1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Decl subclasses. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/Decl.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTLambda.h" 17 #include "clang/AST/ASTMutationListener.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/DeclCXX.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/DeclOpenMP.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/AST/PrettyPrinter.h" 26 #include "clang/AST/Stmt.h" 27 #include "clang/AST/TypeLoc.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/IdentifierTable.h" 30 #include "clang/Basic/Module.h" 31 #include "clang/Basic/Specifiers.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/Frontend/FrontendDiagnostic.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include <algorithm> 36 37 using namespace clang; 38 39 Decl *clang::getPrimaryMergedDecl(Decl *D) { 40 return D->getASTContext().getPrimaryMergedDecl(D); 41 } 42 43 // Defined here so that it can be inlined into its direct callers. 44 bool Decl::isOutOfLine() const { 45 return !getLexicalDeclContext()->Equals(getDeclContext()); 46 } 47 48 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx) 49 : Decl(TranslationUnit, nullptr, SourceLocation()), 50 DeclContext(TranslationUnit), Ctx(ctx), AnonymousNamespace(nullptr) { 51 Hidden = Ctx.getLangOpts().ModulesLocalVisibility; 52 } 53 54 //===----------------------------------------------------------------------===// 55 // NamedDecl Implementation 56 //===----------------------------------------------------------------------===// 57 58 // Visibility rules aren't rigorously externally specified, but here 59 // are the basic principles behind what we implement: 60 // 61 // 1. An explicit visibility attribute is generally a direct expression 62 // of the user's intent and should be honored. Only the innermost 63 // visibility attribute applies. If no visibility attribute applies, 64 // global visibility settings are considered. 65 // 66 // 2. There is one caveat to the above: on or in a template pattern, 67 // an explicit visibility attribute is just a default rule, and 68 // visibility can be decreased by the visibility of template 69 // arguments. But this, too, has an exception: an attribute on an 70 // explicit specialization or instantiation causes all the visibility 71 // restrictions of the template arguments to be ignored. 72 // 73 // 3. A variable that does not otherwise have explicit visibility can 74 // be restricted by the visibility of its type. 75 // 76 // 4. A visibility restriction is explicit if it comes from an 77 // attribute (or something like it), not a global visibility setting. 78 // When emitting a reference to an external symbol, visibility 79 // restrictions are ignored unless they are explicit. 80 // 81 // 5. When computing the visibility of a non-type, including a 82 // non-type member of a class, only non-type visibility restrictions 83 // are considered: the 'visibility' attribute, global value-visibility 84 // settings, and a few special cases like __private_extern. 85 // 86 // 6. When computing the visibility of a type, including a type member 87 // of a class, only type visibility restrictions are considered: 88 // the 'type_visibility' attribute and global type-visibility settings. 89 // However, a 'visibility' attribute counts as a 'type_visibility' 90 // attribute on any declaration that only has the former. 91 // 92 // The visibility of a "secondary" entity, like a template argument, 93 // is computed using the kind of that entity, not the kind of the 94 // primary entity for which we are computing visibility. For example, 95 // the visibility of a specialization of either of these templates: 96 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); 97 // template <class T, bool (&compare)(T, X)> class matcher; 98 // is restricted according to the type visibility of the argument 'T', 99 // the type visibility of 'bool(&)(T,X)', and the value visibility of 100 // the argument function 'compare'. That 'has_match' is a value 101 // and 'matcher' is a type only matters when looking for attributes 102 // and settings from the immediate context. 103 104 const unsigned IgnoreExplicitVisibilityBit = 2; 105 const unsigned IgnoreAllVisibilityBit = 4; 106 107 /// Kinds of LV computation. The linkage side of the computation is 108 /// always the same, but different things can change how visibility is 109 /// computed. 110 enum LVComputationKind { 111 /// Do an LV computation for, ultimately, a type. 112 /// Visibility may be restricted by type visibility settings and 113 /// the visibility of template arguments. 114 LVForType = NamedDecl::VisibilityForType, 115 116 /// Do an LV computation for, ultimately, a non-type declaration. 117 /// Visibility may be restricted by value visibility settings and 118 /// the visibility of template arguments. 119 LVForValue = NamedDecl::VisibilityForValue, 120 121 /// Do an LV computation for, ultimately, a type that already has 122 /// some sort of explicit visibility. Visibility may only be 123 /// restricted by the visibility of template arguments. 124 LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit), 125 126 /// Do an LV computation for, ultimately, a non-type declaration 127 /// that already has some sort of explicit visibility. Visibility 128 /// may only be restricted by the visibility of template arguments. 129 LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit), 130 131 /// Do an LV computation when we only care about the linkage. 132 LVForLinkageOnly = 133 LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit 134 }; 135 136 /// Does this computation kind permit us to consider additional 137 /// visibility settings from attributes and the like? 138 static bool hasExplicitVisibilityAlready(LVComputationKind computation) { 139 return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0); 140 } 141 142 /// Given an LVComputationKind, return one of the same type/value sort 143 /// that records that it already has explicit visibility. 144 static LVComputationKind 145 withExplicitVisibilityAlready(LVComputationKind oldKind) { 146 LVComputationKind newKind = 147 static_cast<LVComputationKind>(unsigned(oldKind) | 148 IgnoreExplicitVisibilityBit); 149 assert(oldKind != LVForType || newKind == LVForExplicitType); 150 assert(oldKind != LVForValue || newKind == LVForExplicitValue); 151 assert(oldKind != LVForExplicitType || newKind == LVForExplicitType); 152 assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue); 153 return newKind; 154 } 155 156 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D, 157 LVComputationKind kind) { 158 assert(!hasExplicitVisibilityAlready(kind) && 159 "asking for explicit visibility when we shouldn't be"); 160 return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind); 161 } 162 163 /// Is the given declaration a "type" or a "value" for the purposes of 164 /// visibility computation? 165 static bool usesTypeVisibility(const NamedDecl *D) { 166 return isa<TypeDecl>(D) || 167 isa<ClassTemplateDecl>(D) || 168 isa<ObjCInterfaceDecl>(D); 169 } 170 171 /// Does the given declaration have member specialization information, 172 /// and if so, is it an explicit specialization? 173 template <class T> static typename 174 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type 175 isExplicitMemberSpecialization(const T *D) { 176 if (const MemberSpecializationInfo *member = 177 D->getMemberSpecializationInfo()) { 178 return member->isExplicitSpecialization(); 179 } 180 return false; 181 } 182 183 /// For templates, this question is easier: a member template can't be 184 /// explicitly instantiated, so there's a single bit indicating whether 185 /// or not this is an explicit member specialization. 186 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { 187 return D->isMemberSpecialization(); 188 } 189 190 /// Given a visibility attribute, return the explicit visibility 191 /// associated with it. 192 template <class T> 193 static Visibility getVisibilityFromAttr(const T *attr) { 194 switch (attr->getVisibility()) { 195 case T::Default: 196 return DefaultVisibility; 197 case T::Hidden: 198 return HiddenVisibility; 199 case T::Protected: 200 return ProtectedVisibility; 201 } 202 llvm_unreachable("bad visibility kind"); 203 } 204 205 /// Return the explicit visibility of the given declaration. 206 static Optional<Visibility> getVisibilityOf(const NamedDecl *D, 207 NamedDecl::ExplicitVisibilityKind kind) { 208 // If we're ultimately computing the visibility of a type, look for 209 // a 'type_visibility' attribute before looking for 'visibility'. 210 if (kind == NamedDecl::VisibilityForType) { 211 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) { 212 return getVisibilityFromAttr(A); 213 } 214 } 215 216 // If this declaration has an explicit visibility attribute, use it. 217 if (const auto *A = D->getAttr<VisibilityAttr>()) { 218 return getVisibilityFromAttr(A); 219 } 220 221 // If we're on Mac OS X, an 'availability' for Mac OS X attribute 222 // implies visibility(default). 223 if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) { 224 for (const auto *A : D->specific_attrs<AvailabilityAttr>()) 225 if (A->getPlatform()->getName().equals("macos")) 226 return DefaultVisibility; 227 } 228 229 return None; 230 } 231 232 static LinkageInfo 233 getLVForType(const Type &T, LVComputationKind computation) { 234 if (computation == LVForLinkageOnly) 235 return LinkageInfo(T.getLinkage(), DefaultVisibility, true); 236 return T.getLinkageAndVisibility(); 237 } 238 239 /// \brief Get the most restrictive linkage for the types in the given 240 /// template parameter list. For visibility purposes, template 241 /// parameters are part of the signature of a template. 242 static LinkageInfo 243 getLVForTemplateParameterList(const TemplateParameterList *Params, 244 LVComputationKind computation) { 245 LinkageInfo LV; 246 for (const NamedDecl *P : *Params) { 247 // Template type parameters are the most common and never 248 // contribute to visibility, pack or not. 249 if (isa<TemplateTypeParmDecl>(P)) 250 continue; 251 252 // Non-type template parameters can be restricted by the value type, e.g. 253 // template <enum X> class A { ... }; 254 // We have to be careful here, though, because we can be dealing with 255 // dependent types. 256 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 257 // Handle the non-pack case first. 258 if (!NTTP->isExpandedParameterPack()) { 259 if (!NTTP->getType()->isDependentType()) { 260 LV.merge(getLVForType(*NTTP->getType(), computation)); 261 } 262 continue; 263 } 264 265 // Look at all the types in an expanded pack. 266 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { 267 QualType type = NTTP->getExpansionType(i); 268 if (!type->isDependentType()) 269 LV.merge(type->getLinkageAndVisibility()); 270 } 271 continue; 272 } 273 274 // Template template parameters can be restricted by their 275 // template parameters, recursively. 276 const auto *TTP = cast<TemplateTemplateParmDecl>(P); 277 278 // Handle the non-pack case first. 279 if (!TTP->isExpandedParameterPack()) { 280 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), 281 computation)); 282 continue; 283 } 284 285 // Look at all expansions in an expanded pack. 286 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); 287 i != n; ++i) { 288 LV.merge(getLVForTemplateParameterList( 289 TTP->getExpansionTemplateParameters(i), computation)); 290 } 291 } 292 293 return LV; 294 } 295 296 /// getLVForDecl - Get the linkage and visibility for the given declaration. 297 static LinkageInfo getLVForDecl(const NamedDecl *D, 298 LVComputationKind computation); 299 300 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { 301 const Decl *Ret = nullptr; 302 const DeclContext *DC = D->getDeclContext(); 303 while (DC->getDeclKind() != Decl::TranslationUnit) { 304 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) 305 Ret = cast<Decl>(DC); 306 DC = DC->getParent(); 307 } 308 return Ret; 309 } 310 311 /// \brief Get the most restrictive linkage for the types and 312 /// declarations in the given template argument list. 313 /// 314 /// Note that we don't take an LVComputationKind because we always 315 /// want to honor the visibility of template arguments in the same way. 316 static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args, 317 LVComputationKind computation) { 318 LinkageInfo LV; 319 320 for (const TemplateArgument &Arg : Args) { 321 switch (Arg.getKind()) { 322 case TemplateArgument::Null: 323 case TemplateArgument::Integral: 324 case TemplateArgument::Expression: 325 continue; 326 327 case TemplateArgument::Type: 328 LV.merge(getLVForType(*Arg.getAsType(), computation)); 329 continue; 330 331 case TemplateArgument::Declaration: 332 if (const auto *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) { 333 assert(!usesTypeVisibility(ND)); 334 LV.merge(getLVForDecl(ND, computation)); 335 } 336 continue; 337 338 case TemplateArgument::NullPtr: 339 LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility()); 340 continue; 341 342 case TemplateArgument::Template: 343 case TemplateArgument::TemplateExpansion: 344 if (TemplateDecl *Template = 345 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) 346 LV.merge(getLVForDecl(Template, computation)); 347 continue; 348 349 case TemplateArgument::Pack: 350 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation)); 351 continue; 352 } 353 llvm_unreachable("bad template argument kind"); 354 } 355 356 return LV; 357 } 358 359 static LinkageInfo 360 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, 361 LVComputationKind computation) { 362 return getLVForTemplateArgumentList(TArgs.asArray(), computation); 363 } 364 365 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, 366 const FunctionTemplateSpecializationInfo *specInfo) { 367 // Include visibility from the template parameters and arguments 368 // only if this is not an explicit instantiation or specialization 369 // with direct explicit visibility. (Implicit instantiations won't 370 // have a direct attribute.) 371 if (!specInfo->isExplicitInstantiationOrSpecialization()) 372 return true; 373 374 return !fn->hasAttr<VisibilityAttr>(); 375 } 376 377 /// Merge in template-related linkage and visibility for the given 378 /// function template specialization. 379 /// 380 /// We don't need a computation kind here because we can assume 381 /// LVForValue. 382 /// 383 /// \param[out] LV the computation to use for the parent 384 static void 385 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn, 386 const FunctionTemplateSpecializationInfo *specInfo, 387 LVComputationKind computation) { 388 bool considerVisibility = 389 shouldConsiderTemplateVisibility(fn, specInfo); 390 391 // Merge information from the template parameters. 392 FunctionTemplateDecl *temp = specInfo->getTemplate(); 393 LinkageInfo tempLV = 394 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 395 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 396 397 // Merge information from the template arguments. 398 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; 399 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 400 LV.mergeMaybeWithVisibility(argsLV, considerVisibility); 401 } 402 403 /// Does the given declaration have a direct visibility attribute 404 /// that would match the given rules? 405 static bool hasDirectVisibilityAttribute(const NamedDecl *D, 406 LVComputationKind computation) { 407 switch (computation) { 408 case LVForType: 409 case LVForExplicitType: 410 if (D->hasAttr<TypeVisibilityAttr>()) 411 return true; 412 // fallthrough 413 case LVForValue: 414 case LVForExplicitValue: 415 if (D->hasAttr<VisibilityAttr>()) 416 return true; 417 return false; 418 case LVForLinkageOnly: 419 return false; 420 } 421 llvm_unreachable("bad visibility computation kind"); 422 } 423 424 /// Should we consider visibility associated with the template 425 /// arguments and parameters of the given class template specialization? 426 static bool shouldConsiderTemplateVisibility( 427 const ClassTemplateSpecializationDecl *spec, 428 LVComputationKind computation) { 429 // Include visibility from the template parameters and arguments 430 // only if this is not an explicit instantiation or specialization 431 // with direct explicit visibility (and note that implicit 432 // instantiations won't have a direct attribute). 433 // 434 // Furthermore, we want to ignore template parameters and arguments 435 // for an explicit specialization when computing the visibility of a 436 // member thereof with explicit visibility. 437 // 438 // This is a bit complex; let's unpack it. 439 // 440 // An explicit class specialization is an independent, top-level 441 // declaration. As such, if it or any of its members has an 442 // explicit visibility attribute, that must directly express the 443 // user's intent, and we should honor it. The same logic applies to 444 // an explicit instantiation of a member of such a thing. 445 446 // Fast path: if this is not an explicit instantiation or 447 // specialization, we always want to consider template-related 448 // visibility restrictions. 449 if (!spec->isExplicitInstantiationOrSpecialization()) 450 return true; 451 452 // This is the 'member thereof' check. 453 if (spec->isExplicitSpecialization() && 454 hasExplicitVisibilityAlready(computation)) 455 return false; 456 457 return !hasDirectVisibilityAttribute(spec, computation); 458 } 459 460 /// Merge in template-related linkage and visibility for the given 461 /// class template specialization. 462 static void mergeTemplateLV(LinkageInfo &LV, 463 const ClassTemplateSpecializationDecl *spec, 464 LVComputationKind computation) { 465 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 466 467 // Merge information from the template parameters, but ignore 468 // visibility if we're only considering template arguments. 469 470 ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 471 LinkageInfo tempLV = 472 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 473 LV.mergeMaybeWithVisibility(tempLV, 474 considerVisibility && !hasExplicitVisibilityAlready(computation)); 475 476 // Merge information from the template arguments. We ignore 477 // template-argument visibility if we've got an explicit 478 // instantiation with a visibility attribute. 479 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 480 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 481 if (considerVisibility) 482 LV.mergeVisibility(argsLV); 483 LV.mergeExternalVisibility(argsLV); 484 } 485 486 /// Should we consider visibility associated with the template 487 /// arguments and parameters of the given variable template 488 /// specialization? As usual, follow class template specialization 489 /// logic up to initialization. 490 static bool shouldConsiderTemplateVisibility( 491 const VarTemplateSpecializationDecl *spec, 492 LVComputationKind computation) { 493 // Include visibility from the template parameters and arguments 494 // only if this is not an explicit instantiation or specialization 495 // with direct explicit visibility (and note that implicit 496 // instantiations won't have a direct attribute). 497 if (!spec->isExplicitInstantiationOrSpecialization()) 498 return true; 499 500 // An explicit variable specialization is an independent, top-level 501 // declaration. As such, if it has an explicit visibility attribute, 502 // that must directly express the user's intent, and we should honor 503 // it. 504 if (spec->isExplicitSpecialization() && 505 hasExplicitVisibilityAlready(computation)) 506 return false; 507 508 return !hasDirectVisibilityAttribute(spec, computation); 509 } 510 511 /// Merge in template-related linkage and visibility for the given 512 /// variable template specialization. As usual, follow class template 513 /// specialization logic up to initialization. 514 static void mergeTemplateLV(LinkageInfo &LV, 515 const VarTemplateSpecializationDecl *spec, 516 LVComputationKind computation) { 517 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 518 519 // Merge information from the template parameters, but ignore 520 // visibility if we're only considering template arguments. 521 522 VarTemplateDecl *temp = spec->getSpecializedTemplate(); 523 LinkageInfo tempLV = 524 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 525 LV.mergeMaybeWithVisibility(tempLV, 526 considerVisibility && !hasExplicitVisibilityAlready(computation)); 527 528 // Merge information from the template arguments. We ignore 529 // template-argument visibility if we've got an explicit 530 // instantiation with a visibility attribute. 531 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 532 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 533 if (considerVisibility) 534 LV.mergeVisibility(argsLV); 535 LV.mergeExternalVisibility(argsLV); 536 } 537 538 static bool useInlineVisibilityHidden(const NamedDecl *D) { 539 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. 540 const LangOptions &Opts = D->getASTContext().getLangOpts(); 541 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) 542 return false; 543 544 const auto *FD = dyn_cast<FunctionDecl>(D); 545 if (!FD) 546 return false; 547 548 TemplateSpecializationKind TSK = TSK_Undeclared; 549 if (FunctionTemplateSpecializationInfo *spec 550 = FD->getTemplateSpecializationInfo()) { 551 TSK = spec->getTemplateSpecializationKind(); 552 } else if (MemberSpecializationInfo *MSI = 553 FD->getMemberSpecializationInfo()) { 554 TSK = MSI->getTemplateSpecializationKind(); 555 } 556 557 const FunctionDecl *Def = nullptr; 558 // InlineVisibilityHidden only applies to definitions, and 559 // isInlined() only gives meaningful answers on definitions 560 // anyway. 561 return TSK != TSK_ExplicitInstantiationDeclaration && 562 TSK != TSK_ExplicitInstantiationDefinition && 563 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); 564 } 565 566 template <typename T> static bool isFirstInExternCContext(T *D) { 567 const T *First = D->getFirstDecl(); 568 return First->isInExternCContext(); 569 } 570 571 static bool isSingleLineLanguageLinkage(const Decl &D) { 572 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) 573 if (!SD->hasBraces()) 574 return true; 575 return false; 576 } 577 578 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D, 579 LVComputationKind computation) { 580 assert(D->getDeclContext()->getRedeclContext()->isFileContext() && 581 "Not a name having namespace scope"); 582 ASTContext &Context = D->getASTContext(); 583 584 // C++ [basic.link]p3: 585 // A name having namespace scope (3.3.6) has internal linkage if it 586 // is the name of 587 // - an object, reference, function or function template that is 588 // explicitly declared static; or, 589 // (This bullet corresponds to C99 6.2.2p3.) 590 if (const auto *Var = dyn_cast<VarDecl>(D)) { 591 // Explicitly declared static. 592 if (Var->getStorageClass() == SC_Static) 593 return LinkageInfo::internal(); 594 595 // - a non-inline, non-volatile object or reference that is explicitly 596 // declared const or constexpr and neither explicitly declared extern 597 // nor previously declared to have external linkage; or (there is no 598 // equivalent in C99) 599 if (Context.getLangOpts().CPlusPlus && 600 Var->getType().isConstQualified() && 601 !Var->getType().isVolatileQualified() && 602 !Var->isInline()) { 603 const VarDecl *PrevVar = Var->getPreviousDecl(); 604 if (PrevVar) 605 return getLVForDecl(PrevVar, computation); 606 607 if (Var->getStorageClass() != SC_Extern && 608 Var->getStorageClass() != SC_PrivateExtern && 609 !isSingleLineLanguageLinkage(*Var)) 610 return LinkageInfo::internal(); 611 } 612 613 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; 614 PrevVar = PrevVar->getPreviousDecl()) { 615 if (PrevVar->getStorageClass() == SC_PrivateExtern && 616 Var->getStorageClass() == SC_None) 617 return PrevVar->getLinkageAndVisibility(); 618 // Explicitly declared static. 619 if (PrevVar->getStorageClass() == SC_Static) 620 return LinkageInfo::internal(); 621 } 622 } else if (const FunctionDecl *Function = D->getAsFunction()) { 623 // C++ [temp]p4: 624 // A non-member function template can have internal linkage; any 625 // other template name shall have external linkage. 626 627 // Explicitly declared static. 628 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 629 return LinkageInfo(InternalLinkage, DefaultVisibility, false); 630 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) { 631 // - a data member of an anonymous union. 632 const VarDecl *VD = IFD->getVarDecl(); 633 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!"); 634 return getLVForNamespaceScopeDecl(VD, computation); 635 } 636 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"); 637 638 if (D->isInAnonymousNamespace()) { 639 const auto *Var = dyn_cast<VarDecl>(D); 640 const auto *Func = dyn_cast<FunctionDecl>(D); 641 // FIXME: In C++11 onwards, anonymous namespaces should give decls 642 // within them internal linkage, not unique external linkage. 643 if ((!Var || !isFirstInExternCContext(Var)) && 644 (!Func || !isFirstInExternCContext(Func))) 645 return LinkageInfo::uniqueExternal(); 646 } 647 648 // Set up the defaults. 649 650 // C99 6.2.2p5: 651 // If the declaration of an identifier for an object has file 652 // scope and no storage-class specifier, its linkage is 653 // external. 654 LinkageInfo LV; 655 656 if (!hasExplicitVisibilityAlready(computation)) { 657 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) { 658 LV.mergeVisibility(*Vis, true); 659 } else { 660 // If we're declared in a namespace with a visibility attribute, 661 // use that namespace's visibility, and it still counts as explicit. 662 for (const DeclContext *DC = D->getDeclContext(); 663 !isa<TranslationUnitDecl>(DC); 664 DC = DC->getParent()) { 665 const auto *ND = dyn_cast<NamespaceDecl>(DC); 666 if (!ND) continue; 667 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) { 668 LV.mergeVisibility(*Vis, true); 669 break; 670 } 671 } 672 } 673 674 // Add in global settings if the above didn't give us direct visibility. 675 if (!LV.isVisibilityExplicit()) { 676 // Use global type/value visibility as appropriate. 677 Visibility globalVisibility; 678 if (computation == LVForValue) { 679 globalVisibility = Context.getLangOpts().getValueVisibilityMode(); 680 } else { 681 assert(computation == LVForType); 682 globalVisibility = Context.getLangOpts().getTypeVisibilityMode(); 683 } 684 LV.mergeVisibility(globalVisibility, /*explicit*/ false); 685 686 // If we're paying attention to global visibility, apply 687 // -finline-visibility-hidden if this is an inline method. 688 if (useInlineVisibilityHidden(D)) 689 LV.mergeVisibility(HiddenVisibility, true); 690 } 691 } 692 693 // C++ [basic.link]p4: 694 695 // A name having namespace scope has external linkage if it is the 696 // name of 697 // 698 // - an object or reference, unless it has internal linkage; or 699 if (const auto *Var = dyn_cast<VarDecl>(D)) { 700 // GCC applies the following optimization to variables and static 701 // data members, but not to functions: 702 // 703 // Modify the variable's LV by the LV of its type unless this is 704 // C or extern "C". This follows from [basic.link]p9: 705 // A type without linkage shall not be used as the type of a 706 // variable or function with external linkage unless 707 // - the entity has C language linkage, or 708 // - the entity is declared within an unnamed namespace, or 709 // - the entity is not used or is defined in the same 710 // translation unit. 711 // and [basic.link]p10: 712 // ...the types specified by all declarations referring to a 713 // given variable or function shall be identical... 714 // C does not have an equivalent rule. 715 // 716 // Ignore this if we've got an explicit attribute; the user 717 // probably knows what they're doing. 718 // 719 // Note that we don't want to make the variable non-external 720 // because of this, but unique-external linkage suits us. 721 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) { 722 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); 723 if (TypeLV.getLinkage() != ExternalLinkage) 724 return LinkageInfo::uniqueExternal(); 725 if (!LV.isVisibilityExplicit()) 726 LV.mergeVisibility(TypeLV); 727 } 728 729 if (Var->getStorageClass() == SC_PrivateExtern) 730 LV.mergeVisibility(HiddenVisibility, true); 731 732 // Note that Sema::MergeVarDecl already takes care of implementing 733 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have 734 // to do it here. 735 736 // As per function and class template specializations (below), 737 // consider LV for the template and template arguments. We're at file 738 // scope, so we do not need to worry about nested specializations. 739 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 740 mergeTemplateLV(LV, spec, computation); 741 } 742 743 // - a function, unless it has internal linkage; or 744 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 745 // In theory, we can modify the function's LV by the LV of its 746 // type unless it has C linkage (see comment above about variables 747 // for justification). In practice, GCC doesn't do this, so it's 748 // just too painful to make work. 749 750 if (Function->getStorageClass() == SC_PrivateExtern) 751 LV.mergeVisibility(HiddenVisibility, true); 752 753 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 754 // merging storage classes and visibility attributes, so we don't have to 755 // look at previous decls in here. 756 757 // In C++, then if the type of the function uses a type with 758 // unique-external linkage, it's not legally usable from outside 759 // this translation unit. However, we should use the C linkage 760 // rules instead for extern "C" declarations. 761 if (Context.getLangOpts().CPlusPlus && 762 !Function->isInExternCContext()) { 763 // Only look at the type-as-written. If this function has an auto-deduced 764 // return type, we can't compute the linkage of that type because it could 765 // require looking at the linkage of this function, and we don't need this 766 // for correctness because the type is not part of the function's 767 // signature. 768 // FIXME: This is a hack. We should be able to solve this circularity and 769 // the one in getLVForClassMember for Functions some other way. 770 QualType TypeAsWritten = Function->getType(); 771 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) 772 TypeAsWritten = TSI->getType(); 773 if (TypeAsWritten->getLinkage() == UniqueExternalLinkage) 774 return LinkageInfo::uniqueExternal(); 775 } 776 777 // Consider LV from the template and the template arguments. 778 // We're at file scope, so we do not need to worry about nested 779 // specializations. 780 if (FunctionTemplateSpecializationInfo *specInfo 781 = Function->getTemplateSpecializationInfo()) { 782 mergeTemplateLV(LV, Function, specInfo, computation); 783 } 784 785 // - a named class (Clause 9), or an unnamed class defined in a 786 // typedef declaration in which the class has the typedef name 787 // for linkage purposes (7.1.3); or 788 // - a named enumeration (7.2), or an unnamed enumeration 789 // defined in a typedef declaration in which the enumeration 790 // has the typedef name for linkage purposes (7.1.3); or 791 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) { 792 // Unnamed tags have no linkage. 793 if (!Tag->hasNameForLinkage()) 794 return LinkageInfo::none(); 795 796 // If this is a class template specialization, consider the 797 // linkage of the template and template arguments. We're at file 798 // scope, so we do not need to worry about nested specializations. 799 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { 800 mergeTemplateLV(LV, spec, computation); 801 } 802 803 // - an enumerator belonging to an enumeration with external linkage; 804 } else if (isa<EnumConstantDecl>(D)) { 805 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), 806 computation); 807 if (!isExternalFormalLinkage(EnumLV.getLinkage())) 808 return LinkageInfo::none(); 809 LV.merge(EnumLV); 810 811 // - a template, unless it is a function template that has 812 // internal linkage (Clause 14); 813 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 814 bool considerVisibility = !hasExplicitVisibilityAlready(computation); 815 LinkageInfo tempLV = 816 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 817 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 818 819 // - a namespace (7.3), unless it is declared within an unnamed 820 // namespace. 821 } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) { 822 return LV; 823 824 // By extension, we assign external linkage to Objective-C 825 // interfaces. 826 } else if (isa<ObjCInterfaceDecl>(D)) { 827 // fallout 828 829 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 830 // A typedef declaration has linkage if it gives a type a name for 831 // linkage purposes. 832 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 833 return LinkageInfo::none(); 834 835 // Everything not covered here has no linkage. 836 } else { 837 return LinkageInfo::none(); 838 } 839 840 // If we ended up with non-external linkage, visibility should 841 // always be default. 842 if (LV.getLinkage() != ExternalLinkage) 843 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); 844 845 return LV; 846 } 847 848 static LinkageInfo getLVForClassMember(const NamedDecl *D, 849 LVComputationKind computation) { 850 // Only certain class members have linkage. Note that fields don't 851 // really have linkage, but it's convenient to say they do for the 852 // purposes of calculating linkage of pointer-to-data-member 853 // template arguments. 854 // 855 // Templates also don't officially have linkage, but since we ignore 856 // the C++ standard and look at template arguments when determining 857 // linkage and visibility of a template specialization, we might hit 858 // a template template argument that way. If we do, we need to 859 // consider its linkage. 860 if (!(isa<CXXMethodDecl>(D) || 861 isa<VarDecl>(D) || 862 isa<FieldDecl>(D) || 863 isa<IndirectFieldDecl>(D) || 864 isa<TagDecl>(D) || 865 isa<TemplateDecl>(D))) 866 return LinkageInfo::none(); 867 868 LinkageInfo LV; 869 870 // If we have an explicit visibility attribute, merge that in. 871 if (!hasExplicitVisibilityAlready(computation)) { 872 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) 873 LV.mergeVisibility(*Vis, true); 874 // If we're paying attention to global visibility, apply 875 // -finline-visibility-hidden if this is an inline method. 876 // 877 // Note that we do this before merging information about 878 // the class visibility. 879 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) 880 LV.mergeVisibility(HiddenVisibility, true); 881 } 882 883 // If this class member has an explicit visibility attribute, the only 884 // thing that can change its visibility is the template arguments, so 885 // only look for them when processing the class. 886 LVComputationKind classComputation = computation; 887 if (LV.isVisibilityExplicit()) 888 classComputation = withExplicitVisibilityAlready(computation); 889 890 LinkageInfo classLV = 891 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); 892 // If the class already has unique-external linkage, we can't improve. 893 if (classLV.getLinkage() == UniqueExternalLinkage) 894 return LinkageInfo::uniqueExternal(); 895 896 if (!isExternallyVisible(classLV.getLinkage())) 897 return LinkageInfo::none(); 898 899 900 // Otherwise, don't merge in classLV yet, because in certain cases 901 // we need to completely ignore the visibility from it. 902 903 // Specifically, if this decl exists and has an explicit attribute. 904 const NamedDecl *explicitSpecSuppressor = nullptr; 905 906 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 907 // If the type of the function uses a type with unique-external 908 // linkage, it's not legally usable from outside this translation unit. 909 // But only look at the type-as-written. If this function has an 910 // auto-deduced return type, we can't compute the linkage of that type 911 // because it could require looking at the linkage of this function, and we 912 // don't need this for correctness because the type is not part of the 913 // function's signature. 914 // FIXME: This is a hack. We should be able to solve this circularity and 915 // the one in getLVForNamespaceScopeDecl for Functions some other way. 916 { 917 QualType TypeAsWritten = MD->getType(); 918 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 919 TypeAsWritten = TSI->getType(); 920 if (TypeAsWritten->getLinkage() == UniqueExternalLinkage) 921 return LinkageInfo::uniqueExternal(); 922 } 923 // If this is a method template specialization, use the linkage for 924 // the template parameters and arguments. 925 if (FunctionTemplateSpecializationInfo *spec 926 = MD->getTemplateSpecializationInfo()) { 927 mergeTemplateLV(LV, MD, spec, computation); 928 if (spec->isExplicitSpecialization()) { 929 explicitSpecSuppressor = MD; 930 } else if (isExplicitMemberSpecialization(spec->getTemplate())) { 931 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); 932 } 933 } else if (isExplicitMemberSpecialization(MD)) { 934 explicitSpecSuppressor = MD; 935 } 936 937 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 938 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 939 mergeTemplateLV(LV, spec, computation); 940 if (spec->isExplicitSpecialization()) { 941 explicitSpecSuppressor = spec; 942 } else { 943 const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 944 if (isExplicitMemberSpecialization(temp)) { 945 explicitSpecSuppressor = temp->getTemplatedDecl(); 946 } 947 } 948 } else if (isExplicitMemberSpecialization(RD)) { 949 explicitSpecSuppressor = RD; 950 } 951 952 // Static data members. 953 } else if (const auto *VD = dyn_cast<VarDecl>(D)) { 954 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD)) 955 mergeTemplateLV(LV, spec, computation); 956 957 // Modify the variable's linkage by its type, but ignore the 958 // type's visibility unless it's a definition. 959 LinkageInfo typeLV = getLVForType(*VD->getType(), computation); 960 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) 961 LV.mergeVisibility(typeLV); 962 LV.mergeExternalVisibility(typeLV); 963 964 if (isExplicitMemberSpecialization(VD)) { 965 explicitSpecSuppressor = VD; 966 } 967 968 // Template members. 969 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 970 bool considerVisibility = 971 (!LV.isVisibilityExplicit() && 972 !classLV.isVisibilityExplicit() && 973 !hasExplicitVisibilityAlready(computation)); 974 LinkageInfo tempLV = 975 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 976 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 977 978 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) { 979 if (isExplicitMemberSpecialization(redeclTemp)) { 980 explicitSpecSuppressor = temp->getTemplatedDecl(); 981 } 982 } 983 } 984 985 // We should never be looking for an attribute directly on a template. 986 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); 987 988 // If this member is an explicit member specialization, and it has 989 // an explicit attribute, ignore visibility from the parent. 990 bool considerClassVisibility = true; 991 if (explicitSpecSuppressor && 992 // optimization: hasDVA() is true only with explicit visibility. 993 LV.isVisibilityExplicit() && 994 classLV.getVisibility() != DefaultVisibility && 995 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { 996 considerClassVisibility = false; 997 } 998 999 // Finally, merge in information from the class. 1000 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); 1001 return LV; 1002 } 1003 1004 void NamedDecl::anchor() { } 1005 1006 static LinkageInfo computeLVForDecl(const NamedDecl *D, 1007 LVComputationKind computation); 1008 1009 bool NamedDecl::isLinkageValid() const { 1010 if (!hasCachedLinkage()) 1011 return true; 1012 1013 return computeLVForDecl(this, LVForLinkageOnly).getLinkage() == 1014 getCachedLinkage(); 1015 } 1016 1017 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const { 1018 StringRef name = getName(); 1019 if (name.empty()) return SFF_None; 1020 1021 if (name.front() == 'C') 1022 if (name == "CFStringCreateWithFormat" || 1023 name == "CFStringCreateWithFormatAndArguments" || 1024 name == "CFStringAppendFormat" || 1025 name == "CFStringAppendFormatAndArguments") 1026 return SFF_CFString; 1027 return SFF_None; 1028 } 1029 1030 Linkage NamedDecl::getLinkageInternal() const { 1031 // We don't care about visibility here, so ask for the cheapest 1032 // possible visibility analysis. 1033 return getLVForDecl(this, LVForLinkageOnly).getLinkage(); 1034 } 1035 1036 LinkageInfo NamedDecl::getLinkageAndVisibility() const { 1037 LVComputationKind computation = 1038 (usesTypeVisibility(this) ? LVForType : LVForValue); 1039 return getLVForDecl(this, computation); 1040 } 1041 1042 static Optional<Visibility> 1043 getExplicitVisibilityAux(const NamedDecl *ND, 1044 NamedDecl::ExplicitVisibilityKind kind, 1045 bool IsMostRecent) { 1046 assert(!IsMostRecent || ND == ND->getMostRecentDecl()); 1047 1048 // Check the declaration itself first. 1049 if (Optional<Visibility> V = getVisibilityOf(ND, kind)) 1050 return V; 1051 1052 // If this is a member class of a specialization of a class template 1053 // and the corresponding decl has explicit visibility, use that. 1054 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 1055 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); 1056 if (InstantiatedFrom) 1057 return getVisibilityOf(InstantiatedFrom, kind); 1058 } 1059 1060 // If there wasn't explicit visibility there, and this is a 1061 // specialization of a class template, check for visibility 1062 // on the pattern. 1063 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) 1064 return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(), 1065 kind); 1066 1067 // Use the most recent declaration. 1068 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) { 1069 const NamedDecl *MostRecent = ND->getMostRecentDecl(); 1070 if (MostRecent != ND) 1071 return getExplicitVisibilityAux(MostRecent, kind, true); 1072 } 1073 1074 if (const auto *Var = dyn_cast<VarDecl>(ND)) { 1075 if (Var->isStaticDataMember()) { 1076 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); 1077 if (InstantiatedFrom) 1078 return getVisibilityOf(InstantiatedFrom, kind); 1079 } 1080 1081 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var)) 1082 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(), 1083 kind); 1084 1085 return None; 1086 } 1087 // Also handle function template specializations. 1088 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) { 1089 // If the function is a specialization of a template with an 1090 // explicit visibility attribute, use that. 1091 if (FunctionTemplateSpecializationInfo *templateInfo 1092 = fn->getTemplateSpecializationInfo()) 1093 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), 1094 kind); 1095 1096 // If the function is a member of a specialization of a class template 1097 // and the corresponding decl has explicit visibility, use that. 1098 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); 1099 if (InstantiatedFrom) 1100 return getVisibilityOf(InstantiatedFrom, kind); 1101 1102 return None; 1103 } 1104 1105 // The visibility of a template is stored in the templated decl. 1106 if (const auto *TD = dyn_cast<TemplateDecl>(ND)) 1107 return getVisibilityOf(TD->getTemplatedDecl(), kind); 1108 1109 return None; 1110 } 1111 1112 Optional<Visibility> 1113 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { 1114 return getExplicitVisibilityAux(this, kind, false); 1115 } 1116 1117 static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl, 1118 LVComputationKind computation) { 1119 // This lambda has its linkage/visibility determined by its owner. 1120 if (ContextDecl) { 1121 if (isa<ParmVarDecl>(ContextDecl)) 1122 DC = ContextDecl->getDeclContext()->getRedeclContext(); 1123 else 1124 return getLVForDecl(cast<NamedDecl>(ContextDecl), computation); 1125 } 1126 1127 if (const auto *ND = dyn_cast<NamedDecl>(DC)) 1128 return getLVForDecl(ND, computation); 1129 1130 return LinkageInfo::external(); 1131 } 1132 1133 static LinkageInfo getLVForLocalDecl(const NamedDecl *D, 1134 LVComputationKind computation) { 1135 if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 1136 if (Function->isInAnonymousNamespace() && 1137 !Function->isInExternCContext()) 1138 return LinkageInfo::uniqueExternal(); 1139 1140 // This is a "void f();" which got merged with a file static. 1141 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 1142 return LinkageInfo::internal(); 1143 1144 LinkageInfo LV; 1145 if (!hasExplicitVisibilityAlready(computation)) { 1146 if (Optional<Visibility> Vis = 1147 getExplicitVisibility(Function, computation)) 1148 LV.mergeVisibility(*Vis, true); 1149 } 1150 1151 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 1152 // merging storage classes and visibility attributes, so we don't have to 1153 // look at previous decls in here. 1154 1155 return LV; 1156 } 1157 1158 if (const auto *Var = dyn_cast<VarDecl>(D)) { 1159 if (Var->hasExternalStorage()) { 1160 if (Var->isInAnonymousNamespace() && !Var->isInExternCContext()) 1161 return LinkageInfo::uniqueExternal(); 1162 1163 LinkageInfo LV; 1164 if (Var->getStorageClass() == SC_PrivateExtern) 1165 LV.mergeVisibility(HiddenVisibility, true); 1166 else if (!hasExplicitVisibilityAlready(computation)) { 1167 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation)) 1168 LV.mergeVisibility(*Vis, true); 1169 } 1170 1171 if (const VarDecl *Prev = Var->getPreviousDecl()) { 1172 LinkageInfo PrevLV = getLVForDecl(Prev, computation); 1173 if (PrevLV.getLinkage()) 1174 LV.setLinkage(PrevLV.getLinkage()); 1175 LV.mergeVisibility(PrevLV); 1176 } 1177 1178 return LV; 1179 } 1180 1181 if (!Var->isStaticLocal()) 1182 return LinkageInfo::none(); 1183 } 1184 1185 ASTContext &Context = D->getASTContext(); 1186 if (!Context.getLangOpts().CPlusPlus) 1187 return LinkageInfo::none(); 1188 1189 const Decl *OuterD = getOutermostFuncOrBlockContext(D); 1190 if (!OuterD || OuterD->isInvalidDecl()) 1191 return LinkageInfo::none(); 1192 1193 LinkageInfo LV; 1194 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) { 1195 if (!BD->getBlockManglingNumber()) 1196 return LinkageInfo::none(); 1197 1198 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), 1199 BD->getBlockManglingContextDecl(), computation); 1200 } else { 1201 const auto *FD = cast<FunctionDecl>(OuterD); 1202 if (!FD->isInlined() && 1203 !isTemplateInstantiation(FD->getTemplateSpecializationKind())) 1204 return LinkageInfo::none(); 1205 1206 LV = getLVForDecl(FD, computation); 1207 } 1208 if (!isExternallyVisible(LV.getLinkage())) 1209 return LinkageInfo::none(); 1210 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), 1211 LV.isVisibilityExplicit()); 1212 } 1213 1214 static inline const CXXRecordDecl* 1215 getOutermostEnclosingLambda(const CXXRecordDecl *Record) { 1216 const CXXRecordDecl *Ret = Record; 1217 while (Record && Record->isLambda()) { 1218 Ret = Record; 1219 if (!Record->getParent()) break; 1220 // Get the Containing Class of this Lambda Class 1221 Record = dyn_cast_or_null<CXXRecordDecl>( 1222 Record->getParent()->getParent()); 1223 } 1224 return Ret; 1225 } 1226 1227 static LinkageInfo computeLVForDecl(const NamedDecl *D, 1228 LVComputationKind computation) { 1229 // Internal_linkage attribute overrides other considerations. 1230 if (D->hasAttr<InternalLinkageAttr>()) 1231 return LinkageInfo::internal(); 1232 1233 // Objective-C: treat all Objective-C declarations as having external 1234 // linkage. 1235 switch (D->getKind()) { 1236 default: 1237 break; 1238 1239 // Per C++ [basic.link]p2, only the names of objects, references, 1240 // functions, types, templates, namespaces, and values ever have linkage. 1241 // 1242 // Note that the name of a typedef, namespace alias, using declaration, 1243 // and so on are not the name of the corresponding type, namespace, or 1244 // declaration, so they do *not* have linkage. 1245 case Decl::ImplicitParam: 1246 case Decl::Label: 1247 case Decl::NamespaceAlias: 1248 case Decl::ParmVar: 1249 case Decl::Using: 1250 case Decl::UsingShadow: 1251 case Decl::UsingDirective: 1252 return LinkageInfo::none(); 1253 1254 case Decl::EnumConstant: 1255 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration. 1256 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation); 1257 1258 case Decl::Typedef: 1259 case Decl::TypeAlias: 1260 // A typedef declaration has linkage if it gives a type a name for 1261 // linkage purposes. 1262 if (!D->getASTContext().getLangOpts().CPlusPlus || 1263 !cast<TypedefNameDecl>(D) 1264 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 1265 return LinkageInfo::none(); 1266 break; 1267 1268 case Decl::TemplateTemplateParm: // count these as external 1269 case Decl::NonTypeTemplateParm: 1270 case Decl::ObjCAtDefsField: 1271 case Decl::ObjCCategory: 1272 case Decl::ObjCCategoryImpl: 1273 case Decl::ObjCCompatibleAlias: 1274 case Decl::ObjCImplementation: 1275 case Decl::ObjCMethod: 1276 case Decl::ObjCProperty: 1277 case Decl::ObjCPropertyImpl: 1278 case Decl::ObjCProtocol: 1279 return LinkageInfo::external(); 1280 1281 case Decl::CXXRecord: { 1282 const auto *Record = cast<CXXRecordDecl>(D); 1283 if (Record->isLambda()) { 1284 if (!Record->getLambdaManglingNumber()) { 1285 // This lambda has no mangling number, so it's internal. 1286 return LinkageInfo::internal(); 1287 } 1288 1289 // This lambda has its linkage/visibility determined: 1290 // - either by the outermost lambda if that lambda has no mangling 1291 // number. 1292 // - or by the parent of the outer most lambda 1293 // This prevents infinite recursion in settings such as nested lambdas 1294 // used in NSDMI's, for e.g. 1295 // struct L { 1296 // int t{}; 1297 // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t); 1298 // }; 1299 const CXXRecordDecl *OuterMostLambda = 1300 getOutermostEnclosingLambda(Record); 1301 if (!OuterMostLambda->getLambdaManglingNumber()) 1302 return LinkageInfo::internal(); 1303 1304 return getLVForClosure( 1305 OuterMostLambda->getDeclContext()->getRedeclContext(), 1306 OuterMostLambda->getLambdaContextDecl(), computation); 1307 } 1308 1309 break; 1310 } 1311 } 1312 1313 // Handle linkage for namespace-scope names. 1314 if (D->getDeclContext()->getRedeclContext()->isFileContext()) 1315 return getLVForNamespaceScopeDecl(D, computation); 1316 1317 // C++ [basic.link]p5: 1318 // In addition, a member function, static data member, a named 1319 // class or enumeration of class scope, or an unnamed class or 1320 // enumeration defined in a class-scope typedef declaration such 1321 // that the class or enumeration has the typedef name for linkage 1322 // purposes (7.1.3), has external linkage if the name of the class 1323 // has external linkage. 1324 if (D->getDeclContext()->isRecord()) 1325 return getLVForClassMember(D, computation); 1326 1327 // C++ [basic.link]p6: 1328 // The name of a function declared in block scope and the name of 1329 // an object declared by a block scope extern declaration have 1330 // linkage. If there is a visible declaration of an entity with 1331 // linkage having the same name and type, ignoring entities 1332 // declared outside the innermost enclosing namespace scope, the 1333 // block scope declaration declares that same entity and receives 1334 // the linkage of the previous declaration. If there is more than 1335 // one such matching entity, the program is ill-formed. Otherwise, 1336 // if no matching entity is found, the block scope entity receives 1337 // external linkage. 1338 if (D->getDeclContext()->isFunctionOrMethod()) 1339 return getLVForLocalDecl(D, computation); 1340 1341 // C++ [basic.link]p6: 1342 // Names not covered by these rules have no linkage. 1343 return LinkageInfo::none(); 1344 } 1345 1346 namespace clang { 1347 class LinkageComputer { 1348 public: 1349 static LinkageInfo getLVForDecl(const NamedDecl *D, 1350 LVComputationKind computation) { 1351 // Internal_linkage attribute overrides other considerations. 1352 if (D->hasAttr<InternalLinkageAttr>()) 1353 return LinkageInfo::internal(); 1354 1355 if (computation == LVForLinkageOnly && D->hasCachedLinkage()) 1356 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); 1357 1358 LinkageInfo LV = computeLVForDecl(D, computation); 1359 if (D->hasCachedLinkage()) 1360 assert(D->getCachedLinkage() == LV.getLinkage()); 1361 1362 D->setCachedLinkage(LV.getLinkage()); 1363 1364 #ifndef NDEBUG 1365 // In C (because of gnu inline) and in c++ with microsoft extensions an 1366 // static can follow an extern, so we can have two decls with different 1367 // linkages. 1368 const LangOptions &Opts = D->getASTContext().getLangOpts(); 1369 if (!Opts.CPlusPlus || Opts.MicrosoftExt) 1370 return LV; 1371 1372 // We have just computed the linkage for this decl. By induction we know 1373 // that all other computed linkages match, check that the one we just 1374 // computed also does. 1375 NamedDecl *Old = nullptr; 1376 for (auto I : D->redecls()) { 1377 auto *T = cast<NamedDecl>(I); 1378 if (T == D) 1379 continue; 1380 if (!T->isInvalidDecl() && T->hasCachedLinkage()) { 1381 Old = T; 1382 break; 1383 } 1384 } 1385 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); 1386 #endif 1387 1388 return LV; 1389 } 1390 }; 1391 } 1392 1393 static LinkageInfo getLVForDecl(const NamedDecl *D, 1394 LVComputationKind computation) { 1395 return clang::LinkageComputer::getLVForDecl(D, computation); 1396 } 1397 1398 void NamedDecl::printName(raw_ostream &os) const { 1399 os << Name; 1400 } 1401 1402 std::string NamedDecl::getQualifiedNameAsString() const { 1403 std::string QualName; 1404 llvm::raw_string_ostream OS(QualName); 1405 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1406 return OS.str(); 1407 } 1408 1409 void NamedDecl::printQualifiedName(raw_ostream &OS) const { 1410 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1411 } 1412 1413 void NamedDecl::printQualifiedName(raw_ostream &OS, 1414 const PrintingPolicy &P) const { 1415 const DeclContext *Ctx = getDeclContext(); 1416 1417 if (Ctx->isFunctionOrMethod()) { 1418 printName(OS); 1419 return; 1420 } 1421 1422 typedef SmallVector<const DeclContext *, 8> ContextsTy; 1423 ContextsTy Contexts; 1424 1425 // Collect contexts. 1426 while (Ctx && isa<NamedDecl>(Ctx)) { 1427 Contexts.push_back(Ctx); 1428 Ctx = Ctx->getParent(); 1429 } 1430 1431 for (const DeclContext *DC : reverse(Contexts)) { 1432 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { 1433 OS << Spec->getName(); 1434 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 1435 TemplateSpecializationType::PrintTemplateArgumentList( 1436 OS, TemplateArgs.asArray(), P); 1437 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 1438 if (P.SuppressUnwrittenScope && 1439 (ND->isAnonymousNamespace() || ND->isInline())) 1440 continue; 1441 if (ND->isAnonymousNamespace()) { 1442 OS << (P.MSVCFormatting ? "`anonymous namespace\'" 1443 : "(anonymous namespace)"); 1444 } 1445 else 1446 OS << *ND; 1447 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) { 1448 if (!RD->getIdentifier()) 1449 OS << "(anonymous " << RD->getKindName() << ')'; 1450 else 1451 OS << *RD; 1452 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1453 const FunctionProtoType *FT = nullptr; 1454 if (FD->hasWrittenPrototype()) 1455 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); 1456 1457 OS << *FD << '('; 1458 if (FT) { 1459 unsigned NumParams = FD->getNumParams(); 1460 for (unsigned i = 0; i < NumParams; ++i) { 1461 if (i) 1462 OS << ", "; 1463 OS << FD->getParamDecl(i)->getType().stream(P); 1464 } 1465 1466 if (FT->isVariadic()) { 1467 if (NumParams > 0) 1468 OS << ", "; 1469 OS << "..."; 1470 } 1471 } 1472 OS << ')'; 1473 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) { 1474 // C++ [dcl.enum]p10: Each enum-name and each unscoped 1475 // enumerator is declared in the scope that immediately contains 1476 // the enum-specifier. Each scoped enumerator is declared in the 1477 // scope of the enumeration. 1478 if (ED->isScoped() || ED->getIdentifier()) 1479 OS << *ED; 1480 else 1481 continue; 1482 } else { 1483 OS << *cast<NamedDecl>(DC); 1484 } 1485 OS << "::"; 1486 } 1487 1488 if (getDeclName() || isa<DecompositionDecl>(this)) 1489 OS << *this; 1490 else 1491 OS << "(anonymous)"; 1492 } 1493 1494 void NamedDecl::getNameForDiagnostic(raw_ostream &OS, 1495 const PrintingPolicy &Policy, 1496 bool Qualified) const { 1497 if (Qualified) 1498 printQualifiedName(OS, Policy); 1499 else 1500 printName(OS); 1501 } 1502 1503 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) { 1504 return true; 1505 } 1506 static bool isRedeclarableImpl(...) { return false; } 1507 static bool isRedeclarable(Decl::Kind K) { 1508 switch (K) { 1509 #define DECL(Type, Base) \ 1510 case Decl::Type: \ 1511 return isRedeclarableImpl((Type##Decl *)nullptr); 1512 #define ABSTRACT_DECL(DECL) 1513 #include "clang/AST/DeclNodes.inc" 1514 } 1515 llvm_unreachable("unknown decl kind"); 1516 } 1517 1518 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const { 1519 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); 1520 1521 // Never replace one imported declaration with another; we need both results 1522 // when re-exporting. 1523 if (OldD->isFromASTFile() && isFromASTFile()) 1524 return false; 1525 1526 // A kind mismatch implies that the declaration is not replaced. 1527 if (OldD->getKind() != getKind()) 1528 return false; 1529 1530 // For method declarations, we never replace. (Why?) 1531 if (isa<ObjCMethodDecl>(this)) 1532 return false; 1533 1534 // For parameters, pick the newer one. This is either an error or (in 1535 // Objective-C) permitted as an extension. 1536 if (isa<ParmVarDecl>(this)) 1537 return true; 1538 1539 // Inline namespaces can give us two declarations with the same 1540 // name and kind in the same scope but different contexts; we should 1541 // keep both declarations in this case. 1542 if (!this->getDeclContext()->getRedeclContext()->Equals( 1543 OldD->getDeclContext()->getRedeclContext())) 1544 return false; 1545 1546 // Using declarations can be replaced if they import the same name from the 1547 // same context. 1548 if (auto *UD = dyn_cast<UsingDecl>(this)) { 1549 ASTContext &Context = getASTContext(); 1550 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) == 1551 Context.getCanonicalNestedNameSpecifier( 1552 cast<UsingDecl>(OldD)->getQualifier()); 1553 } 1554 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) { 1555 ASTContext &Context = getASTContext(); 1556 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) == 1557 Context.getCanonicalNestedNameSpecifier( 1558 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier()); 1559 } 1560 1561 // UsingDirectiveDecl's are not really NamedDecl's, and all have same name. 1562 // They can be replaced if they nominate the same namespace. 1563 // FIXME: Is this true even if they have different module visibility? 1564 if (auto *UD = dyn_cast<UsingDirectiveDecl>(this)) 1565 return UD->getNominatedNamespace()->getOriginalNamespace() == 1566 cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace() 1567 ->getOriginalNamespace(); 1568 1569 if (isRedeclarable(getKind())) { 1570 if (getCanonicalDecl() != OldD->getCanonicalDecl()) 1571 return false; 1572 1573 if (IsKnownNewer) 1574 return true; 1575 1576 // Check whether this is actually newer than OldD. We want to keep the 1577 // newer declaration. This loop will usually only iterate once, because 1578 // OldD is usually the previous declaration. 1579 for (auto D : redecls()) { 1580 if (D == OldD) 1581 break; 1582 1583 // If we reach the canonical declaration, then OldD is not actually older 1584 // than this one. 1585 // 1586 // FIXME: In this case, we should not add this decl to the lookup table. 1587 if (D->isCanonicalDecl()) 1588 return false; 1589 } 1590 1591 // It's a newer declaration of the same kind of declaration in the same 1592 // scope: we want this decl instead of the existing one. 1593 return true; 1594 } 1595 1596 // In all other cases, we need to keep both declarations in case they have 1597 // different visibility. Any attempt to use the name will result in an 1598 // ambiguity if more than one is visible. 1599 return false; 1600 } 1601 1602 bool NamedDecl::hasLinkage() const { 1603 return getFormalLinkage() != NoLinkage; 1604 } 1605 1606 NamedDecl *NamedDecl::getUnderlyingDeclImpl() { 1607 NamedDecl *ND = this; 1608 while (auto *UD = dyn_cast<UsingShadowDecl>(ND)) 1609 ND = UD->getTargetDecl(); 1610 1611 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) 1612 return AD->getClassInterface(); 1613 1614 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND)) 1615 return AD->getNamespace(); 1616 1617 return ND; 1618 } 1619 1620 bool NamedDecl::isCXXInstanceMember() const { 1621 if (!isCXXClassMember()) 1622 return false; 1623 1624 const NamedDecl *D = this; 1625 if (isa<UsingShadowDecl>(D)) 1626 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1627 1628 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) 1629 return true; 1630 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction())) 1631 return MD->isInstance(); 1632 return false; 1633 } 1634 1635 //===----------------------------------------------------------------------===// 1636 // DeclaratorDecl Implementation 1637 //===----------------------------------------------------------------------===// 1638 1639 template <typename DeclT> 1640 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { 1641 if (decl->getNumTemplateParameterLists() > 0) 1642 return decl->getTemplateParameterList(0)->getTemplateLoc(); 1643 else 1644 return decl->getInnerLocStart(); 1645 } 1646 1647 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { 1648 TypeSourceInfo *TSI = getTypeSourceInfo(); 1649 if (TSI) return TSI->getTypeLoc().getBeginLoc(); 1650 return SourceLocation(); 1651 } 1652 1653 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 1654 if (QualifierLoc) { 1655 // Make sure the extended decl info is allocated. 1656 if (!hasExtInfo()) { 1657 // Save (non-extended) type source info pointer. 1658 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1659 // Allocate external info struct. 1660 DeclInfo = new (getASTContext()) ExtInfo; 1661 // Restore savedTInfo into (extended) decl info. 1662 getExtInfo()->TInfo = savedTInfo; 1663 } 1664 // Set qualifier info. 1665 getExtInfo()->QualifierLoc = QualifierLoc; 1666 } else { 1667 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 1668 if (hasExtInfo()) { 1669 if (getExtInfo()->NumTemplParamLists == 0) { 1670 // Save type source info pointer. 1671 TypeSourceInfo *savedTInfo = getExtInfo()->TInfo; 1672 // Deallocate the extended decl info. 1673 getASTContext().Deallocate(getExtInfo()); 1674 // Restore savedTInfo into (non-extended) decl info. 1675 DeclInfo = savedTInfo; 1676 } 1677 else 1678 getExtInfo()->QualifierLoc = QualifierLoc; 1679 } 1680 } 1681 } 1682 1683 void DeclaratorDecl::setTemplateParameterListsInfo( 1684 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1685 assert(!TPLists.empty()); 1686 // Make sure the extended decl info is allocated. 1687 if (!hasExtInfo()) { 1688 // Save (non-extended) type source info pointer. 1689 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1690 // Allocate external info struct. 1691 DeclInfo = new (getASTContext()) ExtInfo; 1692 // Restore savedTInfo into (extended) decl info. 1693 getExtInfo()->TInfo = savedTInfo; 1694 } 1695 // Set the template parameter lists info. 1696 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 1697 } 1698 1699 SourceLocation DeclaratorDecl::getOuterLocStart() const { 1700 return getTemplateOrInnerLocStart(this); 1701 } 1702 1703 namespace { 1704 1705 // Helper function: returns true if QT is or contains a type 1706 // having a postfix component. 1707 bool typeIsPostfix(clang::QualType QT) { 1708 while (true) { 1709 const Type* T = QT.getTypePtr(); 1710 switch (T->getTypeClass()) { 1711 default: 1712 return false; 1713 case Type::Pointer: 1714 QT = cast<PointerType>(T)->getPointeeType(); 1715 break; 1716 case Type::BlockPointer: 1717 QT = cast<BlockPointerType>(T)->getPointeeType(); 1718 break; 1719 case Type::MemberPointer: 1720 QT = cast<MemberPointerType>(T)->getPointeeType(); 1721 break; 1722 case Type::LValueReference: 1723 case Type::RValueReference: 1724 QT = cast<ReferenceType>(T)->getPointeeType(); 1725 break; 1726 case Type::PackExpansion: 1727 QT = cast<PackExpansionType>(T)->getPattern(); 1728 break; 1729 case Type::Paren: 1730 case Type::ConstantArray: 1731 case Type::DependentSizedArray: 1732 case Type::IncompleteArray: 1733 case Type::VariableArray: 1734 case Type::FunctionProto: 1735 case Type::FunctionNoProto: 1736 return true; 1737 } 1738 } 1739 } 1740 1741 } // namespace 1742 1743 SourceRange DeclaratorDecl::getSourceRange() const { 1744 SourceLocation RangeEnd = getLocation(); 1745 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 1746 // If the declaration has no name or the type extends past the name take the 1747 // end location of the type. 1748 if (!getDeclName() || typeIsPostfix(TInfo->getType())) 1749 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 1750 } 1751 return SourceRange(getOuterLocStart(), RangeEnd); 1752 } 1753 1754 void QualifierInfo::setTemplateParameterListsInfo( 1755 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1756 // Free previous template parameters (if any). 1757 if (NumTemplParamLists > 0) { 1758 Context.Deallocate(TemplParamLists); 1759 TemplParamLists = nullptr; 1760 NumTemplParamLists = 0; 1761 } 1762 // Set info on matched template parameter lists (if any). 1763 if (!TPLists.empty()) { 1764 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()]; 1765 NumTemplParamLists = TPLists.size(); 1766 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists); 1767 } 1768 } 1769 1770 //===----------------------------------------------------------------------===// 1771 // VarDecl Implementation 1772 //===----------------------------------------------------------------------===// 1773 1774 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { 1775 switch (SC) { 1776 case SC_None: break; 1777 case SC_Auto: return "auto"; 1778 case SC_Extern: return "extern"; 1779 case SC_PrivateExtern: return "__private_extern__"; 1780 case SC_Register: return "register"; 1781 case SC_Static: return "static"; 1782 } 1783 1784 llvm_unreachable("Invalid storage class"); 1785 } 1786 1787 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC, 1788 SourceLocation StartLoc, SourceLocation IdLoc, 1789 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 1790 StorageClass SC) 1791 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), 1792 redeclarable_base(C), Init() { 1793 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned), 1794 "VarDeclBitfields too large!"); 1795 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned), 1796 "ParmVarDeclBitfields too large!"); 1797 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned), 1798 "NonParmVarDeclBitfields too large!"); 1799 AllBits = 0; 1800 VarDeclBits.SClass = SC; 1801 // Everything else is implicitly initialized to false. 1802 } 1803 1804 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, 1805 SourceLocation StartL, SourceLocation IdL, 1806 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 1807 StorageClass S) { 1808 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S); 1809 } 1810 1811 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 1812 return new (C, ID) 1813 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr, 1814 QualType(), nullptr, SC_None); 1815 } 1816 1817 void VarDecl::setStorageClass(StorageClass SC) { 1818 assert(isLegalForVariable(SC)); 1819 VarDeclBits.SClass = SC; 1820 } 1821 1822 VarDecl::TLSKind VarDecl::getTLSKind() const { 1823 switch (VarDeclBits.TSCSpec) { 1824 case TSCS_unspecified: 1825 if (!hasAttr<ThreadAttr>() && 1826 !(getASTContext().getLangOpts().OpenMPUseTLS && 1827 getASTContext().getTargetInfo().isTLSSupported() && 1828 hasAttr<OMPThreadPrivateDeclAttr>())) 1829 return TLS_None; 1830 return ((getASTContext().getLangOpts().isCompatibleWithMSVC( 1831 LangOptions::MSVC2015)) || 1832 hasAttr<OMPThreadPrivateDeclAttr>()) 1833 ? TLS_Dynamic 1834 : TLS_Static; 1835 case TSCS___thread: // Fall through. 1836 case TSCS__Thread_local: 1837 return TLS_Static; 1838 case TSCS_thread_local: 1839 return TLS_Dynamic; 1840 } 1841 llvm_unreachable("Unknown thread storage class specifier!"); 1842 } 1843 1844 SourceRange VarDecl::getSourceRange() const { 1845 if (const Expr *Init = getInit()) { 1846 SourceLocation InitEnd = Init->getLocEnd(); 1847 // If Init is implicit, ignore its source range and fallback on 1848 // DeclaratorDecl::getSourceRange() to handle postfix elements. 1849 if (InitEnd.isValid() && InitEnd != getLocation()) 1850 return SourceRange(getOuterLocStart(), InitEnd); 1851 } 1852 return DeclaratorDecl::getSourceRange(); 1853 } 1854 1855 template<typename T> 1856 static LanguageLinkage getDeclLanguageLinkage(const T &D) { 1857 // C++ [dcl.link]p1: All function types, function names with external linkage, 1858 // and variable names with external linkage have a language linkage. 1859 if (!D.hasExternalFormalLinkage()) 1860 return NoLanguageLinkage; 1861 1862 // Language linkage is a C++ concept, but saying that everything else in C has 1863 // C language linkage fits the implementation nicely. 1864 ASTContext &Context = D.getASTContext(); 1865 if (!Context.getLangOpts().CPlusPlus) 1866 return CLanguageLinkage; 1867 1868 // C++ [dcl.link]p4: A C language linkage is ignored in determining the 1869 // language linkage of the names of class members and the function type of 1870 // class member functions. 1871 const DeclContext *DC = D.getDeclContext(); 1872 if (DC->isRecord()) 1873 return CXXLanguageLinkage; 1874 1875 // If the first decl is in an extern "C" context, any other redeclaration 1876 // will have C language linkage. If the first one is not in an extern "C" 1877 // context, we would have reported an error for any other decl being in one. 1878 if (isFirstInExternCContext(&D)) 1879 return CLanguageLinkage; 1880 return CXXLanguageLinkage; 1881 } 1882 1883 template<typename T> 1884 static bool isDeclExternC(const T &D) { 1885 // Since the context is ignored for class members, they can only have C++ 1886 // language linkage or no language linkage. 1887 const DeclContext *DC = D.getDeclContext(); 1888 if (DC->isRecord()) { 1889 assert(D.getASTContext().getLangOpts().CPlusPlus); 1890 return false; 1891 } 1892 1893 return D.getLanguageLinkage() == CLanguageLinkage; 1894 } 1895 1896 LanguageLinkage VarDecl::getLanguageLinkage() const { 1897 return getDeclLanguageLinkage(*this); 1898 } 1899 1900 bool VarDecl::isExternC() const { 1901 return isDeclExternC(*this); 1902 } 1903 1904 bool VarDecl::isInExternCContext() const { 1905 return getLexicalDeclContext()->isExternCContext(); 1906 } 1907 1908 bool VarDecl::isInExternCXXContext() const { 1909 return getLexicalDeclContext()->isExternCXXContext(); 1910 } 1911 1912 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); } 1913 1914 VarDecl::DefinitionKind 1915 VarDecl::isThisDeclarationADefinition(ASTContext &C) const { 1916 // C++ [basic.def]p2: 1917 // A declaration is a definition unless [...] it contains the 'extern' 1918 // specifier or a linkage-specification and neither an initializer [...], 1919 // it declares a non-inline static data member in a class declaration [...], 1920 // it declares a static data member outside a class definition and the variable 1921 // was defined within the class with the constexpr specifier [...], 1922 // C++1y [temp.expl.spec]p15: 1923 // An explicit specialization of a static data member or an explicit 1924 // specialization of a static data member template is a definition if the 1925 // declaration includes an initializer; otherwise, it is a declaration. 1926 // 1927 // FIXME: How do you declare (but not define) a partial specialization of 1928 // a static data member template outside the containing class? 1929 if (isStaticDataMember()) { 1930 if (isOutOfLine() && 1931 !(getCanonicalDecl()->isInline() && 1932 getCanonicalDecl()->isConstexpr()) && 1933 (hasInit() || 1934 // If the first declaration is out-of-line, this may be an 1935 // instantiation of an out-of-line partial specialization of a variable 1936 // template for which we have not yet instantiated the initializer. 1937 (getFirstDecl()->isOutOfLine() 1938 ? getTemplateSpecializationKind() == TSK_Undeclared 1939 : getTemplateSpecializationKind() != 1940 TSK_ExplicitSpecialization) || 1941 isa<VarTemplatePartialSpecializationDecl>(this))) 1942 return Definition; 1943 else if (!isOutOfLine() && isInline()) 1944 return Definition; 1945 else 1946 return DeclarationOnly; 1947 } 1948 // C99 6.7p5: 1949 // A definition of an identifier is a declaration for that identifier that 1950 // [...] causes storage to be reserved for that object. 1951 // Note: that applies for all non-file-scope objects. 1952 // C99 6.9.2p1: 1953 // If the declaration of an identifier for an object has file scope and an 1954 // initializer, the declaration is an external definition for the identifier 1955 if (hasInit()) 1956 return Definition; 1957 1958 if (hasDefiningAttr()) 1959 return Definition; 1960 1961 if (const auto *SAA = getAttr<SelectAnyAttr>()) 1962 if (!SAA->isInherited()) 1963 return Definition; 1964 1965 // A variable template specialization (other than a static data member 1966 // template or an explicit specialization) is a declaration until we 1967 // instantiate its initializer. 1968 if (isa<VarTemplateSpecializationDecl>(this) && 1969 getTemplateSpecializationKind() != TSK_ExplicitSpecialization) 1970 return DeclarationOnly; 1971 1972 if (hasExternalStorage()) 1973 return DeclarationOnly; 1974 1975 // [dcl.link] p7: 1976 // A declaration directly contained in a linkage-specification is treated 1977 // as if it contains the extern specifier for the purpose of determining 1978 // the linkage of the declared name and whether it is a definition. 1979 if (isSingleLineLanguageLinkage(*this)) 1980 return DeclarationOnly; 1981 1982 // C99 6.9.2p2: 1983 // A declaration of an object that has file scope without an initializer, 1984 // and without a storage class specifier or the scs 'static', constitutes 1985 // a tentative definition. 1986 // No such thing in C++. 1987 if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) 1988 return TentativeDefinition; 1989 1990 // What's left is (in C, block-scope) declarations without initializers or 1991 // external storage. These are definitions. 1992 return Definition; 1993 } 1994 1995 VarDecl *VarDecl::getActingDefinition() { 1996 DefinitionKind Kind = isThisDeclarationADefinition(); 1997 if (Kind != TentativeDefinition) 1998 return nullptr; 1999 2000 VarDecl *LastTentative = nullptr; 2001 VarDecl *First = getFirstDecl(); 2002 for (auto I : First->redecls()) { 2003 Kind = I->isThisDeclarationADefinition(); 2004 if (Kind == Definition) 2005 return nullptr; 2006 else if (Kind == TentativeDefinition) 2007 LastTentative = I; 2008 } 2009 return LastTentative; 2010 } 2011 2012 VarDecl *VarDecl::getDefinition(ASTContext &C) { 2013 VarDecl *First = getFirstDecl(); 2014 for (auto I : First->redecls()) { 2015 if (I->isThisDeclarationADefinition(C) == Definition) 2016 return I; 2017 } 2018 return nullptr; 2019 } 2020 2021 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { 2022 DefinitionKind Kind = DeclarationOnly; 2023 2024 const VarDecl *First = getFirstDecl(); 2025 for (auto I : First->redecls()) { 2026 Kind = std::max(Kind, I->isThisDeclarationADefinition(C)); 2027 if (Kind == Definition) 2028 break; 2029 } 2030 2031 return Kind; 2032 } 2033 2034 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { 2035 for (auto I : redecls()) { 2036 if (auto Expr = I->getInit()) { 2037 D = I; 2038 return Expr; 2039 } 2040 } 2041 return nullptr; 2042 } 2043 2044 bool VarDecl::hasInit() const { 2045 if (auto *P = dyn_cast<ParmVarDecl>(this)) 2046 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg()) 2047 return false; 2048 2049 return !Init.isNull(); 2050 } 2051 2052 Expr *VarDecl::getInit() { 2053 if (!hasInit()) 2054 return nullptr; 2055 2056 if (auto *S = Init.dyn_cast<Stmt *>()) 2057 return cast<Expr>(S); 2058 2059 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value); 2060 } 2061 2062 Stmt **VarDecl::getInitAddress() { 2063 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>()) 2064 return &ES->Value; 2065 2066 return Init.getAddrOfPtr1(); 2067 } 2068 2069 bool VarDecl::isOutOfLine() const { 2070 if (Decl::isOutOfLine()) 2071 return true; 2072 2073 if (!isStaticDataMember()) 2074 return false; 2075 2076 // If this static data member was instantiated from a static data member of 2077 // a class template, check whether that static data member was defined 2078 // out-of-line. 2079 if (VarDecl *VD = getInstantiatedFromStaticDataMember()) 2080 return VD->isOutOfLine(); 2081 2082 return false; 2083 } 2084 2085 void VarDecl::setInit(Expr *I) { 2086 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) { 2087 Eval->~EvaluatedStmt(); 2088 getASTContext().Deallocate(Eval); 2089 } 2090 2091 Init = I; 2092 } 2093 2094 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const { 2095 const LangOptions &Lang = C.getLangOpts(); 2096 2097 if (!Lang.CPlusPlus) 2098 return false; 2099 2100 // In C++11, any variable of reference type can be used in a constant 2101 // expression if it is initialized by a constant expression. 2102 if (Lang.CPlusPlus11 && getType()->isReferenceType()) 2103 return true; 2104 2105 // Only const objects can be used in constant expressions in C++. C++98 does 2106 // not require the variable to be non-volatile, but we consider this to be a 2107 // defect. 2108 if (!getType().isConstQualified() || getType().isVolatileQualified()) 2109 return false; 2110 2111 // In C++, const, non-volatile variables of integral or enumeration types 2112 // can be used in constant expressions. 2113 if (getType()->isIntegralOrEnumerationType()) 2114 return true; 2115 2116 // Additionally, in C++11, non-volatile constexpr variables can be used in 2117 // constant expressions. 2118 return Lang.CPlusPlus11 && isConstexpr(); 2119 } 2120 2121 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt 2122 /// form, which contains extra information on the evaluated value of the 2123 /// initializer. 2124 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { 2125 auto *Eval = Init.dyn_cast<EvaluatedStmt *>(); 2126 if (!Eval) { 2127 // Note: EvaluatedStmt contains an APValue, which usually holds 2128 // resources not allocated from the ASTContext. We need to do some 2129 // work to avoid leaking those, but we do so in VarDecl::evaluateValue 2130 // where we can detect whether there's anything to clean up or not. 2131 Eval = new (getASTContext()) EvaluatedStmt; 2132 Eval->Value = Init.get<Stmt *>(); 2133 Init = Eval; 2134 } 2135 return Eval; 2136 } 2137 2138 APValue *VarDecl::evaluateValue() const { 2139 SmallVector<PartialDiagnosticAt, 8> Notes; 2140 return evaluateValue(Notes); 2141 } 2142 2143 namespace { 2144 // Destroy an APValue that was allocated in an ASTContext. 2145 void DestroyAPValue(void* UntypedValue) { 2146 static_cast<APValue*>(UntypedValue)->~APValue(); 2147 } 2148 } // namespace 2149 2150 APValue *VarDecl::evaluateValue( 2151 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 2152 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2153 2154 // We only produce notes indicating why an initializer is non-constant the 2155 // first time it is evaluated. FIXME: The notes won't always be emitted the 2156 // first time we try evaluation, so might not be produced at all. 2157 if (Eval->WasEvaluated) 2158 return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated; 2159 2160 const auto *Init = cast<Expr>(Eval->Value); 2161 assert(!Init->isValueDependent()); 2162 2163 if (Eval->IsEvaluating) { 2164 // FIXME: Produce a diagnostic for self-initialization. 2165 Eval->CheckedICE = true; 2166 Eval->IsICE = false; 2167 return nullptr; 2168 } 2169 2170 Eval->IsEvaluating = true; 2171 2172 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(), 2173 this, Notes); 2174 2175 // Ensure the computed APValue is cleaned up later if evaluation succeeded, 2176 // or that it's empty (so that there's nothing to clean up) if evaluation 2177 // failed. 2178 if (!Result) 2179 Eval->Evaluated = APValue(); 2180 else if (Eval->Evaluated.needsCleanup()) 2181 getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated); 2182 2183 Eval->IsEvaluating = false; 2184 Eval->WasEvaluated = true; 2185 2186 // In C++11, we have determined whether the initializer was a constant 2187 // expression as a side-effect. 2188 if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) { 2189 Eval->CheckedICE = true; 2190 Eval->IsICE = Result && Notes.empty(); 2191 } 2192 2193 return Result ? &Eval->Evaluated : nullptr; 2194 } 2195 2196 APValue *VarDecl::getEvaluatedValue() const { 2197 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) 2198 if (Eval->WasEvaluated) 2199 return &Eval->Evaluated; 2200 2201 return nullptr; 2202 } 2203 2204 bool VarDecl::isInitKnownICE() const { 2205 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) 2206 return Eval->CheckedICE; 2207 2208 return false; 2209 } 2210 2211 bool VarDecl::isInitICE() const { 2212 assert(isInitKnownICE() && 2213 "Check whether we already know that the initializer is an ICE"); 2214 return Init.get<EvaluatedStmt *>()->IsICE; 2215 } 2216 2217 bool VarDecl::checkInitIsICE() const { 2218 // Initializers of weak variables are never ICEs. 2219 if (isWeak()) 2220 return false; 2221 2222 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2223 if (Eval->CheckedICE) 2224 // We have already checked whether this subexpression is an 2225 // integral constant expression. 2226 return Eval->IsICE; 2227 2228 const auto *Init = cast<Expr>(Eval->Value); 2229 assert(!Init->isValueDependent()); 2230 2231 // In C++11, evaluate the initializer to check whether it's a constant 2232 // expression. 2233 if (getASTContext().getLangOpts().CPlusPlus11) { 2234 SmallVector<PartialDiagnosticAt, 8> Notes; 2235 evaluateValue(Notes); 2236 return Eval->IsICE; 2237 } 2238 2239 // It's an ICE whether or not the definition we found is 2240 // out-of-line. See DR 721 and the discussion in Clang PR 2241 // 6206 for details. 2242 2243 if (Eval->CheckingICE) 2244 return false; 2245 Eval->CheckingICE = true; 2246 2247 Eval->IsICE = Init->isIntegerConstantExpr(getASTContext()); 2248 Eval->CheckingICE = false; 2249 Eval->CheckedICE = true; 2250 return Eval->IsICE; 2251 } 2252 2253 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { 2254 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2255 return cast<VarDecl>(MSI->getInstantiatedFrom()); 2256 2257 return nullptr; 2258 } 2259 2260 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { 2261 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2262 return Spec->getSpecializationKind(); 2263 2264 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2265 return MSI->getTemplateSpecializationKind(); 2266 2267 return TSK_Undeclared; 2268 } 2269 2270 SourceLocation VarDecl::getPointOfInstantiation() const { 2271 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2272 return Spec->getPointOfInstantiation(); 2273 2274 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2275 return MSI->getPointOfInstantiation(); 2276 2277 return SourceLocation(); 2278 } 2279 2280 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { 2281 return getASTContext().getTemplateOrSpecializationInfo(this) 2282 .dyn_cast<VarTemplateDecl *>(); 2283 } 2284 2285 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { 2286 getASTContext().setTemplateOrSpecializationInfo(this, Template); 2287 } 2288 2289 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { 2290 if (isStaticDataMember()) 2291 // FIXME: Remove ? 2292 // return getASTContext().getInstantiatedFromStaticDataMember(this); 2293 return getASTContext().getTemplateOrSpecializationInfo(this) 2294 .dyn_cast<MemberSpecializationInfo *>(); 2295 return nullptr; 2296 } 2297 2298 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 2299 SourceLocation PointOfInstantiation) { 2300 assert((isa<VarTemplateSpecializationDecl>(this) || 2301 getMemberSpecializationInfo()) && 2302 "not a variable or static data member template specialization"); 2303 2304 if (VarTemplateSpecializationDecl *Spec = 2305 dyn_cast<VarTemplateSpecializationDecl>(this)) { 2306 Spec->setSpecializationKind(TSK); 2307 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2308 Spec->getPointOfInstantiation().isInvalid()) 2309 Spec->setPointOfInstantiation(PointOfInstantiation); 2310 } 2311 2312 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { 2313 MSI->setTemplateSpecializationKind(TSK); 2314 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2315 MSI->getPointOfInstantiation().isInvalid()) 2316 MSI->setPointOfInstantiation(PointOfInstantiation); 2317 } 2318 } 2319 2320 void 2321 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, 2322 TemplateSpecializationKind TSK) { 2323 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && 2324 "Previous template or instantiation?"); 2325 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); 2326 } 2327 2328 //===----------------------------------------------------------------------===// 2329 // ParmVarDecl Implementation 2330 //===----------------------------------------------------------------------===// 2331 2332 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, 2333 SourceLocation StartLoc, 2334 SourceLocation IdLoc, IdentifierInfo *Id, 2335 QualType T, TypeSourceInfo *TInfo, 2336 StorageClass S, Expr *DefArg) { 2337 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo, 2338 S, DefArg); 2339 } 2340 2341 QualType ParmVarDecl::getOriginalType() const { 2342 TypeSourceInfo *TSI = getTypeSourceInfo(); 2343 QualType T = TSI ? TSI->getType() : getType(); 2344 if (const auto *DT = dyn_cast<DecayedType>(T)) 2345 return DT->getOriginalType(); 2346 return T; 2347 } 2348 2349 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2350 return new (C, ID) 2351 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(), 2352 nullptr, QualType(), nullptr, SC_None, nullptr); 2353 } 2354 2355 SourceRange ParmVarDecl::getSourceRange() const { 2356 if (!hasInheritedDefaultArg()) { 2357 SourceRange ArgRange = getDefaultArgRange(); 2358 if (ArgRange.isValid()) 2359 return SourceRange(getOuterLocStart(), ArgRange.getEnd()); 2360 } 2361 2362 // DeclaratorDecl considers the range of postfix types as overlapping with the 2363 // declaration name, but this is not the case with parameters in ObjC methods. 2364 if (isa<ObjCMethodDecl>(getDeclContext())) 2365 return SourceRange(DeclaratorDecl::getLocStart(), getLocation()); 2366 2367 return DeclaratorDecl::getSourceRange(); 2368 } 2369 2370 Expr *ParmVarDecl::getDefaultArg() { 2371 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); 2372 assert(!hasUninstantiatedDefaultArg() && 2373 "Default argument is not yet instantiated!"); 2374 2375 Expr *Arg = getInit(); 2376 if (auto *E = dyn_cast_or_null<ExprWithCleanups>(Arg)) 2377 return E->getSubExpr(); 2378 2379 return Arg; 2380 } 2381 2382 void ParmVarDecl::setDefaultArg(Expr *defarg) { 2383 ParmVarDeclBits.DefaultArgKind = DAK_Normal; 2384 Init = defarg; 2385 } 2386 2387 SourceRange ParmVarDecl::getDefaultArgRange() const { 2388 switch (ParmVarDeclBits.DefaultArgKind) { 2389 case DAK_None: 2390 case DAK_Unparsed: 2391 // Nothing we can do here. 2392 return SourceRange(); 2393 2394 case DAK_Uninstantiated: 2395 return getUninstantiatedDefaultArg()->getSourceRange(); 2396 2397 case DAK_Normal: 2398 if (const Expr *E = getInit()) 2399 return E->getSourceRange(); 2400 2401 // Missing an actual expression, may be invalid. 2402 return SourceRange(); 2403 } 2404 llvm_unreachable("Invalid default argument kind."); 2405 } 2406 2407 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) { 2408 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated; 2409 Init = arg; 2410 } 2411 2412 Expr *ParmVarDecl::getUninstantiatedDefaultArg() { 2413 assert(hasUninstantiatedDefaultArg() && 2414 "Wrong kind of initialization expression!"); 2415 return cast_or_null<Expr>(Init.get<Stmt *>()); 2416 } 2417 2418 bool ParmVarDecl::hasDefaultArg() const { 2419 // FIXME: We should just return false for DAK_None here once callers are 2420 // prepared for the case that we encountered an invalid default argument and 2421 // were unable to even build an invalid expression. 2422 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() || 2423 !Init.isNull(); 2424 } 2425 2426 bool ParmVarDecl::isParameterPack() const { 2427 return isa<PackExpansionType>(getType()); 2428 } 2429 2430 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { 2431 getASTContext().setParameterIndex(this, parameterIndex); 2432 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; 2433 } 2434 2435 unsigned ParmVarDecl::getParameterIndexLarge() const { 2436 return getASTContext().getParameterIndex(this); 2437 } 2438 2439 //===----------------------------------------------------------------------===// 2440 // FunctionDecl Implementation 2441 //===----------------------------------------------------------------------===// 2442 2443 void FunctionDecl::getNameForDiagnostic( 2444 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { 2445 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); 2446 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); 2447 if (TemplateArgs) 2448 TemplateSpecializationType::PrintTemplateArgumentList( 2449 OS, TemplateArgs->asArray(), Policy); 2450 } 2451 2452 bool FunctionDecl::isVariadic() const { 2453 if (const auto *FT = getType()->getAs<FunctionProtoType>()) 2454 return FT->isVariadic(); 2455 return false; 2456 } 2457 2458 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { 2459 for (auto I : redecls()) { 2460 if (I->Body || I->IsLateTemplateParsed) { 2461 Definition = I; 2462 return true; 2463 } 2464 } 2465 2466 return false; 2467 } 2468 2469 bool FunctionDecl::hasTrivialBody() const 2470 { 2471 Stmt *S = getBody(); 2472 if (!S) { 2473 // Since we don't have a body for this function, we don't know if it's 2474 // trivial or not. 2475 return false; 2476 } 2477 2478 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) 2479 return true; 2480 return false; 2481 } 2482 2483 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const { 2484 for (auto I : redecls()) { 2485 if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed || 2486 I->hasDefiningAttr()) { 2487 Definition = I->IsDeleted ? I->getCanonicalDecl() : I; 2488 return true; 2489 } 2490 } 2491 2492 return false; 2493 } 2494 2495 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { 2496 if (!hasBody(Definition)) 2497 return nullptr; 2498 2499 if (Definition->Body) 2500 return Definition->Body.get(getASTContext().getExternalSource()); 2501 2502 return nullptr; 2503 } 2504 2505 void FunctionDecl::setBody(Stmt *B) { 2506 Body = B; 2507 if (B) 2508 EndRangeLoc = B->getLocEnd(); 2509 } 2510 2511 void FunctionDecl::setPure(bool P) { 2512 IsPure = P; 2513 if (P) 2514 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) 2515 Parent->markedVirtualFunctionPure(); 2516 } 2517 2518 template<std::size_t Len> 2519 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { 2520 IdentifierInfo *II = ND->getIdentifier(); 2521 return II && II->isStr(Str); 2522 } 2523 2524 bool FunctionDecl::isMain() const { 2525 const TranslationUnitDecl *tunit = 2526 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 2527 return tunit && 2528 !tunit->getASTContext().getLangOpts().Freestanding && 2529 isNamed(this, "main"); 2530 } 2531 2532 bool FunctionDecl::isMSVCRTEntryPoint() const { 2533 const TranslationUnitDecl *TUnit = 2534 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 2535 if (!TUnit) 2536 return false; 2537 2538 // Even though we aren't really targeting MSVCRT if we are freestanding, 2539 // semantic analysis for these functions remains the same. 2540 2541 // MSVCRT entry points only exist on MSVCRT targets. 2542 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) 2543 return false; 2544 2545 // Nameless functions like constructors cannot be entry points. 2546 if (!getIdentifier()) 2547 return false; 2548 2549 return llvm::StringSwitch<bool>(getName()) 2550 .Cases("main", // an ANSI console app 2551 "wmain", // a Unicode console App 2552 "WinMain", // an ANSI GUI app 2553 "wWinMain", // a Unicode GUI app 2554 "DllMain", // a DLL 2555 true) 2556 .Default(false); 2557 } 2558 2559 bool FunctionDecl::isReservedGlobalPlacementOperator() const { 2560 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName); 2561 assert(getDeclName().getCXXOverloadedOperator() == OO_New || 2562 getDeclName().getCXXOverloadedOperator() == OO_Delete || 2563 getDeclName().getCXXOverloadedOperator() == OO_Array_New || 2564 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete); 2565 2566 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 2567 return false; 2568 2569 const auto *proto = getType()->castAs<FunctionProtoType>(); 2570 if (proto->getNumParams() != 2 || proto->isVariadic()) 2571 return false; 2572 2573 ASTContext &Context = 2574 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) 2575 ->getASTContext(); 2576 2577 // The result type and first argument type are constant across all 2578 // these operators. The second argument must be exactly void*. 2579 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy); 2580 } 2581 2582 bool FunctionDecl::isReplaceableGlobalAllocationFunction() const { 2583 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 2584 return false; 2585 if (getDeclName().getCXXOverloadedOperator() != OO_New && 2586 getDeclName().getCXXOverloadedOperator() != OO_Delete && 2587 getDeclName().getCXXOverloadedOperator() != OO_Array_New && 2588 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 2589 return false; 2590 2591 if (isa<CXXRecordDecl>(getDeclContext())) 2592 return false; 2593 2594 // This can only fail for an invalid 'operator new' declaration. 2595 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 2596 return false; 2597 2598 const auto *FPT = getType()->castAs<FunctionProtoType>(); 2599 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic()) 2600 return false; 2601 2602 // If this is a single-parameter function, it must be a replaceable global 2603 // allocation or deallocation function. 2604 if (FPT->getNumParams() == 1) 2605 return true; 2606 2607 unsigned Params = 1; 2608 QualType Ty = FPT->getParamType(Params); 2609 ASTContext &Ctx = getASTContext(); 2610 2611 auto Consume = [&] { 2612 ++Params; 2613 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType(); 2614 }; 2615 2616 // In C++14, the next parameter can be a 'std::size_t' for sized delete. 2617 bool IsSizedDelete = false; 2618 if (Ctx.getLangOpts().SizedDeallocation && 2619 (getDeclName().getCXXOverloadedOperator() == OO_Delete || 2620 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) && 2621 Ctx.hasSameType(Ty, Ctx.getSizeType())) { 2622 IsSizedDelete = true; 2623 Consume(); 2624 } 2625 2626 // In C++17, the next parameter can be a 'std::align_val_t' for aligned 2627 // new/delete. 2628 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) 2629 Consume(); 2630 2631 // Finally, if this is not a sized delete, the final parameter can 2632 // be a 'const std::nothrow_t&'. 2633 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) { 2634 Ty = Ty->getPointeeType(); 2635 if (Ty.getCVRQualifiers() != Qualifiers::Const) 2636 return false; 2637 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 2638 if (RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace()) 2639 Consume(); 2640 } 2641 2642 return Params == FPT->getNumParams(); 2643 } 2644 2645 LanguageLinkage FunctionDecl::getLanguageLinkage() const { 2646 return getDeclLanguageLinkage(*this); 2647 } 2648 2649 bool FunctionDecl::isExternC() const { 2650 return isDeclExternC(*this); 2651 } 2652 2653 bool FunctionDecl::isInExternCContext() const { 2654 return getLexicalDeclContext()->isExternCContext(); 2655 } 2656 2657 bool FunctionDecl::isInExternCXXContext() const { 2658 return getLexicalDeclContext()->isExternCXXContext(); 2659 } 2660 2661 bool FunctionDecl::isGlobal() const { 2662 if (const auto *Method = dyn_cast<CXXMethodDecl>(this)) 2663 return Method->isStatic(); 2664 2665 if (getCanonicalDecl()->getStorageClass() == SC_Static) 2666 return false; 2667 2668 for (const DeclContext *DC = getDeclContext(); 2669 DC->isNamespace(); 2670 DC = DC->getParent()) { 2671 if (const auto *Namespace = cast<NamespaceDecl>(DC)) { 2672 if (!Namespace->getDeclName()) 2673 return false; 2674 break; 2675 } 2676 } 2677 2678 return true; 2679 } 2680 2681 bool FunctionDecl::isNoReturn() const { 2682 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || 2683 hasAttr<C11NoReturnAttr>()) 2684 return true; 2685 2686 if (auto *FnTy = getType()->getAs<FunctionType>()) 2687 return FnTy->getNoReturnAttr(); 2688 2689 return false; 2690 } 2691 2692 void 2693 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { 2694 redeclarable_base::setPreviousDecl(PrevDecl); 2695 2696 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { 2697 FunctionTemplateDecl *PrevFunTmpl 2698 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr; 2699 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); 2700 FunTmpl->setPreviousDecl(PrevFunTmpl); 2701 } 2702 2703 if (PrevDecl && PrevDecl->IsInline) 2704 IsInline = true; 2705 } 2706 2707 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); } 2708 2709 /// \brief Returns a value indicating whether this function 2710 /// corresponds to a builtin function. 2711 /// 2712 /// The function corresponds to a built-in function if it is 2713 /// declared at translation scope or within an extern "C" block and 2714 /// its name matches with the name of a builtin. The returned value 2715 /// will be 0 for functions that do not correspond to a builtin, a 2716 /// value of type \c Builtin::ID if in the target-independent range 2717 /// \c [1,Builtin::First), or a target-specific builtin value. 2718 unsigned FunctionDecl::getBuiltinID() const { 2719 if (!getIdentifier()) 2720 return 0; 2721 2722 unsigned BuiltinID = getIdentifier()->getBuiltinID(); 2723 if (!BuiltinID) 2724 return 0; 2725 2726 ASTContext &Context = getASTContext(); 2727 if (Context.getLangOpts().CPlusPlus) { 2728 const auto *LinkageDecl = 2729 dyn_cast<LinkageSpecDecl>(getFirstDecl()->getDeclContext()); 2730 // In C++, the first declaration of a builtin is always inside an implicit 2731 // extern "C". 2732 // FIXME: A recognised library function may not be directly in an extern "C" 2733 // declaration, for instance "extern "C" { namespace std { decl } }". 2734 if (!LinkageDecl) { 2735 if (BuiltinID == Builtin::BI__GetExceptionInfo && 2736 Context.getTargetInfo().getCXXABI().isMicrosoft()) 2737 return Builtin::BI__GetExceptionInfo; 2738 return 0; 2739 } 2740 if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c) 2741 return 0; 2742 } 2743 2744 // If the function is marked "overloadable", it has a different mangled name 2745 // and is not the C library function. 2746 if (hasAttr<OverloadableAttr>()) 2747 return 0; 2748 2749 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 2750 return BuiltinID; 2751 2752 // This function has the name of a known C library 2753 // function. Determine whether it actually refers to the C library 2754 // function or whether it just has the same name. 2755 2756 // If this is a static function, it's not a builtin. 2757 if (getStorageClass() == SC_Static) 2758 return 0; 2759 2760 // OpenCL v1.2 s6.9.f - The library functions defined in 2761 // the C99 standard headers are not available. 2762 if (Context.getLangOpts().OpenCL && 2763 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 2764 return 0; 2765 2766 return BuiltinID; 2767 } 2768 2769 2770 /// getNumParams - Return the number of parameters this function must have 2771 /// based on its FunctionType. This is the length of the ParamInfo array 2772 /// after it has been created. 2773 unsigned FunctionDecl::getNumParams() const { 2774 const auto *FPT = getType()->getAs<FunctionProtoType>(); 2775 return FPT ? FPT->getNumParams() : 0; 2776 } 2777 2778 void FunctionDecl::setParams(ASTContext &C, 2779 ArrayRef<ParmVarDecl *> NewParamInfo) { 2780 assert(!ParamInfo && "Already has param info!"); 2781 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); 2782 2783 // Zero params -> null pointer. 2784 if (!NewParamInfo.empty()) { 2785 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; 2786 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 2787 } 2788 } 2789 2790 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) { 2791 assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!"); 2792 2793 if (!NewDecls.empty()) { 2794 NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()]; 2795 std::copy(NewDecls.begin(), NewDecls.end(), A); 2796 DeclsInPrototypeScope = llvm::makeArrayRef(A, NewDecls.size()); 2797 // Move declarations introduced in prototype to the function context. 2798 for (auto I : NewDecls) { 2799 DeclContext *DC = I->getDeclContext(); 2800 // Forward-declared reference to an enumeration is not added to 2801 // declaration scope, so skip declaration that is absent from its 2802 // declaration contexts. 2803 if (DC->containsDecl(I)) { 2804 DC->removeDecl(I); 2805 I->setDeclContext(this); 2806 addDecl(I); 2807 } 2808 } 2809 } 2810 } 2811 2812 /// getMinRequiredArguments - Returns the minimum number of arguments 2813 /// needed to call this function. This may be fewer than the number of 2814 /// function parameters, if some of the parameters have default 2815 /// arguments (in C++) or are parameter packs (C++11). 2816 unsigned FunctionDecl::getMinRequiredArguments() const { 2817 if (!getASTContext().getLangOpts().CPlusPlus) 2818 return getNumParams(); 2819 2820 unsigned NumRequiredArgs = 0; 2821 for (auto *Param : parameters()) 2822 if (!Param->isParameterPack() && !Param->hasDefaultArg()) 2823 ++NumRequiredArgs; 2824 return NumRequiredArgs; 2825 } 2826 2827 /// \brief The combination of the extern and inline keywords under MSVC forces 2828 /// the function to be required. 2829 /// 2830 /// Note: This function assumes that we will only get called when isInlined() 2831 /// would return true for this FunctionDecl. 2832 bool FunctionDecl::isMSExternInline() const { 2833 assert(isInlined() && "expected to get called on an inlined function!"); 2834 2835 const ASTContext &Context = getASTContext(); 2836 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && 2837 !hasAttr<DLLExportAttr>()) 2838 return false; 2839 2840 for (const FunctionDecl *FD = getMostRecentDecl(); FD; 2841 FD = FD->getPreviousDecl()) 2842 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 2843 return true; 2844 2845 return false; 2846 } 2847 2848 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) { 2849 if (Redecl->getStorageClass() != SC_Extern) 2850 return false; 2851 2852 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD; 2853 FD = FD->getPreviousDecl()) 2854 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 2855 return false; 2856 2857 return true; 2858 } 2859 2860 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { 2861 // Only consider file-scope declarations in this test. 2862 if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) 2863 return false; 2864 2865 // Only consider explicit declarations; the presence of a builtin for a 2866 // libcall shouldn't affect whether a definition is externally visible. 2867 if (Redecl->isImplicit()) 2868 return false; 2869 2870 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) 2871 return true; // Not an inline definition 2872 2873 return false; 2874 } 2875 2876 /// \brief For a function declaration in C or C++, determine whether this 2877 /// declaration causes the definition to be externally visible. 2878 /// 2879 /// For instance, this determines if adding the current declaration to the set 2880 /// of redeclarations of the given functions causes 2881 /// isInlineDefinitionExternallyVisible to change from false to true. 2882 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { 2883 assert(!doesThisDeclarationHaveABody() && 2884 "Must have a declaration without a body."); 2885 2886 ASTContext &Context = getASTContext(); 2887 2888 if (Context.getLangOpts().MSVCCompat) { 2889 const FunctionDecl *Definition; 2890 if (hasBody(Definition) && Definition->isInlined() && 2891 redeclForcesDefMSVC(this)) 2892 return true; 2893 } 2894 2895 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 2896 // With GNU inlining, a declaration with 'inline' but not 'extern', forces 2897 // an externally visible definition. 2898 // 2899 // FIXME: What happens if gnu_inline gets added on after the first 2900 // declaration? 2901 if (!isInlineSpecified() || getStorageClass() == SC_Extern) 2902 return false; 2903 2904 const FunctionDecl *Prev = this; 2905 bool FoundBody = false; 2906 while ((Prev = Prev->getPreviousDecl())) { 2907 FoundBody |= Prev->Body.isValid(); 2908 2909 if (Prev->Body) { 2910 // If it's not the case that both 'inline' and 'extern' are 2911 // specified on the definition, then it is always externally visible. 2912 if (!Prev->isInlineSpecified() || 2913 Prev->getStorageClass() != SC_Extern) 2914 return false; 2915 } else if (Prev->isInlineSpecified() && 2916 Prev->getStorageClass() != SC_Extern) { 2917 return false; 2918 } 2919 } 2920 return FoundBody; 2921 } 2922 2923 if (Context.getLangOpts().CPlusPlus) 2924 return false; 2925 2926 // C99 6.7.4p6: 2927 // [...] If all of the file scope declarations for a function in a 2928 // translation unit include the inline function specifier without extern, 2929 // then the definition in that translation unit is an inline definition. 2930 if (isInlineSpecified() && getStorageClass() != SC_Extern) 2931 return false; 2932 const FunctionDecl *Prev = this; 2933 bool FoundBody = false; 2934 while ((Prev = Prev->getPreviousDecl())) { 2935 FoundBody |= Prev->Body.isValid(); 2936 if (RedeclForcesDefC99(Prev)) 2937 return false; 2938 } 2939 return FoundBody; 2940 } 2941 2942 SourceRange FunctionDecl::getReturnTypeSourceRange() const { 2943 const TypeSourceInfo *TSI = getTypeSourceInfo(); 2944 if (!TSI) 2945 return SourceRange(); 2946 FunctionTypeLoc FTL = 2947 TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>(); 2948 if (!FTL) 2949 return SourceRange(); 2950 2951 // Skip self-referential return types. 2952 const SourceManager &SM = getASTContext().getSourceManager(); 2953 SourceRange RTRange = FTL.getReturnLoc().getSourceRange(); 2954 SourceLocation Boundary = getNameInfo().getLocStart(); 2955 if (RTRange.isInvalid() || Boundary.isInvalid() || 2956 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary)) 2957 return SourceRange(); 2958 2959 return RTRange; 2960 } 2961 2962 const Attr *FunctionDecl::getUnusedResultAttr() const { 2963 QualType RetType = getReturnType(); 2964 if (RetType->isRecordType()) { 2965 const CXXRecordDecl *Ret = RetType->getAsCXXRecordDecl(); 2966 const auto *MD = dyn_cast<CXXMethodDecl>(this); 2967 if (Ret && !(MD && MD->getCorrespondingMethodInClass(Ret, true))) { 2968 if (const auto *R = Ret->getAttr<WarnUnusedResultAttr>()) 2969 return R; 2970 } 2971 } else if (const auto *ET = RetType->getAs<EnumType>()) { 2972 if (const EnumDecl *ED = ET->getDecl()) { 2973 if (const auto *R = ED->getAttr<WarnUnusedResultAttr>()) 2974 return R; 2975 } 2976 } 2977 return getAttr<WarnUnusedResultAttr>(); 2978 } 2979 2980 /// \brief For an inline function definition in C, or for a gnu_inline function 2981 /// in C++, determine whether the definition will be externally visible. 2982 /// 2983 /// Inline function definitions are always available for inlining optimizations. 2984 /// However, depending on the language dialect, declaration specifiers, and 2985 /// attributes, the definition of an inline function may or may not be 2986 /// "externally" visible to other translation units in the program. 2987 /// 2988 /// In C99, inline definitions are not externally visible by default. However, 2989 /// if even one of the global-scope declarations is marked "extern inline", the 2990 /// inline definition becomes externally visible (C99 6.7.4p6). 2991 /// 2992 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function 2993 /// definition, we use the GNU semantics for inline, which are nearly the 2994 /// opposite of C99 semantics. In particular, "inline" by itself will create 2995 /// an externally visible symbol, but "extern inline" will not create an 2996 /// externally visible symbol. 2997 bool FunctionDecl::isInlineDefinitionExternallyVisible() const { 2998 assert(doesThisDeclarationHaveABody() && "Must have the function definition"); 2999 assert(isInlined() && "Function must be inline"); 3000 ASTContext &Context = getASTContext(); 3001 3002 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3003 // Note: If you change the logic here, please change 3004 // doesDeclarationForceExternallyVisibleDefinition as well. 3005 // 3006 // If it's not the case that both 'inline' and 'extern' are 3007 // specified on the definition, then this inline definition is 3008 // externally visible. 3009 if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) 3010 return true; 3011 3012 // If any declaration is 'inline' but not 'extern', then this definition 3013 // is externally visible. 3014 for (auto Redecl : redecls()) { 3015 if (Redecl->isInlineSpecified() && 3016 Redecl->getStorageClass() != SC_Extern) 3017 return true; 3018 } 3019 3020 return false; 3021 } 3022 3023 // The rest of this function is C-only. 3024 assert(!Context.getLangOpts().CPlusPlus && 3025 "should not use C inline rules in C++"); 3026 3027 // C99 6.7.4p6: 3028 // [...] If all of the file scope declarations for a function in a 3029 // translation unit include the inline function specifier without extern, 3030 // then the definition in that translation unit is an inline definition. 3031 for (auto Redecl : redecls()) { 3032 if (RedeclForcesDefC99(Redecl)) 3033 return true; 3034 } 3035 3036 // C99 6.7.4p6: 3037 // An inline definition does not provide an external definition for the 3038 // function, and does not forbid an external definition in another 3039 // translation unit. 3040 return false; 3041 } 3042 3043 /// getOverloadedOperator - Which C++ overloaded operator this 3044 /// function represents, if any. 3045 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { 3046 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 3047 return getDeclName().getCXXOverloadedOperator(); 3048 else 3049 return OO_None; 3050 } 3051 3052 /// getLiteralIdentifier - The literal suffix identifier this function 3053 /// represents, if any. 3054 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { 3055 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) 3056 return getDeclName().getCXXLiteralIdentifier(); 3057 else 3058 return nullptr; 3059 } 3060 3061 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { 3062 if (TemplateOrSpecialization.isNull()) 3063 return TK_NonTemplate; 3064 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>()) 3065 return TK_FunctionTemplate; 3066 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) 3067 return TK_MemberSpecialization; 3068 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) 3069 return TK_FunctionTemplateSpecialization; 3070 if (TemplateOrSpecialization.is 3071 <DependentFunctionTemplateSpecializationInfo*>()) 3072 return TK_DependentFunctionTemplateSpecialization; 3073 3074 llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); 3075 } 3076 3077 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { 3078 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) 3079 return cast<FunctionDecl>(Info->getInstantiatedFrom()); 3080 3081 return nullptr; 3082 } 3083 3084 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const { 3085 return TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>(); 3086 } 3087 3088 void 3089 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, 3090 FunctionDecl *FD, 3091 TemplateSpecializationKind TSK) { 3092 assert(TemplateOrSpecialization.isNull() && 3093 "Member function is already a specialization"); 3094 MemberSpecializationInfo *Info 3095 = new (C) MemberSpecializationInfo(FD, TSK); 3096 TemplateOrSpecialization = Info; 3097 } 3098 3099 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const { 3100 return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>(); 3101 } 3102 3103 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) { 3104 TemplateOrSpecialization = Template; 3105 } 3106 3107 bool FunctionDecl::isImplicitlyInstantiable() const { 3108 // If the function is invalid, it can't be implicitly instantiated. 3109 if (isInvalidDecl()) 3110 return false; 3111 3112 switch (getTemplateSpecializationKind()) { 3113 case TSK_Undeclared: 3114 case TSK_ExplicitInstantiationDefinition: 3115 return false; 3116 3117 case TSK_ImplicitInstantiation: 3118 return true; 3119 3120 // It is possible to instantiate TSK_ExplicitSpecialization kind 3121 // if the FunctionDecl has a class scope specialization pattern. 3122 case TSK_ExplicitSpecialization: 3123 return getClassScopeSpecializationPattern() != nullptr; 3124 3125 case TSK_ExplicitInstantiationDeclaration: 3126 // Handled below. 3127 break; 3128 } 3129 3130 // Find the actual template from which we will instantiate. 3131 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); 3132 bool HasPattern = false; 3133 if (PatternDecl) 3134 HasPattern = PatternDecl->hasBody(PatternDecl); 3135 3136 // C++0x [temp.explicit]p9: 3137 // Except for inline functions, other explicit instantiation declarations 3138 // have the effect of suppressing the implicit instantiation of the entity 3139 // to which they refer. 3140 if (!HasPattern || !PatternDecl) 3141 return true; 3142 3143 return PatternDecl->isInlined(); 3144 } 3145 3146 bool FunctionDecl::isTemplateInstantiation() const { 3147 switch (getTemplateSpecializationKind()) { 3148 case TSK_Undeclared: 3149 case TSK_ExplicitSpecialization: 3150 return false; 3151 case TSK_ImplicitInstantiation: 3152 case TSK_ExplicitInstantiationDeclaration: 3153 case TSK_ExplicitInstantiationDefinition: 3154 return true; 3155 } 3156 llvm_unreachable("All TSK values handled."); 3157 } 3158 3159 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const { 3160 // Handle class scope explicit specialization special case. 3161 if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 3162 return getClassScopeSpecializationPattern(); 3163 3164 // If this is a generic lambda call operator specialization, its 3165 // instantiation pattern is always its primary template's pattern 3166 // even if its primary template was instantiated from another 3167 // member template (which happens with nested generic lambdas). 3168 // Since a lambda's call operator's body is transformed eagerly, 3169 // we don't have to go hunting for a prototype definition template 3170 // (i.e. instantiated-from-member-template) to use as an instantiation 3171 // pattern. 3172 3173 if (isGenericLambdaCallOperatorSpecialization( 3174 dyn_cast<CXXMethodDecl>(this))) { 3175 assert(getPrimaryTemplate() && "A generic lambda specialization must be " 3176 "generated from a primary call operator " 3177 "template"); 3178 assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() && 3179 "A generic lambda call operator template must always have a body - " 3180 "even if instantiated from a prototype (i.e. as written) member " 3181 "template"); 3182 return getPrimaryTemplate()->getTemplatedDecl(); 3183 } 3184 3185 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { 3186 while (Primary->getInstantiatedFromMemberTemplate()) { 3187 // If we have hit a point where the user provided a specialization of 3188 // this template, we're done looking. 3189 if (Primary->isMemberSpecialization()) 3190 break; 3191 Primary = Primary->getInstantiatedFromMemberTemplate(); 3192 } 3193 3194 return Primary->getTemplatedDecl(); 3195 } 3196 3197 return getInstantiatedFromMemberFunction(); 3198 } 3199 3200 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { 3201 if (FunctionTemplateSpecializationInfo *Info 3202 = TemplateOrSpecialization 3203 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3204 return Info->Template.getPointer(); 3205 } 3206 return nullptr; 3207 } 3208 3209 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const { 3210 return getASTContext().getClassScopeSpecializationPattern(this); 3211 } 3212 3213 FunctionTemplateSpecializationInfo * 3214 FunctionDecl::getTemplateSpecializationInfo() const { 3215 return TemplateOrSpecialization 3216 .dyn_cast<FunctionTemplateSpecializationInfo *>(); 3217 } 3218 3219 const TemplateArgumentList * 3220 FunctionDecl::getTemplateSpecializationArgs() const { 3221 if (FunctionTemplateSpecializationInfo *Info 3222 = TemplateOrSpecialization 3223 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3224 return Info->TemplateArguments; 3225 } 3226 return nullptr; 3227 } 3228 3229 const ASTTemplateArgumentListInfo * 3230 FunctionDecl::getTemplateSpecializationArgsAsWritten() const { 3231 if (FunctionTemplateSpecializationInfo *Info 3232 = TemplateOrSpecialization 3233 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3234 return Info->TemplateArgumentsAsWritten; 3235 } 3236 return nullptr; 3237 } 3238 3239 void 3240 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, 3241 FunctionTemplateDecl *Template, 3242 const TemplateArgumentList *TemplateArgs, 3243 void *InsertPos, 3244 TemplateSpecializationKind TSK, 3245 const TemplateArgumentListInfo *TemplateArgsAsWritten, 3246 SourceLocation PointOfInstantiation) { 3247 assert(TSK != TSK_Undeclared && 3248 "Must specify the type of function template specialization"); 3249 FunctionTemplateSpecializationInfo *Info 3250 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>(); 3251 if (!Info) 3252 Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK, 3253 TemplateArgs, 3254 TemplateArgsAsWritten, 3255 PointOfInstantiation); 3256 TemplateOrSpecialization = Info; 3257 Template->addSpecialization(Info, InsertPos); 3258 } 3259 3260 void 3261 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, 3262 const UnresolvedSetImpl &Templates, 3263 const TemplateArgumentListInfo &TemplateArgs) { 3264 assert(TemplateOrSpecialization.isNull()); 3265 DependentFunctionTemplateSpecializationInfo *Info = 3266 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates, 3267 TemplateArgs); 3268 TemplateOrSpecialization = Info; 3269 } 3270 3271 DependentFunctionTemplateSpecializationInfo * 3272 FunctionDecl::getDependentSpecializationInfo() const { 3273 return TemplateOrSpecialization 3274 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>(); 3275 } 3276 3277 DependentFunctionTemplateSpecializationInfo * 3278 DependentFunctionTemplateSpecializationInfo::Create( 3279 ASTContext &Context, const UnresolvedSetImpl &Ts, 3280 const TemplateArgumentListInfo &TArgs) { 3281 void *Buffer = Context.Allocate( 3282 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>( 3283 TArgs.size(), Ts.size())); 3284 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs); 3285 } 3286 3287 DependentFunctionTemplateSpecializationInfo:: 3288 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, 3289 const TemplateArgumentListInfo &TArgs) 3290 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { 3291 3292 NumTemplates = Ts.size(); 3293 NumArgs = TArgs.size(); 3294 3295 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>(); 3296 for (unsigned I = 0, E = Ts.size(); I != E; ++I) 3297 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl()); 3298 3299 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>(); 3300 for (unsigned I = 0, E = TArgs.size(); I != E; ++I) 3301 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); 3302 } 3303 3304 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { 3305 // For a function template specialization, query the specialization 3306 // information object. 3307 FunctionTemplateSpecializationInfo *FTSInfo 3308 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>(); 3309 if (FTSInfo) 3310 return FTSInfo->getTemplateSpecializationKind(); 3311 3312 MemberSpecializationInfo *MSInfo 3313 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>(); 3314 if (MSInfo) 3315 return MSInfo->getTemplateSpecializationKind(); 3316 3317 return TSK_Undeclared; 3318 } 3319 3320 void 3321 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 3322 SourceLocation PointOfInstantiation) { 3323 if (FunctionTemplateSpecializationInfo *FTSInfo 3324 = TemplateOrSpecialization.dyn_cast< 3325 FunctionTemplateSpecializationInfo*>()) { 3326 FTSInfo->setTemplateSpecializationKind(TSK); 3327 if (TSK != TSK_ExplicitSpecialization && 3328 PointOfInstantiation.isValid() && 3329 FTSInfo->getPointOfInstantiation().isInvalid()) 3330 FTSInfo->setPointOfInstantiation(PointOfInstantiation); 3331 } else if (MemberSpecializationInfo *MSInfo 3332 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { 3333 MSInfo->setTemplateSpecializationKind(TSK); 3334 if (TSK != TSK_ExplicitSpecialization && 3335 PointOfInstantiation.isValid() && 3336 MSInfo->getPointOfInstantiation().isInvalid()) 3337 MSInfo->setPointOfInstantiation(PointOfInstantiation); 3338 } else 3339 llvm_unreachable("Function cannot have a template specialization kind"); 3340 } 3341 3342 SourceLocation FunctionDecl::getPointOfInstantiation() const { 3343 if (FunctionTemplateSpecializationInfo *FTSInfo 3344 = TemplateOrSpecialization.dyn_cast< 3345 FunctionTemplateSpecializationInfo*>()) 3346 return FTSInfo->getPointOfInstantiation(); 3347 else if (MemberSpecializationInfo *MSInfo 3348 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) 3349 return MSInfo->getPointOfInstantiation(); 3350 3351 return SourceLocation(); 3352 } 3353 3354 bool FunctionDecl::isOutOfLine() const { 3355 if (Decl::isOutOfLine()) 3356 return true; 3357 3358 // If this function was instantiated from a member function of a 3359 // class template, check whether that member function was defined out-of-line. 3360 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { 3361 const FunctionDecl *Definition; 3362 if (FD->hasBody(Definition)) 3363 return Definition->isOutOfLine(); 3364 } 3365 3366 // If this function was instantiated from a function template, 3367 // check whether that function template was defined out-of-line. 3368 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { 3369 const FunctionDecl *Definition; 3370 if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) 3371 return Definition->isOutOfLine(); 3372 } 3373 3374 return false; 3375 } 3376 3377 SourceRange FunctionDecl::getSourceRange() const { 3378 return SourceRange(getOuterLocStart(), EndRangeLoc); 3379 } 3380 3381 unsigned FunctionDecl::getMemoryFunctionKind() const { 3382 IdentifierInfo *FnInfo = getIdentifier(); 3383 3384 if (!FnInfo) 3385 return 0; 3386 3387 // Builtin handling. 3388 switch (getBuiltinID()) { 3389 case Builtin::BI__builtin_memset: 3390 case Builtin::BI__builtin___memset_chk: 3391 case Builtin::BImemset: 3392 return Builtin::BImemset; 3393 3394 case Builtin::BI__builtin_memcpy: 3395 case Builtin::BI__builtin___memcpy_chk: 3396 case Builtin::BImemcpy: 3397 return Builtin::BImemcpy; 3398 3399 case Builtin::BI__builtin_memmove: 3400 case Builtin::BI__builtin___memmove_chk: 3401 case Builtin::BImemmove: 3402 return Builtin::BImemmove; 3403 3404 case Builtin::BIstrlcpy: 3405 case Builtin::BI__builtin___strlcpy_chk: 3406 return Builtin::BIstrlcpy; 3407 3408 case Builtin::BIstrlcat: 3409 case Builtin::BI__builtin___strlcat_chk: 3410 return Builtin::BIstrlcat; 3411 3412 case Builtin::BI__builtin_memcmp: 3413 case Builtin::BImemcmp: 3414 return Builtin::BImemcmp; 3415 3416 case Builtin::BI__builtin_strncpy: 3417 case Builtin::BI__builtin___strncpy_chk: 3418 case Builtin::BIstrncpy: 3419 return Builtin::BIstrncpy; 3420 3421 case Builtin::BI__builtin_strncmp: 3422 case Builtin::BIstrncmp: 3423 return Builtin::BIstrncmp; 3424 3425 case Builtin::BI__builtin_strncasecmp: 3426 case Builtin::BIstrncasecmp: 3427 return Builtin::BIstrncasecmp; 3428 3429 case Builtin::BI__builtin_strncat: 3430 case Builtin::BI__builtin___strncat_chk: 3431 case Builtin::BIstrncat: 3432 return Builtin::BIstrncat; 3433 3434 case Builtin::BI__builtin_strndup: 3435 case Builtin::BIstrndup: 3436 return Builtin::BIstrndup; 3437 3438 case Builtin::BI__builtin_strlen: 3439 case Builtin::BIstrlen: 3440 return Builtin::BIstrlen; 3441 3442 case Builtin::BI__builtin_bzero: 3443 case Builtin::BIbzero: 3444 return Builtin::BIbzero; 3445 3446 default: 3447 if (isExternC()) { 3448 if (FnInfo->isStr("memset")) 3449 return Builtin::BImemset; 3450 else if (FnInfo->isStr("memcpy")) 3451 return Builtin::BImemcpy; 3452 else if (FnInfo->isStr("memmove")) 3453 return Builtin::BImemmove; 3454 else if (FnInfo->isStr("memcmp")) 3455 return Builtin::BImemcmp; 3456 else if (FnInfo->isStr("strncpy")) 3457 return Builtin::BIstrncpy; 3458 else if (FnInfo->isStr("strncmp")) 3459 return Builtin::BIstrncmp; 3460 else if (FnInfo->isStr("strncasecmp")) 3461 return Builtin::BIstrncasecmp; 3462 else if (FnInfo->isStr("strncat")) 3463 return Builtin::BIstrncat; 3464 else if (FnInfo->isStr("strndup")) 3465 return Builtin::BIstrndup; 3466 else if (FnInfo->isStr("strlen")) 3467 return Builtin::BIstrlen; 3468 else if (FnInfo->isStr("bzero")) 3469 return Builtin::BIbzero; 3470 } 3471 break; 3472 } 3473 return 0; 3474 } 3475 3476 //===----------------------------------------------------------------------===// 3477 // FieldDecl Implementation 3478 //===----------------------------------------------------------------------===// 3479 3480 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, 3481 SourceLocation StartLoc, SourceLocation IdLoc, 3482 IdentifierInfo *Id, QualType T, 3483 TypeSourceInfo *TInfo, Expr *BW, bool Mutable, 3484 InClassInitStyle InitStyle) { 3485 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, 3486 BW, Mutable, InitStyle); 3487 } 3488 3489 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3490 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(), 3491 SourceLocation(), nullptr, QualType(), nullptr, 3492 nullptr, false, ICIS_NoInit); 3493 } 3494 3495 bool FieldDecl::isAnonymousStructOrUnion() const { 3496 if (!isImplicit() || getDeclName()) 3497 return false; 3498 3499 if (const auto *Record = getType()->getAs<RecordType>()) 3500 return Record->getDecl()->isAnonymousStructOrUnion(); 3501 3502 return false; 3503 } 3504 3505 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { 3506 assert(isBitField() && "not a bitfield"); 3507 auto *BitWidth = static_cast<Expr *>(InitStorage.getPointer()); 3508 return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue(); 3509 } 3510 3511 unsigned FieldDecl::getFieldIndex() const { 3512 const FieldDecl *Canonical = getCanonicalDecl(); 3513 if (Canonical != this) 3514 return Canonical->getFieldIndex(); 3515 3516 if (CachedFieldIndex) return CachedFieldIndex - 1; 3517 3518 unsigned Index = 0; 3519 const RecordDecl *RD = getParent(); 3520 3521 for (auto *Field : RD->fields()) { 3522 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1; 3523 ++Index; 3524 } 3525 3526 assert(CachedFieldIndex && "failed to find field in parent"); 3527 return CachedFieldIndex - 1; 3528 } 3529 3530 SourceRange FieldDecl::getSourceRange() const { 3531 switch (InitStorage.getInt()) { 3532 // All three of these cases store an optional Expr*. 3533 case ISK_BitWidthOrNothing: 3534 case ISK_InClassCopyInit: 3535 case ISK_InClassListInit: 3536 if (const auto *E = static_cast<const Expr *>(InitStorage.getPointer())) 3537 return SourceRange(getInnerLocStart(), E->getLocEnd()); 3538 // FALLTHROUGH 3539 3540 case ISK_CapturedVLAType: 3541 return DeclaratorDecl::getSourceRange(); 3542 } 3543 llvm_unreachable("bad init storage kind"); 3544 } 3545 3546 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) { 3547 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) && 3548 "capturing type in non-lambda or captured record."); 3549 assert(InitStorage.getInt() == ISK_BitWidthOrNothing && 3550 InitStorage.getPointer() == nullptr && 3551 "bit width, initializer or captured type already set"); 3552 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType), 3553 ISK_CapturedVLAType); 3554 } 3555 3556 //===----------------------------------------------------------------------===// 3557 // TagDecl Implementation 3558 //===----------------------------------------------------------------------===// 3559 3560 SourceLocation TagDecl::getOuterLocStart() const { 3561 return getTemplateOrInnerLocStart(this); 3562 } 3563 3564 SourceRange TagDecl::getSourceRange() const { 3565 SourceLocation RBraceLoc = BraceRange.getEnd(); 3566 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); 3567 return SourceRange(getOuterLocStart(), E); 3568 } 3569 3570 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); } 3571 3572 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { 3573 TypedefNameDeclOrQualifier = TDD; 3574 if (const Type *T = getTypeForDecl()) { 3575 (void)T; 3576 assert(T->isLinkageValid()); 3577 } 3578 assert(isLinkageValid()); 3579 } 3580 3581 void TagDecl::startDefinition() { 3582 IsBeingDefined = true; 3583 3584 if (auto *D = dyn_cast<CXXRecordDecl>(this)) { 3585 struct CXXRecordDecl::DefinitionData *Data = 3586 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); 3587 for (auto I : redecls()) 3588 cast<CXXRecordDecl>(I)->DefinitionData = Data; 3589 } 3590 } 3591 3592 void TagDecl::completeDefinition() { 3593 assert((!isa<CXXRecordDecl>(this) || 3594 cast<CXXRecordDecl>(this)->hasDefinition()) && 3595 "definition completed but not started"); 3596 3597 IsCompleteDefinition = true; 3598 IsBeingDefined = false; 3599 3600 if (ASTMutationListener *L = getASTMutationListener()) 3601 L->CompletedTagDefinition(this); 3602 } 3603 3604 TagDecl *TagDecl::getDefinition() const { 3605 if (isCompleteDefinition()) 3606 return const_cast<TagDecl *>(this); 3607 3608 // If it's possible for us to have an out-of-date definition, check now. 3609 if (MayHaveOutOfDateDef) { 3610 if (IdentifierInfo *II = getIdentifier()) { 3611 if (II->isOutOfDate()) { 3612 updateOutOfDate(*II); 3613 } 3614 } 3615 } 3616 3617 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this)) 3618 return CXXRD->getDefinition(); 3619 3620 for (auto R : redecls()) 3621 if (R->isCompleteDefinition()) 3622 return R; 3623 3624 return nullptr; 3625 } 3626 3627 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 3628 if (QualifierLoc) { 3629 // Make sure the extended qualifier info is allocated. 3630 if (!hasExtInfo()) 3631 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 3632 // Set qualifier info. 3633 getExtInfo()->QualifierLoc = QualifierLoc; 3634 } else { 3635 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 3636 if (hasExtInfo()) { 3637 if (getExtInfo()->NumTemplParamLists == 0) { 3638 getASTContext().Deallocate(getExtInfo()); 3639 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr; 3640 } 3641 else 3642 getExtInfo()->QualifierLoc = QualifierLoc; 3643 } 3644 } 3645 } 3646 3647 void TagDecl::setTemplateParameterListsInfo( 3648 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 3649 assert(!TPLists.empty()); 3650 // Make sure the extended decl info is allocated. 3651 if (!hasExtInfo()) 3652 // Allocate external info struct. 3653 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 3654 // Set the template parameter lists info. 3655 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 3656 } 3657 3658 //===----------------------------------------------------------------------===// 3659 // EnumDecl Implementation 3660 //===----------------------------------------------------------------------===// 3661 3662 void EnumDecl::anchor() { } 3663 3664 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, 3665 SourceLocation StartLoc, SourceLocation IdLoc, 3666 IdentifierInfo *Id, 3667 EnumDecl *PrevDecl, bool IsScoped, 3668 bool IsScopedUsingClassTag, bool IsFixed) { 3669 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl, 3670 IsScoped, IsScopedUsingClassTag, IsFixed); 3671 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3672 C.getTypeDeclType(Enum, PrevDecl); 3673 return Enum; 3674 } 3675 3676 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 3677 EnumDecl *Enum = 3678 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(), 3679 nullptr, nullptr, false, false, false); 3680 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3681 return Enum; 3682 } 3683 3684 SourceRange EnumDecl::getIntegerTypeRange() const { 3685 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo()) 3686 return TI->getTypeLoc().getSourceRange(); 3687 return SourceRange(); 3688 } 3689 3690 void EnumDecl::completeDefinition(QualType NewType, 3691 QualType NewPromotionType, 3692 unsigned NumPositiveBits, 3693 unsigned NumNegativeBits) { 3694 assert(!isCompleteDefinition() && "Cannot redefine enums!"); 3695 if (!IntegerType) 3696 IntegerType = NewType.getTypePtr(); 3697 PromotionType = NewPromotionType; 3698 setNumPositiveBits(NumPositiveBits); 3699 setNumNegativeBits(NumNegativeBits); 3700 TagDecl::completeDefinition(); 3701 } 3702 3703 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { 3704 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 3705 return MSI->getTemplateSpecializationKind(); 3706 3707 return TSK_Undeclared; 3708 } 3709 3710 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 3711 SourceLocation PointOfInstantiation) { 3712 MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); 3713 assert(MSI && "Not an instantiated member enumeration?"); 3714 MSI->setTemplateSpecializationKind(TSK); 3715 if (TSK != TSK_ExplicitSpecialization && 3716 PointOfInstantiation.isValid() && 3717 MSI->getPointOfInstantiation().isInvalid()) 3718 MSI->setPointOfInstantiation(PointOfInstantiation); 3719 } 3720 3721 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const { 3722 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 3723 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 3724 EnumDecl *ED = getInstantiatedFromMemberEnum(); 3725 while (auto *NewED = ED->getInstantiatedFromMemberEnum()) 3726 ED = NewED; 3727 return ED; 3728 } 3729 } 3730 3731 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) && 3732 "couldn't find pattern for enum instantiation"); 3733 return nullptr; 3734 } 3735 3736 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { 3737 if (SpecializationInfo) 3738 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); 3739 3740 return nullptr; 3741 } 3742 3743 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, 3744 TemplateSpecializationKind TSK) { 3745 assert(!SpecializationInfo && "Member enum is already a specialization"); 3746 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); 3747 } 3748 3749 //===----------------------------------------------------------------------===// 3750 // RecordDecl Implementation 3751 //===----------------------------------------------------------------------===// 3752 3753 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C, 3754 DeclContext *DC, SourceLocation StartLoc, 3755 SourceLocation IdLoc, IdentifierInfo *Id, 3756 RecordDecl *PrevDecl) 3757 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 3758 HasFlexibleArrayMember = false; 3759 AnonymousStructOrUnion = false; 3760 HasObjectMember = false; 3761 HasVolatileMember = false; 3762 LoadedFieldsFromExternalStorage = false; 3763 assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!"); 3764 } 3765 3766 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, 3767 SourceLocation StartLoc, SourceLocation IdLoc, 3768 IdentifierInfo *Id, RecordDecl* PrevDecl) { 3769 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC, 3770 StartLoc, IdLoc, Id, PrevDecl); 3771 R->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3772 3773 C.getTypeDeclType(R, PrevDecl); 3774 return R; 3775 } 3776 3777 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 3778 RecordDecl *R = 3779 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(), 3780 SourceLocation(), nullptr, nullptr); 3781 R->MayHaveOutOfDateDef = C.getLangOpts().Modules; 3782 return R; 3783 } 3784 3785 bool RecordDecl::isInjectedClassName() const { 3786 return isImplicit() && getDeclName() && getDeclContext()->isRecord() && 3787 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); 3788 } 3789 3790 bool RecordDecl::isLambda() const { 3791 if (auto RD = dyn_cast<CXXRecordDecl>(this)) 3792 return RD->isLambda(); 3793 return false; 3794 } 3795 3796 bool RecordDecl::isCapturedRecord() const { 3797 return hasAttr<CapturedRecordAttr>(); 3798 } 3799 3800 void RecordDecl::setCapturedRecord() { 3801 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext())); 3802 } 3803 3804 RecordDecl::field_iterator RecordDecl::field_begin() const { 3805 if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage) 3806 LoadFieldsFromExternalStorage(); 3807 3808 return field_iterator(decl_iterator(FirstDecl)); 3809 } 3810 3811 /// completeDefinition - Notes that the definition of this type is now 3812 /// complete. 3813 void RecordDecl::completeDefinition() { 3814 assert(!isCompleteDefinition() && "Cannot redefine record!"); 3815 TagDecl::completeDefinition(); 3816 } 3817 3818 /// isMsStruct - Get whether or not this record uses ms_struct layout. 3819 /// This which can be turned on with an attribute, pragma, or the 3820 /// -mms-bitfields command-line option. 3821 bool RecordDecl::isMsStruct(const ASTContext &C) const { 3822 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1; 3823 } 3824 3825 void RecordDecl::LoadFieldsFromExternalStorage() const { 3826 ExternalASTSource *Source = getASTContext().getExternalSource(); 3827 assert(hasExternalLexicalStorage() && Source && "No external storage?"); 3828 3829 // Notify that we have a RecordDecl doing some initialization. 3830 ExternalASTSource::Deserializing TheFields(Source); 3831 3832 SmallVector<Decl*, 64> Decls; 3833 LoadedFieldsFromExternalStorage = true; 3834 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) { 3835 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); 3836 }, Decls); 3837 3838 #ifndef NDEBUG 3839 // Check that all decls we got were FieldDecls. 3840 for (unsigned i=0, e=Decls.size(); i != e; ++i) 3841 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); 3842 #endif 3843 3844 if (Decls.empty()) 3845 return; 3846 3847 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, 3848 /*FieldsAlreadyLoaded=*/false); 3849 } 3850 3851 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const { 3852 ASTContext &Context = getASTContext(); 3853 if (!Context.getLangOpts().Sanitize.hasOneOf( 3854 SanitizerKind::Address | SanitizerKind::KernelAddress) || 3855 !Context.getLangOpts().SanitizeAddressFieldPadding) 3856 return false; 3857 const auto &Blacklist = Context.getSanitizerBlacklist(); 3858 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this); 3859 // We may be able to relax some of these requirements. 3860 int ReasonToReject = -1; 3861 if (!CXXRD || CXXRD->isExternCContext()) 3862 ReasonToReject = 0; // is not C++. 3863 else if (CXXRD->hasAttr<PackedAttr>()) 3864 ReasonToReject = 1; // is packed. 3865 else if (CXXRD->isUnion()) 3866 ReasonToReject = 2; // is a union. 3867 else if (CXXRD->isTriviallyCopyable()) 3868 ReasonToReject = 3; // is trivially copyable. 3869 else if (CXXRD->hasTrivialDestructor()) 3870 ReasonToReject = 4; // has trivial destructor. 3871 else if (CXXRD->isStandardLayout()) 3872 ReasonToReject = 5; // is standard layout. 3873 else if (Blacklist.isBlacklistedLocation(getLocation(), "field-padding")) 3874 ReasonToReject = 6; // is in a blacklisted file. 3875 else if (Blacklist.isBlacklistedType(getQualifiedNameAsString(), 3876 "field-padding")) 3877 ReasonToReject = 7; // is blacklisted. 3878 3879 if (EmitRemark) { 3880 if (ReasonToReject >= 0) 3881 Context.getDiagnostics().Report( 3882 getLocation(), 3883 diag::remark_sanitize_address_insert_extra_padding_rejected) 3884 << getQualifiedNameAsString() << ReasonToReject; 3885 else 3886 Context.getDiagnostics().Report( 3887 getLocation(), 3888 diag::remark_sanitize_address_insert_extra_padding_accepted) 3889 << getQualifiedNameAsString(); 3890 } 3891 return ReasonToReject < 0; 3892 } 3893 3894 const FieldDecl *RecordDecl::findFirstNamedDataMember() const { 3895 for (const auto *I : fields()) { 3896 if (I->getIdentifier()) 3897 return I; 3898 3899 if (const auto *RT = I->getType()->getAs<RecordType>()) 3900 if (const FieldDecl *NamedDataMember = 3901 RT->getDecl()->findFirstNamedDataMember()) 3902 return NamedDataMember; 3903 } 3904 3905 // We didn't find a named data member. 3906 return nullptr; 3907 } 3908 3909 3910 //===----------------------------------------------------------------------===// 3911 // BlockDecl Implementation 3912 //===----------------------------------------------------------------------===// 3913 3914 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { 3915 assert(!ParamInfo && "Already has param info!"); 3916 3917 // Zero params -> null pointer. 3918 if (!NewParamInfo.empty()) { 3919 NumParams = NewParamInfo.size(); 3920 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; 3921 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 3922 } 3923 } 3924 3925 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures, 3926 bool CapturesCXXThis) { 3927 this->CapturesCXXThis = CapturesCXXThis; 3928 this->NumCaptures = Captures.size(); 3929 3930 if (Captures.empty()) { 3931 this->Captures = nullptr; 3932 return; 3933 } 3934 3935 this->Captures = Captures.copy(Context).data(); 3936 } 3937 3938 bool BlockDecl::capturesVariable(const VarDecl *variable) const { 3939 for (const auto &I : captures()) 3940 // Only auto vars can be captured, so no redeclaration worries. 3941 if (I.getVariable() == variable) 3942 return true; 3943 3944 return false; 3945 } 3946 3947 SourceRange BlockDecl::getSourceRange() const { 3948 return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation()); 3949 } 3950 3951 //===----------------------------------------------------------------------===// 3952 // Other Decl Allocation/Deallocation Method Implementations 3953 //===----------------------------------------------------------------------===// 3954 3955 void TranslationUnitDecl::anchor() { } 3956 3957 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { 3958 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C); 3959 } 3960 3961 void PragmaCommentDecl::anchor() { } 3962 3963 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C, 3964 TranslationUnitDecl *DC, 3965 SourceLocation CommentLoc, 3966 PragmaMSCommentKind CommentKind, 3967 StringRef Arg) { 3968 PragmaCommentDecl *PCD = 3969 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1)) 3970 PragmaCommentDecl(DC, CommentLoc, CommentKind); 3971 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size()); 3972 PCD->getTrailingObjects<char>()[Arg.size()] = '\0'; 3973 return PCD; 3974 } 3975 3976 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C, 3977 unsigned ID, 3978 unsigned ArgSize) { 3979 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1)) 3980 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown); 3981 } 3982 3983 void PragmaDetectMismatchDecl::anchor() { } 3984 3985 PragmaDetectMismatchDecl * 3986 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC, 3987 SourceLocation Loc, StringRef Name, 3988 StringRef Value) { 3989 size_t ValueStart = Name.size() + 1; 3990 PragmaDetectMismatchDecl *PDMD = 3991 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1)) 3992 PragmaDetectMismatchDecl(DC, Loc, ValueStart); 3993 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size()); 3994 PDMD->getTrailingObjects<char>()[Name.size()] = '\0'; 3995 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(), 3996 Value.size()); 3997 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0'; 3998 return PDMD; 3999 } 4000 4001 PragmaDetectMismatchDecl * 4002 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4003 unsigned NameValueSize) { 4004 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1)) 4005 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0); 4006 } 4007 4008 void ExternCContextDecl::anchor() { } 4009 4010 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C, 4011 TranslationUnitDecl *DC) { 4012 return new (C, DC) ExternCContextDecl(DC); 4013 } 4014 4015 void LabelDecl::anchor() { } 4016 4017 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 4018 SourceLocation IdentL, IdentifierInfo *II) { 4019 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL); 4020 } 4021 4022 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 4023 SourceLocation IdentL, IdentifierInfo *II, 4024 SourceLocation GnuLabelL) { 4025 assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); 4026 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL); 4027 } 4028 4029 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4030 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr, 4031 SourceLocation()); 4032 } 4033 4034 void LabelDecl::setMSAsmLabel(StringRef Name) { 4035 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1]; 4036 memcpy(Buffer, Name.data(), Name.size()); 4037 Buffer[Name.size()] = '\0'; 4038 MSAsmName = Buffer; 4039 } 4040 4041 void ValueDecl::anchor() { } 4042 4043 bool ValueDecl::isWeak() const { 4044 for (const auto *I : attrs()) 4045 if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I)) 4046 return true; 4047 4048 return isWeakImported(); 4049 } 4050 4051 void ImplicitParamDecl::anchor() { } 4052 4053 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, 4054 SourceLocation IdLoc, 4055 IdentifierInfo *Id, 4056 QualType Type) { 4057 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type); 4058 } 4059 4060 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, 4061 unsigned ID) { 4062 return new (C, ID) ImplicitParamDecl(C, nullptr, SourceLocation(), nullptr, 4063 QualType()); 4064 } 4065 4066 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC, 4067 SourceLocation StartLoc, 4068 const DeclarationNameInfo &NameInfo, 4069 QualType T, TypeSourceInfo *TInfo, 4070 StorageClass SC, 4071 bool isInlineSpecified, 4072 bool hasWrittenPrototype, 4073 bool isConstexprSpecified) { 4074 FunctionDecl *New = 4075 new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo, 4076 SC, isInlineSpecified, isConstexprSpecified); 4077 New->HasWrittenPrototype = hasWrittenPrototype; 4078 return New; 4079 } 4080 4081 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4082 return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(), 4083 DeclarationNameInfo(), QualType(), nullptr, 4084 SC_None, false, false); 4085 } 4086 4087 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 4088 return new (C, DC) BlockDecl(DC, L); 4089 } 4090 4091 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4092 return new (C, ID) BlockDecl(nullptr, SourceLocation()); 4093 } 4094 4095 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams) 4096 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured), 4097 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {} 4098 4099 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC, 4100 unsigned NumParams) { 4101 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4102 CapturedDecl(DC, NumParams); 4103 } 4104 4105 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4106 unsigned NumParams) { 4107 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4108 CapturedDecl(nullptr, NumParams); 4109 } 4110 4111 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); } 4112 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); } 4113 4114 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); } 4115 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); } 4116 4117 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, 4118 SourceLocation L, 4119 IdentifierInfo *Id, QualType T, 4120 Expr *E, const llvm::APSInt &V) { 4121 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V); 4122 } 4123 4124 EnumConstantDecl * 4125 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4126 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr, 4127 QualType(), nullptr, llvm::APSInt()); 4128 } 4129 4130 void IndirectFieldDecl::anchor() { } 4131 4132 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC, 4133 SourceLocation L, DeclarationName N, 4134 QualType T, 4135 MutableArrayRef<NamedDecl *> CH) 4136 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()), 4137 ChainingSize(CH.size()) { 4138 // In C++, indirect field declarations conflict with tag declarations in the 4139 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them. 4140 if (C.getLangOpts().CPlusPlus) 4141 IdentifierNamespace |= IDNS_Tag; 4142 } 4143 4144 IndirectFieldDecl * 4145 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, 4146 IdentifierInfo *Id, QualType T, 4147 llvm::MutableArrayRef<NamedDecl *> CH) { 4148 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH); 4149 } 4150 4151 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, 4152 unsigned ID) { 4153 return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(), 4154 DeclarationName(), QualType(), None); 4155 } 4156 4157 SourceRange EnumConstantDecl::getSourceRange() const { 4158 SourceLocation End = getLocation(); 4159 if (Init) 4160 End = Init->getLocEnd(); 4161 return SourceRange(getLocation(), End); 4162 } 4163 4164 void TypeDecl::anchor() { } 4165 4166 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, 4167 SourceLocation StartLoc, SourceLocation IdLoc, 4168 IdentifierInfo *Id, TypeSourceInfo *TInfo) { 4169 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 4170 } 4171 4172 void TypedefNameDecl::anchor() { } 4173 4174 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const { 4175 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) { 4176 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl(); 4177 auto *ThisTypedef = this; 4178 if (AnyRedecl && OwningTypedef) { 4179 OwningTypedef = OwningTypedef->getCanonicalDecl(); 4180 ThisTypedef = ThisTypedef->getCanonicalDecl(); 4181 } 4182 if (OwningTypedef == ThisTypedef) 4183 return TT->getDecl(); 4184 } 4185 4186 return nullptr; 4187 } 4188 4189 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4190 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(), 4191 nullptr, nullptr); 4192 } 4193 4194 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, 4195 SourceLocation StartLoc, 4196 SourceLocation IdLoc, IdentifierInfo *Id, 4197 TypeSourceInfo *TInfo) { 4198 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 4199 } 4200 4201 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4202 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(), 4203 SourceLocation(), nullptr, nullptr); 4204 } 4205 4206 SourceRange TypedefDecl::getSourceRange() const { 4207 SourceLocation RangeEnd = getLocation(); 4208 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 4209 if (typeIsPostfix(TInfo->getType())) 4210 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 4211 } 4212 return SourceRange(getLocStart(), RangeEnd); 4213 } 4214 4215 SourceRange TypeAliasDecl::getSourceRange() const { 4216 SourceLocation RangeEnd = getLocStart(); 4217 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) 4218 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 4219 return SourceRange(getLocStart(), RangeEnd); 4220 } 4221 4222 void FileScopeAsmDecl::anchor() { } 4223 4224 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, 4225 StringLiteral *Str, 4226 SourceLocation AsmLoc, 4227 SourceLocation RParenLoc) { 4228 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); 4229 } 4230 4231 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, 4232 unsigned ID) { 4233 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(), 4234 SourceLocation()); 4235 } 4236 4237 void EmptyDecl::anchor() {} 4238 4239 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 4240 return new (C, DC) EmptyDecl(DC, L); 4241 } 4242 4243 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4244 return new (C, ID) EmptyDecl(nullptr, SourceLocation()); 4245 } 4246 4247 //===----------------------------------------------------------------------===// 4248 // ImportDecl Implementation 4249 //===----------------------------------------------------------------------===// 4250 4251 /// \brief Retrieve the number of module identifiers needed to name the given 4252 /// module. 4253 static unsigned getNumModuleIdentifiers(Module *Mod) { 4254 unsigned Result = 1; 4255 while (Mod->Parent) { 4256 Mod = Mod->Parent; 4257 ++Result; 4258 } 4259 return Result; 4260 } 4261 4262 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 4263 Module *Imported, 4264 ArrayRef<SourceLocation> IdentifierLocs) 4265 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true), 4266 NextLocalImport() 4267 { 4268 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); 4269 auto *StoredLocs = getTrailingObjects<SourceLocation>(); 4270 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(), 4271 StoredLocs); 4272 } 4273 4274 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 4275 Module *Imported, SourceLocation EndLoc) 4276 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false), 4277 NextLocalImport() 4278 { 4279 *getTrailingObjects<SourceLocation>() = EndLoc; 4280 } 4281 4282 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, 4283 SourceLocation StartLoc, Module *Imported, 4284 ArrayRef<SourceLocation> IdentifierLocs) { 4285 return new (C, DC, 4286 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size())) 4287 ImportDecl(DC, StartLoc, Imported, IdentifierLocs); 4288 } 4289 4290 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, 4291 SourceLocation StartLoc, 4292 Module *Imported, 4293 SourceLocation EndLoc) { 4294 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1)) 4295 ImportDecl(DC, StartLoc, Imported, EndLoc); 4296 Import->setImplicit(); 4297 return Import; 4298 } 4299 4300 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4301 unsigned NumLocations) { 4302 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations)) 4303 ImportDecl(EmptyShell()); 4304 } 4305 4306 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { 4307 if (!ImportedAndComplete.getInt()) 4308 return None; 4309 4310 const auto *StoredLocs = getTrailingObjects<SourceLocation>(); 4311 return llvm::makeArrayRef(StoredLocs, 4312 getNumModuleIdentifiers(getImportedModule())); 4313 } 4314 4315 SourceRange ImportDecl::getSourceRange() const { 4316 if (!ImportedAndComplete.getInt()) 4317 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>()); 4318 4319 return SourceRange(getLocation(), getIdentifierLocs().back()); 4320 } 4321 4322 //===----------------------------------------------------------------------===// 4323 // ExportDecl Implementation 4324 //===----------------------------------------------------------------------===// 4325 4326 void ExportDecl::anchor() {} 4327 4328 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC, 4329 SourceLocation ExportLoc) { 4330 return new (C, DC) ExportDecl(DC, ExportLoc); 4331 } 4332 4333 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4334 return new (C, ID) ExportDecl(nullptr, SourceLocation()); 4335 } 4336