherited()) 2210 return Definition; 2211 2212 // A variable template specialization (other than a static data member 2213 // template or an explicit specialization) is a declaration until we 2214 // instantiate its initializer. 2215 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) { 2216 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2217 !isa<VarTemplatePartialSpecializationDecl>(VTSD) && 2218 !VTSD->IsCompleteDefinition) 2219 return DeclarationOnly; 2220 } 2221 2222 if (hasExternalStorage()) 2223 return DeclarationOnly; 2224 2225 // [dcl.link] p7: 2226 // A declaration directly contained in a linkage-specification is treated 2227 // as if it contains the extern specifier for the purpose of determining 2228 // the linkage of the declared name and whether it is a definition. 2229 if (isSingleLineLanguageLinkage(*this)) 2230 return DeclarationOnly; 2231 2232 // C99 6.9.2p2: 2233 // A declaration of an object that has file scope without an initializer, 2234 // and without a storage class specifier or the scs 'static', constitutes 2235 // a tentative definition. 2236 // No such thing in C++. 2237 if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) 2238 return TentativeDefinition; 2239 2240 // What's left is (in C, block-scope) declarations without initializers or 2241 // external storage. These are definitions. 2242 return Definition; 2243 } 2244 2245 VarDecl *VarDecl::getActingDefinition() { 2246 DefinitionKind Kind = isThisDeclarationADefinition(); 2247 if (Kind != TentativeDefinition) 2248 return nullptr; 2249 2250 VarDecl *LastTentative = nullptr; 2251 2252 // Loop through the declaration chain, starting with the most recent. 2253 for (VarDecl *Decl = getMostRecentDecl(); Decl; 2254 Decl = Decl->getPreviousDecl()) { 2255 Kind = Decl->isThisDeclarationADefinition(); 2256 if (Kind == Definition) 2257 return nullptr; 2258 // Record the first (most recent) TentativeDefinition that is encountered. 2259 if (Kind == TentativeDefinition && !LastTentative) 2260 LastTentative = Decl; 2261 } 2262 2263 return LastTentative; 2264 } 2265 2266 VarDecl *VarDecl::getDefinition(ASTContext &C) { 2267 VarDecl *First = getFirstDecl(); 2268 for (auto I : First->redecls()) { 2269 if (I->isThisDeclarationADefinition(C) == Definition) 2270 return I; 2271 } 2272 return nullptr; 2273 } 2274 2275 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { 2276 DefinitionKind Kind = DeclarationOnly; 2277 2278 const VarDecl *First = getFirstDecl(); 2279 for (auto I : First->redecls()) { 2280 Kind = std::max(Kind, I->isThisDeclarationADefinition(C)); 2281 if (Kind == Definition) 2282 break; 2283 } 2284 2285 return Kind; 2286 } 2287 2288 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { 2289 for (auto I : redecls()) { 2290 if (auto Expr = I->getInit()) { 2291 D = I; 2292 return Expr; 2293 } 2294 } 2295 return nullptr; 2296 } 2297 2298 bool VarDecl::hasInit() const { 2299 if (auto *P = dyn_cast<ParmVarDecl>(this)) 2300 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg()) 2301 return false; 2302 2303 return !Init.isNull(); 2304 } 2305 2306 Expr *VarDecl::getInit() { 2307 if (!hasInit()) 2308 return nullptr; 2309 2310 if (auto *S = Init.dyn_cast<Stmt *>()) 2311 return cast<Expr>(S); 2312 2313 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value); 2314 } 2315 2316 Stmt **VarDecl::getInitAddress() { 2317 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>()) 2318 return &ES->Value; 2319 2320 return Init.getAddrOfPtr1(); 2321 } 2322 2323 VarDecl *VarDecl::getInitializingDeclaration() { 2324 VarDecl *Def = nullptr; 2325 for (auto I : redecls()) { 2326 if (I->hasInit()) 2327 return I; 2328 2329 if (I->isThisDeclarationADefinition()) { 2330 if (isStaticDataMember()) 2331 return I; 2332 Def = I; 2333 } 2334 } 2335 return Def; 2336 } 2337 2338 bool VarDecl::isOutOfLine() const { 2339 if (Decl::isOutOfLine()) 2340 return true; 2341 2342 if (!isStaticDataMember()) 2343 return false; 2344 2345 // If this static data member was instantiated from a static data member of 2346 // a class template, check whether that static data member was defined 2347 // out-of-line. 2348 if (VarDecl *VD = getInstantiatedFromStaticDataMember()) 2349 return VD->isOutOfLine(); 2350 2351 return false; 2352 } 2353 2354 void VarDecl::setInit(Expr *I) { 2355 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) { 2356 Eval->~EvaluatedStmt(); 2357 getASTContext().Deallocate(Eval); 2358 } 2359 2360 Init = I; 2361 } 2362 2363 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const { 2364 const LangOptions &Lang = C.getLangOpts(); 2365 2366 // OpenCL permits const integral variables to be used in constant 2367 // expressions, like in C++98. 2368 if (!Lang.CPlusPlus && !Lang.OpenCL) 2369 return false; 2370 2371 // Function parameters are never usable in constant expressions. 2372 if (isa<ParmVarDecl>(this)) 2373 return false; 2374 2375 // The values of weak variables are never usable in constant expressions. 2376 if (isWeak()) 2377 return false; 2378 2379 // In C++11, any variable of reference type can be used in a constant 2380 // expression if it is initialized by a constant expression. 2381 if (Lang.CPlusPlus11 && getType()->isReferenceType()) 2382 return true; 2383 2384 // Only const objects can be used in constant expressions in C++. C++98 does 2385 // not require the variable to be non-volatile, but we consider this to be a 2386 // defect. 2387 if (!getType().isConstant(C) || getType().isVolatileQualified()) 2388 return false; 2389 2390 // In C++, const, non-volatile variables of integral or enumeration types 2391 // can be used in constant expressions. 2392 if (getType()->isIntegralOrEnumerationType()) 2393 return true; 2394 2395 // Additionally, in C++11, non-volatile constexpr variables can be used in 2396 // constant expressions. 2397 return Lang.CPlusPlus11 && isConstexpr(); 2398 } 2399 2400 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const { 2401 // C++2a [expr.const]p3: 2402 // A variable is usable in constant expressions after its initializing 2403 // declaration is encountered... 2404 const VarDecl *DefVD = nullptr; 2405 const Expr *Init = getAnyInitializer(DefVD); 2406 if (!Init || Init->isValueDependent() || getType()->isDependentType()) 2407 return false; 2408 // ... if it is a constexpr variable, or it is of reference type or of 2409 // const-qualified integral or enumeration type, ... 2410 if (!DefVD->mightBeUsableInConstantExpressions(Context)) 2411 return false; 2412 // ... and its initializer is a constant initializer. 2413 if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization()) 2414 return false; 2415 // C++98 [expr.const]p1: 2416 // An integral constant-expression can involve only [...] const variables 2417 // or static data members of integral or enumeration types initialized with 2418 // [integer] constant expressions (dcl.init) 2419 if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) && 2420 !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context)) 2421 return false; 2422 return true; 2423 } 2424 2425 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt 2426 /// form, which contains extra information on the evaluated value of the 2427 /// initializer. 2428 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { 2429 auto *Eval = Init.dyn_cast<EvaluatedStmt *>(); 2430 if (!Eval) { 2431 // Note: EvaluatedStmt contains an APValue, which usually holds 2432 // resources not allocated from the ASTContext. We need to do some 2433 // work to avoid leaking those, but we do so in VarDecl::evaluateValue 2434 // where we can detect whether there's anything to clean up or not. 2435 Eval = new (getASTContext()) EvaluatedStmt; 2436 Eval->Value = Init.get<Stmt *>(); 2437 Init = Eval; 2438 } 2439 return Eval; 2440 } 2441 2442 EvaluatedStmt *VarDecl::getEvaluatedStmt() const { 2443 return Init.dyn_cast<EvaluatedStmt *>(); 2444 } 2445 2446 APValue *VarDecl::evaluateValue() const { 2447 SmallVector<PartialDiagnosticAt, 8> Notes; 2448 return evaluateValueImpl(Notes, hasConstantInitialization()); 2449 } 2450 2451 APValue *VarDecl::evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes, 2452 bool IsConstantInitialization) const { 2453 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2454 2455 const auto *Init = cast<Expr>(Eval->Value); 2456 assert(!Init->isValueDependent()); 2457 2458 // We only produce notes indicating why an initializer is non-constant the 2459 // first time it is evaluated. FIXME: The notes won't always be emitted the 2460 // first time we try evaluation, so might not be produced at all. 2461 if (Eval->WasEvaluated) 2462 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated; 2463 2464 if (Eval->IsEvaluating) { 2465 // FIXME: Produce a diagnostic for self-initialization. 2466 return nullptr; 2467 } 2468 2469 Eval->IsEvaluating = true; 2470 2471 ASTContext &Ctx = getASTContext(); 2472 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, Ctx, this, Notes, 2473 IsConstantInitialization); 2474 2475 // In C++11, this isn't a constant initializer if we produced notes. In that 2476 // case, we can't keep the result, because it may only be correct under the 2477 // assumption that the initializer is a constant context. 2478 if (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11 && 2479 !Notes.empty()) 2480 Result = false; 2481 2482 // Ensure the computed APValue is cleaned up later if evaluation succeeded, 2483 // or that it's empty (so that there's nothing to clean up) if evaluation 2484 // failed. 2485 if (!Result) 2486 Eval->Evaluated = APValue(); 2487 else if (Eval->Evaluated.needsCleanup()) 2488 Ctx.addDestruction(&Eval->Evaluated); 2489 2490 Eval->IsEvaluating = false; 2491 Eval->WasEvaluated = true; 2492 2493 return Result ? &Eval->Evaluated : nullptr; 2494 } 2495 2496 APValue *VarDecl::getEvaluatedValue() const { 2497 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2498 if (Eval->WasEvaluated) 2499 return &Eval->Evaluated; 2500 2501 return nullptr; 2502 } 2503 2504 bool VarDecl::hasICEInitializer(const ASTContext &Context) const { 2505 const Expr *Init = getInit(); 2506 assert(Init && "no initializer"); 2507 2508 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2509 if (!Eval->CheckedForICEInit) { 2510 Eval->CheckedForICEInit = true; 2511 Eval->HasICEInit = Init->isIntegerConstantExpr(Context); 2512 } 2513 return Eval->HasICEInit; 2514 } 2515 2516 bool VarDecl::hasConstantInitialization() const { 2517 // In C, all globals (and only globals) have constant initialization. 2518 if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus) 2519 return true; 2520 2521 // In C++, it depends on whether the evaluation at the point of definition 2522 // was evaluatable as a constant initializer. 2523 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2524 return Eval->HasConstantInitialization; 2525 2526 return false; 2527 } 2528 2529 bool VarDecl::checkForConstantInitialization( 2530 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 2531 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2532 // If we ask for the value before we know whether we have a constant 2533 // initializer, we can compute the wrong value (for example, due to 2534 // std::is_constant_evaluated()). 2535 assert(!Eval->WasEvaluated && 2536 "already evaluated var value before checking for constant init"); 2537 assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++"); 2538 2539 assert(!cast<Expr>(Eval->Value)->isValueDependent()); 2540 2541 // Evaluate the initializer to check whether it's a constant expression. 2542 Eval->HasConstantInitialization = 2543 evaluateValueImpl(Notes, true) && Notes.empty(); 2544 2545 // If evaluation as a constant initializer failed, allow re-evaluation as a 2546 // non-constant initializer if we later find we want the value. 2547 if (!Eval->HasConstantInitialization) 2548 Eval->WasEvaluated = false; 2549 2550 return Eval->HasConstantInitialization; 2551 } 2552 2553 bool VarDecl::isParameterPack() const { 2554 return isa<PackExpansionType>(getType()); 2555 } 2556 2557 template<typename DeclT> 2558 static DeclT *getDefinitionOrSelf(DeclT *D) { 2559 assert(D); 2560 if (auto *Def = D->getDefinition()) 2561 return Def; 2562 return D; 2563 } 2564 2565 bool VarDecl::isEscapingByref() const { 2566 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref; 2567 } 2568 2569 bool VarDecl::isNonEscapingByref() const { 2570 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref; 2571 } 2572 2573 bool VarDecl::hasDependentAlignment() const { 2574 QualType T = getType(); 2575 return T->isDependentType() || T->isUndeducedAutoType() || 2576 llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) { 2577 return AA->isAlignmentDependent(); 2578 }); 2579 } 2580 2581 VarDecl *VarDecl::getTemplateInstantiationPattern() const { 2582 const VarDecl *VD = this; 2583 2584 // If this is an instantiated member, walk back to the template from which 2585 // it was instantiated. 2586 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) { 2587 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 2588 VD = VD->getInstantiatedFromStaticDataMember(); 2589 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember()) 2590 VD = NewVD; 2591 } 2592 } 2593 2594 // If it's an instantiated variable template specialization, find the 2595 // template or partial specialization from which it was instantiated. 2596 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 2597 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) { 2598 auto From = VDTemplSpec->getInstantiatedFrom(); 2599 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) { 2600 while (!VTD->isMemberSpecialization()) { 2601 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate(); 2602 if (!NewVTD) 2603 break; 2604 VTD = NewVTD; 2605 } 2606 return getDefinitionOrSelf(VTD->getTemplatedDecl()); 2607 } 2608 if (auto *VTPSD = 2609 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 2610 while (!VTPSD->isMemberSpecialization()) { 2611 auto *NewVTPSD = VTPSD->getInstantiatedFromMember(); 2612 if (!NewVTPSD) 2613 break; 2614 VTPSD = NewVTPSD; 2615 } 2616 return getDefinitionOrSelf<VarDecl>(VTPSD); 2617 } 2618 } 2619 } 2620 2621 // If this is the pattern of a variable template, find where it was 2622 // instantiated from. FIXME: Is this necessary? 2623 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) { 2624 while (!VarTemplate->isMemberSpecialization()) { 2625 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate(); 2626 if (!NewVT) 2627 break; 2628 VarTemplate = NewVT; 2629 } 2630 2631 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl()); 2632 } 2633 2634 if (VD == this) 2635 return nullptr; 2636 return getDefinitionOrSelf(const_cast<VarDecl*>(VD)); 2637 } 2638 2639 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { 2640 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2641 return cast<VarDecl>(MSI->getInstantiatedFrom()); 2642 2643 return nullptr; 2644 } 2645 2646 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { 2647 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2648 return Spec->getSpecializationKind(); 2649 2650 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2651 return MSI->getTemplateSpecializationKind(); 2652 2653 return TSK_Undeclared; 2654 } 2655 2656 TemplateSpecializationKind 2657 VarDecl::getTemplateSpecializationKindForInstantiation() const { 2658 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2659 return MSI->getTemplateSpecializationKind(); 2660 2661 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2662 return Spec->getSpecializationKind(); 2663 2664 return TSK_Undeclared; 2665 } 2666 2667 SourceLocation VarDecl::getPointOfInstantiation() const { 2668 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2669 return Spec->getPointOfInstantiation(); 2670 2671 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2672 return MSI->getPointOfInstantiation(); 2673 2674 return SourceLocation(); 2675 } 2676 2677 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { 2678 return getASTContext().getTemplateOrSpecializationInfo(this) 2679 .dyn_cast<VarTemplateDecl *>(); 2680 } 2681 2682 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { 2683 getASTContext().setTemplateOrSpecializationInfo(this, Template); 2684 } 2685 2686 bool VarDecl::isKnownToBeDefined() const { 2687 const auto &LangOpts = getASTContext().getLangOpts(); 2688 // In CUDA mode without relocatable device code, variables of form 'extern 2689 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared 2690 // memory pool. These are never undefined variables, even if they appear 2691 // inside of an anon namespace or static function. 2692 // 2693 // With CUDA relocatable device code enabled, these variables don't get 2694 // special handling; they're treated like regular extern variables. 2695 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode && 2696 hasExternalStorage() && hasAttr<CUDASharedAttr>() && 2697 isa<IncompleteArrayType>(getType())) 2698 return true; 2699 2700 return hasDefinition(); 2701 } 2702 2703 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const { 2704 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() || 2705 (!Ctx.getLangOpts().RegisterStaticDestructors && 2706 !hasAttr<AlwaysDestroyAttr>())); 2707 } 2708 2709 QualType::DestructionKind 2710 VarDecl::needsDestruction(const ASTContext &Ctx) const { 2711 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2712 if (Eval->HasConstantDestruction) 2713 return QualType::DK_none; 2714 2715 if (isNoDestroy(Ctx)) 2716 return QualType::DK_none; 2717 2718 return getType().isDestructedType(); 2719 } 2720 2721 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { 2722 if (isStaticDataMember()) 2723 // FIXME: Remove ? 2724 // return getASTContext().getInstantiatedFromStaticDataMember(this); 2725 return getASTContext().getTemplateOrSpecializationInfo(this) 2726 .dyn_cast<MemberSpecializationInfo *>(); 2727 return nullptr; 2728 } 2729 2730 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 2731 SourceLocation PointOfInstantiation) { 2732 assert((isa<VarTemplateSpecializationDecl>(this) || 2733 getMemberSpecializationInfo()) && 2734 "not a variable or static data member template specialization"); 2735 2736 if (VarTemplateSpecializationDecl *Spec = 2737 dyn_cast<VarTemplateSpecializationDecl>(this)) { 2738 Spec->setSpecializationKind(TSK); 2739 if (TSK != TSK_ExplicitSpecialization && 2740 PointOfInstantiation.isValid() && 2741 Spec->getPointOfInstantiation().isInvalid()) { 2742 Spec->setPointOfInstantiation(PointOfInstantiation); 2743 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2744 L->InstantiationRequested(this); 2745 } 2746 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { 2747 MSI->setTemplateSpecializationKind(TSK); 2748 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2749 MSI->getPointOfInstantiation().isInvalid()) { 2750 MSI->setPointOfInstantiation(PointOfInstantiation); 2751 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2752 L->InstantiationRequested(this); 2753 } 2754 } 2755 } 2756 2757 void 2758 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, 2759 TemplateSpecializationKind TSK) { 2760 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && 2761 "Previous template or instantiation?"); 2762 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); 2763 } 2764 2765 //===----------------------------------------------------------------------===// 2766 // ParmVarDecl Implementation 2767 //===----------------------------------------------------------------------===// 2768 2769 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, 2770 SourceLocation StartLoc, 2771 SourceLocation IdLoc, IdentifierInfo *Id, 2772 QualType T, TypeSourceInfo *TInfo, 2773 StorageClass S, Expr *DefArg) { 2774 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo, 2775 S, DefArg); 2776 } 2777 2778 QualType ParmVarDecl::getOriginalType() const { 2779 TypeSourceInfo *TSI = getTypeSourceInfo(); 2780 QualType T = TSI ? TSI->getType() : getType(); 2781 if (const auto *DT = dyn_cast<DecayedType>(T)) 2782 return DT->getOriginalType(); 2783 return T; 2784 } 2785 2786 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2787 return new (C, ID) 2788 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(), 2789 nullptr, QualType(), nullptr, SC_None, nullptr); 2790 } 2791 2792 SourceRange ParmVarDecl::getSourceRange() const { 2793 if (!hasInheritedDefaultArg()) { 2794 SourceRange ArgRange = getDefaultArgRange(); 2795 if (ArgRange.isValid()) 2796 return SourceRange(getOuterLocStart(), ArgRange.getEnd()); 2797 } 2798 2799 // DeclaratorDecl considers the range of postfix types as overlapping with the 2800 // declaration name, but this is not the case with parameters in ObjC methods. 2801 if (isa<ObjCMethodDecl>(getDeclContext())) 2802 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation()); 2803 2804 return DeclaratorDecl::getSourceRange(); 2805 } 2806 2807 bool ParmVarDecl::isDestroyedInCallee() const { 2808 // ns_consumed only affects code generation in ARC 2809 if (hasAttr<NSConsumedAttr>()) 2810 return getASTContext().getLangOpts().ObjCAutoRefCount; 2811 2812 // FIXME: isParamDestroyedInCallee() should probably imply 2813 // isDestructedType() 2814 auto *RT = getType()->getAs<RecordType>(); 2815 if (RT && RT->getDecl()->isParamDestroyedInCallee() && 2816 getType().isDestructedType()) 2817 return true; 2818 2819 return false; 2820 } 2821 2822 Expr *ParmVarDecl::getDefaultArg() { 2823 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); 2824 assert(!hasUninstantiatedDefaultArg() && 2825 "Default argument is not yet instantiated!"); 2826 2827 Expr *Arg = getInit(); 2828 if (auto *E = dyn_cast_or_null<FullExpr>(Arg)) 2829 return E->getSubExpr(); 2830 2831 return Arg; 2832 } 2833 2834 void ParmVarDecl::setDefaultArg(Expr *defarg) { 2835 ParmVarDeclBits.DefaultArgKind = DAK_Normal; 2836 Init = defarg; 2837 } 2838 2839 SourceRange ParmVarDecl::getDefaultArgRange() const { 2840 switch (ParmVarDeclBits.DefaultArgKind) { 2841 case DAK_None: 2842 case DAK_Unparsed: 2843 // Nothing we can do here. 2844 return SourceRange(); 2845 2846 case DAK_Uninstantiated: 2847 return getUninstantiatedDefaultArg()->getSourceRange(); 2848 2849 case DAK_Normal: 2850 if (const Expr *E = getInit()) 2851 return E->getSourceRange(); 2852 2853 // Missing an actual expression, may be invalid. 2854 return SourceRange(); 2855 } 2856 llvm_unreachable("Invalid default argument kind."); 2857 } 2858 2859 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) { 2860 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated; 2861 Init = arg; 2862 } 2863 2864 Expr *ParmVarDecl::getUninstantiatedDefaultArg() { 2865 assert(hasUninstantiatedDefaultArg() && 2866 "Wrong kind of initialization expression!"); 2867 return cast_or_null<Expr>(Init.get<Stmt *>()); 2868 } 2869 2870 bool ParmVarDecl::hasDefaultArg() const { 2871 // FIXME: We should just return false for DAK_None here once callers are 2872 // prepared for the case that we encountered an invalid default argument and 2873 // were unable to even build an invalid expression. 2874 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() || 2875 !Init.isNull(); 2876 } 2877 2878 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { 2879 getASTContext().setParameterIndex(this, parameterIndex); 2880 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; 2881 } 2882 2883 unsigned ParmVarDecl::getParameterIndexLarge() const { 2884 return getASTContext().getParameterIndex(this); 2885 } 2886 2887 //===----------------------------------------------------------------------===// 2888 // FunctionDecl Implementation 2889 //===----------------------------------------------------------------------===// 2890 2891 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, 2892 SourceLocation StartLoc, 2893 const DeclarationNameInfo &NameInfo, QualType T, 2894 TypeSourceInfo *TInfo, StorageClass S, 2895 bool UsesFPIntrin, bool isInlineSpecified, 2896 ConstexprSpecKind ConstexprKind, 2897 Expr *TrailingRequiresClause) 2898 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo, 2899 StartLoc), 2900 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0), 2901 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) { 2902 assert(T.isNull() || T->isFunctionType()); 2903 FunctionDeclBits.SClass = S; 2904 FunctionDeclBits.IsInline = isInlineSpecified; 2905 FunctionDeclBits.IsInlineSpecified = isInlineSpecified; 2906 FunctionDeclBits.IsVirtualAsWritten = false; 2907 FunctionDeclBits.IsPure = false; 2908 FunctionDeclBits.HasInheritedPrototype = false; 2909 FunctionDeclBits.HasWrittenPrototype = true; 2910 FunctionDeclBits.IsDeleted = false; 2911 FunctionDeclBits.IsTrivial = false; 2912 FunctionDeclBits.IsTrivialForCall = false; 2913 FunctionDeclBits.IsDefaulted = false; 2914 FunctionDeclBits.IsExplicitlyDefaulted = false; 2915 FunctionDeclBits.HasDefaultedFunctionInfo = false; 2916 FunctionDeclBits.HasImplicitReturnZero = false; 2917 FunctionDeclBits.IsLateTemplateParsed = false; 2918 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind); 2919 FunctionDeclBits.InstantiationIsPending = false; 2920 FunctionDeclBits.UsesSEHTry = false; 2921 FunctionDeclBits.UsesFPIntrin = UsesFPIntrin; 2922 FunctionDeclBits.HasSkippedBody = false; 2923 FunctionDeclBits.WillHaveBody = false; 2924 FunctionDeclBits.IsMultiVersion = false; 2925 FunctionDeclBits.IsCopyDeductionCandidate = false; 2926 FunctionDeclBits.HasODRHash = false; 2927 if (TrailingRequiresClause) 2928 setTrailingRequiresClause(TrailingRequiresClause); 2929 } 2930 2931 void FunctionDecl::getNameForDiagnostic( 2932 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { 2933 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); 2934 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); 2935 if (TemplateArgs) 2936 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy); 2937 } 2938 2939 bool FunctionDecl::isVariadic() const { 2940 if (const auto *FT = getType()->getAs<FunctionProtoType>()) 2941 return FT->isVariadic(); 2942 return false; 2943 } 2944 2945 FunctionDecl::DefaultedFunctionInfo * 2946 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context, 2947 ArrayRef<DeclAccessPair> Lookups) { 2948 DefaultedFunctionInfo *Info = new (Context.Allocate( 2949 totalSizeToAlloc<DeclAccessPair>(Lookups.size()), 2950 std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair)))) 2951 DefaultedFunctionInfo; 2952 Info->NumLookups = Lookups.size(); 2953 std::uninitialized_copy(Lookups.begin(), Lookups.end(), 2954 Info->getTrailingObjects<DeclAccessPair>()); 2955 return Info; 2956 } 2957 2958 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) { 2959 assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this"); 2960 assert(!Body && "can't replace function body with defaulted function info"); 2961 2962 FunctionDeclBits.HasDefaultedFunctionInfo = true; 2963 DefaultedInfo = Info; 2964 } 2965 2966 FunctionDecl::DefaultedFunctionInfo * 2967 FunctionDecl::getDefaultedFunctionInfo() const { 2968 return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr; 2969 } 2970 2971 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { 2972 for (auto I : redecls()) { 2973 if (I->doesThisDeclarationHaveABody()) { 2974 Definition = I; 2975 return true; 2976 } 2977 } 2978 2979 return false; 2980 } 2981 2982 bool FunctionDecl::hasTrivialBody() const { 2983 Stmt *S = getBody(); 2984 if (!S) { 2985 // Since we don't have a body for this function, we don't know if it's 2986 // trivial or not. 2987 return false; 2988 } 2989 2990 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) 2991 return true; 2992 return false; 2993 } 2994 2995 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const { 2996 if (!getFriendObjectKind()) 2997 return false; 2998 2999 // Check for a friend function instantiated from a friend function 3000 // definition in a templated class. 3001 if (const FunctionDecl *InstantiatedFrom = 3002 getInstantiatedFromMemberFunction()) 3003 return InstantiatedFrom->getFriendObjectKind() && 3004 InstantiatedFrom->isThisDeclarationADefinition(); 3005 3006 // Check for a friend function template instantiated from a friend 3007 // function template definition in a templated class. 3008 if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) { 3009 if (const FunctionTemplateDecl *InstantiatedFrom = 3010 Template->getInstantiatedFromMemberTemplate()) 3011 return InstantiatedFrom->getFriendObjectKind() && 3012 InstantiatedFrom->isThisDeclarationADefinition(); 3013 } 3014 3015 return false; 3016 } 3017 3018 bool FunctionDecl::isDefined(const FunctionDecl *&Definition, 3019 bool CheckForPendingFriendDefinition) const { 3020 for (const FunctionDecl *FD : redecls()) { 3021 if (FD->isThisDeclarationADefinition()) { 3022 Definition = FD; 3023 return true; 3024 } 3025 3026 // If this is a friend function defined in a class template, it does not 3027 // have a body until it is used, nevertheless it is a definition, see 3028 // [temp.inst]p2: 3029 // 3030 // ... for the purpose of determining whether an instantiated redeclaration 3031 // is valid according to [basic.def.odr] and [class.mem], a declaration that 3032 // corresponds to a definition in the template is considered to be a 3033 // definition. 3034 // 3035 // The following code must produce redefinition error: 3036 // 3037 // template<typename T> struct C20 { friend void func_20() {} }; 3038 // C20<int> c20i; 3039 // void func_20() {} 3040 // 3041 if (CheckForPendingFriendDefinition && 3042 FD->isThisDeclarationInstantiatedFromAFriendDefinition()) { 3043 Definition = FD; 3044 return true; 3045 } 3046 } 3047 3048 return false; 3049 } 3050 3051 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { 3052 if (!hasBody(Definition)) 3053 return nullptr; 3054 3055 assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && 3056 "definition should not have a body"); 3057 if (Definition->Body) 3058 return Definition->Body.get(getASTContext().getExternalSource()); 3059 3060 return nullptr; 3061 } 3062 3063 void FunctionDecl::setBody(Stmt *B) { 3064 FunctionDeclBits.HasDefaultedFunctionInfo = false; 3065 Body = LazyDeclStmtPtr(B); 3066 if (B) 3067 EndRangeLoc = B->getEndLoc(); 3068 } 3069 3070 void FunctionDecl::setPure(bool P) { 3071 FunctionDeclBits.IsPure = P; 3072 if (P) 3073 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) 3074 Parent->markedVirtualFunctionPure(); 3075 } 3076 3077 template<std::size_t Len> 3078 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { 3079 IdentifierInfo *II = ND->getIdentifier(); 3080 return II && II->isStr(Str); 3081 } 3082 3083 bool FunctionDecl::isMain() const { 3084 const TranslationUnitDecl *tunit = 3085 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 3086 return tunit && 3087 !tunit->getASTContext().getLangOpts().Freestanding && 3088 isNamed(this, "main"); 3089 } 3090 3091 bool FunctionDecl::isMSVCRTEntryPoint() const { 3092 const TranslationUnitDecl *TUnit = 3093 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 3094 if (!TUnit) 3095 return false; 3096 3097 // Even though we aren't really targeting MSVCRT if we are freestanding, 3098 // semantic analysis for these functions remains the same. 3099 3100 // MSVCRT entry points only exist on MSVCRT targets. 3101 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) 3102 return false; 3103 3104 // Nameless functions like constructors cannot be entry points. 3105 if (!getIdentifier()) 3106 return false; 3107 3108 return llvm::StringSwitch<bool>(getName()) 3109 .Cases("main", // an ANSI console app 3110 "wmain", // a Unicode console App 3111 "WinMain", // an ANSI GUI app 3112 "wWinMain", // a Unicode GUI app 3113 "DllMain", // a DLL 3114 true) 3115 .Default(false); 3116 } 3117 3118 bool FunctionDecl::isReservedGlobalPlacementOperator() const { 3119 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName); 3120 assert(getDeclName().getCXXOverloadedOperator() == OO_New || 3121 getDeclName().getCXXOverloadedOperator() == OO_Delete || 3122 getDeclName().getCXXOverloadedOperator() == OO_Array_New || 3123 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete); 3124 3125 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 3126 return false; 3127 3128 const auto *proto = getType()->castAs<FunctionProtoType>(); 3129 if (proto->getNumParams() != 2 || proto->isVariadic()) 3130 return false; 3131 3132 ASTContext &Context = 3133 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) 3134 ->getASTContext(); 3135 3136 // The result type and first argument type are constant across all 3137 // these operators. The second argument must be exactly void*. 3138 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy); 3139 } 3140 3141 bool FunctionDecl::isReplaceableGlobalAllocationFunction( 3142 Optional<unsigned> *AlignmentParam, bool *IsNothrow) const { 3143 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 3144 return false; 3145 if (getDeclName().getCXXOverloadedOperator() != OO_New && 3146 getDeclName().getCXXOverloadedOperator() != OO_Delete && 3147 getDeclName().getCXXOverloadedOperator() != OO_Array_New && 3148 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 3149 return false; 3150 3151 if (isa<CXXRecordDecl>(getDeclContext())) 3152 return false; 3153 3154 // This can only fail for an invalid 'operator new' declaration. 3155 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 3156 return false; 3157 3158 const auto *FPT = getType()->castAs<FunctionProtoType>(); 3159 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic()) 3160 return false; 3161 3162 // If this is a single-parameter function, it must be a replaceable global 3163 // allocation or deallocation function. 3164 if (FPT->getNumParams() == 1) 3165 return true; 3166 3167 unsigned Params = 1; 3168 QualType Ty = FPT->getParamType(Params); 3169 ASTContext &Ctx = getASTContext(); 3170 3171 auto Consume = [&] { 3172 ++Params; 3173 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType(); 3174 }; 3175 3176 // In C++14, the next parameter can be a 'std::size_t' for sized delete. 3177 bool IsSizedDelete = false; 3178 if (Ctx.getLangOpts().SizedDeallocation && 3179 (getDeclName().getCXXOverloadedOperator() == OO_Delete || 3180 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) && 3181 Ctx.hasSameType(Ty, Ctx.getSizeType())) { 3182 IsSizedDelete = true; 3183 Consume(); 3184 } 3185 3186 // In C++17, the next parameter can be a 'std::align_val_t' for aligned 3187 // new/delete. 3188 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) { 3189 Consume(); 3190 if (AlignmentParam) 3191 *AlignmentParam = Params; 3192 } 3193 3194 // Finally, if this is not a sized delete, the final parameter can 3195 // be a 'const std::nothrow_t&'. 3196 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) { 3197 Ty = Ty->getPointeeType(); 3198 if (Ty.getCVRQualifiers() != Qualifiers::Const) 3199 return false; 3200 if (Ty->isNothrowT()) { 3201 if (IsNothrow) 3202 *IsNothrow = true; 3203 Consume(); 3204 } 3205 } 3206 3207 return Params == FPT->getNumParams(); 3208 } 3209 3210 bool FunctionDecl::isInlineBuiltinDeclaration() const { 3211 if (!getBuiltinID()) 3212 return false; 3213 3214 const FunctionDecl *Definition; 3215 return hasBody(Definition) && Definition->isInlineSpecified() && 3216 Definition->hasAttr<AlwaysInlineAttr>() && 3217 Definition->hasAttr<GNUInlineAttr>(); 3218 } 3219 3220 bool FunctionDecl::isDestroyingOperatorDelete() const { 3221 // C++ P0722: 3222 // Within a class C, a single object deallocation function with signature 3223 // (T, std::destroying_delete_t, <more params>) 3224 // is a destroying operator delete. 3225 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete || 3226 getNumParams() < 2) 3227 return false; 3228 3229 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl(); 3230 return RD && RD->isInStdNamespace() && RD->getIdentifier() && 3231 RD->getIdentifier()->isStr("destroying_delete_t"); 3232 } 3233 3234 LanguageLinkage FunctionDecl::getLanguageLinkage() const { 3235 return getDeclLanguageLinkage(*this); 3236 } 3237 3238 bool FunctionDecl::isExternC() const { 3239 return isDeclExternC(*this); 3240 } 3241 3242 bool FunctionDecl::isInExternCContext() const { 3243 if (hasAttr<OpenCLKernelAttr>()) 3244 return true; 3245 return getLexicalDeclContext()->isExternCContext(); 3246 } 3247 3248 bool FunctionDecl::isInExternCXXContext() const { 3249 return getLexicalDeclContext()->isExternCXXContext(); 3250 } 3251 3252 bool FunctionDecl::isGlobal() const { 3253 if (const auto *Method = dyn_cast<CXXMethodDecl>(this)) 3254 return Method->isStatic(); 3255 3256 if (getCanonicalDecl()->getStorageClass() == SC_Static) 3257 return false; 3258 3259 for (const DeclContext *DC = getDeclContext(); 3260 DC->isNamespace(); 3261 DC = DC->getParent()) { 3262 if (const auto *Namespace = cast<NamespaceDecl>(DC)) { 3263 if (!Namespace->getDeclName()) 3264 return false; 3265 } 3266 } 3267 3268 return true; 3269 } 3270 3271 bool FunctionDecl::isNoReturn() const { 3272 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || 3273 hasAttr<C11NoReturnAttr>()) 3274 return true; 3275 3276 if (auto *FnTy = getType()->getAs<FunctionType>()) 3277 return FnTy->getNoReturnAttr(); 3278 3279 return false; 3280 } 3281 3282 3283 MultiVersionKind FunctionDecl::getMultiVersionKind() const { 3284 if (hasAttr<TargetAttr>()) 3285 return MultiVersionKind::Target; 3286 if (hasAttr<CPUDispatchAttr>()) 3287 return MultiVersionKind::CPUDispatch; 3288 if (hasAttr<CPUSpecificAttr>()) 3289 return MultiVersionKind::CPUSpecific; 3290 if (hasAttr<TargetClonesAttr>()) 3291 return MultiVersionKind::TargetClones; 3292 return MultiVersionKind::None; 3293 } 3294 3295 bool FunctionDecl::isCPUDispatchMultiVersion() const { 3296 return isMultiVersion() && hasAttr<CPUDispatchAttr>(); 3297 } 3298 3299 bool FunctionDecl::isCPUSpecificMultiVersion() const { 3300 return isMultiVersion() && hasAttr<CPUSpecificAttr>(); 3301 } 3302 3303 bool FunctionDecl::isTargetMultiVersion() const { 3304 return isMultiVersion() && hasAttr<TargetAttr>(); 3305 } 3306 3307 bool FunctionDecl::isTargetClonesMultiVersion() const { 3308 return isMultiVersion() && hasAttr<TargetClonesAttr>(); 3309 } 3310 3311 void 3312 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { 3313 redeclarable_base::setPreviousDecl(PrevDecl); 3314 3315 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { 3316 FunctionTemplateDecl *PrevFunTmpl 3317 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr; 3318 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); 3319 FunTmpl->setPreviousDecl(PrevFunTmpl); 3320 } 3321 3322 if (PrevDecl && PrevDecl->isInlined()) 3323 setImplicitlyInline(true); 3324 } 3325 3326 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); } 3327 3328 /// Returns a value indicating whether this function corresponds to a builtin 3329 /// function. 3330 /// 3331 /// The function corresponds to a built-in function if it is declared at 3332 /// translation scope or within an extern "C" block and its name matches with 3333 /// the name of a builtin. The returned value will be 0 for functions that do 3334 /// not correspond to a builtin, a value of type \c Builtin::ID if in the 3335 /// target-independent range \c [1,Builtin::First), or a target-specific builtin 3336 /// value. 3337 /// 3338 /// \param ConsiderWrapperFunctions If true, we should consider wrapper 3339 /// functions as their wrapped builtins. This shouldn't be done in general, but 3340 /// it's useful in Sema to diagnose calls to wrappers based on their semantics. 3341 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const { 3342 unsigned BuiltinID = 0; 3343 3344 if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) { 3345 BuiltinID = ABAA->getBuiltinName()->getBuiltinID(); 3346 } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) { 3347 BuiltinID = BAA->getBuiltinName()->getBuiltinID(); 3348 } else if (const auto *A = getAttr<BuiltinAttr>()) { 3349 BuiltinID = A->getID(); 3350 } 3351 3352 if (!BuiltinID) 3353 return 0; 3354 3355 // If the function is marked "overloadable", it has a different mangled name 3356 // and is not the C library function. 3357 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() && 3358 (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>())) 3359 return 0; 3360 3361 ASTContext &Context = getASTContext(); 3362 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3363 return BuiltinID; 3364 3365 // This function has the name of a known C library 3366 // function. Determine whether it actually refers to the C library 3367 // function or whether it just has the same name. 3368 3369 // If this is a static function, it's not a builtin. 3370 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static) 3371 return 0; 3372 3373 // OpenCL v1.2 s6.9.f - The library functions defined in 3374 // the C99 standard headers are not available. 3375 if (Context.getLangOpts().OpenCL && 3376 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3377 return 0; 3378 3379 // CUDA does not have device-side standard library. printf and malloc are the 3380 // only special cases that are supported by device-side runtime. 3381 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() && 3382 !hasAttr<CUDAHostAttr>() && 3383 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) 3384 return 0; 3385 3386 // As AMDGCN implementation of OpenMP does not have a device-side standard 3387 // library, none of the predefined library functions except printf and malloc 3388 // should be treated as a builtin i.e. 0 should be returned for them. 3389 if (Context.getTargetInfo().getTriple().isAMDGCN() && 3390 Context.getLangOpts().OpenMPIsDevice && 3391 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && 3392 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) 3393 return 0; 3394 3395 return BuiltinID; 3396 } 3397 3398 /// getNumParams - Return the number of parameters this function must have 3399 /// based on its FunctionType. This is the length of the ParamInfo array 3400 /// after it has been created. 3401 unsigned FunctionDecl::getNumParams() const { 3402 const auto *FPT = getType()->getAs<FunctionProtoType>(); 3403 return FPT ? FPT->getNumParams() : 0; 3404 } 3405 3406 void FunctionDecl::setParams(ASTContext &C, 3407 ArrayRef<ParmVarDecl *> NewParamInfo) { 3408 assert(!ParamInfo && "Already has param info!"); 3409 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); 3410 3411 // Zero params -> null pointer. 3412 if (!NewParamInfo.empty()) { 3413 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; 3414 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 3415 } 3416 } 3417 3418 /// getMinRequiredArguments - Returns the minimum number of arguments 3419 /// needed to call this function. This may be fewer than the number of 3420 /// function parameters, if some of the parameters have default 3421 /// arguments (in C++) or are parameter packs (C++11). 3422 unsigned FunctionDecl::getMinRequiredArguments() const { 3423 if (!getASTContext().getLangOpts().CPlusPlus) 3424 return getNumParams(); 3425 3426 // Note that it is possible for a parameter with no default argument to 3427 // follow a parameter with a default argument. 3428 unsigned NumRequiredArgs = 0; 3429 unsigned MinParamsSoFar = 0; 3430 for (auto *Param : parameters()) { 3431 if (!Param->isParameterPack()) { 3432 ++MinParamsSoFar; 3433 if (!Param->hasDefaultArg()) 3434 NumRequiredArgs = MinParamsSoFar; 3435 } 3436 } 3437 return NumRequiredArgs; 3438 } 3439 3440 bool FunctionDecl::hasOneParamOrDefaultArgs() const { 3441 return getNumParams() == 1 || 3442 (getNumParams() > 1 && 3443 std::all_of(param_begin() + 1, param_end(), 3444 [](ParmVarDecl *P) { return P->hasDefaultArg(); })); 3445 } 3446 3447 /// The combination of the extern and inline keywords under MSVC forces 3448 /// the function to be required. 3449 /// 3450 /// Note: This function assumes that we will only get called when isInlined() 3451 /// would return true for this FunctionDecl. 3452 bool FunctionDecl::isMSExternInline() const { 3453 assert(isInlined() && "expected to get called on an inlined function!"); 3454 3455 const ASTContext &Context = getASTContext(); 3456 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && 3457 !hasAttr<DLLExportAttr>()) 3458 return false; 3459 3460 for (const FunctionDecl *FD = getMostRecentDecl(); FD; 3461 FD = FD->getPreviousDecl()) 3462 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3463 return true; 3464 3465 return false; 3466 } 3467 3468 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) { 3469 if (Redecl->getStorageClass() != SC_Extern) 3470 return false; 3471 3472 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD; 3473 FD = FD->getPreviousDecl()) 3474 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3475 return false; 3476 3477 return true; 3478 } 3479 3480 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { 3481 // Only consider file-scope declarations in this test. 3482 if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) 3483 return false; 3484 3485 // Only consider explicit declarations; the presence of a builtin for a 3486 // libcall shouldn't affect whether a definition is externally visible. 3487 if (Redecl->isImplicit()) 3488 return false; 3489 3490 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) 3491 return true; // Not an inline definition 3492 3493 return false; 3494 } 3495 3496 /// For a function declaration in C or C++, determine whether this 3497 /// declaration causes the definition to be externally visible. 3498 /// 3499 /// For instance, this determines if adding the current declaration to the set 3500 /// of redeclarations of the given functions causes 3501 /// isInlineDefinitionExternallyVisible to change from false to true. 3502 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { 3503 assert(!doesThisDeclarationHaveABody() && 3504 "Must have a declaration without a body."); 3505 3506 ASTContext &Context = getASTContext(); 3507 3508 if (Context.getLangOpts().MSVCCompat) { 3509 const FunctionDecl *Definition; 3510 if (hasBody(Definition) && Definition->isInlined() && 3511 redeclForcesDefMSVC(this)) 3512 return true; 3513 } 3514 3515 if (Context.getLangOpts().CPlusPlus) 3516 return false; 3517 3518 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3519 // With GNU inlining, a declaration with 'inline' but not 'extern', forces 3520 // an externally visible definition. 3521 // 3522 // FIXME: What happens if gnu_inline gets added on after the first 3523 // declaration? 3524 if (!isInlineSpecified() || getStorageClass() == SC_Extern) 3525 return false; 3526 3527 const FunctionDecl *Prev = this; 3528 bool FoundBody = false; 3529 while ((Prev = Prev->getPreviousDecl())) { 3530 FoundBody |= Prev->doesThisDeclarationHaveABody(); 3531 3532 if (Prev->doesThisDeclarationHaveABody()) { 3533 // If it's not the case that both 'inline' and 'extern' are 3534 // specified on the definition, then it is always externally visible. 3535 if (!Prev->isInlineSpecified() || 3536 Prev->getStorageClass() != SC_Extern) 3537 return false; 3538 } else if (Prev->isInlineSpecified() && 3539 Prev->getStorageClass() != SC_Extern) { 3540 return false; 3541 } 3542 } 3543 return FoundBody; 3544 } 3545 3546 // C99 6.7.4p6: 3547 // [...] If all of the file scope declarations for a function in a 3548 // translation unit include the inline function specifier without extern, 3549 // then the definition in that translation unit is an inline definition. 3550 if (isInlineSpecified() && getStorageClass() != SC_Extern) 3551 return false; 3552 const FunctionDecl *Prev = this; 3553 bool FoundBody = false; 3554 while ((Prev = Prev->getPreviousDecl())) { 3555 FoundBody |= Prev->doesThisDeclarationHaveABody(); 3556 if (RedeclForcesDefC99(Prev)) 3557 return false; 3558 } 3559 return FoundBody; 3560 } 3561 3562 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const { 3563 const TypeSourceInfo *TSI = getTypeSourceInfo(); 3564 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>() 3565 : FunctionTypeLoc(); 3566 } 3567 3568 SourceRange FunctionDecl::getReturnTypeSourceRange() const { 3569 FunctionTypeLoc FTL = getFunctionTypeLoc(); 3570 if (!FTL) 3571 return SourceRange(); 3572 3573 // Skip self-referential return types. 3574 const SourceManager &SM = getASTContext().getSourceManager(); 3575 SourceRange RTRange = FTL.getReturnLoc().getSourceRange(); 3576 SourceLocation Boundary = getNameInfo().getBeginLoc(); 3577 if (RTRange.isInvalid() || Boundary.isInvalid() || 3578 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary)) 3579 return SourceRange(); 3580 3581 return RTRange; 3582 } 3583 3584 SourceRange FunctionDecl::getParametersSourceRange() const { 3585 unsigned NP = getNumParams(); 3586 SourceLocation EllipsisLoc = getEllipsisLoc(); 3587 3588 if (NP == 0 && EllipsisLoc.isInvalid()) 3589 return SourceRange(); 3590 3591 SourceLocation Begin = 3592 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc; 3593 SourceLocation End = EllipsisLoc.isValid() 3594 ? EllipsisLoc 3595 : ParamInfo[NP - 1]->getSourceRange().getEnd(); 3596 3597 return SourceRange(Begin, End); 3598 } 3599 3600 SourceRange FunctionDecl::getExceptionSpecSourceRange() const { 3601 FunctionTypeLoc FTL = getFunctionTypeLoc(); 3602 return FTL ? FTL.getExceptionSpecRange() : SourceRange(); 3603 } 3604 3605 /// For an inline function definition in C, or for a gnu_inline function 3606 /// in C++, determine whether the definition will be externally visible. 3607 /// 3608 /// Inline function definitions are always available for inlining optimizations. 3609 /// However, depending on the language dialect, declaration specifiers, and 3610 /// attributes, the definition of an inline function may or may not be 3611 /// "externally" visible to other translation units in the program. 3612 /// 3613 /// In C99, inline definitions are not externally visible by default. However, 3614 /// if even one of the global-scope declarations is marked "extern inline", the 3615 /// inline definition becomes externally visible (C99 6.7.4p6). 3616 /// 3617 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function 3618 /// definition, we use the GNU semantics for inline, which are nearly the 3619 /// opposite of C99 semantics. In particular, "inline" by itself will create 3620 /// an externally visible symbol, but "extern inline" will not create an 3621 /// externally visible symbol. 3622 bool FunctionDecl::isInlineDefinitionExternallyVisible() const { 3623 assert((doesThisDeclarationHaveABody() || willHaveBody() || 3624 hasAttr<AliasAttr>()) && 3625 "Must be a function definition"); 3626 assert(isInlined() && "Function must be inline"); 3627 ASTContext &Context = getASTContext(); 3628 3629 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3630 // Note: If you change the logic here, please change 3631 // doesDeclarationForceExternallyVisibleDefinition as well. 3632 // 3633 // If it's not the case that both 'inline' and 'extern' are 3634 // specified on the definition, then this inline definition is 3635 // externally visible. 3636 if (Context.getLangOpts().CPlusPlus) 3637 return false; 3638 if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) 3639 return true; 3640 3641 // If any declaration is 'inline' but not 'extern', then this definition 3642 // is externally visible. 3643 for (auto Redecl : redecls()) { 3644 if (Redecl->isInlineSpecified() && 3645 Redecl->getStorageClass() != SC_Extern) 3646 return true; 3647 } 3648 3649 return false; 3650 } 3651 3652 // The rest of this function is C-only. 3653 assert(!Context.getLangOpts().CPlusPlus && 3654 "should not use C inline rules in C++"); 3655 3656 // C99 6.7.4p6: 3657 // [...] If all of the file scope declarations for a function in a 3658 // translation unit include the inline function specifier without extern, 3659 // then the definition in that translation unit is an inline definition. 3660 for (auto Redecl : redecls()) { 3661 if (RedeclForcesDefC99(Redecl)) 3662 return true; 3663 } 3664 3665 // C99 6.7.4p6: 3666 // An inline definition does not provide an external definition for the 3667 // function, and does not forbid an external definition in another 3668 // translation unit. 3669 return false; 3670 } 3671 3672 /// getOverloadedOperator - Which C++ overloaded operator this 3673 /// function represents, if any. 3674 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { 3675 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 3676 return getDeclName().getCXXOverloadedOperator(); 3677 return OO_None; 3678 } 3679 3680 /// getLiteralIdentifier - The literal suffix identifier this function 3681 /// represents, if any. 3682 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { 3683 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) 3684 return getDeclName().getCXXLiteralIdentifier(); 3685 return nullptr; 3686 } 3687 3688 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { 3689 if (TemplateOrSpecialization.isNull()) 3690 return TK_NonTemplate; 3691 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>()) 3692 return TK_FunctionTemplate; 3693 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) 3694 return TK_MemberSpecialization; 3695 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) 3696 return TK_FunctionTemplateSpecialization; 3697 if (TemplateOrSpecialization.is 3698 <DependentFunctionTemplateSpecializationInfo*>()) 3699 return TK_DependentFunctionTemplateSpecialization; 3700 3701 llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); 3702 } 3703 3704 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { 3705 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) 3706 return cast<FunctionDecl>(Info->getInstantiatedFrom()); 3707 3708 return nullptr; 3709 } 3710 3711 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const { 3712 if (auto *MSI = 3713 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3714 return MSI; 3715 if (auto *FTSI = TemplateOrSpecialization 3716 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 3717 return FTSI->getMemberSpecializationInfo(); 3718 return nullptr; 3719 } 3720 3721 void 3722 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, 3723 FunctionDecl *FD, 3724 TemplateSpecializationKind TSK) { 3725 assert(TemplateOrSpecialization.isNull() && 3726 "Member function is already a specialization"); 3727 MemberSpecializationInfo *Info 3728 = new (C) MemberSpecializationInfo(FD, TSK); 3729 TemplateOrSpecialization = Info; 3730 } 3731 3732 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const { 3733 return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>(); 3734 } 3735 3736 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) { 3737 assert(TemplateOrSpecialization.isNull() && 3738 "Member function is already a specialization"); 3739 TemplateOrSpecialization = Template; 3740 } 3741 3742 bool FunctionDecl::isImplicitlyInstantiable() const { 3743 // If the function is invalid, it can't be implicitly instantiated. 3744 if (isInvalidDecl()) 3745 return false; 3746 3747 switch (getTemplateSpecializationKindForInstantiation()) { 3748 case TSK_Undeclared: 3749 case TSK_ExplicitInstantiationDefinition: 3750 case TSK_ExplicitSpecialization: 3751 return false; 3752 3753 case TSK_ImplicitInstantiation: 3754 return true; 3755 3756 case TSK_ExplicitInstantiationDeclaration: 3757 // Handled below. 3758 break; 3759 } 3760 3761 // Find the actual template from which we will instantiate. 3762 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); 3763 bool HasPattern = false; 3764 if (PatternDecl) 3765 HasPattern = PatternDecl->hasBody(PatternDecl); 3766 3767 // C++0x [temp.explicit]p9: 3768 // Except for inline functions, other explicit instantiation declarations 3769 // have the effect of suppressing the implicit instantiation of the entity 3770 // to which they refer. 3771 if (!HasPattern || !PatternDecl) 3772 return true; 3773 3774 return PatternDecl->isInlined(); 3775 } 3776 3777 bool FunctionDecl::isTemplateInstantiation() const { 3778 // FIXME: Remove this, it's not clear what it means. (Which template 3779 // specialization kind?) 3780 return clang::isTemplateInstantiation(getTemplateSpecializationKind()); 3781 } 3782 3783 FunctionDecl * 3784 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const { 3785 // If this is a generic lambda call operator specialization, its 3786 // instantiation pattern is always its primary template's pattern 3787 // even if its primary template was instantiated from another 3788 // member template (which happens with nested generic lambdas). 3789 // Since a lambda's call operator's body is transformed eagerly, 3790 // we don't have to go hunting for a prototype definition template 3791 // (i.e. instantiated-from-member-template) to use as an instantiation 3792 // pattern. 3793 3794 if (isGenericLambdaCallOperatorSpecialization( 3795 dyn_cast<CXXMethodDecl>(this))) { 3796 assert(getPrimaryTemplate() && "not a generic lambda call operator?"); 3797 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl()); 3798 } 3799 3800 // Check for a declaration of this function that was instantiated from a 3801 // friend definition. 3802 const FunctionDecl *FD = nullptr; 3803 if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true)) 3804 FD = this; 3805 3806 if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) { 3807 if (ForDefinition && 3808 !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind())) 3809 return nullptr; 3810 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom())); 3811 } 3812 3813 if (ForDefinition && 3814 !clang::isTemplateInstantiation(getTemplateSpecializationKind())) 3815 return nullptr; 3816 3817 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { 3818 // If we hit a point where the user provided a specialization of this 3819 // template, we're done looking. 3820 while (!ForDefinition || !Primary->isMemberSpecialization()) { 3821 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate(); 3822 if (!NewPrimary) 3823 break; 3824 Primary = NewPrimary; 3825 } 3826 3827 return getDefinitionOrSelf(Primary->getTemplatedDecl()); 3828 } 3829 3830 return nullptr; 3831 } 3832 3833 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { 3834 if (FunctionTemplateSpecializationInfo *Info 3835 = TemplateOrSpecialization 3836 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3837 return Info->getTemplate(); 3838 } 3839 return nullptr; 3840 } 3841 3842 FunctionTemplateSpecializationInfo * 3843 FunctionDecl::getTemplateSpecializationInfo() const { 3844 return TemplateOrSpecialization 3845 .dyn_cast<FunctionTemplateSpecializationInfo *>(); 3846 } 3847 3848 const TemplateArgumentList * 3849 FunctionDecl::getTemplateSpecializationArgs() const { 3850 if (FunctionTemplateSpecializationInfo *Info 3851 = TemplateOrSpecialization 3852 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3853 return Info->TemplateArguments; 3854 } 3855 return nullptr; 3856 } 3857 3858 const ASTTemplateArgumentListInfo * 3859 FunctionDecl::getTemplateSpecializationArgsAsWritten() const { 3860 if (FunctionTemplateSpecializationInfo *Info 3861 = TemplateOrSpecialization 3862 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3863 return Info->TemplateArgumentsAsWritten; 3864 } 3865 return nullptr; 3866 } 3867 3868 void 3869 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, 3870 FunctionTemplateDecl *Template, 3871 const TemplateArgumentList *TemplateArgs, 3872 void *InsertPos, 3873 TemplateSpecializationKind TSK, 3874 const TemplateArgumentListInfo *TemplateArgsAsWritten, 3875 SourceLocation PointOfInstantiation) { 3876 assert((TemplateOrSpecialization.isNull() || 3877 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && 3878 "Member function is already a specialization"); 3879 assert(TSK != TSK_Undeclared && 3880 "Must specify the type of function template specialization"); 3881 assert((TemplateOrSpecialization.isNull() || 3882 TSK == TSK_ExplicitSpecialization) && 3883 "Member specialization must be an explicit specialization"); 3884 FunctionTemplateSpecializationInfo *Info = 3885 FunctionTemplateSpecializationInfo::Create( 3886 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten, 3887 PointOfInstantiation, 3888 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()); 3889 TemplateOrSpecialization = Info; 3890 Template->addSpecialization(Info, InsertPos); 3891 } 3892 3893 void 3894 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, 3895 const UnresolvedSetImpl &Templates, 3896 const TemplateArgumentListInfo &TemplateArgs) { 3897 assert(TemplateOrSpecialization.isNull()); 3898 DependentFunctionTemplateSpecializationInfo *Info = 3899 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates, 3900 TemplateArgs); 3901 TemplateOrSpecialization = Info; 3902 } 3903 3904 DependentFunctionTemplateSpecializationInfo * 3905 FunctionDecl::getDependentSpecializationInfo() const { 3906 return TemplateOrSpecialization 3907 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>(); 3908 } 3909 3910 DependentFunctionTemplateSpecializationInfo * 3911 DependentFunctionTemplateSpecializationInfo::Create( 3912 ASTContext &Context, const UnresolvedSetImpl &Ts, 3913 const TemplateArgumentListInfo &TArgs) { 3914 void *Buffer = Context.Allocate( 3915 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>( 3916 TArgs.size(), Ts.size())); 3917 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs); 3918 } 3919 3920 DependentFunctionTemplateSpecializationInfo:: 3921 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, 3922 const TemplateArgumentListInfo &TArgs) 3923 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { 3924 NumTemplates = Ts.size(); 3925 NumArgs = TArgs.size(); 3926 3927 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>(); 3928 for (unsigned I = 0, E = Ts.size(); I != E; ++I) 3929 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl()); 3930 3931 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>(); 3932 for (unsigned I = 0, E = TArgs.size(); I != E; ++I) 3933 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); 3934 } 3935 3936 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { 3937 // For a function template specialization, query the specialization 3938 // information object. 3939 if (FunctionTemplateSpecializationInfo *FTSInfo = 3940 TemplateOrSpecialization 3941 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 3942 return FTSInfo->getTemplateSpecializationKind(); 3943 3944 if (MemberSpecializationInfo *MSInfo = 3945 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3946 return MSInfo->getTemplateSpecializationKind(); 3947 3948 return TSK_Undeclared; 3949 } 3950 3951 TemplateSpecializationKind 3952 FunctionDecl::getTemplateSpecializationKindForInstantiation() const { 3953 // This is the same as getTemplateSpecializationKind(), except that for a 3954 // function that is both a function template specialization and a member 3955 // specialization, we prefer the member specialization information. Eg: 3956 // 3957 // template<typename T> struct A { 3958 // template<typename U> void f() {} 3959 // template<> void f<int>() {} 3960 // }; 3961 // 3962 // For A<int>::f<int>(): 3963 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization 3964 // * getTemplateSpecializationKindForInstantiation() will return 3965 // TSK_ImplicitInstantiation 3966 // 3967 // This reflects the facts that A<int>::f<int> is an explicit specialization 3968 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated 3969 // from A::f<int> if a definition is needed. 3970 if (FunctionTemplateSpecializationInfo *FTSInfo = 3971 TemplateOrSpecialization 3972 .dyn_cast<FunctionTemplateSpecializationInfo *>()) { 3973 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo()) 3974 return MSInfo->getTemplateSpecializationKind(); 3975 return FTSInfo->getTemplateSpecializationKind(); 3976 } 3977 3978 if (MemberSpecializationInfo *MSInfo = 3979 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3980 return MSInfo->getTemplateSpecializationKind(); 3981 3982 return TSK_Undeclared; 3983 } 3984 3985 void 3986 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 3987 SourceLocation PointOfInstantiation) { 3988 if (FunctionTemplateSpecializationInfo *FTSInfo 3989 = TemplateOrSpecialization.dyn_cast< 3990 FunctionTemplateSpecializationInfo*>()) { 3991 FTSInfo->setTemplateSpecializationKind(TSK); 3992 if (TSK != TSK_ExplicitSpecialization && 3993 PointOfInstantiation.isValid() && 3994 FTSInfo->getPointOfInstantiation().isInvalid()) { 3995 FTSInfo->setPointOfInstantiation(PointOfInstantiation); 3996 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 3997 L->InstantiationRequested(this); 3998 } 3999 } else if (MemberSpecializationInfo *MSInfo 4000 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { 4001 MSInfo->setTemplateSpecializationKind(TSK); 4002 if (TSK != TSK_ExplicitSpecialization && 4003 PointOfInstantiation.isValid() && 4004 MSInfo->getPointOfInstantiation().isInvalid()) { 4005 MSInfo->setPointOfInstantiation(PointOfInstantiation); 4006 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 4007 L->InstantiationRequested(this); 4008 } 4009 } else 4010 llvm_unreachable("Function cannot have a template specialization kind"); 4011 } 4012 4013 SourceLocation FunctionDecl::getPointOfInstantiation() const { 4014 if (FunctionTemplateSpecializationInfo *FTSInfo 4015 = TemplateOrSpecialization.dyn_cast< 4016 FunctionTemplateSpecializationInfo*>()) 4017 return FTSInfo->getPointOfInstantiation(); 4018 if (MemberSpecializationInfo *MSInfo = 4019 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 4020 return MSInfo->getPointOfInstantiation(); 4021 4022 return SourceLocation(); 4023 } 4024 4025 bool FunctionDecl::isOutOfLine() const { 4026 if (Decl::isOutOfLine()) 4027 return true; 4028 4029 // If this function was instantiated from a member function of a 4030 // class template, check whether that member function was defined out-of-line. 4031 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { 4032 const FunctionDecl *Definition; 4033 if (FD->hasBody(Definition)) 4034 return Definition->isOutOfLine(); 4035 } 4036 4037 // If this function was instantiated from a function template, 4038 // check whether that function template was defined out-of-line. 4039 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { 4040 const FunctionDecl *Definition; 4041 if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) 4042 return Definition->isOutOfLine(); 4043 } 4044 4045 return false; 4046 } 4047 4048 SourceRange FunctionDecl::getSourceRange() const { 4049 return SourceRange(getOuterLocStart(), EndRangeLoc); 4050 } 4051 4052 unsigned FunctionDecl::getMemoryFunctionKind() const { 4053 IdentifierInfo *FnInfo = getIdentifier(); 4054 4055 if (!FnInfo) 4056 return 0; 4057 4058 // Builtin handling. 4059 switch (getBuiltinID()) { 4060 case Builtin::BI__builtin_memset: 4061 case Builtin::BI__builtin___memset_chk: 4062 case Builtin::BImemset: 4063 return Builtin::BImemset; 4064 4065 case Builtin::BI__builtin_memcpy: 4066 case Builtin::BI__builtin___memcpy_chk: 4067 case Builtin::BImemcpy: 4068 return Builtin::BImemcpy; 4069 4070 case Builtin::BI__builtin_mempcpy: 4071 case Builtin::BI__builtin___mempcpy_chk: 4072 case Builtin::BImempcpy: 4073 return Builtin::BImempcpy; 4074 4075 case Builtin::BI__builtin_memmove: 4076 case Builtin::BI__builtin___memmove_chk: 4077 case Builtin::BImemmove: 4078 return Builtin::BImemmove; 4079 4080 case Builtin::BIstrlcpy: 4081 case Builtin::BI__builtin___strlcpy_chk: 4082 return Builtin::BIstrlcpy; 4083 4084 case Builtin::BIstrlcat: 4085 case Builtin::BI__builtin___strlcat_chk: 4086 return Builtin::BIstrlcat; 4087 4088 case Builtin::BI__builtin_memcmp: 4089 case Builtin::BImemcmp: 4090 return Builtin::BImemcmp; 4091 4092 case Builtin::BI__builtin_bcmp: 4093 case Builtin::BIbcmp: 4094 return Builtin::BIbcmp; 4095 4096 case Builtin::BI__builtin_strncpy: 4097 case Builtin::BI__builtin___strncpy_chk: 4098 case Builtin::BIstrncpy: 4099 return Builtin::BIstrncpy; 4100 4101 case Builtin::BI__builtin_strncmp: 4102 case Builtin::BIstrncmp: 4103 return Builtin::BIstrncmp; 4104 4105 case Builtin::BI__builtin_strncasecmp: 4106 case Builtin::BIstrncasecmp: 4107 return Builtin::BIstrncasecmp; 4108 4109 case Builtin::BI__builtin_strncat: 4110 case Builtin::BI__builtin___strncat_chk: 4111 case Builtin::BIstrncat: 4112 return Builtin::BIstrncat; 4113 4114 case Builtin::BI__builtin_strndup: 4115 case Builtin::BIstrndup: 4116 return Builtin::BIstrndup; 4117 4118 case Builtin::BI__builtin_strlen: 4119 case Builtin::BIstrlen: 4120 return Builtin::BIstrlen; 4121 4122 case Builtin::BI__builtin_bzero: 4123 case Builtin::BIbzero: 4124 return Builtin::BIbzero; 4125 4126 case Builtin::BIfree: 4127 return Builtin::BIfree; 4128 4129 default: 4130 if (isExternC()) { 4131 if (FnInfo->isStr("memset")) 4132 return Builtin::BImemset; 4133 if (FnInfo->isStr("memcpy")) 4134 return Builtin::BImemcpy; 4135 if (FnInfo->isStr("mempcpy")) 4136 return Builtin::BImempcpy; 4137 if (FnInfo->isStr("memmove")) 4138 return Builtin::BImemmove; 4139 if (FnInfo->isStr("memcmp")) 4140 return Builtin::BImemcmp; 4141 if (FnInfo->isStr("bcmp")) 4142 return Builtin::BIbcmp; 4143 if (FnInfo->isStr("strncpy")) 4144 return Builtin::BIstrncpy; 4145 if (FnInfo->isStr("strncmp")) 4146 return Builtin::BIstrncmp; 4147 if (FnInfo->isStr("strncasecmp")) 4148 return Builtin::BIstrncasecmp; 4149 if (FnInfo->isStr("strncat")) 4150 return Builtin::BIstrncat; 4151 if (FnInfo->isStr("strndup")) 4152 return Builtin::BIstrndup; 4153 if (FnInfo->isStr("strlen")) 4154 return Builtin::BIstrlen; 4155 if (FnInfo->isStr("bzero")) 4156 return Builtin::BIbzero; 4157 } else if (isInStdNamespace()) { 4158 if (FnInfo->isStr("free")) 4159 return Builtin::BIfree; 4160 } 4161 break; 4162 } 4163 return 0; 4164 } 4165 4166 unsigned FunctionDecl::getODRHash() const { 4167 assert(hasODRHash()); 4168 return ODRHash; 4169 } 4170 4171 unsigned FunctionDecl::getODRHash() { 4172 if (hasODRHash()) 4173 return ODRHash; 4174 4175 if (auto *FT = getInstantiatedFromMemberFunction()) { 4176 setHasODRHash(true); 4177 ODRHash = FT->getODRHash(); 4178 return ODRHash; 4179 } 4180 4181 class ODRHash Hash; 4182 Hash.AddFunctionDecl(this); 4183 setHasODRHash(true); 4184 ODRHash = Hash.CalculateHash(); 4185 return ODRHash; 4186 } 4187 4188 //===----------------------------------------------------------------------===// 4189 // FieldDecl Implementation 4190 //===----------------------------------------------------------------------===// 4191 4192 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, 4193 SourceLocation StartLoc, SourceLocation IdLoc, 4194 IdentifierInfo *Id, QualType T, 4195 TypeSourceInfo *TInfo, Expr *BW, bool Mutable, 4196 InClassInitStyle InitStyle) { 4197 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, 4198 BW, Mutable, InitStyle); 4199 } 4200 4201 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4202 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(), 4203 SourceLocation(), nullptr, QualType(), nullptr, 4204 nullptr, false, ICIS_NoInit); 4205 } 4206 4207 bool FieldDecl::isAnonymousStructOrUnion() const { 4208 if (!isImplicit() || getDeclName()) 4209 return false; 4210 4211 if (const auto *Record = getType()->getAs<RecordType>()) 4212 return Record->getDecl()->isAnonymousStructOrUnion(); 4213 4214 return false; 4215 } 4216 4217 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { 4218 assert(isBitField() && "not a bitfield"); 4219 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue(); 4220 } 4221 4222 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const { 4223 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() && 4224 getBitWidthValue(Ctx) == 0; 4225 } 4226 4227 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const { 4228 if (isZeroLengthBitField(Ctx)) 4229 return true; 4230 4231 // C++2a [intro.object]p7: 4232 // An object has nonzero size if it 4233 // -- is not a potentially-overlapping subobject, or 4234 if (!hasAttr<NoUniqueAddressAttr>()) 4235 return false; 4236 4237 // -- is not of class type, or 4238 const auto *RT = getType()->getAs<RecordType>(); 4239 if (!RT) 4240 return false; 4241 const RecordDecl *RD = RT->getDecl()->getDefinition(); 4242 if (!RD) { 4243 assert(isInvalidDecl() && "valid field has incomplete type"); 4244 return false; 4245 } 4246 4247 // -- [has] virtual member functions or virtual base classes, or 4248 // -- has subobjects of nonzero size or bit-fields of nonzero length 4249 const auto *CXXRD = cast<CXXRecordDecl>(RD); 4250 if (!CXXRD->isEmpty()) 4251 return false; 4252 4253 // Otherwise, [...] the circumstances under which the object has zero size 4254 // are implementation-defined. 4255 // FIXME: This might be Itanium ABI specific; we don't yet know what the MS 4256 // ABI will do. 4257 return true; 4258 } 4259 4260 unsigned FieldDecl::getFieldIndex() const { 4261 const FieldDecl *Canonical = getCanonicalDecl(); 4262 if (Canonical != this) 4263 return Canonical->getFieldIndex(); 4264 4265 if (CachedFieldIndex) return CachedFieldIndex - 1; 4266 4267 unsigned Index = 0; 4268 const RecordDecl *RD = getParent()->getDefinition(); 4269 assert(RD && "requested index for field of struct with no definition"); 4270 4271 for (auto *Field : RD->fields()) { 4272 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1; 4273 ++Index; 4274 } 4275 4276 assert(CachedFieldIndex && "failed to find field in parent"); 4277 return CachedFieldIndex - 1; 4278 } 4279 4280 SourceRange FieldDecl::getSourceRange() const { 4281 const Expr *FinalExpr = getInClassInitializer(); 4282 if (!FinalExpr) 4283 FinalExpr = getBitWidth(); 4284 if (FinalExpr) 4285 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc()); 4286 return DeclaratorDecl::getSourceRange(); 4287 } 4288 4289 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) { 4290 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) && 4291 "capturing type in non-lambda or captured record."); 4292 assert(InitStorage.getInt() == ISK_NoInit && 4293 InitStorage.getPointer() == nullptr && 4294 "bit width, initializer or captured type already set"); 4295 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType), 4296 ISK_CapturedVLAType); 4297 } 4298 4299 //===----------------------------------------------------------------------===// 4300 // TagDecl Implementation 4301 //===----------------------------------------------------------------------===// 4302 4303 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC, 4304 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl, 4305 SourceLocation StartL) 4306 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C), 4307 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) { 4308 assert((DK != Enum || TK == TTK_Enum) && 4309 "EnumDecl not matched with TTK_Enum"); 4310 setPreviousDecl(PrevDecl); 4311 setTagKind(TK); 4312 setCompleteDefinition(false); 4313 setBeingDefined(false); 4314 setEmbeddedInDeclarator(false); 4315 setFreeStanding(false); 4316 setCompleteDefinitionRequired(false); 4317 } 4318 4319 SourceLocation TagDecl::getOuterLocStart() const { 4320 return getTemplateOrInnerLocStart(this); 4321 } 4322 4323 SourceRange TagDecl::getSourceRange() const { 4324 SourceLocation RBraceLoc = BraceRange.getEnd(); 4325 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); 4326 return SourceRange(getOuterLocStart(), E); 4327 } 4328 4329 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); } 4330 4331 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { 4332 TypedefNameDeclOrQualifier = TDD; 4333 if (const Type *T = getTypeForDecl()) { 4334 (void)T; 4335 assert(T->isLinkageValid()); 4336 } 4337 assert(isLinkageValid()); 4338 } 4339 4340 void TagDecl::startDefinition() { 4341 setBeingDefined(true); 4342 4343 if (auto *D = dyn_cast<CXXRecordDecl>(this)) { 4344 struct CXXRecordDecl::DefinitionData *Data = 4345 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); 4346 for (auto I : redecls()) 4347 cast<CXXRecordDecl>(I)->DefinitionData = Data; 4348 } 4349 } 4350 4351 void TagDecl::completeDefinition() { 4352 assert((!isa<CXXRecordDecl>(this) || 4353 cast<CXXRecordDecl>(this)->hasDefinition()) && 4354 "definition completed but not started"); 4355 4356 setCompleteDefinition(true); 4357 setBeingDefined(false); 4358 4359 if (ASTMutationListener *L = getASTMutationListener()) 4360 L->CompletedTagDefinition(this); 4361 } 4362 4363 TagDecl *TagDecl::getDefinition() const { 4364 if (isCompleteDefinition()) 4365 return const_cast<TagDecl *>(this); 4366 4367 // If it's possible for us to have an out-of-date definition, check now. 4368 if (mayHaveOutOfDateDef()) { 4369 if (IdentifierInfo *II = getIdentifier()) { 4370 if (II->isOutOfDate()) { 4371 updateOutOfDate(*II); 4372 } 4373 } 4374 } 4375 4376 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this)) 4377 return CXXRD->getDefinition(); 4378 4379 for (auto R : redecls()) 4380 if (R->isCompleteDefinition()) 4381 return R; 4382 4383 return nullptr; 4384 } 4385 4386 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 4387 if (QualifierLoc) { 4388 // Make sure the extended qualifier info is allocated. 4389 if (!hasExtInfo()) 4390 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4391 // Set qualifier info. 4392 getExtInfo()->QualifierLoc = QualifierLoc; 4393 } else { 4394 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 4395 if (hasExtInfo()) { 4396 if (getExtInfo()->NumTemplParamLists == 0) { 4397 getASTContext().Deallocate(getExtInfo()); 4398 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr; 4399 } 4400 else 4401 getExtInfo()->QualifierLoc = QualifierLoc; 4402 } 4403 } 4404 } 4405 4406 void TagDecl::setTemplateParameterListsInfo( 4407 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 4408 assert(!TPLists.empty()); 4409 // Make sure the extended decl info is allocated. 4410 if (!hasExtInfo()) 4411 // Allocate external info struct. 4412 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4413 // Set the template parameter lists info. 4414 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 4415 } 4416 4417 //===----------------------------------------------------------------------===// 4418 // EnumDecl Implementation 4419 //===----------------------------------------------------------------------===// 4420 4421 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, 4422 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, 4423 bool Scoped, bool ScopedUsingClassTag, bool Fixed) 4424 : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4425 assert(Scoped || !ScopedUsingClassTag); 4426 IntegerType = nullptr; 4427 setNumPositiveBits(0); 4428 setNumNegativeBits(0); 4429 setScoped(Scoped); 4430 setScopedUsingClassTag(ScopedUsingClassTag); 4431 setFixed(Fixed); 4432 setHasODRHash(false); 4433 ODRHash = 0; 4434 } 4435 4436 void EnumDecl::anchor() {} 4437 4438 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, 4439 SourceLocation StartLoc, SourceLocation IdLoc, 4440 IdentifierInfo *Id, 4441 EnumDecl *PrevDecl, bool IsScoped, 4442 bool IsScopedUsingClassTag, bool IsFixed) { 4443 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl, 4444 IsScoped, IsScopedUsingClassTag, IsFixed); 4445 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4446 C.getTypeDeclType(Enum, PrevDecl); 4447 return Enum; 4448 } 4449 4450 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4451 EnumDecl *Enum = 4452 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(), 4453 nullptr, nullptr, false, false, false); 4454 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4455 return Enum; 4456 } 4457 4458 SourceRange EnumDecl::getIntegerTypeRange() const { 4459 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo()) 4460 return TI->getTypeLoc().getSourceRange(); 4461 return SourceRange(); 4462 } 4463 4464 void EnumDecl::completeDefinition(QualType NewType, 4465 QualType NewPromotionType, 4466 unsigned NumPositiveBits, 4467 unsigned NumNegativeBits) { 4468 assert(!isCompleteDefinition() && "Cannot redefine enums!"); 4469 if (!IntegerType) 4470 IntegerType = NewType.getTypePtr(); 4471 PromotionType = NewPromotionType; 4472 setNumPositiveBits(NumPositiveBits); 4473 setNumNegativeBits(NumNegativeBits); 4474 TagDecl::completeDefinition(); 4475 } 4476 4477 bool EnumDecl::isClosed() const { 4478 if (const auto *A = getAttr<EnumExtensibilityAttr>()) 4479 return A->getExtensibility() == EnumExtensibilityAttr::Closed; 4480 return true; 4481 } 4482 4483 bool EnumDecl::isClosedFlag() const { 4484 return isClosed() && hasAttr<FlagEnumAttr>(); 4485 } 4486 4487 bool EnumDecl::isClosedNonFlag() const { 4488 return isClosed() && !hasAttr<FlagEnumAttr>(); 4489 } 4490 4491 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { 4492 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 4493 return MSI->getTemplateSpecializationKind(); 4494 4495 return TSK_Undeclared; 4496 } 4497 4498 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 4499 SourceLocation PointOfInstantiation) { 4500 MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); 4501 assert(MSI && "Not an instantiated member enumeration?"); 4502 MSI->setTemplateSpecializationKind(TSK); 4503 if (TSK != TSK_ExplicitSpecialization && 4504 PointOfInstantiation.isValid() && 4505 MSI->getPointOfInstantiation().isInvalid()) 4506 MSI->setPointOfInstantiation(PointOfInstantiation); 4507 } 4508 4509 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const { 4510 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 4511 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 4512 EnumDecl *ED = getInstantiatedFromMemberEnum(); 4513 while (auto *NewED = ED->getInstantiatedFromMemberEnum()) 4514 ED = NewED; 4515 return getDefinitionOrSelf(ED); 4516 } 4517 } 4518 4519 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) && 4520 "couldn't find pattern for enum instantiation"); 4521 return nullptr; 4522 } 4523 4524 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { 4525 if (SpecializationInfo) 4526 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); 4527 4528 return nullptr; 4529 } 4530 4531 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, 4532 TemplateSpecializationKind TSK) { 4533 assert(!SpecializationInfo && "Member enum is already a specialization"); 4534 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); 4535 } 4536 4537 unsigned EnumDecl::getODRHash() { 4538 if (hasODRHash()) 4539 return ODRHash; 4540 4541 class ODRHash Hash; 4542 Hash.AddEnumDecl(this); 4543 setHasODRHash(true); 4544 ODRHash = Hash.CalculateHash(); 4545 return ODRHash; 4546 } 4547 4548 SourceRange EnumDecl::getSourceRange() const { 4549 auto Res = TagDecl::getSourceRange(); 4550 // Set end-point to enum-base, e.g. enum foo : ^bar 4551 if (auto *TSI = getIntegerTypeSourceInfo()) { 4552 // TagDecl doesn't know about the enum base. 4553 if (!getBraceRange().getEnd().isValid()) 4554 Res.setEnd(TSI->getTypeLoc().getEndLoc()); 4555 } 4556 return Res; 4557 } 4558 4559 //===----------------------------------------------------------------------===// 4560 // RecordDecl Implementation 4561 //===----------------------------------------------------------------------===// 4562 4563 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C, 4564 DeclContext *DC, SourceLocation StartLoc, 4565 SourceLocation IdLoc, IdentifierInfo *Id, 4566 RecordDecl *PrevDecl) 4567 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4568 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!"); 4569 setHasFlexibleArrayMember(false); 4570 setAnonymousStructOrUnion(false); 4571 setHasObjectMember(false); 4572 setHasVolatileMember(false); 4573 setHasLoadedFieldsFromExternalStorage(false); 4574 setNonTrivialToPrimitiveDefaultInitialize(false); 4575 setNonTrivialToPrimitiveCopy(false); 4576 setNonTrivialToPrimitiveDestroy(false); 4577 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false); 4578 setHasNonTrivialToPrimitiveDestructCUnion(false); 4579 setHasNonTrivialToPrimitiveCopyCUnion(false); 4580 setParamDestroyedInCallee(false); 4581 setArgPassingRestrictions(APK_CanPassInRegs); 4582 } 4583 4584 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, 4585 SourceLocation StartLoc, SourceLocation IdLoc, 4586 IdentifierInfo *Id, RecordDecl* PrevDecl) { 4587 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC, 4588 StartLoc, IdLoc, Id, PrevDecl); 4589 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4590 4591 C.getTypeDeclType(R, PrevDecl); 4592 return R; 4593 } 4594 4595 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 4596 RecordDecl *R = 4597 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(), 4598 SourceLocation(), nullptr, nullptr); 4599 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4600 return R; 4601 } 4602 4603 bool RecordDecl::isInjectedClassName() const { 4604 return isImplicit() && getDeclName() && getDeclContext()->isRecord() && 4605 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); 4606 } 4607 4608 bool RecordDecl::isLambda() const { 4609 if (auto RD = dyn_cast<CXXRecordDecl>(this)) 4610 return RD->isLambda(); 4611 return false; 4612 } 4613 4614 bool RecordDecl::isCapturedRecord() const { 4615 return hasAttr<CapturedRecordAttr>(); 4616 } 4617 4618 void RecordDecl::setCapturedRecord() { 4619 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext())); 4620 } 4621 4622 bool RecordDecl::isOrContainsUnion() const { 4623 if (isUnion()) 4624 return true; 4625 4626 if (const RecordDecl *Def = getDefinition()) { 4627 for (const FieldDecl *FD : Def->fields()) { 4628 const RecordType *RT = FD->getType()->getAs<RecordType>(); 4629 if (RT && RT->getDecl()->isOrContainsUnion()) 4630 return true; 4631 } 4632 } 4633 4634 return false; 4635 } 4636 4637 RecordDecl::field_iterator RecordDecl::field_begin() const { 4638 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage()) 4639 LoadFieldsFromExternalStorage(); 4640 4641 return field_iterator(decl_iterator(FirstDecl)); 4642 } 4643 4644 /// completeDefinition - Notes that the definition of this type is now 4645 /// complete. 4646 void RecordDecl::completeDefinition() { 4647 assert(!isCompleteDefinition() && "Cannot redefine record!"); 4648 TagDecl::completeDefinition(); 4649 4650 ASTContext &Ctx = getASTContext(); 4651 4652 // Layouts are dumped when computed, so if we are dumping for all complete 4653 // types, we need to force usage to get types that wouldn't be used elsewhere. 4654 if (Ctx.getLangOpts().DumpRecordLayoutsComplete) 4655 (void)Ctx.getASTRecordLayout(this); 4656 } 4657 4658 /// isMsStruct - Get whether or not this record uses ms_struct layout. 4659 /// This which can be turned on with an attribute, pragma, or the 4660 /// -mms-bitfields command-line option. 4661 bool RecordDecl::isMsStruct(const ASTContext &C) const { 4662 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1; 4663 } 4664 4665 void RecordDecl::LoadFieldsFromExternalStorage() const { 4666 ExternalASTSource *Source = getASTContext().getExternalSource(); 4667 assert(hasExternalLexicalStorage() && Source && "No external storage?"); 4668 4669 // Notify that we have a RecordDecl doing some initialization. 4670 ExternalASTSource::Deserializing TheFields(Source); 4671 4672 SmallVector<Decl*, 64> Decls; 4673 setHasLoadedFieldsFromExternalStorage(true); 4674 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) { 4675 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); 4676 }, Decls); 4677 4678 #ifndef NDEBUG 4679 // Check that all decls we got were FieldDecls. 4680 for (unsigned i=0, e=Decls.size(); i != e; ++i) 4681 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); 4682 #endif 4683 4684 if (Decls.empty()) 4685 return; 4686 4687 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, 4688 /*FieldsAlreadyLoaded=*/false); 4689 } 4690 4691 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const { 4692 ASTContext &Context = getASTContext(); 4693 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask & 4694 (SanitizerKind::Address | SanitizerKind::KernelAddress); 4695 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding) 4696 return false; 4697 const auto &NoSanitizeList = Context.getNoSanitizeList(); 4698 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this); 4699 // We may be able to relax some of these requirements. 4700 int ReasonToReject = -1; 4701 if (!CXXRD || CXXRD->isExternCContext()) 4702 ReasonToReject = 0; // is not C++. 4703 else if (CXXRD->hasAttr<PackedAttr>()) 4704 ReasonToReject = 1; // is packed. 4705 else if (CXXRD->isUnion()) 4706 ReasonToReject = 2; // is a union. 4707 else if (CXXRD->isTriviallyCopyable()) 4708 ReasonToReject = 3; // is trivially copyable. 4709 else if (CXXRD->hasTrivialDestructor()) 4710 ReasonToReject = 4; // has trivial destructor. 4711 else if (CXXRD->isStandardLayout()) 4712 ReasonToReject = 5; // is standard layout. 4713 else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(), 4714 "field-padding")) 4715 ReasonToReject = 6; // is in an excluded file. 4716 else if (NoSanitizeList.containsType( 4717 EnabledAsanMask, getQualifiedNameAsString(), "field-padding")) 4718 ReasonToReject = 7; // The type is excluded. 4719 4720 if (EmitRemark) { 4721 if (ReasonToReject >= 0) 4722 Context.getDiagnostics().Report( 4723 getLocation(), 4724 diag::remark_sanitize_address_insert_extra_padding_rejected) 4725 << getQualifiedNameAsString() << ReasonToReject; 4726 else 4727 Context.getDiagnostics().Report( 4728 getLocation(), 4729 diag::remark_sanitize_address_insert_extra_padding_accepted) 4730 << getQualifiedNameAsString(); 4731 } 4732 return ReasonToReject < 0; 4733 } 4734 4735 const FieldDecl *RecordDecl::findFirstNamedDataMember() const { 4736 for (const auto *I : fields()) { 4737 if (I->getIdentifier()) 4738 return I; 4739 4740 if (const auto *RT = I->getType()->getAs<RecordType>()) 4741 if (const FieldDecl *NamedDataMember = 4742 RT->getDecl()->findFirstNamedDataMember()) 4743 return NamedDataMember; 4744 } 4745 4746 // We didn't find a named data member. 4747 return nullptr; 4748 } 4749 4750 //===----------------------------------------------------------------------===// 4751 // BlockDecl Implementation 4752 //===----------------------------------------------------------------------===// 4753 4754 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc) 4755 : Decl(Block, DC, CaretLoc), DeclContext(Block) { 4756 setIsVariadic(false); 4757 setCapturesCXXThis(false); 4758 setBlockMissingReturnType(true); 4759 setIsConversionFromLambda(false); 4760 setDoesNotEscape(false); 4761 setCanAvoidCopyToHeap(false); 4762 } 4763 4764 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { 4765 assert(!ParamInfo && "Already has param info!"); 4766 4767 // Zero params -> null pointer. 4768 if (!NewParamInfo.empty()) { 4769 NumParams = NewParamInfo.size(); 4770 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; 4771 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 4772 } 4773 } 4774 4775 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures, 4776 bool CapturesCXXThis) { 4777 this->setCapturesCXXThis(CapturesCXXThis); 4778 this->NumCaptures = Captures.size(); 4779 4780 if (Captures.empty()) { 4781 this->Captures = nullptr; 4782 return; 4783 } 4784 4785 this->Captures = Captures.copy(Context).data(); 4786 } 4787 4788 bool BlockDecl::capturesVariable(const VarDecl *variable) const { 4789 for (const auto &I : captures()) 4790 // Only auto vars can be captured, so no redeclaration worries. 4791 if (I.getVariable() == variable) 4792 return true; 4793 4794 return false; 4795 } 4796 4797 SourceRange BlockDecl::getSourceRange() const { 4798 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation()); 4799 } 4800 4801 //===----------------------------------------------------------------------===// 4802 // Other Decl Allocation/Deallocation Method Implementations 4803 //===----------------------------------------------------------------------===// 4804 4805 void TranslationUnitDecl::anchor() {} 4806 4807 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { 4808 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C); 4809 } 4810 4811 void PragmaCommentDecl::anchor() {} 4812 4813 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C, 4814 TranslationUnitDecl *DC, 4815 SourceLocation CommentLoc, 4816 PragmaMSCommentKind CommentKind, 4817 StringRef Arg) { 4818 PragmaCommentDecl *PCD = 4819 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1)) 4820 PragmaCommentDecl(DC, CommentLoc, CommentKind); 4821 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size()); 4822 PCD->getTrailingObjects<char>()[Arg.size()] = '\0'; 4823 return PCD; 4824 } 4825 4826 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C, 4827 unsigned ID, 4828 unsigned ArgSize) { 4829 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1)) 4830 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown); 4831 } 4832 4833 void PragmaDetectMismatchDecl::anchor() {} 4834 4835 PragmaDetectMismatchDecl * 4836 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC, 4837 SourceLocation Loc, StringRef Name, 4838 StringRef Value) { 4839 size_t ValueStart = Name.size() + 1; 4840 PragmaDetectMismatchDecl *PDMD = 4841 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1)) 4842 PragmaDetectMismatchDecl(DC, Loc, ValueStart); 4843 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size()); 4844 PDMD->getTrailingObjects<char>()[Name.size()] = '\0'; 4845 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(), 4846 Value.size()); 4847 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0'; 4848 return PDMD; 4849 } 4850 4851 PragmaDetectMismatchDecl * 4852 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4853 unsigned NameValueSize) { 4854 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1)) 4855 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0); 4856 } 4857 4858 void ExternCContextDecl::anchor() {} 4859 4860 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C, 4861 TranslationUnitDecl *DC) { 4862 return new (C, DC) ExternCContextDecl(DC); 4863 } 4864 4865 void LabelDecl::anchor() {} 4866 4867 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 4868 SourceLocation IdentL, IdentifierInfo *II) { 4869 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL); 4870 } 4871 4872 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 4873 SourceLocation IdentL, IdentifierInfo *II, 4874 SourceLocation GnuLabelL) { 4875 assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); 4876 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL); 4877 } 4878 4879 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4880 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr, 4881 SourceLocation()); 4882 } 4883 4884 void LabelDecl::setMSAsmLabel(StringRef Name) { 4885 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1]; 4886 memcpy(Buffer, Name.data(), Name.size()); 4887 Buffer[Name.size()] = '\0'; 4888 MSAsmName = Buffer; 4889 } 4890 4891 void ValueDecl::anchor() {} 4892 4893 bool ValueDecl::isWeak() const { 4894 auto *MostRecent = getMostRecentDecl(); 4895 return MostRecent->hasAttr<WeakAttr>() || 4896 MostRecent->hasAttr<WeakRefAttr>() || isWeakImported(); 4897 } 4898 4899 void ImplicitParamDecl::anchor() {} 4900 4901 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, 4902 SourceLocation IdLoc, 4903 IdentifierInfo *Id, QualType Type, 4904 ImplicitParamKind ParamKind) { 4905 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind); 4906 } 4907 4908 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type, 4909 ImplicitParamKind ParamKind) { 4910 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind); 4911 } 4912 4913 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, 4914 unsigned ID) { 4915 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other); 4916 } 4917 4918 FunctionDecl * 4919 FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, 4920 const DeclarationNameInfo &NameInfo, QualType T, 4921 TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin, 4922 bool isInlineSpecified, bool hasWrittenPrototype, 4923 ConstexprSpecKind ConstexprKind, 4924 Expr *TrailingRequiresClause) { 4925 FunctionDecl *New = new (C, DC) FunctionDecl( 4926 Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin, 4927 isInlineSpecified, ConstexprKind, TrailingRequiresClause); 4928 New->setHasWrittenPrototype(hasWrittenPrototype); 4929 return New; 4930 } 4931 4932 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4933 return new (C, ID) FunctionDecl( 4934 Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), 4935 nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr); 4936 } 4937 4938 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 4939 return new (C, DC) BlockDecl(DC, L); 4940 } 4941 4942 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4943 return new (C, ID) BlockDecl(nullptr, SourceLocation()); 4944 } 4945 4946 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams) 4947 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured), 4948 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {} 4949 4950 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC, 4951 unsigned NumParams) { 4952 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4953 CapturedDecl(DC, NumParams); 4954 } 4955 4956 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4957 unsigned NumParams) { 4958 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4959 CapturedDecl(nullptr, NumParams); 4960 } 4961 4962 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); } 4963 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); } 4964 4965 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); } 4966 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); } 4967 4968 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, 4969 SourceLocation L, 4970 IdentifierInfo *Id, QualType T, 4971 Expr *E, const llvm::APSInt &V) { 4972 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V); 4973 } 4974 4975 EnumConstantDecl * 4976 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4977 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr, 4978 QualType(), nullptr, llvm::APSInt()); 4979 } 4980 4981 void IndirectFieldDecl::anchor() {} 4982 4983 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC, 4984 SourceLocation L, DeclarationName N, 4985 QualType T, 4986 MutableArrayRef<NamedDecl *> CH) 4987 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()), 4988 ChainingSize(CH.size()) { 4989 // In C++, indirect field declarations conflict with tag declarations in the 4990 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them. 4991 if (C.getLangOpts().CPlusPlus) 4992 IdentifierNamespace |= IDNS_Tag; 4993 } 4994 4995 IndirectFieldDecl * 4996 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, 4997 IdentifierInfo *Id, QualType T, 4998 llvm::MutableArrayRef<NamedDecl *> CH) { 4999 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH); 5000 } 5001 5002 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, 5003 unsigned ID) { 5004 return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(), 5005 DeclarationName(), QualType(), None); 5006 } 5007 5008 SourceRange EnumConstantDecl::getSourceRange() const { 5009 SourceLocation End = getLocation(); 5010 if (Init) 5011 End = Init->getEndLoc(); 5012 return SourceRange(getLocation(), End); 5013 } 5014 5015 void TypeDecl::anchor() {} 5016 5017 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, 5018 SourceLocation StartLoc, SourceLocation IdLoc, 5019 IdentifierInfo *Id, TypeSourceInfo *TInfo) { 5020 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 5021 } 5022 5023 void TypedefNameDecl::anchor() {} 5024 5025 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const { 5026 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) { 5027 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl(); 5028 auto *ThisTypedef = this; 5029 if (AnyRedecl && OwningTypedef) { 5030 OwningTypedef = OwningTypedef->getCanonicalDecl(); 5031 ThisTypedef = ThisTypedef->getCanonicalDecl(); 5032 } 5033 if (OwningTypedef == ThisTypedef) 5034 return TT->getDecl(); 5035 } 5036 5037 return nullptr; 5038 } 5039 5040 bool TypedefNameDecl::isTransparentTagSlow() const { 5041 auto determineIsTransparent = [&]() { 5042 if (auto *TT = getUnderlyingType()->getAs<TagType>()) { 5043 if (auto *TD = TT->getDecl()) { 5044 if (TD->getName() != getName()) 5045 return false; 5046 SourceLocation TTLoc = getLocation(); 5047 SourceLocation TDLoc = TD->getLocation(); 5048 if (!TTLoc.isMacroID() || !TDLoc.isMacroID()) 5049 return false; 5050 SourceManager &SM = getASTContext().getSourceManager(); 5051 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc); 5052 } 5053 } 5054 return false; 5055 }; 5056 5057 bool isTransparent = determineIsTransparent(); 5058 MaybeModedTInfo.setInt((isTransparent << 1) | 1); 5059 return isTransparent; 5060 } 5061 5062 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5063 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(), 5064 nullptr, nullptr); 5065 } 5066 5067 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, 5068 SourceLocation StartLoc, 5069 SourceLocation IdLoc, IdentifierInfo *Id, 5070 TypeSourceInfo *TInfo) { 5071 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 5072 } 5073 5074 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5075 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(), 5076 SourceLocation(), nullptr, nullptr); 5077 } 5078 5079 SourceRange TypedefDecl::getSourceRange() const { 5080 SourceLocation RangeEnd = getLocation(); 5081 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 5082 if (typeIsPostfix(TInfo->getType())) 5083 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 5084 } 5085 return SourceRange(getBeginLoc(), RangeEnd); 5086 } 5087 5088 SourceRange TypeAliasDecl::getSourceRange() const { 5089 SourceLocation RangeEnd = getBeginLoc(); 5090 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) 5091 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 5092 return SourceRange(getBeginLoc(), RangeEnd); 5093 } 5094 5095 void FileScopeAsmDecl::anchor() {} 5096 5097 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, 5098 StringLiteral *Str, 5099 SourceLocation AsmLoc, 5100 SourceLocation RParenLoc) { 5101 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); 5102 } 5103 5104 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, 5105 unsigned ID) { 5106 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(), 5107 SourceLocation()); 5108 } 5109 5110 void EmptyDecl::anchor() {} 5111 5112 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 5113 return new (C, DC) EmptyDecl(DC, L); 5114 } 5115 5116 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5117 return new (C, ID) EmptyDecl(nullptr, SourceLocation()); 5118 } 5119 5120 //===----------------------------------------------------------------------===// 5121 // ImportDecl Implementation 5122 //===----------------------------------------------------------------------===// 5123 5124 /// Retrieve the number of module identifiers needed to name the given 5125 /// module. 5126 static unsigned getNumModuleIdentifiers(Module *Mod) { 5127 unsigned Result = 1; 5128 while (Mod->Parent) { 5129 Mod = Mod->Parent; 5130 ++Result; 5131 } 5132 return Result; 5133 } 5134 5135 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 5136 Module *Imported, 5137 ArrayRef<SourceLocation> IdentifierLocs) 5138 : Decl(Import, DC, StartLoc), ImportedModule(Imported), 5139 NextLocalImportAndComplete(nullptr, true) { 5140 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); 5141 auto *StoredLocs = getTrailingObjects<SourceLocation>(); 5142 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(), 5143 StoredLocs); 5144 } 5145 5146 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 5147 Module *Imported, SourceLocation EndLoc) 5148 : Decl(Import, DC, StartLoc), ImportedModule(Imported), 5149 NextLocalImportAndComplete(nullptr, false) { 5150 *getTrailingObjects<SourceLocation>() = EndLoc; 5151 } 5152 5153 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, 5154 SourceLocation StartLoc, Module *Imported, 5155 ArrayRef<SourceLocation> IdentifierLocs) { 5156 return new (C, DC, 5157 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size())) 5158 ImportDecl(DC, StartLoc, Imported, IdentifierLocs); 5159 } 5160 5161 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, 5162 SourceLocation StartLoc, 5163 Module *Imported, 5164 SourceLocation EndLoc) { 5165 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1)) 5166 ImportDecl(DC, StartLoc, Imported, EndLoc); 5167 Import->setImplicit(); 5168 return Import; 5169 } 5170 5171 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, 5172 unsigned NumLocations) { 5173 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations)) 5174 ImportDecl(EmptyShell()); 5175 } 5176 5177 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { 5178 if (!isImportComplete()) 5179 return None; 5180 5181 const auto *StoredLocs = getTrailingObjects<SourceLocation>(); 5182 return llvm::makeArrayRef(StoredLocs, 5183 getNumModuleIdentifiers(getImportedModule())); 5184 } 5185 5186 SourceRange ImportDecl::getSourceRange() const { 5187 if (!isImportComplete()) 5188 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>()); 5189 5190 return SourceRange(getLocation(), getIdentifierLocs().back()); 5191 } 5192 5193 //===----------------------------------------------------------------------===// 5194 // ExportDecl Implementation 5195 //===----------------------------------------------------------------------===// 5196 5197 void ExportDecl::anchor() {} 5198 5199 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC, 5200 SourceLocation ExportLoc) { 5201 return new (C, DC) ExportDecl(DC, ExportLoc); 5202 } 5203 5204 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5205 return new (C, ID) ExportDecl(nullptr, SourceLocation()); 5206 } 5207