xref: /llvm-project-15.0.7/clang/lib/AST/Decl.cpp (revision 498ee00a)
1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Decl subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclOpenMP.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/PrettyPrinter.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/IdentifierTable.h"
30 #include "clang/Basic/Module.h"
31 #include "clang/Basic/Specifiers.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/Frontend/FrontendDiagnostic.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include <algorithm>
36 
37 using namespace clang;
38 
39 Decl *clang::getPrimaryMergedDecl(Decl *D) {
40   return D->getASTContext().getPrimaryMergedDecl(D);
41 }
42 
43 // Defined here so that it can be inlined into its direct callers.
44 bool Decl::isOutOfLine() const {
45   return !getLexicalDeclContext()->Equals(getDeclContext());
46 }
47 
48 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
49     : Decl(TranslationUnit, nullptr, SourceLocation()),
50       DeclContext(TranslationUnit), Ctx(ctx), AnonymousNamespace(nullptr) {
51   Hidden = Ctx.getLangOpts().ModulesLocalVisibility;
52 }
53 
54 //===----------------------------------------------------------------------===//
55 // NamedDecl Implementation
56 //===----------------------------------------------------------------------===//
57 
58 // Visibility rules aren't rigorously externally specified, but here
59 // are the basic principles behind what we implement:
60 //
61 // 1. An explicit visibility attribute is generally a direct expression
62 // of the user's intent and should be honored.  Only the innermost
63 // visibility attribute applies.  If no visibility attribute applies,
64 // global visibility settings are considered.
65 //
66 // 2. There is one caveat to the above: on or in a template pattern,
67 // an explicit visibility attribute is just a default rule, and
68 // visibility can be decreased by the visibility of template
69 // arguments.  But this, too, has an exception: an attribute on an
70 // explicit specialization or instantiation causes all the visibility
71 // restrictions of the template arguments to be ignored.
72 //
73 // 3. A variable that does not otherwise have explicit visibility can
74 // be restricted by the visibility of its type.
75 //
76 // 4. A visibility restriction is explicit if it comes from an
77 // attribute (or something like it), not a global visibility setting.
78 // When emitting a reference to an external symbol, visibility
79 // restrictions are ignored unless they are explicit.
80 //
81 // 5. When computing the visibility of a non-type, including a
82 // non-type member of a class, only non-type visibility restrictions
83 // are considered: the 'visibility' attribute, global value-visibility
84 // settings, and a few special cases like __private_extern.
85 //
86 // 6. When computing the visibility of a type, including a type member
87 // of a class, only type visibility restrictions are considered:
88 // the 'type_visibility' attribute and global type-visibility settings.
89 // However, a 'visibility' attribute counts as a 'type_visibility'
90 // attribute on any declaration that only has the former.
91 //
92 // The visibility of a "secondary" entity, like a template argument,
93 // is computed using the kind of that entity, not the kind of the
94 // primary entity for which we are computing visibility.  For example,
95 // the visibility of a specialization of either of these templates:
96 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
97 //   template <class T, bool (&compare)(T, X)> class matcher;
98 // is restricted according to the type visibility of the argument 'T',
99 // the type visibility of 'bool(&)(T,X)', and the value visibility of
100 // the argument function 'compare'.  That 'has_match' is a value
101 // and 'matcher' is a type only matters when looking for attributes
102 // and settings from the immediate context.
103 
104 const unsigned IgnoreExplicitVisibilityBit = 2;
105 const unsigned IgnoreAllVisibilityBit = 4;
106 
107 /// Kinds of LV computation.  The linkage side of the computation is
108 /// always the same, but different things can change how visibility is
109 /// computed.
110 enum LVComputationKind {
111   /// Do an LV computation for, ultimately, a type.
112   /// Visibility may be restricted by type visibility settings and
113   /// the visibility of template arguments.
114   LVForType = NamedDecl::VisibilityForType,
115 
116   /// Do an LV computation for, ultimately, a non-type declaration.
117   /// Visibility may be restricted by value visibility settings and
118   /// the visibility of template arguments.
119   LVForValue = NamedDecl::VisibilityForValue,
120 
121   /// Do an LV computation for, ultimately, a type that already has
122   /// some sort of explicit visibility.  Visibility may only be
123   /// restricted by the visibility of template arguments.
124   LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
125 
126   /// Do an LV computation for, ultimately, a non-type declaration
127   /// that already has some sort of explicit visibility.  Visibility
128   /// may only be restricted by the visibility of template arguments.
129   LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit),
130 
131   /// Do an LV computation when we only care about the linkage.
132   LVForLinkageOnly =
133       LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit
134 };
135 
136 /// Does this computation kind permit us to consider additional
137 /// visibility settings from attributes and the like?
138 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
139   return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
140 }
141 
142 /// Given an LVComputationKind, return one of the same type/value sort
143 /// that records that it already has explicit visibility.
144 static LVComputationKind
145 withExplicitVisibilityAlready(LVComputationKind oldKind) {
146   LVComputationKind newKind =
147     static_cast<LVComputationKind>(unsigned(oldKind) |
148                                    IgnoreExplicitVisibilityBit);
149   assert(oldKind != LVForType          || newKind == LVForExplicitType);
150   assert(oldKind != LVForValue         || newKind == LVForExplicitValue);
151   assert(oldKind != LVForExplicitType  || newKind == LVForExplicitType);
152   assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
153   return newKind;
154 }
155 
156 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
157                                                   LVComputationKind kind) {
158   assert(!hasExplicitVisibilityAlready(kind) &&
159          "asking for explicit visibility when we shouldn't be");
160   return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
161 }
162 
163 /// Is the given declaration a "type" or a "value" for the purposes of
164 /// visibility computation?
165 static bool usesTypeVisibility(const NamedDecl *D) {
166   return isa<TypeDecl>(D) ||
167          isa<ClassTemplateDecl>(D) ||
168          isa<ObjCInterfaceDecl>(D);
169 }
170 
171 /// Does the given declaration have member specialization information,
172 /// and if so, is it an explicit specialization?
173 template <class T> static typename
174 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
175 isExplicitMemberSpecialization(const T *D) {
176   if (const MemberSpecializationInfo *member =
177         D->getMemberSpecializationInfo()) {
178     return member->isExplicitSpecialization();
179   }
180   return false;
181 }
182 
183 /// For templates, this question is easier: a member template can't be
184 /// explicitly instantiated, so there's a single bit indicating whether
185 /// or not this is an explicit member specialization.
186 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
187   return D->isMemberSpecialization();
188 }
189 
190 /// Given a visibility attribute, return the explicit visibility
191 /// associated with it.
192 template <class T>
193 static Visibility getVisibilityFromAttr(const T *attr) {
194   switch (attr->getVisibility()) {
195   case T::Default:
196     return DefaultVisibility;
197   case T::Hidden:
198     return HiddenVisibility;
199   case T::Protected:
200     return ProtectedVisibility;
201   }
202   llvm_unreachable("bad visibility kind");
203 }
204 
205 /// Return the explicit visibility of the given declaration.
206 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
207                                     NamedDecl::ExplicitVisibilityKind kind) {
208   // If we're ultimately computing the visibility of a type, look for
209   // a 'type_visibility' attribute before looking for 'visibility'.
210   if (kind == NamedDecl::VisibilityForType) {
211     if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
212       return getVisibilityFromAttr(A);
213     }
214   }
215 
216   // If this declaration has an explicit visibility attribute, use it.
217   if (const auto *A = D->getAttr<VisibilityAttr>()) {
218     return getVisibilityFromAttr(A);
219   }
220 
221   // If we're on Mac OS X, an 'availability' for Mac OS X attribute
222   // implies visibility(default).
223   if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
224     for (const auto *A : D->specific_attrs<AvailabilityAttr>())
225       if (A->getPlatform()->getName().equals("macos"))
226         return DefaultVisibility;
227   }
228 
229   return None;
230 }
231 
232 static LinkageInfo
233 getLVForType(const Type &T, LVComputationKind computation) {
234   if (computation == LVForLinkageOnly)
235     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
236   return T.getLinkageAndVisibility();
237 }
238 
239 /// \brief Get the most restrictive linkage for the types in the given
240 /// template parameter list.  For visibility purposes, template
241 /// parameters are part of the signature of a template.
242 static LinkageInfo
243 getLVForTemplateParameterList(const TemplateParameterList *Params,
244                               LVComputationKind computation) {
245   LinkageInfo LV;
246   for (const NamedDecl *P : *Params) {
247     // Template type parameters are the most common and never
248     // contribute to visibility, pack or not.
249     if (isa<TemplateTypeParmDecl>(P))
250       continue;
251 
252     // Non-type template parameters can be restricted by the value type, e.g.
253     //   template <enum X> class A { ... };
254     // We have to be careful here, though, because we can be dealing with
255     // dependent types.
256     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
257       // Handle the non-pack case first.
258       if (!NTTP->isExpandedParameterPack()) {
259         if (!NTTP->getType()->isDependentType()) {
260           LV.merge(getLVForType(*NTTP->getType(), computation));
261         }
262         continue;
263       }
264 
265       // Look at all the types in an expanded pack.
266       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
267         QualType type = NTTP->getExpansionType(i);
268         if (!type->isDependentType())
269           LV.merge(type->getLinkageAndVisibility());
270       }
271       continue;
272     }
273 
274     // Template template parameters can be restricted by their
275     // template parameters, recursively.
276     const auto *TTP = cast<TemplateTemplateParmDecl>(P);
277 
278     // Handle the non-pack case first.
279     if (!TTP->isExpandedParameterPack()) {
280       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
281                                              computation));
282       continue;
283     }
284 
285     // Look at all expansions in an expanded pack.
286     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
287            i != n; ++i) {
288       LV.merge(getLVForTemplateParameterList(
289           TTP->getExpansionTemplateParameters(i), computation));
290     }
291   }
292 
293   return LV;
294 }
295 
296 /// getLVForDecl - Get the linkage and visibility for the given declaration.
297 static LinkageInfo getLVForDecl(const NamedDecl *D,
298                                 LVComputationKind computation);
299 
300 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
301   const Decl *Ret = nullptr;
302   const DeclContext *DC = D->getDeclContext();
303   while (DC->getDeclKind() != Decl::TranslationUnit) {
304     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
305       Ret = cast<Decl>(DC);
306     DC = DC->getParent();
307   }
308   return Ret;
309 }
310 
311 /// \brief Get the most restrictive linkage for the types and
312 /// declarations in the given template argument list.
313 ///
314 /// Note that we don't take an LVComputationKind because we always
315 /// want to honor the visibility of template arguments in the same way.
316 static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
317                                                 LVComputationKind computation) {
318   LinkageInfo LV;
319 
320   for (const TemplateArgument &Arg : Args) {
321     switch (Arg.getKind()) {
322     case TemplateArgument::Null:
323     case TemplateArgument::Integral:
324     case TemplateArgument::Expression:
325       continue;
326 
327     case TemplateArgument::Type:
328       LV.merge(getLVForType(*Arg.getAsType(), computation));
329       continue;
330 
331     case TemplateArgument::Declaration:
332       if (const auto *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) {
333         assert(!usesTypeVisibility(ND));
334         LV.merge(getLVForDecl(ND, computation));
335       }
336       continue;
337 
338     case TemplateArgument::NullPtr:
339       LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility());
340       continue;
341 
342     case TemplateArgument::Template:
343     case TemplateArgument::TemplateExpansion:
344       if (TemplateDecl *Template =
345               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
346         LV.merge(getLVForDecl(Template, computation));
347       continue;
348 
349     case TemplateArgument::Pack:
350       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
351       continue;
352     }
353     llvm_unreachable("bad template argument kind");
354   }
355 
356   return LV;
357 }
358 
359 static LinkageInfo
360 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
361                              LVComputationKind computation) {
362   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
363 }
364 
365 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
366                         const FunctionTemplateSpecializationInfo *specInfo) {
367   // Include visibility from the template parameters and arguments
368   // only if this is not an explicit instantiation or specialization
369   // with direct explicit visibility.  (Implicit instantiations won't
370   // have a direct attribute.)
371   if (!specInfo->isExplicitInstantiationOrSpecialization())
372     return true;
373 
374   return !fn->hasAttr<VisibilityAttr>();
375 }
376 
377 /// Merge in template-related linkage and visibility for the given
378 /// function template specialization.
379 ///
380 /// We don't need a computation kind here because we can assume
381 /// LVForValue.
382 ///
383 /// \param[out] LV the computation to use for the parent
384 static void
385 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
386                 const FunctionTemplateSpecializationInfo *specInfo,
387                 LVComputationKind computation) {
388   bool considerVisibility =
389     shouldConsiderTemplateVisibility(fn, specInfo);
390 
391   // Merge information from the template parameters.
392   FunctionTemplateDecl *temp = specInfo->getTemplate();
393   LinkageInfo tempLV =
394     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
395   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
396 
397   // Merge information from the template arguments.
398   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
399   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
400   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
401 }
402 
403 /// Does the given declaration have a direct visibility attribute
404 /// that would match the given rules?
405 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
406                                          LVComputationKind computation) {
407   switch (computation) {
408   case LVForType:
409   case LVForExplicitType:
410     if (D->hasAttr<TypeVisibilityAttr>())
411       return true;
412     // fallthrough
413   case LVForValue:
414   case LVForExplicitValue:
415     if (D->hasAttr<VisibilityAttr>())
416       return true;
417     return false;
418   case LVForLinkageOnly:
419     return false;
420   }
421   llvm_unreachable("bad visibility computation kind");
422 }
423 
424 /// Should we consider visibility associated with the template
425 /// arguments and parameters of the given class template specialization?
426 static bool shouldConsiderTemplateVisibility(
427                                  const ClassTemplateSpecializationDecl *spec,
428                                  LVComputationKind computation) {
429   // Include visibility from the template parameters and arguments
430   // only if this is not an explicit instantiation or specialization
431   // with direct explicit visibility (and note that implicit
432   // instantiations won't have a direct attribute).
433   //
434   // Furthermore, we want to ignore template parameters and arguments
435   // for an explicit specialization when computing the visibility of a
436   // member thereof with explicit visibility.
437   //
438   // This is a bit complex; let's unpack it.
439   //
440   // An explicit class specialization is an independent, top-level
441   // declaration.  As such, if it or any of its members has an
442   // explicit visibility attribute, that must directly express the
443   // user's intent, and we should honor it.  The same logic applies to
444   // an explicit instantiation of a member of such a thing.
445 
446   // Fast path: if this is not an explicit instantiation or
447   // specialization, we always want to consider template-related
448   // visibility restrictions.
449   if (!spec->isExplicitInstantiationOrSpecialization())
450     return true;
451 
452   // This is the 'member thereof' check.
453   if (spec->isExplicitSpecialization() &&
454       hasExplicitVisibilityAlready(computation))
455     return false;
456 
457   return !hasDirectVisibilityAttribute(spec, computation);
458 }
459 
460 /// Merge in template-related linkage and visibility for the given
461 /// class template specialization.
462 static void mergeTemplateLV(LinkageInfo &LV,
463                             const ClassTemplateSpecializationDecl *spec,
464                             LVComputationKind computation) {
465   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
466 
467   // Merge information from the template parameters, but ignore
468   // visibility if we're only considering template arguments.
469 
470   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
471   LinkageInfo tempLV =
472     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
473   LV.mergeMaybeWithVisibility(tempLV,
474            considerVisibility && !hasExplicitVisibilityAlready(computation));
475 
476   // Merge information from the template arguments.  We ignore
477   // template-argument visibility if we've got an explicit
478   // instantiation with a visibility attribute.
479   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
480   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
481   if (considerVisibility)
482     LV.mergeVisibility(argsLV);
483   LV.mergeExternalVisibility(argsLV);
484 }
485 
486 /// Should we consider visibility associated with the template
487 /// arguments and parameters of the given variable template
488 /// specialization? As usual, follow class template specialization
489 /// logic up to initialization.
490 static bool shouldConsiderTemplateVisibility(
491                                  const VarTemplateSpecializationDecl *spec,
492                                  LVComputationKind computation) {
493   // Include visibility from the template parameters and arguments
494   // only if this is not an explicit instantiation or specialization
495   // with direct explicit visibility (and note that implicit
496   // instantiations won't have a direct attribute).
497   if (!spec->isExplicitInstantiationOrSpecialization())
498     return true;
499 
500   // An explicit variable specialization is an independent, top-level
501   // declaration.  As such, if it has an explicit visibility attribute,
502   // that must directly express the user's intent, and we should honor
503   // it.
504   if (spec->isExplicitSpecialization() &&
505       hasExplicitVisibilityAlready(computation))
506     return false;
507 
508   return !hasDirectVisibilityAttribute(spec, computation);
509 }
510 
511 /// Merge in template-related linkage and visibility for the given
512 /// variable template specialization. As usual, follow class template
513 /// specialization logic up to initialization.
514 static void mergeTemplateLV(LinkageInfo &LV,
515                             const VarTemplateSpecializationDecl *spec,
516                             LVComputationKind computation) {
517   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
518 
519   // Merge information from the template parameters, but ignore
520   // visibility if we're only considering template arguments.
521 
522   VarTemplateDecl *temp = spec->getSpecializedTemplate();
523   LinkageInfo tempLV =
524     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
525   LV.mergeMaybeWithVisibility(tempLV,
526            considerVisibility && !hasExplicitVisibilityAlready(computation));
527 
528   // Merge information from the template arguments.  We ignore
529   // template-argument visibility if we've got an explicit
530   // instantiation with a visibility attribute.
531   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
532   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
533   if (considerVisibility)
534     LV.mergeVisibility(argsLV);
535   LV.mergeExternalVisibility(argsLV);
536 }
537 
538 static bool useInlineVisibilityHidden(const NamedDecl *D) {
539   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
540   const LangOptions &Opts = D->getASTContext().getLangOpts();
541   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
542     return false;
543 
544   const auto *FD = dyn_cast<FunctionDecl>(D);
545   if (!FD)
546     return false;
547 
548   TemplateSpecializationKind TSK = TSK_Undeclared;
549   if (FunctionTemplateSpecializationInfo *spec
550       = FD->getTemplateSpecializationInfo()) {
551     TSK = spec->getTemplateSpecializationKind();
552   } else if (MemberSpecializationInfo *MSI =
553              FD->getMemberSpecializationInfo()) {
554     TSK = MSI->getTemplateSpecializationKind();
555   }
556 
557   const FunctionDecl *Def = nullptr;
558   // InlineVisibilityHidden only applies to definitions, and
559   // isInlined() only gives meaningful answers on definitions
560   // anyway.
561   return TSK != TSK_ExplicitInstantiationDeclaration &&
562     TSK != TSK_ExplicitInstantiationDefinition &&
563     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
564 }
565 
566 template <typename T> static bool isFirstInExternCContext(T *D) {
567   const T *First = D->getFirstDecl();
568   return First->isInExternCContext();
569 }
570 
571 static bool isSingleLineLanguageLinkage(const Decl &D) {
572   if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
573     if (!SD->hasBraces())
574       return true;
575   return false;
576 }
577 
578 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
579                                               LVComputationKind computation) {
580   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
581          "Not a name having namespace scope");
582   ASTContext &Context = D->getASTContext();
583 
584   // C++ [basic.link]p3:
585   //   A name having namespace scope (3.3.6) has internal linkage if it
586   //   is the name of
587   //     - an object, reference, function or function template that is
588   //       explicitly declared static; or,
589   // (This bullet corresponds to C99 6.2.2p3.)
590   if (const auto *Var = dyn_cast<VarDecl>(D)) {
591     // Explicitly declared static.
592     if (Var->getStorageClass() == SC_Static)
593       return LinkageInfo::internal();
594 
595     // - a non-inline, non-volatile object or reference that is explicitly
596     //   declared const or constexpr and neither explicitly declared extern
597     //   nor previously declared to have external linkage; or (there is no
598     //   equivalent in C99)
599     if (Context.getLangOpts().CPlusPlus &&
600         Var->getType().isConstQualified() &&
601         !Var->getType().isVolatileQualified() &&
602         !Var->isInline()) {
603       const VarDecl *PrevVar = Var->getPreviousDecl();
604       if (PrevVar)
605         return getLVForDecl(PrevVar, computation);
606 
607       if (Var->getStorageClass() != SC_Extern &&
608           Var->getStorageClass() != SC_PrivateExtern &&
609           !isSingleLineLanguageLinkage(*Var))
610         return LinkageInfo::internal();
611     }
612 
613     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
614          PrevVar = PrevVar->getPreviousDecl()) {
615       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
616           Var->getStorageClass() == SC_None)
617         return PrevVar->getLinkageAndVisibility();
618       // Explicitly declared static.
619       if (PrevVar->getStorageClass() == SC_Static)
620         return LinkageInfo::internal();
621     }
622   } else if (const FunctionDecl *Function = D->getAsFunction()) {
623     // C++ [temp]p4:
624     //   A non-member function template can have internal linkage; any
625     //   other template name shall have external linkage.
626 
627     // Explicitly declared static.
628     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
629       return LinkageInfo(InternalLinkage, DefaultVisibility, false);
630   } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
631     //   - a data member of an anonymous union.
632     const VarDecl *VD = IFD->getVarDecl();
633     assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
634     return getLVForNamespaceScopeDecl(VD, computation);
635   }
636   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
637 
638   if (D->isInAnonymousNamespace()) {
639     const auto *Var = dyn_cast<VarDecl>(D);
640     const auto *Func = dyn_cast<FunctionDecl>(D);
641     // FIXME: In C++11 onwards, anonymous namespaces should give decls
642     // within them internal linkage, not unique external linkage.
643     if ((!Var || !isFirstInExternCContext(Var)) &&
644         (!Func || !isFirstInExternCContext(Func)))
645       return LinkageInfo::uniqueExternal();
646   }
647 
648   // Set up the defaults.
649 
650   // C99 6.2.2p5:
651   //   If the declaration of an identifier for an object has file
652   //   scope and no storage-class specifier, its linkage is
653   //   external.
654   LinkageInfo LV;
655 
656   if (!hasExplicitVisibilityAlready(computation)) {
657     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
658       LV.mergeVisibility(*Vis, true);
659     } else {
660       // If we're declared in a namespace with a visibility attribute,
661       // use that namespace's visibility, and it still counts as explicit.
662       for (const DeclContext *DC = D->getDeclContext();
663            !isa<TranslationUnitDecl>(DC);
664            DC = DC->getParent()) {
665         const auto *ND = dyn_cast<NamespaceDecl>(DC);
666         if (!ND) continue;
667         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
668           LV.mergeVisibility(*Vis, true);
669           break;
670         }
671       }
672     }
673 
674     // Add in global settings if the above didn't give us direct visibility.
675     if (!LV.isVisibilityExplicit()) {
676       // Use global type/value visibility as appropriate.
677       Visibility globalVisibility;
678       if (computation == LVForValue) {
679         globalVisibility = Context.getLangOpts().getValueVisibilityMode();
680       } else {
681         assert(computation == LVForType);
682         globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
683       }
684       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
685 
686       // If we're paying attention to global visibility, apply
687       // -finline-visibility-hidden if this is an inline method.
688       if (useInlineVisibilityHidden(D))
689         LV.mergeVisibility(HiddenVisibility, true);
690     }
691   }
692 
693   // C++ [basic.link]p4:
694 
695   //   A name having namespace scope has external linkage if it is the
696   //   name of
697   //
698   //     - an object or reference, unless it has internal linkage; or
699   if (const auto *Var = dyn_cast<VarDecl>(D)) {
700     // GCC applies the following optimization to variables and static
701     // data members, but not to functions:
702     //
703     // Modify the variable's LV by the LV of its type unless this is
704     // C or extern "C".  This follows from [basic.link]p9:
705     //   A type without linkage shall not be used as the type of a
706     //   variable or function with external linkage unless
707     //    - the entity has C language linkage, or
708     //    - the entity is declared within an unnamed namespace, or
709     //    - the entity is not used or is defined in the same
710     //      translation unit.
711     // and [basic.link]p10:
712     //   ...the types specified by all declarations referring to a
713     //   given variable or function shall be identical...
714     // C does not have an equivalent rule.
715     //
716     // Ignore this if we've got an explicit attribute;  the user
717     // probably knows what they're doing.
718     //
719     // Note that we don't want to make the variable non-external
720     // because of this, but unique-external linkage suits us.
721     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) {
722       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
723       if (TypeLV.getLinkage() != ExternalLinkage)
724         return LinkageInfo::uniqueExternal();
725       if (!LV.isVisibilityExplicit())
726         LV.mergeVisibility(TypeLV);
727     }
728 
729     if (Var->getStorageClass() == SC_PrivateExtern)
730       LV.mergeVisibility(HiddenVisibility, true);
731 
732     // Note that Sema::MergeVarDecl already takes care of implementing
733     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
734     // to do it here.
735 
736     // As per function and class template specializations (below),
737     // consider LV for the template and template arguments.  We're at file
738     // scope, so we do not need to worry about nested specializations.
739     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
740       mergeTemplateLV(LV, spec, computation);
741     }
742 
743   //     - a function, unless it has internal linkage; or
744   } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
745     // In theory, we can modify the function's LV by the LV of its
746     // type unless it has C linkage (see comment above about variables
747     // for justification).  In practice, GCC doesn't do this, so it's
748     // just too painful to make work.
749 
750     if (Function->getStorageClass() == SC_PrivateExtern)
751       LV.mergeVisibility(HiddenVisibility, true);
752 
753     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
754     // merging storage classes and visibility attributes, so we don't have to
755     // look at previous decls in here.
756 
757     // In C++, then if the type of the function uses a type with
758     // unique-external linkage, it's not legally usable from outside
759     // this translation unit.  However, we should use the C linkage
760     // rules instead for extern "C" declarations.
761     if (Context.getLangOpts().CPlusPlus &&
762         !Function->isInExternCContext()) {
763       // Only look at the type-as-written. If this function has an auto-deduced
764       // return type, we can't compute the linkage of that type because it could
765       // require looking at the linkage of this function, and we don't need this
766       // for correctness because the type is not part of the function's
767       // signature.
768       // FIXME: This is a hack. We should be able to solve this circularity and
769       // the one in getLVForClassMember for Functions some other way.
770       QualType TypeAsWritten = Function->getType();
771       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
772         TypeAsWritten = TSI->getType();
773       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
774         return LinkageInfo::uniqueExternal();
775     }
776 
777     // Consider LV from the template and the template arguments.
778     // We're at file scope, so we do not need to worry about nested
779     // specializations.
780     if (FunctionTemplateSpecializationInfo *specInfo
781                                = Function->getTemplateSpecializationInfo()) {
782       mergeTemplateLV(LV, Function, specInfo, computation);
783     }
784 
785   //     - a named class (Clause 9), or an unnamed class defined in a
786   //       typedef declaration in which the class has the typedef name
787   //       for linkage purposes (7.1.3); or
788   //     - a named enumeration (7.2), or an unnamed enumeration
789   //       defined in a typedef declaration in which the enumeration
790   //       has the typedef name for linkage purposes (7.1.3); or
791   } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
792     // Unnamed tags have no linkage.
793     if (!Tag->hasNameForLinkage())
794       return LinkageInfo::none();
795 
796     // If this is a class template specialization, consider the
797     // linkage of the template and template arguments.  We're at file
798     // scope, so we do not need to worry about nested specializations.
799     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
800       mergeTemplateLV(LV, spec, computation);
801     }
802 
803   //     - an enumerator belonging to an enumeration with external linkage;
804   } else if (isa<EnumConstantDecl>(D)) {
805     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
806                                       computation);
807     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
808       return LinkageInfo::none();
809     LV.merge(EnumLV);
810 
811   //     - a template, unless it is a function template that has
812   //       internal linkage (Clause 14);
813   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
814     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
815     LinkageInfo tempLV =
816       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
817     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
818 
819   //     - a namespace (7.3), unless it is declared within an unnamed
820   //       namespace.
821   } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
822     return LV;
823 
824   // By extension, we assign external linkage to Objective-C
825   // interfaces.
826   } else if (isa<ObjCInterfaceDecl>(D)) {
827     // fallout
828 
829   } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
830     // A typedef declaration has linkage if it gives a type a name for
831     // linkage purposes.
832     if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
833       return LinkageInfo::none();
834 
835   // Everything not covered here has no linkage.
836   } else {
837     return LinkageInfo::none();
838   }
839 
840   // If we ended up with non-external linkage, visibility should
841   // always be default.
842   if (LV.getLinkage() != ExternalLinkage)
843     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
844 
845   return LV;
846 }
847 
848 static LinkageInfo getLVForClassMember(const NamedDecl *D,
849                                        LVComputationKind computation) {
850   // Only certain class members have linkage.  Note that fields don't
851   // really have linkage, but it's convenient to say they do for the
852   // purposes of calculating linkage of pointer-to-data-member
853   // template arguments.
854   //
855   // Templates also don't officially have linkage, but since we ignore
856   // the C++ standard and look at template arguments when determining
857   // linkage and visibility of a template specialization, we might hit
858   // a template template argument that way. If we do, we need to
859   // consider its linkage.
860   if (!(isa<CXXMethodDecl>(D) ||
861         isa<VarDecl>(D) ||
862         isa<FieldDecl>(D) ||
863         isa<IndirectFieldDecl>(D) ||
864         isa<TagDecl>(D) ||
865         isa<TemplateDecl>(D)))
866     return LinkageInfo::none();
867 
868   LinkageInfo LV;
869 
870   // If we have an explicit visibility attribute, merge that in.
871   if (!hasExplicitVisibilityAlready(computation)) {
872     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
873       LV.mergeVisibility(*Vis, true);
874     // If we're paying attention to global visibility, apply
875     // -finline-visibility-hidden if this is an inline method.
876     //
877     // Note that we do this before merging information about
878     // the class visibility.
879     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
880       LV.mergeVisibility(HiddenVisibility, true);
881   }
882 
883   // If this class member has an explicit visibility attribute, the only
884   // thing that can change its visibility is the template arguments, so
885   // only look for them when processing the class.
886   LVComputationKind classComputation = computation;
887   if (LV.isVisibilityExplicit())
888     classComputation = withExplicitVisibilityAlready(computation);
889 
890   LinkageInfo classLV =
891     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
892   // If the class already has unique-external linkage, we can't improve.
893   if (classLV.getLinkage() == UniqueExternalLinkage)
894     return LinkageInfo::uniqueExternal();
895 
896   if (!isExternallyVisible(classLV.getLinkage()))
897     return LinkageInfo::none();
898 
899 
900   // Otherwise, don't merge in classLV yet, because in certain cases
901   // we need to completely ignore the visibility from it.
902 
903   // Specifically, if this decl exists and has an explicit attribute.
904   const NamedDecl *explicitSpecSuppressor = nullptr;
905 
906   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
907     // If the type of the function uses a type with unique-external
908     // linkage, it's not legally usable from outside this translation unit.
909     // But only look at the type-as-written. If this function has an
910     // auto-deduced return type, we can't compute the linkage of that type
911     // because it could require looking at the linkage of this function, and we
912     // don't need this for correctness because the type is not part of the
913     // function's signature.
914     // FIXME: This is a hack. We should be able to solve this circularity and
915     // the one in getLVForNamespaceScopeDecl for Functions some other way.
916     {
917       QualType TypeAsWritten = MD->getType();
918       if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
919         TypeAsWritten = TSI->getType();
920       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
921         return LinkageInfo::uniqueExternal();
922     }
923     // If this is a method template specialization, use the linkage for
924     // the template parameters and arguments.
925     if (FunctionTemplateSpecializationInfo *spec
926            = MD->getTemplateSpecializationInfo()) {
927       mergeTemplateLV(LV, MD, spec, computation);
928       if (spec->isExplicitSpecialization()) {
929         explicitSpecSuppressor = MD;
930       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
931         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
932       }
933     } else if (isExplicitMemberSpecialization(MD)) {
934       explicitSpecSuppressor = MD;
935     }
936 
937   } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
938     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
939       mergeTemplateLV(LV, spec, computation);
940       if (spec->isExplicitSpecialization()) {
941         explicitSpecSuppressor = spec;
942       } else {
943         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
944         if (isExplicitMemberSpecialization(temp)) {
945           explicitSpecSuppressor = temp->getTemplatedDecl();
946         }
947       }
948     } else if (isExplicitMemberSpecialization(RD)) {
949       explicitSpecSuppressor = RD;
950     }
951 
952   // Static data members.
953   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
954     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
955       mergeTemplateLV(LV, spec, computation);
956 
957     // Modify the variable's linkage by its type, but ignore the
958     // type's visibility unless it's a definition.
959     LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
960     if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
961       LV.mergeVisibility(typeLV);
962     LV.mergeExternalVisibility(typeLV);
963 
964     if (isExplicitMemberSpecialization(VD)) {
965       explicitSpecSuppressor = VD;
966     }
967 
968   // Template members.
969   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
970     bool considerVisibility =
971       (!LV.isVisibilityExplicit() &&
972        !classLV.isVisibilityExplicit() &&
973        !hasExplicitVisibilityAlready(computation));
974     LinkageInfo tempLV =
975       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
976     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
977 
978     if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
979       if (isExplicitMemberSpecialization(redeclTemp)) {
980         explicitSpecSuppressor = temp->getTemplatedDecl();
981       }
982     }
983   }
984 
985   // We should never be looking for an attribute directly on a template.
986   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
987 
988   // If this member is an explicit member specialization, and it has
989   // an explicit attribute, ignore visibility from the parent.
990   bool considerClassVisibility = true;
991   if (explicitSpecSuppressor &&
992       // optimization: hasDVA() is true only with explicit visibility.
993       LV.isVisibilityExplicit() &&
994       classLV.getVisibility() != DefaultVisibility &&
995       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
996     considerClassVisibility = false;
997   }
998 
999   // Finally, merge in information from the class.
1000   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1001   return LV;
1002 }
1003 
1004 void NamedDecl::anchor() { }
1005 
1006 static LinkageInfo computeLVForDecl(const NamedDecl *D,
1007                                     LVComputationKind computation);
1008 
1009 bool NamedDecl::isLinkageValid() const {
1010   if (!hasCachedLinkage())
1011     return true;
1012 
1013   return computeLVForDecl(this, LVForLinkageOnly).getLinkage() ==
1014          getCachedLinkage();
1015 }
1016 
1017 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1018   StringRef name = getName();
1019   if (name.empty()) return SFF_None;
1020 
1021   if (name.front() == 'C')
1022     if (name == "CFStringCreateWithFormat" ||
1023         name == "CFStringCreateWithFormatAndArguments" ||
1024         name == "CFStringAppendFormat" ||
1025         name == "CFStringAppendFormatAndArguments")
1026       return SFF_CFString;
1027   return SFF_None;
1028 }
1029 
1030 Linkage NamedDecl::getLinkageInternal() const {
1031   // We don't care about visibility here, so ask for the cheapest
1032   // possible visibility analysis.
1033   return getLVForDecl(this, LVForLinkageOnly).getLinkage();
1034 }
1035 
1036 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1037   LVComputationKind computation =
1038     (usesTypeVisibility(this) ? LVForType : LVForValue);
1039   return getLVForDecl(this, computation);
1040 }
1041 
1042 static Optional<Visibility>
1043 getExplicitVisibilityAux(const NamedDecl *ND,
1044                          NamedDecl::ExplicitVisibilityKind kind,
1045                          bool IsMostRecent) {
1046   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1047 
1048   // Check the declaration itself first.
1049   if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1050     return V;
1051 
1052   // If this is a member class of a specialization of a class template
1053   // and the corresponding decl has explicit visibility, use that.
1054   if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1055     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1056     if (InstantiatedFrom)
1057       return getVisibilityOf(InstantiatedFrom, kind);
1058   }
1059 
1060   // If there wasn't explicit visibility there, and this is a
1061   // specialization of a class template, check for visibility
1062   // on the pattern.
1063   if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND))
1064     return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
1065                            kind);
1066 
1067   // Use the most recent declaration.
1068   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1069     const NamedDecl *MostRecent = ND->getMostRecentDecl();
1070     if (MostRecent != ND)
1071       return getExplicitVisibilityAux(MostRecent, kind, true);
1072   }
1073 
1074   if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1075     if (Var->isStaticDataMember()) {
1076       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1077       if (InstantiatedFrom)
1078         return getVisibilityOf(InstantiatedFrom, kind);
1079     }
1080 
1081     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1082       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1083                              kind);
1084 
1085     return None;
1086   }
1087   // Also handle function template specializations.
1088   if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1089     // If the function is a specialization of a template with an
1090     // explicit visibility attribute, use that.
1091     if (FunctionTemplateSpecializationInfo *templateInfo
1092           = fn->getTemplateSpecializationInfo())
1093       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1094                              kind);
1095 
1096     // If the function is a member of a specialization of a class template
1097     // and the corresponding decl has explicit visibility, use that.
1098     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1099     if (InstantiatedFrom)
1100       return getVisibilityOf(InstantiatedFrom, kind);
1101 
1102     return None;
1103   }
1104 
1105   // The visibility of a template is stored in the templated decl.
1106   if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1107     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1108 
1109   return None;
1110 }
1111 
1112 Optional<Visibility>
1113 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1114   return getExplicitVisibilityAux(this, kind, false);
1115 }
1116 
1117 static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl,
1118                                    LVComputationKind computation) {
1119   // This lambda has its linkage/visibility determined by its owner.
1120   if (ContextDecl) {
1121     if (isa<ParmVarDecl>(ContextDecl))
1122       DC = ContextDecl->getDeclContext()->getRedeclContext();
1123     else
1124       return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
1125   }
1126 
1127   if (const auto *ND = dyn_cast<NamedDecl>(DC))
1128     return getLVForDecl(ND, computation);
1129 
1130   return LinkageInfo::external();
1131 }
1132 
1133 static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
1134                                      LVComputationKind computation) {
1135   if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1136     if (Function->isInAnonymousNamespace() &&
1137         !Function->isInExternCContext())
1138       return LinkageInfo::uniqueExternal();
1139 
1140     // This is a "void f();" which got merged with a file static.
1141     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1142       return LinkageInfo::internal();
1143 
1144     LinkageInfo LV;
1145     if (!hasExplicitVisibilityAlready(computation)) {
1146       if (Optional<Visibility> Vis =
1147               getExplicitVisibility(Function, computation))
1148         LV.mergeVisibility(*Vis, true);
1149     }
1150 
1151     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1152     // merging storage classes and visibility attributes, so we don't have to
1153     // look at previous decls in here.
1154 
1155     return LV;
1156   }
1157 
1158   if (const auto *Var = dyn_cast<VarDecl>(D)) {
1159     if (Var->hasExternalStorage()) {
1160       if (Var->isInAnonymousNamespace() && !Var->isInExternCContext())
1161         return LinkageInfo::uniqueExternal();
1162 
1163       LinkageInfo LV;
1164       if (Var->getStorageClass() == SC_PrivateExtern)
1165         LV.mergeVisibility(HiddenVisibility, true);
1166       else if (!hasExplicitVisibilityAlready(computation)) {
1167         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1168           LV.mergeVisibility(*Vis, true);
1169       }
1170 
1171       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1172         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1173         if (PrevLV.getLinkage())
1174           LV.setLinkage(PrevLV.getLinkage());
1175         LV.mergeVisibility(PrevLV);
1176       }
1177 
1178       return LV;
1179     }
1180 
1181     if (!Var->isStaticLocal())
1182       return LinkageInfo::none();
1183   }
1184 
1185   ASTContext &Context = D->getASTContext();
1186   if (!Context.getLangOpts().CPlusPlus)
1187     return LinkageInfo::none();
1188 
1189   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1190   if (!OuterD || OuterD->isInvalidDecl())
1191     return LinkageInfo::none();
1192 
1193   LinkageInfo LV;
1194   if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1195     if (!BD->getBlockManglingNumber())
1196       return LinkageInfo::none();
1197 
1198     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1199                          BD->getBlockManglingContextDecl(), computation);
1200   } else {
1201     const auto *FD = cast<FunctionDecl>(OuterD);
1202     if (!FD->isInlined() &&
1203         !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1204       return LinkageInfo::none();
1205 
1206     LV = getLVForDecl(FD, computation);
1207   }
1208   if (!isExternallyVisible(LV.getLinkage()))
1209     return LinkageInfo::none();
1210   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1211                      LV.isVisibilityExplicit());
1212 }
1213 
1214 static inline const CXXRecordDecl*
1215 getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
1216   const CXXRecordDecl *Ret = Record;
1217   while (Record && Record->isLambda()) {
1218     Ret = Record;
1219     if (!Record->getParent()) break;
1220     // Get the Containing Class of this Lambda Class
1221     Record = dyn_cast_or_null<CXXRecordDecl>(
1222       Record->getParent()->getParent());
1223   }
1224   return Ret;
1225 }
1226 
1227 static LinkageInfo computeLVForDecl(const NamedDecl *D,
1228                                     LVComputationKind computation) {
1229   // Internal_linkage attribute overrides other considerations.
1230   if (D->hasAttr<InternalLinkageAttr>())
1231     return LinkageInfo::internal();
1232 
1233   // Objective-C: treat all Objective-C declarations as having external
1234   // linkage.
1235   switch (D->getKind()) {
1236     default:
1237       break;
1238 
1239     // Per C++ [basic.link]p2, only the names of objects, references,
1240     // functions, types, templates, namespaces, and values ever have linkage.
1241     //
1242     // Note that the name of a typedef, namespace alias, using declaration,
1243     // and so on are not the name of the corresponding type, namespace, or
1244     // declaration, so they do *not* have linkage.
1245     case Decl::ImplicitParam:
1246     case Decl::Label:
1247     case Decl::NamespaceAlias:
1248     case Decl::ParmVar:
1249     case Decl::Using:
1250     case Decl::UsingShadow:
1251     case Decl::UsingDirective:
1252       return LinkageInfo::none();
1253 
1254     case Decl::EnumConstant:
1255       // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1256       return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1257 
1258     case Decl::Typedef:
1259     case Decl::TypeAlias:
1260       // A typedef declaration has linkage if it gives a type a name for
1261       // linkage purposes.
1262       if (!D->getASTContext().getLangOpts().CPlusPlus ||
1263           !cast<TypedefNameDecl>(D)
1264                ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1265         return LinkageInfo::none();
1266       break;
1267 
1268     case Decl::TemplateTemplateParm: // count these as external
1269     case Decl::NonTypeTemplateParm:
1270     case Decl::ObjCAtDefsField:
1271     case Decl::ObjCCategory:
1272     case Decl::ObjCCategoryImpl:
1273     case Decl::ObjCCompatibleAlias:
1274     case Decl::ObjCImplementation:
1275     case Decl::ObjCMethod:
1276     case Decl::ObjCProperty:
1277     case Decl::ObjCPropertyImpl:
1278     case Decl::ObjCProtocol:
1279       return LinkageInfo::external();
1280 
1281     case Decl::CXXRecord: {
1282       const auto *Record = cast<CXXRecordDecl>(D);
1283       if (Record->isLambda()) {
1284         if (!Record->getLambdaManglingNumber()) {
1285           // This lambda has no mangling number, so it's internal.
1286           return LinkageInfo::internal();
1287         }
1288 
1289         // This lambda has its linkage/visibility determined:
1290         //  - either by the outermost lambda if that lambda has no mangling
1291         //    number.
1292         //  - or by the parent of the outer most lambda
1293         // This prevents infinite recursion in settings such as nested lambdas
1294         // used in NSDMI's, for e.g.
1295         //  struct L {
1296         //    int t{};
1297         //    int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1298         //  };
1299         const CXXRecordDecl *OuterMostLambda =
1300             getOutermostEnclosingLambda(Record);
1301         if (!OuterMostLambda->getLambdaManglingNumber())
1302           return LinkageInfo::internal();
1303 
1304         return getLVForClosure(
1305                   OuterMostLambda->getDeclContext()->getRedeclContext(),
1306                   OuterMostLambda->getLambdaContextDecl(), computation);
1307       }
1308 
1309       break;
1310     }
1311   }
1312 
1313   // Handle linkage for namespace-scope names.
1314   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1315     return getLVForNamespaceScopeDecl(D, computation);
1316 
1317   // C++ [basic.link]p5:
1318   //   In addition, a member function, static data member, a named
1319   //   class or enumeration of class scope, or an unnamed class or
1320   //   enumeration defined in a class-scope typedef declaration such
1321   //   that the class or enumeration has the typedef name for linkage
1322   //   purposes (7.1.3), has external linkage if the name of the class
1323   //   has external linkage.
1324   if (D->getDeclContext()->isRecord())
1325     return getLVForClassMember(D, computation);
1326 
1327   // C++ [basic.link]p6:
1328   //   The name of a function declared in block scope and the name of
1329   //   an object declared by a block scope extern declaration have
1330   //   linkage. If there is a visible declaration of an entity with
1331   //   linkage having the same name and type, ignoring entities
1332   //   declared outside the innermost enclosing namespace scope, the
1333   //   block scope declaration declares that same entity and receives
1334   //   the linkage of the previous declaration. If there is more than
1335   //   one such matching entity, the program is ill-formed. Otherwise,
1336   //   if no matching entity is found, the block scope entity receives
1337   //   external linkage.
1338   if (D->getDeclContext()->isFunctionOrMethod())
1339     return getLVForLocalDecl(D, computation);
1340 
1341   // C++ [basic.link]p6:
1342   //   Names not covered by these rules have no linkage.
1343   return LinkageInfo::none();
1344 }
1345 
1346 namespace clang {
1347 class LinkageComputer {
1348 public:
1349   static LinkageInfo getLVForDecl(const NamedDecl *D,
1350                                   LVComputationKind computation) {
1351     // Internal_linkage attribute overrides other considerations.
1352     if (D->hasAttr<InternalLinkageAttr>())
1353       return LinkageInfo::internal();
1354 
1355     if (computation == LVForLinkageOnly && D->hasCachedLinkage())
1356       return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1357 
1358     LinkageInfo LV = computeLVForDecl(D, computation);
1359     if (D->hasCachedLinkage())
1360       assert(D->getCachedLinkage() == LV.getLinkage());
1361 
1362     D->setCachedLinkage(LV.getLinkage());
1363 
1364 #ifndef NDEBUG
1365     // In C (because of gnu inline) and in c++ with microsoft extensions an
1366     // static can follow an extern, so we can have two decls with different
1367     // linkages.
1368     const LangOptions &Opts = D->getASTContext().getLangOpts();
1369     if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1370       return LV;
1371 
1372     // We have just computed the linkage for this decl. By induction we know
1373     // that all other computed linkages match, check that the one we just
1374     // computed also does.
1375     NamedDecl *Old = nullptr;
1376     for (auto I : D->redecls()) {
1377       auto *T = cast<NamedDecl>(I);
1378       if (T == D)
1379         continue;
1380       if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1381         Old = T;
1382         break;
1383       }
1384     }
1385     assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1386 #endif
1387 
1388     return LV;
1389   }
1390 };
1391 }
1392 
1393 static LinkageInfo getLVForDecl(const NamedDecl *D,
1394                                 LVComputationKind computation) {
1395   return clang::LinkageComputer::getLVForDecl(D, computation);
1396 }
1397 
1398 void NamedDecl::printName(raw_ostream &os) const {
1399   os << Name;
1400 }
1401 
1402 std::string NamedDecl::getQualifiedNameAsString() const {
1403   std::string QualName;
1404   llvm::raw_string_ostream OS(QualName);
1405   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1406   return OS.str();
1407 }
1408 
1409 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1410   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1411 }
1412 
1413 void NamedDecl::printQualifiedName(raw_ostream &OS,
1414                                    const PrintingPolicy &P) const {
1415   const DeclContext *Ctx = getDeclContext();
1416 
1417   if (Ctx->isFunctionOrMethod()) {
1418     printName(OS);
1419     return;
1420   }
1421 
1422   typedef SmallVector<const DeclContext *, 8> ContextsTy;
1423   ContextsTy Contexts;
1424 
1425   // Collect contexts.
1426   while (Ctx && isa<NamedDecl>(Ctx)) {
1427     Contexts.push_back(Ctx);
1428     Ctx = Ctx->getParent();
1429   }
1430 
1431   for (const DeclContext *DC : reverse(Contexts)) {
1432     if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1433       OS << Spec->getName();
1434       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1435       TemplateSpecializationType::PrintTemplateArgumentList(
1436           OS, TemplateArgs.asArray(), P);
1437     } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1438       if (P.SuppressUnwrittenScope &&
1439           (ND->isAnonymousNamespace() || ND->isInline()))
1440         continue;
1441       if (ND->isAnonymousNamespace()) {
1442         OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1443                                 : "(anonymous namespace)");
1444       }
1445       else
1446         OS << *ND;
1447     } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1448       if (!RD->getIdentifier())
1449         OS << "(anonymous " << RD->getKindName() << ')';
1450       else
1451         OS << *RD;
1452     } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1453       const FunctionProtoType *FT = nullptr;
1454       if (FD->hasWrittenPrototype())
1455         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1456 
1457       OS << *FD << '(';
1458       if (FT) {
1459         unsigned NumParams = FD->getNumParams();
1460         for (unsigned i = 0; i < NumParams; ++i) {
1461           if (i)
1462             OS << ", ";
1463           OS << FD->getParamDecl(i)->getType().stream(P);
1464         }
1465 
1466         if (FT->isVariadic()) {
1467           if (NumParams > 0)
1468             OS << ", ";
1469           OS << "...";
1470         }
1471       }
1472       OS << ')';
1473     } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1474       // C++ [dcl.enum]p10: Each enum-name and each unscoped
1475       // enumerator is declared in the scope that immediately contains
1476       // the enum-specifier. Each scoped enumerator is declared in the
1477       // scope of the enumeration.
1478       if (ED->isScoped() || ED->getIdentifier())
1479         OS << *ED;
1480       else
1481         continue;
1482     } else {
1483       OS << *cast<NamedDecl>(DC);
1484     }
1485     OS << "::";
1486   }
1487 
1488   if (getDeclName() || isa<DecompositionDecl>(this))
1489     OS << *this;
1490   else
1491     OS << "(anonymous)";
1492 }
1493 
1494 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1495                                      const PrintingPolicy &Policy,
1496                                      bool Qualified) const {
1497   if (Qualified)
1498     printQualifiedName(OS, Policy);
1499   else
1500     printName(OS);
1501 }
1502 
1503 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1504   return true;
1505 }
1506 static bool isRedeclarableImpl(...) { return false; }
1507 static bool isRedeclarable(Decl::Kind K) {
1508   switch (K) {
1509 #define DECL(Type, Base) \
1510   case Decl::Type: \
1511     return isRedeclarableImpl((Type##Decl *)nullptr);
1512 #define ABSTRACT_DECL(DECL)
1513 #include "clang/AST/DeclNodes.inc"
1514   }
1515   llvm_unreachable("unknown decl kind");
1516 }
1517 
1518 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1519   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1520 
1521   // Never replace one imported declaration with another; we need both results
1522   // when re-exporting.
1523   if (OldD->isFromASTFile() && isFromASTFile())
1524     return false;
1525 
1526   // A kind mismatch implies that the declaration is not replaced.
1527   if (OldD->getKind() != getKind())
1528     return false;
1529 
1530   // For method declarations, we never replace. (Why?)
1531   if (isa<ObjCMethodDecl>(this))
1532     return false;
1533 
1534   // For parameters, pick the newer one. This is either an error or (in
1535   // Objective-C) permitted as an extension.
1536   if (isa<ParmVarDecl>(this))
1537     return true;
1538 
1539   // Inline namespaces can give us two declarations with the same
1540   // name and kind in the same scope but different contexts; we should
1541   // keep both declarations in this case.
1542   if (!this->getDeclContext()->getRedeclContext()->Equals(
1543           OldD->getDeclContext()->getRedeclContext()))
1544     return false;
1545 
1546   // Using declarations can be replaced if they import the same name from the
1547   // same context.
1548   if (auto *UD = dyn_cast<UsingDecl>(this)) {
1549     ASTContext &Context = getASTContext();
1550     return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1551            Context.getCanonicalNestedNameSpecifier(
1552                cast<UsingDecl>(OldD)->getQualifier());
1553   }
1554   if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1555     ASTContext &Context = getASTContext();
1556     return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1557            Context.getCanonicalNestedNameSpecifier(
1558                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1559   }
1560 
1561   // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
1562   // They can be replaced if they nominate the same namespace.
1563   // FIXME: Is this true even if they have different module visibility?
1564   if (auto *UD = dyn_cast<UsingDirectiveDecl>(this))
1565     return UD->getNominatedNamespace()->getOriginalNamespace() ==
1566            cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
1567                ->getOriginalNamespace();
1568 
1569   if (isRedeclarable(getKind())) {
1570     if (getCanonicalDecl() != OldD->getCanonicalDecl())
1571       return false;
1572 
1573     if (IsKnownNewer)
1574       return true;
1575 
1576     // Check whether this is actually newer than OldD. We want to keep the
1577     // newer declaration. This loop will usually only iterate once, because
1578     // OldD is usually the previous declaration.
1579     for (auto D : redecls()) {
1580       if (D == OldD)
1581         break;
1582 
1583       // If we reach the canonical declaration, then OldD is not actually older
1584       // than this one.
1585       //
1586       // FIXME: In this case, we should not add this decl to the lookup table.
1587       if (D->isCanonicalDecl())
1588         return false;
1589     }
1590 
1591     // It's a newer declaration of the same kind of declaration in the same
1592     // scope: we want this decl instead of the existing one.
1593     return true;
1594   }
1595 
1596   // In all other cases, we need to keep both declarations in case they have
1597   // different visibility. Any attempt to use the name will result in an
1598   // ambiguity if more than one is visible.
1599   return false;
1600 }
1601 
1602 bool NamedDecl::hasLinkage() const {
1603   return getFormalLinkage() != NoLinkage;
1604 }
1605 
1606 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1607   NamedDecl *ND = this;
1608   while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1609     ND = UD->getTargetDecl();
1610 
1611   if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1612     return AD->getClassInterface();
1613 
1614   if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1615     return AD->getNamespace();
1616 
1617   return ND;
1618 }
1619 
1620 bool NamedDecl::isCXXInstanceMember() const {
1621   if (!isCXXClassMember())
1622     return false;
1623 
1624   const NamedDecl *D = this;
1625   if (isa<UsingShadowDecl>(D))
1626     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1627 
1628   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1629     return true;
1630   if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1631     return MD->isInstance();
1632   return false;
1633 }
1634 
1635 //===----------------------------------------------------------------------===//
1636 // DeclaratorDecl Implementation
1637 //===----------------------------------------------------------------------===//
1638 
1639 template <typename DeclT>
1640 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1641   if (decl->getNumTemplateParameterLists() > 0)
1642     return decl->getTemplateParameterList(0)->getTemplateLoc();
1643   else
1644     return decl->getInnerLocStart();
1645 }
1646 
1647 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1648   TypeSourceInfo *TSI = getTypeSourceInfo();
1649   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1650   return SourceLocation();
1651 }
1652 
1653 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1654   if (QualifierLoc) {
1655     // Make sure the extended decl info is allocated.
1656     if (!hasExtInfo()) {
1657       // Save (non-extended) type source info pointer.
1658       auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1659       // Allocate external info struct.
1660       DeclInfo = new (getASTContext()) ExtInfo;
1661       // Restore savedTInfo into (extended) decl info.
1662       getExtInfo()->TInfo = savedTInfo;
1663     }
1664     // Set qualifier info.
1665     getExtInfo()->QualifierLoc = QualifierLoc;
1666   } else {
1667     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1668     if (hasExtInfo()) {
1669       if (getExtInfo()->NumTemplParamLists == 0) {
1670         // Save type source info pointer.
1671         TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1672         // Deallocate the extended decl info.
1673         getASTContext().Deallocate(getExtInfo());
1674         // Restore savedTInfo into (non-extended) decl info.
1675         DeclInfo = savedTInfo;
1676       }
1677       else
1678         getExtInfo()->QualifierLoc = QualifierLoc;
1679     }
1680   }
1681 }
1682 
1683 void DeclaratorDecl::setTemplateParameterListsInfo(
1684     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1685   assert(!TPLists.empty());
1686   // Make sure the extended decl info is allocated.
1687   if (!hasExtInfo()) {
1688     // Save (non-extended) type source info pointer.
1689     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1690     // Allocate external info struct.
1691     DeclInfo = new (getASTContext()) ExtInfo;
1692     // Restore savedTInfo into (extended) decl info.
1693     getExtInfo()->TInfo = savedTInfo;
1694   }
1695   // Set the template parameter lists info.
1696   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1697 }
1698 
1699 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1700   return getTemplateOrInnerLocStart(this);
1701 }
1702 
1703 namespace {
1704 
1705 // Helper function: returns true if QT is or contains a type
1706 // having a postfix component.
1707 bool typeIsPostfix(clang::QualType QT) {
1708   while (true) {
1709     const Type* T = QT.getTypePtr();
1710     switch (T->getTypeClass()) {
1711     default:
1712       return false;
1713     case Type::Pointer:
1714       QT = cast<PointerType>(T)->getPointeeType();
1715       break;
1716     case Type::BlockPointer:
1717       QT = cast<BlockPointerType>(T)->getPointeeType();
1718       break;
1719     case Type::MemberPointer:
1720       QT = cast<MemberPointerType>(T)->getPointeeType();
1721       break;
1722     case Type::LValueReference:
1723     case Type::RValueReference:
1724       QT = cast<ReferenceType>(T)->getPointeeType();
1725       break;
1726     case Type::PackExpansion:
1727       QT = cast<PackExpansionType>(T)->getPattern();
1728       break;
1729     case Type::Paren:
1730     case Type::ConstantArray:
1731     case Type::DependentSizedArray:
1732     case Type::IncompleteArray:
1733     case Type::VariableArray:
1734     case Type::FunctionProto:
1735     case Type::FunctionNoProto:
1736       return true;
1737     }
1738   }
1739 }
1740 
1741 } // namespace
1742 
1743 SourceRange DeclaratorDecl::getSourceRange() const {
1744   SourceLocation RangeEnd = getLocation();
1745   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1746     // If the declaration has no name or the type extends past the name take the
1747     // end location of the type.
1748     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1749       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1750   }
1751   return SourceRange(getOuterLocStart(), RangeEnd);
1752 }
1753 
1754 void QualifierInfo::setTemplateParameterListsInfo(
1755     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1756   // Free previous template parameters (if any).
1757   if (NumTemplParamLists > 0) {
1758     Context.Deallocate(TemplParamLists);
1759     TemplParamLists = nullptr;
1760     NumTemplParamLists = 0;
1761   }
1762   // Set info on matched template parameter lists (if any).
1763   if (!TPLists.empty()) {
1764     TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1765     NumTemplParamLists = TPLists.size();
1766     std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1767   }
1768 }
1769 
1770 //===----------------------------------------------------------------------===//
1771 // VarDecl Implementation
1772 //===----------------------------------------------------------------------===//
1773 
1774 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1775   switch (SC) {
1776   case SC_None:                 break;
1777   case SC_Auto:                 return "auto";
1778   case SC_Extern:               return "extern";
1779   case SC_PrivateExtern:        return "__private_extern__";
1780   case SC_Register:             return "register";
1781   case SC_Static:               return "static";
1782   }
1783 
1784   llvm_unreachable("Invalid storage class");
1785 }
1786 
1787 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1788                  SourceLocation StartLoc, SourceLocation IdLoc,
1789                  IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1790                  StorageClass SC)
1791     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1792       redeclarable_base(C), Init() {
1793   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1794                 "VarDeclBitfields too large!");
1795   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1796                 "ParmVarDeclBitfields too large!");
1797   static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1798                 "NonParmVarDeclBitfields too large!");
1799   AllBits = 0;
1800   VarDeclBits.SClass = SC;
1801   // Everything else is implicitly initialized to false.
1802 }
1803 
1804 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1805                          SourceLocation StartL, SourceLocation IdL,
1806                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1807                          StorageClass S) {
1808   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1809 }
1810 
1811 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1812   return new (C, ID)
1813       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1814               QualType(), nullptr, SC_None);
1815 }
1816 
1817 void VarDecl::setStorageClass(StorageClass SC) {
1818   assert(isLegalForVariable(SC));
1819   VarDeclBits.SClass = SC;
1820 }
1821 
1822 VarDecl::TLSKind VarDecl::getTLSKind() const {
1823   switch (VarDeclBits.TSCSpec) {
1824   case TSCS_unspecified:
1825     if (!hasAttr<ThreadAttr>() &&
1826         !(getASTContext().getLangOpts().OpenMPUseTLS &&
1827           getASTContext().getTargetInfo().isTLSSupported() &&
1828           hasAttr<OMPThreadPrivateDeclAttr>()))
1829       return TLS_None;
1830     return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
1831                 LangOptions::MSVC2015)) ||
1832             hasAttr<OMPThreadPrivateDeclAttr>())
1833                ? TLS_Dynamic
1834                : TLS_Static;
1835   case TSCS___thread: // Fall through.
1836   case TSCS__Thread_local:
1837     return TLS_Static;
1838   case TSCS_thread_local:
1839     return TLS_Dynamic;
1840   }
1841   llvm_unreachable("Unknown thread storage class specifier!");
1842 }
1843 
1844 SourceRange VarDecl::getSourceRange() const {
1845   if (const Expr *Init = getInit()) {
1846     SourceLocation InitEnd = Init->getLocEnd();
1847     // If Init is implicit, ignore its source range and fallback on
1848     // DeclaratorDecl::getSourceRange() to handle postfix elements.
1849     if (InitEnd.isValid() && InitEnd != getLocation())
1850       return SourceRange(getOuterLocStart(), InitEnd);
1851   }
1852   return DeclaratorDecl::getSourceRange();
1853 }
1854 
1855 template<typename T>
1856 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
1857   // C++ [dcl.link]p1: All function types, function names with external linkage,
1858   // and variable names with external linkage have a language linkage.
1859   if (!D.hasExternalFormalLinkage())
1860     return NoLanguageLinkage;
1861 
1862   // Language linkage is a C++ concept, but saying that everything else in C has
1863   // C language linkage fits the implementation nicely.
1864   ASTContext &Context = D.getASTContext();
1865   if (!Context.getLangOpts().CPlusPlus)
1866     return CLanguageLinkage;
1867 
1868   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
1869   // language linkage of the names of class members and the function type of
1870   // class member functions.
1871   const DeclContext *DC = D.getDeclContext();
1872   if (DC->isRecord())
1873     return CXXLanguageLinkage;
1874 
1875   // If the first decl is in an extern "C" context, any other redeclaration
1876   // will have C language linkage. If the first one is not in an extern "C"
1877   // context, we would have reported an error for any other decl being in one.
1878   if (isFirstInExternCContext(&D))
1879     return CLanguageLinkage;
1880   return CXXLanguageLinkage;
1881 }
1882 
1883 template<typename T>
1884 static bool isDeclExternC(const T &D) {
1885   // Since the context is ignored for class members, they can only have C++
1886   // language linkage or no language linkage.
1887   const DeclContext *DC = D.getDeclContext();
1888   if (DC->isRecord()) {
1889     assert(D.getASTContext().getLangOpts().CPlusPlus);
1890     return false;
1891   }
1892 
1893   return D.getLanguageLinkage() == CLanguageLinkage;
1894 }
1895 
1896 LanguageLinkage VarDecl::getLanguageLinkage() const {
1897   return getDeclLanguageLinkage(*this);
1898 }
1899 
1900 bool VarDecl::isExternC() const {
1901   return isDeclExternC(*this);
1902 }
1903 
1904 bool VarDecl::isInExternCContext() const {
1905   return getLexicalDeclContext()->isExternCContext();
1906 }
1907 
1908 bool VarDecl::isInExternCXXContext() const {
1909   return getLexicalDeclContext()->isExternCXXContext();
1910 }
1911 
1912 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
1913 
1914 VarDecl::DefinitionKind
1915 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
1916   // C++ [basic.def]p2:
1917   //   A declaration is a definition unless [...] it contains the 'extern'
1918   //   specifier or a linkage-specification and neither an initializer [...],
1919   //   it declares a non-inline static data member in a class declaration [...],
1920   //   it declares a static data member outside a class definition and the variable
1921   //   was defined within the class with the constexpr specifier [...],
1922   // C++1y [temp.expl.spec]p15:
1923   //   An explicit specialization of a static data member or an explicit
1924   //   specialization of a static data member template is a definition if the
1925   //   declaration includes an initializer; otherwise, it is a declaration.
1926   //
1927   // FIXME: How do you declare (but not define) a partial specialization of
1928   // a static data member template outside the containing class?
1929   if (isStaticDataMember()) {
1930     if (isOutOfLine() &&
1931         !(getCanonicalDecl()->isInline() &&
1932           getCanonicalDecl()->isConstexpr()) &&
1933         (hasInit() ||
1934          // If the first declaration is out-of-line, this may be an
1935          // instantiation of an out-of-line partial specialization of a variable
1936          // template for which we have not yet instantiated the initializer.
1937          (getFirstDecl()->isOutOfLine()
1938               ? getTemplateSpecializationKind() == TSK_Undeclared
1939               : getTemplateSpecializationKind() !=
1940                     TSK_ExplicitSpecialization) ||
1941          isa<VarTemplatePartialSpecializationDecl>(this)))
1942       return Definition;
1943     else if (!isOutOfLine() && isInline())
1944       return Definition;
1945     else
1946       return DeclarationOnly;
1947   }
1948   // C99 6.7p5:
1949   //   A definition of an identifier is a declaration for that identifier that
1950   //   [...] causes storage to be reserved for that object.
1951   // Note: that applies for all non-file-scope objects.
1952   // C99 6.9.2p1:
1953   //   If the declaration of an identifier for an object has file scope and an
1954   //   initializer, the declaration is an external definition for the identifier
1955   if (hasInit())
1956     return Definition;
1957 
1958   if (hasDefiningAttr())
1959     return Definition;
1960 
1961   if (const auto *SAA = getAttr<SelectAnyAttr>())
1962     if (!SAA->isInherited())
1963       return Definition;
1964 
1965   // A variable template specialization (other than a static data member
1966   // template or an explicit specialization) is a declaration until we
1967   // instantiate its initializer.
1968   if (isa<VarTemplateSpecializationDecl>(this) &&
1969       getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
1970     return DeclarationOnly;
1971 
1972   if (hasExternalStorage())
1973     return DeclarationOnly;
1974 
1975   // [dcl.link] p7:
1976   //   A declaration directly contained in a linkage-specification is treated
1977   //   as if it contains the extern specifier for the purpose of determining
1978   //   the linkage of the declared name and whether it is a definition.
1979   if (isSingleLineLanguageLinkage(*this))
1980     return DeclarationOnly;
1981 
1982   // C99 6.9.2p2:
1983   //   A declaration of an object that has file scope without an initializer,
1984   //   and without a storage class specifier or the scs 'static', constitutes
1985   //   a tentative definition.
1986   // No such thing in C++.
1987   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
1988     return TentativeDefinition;
1989 
1990   // What's left is (in C, block-scope) declarations without initializers or
1991   // external storage. These are definitions.
1992   return Definition;
1993 }
1994 
1995 VarDecl *VarDecl::getActingDefinition() {
1996   DefinitionKind Kind = isThisDeclarationADefinition();
1997   if (Kind != TentativeDefinition)
1998     return nullptr;
1999 
2000   VarDecl *LastTentative = nullptr;
2001   VarDecl *First = getFirstDecl();
2002   for (auto I : First->redecls()) {
2003     Kind = I->isThisDeclarationADefinition();
2004     if (Kind == Definition)
2005       return nullptr;
2006     else if (Kind == TentativeDefinition)
2007       LastTentative = I;
2008   }
2009   return LastTentative;
2010 }
2011 
2012 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2013   VarDecl *First = getFirstDecl();
2014   for (auto I : First->redecls()) {
2015     if (I->isThisDeclarationADefinition(C) == Definition)
2016       return I;
2017   }
2018   return nullptr;
2019 }
2020 
2021 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2022   DefinitionKind Kind = DeclarationOnly;
2023 
2024   const VarDecl *First = getFirstDecl();
2025   for (auto I : First->redecls()) {
2026     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2027     if (Kind == Definition)
2028       break;
2029   }
2030 
2031   return Kind;
2032 }
2033 
2034 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2035   for (auto I : redecls()) {
2036     if (auto Expr = I->getInit()) {
2037       D = I;
2038       return Expr;
2039     }
2040   }
2041   return nullptr;
2042 }
2043 
2044 bool VarDecl::hasInit() const {
2045   if (auto *P = dyn_cast<ParmVarDecl>(this))
2046     if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2047       return false;
2048 
2049   return !Init.isNull();
2050 }
2051 
2052 Expr *VarDecl::getInit() {
2053   if (!hasInit())
2054     return nullptr;
2055 
2056   if (auto *S = Init.dyn_cast<Stmt *>())
2057     return cast<Expr>(S);
2058 
2059   return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2060 }
2061 
2062 Stmt **VarDecl::getInitAddress() {
2063   if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2064     return &ES->Value;
2065 
2066   return Init.getAddrOfPtr1();
2067 }
2068 
2069 bool VarDecl::isOutOfLine() const {
2070   if (Decl::isOutOfLine())
2071     return true;
2072 
2073   if (!isStaticDataMember())
2074     return false;
2075 
2076   // If this static data member was instantiated from a static data member of
2077   // a class template, check whether that static data member was defined
2078   // out-of-line.
2079   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2080     return VD->isOutOfLine();
2081 
2082   return false;
2083 }
2084 
2085 void VarDecl::setInit(Expr *I) {
2086   if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2087     Eval->~EvaluatedStmt();
2088     getASTContext().Deallocate(Eval);
2089   }
2090 
2091   Init = I;
2092 }
2093 
2094 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
2095   const LangOptions &Lang = C.getLangOpts();
2096 
2097   if (!Lang.CPlusPlus)
2098     return false;
2099 
2100   // In C++11, any variable of reference type can be used in a constant
2101   // expression if it is initialized by a constant expression.
2102   if (Lang.CPlusPlus11 && getType()->isReferenceType())
2103     return true;
2104 
2105   // Only const objects can be used in constant expressions in C++. C++98 does
2106   // not require the variable to be non-volatile, but we consider this to be a
2107   // defect.
2108   if (!getType().isConstQualified() || getType().isVolatileQualified())
2109     return false;
2110 
2111   // In C++, const, non-volatile variables of integral or enumeration types
2112   // can be used in constant expressions.
2113   if (getType()->isIntegralOrEnumerationType())
2114     return true;
2115 
2116   // Additionally, in C++11, non-volatile constexpr variables can be used in
2117   // constant expressions.
2118   return Lang.CPlusPlus11 && isConstexpr();
2119 }
2120 
2121 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2122 /// form, which contains extra information on the evaluated value of the
2123 /// initializer.
2124 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2125   auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2126   if (!Eval) {
2127     // Note: EvaluatedStmt contains an APValue, which usually holds
2128     // resources not allocated from the ASTContext.  We need to do some
2129     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2130     // where we can detect whether there's anything to clean up or not.
2131     Eval = new (getASTContext()) EvaluatedStmt;
2132     Eval->Value = Init.get<Stmt *>();
2133     Init = Eval;
2134   }
2135   return Eval;
2136 }
2137 
2138 APValue *VarDecl::evaluateValue() const {
2139   SmallVector<PartialDiagnosticAt, 8> Notes;
2140   return evaluateValue(Notes);
2141 }
2142 
2143 namespace {
2144 // Destroy an APValue that was allocated in an ASTContext.
2145 void DestroyAPValue(void* UntypedValue) {
2146   static_cast<APValue*>(UntypedValue)->~APValue();
2147 }
2148 } // namespace
2149 
2150 APValue *VarDecl::evaluateValue(
2151     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2152   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2153 
2154   // We only produce notes indicating why an initializer is non-constant the
2155   // first time it is evaluated. FIXME: The notes won't always be emitted the
2156   // first time we try evaluation, so might not be produced at all.
2157   if (Eval->WasEvaluated)
2158     return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
2159 
2160   const auto *Init = cast<Expr>(Eval->Value);
2161   assert(!Init->isValueDependent());
2162 
2163   if (Eval->IsEvaluating) {
2164     // FIXME: Produce a diagnostic for self-initialization.
2165     Eval->CheckedICE = true;
2166     Eval->IsICE = false;
2167     return nullptr;
2168   }
2169 
2170   Eval->IsEvaluating = true;
2171 
2172   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2173                                             this, Notes);
2174 
2175   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2176   // or that it's empty (so that there's nothing to clean up) if evaluation
2177   // failed.
2178   if (!Result)
2179     Eval->Evaluated = APValue();
2180   else if (Eval->Evaluated.needsCleanup())
2181     getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated);
2182 
2183   Eval->IsEvaluating = false;
2184   Eval->WasEvaluated = true;
2185 
2186   // In C++11, we have determined whether the initializer was a constant
2187   // expression as a side-effect.
2188   if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2189     Eval->CheckedICE = true;
2190     Eval->IsICE = Result && Notes.empty();
2191   }
2192 
2193   return Result ? &Eval->Evaluated : nullptr;
2194 }
2195 
2196 APValue *VarDecl::getEvaluatedValue() const {
2197   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2198     if (Eval->WasEvaluated)
2199       return &Eval->Evaluated;
2200 
2201   return nullptr;
2202 }
2203 
2204 bool VarDecl::isInitKnownICE() const {
2205   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2206     return Eval->CheckedICE;
2207 
2208   return false;
2209 }
2210 
2211 bool VarDecl::isInitICE() const {
2212   assert(isInitKnownICE() &&
2213          "Check whether we already know that the initializer is an ICE");
2214   return Init.get<EvaluatedStmt *>()->IsICE;
2215 }
2216 
2217 bool VarDecl::checkInitIsICE() const {
2218   // Initializers of weak variables are never ICEs.
2219   if (isWeak())
2220     return false;
2221 
2222   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2223   if (Eval->CheckedICE)
2224     // We have already checked whether this subexpression is an
2225     // integral constant expression.
2226     return Eval->IsICE;
2227 
2228   const auto *Init = cast<Expr>(Eval->Value);
2229   assert(!Init->isValueDependent());
2230 
2231   // In C++11, evaluate the initializer to check whether it's a constant
2232   // expression.
2233   if (getASTContext().getLangOpts().CPlusPlus11) {
2234     SmallVector<PartialDiagnosticAt, 8> Notes;
2235     evaluateValue(Notes);
2236     return Eval->IsICE;
2237   }
2238 
2239   // It's an ICE whether or not the definition we found is
2240   // out-of-line.  See DR 721 and the discussion in Clang PR
2241   // 6206 for details.
2242 
2243   if (Eval->CheckingICE)
2244     return false;
2245   Eval->CheckingICE = true;
2246 
2247   Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2248   Eval->CheckingICE = false;
2249   Eval->CheckedICE = true;
2250   return Eval->IsICE;
2251 }
2252 
2253 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2254   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2255     return cast<VarDecl>(MSI->getInstantiatedFrom());
2256 
2257   return nullptr;
2258 }
2259 
2260 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2261   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2262     return Spec->getSpecializationKind();
2263 
2264   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2265     return MSI->getTemplateSpecializationKind();
2266 
2267   return TSK_Undeclared;
2268 }
2269 
2270 SourceLocation VarDecl::getPointOfInstantiation() const {
2271   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2272     return Spec->getPointOfInstantiation();
2273 
2274   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2275     return MSI->getPointOfInstantiation();
2276 
2277   return SourceLocation();
2278 }
2279 
2280 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2281   return getASTContext().getTemplateOrSpecializationInfo(this)
2282       .dyn_cast<VarTemplateDecl *>();
2283 }
2284 
2285 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2286   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2287 }
2288 
2289 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2290   if (isStaticDataMember())
2291     // FIXME: Remove ?
2292     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2293     return getASTContext().getTemplateOrSpecializationInfo(this)
2294         .dyn_cast<MemberSpecializationInfo *>();
2295   return nullptr;
2296 }
2297 
2298 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2299                                          SourceLocation PointOfInstantiation) {
2300   assert((isa<VarTemplateSpecializationDecl>(this) ||
2301           getMemberSpecializationInfo()) &&
2302          "not a variable or static data member template specialization");
2303 
2304   if (VarTemplateSpecializationDecl *Spec =
2305           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2306     Spec->setSpecializationKind(TSK);
2307     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2308         Spec->getPointOfInstantiation().isInvalid())
2309       Spec->setPointOfInstantiation(PointOfInstantiation);
2310   }
2311 
2312   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2313     MSI->setTemplateSpecializationKind(TSK);
2314     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2315         MSI->getPointOfInstantiation().isInvalid())
2316       MSI->setPointOfInstantiation(PointOfInstantiation);
2317   }
2318 }
2319 
2320 void
2321 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2322                                             TemplateSpecializationKind TSK) {
2323   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2324          "Previous template or instantiation?");
2325   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2326 }
2327 
2328 //===----------------------------------------------------------------------===//
2329 // ParmVarDecl Implementation
2330 //===----------------------------------------------------------------------===//
2331 
2332 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2333                                  SourceLocation StartLoc,
2334                                  SourceLocation IdLoc, IdentifierInfo *Id,
2335                                  QualType T, TypeSourceInfo *TInfo,
2336                                  StorageClass S, Expr *DefArg) {
2337   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2338                                  S, DefArg);
2339 }
2340 
2341 QualType ParmVarDecl::getOriginalType() const {
2342   TypeSourceInfo *TSI = getTypeSourceInfo();
2343   QualType T = TSI ? TSI->getType() : getType();
2344   if (const auto *DT = dyn_cast<DecayedType>(T))
2345     return DT->getOriginalType();
2346   return T;
2347 }
2348 
2349 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2350   return new (C, ID)
2351       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2352                   nullptr, QualType(), nullptr, SC_None, nullptr);
2353 }
2354 
2355 SourceRange ParmVarDecl::getSourceRange() const {
2356   if (!hasInheritedDefaultArg()) {
2357     SourceRange ArgRange = getDefaultArgRange();
2358     if (ArgRange.isValid())
2359       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2360   }
2361 
2362   // DeclaratorDecl considers the range of postfix types as overlapping with the
2363   // declaration name, but this is not the case with parameters in ObjC methods.
2364   if (isa<ObjCMethodDecl>(getDeclContext()))
2365     return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
2366 
2367   return DeclaratorDecl::getSourceRange();
2368 }
2369 
2370 Expr *ParmVarDecl::getDefaultArg() {
2371   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2372   assert(!hasUninstantiatedDefaultArg() &&
2373          "Default argument is not yet instantiated!");
2374 
2375   Expr *Arg = getInit();
2376   if (auto *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
2377     return E->getSubExpr();
2378 
2379   return Arg;
2380 }
2381 
2382 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2383   ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2384   Init = defarg;
2385 }
2386 
2387 SourceRange ParmVarDecl::getDefaultArgRange() const {
2388   switch (ParmVarDeclBits.DefaultArgKind) {
2389   case DAK_None:
2390   case DAK_Unparsed:
2391     // Nothing we can do here.
2392     return SourceRange();
2393 
2394   case DAK_Uninstantiated:
2395     return getUninstantiatedDefaultArg()->getSourceRange();
2396 
2397   case DAK_Normal:
2398     if (const Expr *E = getInit())
2399       return E->getSourceRange();
2400 
2401     // Missing an actual expression, may be invalid.
2402     return SourceRange();
2403   }
2404   llvm_unreachable("Invalid default argument kind.");
2405 }
2406 
2407 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2408   ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2409   Init = arg;
2410 }
2411 
2412 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2413   assert(hasUninstantiatedDefaultArg() &&
2414          "Wrong kind of initialization expression!");
2415   return cast_or_null<Expr>(Init.get<Stmt *>());
2416 }
2417 
2418 bool ParmVarDecl::hasDefaultArg() const {
2419   // FIXME: We should just return false for DAK_None here once callers are
2420   // prepared for the case that we encountered an invalid default argument and
2421   // were unable to even build an invalid expression.
2422   return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2423          !Init.isNull();
2424 }
2425 
2426 bool ParmVarDecl::isParameterPack() const {
2427   return isa<PackExpansionType>(getType());
2428 }
2429 
2430 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2431   getASTContext().setParameterIndex(this, parameterIndex);
2432   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2433 }
2434 
2435 unsigned ParmVarDecl::getParameterIndexLarge() const {
2436   return getASTContext().getParameterIndex(this);
2437 }
2438 
2439 //===----------------------------------------------------------------------===//
2440 // FunctionDecl Implementation
2441 //===----------------------------------------------------------------------===//
2442 
2443 void FunctionDecl::getNameForDiagnostic(
2444     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2445   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2446   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2447   if (TemplateArgs)
2448     TemplateSpecializationType::PrintTemplateArgumentList(
2449         OS, TemplateArgs->asArray(), Policy);
2450 }
2451 
2452 bool FunctionDecl::isVariadic() const {
2453   if (const auto *FT = getType()->getAs<FunctionProtoType>())
2454     return FT->isVariadic();
2455   return false;
2456 }
2457 
2458 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2459   for (auto I : redecls()) {
2460     if (I->Body || I->IsLateTemplateParsed) {
2461       Definition = I;
2462       return true;
2463     }
2464   }
2465 
2466   return false;
2467 }
2468 
2469 bool FunctionDecl::hasTrivialBody() const
2470 {
2471   Stmt *S = getBody();
2472   if (!S) {
2473     // Since we don't have a body for this function, we don't know if it's
2474     // trivial or not.
2475     return false;
2476   }
2477 
2478   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2479     return true;
2480   return false;
2481 }
2482 
2483 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2484   for (auto I : redecls()) {
2485     if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed ||
2486         I->hasDefiningAttr()) {
2487       Definition = I->IsDeleted ? I->getCanonicalDecl() : I;
2488       return true;
2489     }
2490   }
2491 
2492   return false;
2493 }
2494 
2495 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2496   if (!hasBody(Definition))
2497     return nullptr;
2498 
2499   if (Definition->Body)
2500     return Definition->Body.get(getASTContext().getExternalSource());
2501 
2502   return nullptr;
2503 }
2504 
2505 void FunctionDecl::setBody(Stmt *B) {
2506   Body = B;
2507   if (B)
2508     EndRangeLoc = B->getLocEnd();
2509 }
2510 
2511 void FunctionDecl::setPure(bool P) {
2512   IsPure = P;
2513   if (P)
2514     if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2515       Parent->markedVirtualFunctionPure();
2516 }
2517 
2518 template<std::size_t Len>
2519 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2520   IdentifierInfo *II = ND->getIdentifier();
2521   return II && II->isStr(Str);
2522 }
2523 
2524 bool FunctionDecl::isMain() const {
2525   const TranslationUnitDecl *tunit =
2526     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2527   return tunit &&
2528          !tunit->getASTContext().getLangOpts().Freestanding &&
2529          isNamed(this, "main");
2530 }
2531 
2532 bool FunctionDecl::isMSVCRTEntryPoint() const {
2533   const TranslationUnitDecl *TUnit =
2534       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2535   if (!TUnit)
2536     return false;
2537 
2538   // Even though we aren't really targeting MSVCRT if we are freestanding,
2539   // semantic analysis for these functions remains the same.
2540 
2541   // MSVCRT entry points only exist on MSVCRT targets.
2542   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2543     return false;
2544 
2545   // Nameless functions like constructors cannot be entry points.
2546   if (!getIdentifier())
2547     return false;
2548 
2549   return llvm::StringSwitch<bool>(getName())
2550       .Cases("main",     // an ANSI console app
2551              "wmain",    // a Unicode console App
2552              "WinMain",  // an ANSI GUI app
2553              "wWinMain", // a Unicode GUI app
2554              "DllMain",  // a DLL
2555              true)
2556       .Default(false);
2557 }
2558 
2559 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2560   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2561   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2562          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2563          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2564          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2565 
2566   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2567     return false;
2568 
2569   const auto *proto = getType()->castAs<FunctionProtoType>();
2570   if (proto->getNumParams() != 2 || proto->isVariadic())
2571     return false;
2572 
2573   ASTContext &Context =
2574     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2575       ->getASTContext();
2576 
2577   // The result type and first argument type are constant across all
2578   // these operators.  The second argument must be exactly void*.
2579   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2580 }
2581 
2582 bool FunctionDecl::isReplaceableGlobalAllocationFunction() const {
2583   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2584     return false;
2585   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2586       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2587       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2588       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2589     return false;
2590 
2591   if (isa<CXXRecordDecl>(getDeclContext()))
2592     return false;
2593 
2594   // This can only fail for an invalid 'operator new' declaration.
2595   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2596     return false;
2597 
2598   const auto *FPT = getType()->castAs<FunctionProtoType>();
2599   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
2600     return false;
2601 
2602   // If this is a single-parameter function, it must be a replaceable global
2603   // allocation or deallocation function.
2604   if (FPT->getNumParams() == 1)
2605     return true;
2606 
2607   unsigned Params = 1;
2608   QualType Ty = FPT->getParamType(Params);
2609   ASTContext &Ctx = getASTContext();
2610 
2611   auto Consume = [&] {
2612     ++Params;
2613     Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
2614   };
2615 
2616   // In C++14, the next parameter can be a 'std::size_t' for sized delete.
2617   bool IsSizedDelete = false;
2618   if (Ctx.getLangOpts().SizedDeallocation &&
2619       (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2620        getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
2621       Ctx.hasSameType(Ty, Ctx.getSizeType())) {
2622     IsSizedDelete = true;
2623     Consume();
2624   }
2625 
2626   // In C++17, the next parameter can be a 'std::align_val_t' for aligned
2627   // new/delete.
2628   if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT())
2629     Consume();
2630 
2631   // Finally, if this is not a sized delete, the final parameter can
2632   // be a 'const std::nothrow_t&'.
2633   if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
2634     Ty = Ty->getPointeeType();
2635     if (Ty.getCVRQualifiers() != Qualifiers::Const)
2636       return false;
2637     const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2638     if (RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace())
2639       Consume();
2640   }
2641 
2642   return Params == FPT->getNumParams();
2643 }
2644 
2645 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
2646   return getDeclLanguageLinkage(*this);
2647 }
2648 
2649 bool FunctionDecl::isExternC() const {
2650   return isDeclExternC(*this);
2651 }
2652 
2653 bool FunctionDecl::isInExternCContext() const {
2654   return getLexicalDeclContext()->isExternCContext();
2655 }
2656 
2657 bool FunctionDecl::isInExternCXXContext() const {
2658   return getLexicalDeclContext()->isExternCXXContext();
2659 }
2660 
2661 bool FunctionDecl::isGlobal() const {
2662   if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
2663     return Method->isStatic();
2664 
2665   if (getCanonicalDecl()->getStorageClass() == SC_Static)
2666     return false;
2667 
2668   for (const DeclContext *DC = getDeclContext();
2669        DC->isNamespace();
2670        DC = DC->getParent()) {
2671     if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
2672       if (!Namespace->getDeclName())
2673         return false;
2674       break;
2675     }
2676   }
2677 
2678   return true;
2679 }
2680 
2681 bool FunctionDecl::isNoReturn() const {
2682   if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2683       hasAttr<C11NoReturnAttr>())
2684     return true;
2685 
2686   if (auto *FnTy = getType()->getAs<FunctionType>())
2687     return FnTy->getNoReturnAttr();
2688 
2689   return false;
2690 }
2691 
2692 void
2693 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
2694   redeclarable_base::setPreviousDecl(PrevDecl);
2695 
2696   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
2697     FunctionTemplateDecl *PrevFunTmpl
2698       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
2699     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
2700     FunTmpl->setPreviousDecl(PrevFunTmpl);
2701   }
2702 
2703   if (PrevDecl && PrevDecl->IsInline)
2704     IsInline = true;
2705 }
2706 
2707 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
2708 
2709 /// \brief Returns a value indicating whether this function
2710 /// corresponds to a builtin function.
2711 ///
2712 /// The function corresponds to a built-in function if it is
2713 /// declared at translation scope or within an extern "C" block and
2714 /// its name matches with the name of a builtin. The returned value
2715 /// will be 0 for functions that do not correspond to a builtin, a
2716 /// value of type \c Builtin::ID if in the target-independent range
2717 /// \c [1,Builtin::First), or a target-specific builtin value.
2718 unsigned FunctionDecl::getBuiltinID() const {
2719   if (!getIdentifier())
2720     return 0;
2721 
2722   unsigned BuiltinID = getIdentifier()->getBuiltinID();
2723   if (!BuiltinID)
2724     return 0;
2725 
2726   ASTContext &Context = getASTContext();
2727   if (Context.getLangOpts().CPlusPlus) {
2728     const auto *LinkageDecl =
2729         dyn_cast<LinkageSpecDecl>(getFirstDecl()->getDeclContext());
2730     // In C++, the first declaration of a builtin is always inside an implicit
2731     // extern "C".
2732     // FIXME: A recognised library function may not be directly in an extern "C"
2733     // declaration, for instance "extern "C" { namespace std { decl } }".
2734     if (!LinkageDecl) {
2735       if (BuiltinID == Builtin::BI__GetExceptionInfo &&
2736           Context.getTargetInfo().getCXXABI().isMicrosoft())
2737         return Builtin::BI__GetExceptionInfo;
2738       return 0;
2739     }
2740     if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
2741       return 0;
2742   }
2743 
2744   // If the function is marked "overloadable", it has a different mangled name
2745   // and is not the C library function.
2746   if (hasAttr<OverloadableAttr>())
2747     return 0;
2748 
2749   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2750     return BuiltinID;
2751 
2752   // This function has the name of a known C library
2753   // function. Determine whether it actually refers to the C library
2754   // function or whether it just has the same name.
2755 
2756   // If this is a static function, it's not a builtin.
2757   if (getStorageClass() == SC_Static)
2758     return 0;
2759 
2760   // OpenCL v1.2 s6.9.f - The library functions defined in
2761   // the C99 standard headers are not available.
2762   if (Context.getLangOpts().OpenCL &&
2763       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2764     return 0;
2765 
2766   return BuiltinID;
2767 }
2768 
2769 
2770 /// getNumParams - Return the number of parameters this function must have
2771 /// based on its FunctionType.  This is the length of the ParamInfo array
2772 /// after it has been created.
2773 unsigned FunctionDecl::getNumParams() const {
2774   const auto *FPT = getType()->getAs<FunctionProtoType>();
2775   return FPT ? FPT->getNumParams() : 0;
2776 }
2777 
2778 void FunctionDecl::setParams(ASTContext &C,
2779                              ArrayRef<ParmVarDecl *> NewParamInfo) {
2780   assert(!ParamInfo && "Already has param info!");
2781   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
2782 
2783   // Zero params -> null pointer.
2784   if (!NewParamInfo.empty()) {
2785     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
2786     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
2787   }
2788 }
2789 
2790 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
2791   assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
2792 
2793   if (!NewDecls.empty()) {
2794     NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
2795     std::copy(NewDecls.begin(), NewDecls.end(), A);
2796     DeclsInPrototypeScope = llvm::makeArrayRef(A, NewDecls.size());
2797     // Move declarations introduced in prototype to the function context.
2798     for (auto I : NewDecls) {
2799       DeclContext *DC = I->getDeclContext();
2800       // Forward-declared reference to an enumeration is not added to
2801       // declaration scope, so skip declaration that is absent from its
2802       // declaration contexts.
2803       if (DC->containsDecl(I)) {
2804           DC->removeDecl(I);
2805           I->setDeclContext(this);
2806           addDecl(I);
2807       }
2808     }
2809   }
2810 }
2811 
2812 /// getMinRequiredArguments - Returns the minimum number of arguments
2813 /// needed to call this function. This may be fewer than the number of
2814 /// function parameters, if some of the parameters have default
2815 /// arguments (in C++) or are parameter packs (C++11).
2816 unsigned FunctionDecl::getMinRequiredArguments() const {
2817   if (!getASTContext().getLangOpts().CPlusPlus)
2818     return getNumParams();
2819 
2820   unsigned NumRequiredArgs = 0;
2821   for (auto *Param : parameters())
2822     if (!Param->isParameterPack() && !Param->hasDefaultArg())
2823       ++NumRequiredArgs;
2824   return NumRequiredArgs;
2825 }
2826 
2827 /// \brief The combination of the extern and inline keywords under MSVC forces
2828 /// the function to be required.
2829 ///
2830 /// Note: This function assumes that we will only get called when isInlined()
2831 /// would return true for this FunctionDecl.
2832 bool FunctionDecl::isMSExternInline() const {
2833   assert(isInlined() && "expected to get called on an inlined function!");
2834 
2835   const ASTContext &Context = getASTContext();
2836   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
2837       !hasAttr<DLLExportAttr>())
2838     return false;
2839 
2840   for (const FunctionDecl *FD = getMostRecentDecl(); FD;
2841        FD = FD->getPreviousDecl())
2842     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
2843       return true;
2844 
2845   return false;
2846 }
2847 
2848 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
2849   if (Redecl->getStorageClass() != SC_Extern)
2850     return false;
2851 
2852   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
2853        FD = FD->getPreviousDecl())
2854     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
2855       return false;
2856 
2857   return true;
2858 }
2859 
2860 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
2861   // Only consider file-scope declarations in this test.
2862   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
2863     return false;
2864 
2865   // Only consider explicit declarations; the presence of a builtin for a
2866   // libcall shouldn't affect whether a definition is externally visible.
2867   if (Redecl->isImplicit())
2868     return false;
2869 
2870   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
2871     return true; // Not an inline definition
2872 
2873   return false;
2874 }
2875 
2876 /// \brief For a function declaration in C or C++, determine whether this
2877 /// declaration causes the definition to be externally visible.
2878 ///
2879 /// For instance, this determines if adding the current declaration to the set
2880 /// of redeclarations of the given functions causes
2881 /// isInlineDefinitionExternallyVisible to change from false to true.
2882 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
2883   assert(!doesThisDeclarationHaveABody() &&
2884          "Must have a declaration without a body.");
2885 
2886   ASTContext &Context = getASTContext();
2887 
2888   if (Context.getLangOpts().MSVCCompat) {
2889     const FunctionDecl *Definition;
2890     if (hasBody(Definition) && Definition->isInlined() &&
2891         redeclForcesDefMSVC(this))
2892       return true;
2893   }
2894 
2895   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2896     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
2897     // an externally visible definition.
2898     //
2899     // FIXME: What happens if gnu_inline gets added on after the first
2900     // declaration?
2901     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
2902       return false;
2903 
2904     const FunctionDecl *Prev = this;
2905     bool FoundBody = false;
2906     while ((Prev = Prev->getPreviousDecl())) {
2907       FoundBody |= Prev->Body.isValid();
2908 
2909       if (Prev->Body) {
2910         // If it's not the case that both 'inline' and 'extern' are
2911         // specified on the definition, then it is always externally visible.
2912         if (!Prev->isInlineSpecified() ||
2913             Prev->getStorageClass() != SC_Extern)
2914           return false;
2915       } else if (Prev->isInlineSpecified() &&
2916                  Prev->getStorageClass() != SC_Extern) {
2917         return false;
2918       }
2919     }
2920     return FoundBody;
2921   }
2922 
2923   if (Context.getLangOpts().CPlusPlus)
2924     return false;
2925 
2926   // C99 6.7.4p6:
2927   //   [...] If all of the file scope declarations for a function in a
2928   //   translation unit include the inline function specifier without extern,
2929   //   then the definition in that translation unit is an inline definition.
2930   if (isInlineSpecified() && getStorageClass() != SC_Extern)
2931     return false;
2932   const FunctionDecl *Prev = this;
2933   bool FoundBody = false;
2934   while ((Prev = Prev->getPreviousDecl())) {
2935     FoundBody |= Prev->Body.isValid();
2936     if (RedeclForcesDefC99(Prev))
2937       return false;
2938   }
2939   return FoundBody;
2940 }
2941 
2942 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
2943   const TypeSourceInfo *TSI = getTypeSourceInfo();
2944   if (!TSI)
2945     return SourceRange();
2946   FunctionTypeLoc FTL =
2947       TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>();
2948   if (!FTL)
2949     return SourceRange();
2950 
2951   // Skip self-referential return types.
2952   const SourceManager &SM = getASTContext().getSourceManager();
2953   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
2954   SourceLocation Boundary = getNameInfo().getLocStart();
2955   if (RTRange.isInvalid() || Boundary.isInvalid() ||
2956       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
2957     return SourceRange();
2958 
2959   return RTRange;
2960 }
2961 
2962 const Attr *FunctionDecl::getUnusedResultAttr() const {
2963   QualType RetType = getReturnType();
2964   if (RetType->isRecordType()) {
2965     const CXXRecordDecl *Ret = RetType->getAsCXXRecordDecl();
2966     const auto *MD = dyn_cast<CXXMethodDecl>(this);
2967     if (Ret && !(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
2968       if (const auto *R = Ret->getAttr<WarnUnusedResultAttr>())
2969         return R;
2970     }
2971   } else if (const auto *ET = RetType->getAs<EnumType>()) {
2972     if (const EnumDecl *ED = ET->getDecl()) {
2973       if (const auto *R = ED->getAttr<WarnUnusedResultAttr>())
2974         return R;
2975     }
2976   }
2977   return getAttr<WarnUnusedResultAttr>();
2978 }
2979 
2980 /// \brief For an inline function definition in C, or for a gnu_inline function
2981 /// in C++, determine whether the definition will be externally visible.
2982 ///
2983 /// Inline function definitions are always available for inlining optimizations.
2984 /// However, depending on the language dialect, declaration specifiers, and
2985 /// attributes, the definition of an inline function may or may not be
2986 /// "externally" visible to other translation units in the program.
2987 ///
2988 /// In C99, inline definitions are not externally visible by default. However,
2989 /// if even one of the global-scope declarations is marked "extern inline", the
2990 /// inline definition becomes externally visible (C99 6.7.4p6).
2991 ///
2992 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
2993 /// definition, we use the GNU semantics for inline, which are nearly the
2994 /// opposite of C99 semantics. In particular, "inline" by itself will create
2995 /// an externally visible symbol, but "extern inline" will not create an
2996 /// externally visible symbol.
2997 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
2998   assert(doesThisDeclarationHaveABody() && "Must have the function definition");
2999   assert(isInlined() && "Function must be inline");
3000   ASTContext &Context = getASTContext();
3001 
3002   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3003     // Note: If you change the logic here, please change
3004     // doesDeclarationForceExternallyVisibleDefinition as well.
3005     //
3006     // If it's not the case that both 'inline' and 'extern' are
3007     // specified on the definition, then this inline definition is
3008     // externally visible.
3009     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3010       return true;
3011 
3012     // If any declaration is 'inline' but not 'extern', then this definition
3013     // is externally visible.
3014     for (auto Redecl : redecls()) {
3015       if (Redecl->isInlineSpecified() &&
3016           Redecl->getStorageClass() != SC_Extern)
3017         return true;
3018     }
3019 
3020     return false;
3021   }
3022 
3023   // The rest of this function is C-only.
3024   assert(!Context.getLangOpts().CPlusPlus &&
3025          "should not use C inline rules in C++");
3026 
3027   // C99 6.7.4p6:
3028   //   [...] If all of the file scope declarations for a function in a
3029   //   translation unit include the inline function specifier without extern,
3030   //   then the definition in that translation unit is an inline definition.
3031   for (auto Redecl : redecls()) {
3032     if (RedeclForcesDefC99(Redecl))
3033       return true;
3034   }
3035 
3036   // C99 6.7.4p6:
3037   //   An inline definition does not provide an external definition for the
3038   //   function, and does not forbid an external definition in another
3039   //   translation unit.
3040   return false;
3041 }
3042 
3043 /// getOverloadedOperator - Which C++ overloaded operator this
3044 /// function represents, if any.
3045 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3046   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3047     return getDeclName().getCXXOverloadedOperator();
3048   else
3049     return OO_None;
3050 }
3051 
3052 /// getLiteralIdentifier - The literal suffix identifier this function
3053 /// represents, if any.
3054 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3055   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3056     return getDeclName().getCXXLiteralIdentifier();
3057   else
3058     return nullptr;
3059 }
3060 
3061 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3062   if (TemplateOrSpecialization.isNull())
3063     return TK_NonTemplate;
3064   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3065     return TK_FunctionTemplate;
3066   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3067     return TK_MemberSpecialization;
3068   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3069     return TK_FunctionTemplateSpecialization;
3070   if (TemplateOrSpecialization.is
3071                                <DependentFunctionTemplateSpecializationInfo*>())
3072     return TK_DependentFunctionTemplateSpecialization;
3073 
3074   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3075 }
3076 
3077 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3078   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3079     return cast<FunctionDecl>(Info->getInstantiatedFrom());
3080 
3081   return nullptr;
3082 }
3083 
3084 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3085   return TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>();
3086 }
3087 
3088 void
3089 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3090                                                FunctionDecl *FD,
3091                                                TemplateSpecializationKind TSK) {
3092   assert(TemplateOrSpecialization.isNull() &&
3093          "Member function is already a specialization");
3094   MemberSpecializationInfo *Info
3095     = new (C) MemberSpecializationInfo(FD, TSK);
3096   TemplateOrSpecialization = Info;
3097 }
3098 
3099 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3100   return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3101 }
3102 
3103 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3104   TemplateOrSpecialization = Template;
3105 }
3106 
3107 bool FunctionDecl::isImplicitlyInstantiable() const {
3108   // If the function is invalid, it can't be implicitly instantiated.
3109   if (isInvalidDecl())
3110     return false;
3111 
3112   switch (getTemplateSpecializationKind()) {
3113   case TSK_Undeclared:
3114   case TSK_ExplicitInstantiationDefinition:
3115     return false;
3116 
3117   case TSK_ImplicitInstantiation:
3118     return true;
3119 
3120   // It is possible to instantiate TSK_ExplicitSpecialization kind
3121   // if the FunctionDecl has a class scope specialization pattern.
3122   case TSK_ExplicitSpecialization:
3123     return getClassScopeSpecializationPattern() != nullptr;
3124 
3125   case TSK_ExplicitInstantiationDeclaration:
3126     // Handled below.
3127     break;
3128   }
3129 
3130   // Find the actual template from which we will instantiate.
3131   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3132   bool HasPattern = false;
3133   if (PatternDecl)
3134     HasPattern = PatternDecl->hasBody(PatternDecl);
3135 
3136   // C++0x [temp.explicit]p9:
3137   //   Except for inline functions, other explicit instantiation declarations
3138   //   have the effect of suppressing the implicit instantiation of the entity
3139   //   to which they refer.
3140   if (!HasPattern || !PatternDecl)
3141     return true;
3142 
3143   return PatternDecl->isInlined();
3144 }
3145 
3146 bool FunctionDecl::isTemplateInstantiation() const {
3147   switch (getTemplateSpecializationKind()) {
3148     case TSK_Undeclared:
3149     case TSK_ExplicitSpecialization:
3150       return false;
3151     case TSK_ImplicitInstantiation:
3152     case TSK_ExplicitInstantiationDeclaration:
3153     case TSK_ExplicitInstantiationDefinition:
3154       return true;
3155   }
3156   llvm_unreachable("All TSK values handled.");
3157 }
3158 
3159 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
3160   // Handle class scope explicit specialization special case.
3161   if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3162     return getClassScopeSpecializationPattern();
3163 
3164   // If this is a generic lambda call operator specialization, its
3165   // instantiation pattern is always its primary template's pattern
3166   // even if its primary template was instantiated from another
3167   // member template (which happens with nested generic lambdas).
3168   // Since a lambda's call operator's body is transformed eagerly,
3169   // we don't have to go hunting for a prototype definition template
3170   // (i.e. instantiated-from-member-template) to use as an instantiation
3171   // pattern.
3172 
3173   if (isGenericLambdaCallOperatorSpecialization(
3174           dyn_cast<CXXMethodDecl>(this))) {
3175     assert(getPrimaryTemplate() && "A generic lambda specialization must be "
3176                                    "generated from a primary call operator "
3177                                    "template");
3178     assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() &&
3179            "A generic lambda call operator template must always have a body - "
3180            "even if instantiated from a prototype (i.e. as written) member "
3181            "template");
3182     return getPrimaryTemplate()->getTemplatedDecl();
3183   }
3184 
3185   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3186     while (Primary->getInstantiatedFromMemberTemplate()) {
3187       // If we have hit a point where the user provided a specialization of
3188       // this template, we're done looking.
3189       if (Primary->isMemberSpecialization())
3190         break;
3191       Primary = Primary->getInstantiatedFromMemberTemplate();
3192     }
3193 
3194     return Primary->getTemplatedDecl();
3195   }
3196 
3197   return getInstantiatedFromMemberFunction();
3198 }
3199 
3200 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3201   if (FunctionTemplateSpecializationInfo *Info
3202         = TemplateOrSpecialization
3203             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3204     return Info->Template.getPointer();
3205   }
3206   return nullptr;
3207 }
3208 
3209 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
3210     return getASTContext().getClassScopeSpecializationPattern(this);
3211 }
3212 
3213 FunctionTemplateSpecializationInfo *
3214 FunctionDecl::getTemplateSpecializationInfo() const {
3215   return TemplateOrSpecialization
3216       .dyn_cast<FunctionTemplateSpecializationInfo *>();
3217 }
3218 
3219 const TemplateArgumentList *
3220 FunctionDecl::getTemplateSpecializationArgs() const {
3221   if (FunctionTemplateSpecializationInfo *Info
3222         = TemplateOrSpecialization
3223             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3224     return Info->TemplateArguments;
3225   }
3226   return nullptr;
3227 }
3228 
3229 const ASTTemplateArgumentListInfo *
3230 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3231   if (FunctionTemplateSpecializationInfo *Info
3232         = TemplateOrSpecialization
3233             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3234     return Info->TemplateArgumentsAsWritten;
3235   }
3236   return nullptr;
3237 }
3238 
3239 void
3240 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3241                                                 FunctionTemplateDecl *Template,
3242                                      const TemplateArgumentList *TemplateArgs,
3243                                                 void *InsertPos,
3244                                                 TemplateSpecializationKind TSK,
3245                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
3246                                           SourceLocation PointOfInstantiation) {
3247   assert(TSK != TSK_Undeclared &&
3248          "Must specify the type of function template specialization");
3249   FunctionTemplateSpecializationInfo *Info
3250     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3251   if (!Info)
3252     Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
3253                                                       TemplateArgs,
3254                                                       TemplateArgsAsWritten,
3255                                                       PointOfInstantiation);
3256   TemplateOrSpecialization = Info;
3257   Template->addSpecialization(Info, InsertPos);
3258 }
3259 
3260 void
3261 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3262                                     const UnresolvedSetImpl &Templates,
3263                              const TemplateArgumentListInfo &TemplateArgs) {
3264   assert(TemplateOrSpecialization.isNull());
3265   DependentFunctionTemplateSpecializationInfo *Info =
3266       DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3267                                                           TemplateArgs);
3268   TemplateOrSpecialization = Info;
3269 }
3270 
3271 DependentFunctionTemplateSpecializationInfo *
3272 FunctionDecl::getDependentSpecializationInfo() const {
3273   return TemplateOrSpecialization
3274       .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3275 }
3276 
3277 DependentFunctionTemplateSpecializationInfo *
3278 DependentFunctionTemplateSpecializationInfo::Create(
3279     ASTContext &Context, const UnresolvedSetImpl &Ts,
3280     const TemplateArgumentListInfo &TArgs) {
3281   void *Buffer = Context.Allocate(
3282       totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3283           TArgs.size(), Ts.size()));
3284   return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3285 }
3286 
3287 DependentFunctionTemplateSpecializationInfo::
3288 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3289                                       const TemplateArgumentListInfo &TArgs)
3290   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3291 
3292   NumTemplates = Ts.size();
3293   NumArgs = TArgs.size();
3294 
3295   FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3296   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3297     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3298 
3299   TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3300   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3301     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3302 }
3303 
3304 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3305   // For a function template specialization, query the specialization
3306   // information object.
3307   FunctionTemplateSpecializationInfo *FTSInfo
3308     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3309   if (FTSInfo)
3310     return FTSInfo->getTemplateSpecializationKind();
3311 
3312   MemberSpecializationInfo *MSInfo
3313     = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
3314   if (MSInfo)
3315     return MSInfo->getTemplateSpecializationKind();
3316 
3317   return TSK_Undeclared;
3318 }
3319 
3320 void
3321 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3322                                           SourceLocation PointOfInstantiation) {
3323   if (FunctionTemplateSpecializationInfo *FTSInfo
3324         = TemplateOrSpecialization.dyn_cast<
3325                                     FunctionTemplateSpecializationInfo*>()) {
3326     FTSInfo->setTemplateSpecializationKind(TSK);
3327     if (TSK != TSK_ExplicitSpecialization &&
3328         PointOfInstantiation.isValid() &&
3329         FTSInfo->getPointOfInstantiation().isInvalid())
3330       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3331   } else if (MemberSpecializationInfo *MSInfo
3332              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3333     MSInfo->setTemplateSpecializationKind(TSK);
3334     if (TSK != TSK_ExplicitSpecialization &&
3335         PointOfInstantiation.isValid() &&
3336         MSInfo->getPointOfInstantiation().isInvalid())
3337       MSInfo->setPointOfInstantiation(PointOfInstantiation);
3338   } else
3339     llvm_unreachable("Function cannot have a template specialization kind");
3340 }
3341 
3342 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3343   if (FunctionTemplateSpecializationInfo *FTSInfo
3344         = TemplateOrSpecialization.dyn_cast<
3345                                         FunctionTemplateSpecializationInfo*>())
3346     return FTSInfo->getPointOfInstantiation();
3347   else if (MemberSpecializationInfo *MSInfo
3348              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3349     return MSInfo->getPointOfInstantiation();
3350 
3351   return SourceLocation();
3352 }
3353 
3354 bool FunctionDecl::isOutOfLine() const {
3355   if (Decl::isOutOfLine())
3356     return true;
3357 
3358   // If this function was instantiated from a member function of a
3359   // class template, check whether that member function was defined out-of-line.
3360   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3361     const FunctionDecl *Definition;
3362     if (FD->hasBody(Definition))
3363       return Definition->isOutOfLine();
3364   }
3365 
3366   // If this function was instantiated from a function template,
3367   // check whether that function template was defined out-of-line.
3368   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3369     const FunctionDecl *Definition;
3370     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3371       return Definition->isOutOfLine();
3372   }
3373 
3374   return false;
3375 }
3376 
3377 SourceRange FunctionDecl::getSourceRange() const {
3378   return SourceRange(getOuterLocStart(), EndRangeLoc);
3379 }
3380 
3381 unsigned FunctionDecl::getMemoryFunctionKind() const {
3382   IdentifierInfo *FnInfo = getIdentifier();
3383 
3384   if (!FnInfo)
3385     return 0;
3386 
3387   // Builtin handling.
3388   switch (getBuiltinID()) {
3389   case Builtin::BI__builtin_memset:
3390   case Builtin::BI__builtin___memset_chk:
3391   case Builtin::BImemset:
3392     return Builtin::BImemset;
3393 
3394   case Builtin::BI__builtin_memcpy:
3395   case Builtin::BI__builtin___memcpy_chk:
3396   case Builtin::BImemcpy:
3397     return Builtin::BImemcpy;
3398 
3399   case Builtin::BI__builtin_memmove:
3400   case Builtin::BI__builtin___memmove_chk:
3401   case Builtin::BImemmove:
3402     return Builtin::BImemmove;
3403 
3404   case Builtin::BIstrlcpy:
3405   case Builtin::BI__builtin___strlcpy_chk:
3406     return Builtin::BIstrlcpy;
3407 
3408   case Builtin::BIstrlcat:
3409   case Builtin::BI__builtin___strlcat_chk:
3410     return Builtin::BIstrlcat;
3411 
3412   case Builtin::BI__builtin_memcmp:
3413   case Builtin::BImemcmp:
3414     return Builtin::BImemcmp;
3415 
3416   case Builtin::BI__builtin_strncpy:
3417   case Builtin::BI__builtin___strncpy_chk:
3418   case Builtin::BIstrncpy:
3419     return Builtin::BIstrncpy;
3420 
3421   case Builtin::BI__builtin_strncmp:
3422   case Builtin::BIstrncmp:
3423     return Builtin::BIstrncmp;
3424 
3425   case Builtin::BI__builtin_strncasecmp:
3426   case Builtin::BIstrncasecmp:
3427     return Builtin::BIstrncasecmp;
3428 
3429   case Builtin::BI__builtin_strncat:
3430   case Builtin::BI__builtin___strncat_chk:
3431   case Builtin::BIstrncat:
3432     return Builtin::BIstrncat;
3433 
3434   case Builtin::BI__builtin_strndup:
3435   case Builtin::BIstrndup:
3436     return Builtin::BIstrndup;
3437 
3438   case Builtin::BI__builtin_strlen:
3439   case Builtin::BIstrlen:
3440     return Builtin::BIstrlen;
3441 
3442   case Builtin::BI__builtin_bzero:
3443   case Builtin::BIbzero:
3444     return Builtin::BIbzero;
3445 
3446   default:
3447     if (isExternC()) {
3448       if (FnInfo->isStr("memset"))
3449         return Builtin::BImemset;
3450       else if (FnInfo->isStr("memcpy"))
3451         return Builtin::BImemcpy;
3452       else if (FnInfo->isStr("memmove"))
3453         return Builtin::BImemmove;
3454       else if (FnInfo->isStr("memcmp"))
3455         return Builtin::BImemcmp;
3456       else if (FnInfo->isStr("strncpy"))
3457         return Builtin::BIstrncpy;
3458       else if (FnInfo->isStr("strncmp"))
3459         return Builtin::BIstrncmp;
3460       else if (FnInfo->isStr("strncasecmp"))
3461         return Builtin::BIstrncasecmp;
3462       else if (FnInfo->isStr("strncat"))
3463         return Builtin::BIstrncat;
3464       else if (FnInfo->isStr("strndup"))
3465         return Builtin::BIstrndup;
3466       else if (FnInfo->isStr("strlen"))
3467         return Builtin::BIstrlen;
3468       else if (FnInfo->isStr("bzero"))
3469         return Builtin::BIbzero;
3470     }
3471     break;
3472   }
3473   return 0;
3474 }
3475 
3476 //===----------------------------------------------------------------------===//
3477 // FieldDecl Implementation
3478 //===----------------------------------------------------------------------===//
3479 
3480 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
3481                              SourceLocation StartLoc, SourceLocation IdLoc,
3482                              IdentifierInfo *Id, QualType T,
3483                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3484                              InClassInitStyle InitStyle) {
3485   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3486                                BW, Mutable, InitStyle);
3487 }
3488 
3489 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3490   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3491                                SourceLocation(), nullptr, QualType(), nullptr,
3492                                nullptr, false, ICIS_NoInit);
3493 }
3494 
3495 bool FieldDecl::isAnonymousStructOrUnion() const {
3496   if (!isImplicit() || getDeclName())
3497     return false;
3498 
3499   if (const auto *Record = getType()->getAs<RecordType>())
3500     return Record->getDecl()->isAnonymousStructOrUnion();
3501 
3502   return false;
3503 }
3504 
3505 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3506   assert(isBitField() && "not a bitfield");
3507   auto *BitWidth = static_cast<Expr *>(InitStorage.getPointer());
3508   return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
3509 }
3510 
3511 unsigned FieldDecl::getFieldIndex() const {
3512   const FieldDecl *Canonical = getCanonicalDecl();
3513   if (Canonical != this)
3514     return Canonical->getFieldIndex();
3515 
3516   if (CachedFieldIndex) return CachedFieldIndex - 1;
3517 
3518   unsigned Index = 0;
3519   const RecordDecl *RD = getParent();
3520 
3521   for (auto *Field : RD->fields()) {
3522     Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
3523     ++Index;
3524   }
3525 
3526   assert(CachedFieldIndex && "failed to find field in parent");
3527   return CachedFieldIndex - 1;
3528 }
3529 
3530 SourceRange FieldDecl::getSourceRange() const {
3531   switch (InitStorage.getInt()) {
3532   // All three of these cases store an optional Expr*.
3533   case ISK_BitWidthOrNothing:
3534   case ISK_InClassCopyInit:
3535   case ISK_InClassListInit:
3536     if (const auto *E = static_cast<const Expr *>(InitStorage.getPointer()))
3537       return SourceRange(getInnerLocStart(), E->getLocEnd());
3538     // FALLTHROUGH
3539 
3540   case ISK_CapturedVLAType:
3541     return DeclaratorDecl::getSourceRange();
3542   }
3543   llvm_unreachable("bad init storage kind");
3544 }
3545 
3546 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
3547   assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
3548          "capturing type in non-lambda or captured record.");
3549   assert(InitStorage.getInt() == ISK_BitWidthOrNothing &&
3550          InitStorage.getPointer() == nullptr &&
3551          "bit width, initializer or captured type already set");
3552   InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
3553                                ISK_CapturedVLAType);
3554 }
3555 
3556 //===----------------------------------------------------------------------===//
3557 // TagDecl Implementation
3558 //===----------------------------------------------------------------------===//
3559 
3560 SourceLocation TagDecl::getOuterLocStart() const {
3561   return getTemplateOrInnerLocStart(this);
3562 }
3563 
3564 SourceRange TagDecl::getSourceRange() const {
3565   SourceLocation RBraceLoc = BraceRange.getEnd();
3566   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
3567   return SourceRange(getOuterLocStart(), E);
3568 }
3569 
3570 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
3571 
3572 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
3573   TypedefNameDeclOrQualifier = TDD;
3574   if (const Type *T = getTypeForDecl()) {
3575     (void)T;
3576     assert(T->isLinkageValid());
3577   }
3578   assert(isLinkageValid());
3579 }
3580 
3581 void TagDecl::startDefinition() {
3582   IsBeingDefined = true;
3583 
3584   if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
3585     struct CXXRecordDecl::DefinitionData *Data =
3586       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
3587     for (auto I : redecls())
3588       cast<CXXRecordDecl>(I)->DefinitionData = Data;
3589   }
3590 }
3591 
3592 void TagDecl::completeDefinition() {
3593   assert((!isa<CXXRecordDecl>(this) ||
3594           cast<CXXRecordDecl>(this)->hasDefinition()) &&
3595          "definition completed but not started");
3596 
3597   IsCompleteDefinition = true;
3598   IsBeingDefined = false;
3599 
3600   if (ASTMutationListener *L = getASTMutationListener())
3601     L->CompletedTagDefinition(this);
3602 }
3603 
3604 TagDecl *TagDecl::getDefinition() const {
3605   if (isCompleteDefinition())
3606     return const_cast<TagDecl *>(this);
3607 
3608   // If it's possible for us to have an out-of-date definition, check now.
3609   if (MayHaveOutOfDateDef) {
3610     if (IdentifierInfo *II = getIdentifier()) {
3611       if (II->isOutOfDate()) {
3612         updateOutOfDate(*II);
3613       }
3614     }
3615   }
3616 
3617   if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
3618     return CXXRD->getDefinition();
3619 
3620   for (auto R : redecls())
3621     if (R->isCompleteDefinition())
3622       return R;
3623 
3624   return nullptr;
3625 }
3626 
3627 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
3628   if (QualifierLoc) {
3629     // Make sure the extended qualifier info is allocated.
3630     if (!hasExtInfo())
3631       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3632     // Set qualifier info.
3633     getExtInfo()->QualifierLoc = QualifierLoc;
3634   } else {
3635     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
3636     if (hasExtInfo()) {
3637       if (getExtInfo()->NumTemplParamLists == 0) {
3638         getASTContext().Deallocate(getExtInfo());
3639         TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
3640       }
3641       else
3642         getExtInfo()->QualifierLoc = QualifierLoc;
3643     }
3644   }
3645 }
3646 
3647 void TagDecl::setTemplateParameterListsInfo(
3648     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
3649   assert(!TPLists.empty());
3650   // Make sure the extended decl info is allocated.
3651   if (!hasExtInfo())
3652     // Allocate external info struct.
3653     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3654   // Set the template parameter lists info.
3655   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
3656 }
3657 
3658 //===----------------------------------------------------------------------===//
3659 // EnumDecl Implementation
3660 //===----------------------------------------------------------------------===//
3661 
3662 void EnumDecl::anchor() { }
3663 
3664 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
3665                            SourceLocation StartLoc, SourceLocation IdLoc,
3666                            IdentifierInfo *Id,
3667                            EnumDecl *PrevDecl, bool IsScoped,
3668                            bool IsScopedUsingClassTag, bool IsFixed) {
3669   auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
3670                                     IsScoped, IsScopedUsingClassTag, IsFixed);
3671   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3672   C.getTypeDeclType(Enum, PrevDecl);
3673   return Enum;
3674 }
3675 
3676 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3677   EnumDecl *Enum =
3678       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
3679                            nullptr, nullptr, false, false, false);
3680   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3681   return Enum;
3682 }
3683 
3684 SourceRange EnumDecl::getIntegerTypeRange() const {
3685   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
3686     return TI->getTypeLoc().getSourceRange();
3687   return SourceRange();
3688 }
3689 
3690 void EnumDecl::completeDefinition(QualType NewType,
3691                                   QualType NewPromotionType,
3692                                   unsigned NumPositiveBits,
3693                                   unsigned NumNegativeBits) {
3694   assert(!isCompleteDefinition() && "Cannot redefine enums!");
3695   if (!IntegerType)
3696     IntegerType = NewType.getTypePtr();
3697   PromotionType = NewPromotionType;
3698   setNumPositiveBits(NumPositiveBits);
3699   setNumNegativeBits(NumNegativeBits);
3700   TagDecl::completeDefinition();
3701 }
3702 
3703 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
3704   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
3705     return MSI->getTemplateSpecializationKind();
3706 
3707   return TSK_Undeclared;
3708 }
3709 
3710 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3711                                          SourceLocation PointOfInstantiation) {
3712   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
3713   assert(MSI && "Not an instantiated member enumeration?");
3714   MSI->setTemplateSpecializationKind(TSK);
3715   if (TSK != TSK_ExplicitSpecialization &&
3716       PointOfInstantiation.isValid() &&
3717       MSI->getPointOfInstantiation().isInvalid())
3718     MSI->setPointOfInstantiation(PointOfInstantiation);
3719 }
3720 
3721 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
3722   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
3723     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
3724       EnumDecl *ED = getInstantiatedFromMemberEnum();
3725       while (auto *NewED = ED->getInstantiatedFromMemberEnum())
3726         ED = NewED;
3727       return ED;
3728     }
3729   }
3730 
3731   assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
3732          "couldn't find pattern for enum instantiation");
3733   return nullptr;
3734 }
3735 
3736 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
3737   if (SpecializationInfo)
3738     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
3739 
3740   return nullptr;
3741 }
3742 
3743 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3744                                             TemplateSpecializationKind TSK) {
3745   assert(!SpecializationInfo && "Member enum is already a specialization");
3746   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
3747 }
3748 
3749 //===----------------------------------------------------------------------===//
3750 // RecordDecl Implementation
3751 //===----------------------------------------------------------------------===//
3752 
3753 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
3754                        DeclContext *DC, SourceLocation StartLoc,
3755                        SourceLocation IdLoc, IdentifierInfo *Id,
3756                        RecordDecl *PrevDecl)
3757     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
3758   HasFlexibleArrayMember = false;
3759   AnonymousStructOrUnion = false;
3760   HasObjectMember = false;
3761   HasVolatileMember = false;
3762   LoadedFieldsFromExternalStorage = false;
3763   assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
3764 }
3765 
3766 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3767                                SourceLocation StartLoc, SourceLocation IdLoc,
3768                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
3769   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
3770                                          StartLoc, IdLoc, Id, PrevDecl);
3771   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3772 
3773   C.getTypeDeclType(R, PrevDecl);
3774   return R;
3775 }
3776 
3777 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
3778   RecordDecl *R =
3779       new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
3780                              SourceLocation(), nullptr, nullptr);
3781   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3782   return R;
3783 }
3784 
3785 bool RecordDecl::isInjectedClassName() const {
3786   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
3787     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
3788 }
3789 
3790 bool RecordDecl::isLambda() const {
3791   if (auto RD = dyn_cast<CXXRecordDecl>(this))
3792     return RD->isLambda();
3793   return false;
3794 }
3795 
3796 bool RecordDecl::isCapturedRecord() const {
3797   return hasAttr<CapturedRecordAttr>();
3798 }
3799 
3800 void RecordDecl::setCapturedRecord() {
3801   addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
3802 }
3803 
3804 RecordDecl::field_iterator RecordDecl::field_begin() const {
3805   if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
3806     LoadFieldsFromExternalStorage();
3807 
3808   return field_iterator(decl_iterator(FirstDecl));
3809 }
3810 
3811 /// completeDefinition - Notes that the definition of this type is now
3812 /// complete.
3813 void RecordDecl::completeDefinition() {
3814   assert(!isCompleteDefinition() && "Cannot redefine record!");
3815   TagDecl::completeDefinition();
3816 }
3817 
3818 /// isMsStruct - Get whether or not this record uses ms_struct layout.
3819 /// This which can be turned on with an attribute, pragma, or the
3820 /// -mms-bitfields command-line option.
3821 bool RecordDecl::isMsStruct(const ASTContext &C) const {
3822   return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
3823 }
3824 
3825 void RecordDecl::LoadFieldsFromExternalStorage() const {
3826   ExternalASTSource *Source = getASTContext().getExternalSource();
3827   assert(hasExternalLexicalStorage() && Source && "No external storage?");
3828 
3829   // Notify that we have a RecordDecl doing some initialization.
3830   ExternalASTSource::Deserializing TheFields(Source);
3831 
3832   SmallVector<Decl*, 64> Decls;
3833   LoadedFieldsFromExternalStorage = true;
3834   Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
3835     return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
3836   }, Decls);
3837 
3838 #ifndef NDEBUG
3839   // Check that all decls we got were FieldDecls.
3840   for (unsigned i=0, e=Decls.size(); i != e; ++i)
3841     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
3842 #endif
3843 
3844   if (Decls.empty())
3845     return;
3846 
3847   std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
3848                                                  /*FieldsAlreadyLoaded=*/false);
3849 }
3850 
3851 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
3852   ASTContext &Context = getASTContext();
3853   if (!Context.getLangOpts().Sanitize.hasOneOf(
3854           SanitizerKind::Address | SanitizerKind::KernelAddress) ||
3855       !Context.getLangOpts().SanitizeAddressFieldPadding)
3856     return false;
3857   const auto &Blacklist = Context.getSanitizerBlacklist();
3858   const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
3859   // We may be able to relax some of these requirements.
3860   int ReasonToReject = -1;
3861   if (!CXXRD || CXXRD->isExternCContext())
3862     ReasonToReject = 0;  // is not C++.
3863   else if (CXXRD->hasAttr<PackedAttr>())
3864     ReasonToReject = 1;  // is packed.
3865   else if (CXXRD->isUnion())
3866     ReasonToReject = 2;  // is a union.
3867   else if (CXXRD->isTriviallyCopyable())
3868     ReasonToReject = 3;  // is trivially copyable.
3869   else if (CXXRD->hasTrivialDestructor())
3870     ReasonToReject = 4;  // has trivial destructor.
3871   else if (CXXRD->isStandardLayout())
3872     ReasonToReject = 5;  // is standard layout.
3873   else if (Blacklist.isBlacklistedLocation(getLocation(), "field-padding"))
3874     ReasonToReject = 6;  // is in a blacklisted file.
3875   else if (Blacklist.isBlacklistedType(getQualifiedNameAsString(),
3876                                        "field-padding"))
3877     ReasonToReject = 7;  // is blacklisted.
3878 
3879   if (EmitRemark) {
3880     if (ReasonToReject >= 0)
3881       Context.getDiagnostics().Report(
3882           getLocation(),
3883           diag::remark_sanitize_address_insert_extra_padding_rejected)
3884           << getQualifiedNameAsString() << ReasonToReject;
3885     else
3886       Context.getDiagnostics().Report(
3887           getLocation(),
3888           diag::remark_sanitize_address_insert_extra_padding_accepted)
3889           << getQualifiedNameAsString();
3890   }
3891   return ReasonToReject < 0;
3892 }
3893 
3894 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
3895   for (const auto *I : fields()) {
3896     if (I->getIdentifier())
3897       return I;
3898 
3899     if (const auto *RT = I->getType()->getAs<RecordType>())
3900       if (const FieldDecl *NamedDataMember =
3901               RT->getDecl()->findFirstNamedDataMember())
3902         return NamedDataMember;
3903   }
3904 
3905   // We didn't find a named data member.
3906   return nullptr;
3907 }
3908 
3909 
3910 //===----------------------------------------------------------------------===//
3911 // BlockDecl Implementation
3912 //===----------------------------------------------------------------------===//
3913 
3914 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
3915   assert(!ParamInfo && "Already has param info!");
3916 
3917   // Zero params -> null pointer.
3918   if (!NewParamInfo.empty()) {
3919     NumParams = NewParamInfo.size();
3920     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
3921     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3922   }
3923 }
3924 
3925 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
3926                             bool CapturesCXXThis) {
3927   this->CapturesCXXThis = CapturesCXXThis;
3928   this->NumCaptures = Captures.size();
3929 
3930   if (Captures.empty()) {
3931     this->Captures = nullptr;
3932     return;
3933   }
3934 
3935   this->Captures = Captures.copy(Context).data();
3936 }
3937 
3938 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
3939   for (const auto &I : captures())
3940     // Only auto vars can be captured, so no redeclaration worries.
3941     if (I.getVariable() == variable)
3942       return true;
3943 
3944   return false;
3945 }
3946 
3947 SourceRange BlockDecl::getSourceRange() const {
3948   return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
3949 }
3950 
3951 //===----------------------------------------------------------------------===//
3952 // Other Decl Allocation/Deallocation Method Implementations
3953 //===----------------------------------------------------------------------===//
3954 
3955 void TranslationUnitDecl::anchor() { }
3956 
3957 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
3958   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
3959 }
3960 
3961 void PragmaCommentDecl::anchor() { }
3962 
3963 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
3964                                              TranslationUnitDecl *DC,
3965                                              SourceLocation CommentLoc,
3966                                              PragmaMSCommentKind CommentKind,
3967                                              StringRef Arg) {
3968   PragmaCommentDecl *PCD =
3969       new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
3970           PragmaCommentDecl(DC, CommentLoc, CommentKind);
3971   memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
3972   PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
3973   return PCD;
3974 }
3975 
3976 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
3977                                                          unsigned ID,
3978                                                          unsigned ArgSize) {
3979   return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
3980       PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
3981 }
3982 
3983 void PragmaDetectMismatchDecl::anchor() { }
3984 
3985 PragmaDetectMismatchDecl *
3986 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
3987                                  SourceLocation Loc, StringRef Name,
3988                                  StringRef Value) {
3989   size_t ValueStart = Name.size() + 1;
3990   PragmaDetectMismatchDecl *PDMD =
3991       new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
3992           PragmaDetectMismatchDecl(DC, Loc, ValueStart);
3993   memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
3994   PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
3995   memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
3996          Value.size());
3997   PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
3998   return PDMD;
3999 }
4000 
4001 PragmaDetectMismatchDecl *
4002 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4003                                              unsigned NameValueSize) {
4004   return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4005       PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
4006 }
4007 
4008 void ExternCContextDecl::anchor() { }
4009 
4010 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
4011                                                TranslationUnitDecl *DC) {
4012   return new (C, DC) ExternCContextDecl(DC);
4013 }
4014 
4015 void LabelDecl::anchor() { }
4016 
4017 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4018                              SourceLocation IdentL, IdentifierInfo *II) {
4019   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4020 }
4021 
4022 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4023                              SourceLocation IdentL, IdentifierInfo *II,
4024                              SourceLocation GnuLabelL) {
4025   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4026   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4027 }
4028 
4029 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4030   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4031                                SourceLocation());
4032 }
4033 
4034 void LabelDecl::setMSAsmLabel(StringRef Name) {
4035   char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4036   memcpy(Buffer, Name.data(), Name.size());
4037   Buffer[Name.size()] = '\0';
4038   MSAsmName = Buffer;
4039 }
4040 
4041 void ValueDecl::anchor() { }
4042 
4043 bool ValueDecl::isWeak() const {
4044   for (const auto *I : attrs())
4045     if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
4046       return true;
4047 
4048   return isWeakImported();
4049 }
4050 
4051 void ImplicitParamDecl::anchor() { }
4052 
4053 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4054                                              SourceLocation IdLoc,
4055                                              IdentifierInfo *Id,
4056                                              QualType Type) {
4057   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type);
4058 }
4059 
4060 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4061                                                          unsigned ID) {
4062   return new (C, ID) ImplicitParamDecl(C, nullptr, SourceLocation(), nullptr,
4063                                        QualType());
4064 }
4065 
4066 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
4067                                    SourceLocation StartLoc,
4068                                    const DeclarationNameInfo &NameInfo,
4069                                    QualType T, TypeSourceInfo *TInfo,
4070                                    StorageClass SC,
4071                                    bool isInlineSpecified,
4072                                    bool hasWrittenPrototype,
4073                                    bool isConstexprSpecified) {
4074   FunctionDecl *New =
4075       new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4076                                SC, isInlineSpecified, isConstexprSpecified);
4077   New->HasWrittenPrototype = hasWrittenPrototype;
4078   return New;
4079 }
4080 
4081 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4082   return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
4083                                   DeclarationNameInfo(), QualType(), nullptr,
4084                                   SC_None, false, false);
4085 }
4086 
4087 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4088   return new (C, DC) BlockDecl(DC, L);
4089 }
4090 
4091 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4092   return new (C, ID) BlockDecl(nullptr, SourceLocation());
4093 }
4094 
4095 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4096     : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4097       NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4098 
4099 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
4100                                    unsigned NumParams) {
4101   return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4102       CapturedDecl(DC, NumParams);
4103 }
4104 
4105 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4106                                                unsigned NumParams) {
4107   return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4108       CapturedDecl(nullptr, NumParams);
4109 }
4110 
4111 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4112 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4113 
4114 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4115 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4116 
4117 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
4118                                            SourceLocation L,
4119                                            IdentifierInfo *Id, QualType T,
4120                                            Expr *E, const llvm::APSInt &V) {
4121   return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4122 }
4123 
4124 EnumConstantDecl *
4125 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4126   return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4127                                       QualType(), nullptr, llvm::APSInt());
4128 }
4129 
4130 void IndirectFieldDecl::anchor() { }
4131 
4132 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4133                                      SourceLocation L, DeclarationName N,
4134                                      QualType T,
4135                                      MutableArrayRef<NamedDecl *> CH)
4136     : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4137       ChainingSize(CH.size()) {
4138   // In C++, indirect field declarations conflict with tag declarations in the
4139   // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4140   if (C.getLangOpts().CPlusPlus)
4141     IdentifierNamespace |= IDNS_Tag;
4142 }
4143 
4144 IndirectFieldDecl *
4145 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
4146                           IdentifierInfo *Id, QualType T,
4147                           llvm::MutableArrayRef<NamedDecl *> CH) {
4148   return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4149 }
4150 
4151 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
4152                                                          unsigned ID) {
4153   return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4154                                        DeclarationName(), QualType(), None);
4155 }
4156 
4157 SourceRange EnumConstantDecl::getSourceRange() const {
4158   SourceLocation End = getLocation();
4159   if (Init)
4160     End = Init->getLocEnd();
4161   return SourceRange(getLocation(), End);
4162 }
4163 
4164 void TypeDecl::anchor() { }
4165 
4166 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
4167                                  SourceLocation StartLoc, SourceLocation IdLoc,
4168                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4169   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4170 }
4171 
4172 void TypedefNameDecl::anchor() { }
4173 
4174 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
4175   if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4176     auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4177     auto *ThisTypedef = this;
4178     if (AnyRedecl && OwningTypedef) {
4179       OwningTypedef = OwningTypedef->getCanonicalDecl();
4180       ThisTypedef = ThisTypedef->getCanonicalDecl();
4181     }
4182     if (OwningTypedef == ThisTypedef)
4183       return TT->getDecl();
4184   }
4185 
4186   return nullptr;
4187 }
4188 
4189 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4190   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4191                                  nullptr, nullptr);
4192 }
4193 
4194 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
4195                                      SourceLocation StartLoc,
4196                                      SourceLocation IdLoc, IdentifierInfo *Id,
4197                                      TypeSourceInfo *TInfo) {
4198   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4199 }
4200 
4201 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4202   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4203                                    SourceLocation(), nullptr, nullptr);
4204 }
4205 
4206 SourceRange TypedefDecl::getSourceRange() const {
4207   SourceLocation RangeEnd = getLocation();
4208   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4209     if (typeIsPostfix(TInfo->getType()))
4210       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4211   }
4212   return SourceRange(getLocStart(), RangeEnd);
4213 }
4214 
4215 SourceRange TypeAliasDecl::getSourceRange() const {
4216   SourceLocation RangeEnd = getLocStart();
4217   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4218     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4219   return SourceRange(getLocStart(), RangeEnd);
4220 }
4221 
4222 void FileScopeAsmDecl::anchor() { }
4223 
4224 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
4225                                            StringLiteral *Str,
4226                                            SourceLocation AsmLoc,
4227                                            SourceLocation RParenLoc) {
4228   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
4229 }
4230 
4231 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
4232                                                        unsigned ID) {
4233   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4234                                       SourceLocation());
4235 }
4236 
4237 void EmptyDecl::anchor() {}
4238 
4239 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4240   return new (C, DC) EmptyDecl(DC, L);
4241 }
4242 
4243 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4244   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
4245 }
4246 
4247 //===----------------------------------------------------------------------===//
4248 // ImportDecl Implementation
4249 //===----------------------------------------------------------------------===//
4250 
4251 /// \brief Retrieve the number of module identifiers needed to name the given
4252 /// module.
4253 static unsigned getNumModuleIdentifiers(Module *Mod) {
4254   unsigned Result = 1;
4255   while (Mod->Parent) {
4256     Mod = Mod->Parent;
4257     ++Result;
4258   }
4259   return Result;
4260 }
4261 
4262 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4263                        Module *Imported,
4264                        ArrayRef<SourceLocation> IdentifierLocs)
4265   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
4266     NextLocalImport()
4267 {
4268   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4269   auto *StoredLocs = getTrailingObjects<SourceLocation>();
4270   std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4271                           StoredLocs);
4272 }
4273 
4274 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4275                        Module *Imported, SourceLocation EndLoc)
4276   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
4277     NextLocalImport()
4278 {
4279   *getTrailingObjects<SourceLocation>() = EndLoc;
4280 }
4281 
4282 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
4283                                SourceLocation StartLoc, Module *Imported,
4284                                ArrayRef<SourceLocation> IdentifierLocs) {
4285   return new (C, DC,
4286               additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4287       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4288 }
4289 
4290 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
4291                                        SourceLocation StartLoc,
4292                                        Module *Imported,
4293                                        SourceLocation EndLoc) {
4294   ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4295       ImportDecl(DC, StartLoc, Imported, EndLoc);
4296   Import->setImplicit();
4297   return Import;
4298 }
4299 
4300 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4301                                            unsigned NumLocations) {
4302   return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4303       ImportDecl(EmptyShell());
4304 }
4305 
4306 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
4307   if (!ImportedAndComplete.getInt())
4308     return None;
4309 
4310   const auto *StoredLocs = getTrailingObjects<SourceLocation>();
4311   return llvm::makeArrayRef(StoredLocs,
4312                             getNumModuleIdentifiers(getImportedModule()));
4313 }
4314 
4315 SourceRange ImportDecl::getSourceRange() const {
4316   if (!ImportedAndComplete.getInt())
4317     return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
4318 
4319   return SourceRange(getLocation(), getIdentifierLocs().back());
4320 }
4321 
4322 //===----------------------------------------------------------------------===//
4323 // ExportDecl Implementation
4324 //===----------------------------------------------------------------------===//
4325 
4326 void ExportDecl::anchor() {}
4327 
4328 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
4329                                SourceLocation ExportLoc) {
4330   return new (C, DC) ExportDecl(DC, ExportLoc);
4331 }
4332 
4333 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4334   return new (C, ID) ExportDecl(nullptr, SourceLocation());
4335 }
4336