xref: /llvm-project-15.0.7/clang/lib/AST/Decl.cpp (revision 2fa83cb7)
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CanonicalType.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclOpenMP.h"
24 #include "clang/AST/DeclTemplate.h"
25 #include "clang/AST/DeclarationName.h"
26 #include "clang/AST/Expr.h"
27 #include "clang/AST/ExprCXX.h"
28 #include "clang/AST/ExternalASTSource.h"
29 #include "clang/AST/ODRHash.h"
30 #include "clang/AST/PrettyDeclStackTrace.h"
31 #include "clang/AST/PrettyPrinter.h"
32 #include "clang/AST/Redeclarable.h"
33 #include "clang/AST/Stmt.h"
34 #include "clang/AST/TemplateBase.h"
35 #include "clang/AST/Type.h"
36 #include "clang/AST/TypeLoc.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/IdentifierTable.h"
39 #include "clang/Basic/LLVM.h"
40 #include "clang/Basic/LangOptions.h"
41 #include "clang/Basic/Linkage.h"
42 #include "clang/Basic/Module.h"
43 #include "clang/Basic/PartialDiagnostic.h"
44 #include "clang/Basic/SanitizerBlacklist.h"
45 #include "clang/Basic/Sanitizers.h"
46 #include "clang/Basic/SourceLocation.h"
47 #include "clang/Basic/SourceManager.h"
48 #include "clang/Basic/Specifiers.h"
49 #include "clang/Basic/TargetCXXABI.h"
50 #include "clang/Basic/TargetInfo.h"
51 #include "clang/Basic/Visibility.h"
52 #include "llvm/ADT/APSInt.h"
53 #include "llvm/ADT/ArrayRef.h"
54 #include "llvm/ADT/None.h"
55 #include "llvm/ADT/Optional.h"
56 #include "llvm/ADT/STLExtras.h"
57 #include "llvm/ADT/SmallVector.h"
58 #include "llvm/ADT/StringSwitch.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Triple.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstddef>
67 #include <cstring>
68 #include <memory>
69 #include <string>
70 #include <tuple>
71 #include <type_traits>
72 
73 using namespace clang;
74 
75 Decl *clang::getPrimaryMergedDecl(Decl *D) {
76   return D->getASTContext().getPrimaryMergedDecl(D);
77 }
78 
79 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
80   SourceLocation Loc = this->Loc;
81   if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
82   if (Loc.isValid()) {
83     Loc.print(OS, Context.getSourceManager());
84     OS << ": ";
85   }
86   OS << Message;
87 
88   if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
89     OS << " '";
90     ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
91     OS << "'";
92   }
93 
94   OS << '\n';
95 }
96 
97 // Defined here so that it can be inlined into its direct callers.
98 bool Decl::isOutOfLine() const {
99   return !getLexicalDeclContext()->Equals(getDeclContext());
100 }
101 
102 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
103     : Decl(TranslationUnit, nullptr, SourceLocation()),
104       DeclContext(TranslationUnit), Ctx(ctx) {}
105 
106 //===----------------------------------------------------------------------===//
107 // NamedDecl Implementation
108 //===----------------------------------------------------------------------===//
109 
110 // Visibility rules aren't rigorously externally specified, but here
111 // are the basic principles behind what we implement:
112 //
113 // 1. An explicit visibility attribute is generally a direct expression
114 // of the user's intent and should be honored.  Only the innermost
115 // visibility attribute applies.  If no visibility attribute applies,
116 // global visibility settings are considered.
117 //
118 // 2. There is one caveat to the above: on or in a template pattern,
119 // an explicit visibility attribute is just a default rule, and
120 // visibility can be decreased by the visibility of template
121 // arguments.  But this, too, has an exception: an attribute on an
122 // explicit specialization or instantiation causes all the visibility
123 // restrictions of the template arguments to be ignored.
124 //
125 // 3. A variable that does not otherwise have explicit visibility can
126 // be restricted by the visibility of its type.
127 //
128 // 4. A visibility restriction is explicit if it comes from an
129 // attribute (or something like it), not a global visibility setting.
130 // When emitting a reference to an external symbol, visibility
131 // restrictions are ignored unless they are explicit.
132 //
133 // 5. When computing the visibility of a non-type, including a
134 // non-type member of a class, only non-type visibility restrictions
135 // are considered: the 'visibility' attribute, global value-visibility
136 // settings, and a few special cases like __private_extern.
137 //
138 // 6. When computing the visibility of a type, including a type member
139 // of a class, only type visibility restrictions are considered:
140 // the 'type_visibility' attribute and global type-visibility settings.
141 // However, a 'visibility' attribute counts as a 'type_visibility'
142 // attribute on any declaration that only has the former.
143 //
144 // The visibility of a "secondary" entity, like a template argument,
145 // is computed using the kind of that entity, not the kind of the
146 // primary entity for which we are computing visibility.  For example,
147 // the visibility of a specialization of either of these templates:
148 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
149 //   template <class T, bool (&compare)(T, X)> class matcher;
150 // is restricted according to the type visibility of the argument 'T',
151 // the type visibility of 'bool(&)(T,X)', and the value visibility of
152 // the argument function 'compare'.  That 'has_match' is a value
153 // and 'matcher' is a type only matters when looking for attributes
154 // and settings from the immediate context.
155 
156 /// Does this computation kind permit us to consider additional
157 /// visibility settings from attributes and the like?
158 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
159   return computation.IgnoreExplicitVisibility;
160 }
161 
162 /// Given an LVComputationKind, return one of the same type/value sort
163 /// that records that it already has explicit visibility.
164 static LVComputationKind
165 withExplicitVisibilityAlready(LVComputationKind Kind) {
166   Kind.IgnoreExplicitVisibility = true;
167   return Kind;
168 }
169 
170 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
171                                                   LVComputationKind kind) {
172   assert(!kind.IgnoreExplicitVisibility &&
173          "asking for explicit visibility when we shouldn't be");
174   return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
175 }
176 
177 /// Is the given declaration a "type" or a "value" for the purposes of
178 /// visibility computation?
179 static bool usesTypeVisibility(const NamedDecl *D) {
180   return isa<TypeDecl>(D) ||
181          isa<ClassTemplateDecl>(D) ||
182          isa<ObjCInterfaceDecl>(D);
183 }
184 
185 /// Does the given declaration have member specialization information,
186 /// and if so, is it an explicit specialization?
187 template <class T> static typename
188 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
189 isExplicitMemberSpecialization(const T *D) {
190   if (const MemberSpecializationInfo *member =
191         D->getMemberSpecializationInfo()) {
192     return member->isExplicitSpecialization();
193   }
194   return false;
195 }
196 
197 /// For templates, this question is easier: a member template can't be
198 /// explicitly instantiated, so there's a single bit indicating whether
199 /// or not this is an explicit member specialization.
200 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
201   return D->isMemberSpecialization();
202 }
203 
204 /// Given a visibility attribute, return the explicit visibility
205 /// associated with it.
206 template <class T>
207 static Visibility getVisibilityFromAttr(const T *attr) {
208   switch (attr->getVisibility()) {
209   case T::Default:
210     return DefaultVisibility;
211   case T::Hidden:
212     return HiddenVisibility;
213   case T::Protected:
214     return ProtectedVisibility;
215   }
216   llvm_unreachable("bad visibility kind");
217 }
218 
219 /// Return the explicit visibility of the given declaration.
220 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
221                                     NamedDecl::ExplicitVisibilityKind kind) {
222   // If we're ultimately computing the visibility of a type, look for
223   // a 'type_visibility' attribute before looking for 'visibility'.
224   if (kind == NamedDecl::VisibilityForType) {
225     if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
226       return getVisibilityFromAttr(A);
227     }
228   }
229 
230   // If this declaration has an explicit visibility attribute, use it.
231   if (const auto *A = D->getAttr<VisibilityAttr>()) {
232     return getVisibilityFromAttr(A);
233   }
234 
235   return None;
236 }
237 
238 LinkageInfo LinkageComputer::getLVForType(const Type &T,
239                                           LVComputationKind computation) {
240   if (computation.IgnoreAllVisibility)
241     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
242   return getTypeLinkageAndVisibility(&T);
243 }
244 
245 /// Get the most restrictive linkage for the types in the given
246 /// template parameter list.  For visibility purposes, template
247 /// parameters are part of the signature of a template.
248 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
249     const TemplateParameterList *Params, LVComputationKind computation) {
250   LinkageInfo LV;
251   for (const NamedDecl *P : *Params) {
252     // Template type parameters are the most common and never
253     // contribute to visibility, pack or not.
254     if (isa<TemplateTypeParmDecl>(P))
255       continue;
256 
257     // Non-type template parameters can be restricted by the value type, e.g.
258     //   template <enum X> class A { ... };
259     // We have to be careful here, though, because we can be dealing with
260     // dependent types.
261     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
262       // Handle the non-pack case first.
263       if (!NTTP->isExpandedParameterPack()) {
264         if (!NTTP->getType()->isDependentType()) {
265           LV.merge(getLVForType(*NTTP->getType(), computation));
266         }
267         continue;
268       }
269 
270       // Look at all the types in an expanded pack.
271       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
272         QualType type = NTTP->getExpansionType(i);
273         if (!type->isDependentType())
274           LV.merge(getTypeLinkageAndVisibility(type));
275       }
276       continue;
277     }
278 
279     // Template template parameters can be restricted by their
280     // template parameters, recursively.
281     const auto *TTP = cast<TemplateTemplateParmDecl>(P);
282 
283     // Handle the non-pack case first.
284     if (!TTP->isExpandedParameterPack()) {
285       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
286                                              computation));
287       continue;
288     }
289 
290     // Look at all expansions in an expanded pack.
291     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
292            i != n; ++i) {
293       LV.merge(getLVForTemplateParameterList(
294           TTP->getExpansionTemplateParameters(i), computation));
295     }
296   }
297 
298   return LV;
299 }
300 
301 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
302   const Decl *Ret = nullptr;
303   const DeclContext *DC = D->getDeclContext();
304   while (DC->getDeclKind() != Decl::TranslationUnit) {
305     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
306       Ret = cast<Decl>(DC);
307     DC = DC->getParent();
308   }
309   return Ret;
310 }
311 
312 /// Get the most restrictive linkage for the types and
313 /// declarations in the given template argument list.
314 ///
315 /// Note that we don't take an LVComputationKind because we always
316 /// want to honor the visibility of template arguments in the same way.
317 LinkageInfo
318 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
319                                               LVComputationKind computation) {
320   LinkageInfo LV;
321 
322   for (const TemplateArgument &Arg : Args) {
323     switch (Arg.getKind()) {
324     case TemplateArgument::Null:
325     case TemplateArgument::Integral:
326     case TemplateArgument::Expression:
327       continue;
328 
329     case TemplateArgument::Type:
330       LV.merge(getLVForType(*Arg.getAsType(), computation));
331       continue;
332 
333     case TemplateArgument::Declaration: {
334       const NamedDecl *ND = Arg.getAsDecl();
335       assert(!usesTypeVisibility(ND));
336       LV.merge(getLVForDecl(ND, computation));
337       continue;
338     }
339 
340     case TemplateArgument::NullPtr:
341       LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
342       continue;
343 
344     case TemplateArgument::Template:
345     case TemplateArgument::TemplateExpansion:
346       if (TemplateDecl *Template =
347               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
348         LV.merge(getLVForDecl(Template, computation));
349       continue;
350 
351     case TemplateArgument::Pack:
352       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
353       continue;
354     }
355     llvm_unreachable("bad template argument kind");
356   }
357 
358   return LV;
359 }
360 
361 LinkageInfo
362 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
363                                               LVComputationKind computation) {
364   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
365 }
366 
367 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
368                         const FunctionTemplateSpecializationInfo *specInfo) {
369   // Include visibility from the template parameters and arguments
370   // only if this is not an explicit instantiation or specialization
371   // with direct explicit visibility.  (Implicit instantiations won't
372   // have a direct attribute.)
373   if (!specInfo->isExplicitInstantiationOrSpecialization())
374     return true;
375 
376   return !fn->hasAttr<VisibilityAttr>();
377 }
378 
379 /// Merge in template-related linkage and visibility for the given
380 /// function template specialization.
381 ///
382 /// We don't need a computation kind here because we can assume
383 /// LVForValue.
384 ///
385 /// \param[out] LV the computation to use for the parent
386 void LinkageComputer::mergeTemplateLV(
387     LinkageInfo &LV, const FunctionDecl *fn,
388     const FunctionTemplateSpecializationInfo *specInfo,
389     LVComputationKind computation) {
390   bool considerVisibility =
391     shouldConsiderTemplateVisibility(fn, specInfo);
392 
393   // Merge information from the template parameters.
394   FunctionTemplateDecl *temp = specInfo->getTemplate();
395   LinkageInfo tempLV =
396     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
397   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
398 
399   // Merge information from the template arguments.
400   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
401   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
402   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
403 }
404 
405 /// Does the given declaration have a direct visibility attribute
406 /// that would match the given rules?
407 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
408                                          LVComputationKind computation) {
409   if (computation.IgnoreAllVisibility)
410     return false;
411 
412   return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
413          D->hasAttr<VisibilityAttr>();
414 }
415 
416 /// Should we consider visibility associated with the template
417 /// arguments and parameters of the given class template specialization?
418 static bool shouldConsiderTemplateVisibility(
419                                  const ClassTemplateSpecializationDecl *spec,
420                                  LVComputationKind computation) {
421   // Include visibility from the template parameters and arguments
422   // only if this is not an explicit instantiation or specialization
423   // with direct explicit visibility (and note that implicit
424   // instantiations won't have a direct attribute).
425   //
426   // Furthermore, we want to ignore template parameters and arguments
427   // for an explicit specialization when computing the visibility of a
428   // member thereof with explicit visibility.
429   //
430   // This is a bit complex; let's unpack it.
431   //
432   // An explicit class specialization is an independent, top-level
433   // declaration.  As such, if it or any of its members has an
434   // explicit visibility attribute, that must directly express the
435   // user's intent, and we should honor it.  The same logic applies to
436   // an explicit instantiation of a member of such a thing.
437 
438   // Fast path: if this is not an explicit instantiation or
439   // specialization, we always want to consider template-related
440   // visibility restrictions.
441   if (!spec->isExplicitInstantiationOrSpecialization())
442     return true;
443 
444   // This is the 'member thereof' check.
445   if (spec->isExplicitSpecialization() &&
446       hasExplicitVisibilityAlready(computation))
447     return false;
448 
449   return !hasDirectVisibilityAttribute(spec, computation);
450 }
451 
452 /// Merge in template-related linkage and visibility for the given
453 /// class template specialization.
454 void LinkageComputer::mergeTemplateLV(
455     LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
456     LVComputationKind computation) {
457   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
458 
459   // Merge information from the template parameters, but ignore
460   // visibility if we're only considering template arguments.
461 
462   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
463   LinkageInfo tempLV =
464     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
465   LV.mergeMaybeWithVisibility(tempLV,
466            considerVisibility && !hasExplicitVisibilityAlready(computation));
467 
468   // Merge information from the template arguments.  We ignore
469   // template-argument visibility if we've got an explicit
470   // instantiation with a visibility attribute.
471   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
472   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
473   if (considerVisibility)
474     LV.mergeVisibility(argsLV);
475   LV.mergeExternalVisibility(argsLV);
476 }
477 
478 /// Should we consider visibility associated with the template
479 /// arguments and parameters of the given variable template
480 /// specialization? As usual, follow class template specialization
481 /// logic up to initialization.
482 static bool shouldConsiderTemplateVisibility(
483                                  const VarTemplateSpecializationDecl *spec,
484                                  LVComputationKind computation) {
485   // Include visibility from the template parameters and arguments
486   // only if this is not an explicit instantiation or specialization
487   // with direct explicit visibility (and note that implicit
488   // instantiations won't have a direct attribute).
489   if (!spec->isExplicitInstantiationOrSpecialization())
490     return true;
491 
492   // An explicit variable specialization is an independent, top-level
493   // declaration.  As such, if it has an explicit visibility attribute,
494   // that must directly express the user's intent, and we should honor
495   // it.
496   if (spec->isExplicitSpecialization() &&
497       hasExplicitVisibilityAlready(computation))
498     return false;
499 
500   return !hasDirectVisibilityAttribute(spec, computation);
501 }
502 
503 /// Merge in template-related linkage and visibility for the given
504 /// variable template specialization. As usual, follow class template
505 /// specialization logic up to initialization.
506 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
507                                       const VarTemplateSpecializationDecl *spec,
508                                       LVComputationKind computation) {
509   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
510 
511   // Merge information from the template parameters, but ignore
512   // visibility if we're only considering template arguments.
513 
514   VarTemplateDecl *temp = spec->getSpecializedTemplate();
515   LinkageInfo tempLV =
516     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
517   LV.mergeMaybeWithVisibility(tempLV,
518            considerVisibility && !hasExplicitVisibilityAlready(computation));
519 
520   // Merge information from the template arguments.  We ignore
521   // template-argument visibility if we've got an explicit
522   // instantiation with a visibility attribute.
523   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
524   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
525   if (considerVisibility)
526     LV.mergeVisibility(argsLV);
527   LV.mergeExternalVisibility(argsLV);
528 }
529 
530 static bool useInlineVisibilityHidden(const NamedDecl *D) {
531   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
532   const LangOptions &Opts = D->getASTContext().getLangOpts();
533   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
534     return false;
535 
536   const auto *FD = dyn_cast<FunctionDecl>(D);
537   if (!FD)
538     return false;
539 
540   TemplateSpecializationKind TSK = TSK_Undeclared;
541   if (FunctionTemplateSpecializationInfo *spec
542       = FD->getTemplateSpecializationInfo()) {
543     TSK = spec->getTemplateSpecializationKind();
544   } else if (MemberSpecializationInfo *MSI =
545              FD->getMemberSpecializationInfo()) {
546     TSK = MSI->getTemplateSpecializationKind();
547   }
548 
549   const FunctionDecl *Def = nullptr;
550   // InlineVisibilityHidden only applies to definitions, and
551   // isInlined() only gives meaningful answers on definitions
552   // anyway.
553   return TSK != TSK_ExplicitInstantiationDeclaration &&
554     TSK != TSK_ExplicitInstantiationDefinition &&
555     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
556 }
557 
558 template <typename T> static bool isFirstInExternCContext(T *D) {
559   const T *First = D->getFirstDecl();
560   return First->isInExternCContext();
561 }
562 
563 static bool isSingleLineLanguageLinkage(const Decl &D) {
564   if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
565     if (!SD->hasBraces())
566       return true;
567   return false;
568 }
569 
570 /// Determine whether D is declared in the purview of a named module.
571 static bool isInModulePurview(const NamedDecl *D) {
572   if (auto *M = D->getOwningModule())
573     return M->isModulePurview();
574   return false;
575 }
576 
577 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
578   // FIXME: Handle isModulePrivate.
579   switch (D->getModuleOwnershipKind()) {
580   case Decl::ModuleOwnershipKind::Unowned:
581   case Decl::ModuleOwnershipKind::ModulePrivate:
582     return false;
583   case Decl::ModuleOwnershipKind::Visible:
584   case Decl::ModuleOwnershipKind::VisibleWhenImported:
585     return isInModulePurview(D);
586   }
587   llvm_unreachable("unexpected module ownership kind");
588 }
589 
590 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
591   // Internal linkage declarations within a module interface unit are modeled
592   // as "module-internal linkage", which means that they have internal linkage
593   // formally but can be indirectly accessed from outside the module via inline
594   // functions and templates defined within the module.
595   if (isInModulePurview(D))
596     return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
597 
598   return LinkageInfo::internal();
599 }
600 
601 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
602   // C++ Modules TS [basic.link]/6.8:
603   //   - A name declared at namespace scope that does not have internal linkage
604   //     by the previous rules and that is introduced by a non-exported
605   //     declaration has module linkage.
606   if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit(
607                                   cast<NamedDecl>(D->getCanonicalDecl())))
608     return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
609 
610   return LinkageInfo::external();
611 }
612 
613 static StorageClass getStorageClass(const Decl *D) {
614   if (auto *TD = dyn_cast<TemplateDecl>(D))
615     D = TD->getTemplatedDecl();
616   if (D) {
617     if (auto *VD = dyn_cast<VarDecl>(D))
618       return VD->getStorageClass();
619     if (auto *FD = dyn_cast<FunctionDecl>(D))
620       return FD->getStorageClass();
621   }
622   return SC_None;
623 }
624 
625 LinkageInfo
626 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
627                                             LVComputationKind computation,
628                                             bool IgnoreVarTypeLinkage) {
629   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
630          "Not a name having namespace scope");
631   ASTContext &Context = D->getASTContext();
632 
633   // C++ [basic.link]p3:
634   //   A name having namespace scope (3.3.6) has internal linkage if it
635   //   is the name of
636 
637   if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
638     // - a variable, variable template, function, or function template
639     //   that is explicitly declared static; or
640     // (This bullet corresponds to C99 6.2.2p3.)
641     return getInternalLinkageFor(D);
642   }
643 
644   if (const auto *Var = dyn_cast<VarDecl>(D)) {
645     // - a non-template variable of non-volatile const-qualified type, unless
646     //   - it is explicitly declared extern, or
647     //   - it is inline or exported, or
648     //   - it was previously declared and the prior declaration did not have
649     //     internal linkage
650     // (There is no equivalent in C99.)
651     if (Context.getLangOpts().CPlusPlus &&
652         Var->getType().isConstQualified() &&
653         !Var->getType().isVolatileQualified() &&
654         !Var->isInline() &&
655         !isExportedFromModuleInterfaceUnit(Var) &&
656         !isa<VarTemplateSpecializationDecl>(Var) &&
657         !Var->getDescribedVarTemplate()) {
658       const VarDecl *PrevVar = Var->getPreviousDecl();
659       if (PrevVar)
660         return getLVForDecl(PrevVar, computation);
661 
662       if (Var->getStorageClass() != SC_Extern &&
663           Var->getStorageClass() != SC_PrivateExtern &&
664           !isSingleLineLanguageLinkage(*Var))
665         return getInternalLinkageFor(Var);
666     }
667 
668     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
669          PrevVar = PrevVar->getPreviousDecl()) {
670       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
671           Var->getStorageClass() == SC_None)
672         return getDeclLinkageAndVisibility(PrevVar);
673       // Explicitly declared static.
674       if (PrevVar->getStorageClass() == SC_Static)
675         return getInternalLinkageFor(Var);
676     }
677   } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
678     //   - a data member of an anonymous union.
679     const VarDecl *VD = IFD->getVarDecl();
680     assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
681     return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
682   }
683   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
684 
685   // FIXME: This gives internal linkage to names that should have no linkage
686   // (those not covered by [basic.link]p6).
687   if (D->isInAnonymousNamespace()) {
688     const auto *Var = dyn_cast<VarDecl>(D);
689     const auto *Func = dyn_cast<FunctionDecl>(D);
690     // FIXME: The check for extern "C" here is not justified by the standard
691     // wording, but we retain it from the pre-DR1113 model to avoid breaking
692     // code.
693     //
694     // C++11 [basic.link]p4:
695     //   An unnamed namespace or a namespace declared directly or indirectly
696     //   within an unnamed namespace has internal linkage.
697     if ((!Var || !isFirstInExternCContext(Var)) &&
698         (!Func || !isFirstInExternCContext(Func)))
699       return getInternalLinkageFor(D);
700   }
701 
702   // Set up the defaults.
703 
704   // C99 6.2.2p5:
705   //   If the declaration of an identifier for an object has file
706   //   scope and no storage-class specifier, its linkage is
707   //   external.
708   LinkageInfo LV = getExternalLinkageFor(D);
709 
710   if (!hasExplicitVisibilityAlready(computation)) {
711     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
712       LV.mergeVisibility(*Vis, true);
713     } else {
714       // If we're declared in a namespace with a visibility attribute,
715       // use that namespace's visibility, and it still counts as explicit.
716       for (const DeclContext *DC = D->getDeclContext();
717            !isa<TranslationUnitDecl>(DC);
718            DC = DC->getParent()) {
719         const auto *ND = dyn_cast<NamespaceDecl>(DC);
720         if (!ND) continue;
721         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
722           LV.mergeVisibility(*Vis, true);
723           break;
724         }
725       }
726     }
727 
728     // Add in global settings if the above didn't give us direct visibility.
729     if (!LV.isVisibilityExplicit()) {
730       // Use global type/value visibility as appropriate.
731       Visibility globalVisibility =
732           computation.isValueVisibility()
733               ? Context.getLangOpts().getValueVisibilityMode()
734               : Context.getLangOpts().getTypeVisibilityMode();
735       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
736 
737       // If we're paying attention to global visibility, apply
738       // -finline-visibility-hidden if this is an inline method.
739       if (useInlineVisibilityHidden(D))
740         LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
741     }
742   }
743 
744   // C++ [basic.link]p4:
745 
746   //   A name having namespace scope that has not been given internal linkage
747   //   above and that is the name of
748   //   [...bullets...]
749   //   has its linkage determined as follows:
750   //     - if the enclosing namespace has internal linkage, the name has
751   //       internal linkage; [handled above]
752   //     - otherwise, if the declaration of the name is attached to a named
753   //       module and is not exported, the name has module linkage;
754   //     - otherwise, the name has external linkage.
755   // LV is currently set up to handle the last two bullets.
756   //
757   //   The bullets are:
758 
759   //     - a variable; or
760   if (const auto *Var = dyn_cast<VarDecl>(D)) {
761     // GCC applies the following optimization to variables and static
762     // data members, but not to functions:
763     //
764     // Modify the variable's LV by the LV of its type unless this is
765     // C or extern "C".  This follows from [basic.link]p9:
766     //   A type without linkage shall not be used as the type of a
767     //   variable or function with external linkage unless
768     //    - the entity has C language linkage, or
769     //    - the entity is declared within an unnamed namespace, or
770     //    - the entity is not used or is defined in the same
771     //      translation unit.
772     // and [basic.link]p10:
773     //   ...the types specified by all declarations referring to a
774     //   given variable or function shall be identical...
775     // C does not have an equivalent rule.
776     //
777     // Ignore this if we've got an explicit attribute;  the user
778     // probably knows what they're doing.
779     //
780     // Note that we don't want to make the variable non-external
781     // because of this, but unique-external linkage suits us.
782     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
783         !IgnoreVarTypeLinkage) {
784       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
785       if (!isExternallyVisible(TypeLV.getLinkage()))
786         return LinkageInfo::uniqueExternal();
787       if (!LV.isVisibilityExplicit())
788         LV.mergeVisibility(TypeLV);
789     }
790 
791     if (Var->getStorageClass() == SC_PrivateExtern)
792       LV.mergeVisibility(HiddenVisibility, true);
793 
794     // Note that Sema::MergeVarDecl already takes care of implementing
795     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
796     // to do it here.
797 
798     // As per function and class template specializations (below),
799     // consider LV for the template and template arguments.  We're at file
800     // scope, so we do not need to worry about nested specializations.
801     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
802       mergeTemplateLV(LV, spec, computation);
803     }
804 
805   //     - a function; or
806   } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
807     // In theory, we can modify the function's LV by the LV of its
808     // type unless it has C linkage (see comment above about variables
809     // for justification).  In practice, GCC doesn't do this, so it's
810     // just too painful to make work.
811 
812     if (Function->getStorageClass() == SC_PrivateExtern)
813       LV.mergeVisibility(HiddenVisibility, true);
814 
815     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
816     // merging storage classes and visibility attributes, so we don't have to
817     // look at previous decls in here.
818 
819     // In C++, then if the type of the function uses a type with
820     // unique-external linkage, it's not legally usable from outside
821     // this translation unit.  However, we should use the C linkage
822     // rules instead for extern "C" declarations.
823     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
824       // Only look at the type-as-written. Otherwise, deducing the return type
825       // of a function could change its linkage.
826       QualType TypeAsWritten = Function->getType();
827       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
828         TypeAsWritten = TSI->getType();
829       if (!isExternallyVisible(TypeAsWritten->getLinkage()))
830         return LinkageInfo::uniqueExternal();
831     }
832 
833     // Consider LV from the template and the template arguments.
834     // We're at file scope, so we do not need to worry about nested
835     // specializations.
836     if (FunctionTemplateSpecializationInfo *specInfo
837                                = Function->getTemplateSpecializationInfo()) {
838       mergeTemplateLV(LV, Function, specInfo, computation);
839     }
840 
841   //     - a named class (Clause 9), or an unnamed class defined in a
842   //       typedef declaration in which the class has the typedef name
843   //       for linkage purposes (7.1.3); or
844   //     - a named enumeration (7.2), or an unnamed enumeration
845   //       defined in a typedef declaration in which the enumeration
846   //       has the typedef name for linkage purposes (7.1.3); or
847   } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
848     // Unnamed tags have no linkage.
849     if (!Tag->hasNameForLinkage())
850       return LinkageInfo::none();
851 
852     // If this is a class template specialization, consider the
853     // linkage of the template and template arguments.  We're at file
854     // scope, so we do not need to worry about nested specializations.
855     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
856       mergeTemplateLV(LV, spec, computation);
857     }
858 
859   // FIXME: This is not part of the C++ standard any more.
860   //     - an enumerator belonging to an enumeration with external linkage; or
861   } else if (isa<EnumConstantDecl>(D)) {
862     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
863                                       computation);
864     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
865       return LinkageInfo::none();
866     LV.merge(EnumLV);
867 
868   //     - a template
869   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
870     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
871     LinkageInfo tempLV =
872       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
873     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
874 
875   //     An unnamed namespace or a namespace declared directly or indirectly
876   //     within an unnamed namespace has internal linkage. All other namespaces
877   //     have external linkage.
878   //
879   // We handled names in anonymous namespaces above.
880   } else if (isa<NamespaceDecl>(D)) {
881     return LV;
882 
883   // By extension, we assign external linkage to Objective-C
884   // interfaces.
885   } else if (isa<ObjCInterfaceDecl>(D)) {
886     // fallout
887 
888   } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
889     // A typedef declaration has linkage if it gives a type a name for
890     // linkage purposes.
891     if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
892       return LinkageInfo::none();
893 
894   // Everything not covered here has no linkage.
895   } else {
896     return LinkageInfo::none();
897   }
898 
899   // If we ended up with non-externally-visible linkage, visibility should
900   // always be default.
901   if (!isExternallyVisible(LV.getLinkage()))
902     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
903 
904   return LV;
905 }
906 
907 LinkageInfo
908 LinkageComputer::getLVForClassMember(const NamedDecl *D,
909                                      LVComputationKind computation,
910                                      bool IgnoreVarTypeLinkage) {
911   // Only certain class members have linkage.  Note that fields don't
912   // really have linkage, but it's convenient to say they do for the
913   // purposes of calculating linkage of pointer-to-data-member
914   // template arguments.
915   //
916   // Templates also don't officially have linkage, but since we ignore
917   // the C++ standard and look at template arguments when determining
918   // linkage and visibility of a template specialization, we might hit
919   // a template template argument that way. If we do, we need to
920   // consider its linkage.
921   if (!(isa<CXXMethodDecl>(D) ||
922         isa<VarDecl>(D) ||
923         isa<FieldDecl>(D) ||
924         isa<IndirectFieldDecl>(D) ||
925         isa<TagDecl>(D) ||
926         isa<TemplateDecl>(D)))
927     return LinkageInfo::none();
928 
929   LinkageInfo LV;
930 
931   // If we have an explicit visibility attribute, merge that in.
932   if (!hasExplicitVisibilityAlready(computation)) {
933     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
934       LV.mergeVisibility(*Vis, true);
935     // If we're paying attention to global visibility, apply
936     // -finline-visibility-hidden if this is an inline method.
937     //
938     // Note that we do this before merging information about
939     // the class visibility.
940     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
941       LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
942   }
943 
944   // If this class member has an explicit visibility attribute, the only
945   // thing that can change its visibility is the template arguments, so
946   // only look for them when processing the class.
947   LVComputationKind classComputation = computation;
948   if (LV.isVisibilityExplicit())
949     classComputation = withExplicitVisibilityAlready(computation);
950 
951   LinkageInfo classLV =
952     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
953   // The member has the same linkage as the class. If that's not externally
954   // visible, we don't need to compute anything about the linkage.
955   // FIXME: If we're only computing linkage, can we bail out here?
956   if (!isExternallyVisible(classLV.getLinkage()))
957     return classLV;
958 
959 
960   // Otherwise, don't merge in classLV yet, because in certain cases
961   // we need to completely ignore the visibility from it.
962 
963   // Specifically, if this decl exists and has an explicit attribute.
964   const NamedDecl *explicitSpecSuppressor = nullptr;
965 
966   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
967     // Only look at the type-as-written. Otherwise, deducing the return type
968     // of a function could change its linkage.
969     QualType TypeAsWritten = MD->getType();
970     if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
971       TypeAsWritten = TSI->getType();
972     if (!isExternallyVisible(TypeAsWritten->getLinkage()))
973       return LinkageInfo::uniqueExternal();
974 
975     // If this is a method template specialization, use the linkage for
976     // the template parameters and arguments.
977     if (FunctionTemplateSpecializationInfo *spec
978            = MD->getTemplateSpecializationInfo()) {
979       mergeTemplateLV(LV, MD, spec, computation);
980       if (spec->isExplicitSpecialization()) {
981         explicitSpecSuppressor = MD;
982       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
983         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
984       }
985     } else if (isExplicitMemberSpecialization(MD)) {
986       explicitSpecSuppressor = MD;
987     }
988 
989   } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
990     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
991       mergeTemplateLV(LV, spec, computation);
992       if (spec->isExplicitSpecialization()) {
993         explicitSpecSuppressor = spec;
994       } else {
995         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
996         if (isExplicitMemberSpecialization(temp)) {
997           explicitSpecSuppressor = temp->getTemplatedDecl();
998         }
999       }
1000     } else if (isExplicitMemberSpecialization(RD)) {
1001       explicitSpecSuppressor = RD;
1002     }
1003 
1004   // Static data members.
1005   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1006     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1007       mergeTemplateLV(LV, spec, computation);
1008 
1009     // Modify the variable's linkage by its type, but ignore the
1010     // type's visibility unless it's a definition.
1011     if (!IgnoreVarTypeLinkage) {
1012       LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1013       // FIXME: If the type's linkage is not externally visible, we can
1014       // give this static data member UniqueExternalLinkage.
1015       if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1016         LV.mergeVisibility(typeLV);
1017       LV.mergeExternalVisibility(typeLV);
1018     }
1019 
1020     if (isExplicitMemberSpecialization(VD)) {
1021       explicitSpecSuppressor = VD;
1022     }
1023 
1024   // Template members.
1025   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1026     bool considerVisibility =
1027       (!LV.isVisibilityExplicit() &&
1028        !classLV.isVisibilityExplicit() &&
1029        !hasExplicitVisibilityAlready(computation));
1030     LinkageInfo tempLV =
1031       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1032     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1033 
1034     if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1035       if (isExplicitMemberSpecialization(redeclTemp)) {
1036         explicitSpecSuppressor = temp->getTemplatedDecl();
1037       }
1038     }
1039   }
1040 
1041   // We should never be looking for an attribute directly on a template.
1042   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1043 
1044   // If this member is an explicit member specialization, and it has
1045   // an explicit attribute, ignore visibility from the parent.
1046   bool considerClassVisibility = true;
1047   if (explicitSpecSuppressor &&
1048       // optimization: hasDVA() is true only with explicit visibility.
1049       LV.isVisibilityExplicit() &&
1050       classLV.getVisibility() != DefaultVisibility &&
1051       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1052     considerClassVisibility = false;
1053   }
1054 
1055   // Finally, merge in information from the class.
1056   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1057   return LV;
1058 }
1059 
1060 void NamedDecl::anchor() {}
1061 
1062 bool NamedDecl::isLinkageValid() const {
1063   if (!hasCachedLinkage())
1064     return true;
1065 
1066   Linkage L = LinkageComputer{}
1067                   .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1068                   .getLinkage();
1069   return L == getCachedLinkage();
1070 }
1071 
1072 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1073   StringRef name = getName();
1074   if (name.empty()) return SFF_None;
1075 
1076   if (name.front() == 'C')
1077     if (name == "CFStringCreateWithFormat" ||
1078         name == "CFStringCreateWithFormatAndArguments" ||
1079         name == "CFStringAppendFormat" ||
1080         name == "CFStringAppendFormatAndArguments")
1081       return SFF_CFString;
1082   return SFF_None;
1083 }
1084 
1085 Linkage NamedDecl::getLinkageInternal() const {
1086   // We don't care about visibility here, so ask for the cheapest
1087   // possible visibility analysis.
1088   return LinkageComputer{}
1089       .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1090       .getLinkage();
1091 }
1092 
1093 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1094   return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1095 }
1096 
1097 static Optional<Visibility>
1098 getExplicitVisibilityAux(const NamedDecl *ND,
1099                          NamedDecl::ExplicitVisibilityKind kind,
1100                          bool IsMostRecent) {
1101   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1102 
1103   // Check the declaration itself first.
1104   if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1105     return V;
1106 
1107   // If this is a member class of a specialization of a class template
1108   // and the corresponding decl has explicit visibility, use that.
1109   if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1110     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1111     if (InstantiatedFrom)
1112       return getVisibilityOf(InstantiatedFrom, kind);
1113   }
1114 
1115   // If there wasn't explicit visibility there, and this is a
1116   // specialization of a class template, check for visibility
1117   // on the pattern.
1118   if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1119     // Walk all the template decl till this point to see if there are
1120     // explicit visibility attributes.
1121     const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1122     while (TD != nullptr) {
1123       auto Vis = getVisibilityOf(TD, kind);
1124       if (Vis != None)
1125         return Vis;
1126       TD = TD->getPreviousDecl();
1127     }
1128     return None;
1129   }
1130 
1131   // Use the most recent declaration.
1132   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1133     const NamedDecl *MostRecent = ND->getMostRecentDecl();
1134     if (MostRecent != ND)
1135       return getExplicitVisibilityAux(MostRecent, kind, true);
1136   }
1137 
1138   if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1139     if (Var->isStaticDataMember()) {
1140       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1141       if (InstantiatedFrom)
1142         return getVisibilityOf(InstantiatedFrom, kind);
1143     }
1144 
1145     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1146       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1147                              kind);
1148 
1149     return None;
1150   }
1151   // Also handle function template specializations.
1152   if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1153     // If the function is a specialization of a template with an
1154     // explicit visibility attribute, use that.
1155     if (FunctionTemplateSpecializationInfo *templateInfo
1156           = fn->getTemplateSpecializationInfo())
1157       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1158                              kind);
1159 
1160     // If the function is a member of a specialization of a class template
1161     // and the corresponding decl has explicit visibility, use that.
1162     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1163     if (InstantiatedFrom)
1164       return getVisibilityOf(InstantiatedFrom, kind);
1165 
1166     return None;
1167   }
1168 
1169   // The visibility of a template is stored in the templated decl.
1170   if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1171     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1172 
1173   return None;
1174 }
1175 
1176 Optional<Visibility>
1177 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1178   return getExplicitVisibilityAux(this, kind, false);
1179 }
1180 
1181 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1182                                              Decl *ContextDecl,
1183                                              LVComputationKind computation) {
1184   // This lambda has its linkage/visibility determined by its owner.
1185   const NamedDecl *Owner;
1186   if (!ContextDecl)
1187     Owner = dyn_cast<NamedDecl>(DC);
1188   else if (isa<ParmVarDecl>(ContextDecl))
1189     Owner =
1190         dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1191   else
1192     Owner = cast<NamedDecl>(ContextDecl);
1193 
1194   if (!Owner)
1195     return LinkageInfo::none();
1196 
1197   // If the owner has a deduced type, we need to skip querying the linkage and
1198   // visibility of that type, because it might involve this closure type.  The
1199   // only effect of this is that we might give a lambda VisibleNoLinkage rather
1200   // than NoLinkage when we don't strictly need to, which is benign.
1201   auto *VD = dyn_cast<VarDecl>(Owner);
1202   LinkageInfo OwnerLV =
1203       VD && VD->getType()->getContainedDeducedType()
1204           ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1205           : getLVForDecl(Owner, computation);
1206 
1207   // A lambda never formally has linkage. But if the owner is externally
1208   // visible, then the lambda is too. We apply the same rules to blocks.
1209   if (!isExternallyVisible(OwnerLV.getLinkage()))
1210     return LinkageInfo::none();
1211   return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1212                      OwnerLV.isVisibilityExplicit());
1213 }
1214 
1215 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1216                                                LVComputationKind computation) {
1217   if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1218     if (Function->isInAnonymousNamespace() &&
1219         !isFirstInExternCContext(Function))
1220       return getInternalLinkageFor(Function);
1221 
1222     // This is a "void f();" which got merged with a file static.
1223     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1224       return getInternalLinkageFor(Function);
1225 
1226     LinkageInfo LV;
1227     if (!hasExplicitVisibilityAlready(computation)) {
1228       if (Optional<Visibility> Vis =
1229               getExplicitVisibility(Function, computation))
1230         LV.mergeVisibility(*Vis, true);
1231     }
1232 
1233     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1234     // merging storage classes and visibility attributes, so we don't have to
1235     // look at previous decls in here.
1236 
1237     return LV;
1238   }
1239 
1240   if (const auto *Var = dyn_cast<VarDecl>(D)) {
1241     if (Var->hasExternalStorage()) {
1242       if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1243         return getInternalLinkageFor(Var);
1244 
1245       LinkageInfo LV;
1246       if (Var->getStorageClass() == SC_PrivateExtern)
1247         LV.mergeVisibility(HiddenVisibility, true);
1248       else if (!hasExplicitVisibilityAlready(computation)) {
1249         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1250           LV.mergeVisibility(*Vis, true);
1251       }
1252 
1253       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1254         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1255         if (PrevLV.getLinkage())
1256           LV.setLinkage(PrevLV.getLinkage());
1257         LV.mergeVisibility(PrevLV);
1258       }
1259 
1260       return LV;
1261     }
1262 
1263     if (!Var->isStaticLocal())
1264       return LinkageInfo::none();
1265   }
1266 
1267   ASTContext &Context = D->getASTContext();
1268   if (!Context.getLangOpts().CPlusPlus)
1269     return LinkageInfo::none();
1270 
1271   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1272   if (!OuterD || OuterD->isInvalidDecl())
1273     return LinkageInfo::none();
1274 
1275   LinkageInfo LV;
1276   if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1277     if (!BD->getBlockManglingNumber())
1278       return LinkageInfo::none();
1279 
1280     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1281                          BD->getBlockManglingContextDecl(), computation);
1282   } else {
1283     const auto *FD = cast<FunctionDecl>(OuterD);
1284     if (!FD->isInlined() &&
1285         !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1286       return LinkageInfo::none();
1287 
1288     // If a function is hidden by -fvisibility-inlines-hidden option and
1289     // is not explicitly attributed as a hidden function,
1290     // we should not make static local variables in the function hidden.
1291     LV = getLVForDecl(FD, computation);
1292     if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1293         !LV.isVisibilityExplicit()) {
1294       assert(cast<VarDecl>(D)->isStaticLocal());
1295       // If this was an implicitly hidden inline method, check again for
1296       // explicit visibility on the parent class, and use that for static locals
1297       // if present.
1298       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1299         LV = getLVForDecl(MD->getParent(), computation);
1300       if (!LV.isVisibilityExplicit()) {
1301         Visibility globalVisibility =
1302             computation.isValueVisibility()
1303                 ? Context.getLangOpts().getValueVisibilityMode()
1304                 : Context.getLangOpts().getTypeVisibilityMode();
1305         return LinkageInfo(VisibleNoLinkage, globalVisibility,
1306                            /*visibilityExplicit=*/false);
1307       }
1308     }
1309   }
1310   if (!isExternallyVisible(LV.getLinkage()))
1311     return LinkageInfo::none();
1312   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1313                      LV.isVisibilityExplicit());
1314 }
1315 
1316 static inline const CXXRecordDecl*
1317 getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
1318   const CXXRecordDecl *Ret = Record;
1319   while (Record && Record->isLambda()) {
1320     Ret = Record;
1321     if (!Record->getParent()) break;
1322     // Get the Containing Class of this Lambda Class
1323     Record = dyn_cast_or_null<CXXRecordDecl>(
1324       Record->getParent()->getParent());
1325   }
1326   return Ret;
1327 }
1328 
1329 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1330                                               LVComputationKind computation,
1331                                               bool IgnoreVarTypeLinkage) {
1332   // Internal_linkage attribute overrides other considerations.
1333   if (D->hasAttr<InternalLinkageAttr>())
1334     return getInternalLinkageFor(D);
1335 
1336   // Objective-C: treat all Objective-C declarations as having external
1337   // linkage.
1338   switch (D->getKind()) {
1339     default:
1340       break;
1341 
1342     // Per C++ [basic.link]p2, only the names of objects, references,
1343     // functions, types, templates, namespaces, and values ever have linkage.
1344     //
1345     // Note that the name of a typedef, namespace alias, using declaration,
1346     // and so on are not the name of the corresponding type, namespace, or
1347     // declaration, so they do *not* have linkage.
1348     case Decl::ImplicitParam:
1349     case Decl::Label:
1350     case Decl::NamespaceAlias:
1351     case Decl::ParmVar:
1352     case Decl::Using:
1353     case Decl::UsingShadow:
1354     case Decl::UsingDirective:
1355       return LinkageInfo::none();
1356 
1357     case Decl::EnumConstant:
1358       // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1359       if (D->getASTContext().getLangOpts().CPlusPlus)
1360         return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1361       return LinkageInfo::visible_none();
1362 
1363     case Decl::Typedef:
1364     case Decl::TypeAlias:
1365       // A typedef declaration has linkage if it gives a type a name for
1366       // linkage purposes.
1367       if (!cast<TypedefNameDecl>(D)
1368                ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1369         return LinkageInfo::none();
1370       break;
1371 
1372     case Decl::TemplateTemplateParm: // count these as external
1373     case Decl::NonTypeTemplateParm:
1374     case Decl::ObjCAtDefsField:
1375     case Decl::ObjCCategory:
1376     case Decl::ObjCCategoryImpl:
1377     case Decl::ObjCCompatibleAlias:
1378     case Decl::ObjCImplementation:
1379     case Decl::ObjCMethod:
1380     case Decl::ObjCProperty:
1381     case Decl::ObjCPropertyImpl:
1382     case Decl::ObjCProtocol:
1383       return getExternalLinkageFor(D);
1384 
1385     case Decl::CXXRecord: {
1386       const auto *Record = cast<CXXRecordDecl>(D);
1387       if (Record->isLambda()) {
1388         if (!Record->getLambdaManglingNumber()) {
1389           // This lambda has no mangling number, so it's internal.
1390           return getInternalLinkageFor(D);
1391         }
1392 
1393         // This lambda has its linkage/visibility determined:
1394         //  - either by the outermost lambda if that lambda has no mangling
1395         //    number.
1396         //  - or by the parent of the outer most lambda
1397         // This prevents infinite recursion in settings such as nested lambdas
1398         // used in NSDMI's, for e.g.
1399         //  struct L {
1400         //    int t{};
1401         //    int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1402         //  };
1403         const CXXRecordDecl *OuterMostLambda =
1404             getOutermostEnclosingLambda(Record);
1405         if (!OuterMostLambda->getLambdaManglingNumber())
1406           return getInternalLinkageFor(D);
1407 
1408         return getLVForClosure(
1409                   OuterMostLambda->getDeclContext()->getRedeclContext(),
1410                   OuterMostLambda->getLambdaContextDecl(), computation);
1411       }
1412 
1413       break;
1414     }
1415   }
1416 
1417   // Handle linkage for namespace-scope names.
1418   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1419     return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1420 
1421   // C++ [basic.link]p5:
1422   //   In addition, a member function, static data member, a named
1423   //   class or enumeration of class scope, or an unnamed class or
1424   //   enumeration defined in a class-scope typedef declaration such
1425   //   that the class or enumeration has the typedef name for linkage
1426   //   purposes (7.1.3), has external linkage if the name of the class
1427   //   has external linkage.
1428   if (D->getDeclContext()->isRecord())
1429     return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1430 
1431   // C++ [basic.link]p6:
1432   //   The name of a function declared in block scope and the name of
1433   //   an object declared by a block scope extern declaration have
1434   //   linkage. If there is a visible declaration of an entity with
1435   //   linkage having the same name and type, ignoring entities
1436   //   declared outside the innermost enclosing namespace scope, the
1437   //   block scope declaration declares that same entity and receives
1438   //   the linkage of the previous declaration. If there is more than
1439   //   one such matching entity, the program is ill-formed. Otherwise,
1440   //   if no matching entity is found, the block scope entity receives
1441   //   external linkage.
1442   if (D->getDeclContext()->isFunctionOrMethod())
1443     return getLVForLocalDecl(D, computation);
1444 
1445   // C++ [basic.link]p6:
1446   //   Names not covered by these rules have no linkage.
1447   return LinkageInfo::none();
1448 }
1449 
1450 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1451 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1452                                           LVComputationKind computation) {
1453   // Internal_linkage attribute overrides other considerations.
1454   if (D->hasAttr<InternalLinkageAttr>())
1455     return getInternalLinkageFor(D);
1456 
1457   if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1458     return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1459 
1460   if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1461     return *LI;
1462 
1463   LinkageInfo LV = computeLVForDecl(D, computation);
1464   if (D->hasCachedLinkage())
1465     assert(D->getCachedLinkage() == LV.getLinkage());
1466 
1467   D->setCachedLinkage(LV.getLinkage());
1468   cache(D, computation, LV);
1469 
1470 #ifndef NDEBUG
1471   // In C (because of gnu inline) and in c++ with microsoft extensions an
1472   // static can follow an extern, so we can have two decls with different
1473   // linkages.
1474   const LangOptions &Opts = D->getASTContext().getLangOpts();
1475   if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1476     return LV;
1477 
1478   // We have just computed the linkage for this decl. By induction we know
1479   // that all other computed linkages match, check that the one we just
1480   // computed also does.
1481   NamedDecl *Old = nullptr;
1482   for (auto I : D->redecls()) {
1483     auto *T = cast<NamedDecl>(I);
1484     if (T == D)
1485       continue;
1486     if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1487       Old = T;
1488       break;
1489     }
1490   }
1491   assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1492 #endif
1493 
1494   return LV;
1495 }
1496 
1497 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1498   return getLVForDecl(D,
1499                       LVComputationKind(usesTypeVisibility(D)
1500                                             ? NamedDecl::VisibilityForType
1501                                             : NamedDecl::VisibilityForValue));
1502 }
1503 
1504 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1505   Module *M = getOwningModule();
1506   if (!M)
1507     return nullptr;
1508 
1509   switch (M->Kind) {
1510   case Module::ModuleMapModule:
1511     // Module map modules have no special linkage semantics.
1512     return nullptr;
1513 
1514   case Module::ModuleInterfaceUnit:
1515     return M;
1516 
1517   case Module::GlobalModuleFragment: {
1518     // External linkage declarations in the global module have no owning module
1519     // for linkage purposes. But internal linkage declarations in the global
1520     // module fragment of a particular module are owned by that module for
1521     // linkage purposes.
1522     if (IgnoreLinkage)
1523       return nullptr;
1524     bool InternalLinkage;
1525     if (auto *ND = dyn_cast<NamedDecl>(this))
1526       InternalLinkage = !ND->hasExternalFormalLinkage();
1527     else {
1528       auto *NSD = dyn_cast<NamespaceDecl>(this);
1529       InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1530                         isInAnonymousNamespace();
1531     }
1532     return InternalLinkage ? M->Parent : nullptr;
1533   }
1534 
1535   case Module::PrivateModuleFragment:
1536     // The private module fragment is part of its containing module for linkage
1537     // purposes.
1538     return M->Parent;
1539   }
1540 
1541   llvm_unreachable("unknown module kind");
1542 }
1543 
1544 void NamedDecl::printName(raw_ostream &os) const {
1545   os << Name;
1546 }
1547 
1548 std::string NamedDecl::getQualifiedNameAsString() const {
1549   std::string QualName;
1550   llvm::raw_string_ostream OS(QualName);
1551   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1552   return OS.str();
1553 }
1554 
1555 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1556   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1557 }
1558 
1559 void NamedDecl::printQualifiedName(raw_ostream &OS,
1560                                    const PrintingPolicy &P) const {
1561   const DeclContext *Ctx = getDeclContext();
1562 
1563   // For ObjC methods and properties, look through categories and use the
1564   // interface as context.
1565   if (auto *MD = dyn_cast<ObjCMethodDecl>(this))
1566     if (auto *ID = MD->getClassInterface())
1567       Ctx = ID;
1568   if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1569     if (auto *MD = PD->getGetterMethodDecl())
1570       if (auto *ID = MD->getClassInterface())
1571         Ctx = ID;
1572   }
1573 
1574   if (Ctx->isFunctionOrMethod()) {
1575     printName(OS);
1576     return;
1577   }
1578 
1579   using ContextsTy = SmallVector<const DeclContext *, 8>;
1580   ContextsTy Contexts;
1581 
1582   // Collect named contexts.
1583   while (Ctx) {
1584     if (isa<NamedDecl>(Ctx))
1585       Contexts.push_back(Ctx);
1586     Ctx = Ctx->getParent();
1587   }
1588 
1589   for (const DeclContext *DC : llvm::reverse(Contexts)) {
1590     if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1591       OS << Spec->getName();
1592       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1593       printTemplateArgumentList(OS, TemplateArgs.asArray(), P);
1594     } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1595       if (P.SuppressUnwrittenScope &&
1596           (ND->isAnonymousNamespace() || ND->isInline()))
1597         continue;
1598       if (ND->isAnonymousNamespace()) {
1599         OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1600                                 : "(anonymous namespace)");
1601       }
1602       else
1603         OS << *ND;
1604     } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1605       if (!RD->getIdentifier())
1606         OS << "(anonymous " << RD->getKindName() << ')';
1607       else
1608         OS << *RD;
1609     } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1610       const FunctionProtoType *FT = nullptr;
1611       if (FD->hasWrittenPrototype())
1612         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1613 
1614       OS << *FD << '(';
1615       if (FT) {
1616         unsigned NumParams = FD->getNumParams();
1617         for (unsigned i = 0; i < NumParams; ++i) {
1618           if (i)
1619             OS << ", ";
1620           OS << FD->getParamDecl(i)->getType().stream(P);
1621         }
1622 
1623         if (FT->isVariadic()) {
1624           if (NumParams > 0)
1625             OS << ", ";
1626           OS << "...";
1627         }
1628       }
1629       OS << ')';
1630     } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1631       // C++ [dcl.enum]p10: Each enum-name and each unscoped
1632       // enumerator is declared in the scope that immediately contains
1633       // the enum-specifier. Each scoped enumerator is declared in the
1634       // scope of the enumeration.
1635       // For the case of unscoped enumerator, do not include in the qualified
1636       // name any information about its enum enclosing scope, as its visibility
1637       // is global.
1638       if (ED->isScoped())
1639         OS << *ED;
1640       else
1641         continue;
1642     } else {
1643       OS << *cast<NamedDecl>(DC);
1644     }
1645     OS << "::";
1646   }
1647 
1648   if (getDeclName() || isa<DecompositionDecl>(this))
1649     OS << *this;
1650   else
1651     OS << "(anonymous)";
1652 }
1653 
1654 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1655                                      const PrintingPolicy &Policy,
1656                                      bool Qualified) const {
1657   if (Qualified)
1658     printQualifiedName(OS, Policy);
1659   else
1660     printName(OS);
1661 }
1662 
1663 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1664   return true;
1665 }
1666 static bool isRedeclarableImpl(...) { return false; }
1667 static bool isRedeclarable(Decl::Kind K) {
1668   switch (K) {
1669 #define DECL(Type, Base) \
1670   case Decl::Type: \
1671     return isRedeclarableImpl((Type##Decl *)nullptr);
1672 #define ABSTRACT_DECL(DECL)
1673 #include "clang/AST/DeclNodes.inc"
1674   }
1675   llvm_unreachable("unknown decl kind");
1676 }
1677 
1678 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1679   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1680 
1681   // Never replace one imported declaration with another; we need both results
1682   // when re-exporting.
1683   if (OldD->isFromASTFile() && isFromASTFile())
1684     return false;
1685 
1686   // A kind mismatch implies that the declaration is not replaced.
1687   if (OldD->getKind() != getKind())
1688     return false;
1689 
1690   // For method declarations, we never replace. (Why?)
1691   if (isa<ObjCMethodDecl>(this))
1692     return false;
1693 
1694   // For parameters, pick the newer one. This is either an error or (in
1695   // Objective-C) permitted as an extension.
1696   if (isa<ParmVarDecl>(this))
1697     return true;
1698 
1699   // Inline namespaces can give us two declarations with the same
1700   // name and kind in the same scope but different contexts; we should
1701   // keep both declarations in this case.
1702   if (!this->getDeclContext()->getRedeclContext()->Equals(
1703           OldD->getDeclContext()->getRedeclContext()))
1704     return false;
1705 
1706   // Using declarations can be replaced if they import the same name from the
1707   // same context.
1708   if (auto *UD = dyn_cast<UsingDecl>(this)) {
1709     ASTContext &Context = getASTContext();
1710     return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1711            Context.getCanonicalNestedNameSpecifier(
1712                cast<UsingDecl>(OldD)->getQualifier());
1713   }
1714   if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1715     ASTContext &Context = getASTContext();
1716     return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1717            Context.getCanonicalNestedNameSpecifier(
1718                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1719   }
1720 
1721   if (isRedeclarable(getKind())) {
1722     if (getCanonicalDecl() != OldD->getCanonicalDecl())
1723       return false;
1724 
1725     if (IsKnownNewer)
1726       return true;
1727 
1728     // Check whether this is actually newer than OldD. We want to keep the
1729     // newer declaration. This loop will usually only iterate once, because
1730     // OldD is usually the previous declaration.
1731     for (auto D : redecls()) {
1732       if (D == OldD)
1733         break;
1734 
1735       // If we reach the canonical declaration, then OldD is not actually older
1736       // than this one.
1737       //
1738       // FIXME: In this case, we should not add this decl to the lookup table.
1739       if (D->isCanonicalDecl())
1740         return false;
1741     }
1742 
1743     // It's a newer declaration of the same kind of declaration in the same
1744     // scope: we want this decl instead of the existing one.
1745     return true;
1746   }
1747 
1748   // In all other cases, we need to keep both declarations in case they have
1749   // different visibility. Any attempt to use the name will result in an
1750   // ambiguity if more than one is visible.
1751   return false;
1752 }
1753 
1754 bool NamedDecl::hasLinkage() const {
1755   return getFormalLinkage() != NoLinkage;
1756 }
1757 
1758 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1759   NamedDecl *ND = this;
1760   while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1761     ND = UD->getTargetDecl();
1762 
1763   if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1764     return AD->getClassInterface();
1765 
1766   if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1767     return AD->getNamespace();
1768 
1769   return ND;
1770 }
1771 
1772 bool NamedDecl::isCXXInstanceMember() const {
1773   if (!isCXXClassMember())
1774     return false;
1775 
1776   const NamedDecl *D = this;
1777   if (isa<UsingShadowDecl>(D))
1778     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1779 
1780   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1781     return true;
1782   if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1783     return MD->isInstance();
1784   return false;
1785 }
1786 
1787 //===----------------------------------------------------------------------===//
1788 // DeclaratorDecl Implementation
1789 //===----------------------------------------------------------------------===//
1790 
1791 template <typename DeclT>
1792 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1793   if (decl->getNumTemplateParameterLists() > 0)
1794     return decl->getTemplateParameterList(0)->getTemplateLoc();
1795   else
1796     return decl->getInnerLocStart();
1797 }
1798 
1799 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1800   TypeSourceInfo *TSI = getTypeSourceInfo();
1801   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1802   return SourceLocation();
1803 }
1804 
1805 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1806   if (QualifierLoc) {
1807     // Make sure the extended decl info is allocated.
1808     if (!hasExtInfo()) {
1809       // Save (non-extended) type source info pointer.
1810       auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1811       // Allocate external info struct.
1812       DeclInfo = new (getASTContext()) ExtInfo;
1813       // Restore savedTInfo into (extended) decl info.
1814       getExtInfo()->TInfo = savedTInfo;
1815     }
1816     // Set qualifier info.
1817     getExtInfo()->QualifierLoc = QualifierLoc;
1818   } else {
1819     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1820     if (hasExtInfo()) {
1821       if (getExtInfo()->NumTemplParamLists == 0) {
1822         // Save type source info pointer.
1823         TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1824         // Deallocate the extended decl info.
1825         getASTContext().Deallocate(getExtInfo());
1826         // Restore savedTInfo into (non-extended) decl info.
1827         DeclInfo = savedTInfo;
1828       }
1829       else
1830         getExtInfo()->QualifierLoc = QualifierLoc;
1831     }
1832   }
1833 }
1834 
1835 void DeclaratorDecl::setTemplateParameterListsInfo(
1836     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1837   assert(!TPLists.empty());
1838   // Make sure the extended decl info is allocated.
1839   if (!hasExtInfo()) {
1840     // Save (non-extended) type source info pointer.
1841     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1842     // Allocate external info struct.
1843     DeclInfo = new (getASTContext()) ExtInfo;
1844     // Restore savedTInfo into (extended) decl info.
1845     getExtInfo()->TInfo = savedTInfo;
1846   }
1847   // Set the template parameter lists info.
1848   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1849 }
1850 
1851 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1852   return getTemplateOrInnerLocStart(this);
1853 }
1854 
1855 // Helper function: returns true if QT is or contains a type
1856 // having a postfix component.
1857 static bool typeIsPostfix(QualType QT) {
1858   while (true) {
1859     const Type* T = QT.getTypePtr();
1860     switch (T->getTypeClass()) {
1861     default:
1862       return false;
1863     case Type::Pointer:
1864       QT = cast<PointerType>(T)->getPointeeType();
1865       break;
1866     case Type::BlockPointer:
1867       QT = cast<BlockPointerType>(T)->getPointeeType();
1868       break;
1869     case Type::MemberPointer:
1870       QT = cast<MemberPointerType>(T)->getPointeeType();
1871       break;
1872     case Type::LValueReference:
1873     case Type::RValueReference:
1874       QT = cast<ReferenceType>(T)->getPointeeType();
1875       break;
1876     case Type::PackExpansion:
1877       QT = cast<PackExpansionType>(T)->getPattern();
1878       break;
1879     case Type::Paren:
1880     case Type::ConstantArray:
1881     case Type::DependentSizedArray:
1882     case Type::IncompleteArray:
1883     case Type::VariableArray:
1884     case Type::FunctionProto:
1885     case Type::FunctionNoProto:
1886       return true;
1887     }
1888   }
1889 }
1890 
1891 SourceRange DeclaratorDecl::getSourceRange() const {
1892   SourceLocation RangeEnd = getLocation();
1893   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1894     // If the declaration has no name or the type extends past the name take the
1895     // end location of the type.
1896     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1897       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1898   }
1899   return SourceRange(getOuterLocStart(), RangeEnd);
1900 }
1901 
1902 void QualifierInfo::setTemplateParameterListsInfo(
1903     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1904   // Free previous template parameters (if any).
1905   if (NumTemplParamLists > 0) {
1906     Context.Deallocate(TemplParamLists);
1907     TemplParamLists = nullptr;
1908     NumTemplParamLists = 0;
1909   }
1910   // Set info on matched template parameter lists (if any).
1911   if (!TPLists.empty()) {
1912     TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1913     NumTemplParamLists = TPLists.size();
1914     std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1915   }
1916 }
1917 
1918 //===----------------------------------------------------------------------===//
1919 // VarDecl Implementation
1920 //===----------------------------------------------------------------------===//
1921 
1922 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1923   switch (SC) {
1924   case SC_None:                 break;
1925   case SC_Auto:                 return "auto";
1926   case SC_Extern:               return "extern";
1927   case SC_PrivateExtern:        return "__private_extern__";
1928   case SC_Register:             return "register";
1929   case SC_Static:               return "static";
1930   }
1931 
1932   llvm_unreachable("Invalid storage class");
1933 }
1934 
1935 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1936                  SourceLocation StartLoc, SourceLocation IdLoc,
1937                  IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1938                  StorageClass SC)
1939     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1940       redeclarable_base(C) {
1941   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1942                 "VarDeclBitfields too large!");
1943   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1944                 "ParmVarDeclBitfields too large!");
1945   static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1946                 "NonParmVarDeclBitfields too large!");
1947   AllBits = 0;
1948   VarDeclBits.SClass = SC;
1949   // Everything else is implicitly initialized to false.
1950 }
1951 
1952 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1953                          SourceLocation StartL, SourceLocation IdL,
1954                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1955                          StorageClass S) {
1956   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1957 }
1958 
1959 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1960   return new (C, ID)
1961       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1962               QualType(), nullptr, SC_None);
1963 }
1964 
1965 void VarDecl::setStorageClass(StorageClass SC) {
1966   assert(isLegalForVariable(SC));
1967   VarDeclBits.SClass = SC;
1968 }
1969 
1970 VarDecl::TLSKind VarDecl::getTLSKind() const {
1971   switch (VarDeclBits.TSCSpec) {
1972   case TSCS_unspecified:
1973     if (!hasAttr<ThreadAttr>() &&
1974         !(getASTContext().getLangOpts().OpenMPUseTLS &&
1975           getASTContext().getTargetInfo().isTLSSupported() &&
1976           hasAttr<OMPThreadPrivateDeclAttr>()))
1977       return TLS_None;
1978     return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
1979                 LangOptions::MSVC2015)) ||
1980             hasAttr<OMPThreadPrivateDeclAttr>())
1981                ? TLS_Dynamic
1982                : TLS_Static;
1983   case TSCS___thread: // Fall through.
1984   case TSCS__Thread_local:
1985     return TLS_Static;
1986   case TSCS_thread_local:
1987     return TLS_Dynamic;
1988   }
1989   llvm_unreachable("Unknown thread storage class specifier!");
1990 }
1991 
1992 SourceRange VarDecl::getSourceRange() const {
1993   if (const Expr *Init = getInit()) {
1994     SourceLocation InitEnd = Init->getEndLoc();
1995     // If Init is implicit, ignore its source range and fallback on
1996     // DeclaratorDecl::getSourceRange() to handle postfix elements.
1997     if (InitEnd.isValid() && InitEnd != getLocation())
1998       return SourceRange(getOuterLocStart(), InitEnd);
1999   }
2000   return DeclaratorDecl::getSourceRange();
2001 }
2002 
2003 template<typename T>
2004 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2005   // C++ [dcl.link]p1: All function types, function names with external linkage,
2006   // and variable names with external linkage have a language linkage.
2007   if (!D.hasExternalFormalLinkage())
2008     return NoLanguageLinkage;
2009 
2010   // Language linkage is a C++ concept, but saying that everything else in C has
2011   // C language linkage fits the implementation nicely.
2012   ASTContext &Context = D.getASTContext();
2013   if (!Context.getLangOpts().CPlusPlus)
2014     return CLanguageLinkage;
2015 
2016   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2017   // language linkage of the names of class members and the function type of
2018   // class member functions.
2019   const DeclContext *DC = D.getDeclContext();
2020   if (DC->isRecord())
2021     return CXXLanguageLinkage;
2022 
2023   // If the first decl is in an extern "C" context, any other redeclaration
2024   // will have C language linkage. If the first one is not in an extern "C"
2025   // context, we would have reported an error for any other decl being in one.
2026   if (isFirstInExternCContext(&D))
2027     return CLanguageLinkage;
2028   return CXXLanguageLinkage;
2029 }
2030 
2031 template<typename T>
2032 static bool isDeclExternC(const T &D) {
2033   // Since the context is ignored for class members, they can only have C++
2034   // language linkage or no language linkage.
2035   const DeclContext *DC = D.getDeclContext();
2036   if (DC->isRecord()) {
2037     assert(D.getASTContext().getLangOpts().CPlusPlus);
2038     return false;
2039   }
2040 
2041   return D.getLanguageLinkage() == CLanguageLinkage;
2042 }
2043 
2044 LanguageLinkage VarDecl::getLanguageLinkage() const {
2045   return getDeclLanguageLinkage(*this);
2046 }
2047 
2048 bool VarDecl::isExternC() const {
2049   return isDeclExternC(*this);
2050 }
2051 
2052 bool VarDecl::isInExternCContext() const {
2053   return getLexicalDeclContext()->isExternCContext();
2054 }
2055 
2056 bool VarDecl::isInExternCXXContext() const {
2057   return getLexicalDeclContext()->isExternCXXContext();
2058 }
2059 
2060 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2061 
2062 VarDecl::DefinitionKind
2063 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2064   if (isThisDeclarationADemotedDefinition())
2065     return DeclarationOnly;
2066 
2067   // C++ [basic.def]p2:
2068   //   A declaration is a definition unless [...] it contains the 'extern'
2069   //   specifier or a linkage-specification and neither an initializer [...],
2070   //   it declares a non-inline static data member in a class declaration [...],
2071   //   it declares a static data member outside a class definition and the variable
2072   //   was defined within the class with the constexpr specifier [...],
2073   // C++1y [temp.expl.spec]p15:
2074   //   An explicit specialization of a static data member or an explicit
2075   //   specialization of a static data member template is a definition if the
2076   //   declaration includes an initializer; otherwise, it is a declaration.
2077   //
2078   // FIXME: How do you declare (but not define) a partial specialization of
2079   // a static data member template outside the containing class?
2080   if (isStaticDataMember()) {
2081     if (isOutOfLine() &&
2082         !(getCanonicalDecl()->isInline() &&
2083           getCanonicalDecl()->isConstexpr()) &&
2084         (hasInit() ||
2085          // If the first declaration is out-of-line, this may be an
2086          // instantiation of an out-of-line partial specialization of a variable
2087          // template for which we have not yet instantiated the initializer.
2088          (getFirstDecl()->isOutOfLine()
2089               ? getTemplateSpecializationKind() == TSK_Undeclared
2090               : getTemplateSpecializationKind() !=
2091                     TSK_ExplicitSpecialization) ||
2092          isa<VarTemplatePartialSpecializationDecl>(this)))
2093       return Definition;
2094     else if (!isOutOfLine() && isInline())
2095       return Definition;
2096     else
2097       return DeclarationOnly;
2098   }
2099   // C99 6.7p5:
2100   //   A definition of an identifier is a declaration for that identifier that
2101   //   [...] causes storage to be reserved for that object.
2102   // Note: that applies for all non-file-scope objects.
2103   // C99 6.9.2p1:
2104   //   If the declaration of an identifier for an object has file scope and an
2105   //   initializer, the declaration is an external definition for the identifier
2106   if (hasInit())
2107     return Definition;
2108 
2109   if (hasDefiningAttr())
2110     return Definition;
2111 
2112   if (const auto *SAA = getAttr<SelectAnyAttr>())
2113     if (!SAA->isInherited())
2114       return Definition;
2115 
2116   // A variable template specialization (other than a static data member
2117   // template or an explicit specialization) is a declaration until we
2118   // instantiate its initializer.
2119   if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2120     if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2121         !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2122         !VTSD->IsCompleteDefinition)
2123       return DeclarationOnly;
2124   }
2125 
2126   if (hasExternalStorage())
2127     return DeclarationOnly;
2128 
2129   // [dcl.link] p7:
2130   //   A declaration directly contained in a linkage-specification is treated
2131   //   as if it contains the extern specifier for the purpose of determining
2132   //   the linkage of the declared name and whether it is a definition.
2133   if (isSingleLineLanguageLinkage(*this))
2134     return DeclarationOnly;
2135 
2136   // C99 6.9.2p2:
2137   //   A declaration of an object that has file scope without an initializer,
2138   //   and without a storage class specifier or the scs 'static', constitutes
2139   //   a tentative definition.
2140   // No such thing in C++.
2141   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2142     return TentativeDefinition;
2143 
2144   // What's left is (in C, block-scope) declarations without initializers or
2145   // external storage. These are definitions.
2146   return Definition;
2147 }
2148 
2149 VarDecl *VarDecl::getActingDefinition() {
2150   DefinitionKind Kind = isThisDeclarationADefinition();
2151   if (Kind != TentativeDefinition)
2152     return nullptr;
2153 
2154   VarDecl *LastTentative = nullptr;
2155   VarDecl *First = getFirstDecl();
2156   for (auto I : First->redecls()) {
2157     Kind = I->isThisDeclarationADefinition();
2158     if (Kind == Definition)
2159       return nullptr;
2160     else if (Kind == TentativeDefinition)
2161       LastTentative = I;
2162   }
2163   return LastTentative;
2164 }
2165 
2166 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2167   VarDecl *First = getFirstDecl();
2168   for (auto I : First->redecls()) {
2169     if (I->isThisDeclarationADefinition(C) == Definition)
2170       return I;
2171   }
2172   return nullptr;
2173 }
2174 
2175 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2176   DefinitionKind Kind = DeclarationOnly;
2177 
2178   const VarDecl *First = getFirstDecl();
2179   for (auto I : First->redecls()) {
2180     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2181     if (Kind == Definition)
2182       break;
2183   }
2184 
2185   return Kind;
2186 }
2187 
2188 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2189   for (auto I : redecls()) {
2190     if (auto Expr = I->getInit()) {
2191       D = I;
2192       return Expr;
2193     }
2194   }
2195   return nullptr;
2196 }
2197 
2198 bool VarDecl::hasInit() const {
2199   if (auto *P = dyn_cast<ParmVarDecl>(this))
2200     if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2201       return false;
2202 
2203   return !Init.isNull();
2204 }
2205 
2206 Expr *VarDecl::getInit() {
2207   if (!hasInit())
2208     return nullptr;
2209 
2210   if (auto *S = Init.dyn_cast<Stmt *>())
2211     return cast<Expr>(S);
2212 
2213   return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2214 }
2215 
2216 Stmt **VarDecl::getInitAddress() {
2217   if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2218     return &ES->Value;
2219 
2220   return Init.getAddrOfPtr1();
2221 }
2222 
2223 bool VarDecl::isOutOfLine() const {
2224   if (Decl::isOutOfLine())
2225     return true;
2226 
2227   if (!isStaticDataMember())
2228     return false;
2229 
2230   // If this static data member was instantiated from a static data member of
2231   // a class template, check whether that static data member was defined
2232   // out-of-line.
2233   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2234     return VD->isOutOfLine();
2235 
2236   return false;
2237 }
2238 
2239 void VarDecl::setInit(Expr *I) {
2240   if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2241     Eval->~EvaluatedStmt();
2242     getASTContext().Deallocate(Eval);
2243   }
2244 
2245   Init = I;
2246 }
2247 
2248 bool VarDecl::mightBeUsableInConstantExpressions(ASTContext &C) const {
2249   const LangOptions &Lang = C.getLangOpts();
2250 
2251   if (!Lang.CPlusPlus)
2252     return false;
2253 
2254   // Function parameters are never usable in constant expressions.
2255   if (isa<ParmVarDecl>(this))
2256     return false;
2257 
2258   // In C++11, any variable of reference type can be used in a constant
2259   // expression if it is initialized by a constant expression.
2260   if (Lang.CPlusPlus11 && getType()->isReferenceType())
2261     return true;
2262 
2263   // Only const objects can be used in constant expressions in C++. C++98 does
2264   // not require the variable to be non-volatile, but we consider this to be a
2265   // defect.
2266   if (!getType().isConstQualified() || getType().isVolatileQualified())
2267     return false;
2268 
2269   // In C++, const, non-volatile variables of integral or enumeration types
2270   // can be used in constant expressions.
2271   if (getType()->isIntegralOrEnumerationType())
2272     return true;
2273 
2274   // Additionally, in C++11, non-volatile constexpr variables can be used in
2275   // constant expressions.
2276   return Lang.CPlusPlus11 && isConstexpr();
2277 }
2278 
2279 bool VarDecl::isUsableInConstantExpressions(ASTContext &Context) const {
2280   // C++2a [expr.const]p3:
2281   //   A variable is usable in constant expressions after its initializing
2282   //   declaration is encountered...
2283   const VarDecl *DefVD = nullptr;
2284   const Expr *Init = getAnyInitializer(DefVD);
2285   if (!Init || Init->isValueDependent())
2286     return false;
2287   //   ... if it is a constexpr variable, or it is of reference type or of
2288   //   const-qualified integral or enumeration type, ...
2289   if (!DefVD->mightBeUsableInConstantExpressions(Context))
2290     return false;
2291   //   ... and its initializer is a constant initializer.
2292   return DefVD->checkInitIsICE();
2293 }
2294 
2295 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2296 /// form, which contains extra information on the evaluated value of the
2297 /// initializer.
2298 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2299   auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2300   if (!Eval) {
2301     // Note: EvaluatedStmt contains an APValue, which usually holds
2302     // resources not allocated from the ASTContext.  We need to do some
2303     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2304     // where we can detect whether there's anything to clean up or not.
2305     Eval = new (getASTContext()) EvaluatedStmt;
2306     Eval->Value = Init.get<Stmt *>();
2307     Init = Eval;
2308   }
2309   return Eval;
2310 }
2311 
2312 APValue *VarDecl::evaluateValue() const {
2313   SmallVector<PartialDiagnosticAt, 8> Notes;
2314   return evaluateValue(Notes);
2315 }
2316 
2317 APValue *VarDecl::evaluateValue(
2318     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2319   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2320 
2321   // We only produce notes indicating why an initializer is non-constant the
2322   // first time it is evaluated. FIXME: The notes won't always be emitted the
2323   // first time we try evaluation, so might not be produced at all.
2324   if (Eval->WasEvaluated)
2325     return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2326 
2327   const auto *Init = cast<Expr>(Eval->Value);
2328   assert(!Init->isValueDependent());
2329 
2330   if (Eval->IsEvaluating) {
2331     // FIXME: Produce a diagnostic for self-initialization.
2332     Eval->CheckedICE = true;
2333     Eval->IsICE = false;
2334     return nullptr;
2335   }
2336 
2337   Eval->IsEvaluating = true;
2338 
2339   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2340                                             this, Notes);
2341 
2342   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2343   // or that it's empty (so that there's nothing to clean up) if evaluation
2344   // failed.
2345   if (!Result)
2346     Eval->Evaluated = APValue();
2347   else if (Eval->Evaluated.needsCleanup())
2348     getASTContext().addDestruction(&Eval->Evaluated);
2349 
2350   Eval->IsEvaluating = false;
2351   Eval->WasEvaluated = true;
2352 
2353   // In C++11, we have determined whether the initializer was a constant
2354   // expression as a side-effect.
2355   if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2356     Eval->CheckedICE = true;
2357     Eval->IsICE = Result && Notes.empty();
2358   }
2359 
2360   return Result ? &Eval->Evaluated : nullptr;
2361 }
2362 
2363 APValue *VarDecl::getEvaluatedValue() const {
2364   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2365     if (Eval->WasEvaluated)
2366       return &Eval->Evaluated;
2367 
2368   return nullptr;
2369 }
2370 
2371 bool VarDecl::isInitKnownICE() const {
2372   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2373     return Eval->CheckedICE;
2374 
2375   return false;
2376 }
2377 
2378 bool VarDecl::isInitICE() const {
2379   assert(isInitKnownICE() &&
2380          "Check whether we already know that the initializer is an ICE");
2381   return Init.get<EvaluatedStmt *>()->IsICE;
2382 }
2383 
2384 bool VarDecl::checkInitIsICE() const {
2385   // Initializers of weak variables are never ICEs.
2386   if (isWeak())
2387     return false;
2388 
2389   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2390   if (Eval->CheckedICE)
2391     // We have already checked whether this subexpression is an
2392     // integral constant expression.
2393     return Eval->IsICE;
2394 
2395   const auto *Init = cast<Expr>(Eval->Value);
2396   assert(!Init->isValueDependent());
2397 
2398   // In C++11, evaluate the initializer to check whether it's a constant
2399   // expression.
2400   if (getASTContext().getLangOpts().CPlusPlus11) {
2401     SmallVector<PartialDiagnosticAt, 8> Notes;
2402     evaluateValue(Notes);
2403     return Eval->IsICE;
2404   }
2405 
2406   // It's an ICE whether or not the definition we found is
2407   // out-of-line.  See DR 721 and the discussion in Clang PR
2408   // 6206 for details.
2409 
2410   if (Eval->CheckingICE)
2411     return false;
2412   Eval->CheckingICE = true;
2413 
2414   Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2415   Eval->CheckingICE = false;
2416   Eval->CheckedICE = true;
2417   return Eval->IsICE;
2418 }
2419 
2420 bool VarDecl::isParameterPack() const {
2421   return isa<PackExpansionType>(getType());
2422 }
2423 
2424 template<typename DeclT>
2425 static DeclT *getDefinitionOrSelf(DeclT *D) {
2426   assert(D);
2427   if (auto *Def = D->getDefinition())
2428     return Def;
2429   return D;
2430 }
2431 
2432 bool VarDecl::isEscapingByref() const {
2433   return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2434 }
2435 
2436 bool VarDecl::isNonEscapingByref() const {
2437   return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2438 }
2439 
2440 VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2441   const VarDecl *VD = this;
2442 
2443   // If this is an instantiated member, walk back to the template from which
2444   // it was instantiated.
2445   if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2446     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2447       VD = VD->getInstantiatedFromStaticDataMember();
2448       while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2449         VD = NewVD;
2450     }
2451   }
2452 
2453   // If it's an instantiated variable template specialization, find the
2454   // template or partial specialization from which it was instantiated.
2455   if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2456     if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2457       auto From = VDTemplSpec->getInstantiatedFrom();
2458       if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2459         while (!VTD->isMemberSpecialization()) {
2460           auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2461           if (!NewVTD)
2462             break;
2463           VTD = NewVTD;
2464         }
2465         return getDefinitionOrSelf(VTD->getTemplatedDecl());
2466       }
2467       if (auto *VTPSD =
2468               From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2469         while (!VTPSD->isMemberSpecialization()) {
2470           auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2471           if (!NewVTPSD)
2472             break;
2473           VTPSD = NewVTPSD;
2474         }
2475         return getDefinitionOrSelf<VarDecl>(VTPSD);
2476       }
2477     }
2478   }
2479 
2480   // If this is the pattern of a variable template, find where it was
2481   // instantiated from. FIXME: Is this necessary?
2482   if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2483     while (!VarTemplate->isMemberSpecialization()) {
2484       auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2485       if (!NewVT)
2486         break;
2487       VarTemplate = NewVT;
2488     }
2489 
2490     return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2491   }
2492 
2493   if (VD == this)
2494     return nullptr;
2495   return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2496 }
2497 
2498 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2499   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2500     return cast<VarDecl>(MSI->getInstantiatedFrom());
2501 
2502   return nullptr;
2503 }
2504 
2505 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2506   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2507     return Spec->getSpecializationKind();
2508 
2509   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2510     return MSI->getTemplateSpecializationKind();
2511 
2512   return TSK_Undeclared;
2513 }
2514 
2515 TemplateSpecializationKind
2516 VarDecl::getTemplateSpecializationKindForInstantiation() const {
2517   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2518     return MSI->getTemplateSpecializationKind();
2519 
2520   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2521     return Spec->getSpecializationKind();
2522 
2523   return TSK_Undeclared;
2524 }
2525 
2526 SourceLocation VarDecl::getPointOfInstantiation() const {
2527   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2528     return Spec->getPointOfInstantiation();
2529 
2530   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2531     return MSI->getPointOfInstantiation();
2532 
2533   return SourceLocation();
2534 }
2535 
2536 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2537   return getASTContext().getTemplateOrSpecializationInfo(this)
2538       .dyn_cast<VarTemplateDecl *>();
2539 }
2540 
2541 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2542   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2543 }
2544 
2545 bool VarDecl::isKnownToBeDefined() const {
2546   const auto &LangOpts = getASTContext().getLangOpts();
2547   // In CUDA mode without relocatable device code, variables of form 'extern
2548   // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2549   // memory pool.  These are never undefined variables, even if they appear
2550   // inside of an anon namespace or static function.
2551   //
2552   // With CUDA relocatable device code enabled, these variables don't get
2553   // special handling; they're treated like regular extern variables.
2554   if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2555       hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2556       isa<IncompleteArrayType>(getType()))
2557     return true;
2558 
2559   return hasDefinition();
2560 }
2561 
2562 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2563   return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2564                                 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2565                                  !hasAttr<AlwaysDestroyAttr>()));
2566 }
2567 
2568 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2569   if (isStaticDataMember())
2570     // FIXME: Remove ?
2571     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2572     return getASTContext().getTemplateOrSpecializationInfo(this)
2573         .dyn_cast<MemberSpecializationInfo *>();
2574   return nullptr;
2575 }
2576 
2577 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2578                                          SourceLocation PointOfInstantiation) {
2579   assert((isa<VarTemplateSpecializationDecl>(this) ||
2580           getMemberSpecializationInfo()) &&
2581          "not a variable or static data member template specialization");
2582 
2583   if (VarTemplateSpecializationDecl *Spec =
2584           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2585     Spec->setSpecializationKind(TSK);
2586     if (TSK != TSK_ExplicitSpecialization &&
2587         PointOfInstantiation.isValid() &&
2588         Spec->getPointOfInstantiation().isInvalid()) {
2589       Spec->setPointOfInstantiation(PointOfInstantiation);
2590       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2591         L->InstantiationRequested(this);
2592     }
2593   } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2594     MSI->setTemplateSpecializationKind(TSK);
2595     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2596         MSI->getPointOfInstantiation().isInvalid()) {
2597       MSI->setPointOfInstantiation(PointOfInstantiation);
2598       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2599         L->InstantiationRequested(this);
2600     }
2601   }
2602 }
2603 
2604 void
2605 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2606                                             TemplateSpecializationKind TSK) {
2607   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2608          "Previous template or instantiation?");
2609   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2610 }
2611 
2612 //===----------------------------------------------------------------------===//
2613 // ParmVarDecl Implementation
2614 //===----------------------------------------------------------------------===//
2615 
2616 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2617                                  SourceLocation StartLoc,
2618                                  SourceLocation IdLoc, IdentifierInfo *Id,
2619                                  QualType T, TypeSourceInfo *TInfo,
2620                                  StorageClass S, Expr *DefArg) {
2621   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2622                                  S, DefArg);
2623 }
2624 
2625 QualType ParmVarDecl::getOriginalType() const {
2626   TypeSourceInfo *TSI = getTypeSourceInfo();
2627   QualType T = TSI ? TSI->getType() : getType();
2628   if (const auto *DT = dyn_cast<DecayedType>(T))
2629     return DT->getOriginalType();
2630   return T;
2631 }
2632 
2633 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2634   return new (C, ID)
2635       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2636                   nullptr, QualType(), nullptr, SC_None, nullptr);
2637 }
2638 
2639 SourceRange ParmVarDecl::getSourceRange() const {
2640   if (!hasInheritedDefaultArg()) {
2641     SourceRange ArgRange = getDefaultArgRange();
2642     if (ArgRange.isValid())
2643       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2644   }
2645 
2646   // DeclaratorDecl considers the range of postfix types as overlapping with the
2647   // declaration name, but this is not the case with parameters in ObjC methods.
2648   if (isa<ObjCMethodDecl>(getDeclContext()))
2649     return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2650 
2651   return DeclaratorDecl::getSourceRange();
2652 }
2653 
2654 Expr *ParmVarDecl::getDefaultArg() {
2655   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2656   assert(!hasUninstantiatedDefaultArg() &&
2657          "Default argument is not yet instantiated!");
2658 
2659   Expr *Arg = getInit();
2660   if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2661     return E->getSubExpr();
2662 
2663   return Arg;
2664 }
2665 
2666 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2667   ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2668   Init = defarg;
2669 }
2670 
2671 SourceRange ParmVarDecl::getDefaultArgRange() const {
2672   switch (ParmVarDeclBits.DefaultArgKind) {
2673   case DAK_None:
2674   case DAK_Unparsed:
2675     // Nothing we can do here.
2676     return SourceRange();
2677 
2678   case DAK_Uninstantiated:
2679     return getUninstantiatedDefaultArg()->getSourceRange();
2680 
2681   case DAK_Normal:
2682     if (const Expr *E = getInit())
2683       return E->getSourceRange();
2684 
2685     // Missing an actual expression, may be invalid.
2686     return SourceRange();
2687   }
2688   llvm_unreachable("Invalid default argument kind.");
2689 }
2690 
2691 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2692   ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2693   Init = arg;
2694 }
2695 
2696 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2697   assert(hasUninstantiatedDefaultArg() &&
2698          "Wrong kind of initialization expression!");
2699   return cast_or_null<Expr>(Init.get<Stmt *>());
2700 }
2701 
2702 bool ParmVarDecl::hasDefaultArg() const {
2703   // FIXME: We should just return false for DAK_None here once callers are
2704   // prepared for the case that we encountered an invalid default argument and
2705   // were unable to even build an invalid expression.
2706   return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2707          !Init.isNull();
2708 }
2709 
2710 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2711   getASTContext().setParameterIndex(this, parameterIndex);
2712   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2713 }
2714 
2715 unsigned ParmVarDecl::getParameterIndexLarge() const {
2716   return getASTContext().getParameterIndex(this);
2717 }
2718 
2719 //===----------------------------------------------------------------------===//
2720 // FunctionDecl Implementation
2721 //===----------------------------------------------------------------------===//
2722 
2723 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2724                            SourceLocation StartLoc,
2725                            const DeclarationNameInfo &NameInfo, QualType T,
2726                            TypeSourceInfo *TInfo, StorageClass S,
2727                            bool isInlineSpecified, bool isConstexprSpecified)
2728     : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2729                      StartLoc),
2730       DeclContext(DK), redeclarable_base(C), ODRHash(0),
2731       EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2732   assert(T.isNull() || T->isFunctionType());
2733   FunctionDeclBits.SClass = S;
2734   FunctionDeclBits.IsInline = isInlineSpecified;
2735   FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2736   FunctionDeclBits.IsVirtualAsWritten = false;
2737   FunctionDeclBits.IsPure = false;
2738   FunctionDeclBits.HasInheritedPrototype = false;
2739   FunctionDeclBits.HasWrittenPrototype = true;
2740   FunctionDeclBits.IsDeleted = false;
2741   FunctionDeclBits.IsTrivial = false;
2742   FunctionDeclBits.IsTrivialForCall = false;
2743   FunctionDeclBits.IsDefaulted = false;
2744   FunctionDeclBits.IsExplicitlyDefaulted = false;
2745   FunctionDeclBits.HasImplicitReturnZero = false;
2746   FunctionDeclBits.IsLateTemplateParsed = false;
2747   FunctionDeclBits.IsConstexpr = isConstexprSpecified;
2748   FunctionDeclBits.InstantiationIsPending = false;
2749   FunctionDeclBits.UsesSEHTry = false;
2750   FunctionDeclBits.HasSkippedBody = false;
2751   FunctionDeclBits.WillHaveBody = false;
2752   FunctionDeclBits.IsMultiVersion = false;
2753   FunctionDeclBits.IsCopyDeductionCandidate = false;
2754   FunctionDeclBits.HasODRHash = false;
2755 }
2756 
2757 void FunctionDecl::getNameForDiagnostic(
2758     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2759   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2760   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2761   if (TemplateArgs)
2762     printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2763 }
2764 
2765 bool FunctionDecl::isVariadic() const {
2766   if (const auto *FT = getType()->getAs<FunctionProtoType>())
2767     return FT->isVariadic();
2768   return false;
2769 }
2770 
2771 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2772   for (auto I : redecls()) {
2773     if (I->doesThisDeclarationHaveABody()) {
2774       Definition = I;
2775       return true;
2776     }
2777   }
2778 
2779   return false;
2780 }
2781 
2782 bool FunctionDecl::hasTrivialBody() const
2783 {
2784   Stmt *S = getBody();
2785   if (!S) {
2786     // Since we don't have a body for this function, we don't know if it's
2787     // trivial or not.
2788     return false;
2789   }
2790 
2791   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2792     return true;
2793   return false;
2794 }
2795 
2796 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2797   for (auto I : redecls()) {
2798     if (I->isThisDeclarationADefinition()) {
2799       Definition = I;
2800       return true;
2801     }
2802   }
2803 
2804   return false;
2805 }
2806 
2807 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2808   if (!hasBody(Definition))
2809     return nullptr;
2810 
2811   if (Definition->Body)
2812     return Definition->Body.get(getASTContext().getExternalSource());
2813 
2814   return nullptr;
2815 }
2816 
2817 void FunctionDecl::setBody(Stmt *B) {
2818   Body = B;
2819   if (B)
2820     EndRangeLoc = B->getEndLoc();
2821 }
2822 
2823 void FunctionDecl::setPure(bool P) {
2824   FunctionDeclBits.IsPure = P;
2825   if (P)
2826     if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2827       Parent->markedVirtualFunctionPure();
2828 }
2829 
2830 template<std::size_t Len>
2831 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2832   IdentifierInfo *II = ND->getIdentifier();
2833   return II && II->isStr(Str);
2834 }
2835 
2836 bool FunctionDecl::isMain() const {
2837   const TranslationUnitDecl *tunit =
2838     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2839   return tunit &&
2840          !tunit->getASTContext().getLangOpts().Freestanding &&
2841          isNamed(this, "main");
2842 }
2843 
2844 bool FunctionDecl::isMSVCRTEntryPoint() const {
2845   const TranslationUnitDecl *TUnit =
2846       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2847   if (!TUnit)
2848     return false;
2849 
2850   // Even though we aren't really targeting MSVCRT if we are freestanding,
2851   // semantic analysis for these functions remains the same.
2852 
2853   // MSVCRT entry points only exist on MSVCRT targets.
2854   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2855     return false;
2856 
2857   // Nameless functions like constructors cannot be entry points.
2858   if (!getIdentifier())
2859     return false;
2860 
2861   return llvm::StringSwitch<bool>(getName())
2862       .Cases("main",     // an ANSI console app
2863              "wmain",    // a Unicode console App
2864              "WinMain",  // an ANSI GUI app
2865              "wWinMain", // a Unicode GUI app
2866              "DllMain",  // a DLL
2867              true)
2868       .Default(false);
2869 }
2870 
2871 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2872   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2873   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2874          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2875          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2876          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2877 
2878   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2879     return false;
2880 
2881   const auto *proto = getType()->castAs<FunctionProtoType>();
2882   if (proto->getNumParams() != 2 || proto->isVariadic())
2883     return false;
2884 
2885   ASTContext &Context =
2886     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2887       ->getASTContext();
2888 
2889   // The result type and first argument type are constant across all
2890   // these operators.  The second argument must be exactly void*.
2891   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2892 }
2893 
2894 bool FunctionDecl::isReplaceableGlobalAllocationFunction(bool *IsAligned) const {
2895   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2896     return false;
2897   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2898       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2899       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2900       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2901     return false;
2902 
2903   if (isa<CXXRecordDecl>(getDeclContext()))
2904     return false;
2905 
2906   // This can only fail for an invalid 'operator new' declaration.
2907   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2908     return false;
2909 
2910   const auto *FPT = getType()->castAs<FunctionProtoType>();
2911   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
2912     return false;
2913 
2914   // If this is a single-parameter function, it must be a replaceable global
2915   // allocation or deallocation function.
2916   if (FPT->getNumParams() == 1)
2917     return true;
2918 
2919   unsigned Params = 1;
2920   QualType Ty = FPT->getParamType(Params);
2921   ASTContext &Ctx = getASTContext();
2922 
2923   auto Consume = [&] {
2924     ++Params;
2925     Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
2926   };
2927 
2928   // In C++14, the next parameter can be a 'std::size_t' for sized delete.
2929   bool IsSizedDelete = false;
2930   if (Ctx.getLangOpts().SizedDeallocation &&
2931       (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2932        getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
2933       Ctx.hasSameType(Ty, Ctx.getSizeType())) {
2934     IsSizedDelete = true;
2935     Consume();
2936   }
2937 
2938   // In C++17, the next parameter can be a 'std::align_val_t' for aligned
2939   // new/delete.
2940   if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
2941     if (IsAligned)
2942       *IsAligned = true;
2943     Consume();
2944   }
2945 
2946   // Finally, if this is not a sized delete, the final parameter can
2947   // be a 'const std::nothrow_t&'.
2948   if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
2949     Ty = Ty->getPointeeType();
2950     if (Ty.getCVRQualifiers() != Qualifiers::Const)
2951       return false;
2952     const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2953     if (RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace())
2954       Consume();
2955   }
2956 
2957   return Params == FPT->getNumParams();
2958 }
2959 
2960 bool FunctionDecl::isDestroyingOperatorDelete() const {
2961   // C++ P0722:
2962   //   Within a class C, a single object deallocation function with signature
2963   //     (T, std::destroying_delete_t, <more params>)
2964   //   is a destroying operator delete.
2965   if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
2966       getNumParams() < 2)
2967     return false;
2968 
2969   auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
2970   return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
2971          RD->getIdentifier()->isStr("destroying_delete_t");
2972 }
2973 
2974 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
2975   return getDeclLanguageLinkage(*this);
2976 }
2977 
2978 bool FunctionDecl::isExternC() const {
2979   return isDeclExternC(*this);
2980 }
2981 
2982 bool FunctionDecl::isInExternCContext() const {
2983   if (hasAttr<OpenCLKernelAttr>())
2984     return true;
2985   return getLexicalDeclContext()->isExternCContext();
2986 }
2987 
2988 bool FunctionDecl::isInExternCXXContext() const {
2989   return getLexicalDeclContext()->isExternCXXContext();
2990 }
2991 
2992 bool FunctionDecl::isGlobal() const {
2993   if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
2994     return Method->isStatic();
2995 
2996   if (getCanonicalDecl()->getStorageClass() == SC_Static)
2997     return false;
2998 
2999   for (const DeclContext *DC = getDeclContext();
3000        DC->isNamespace();
3001        DC = DC->getParent()) {
3002     if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3003       if (!Namespace->getDeclName())
3004         return false;
3005       break;
3006     }
3007   }
3008 
3009   return true;
3010 }
3011 
3012 bool FunctionDecl::isNoReturn() const {
3013   if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3014       hasAttr<C11NoReturnAttr>())
3015     return true;
3016 
3017   if (auto *FnTy = getType()->getAs<FunctionType>())
3018     return FnTy->getNoReturnAttr();
3019 
3020   return false;
3021 }
3022 
3023 
3024 MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3025   if (hasAttr<TargetAttr>())
3026     return MultiVersionKind::Target;
3027   if (hasAttr<CPUDispatchAttr>())
3028     return MultiVersionKind::CPUDispatch;
3029   if (hasAttr<CPUSpecificAttr>())
3030     return MultiVersionKind::CPUSpecific;
3031   return MultiVersionKind::None;
3032 }
3033 
3034 bool FunctionDecl::isCPUDispatchMultiVersion() const {
3035   return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3036 }
3037 
3038 bool FunctionDecl::isCPUSpecificMultiVersion() const {
3039   return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3040 }
3041 
3042 bool FunctionDecl::isTargetMultiVersion() const {
3043   return isMultiVersion() && hasAttr<TargetAttr>();
3044 }
3045 
3046 void
3047 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3048   redeclarable_base::setPreviousDecl(PrevDecl);
3049 
3050   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3051     FunctionTemplateDecl *PrevFunTmpl
3052       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3053     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3054     FunTmpl->setPreviousDecl(PrevFunTmpl);
3055   }
3056 
3057   if (PrevDecl && PrevDecl->isInlined())
3058     setImplicitlyInline(true);
3059 }
3060 
3061 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3062 
3063 /// Returns a value indicating whether this function corresponds to a builtin
3064 /// function.
3065 ///
3066 /// The function corresponds to a built-in function if it is declared at
3067 /// translation scope or within an extern "C" block and its name matches with
3068 /// the name of a builtin. The returned value will be 0 for functions that do
3069 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3070 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3071 /// value.
3072 ///
3073 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3074 /// functions as their wrapped builtins. This shouldn't be done in general, but
3075 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3076 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3077   if (!getIdentifier())
3078     return 0;
3079 
3080   unsigned BuiltinID = getIdentifier()->getBuiltinID();
3081   if (!BuiltinID)
3082     return 0;
3083 
3084   ASTContext &Context = getASTContext();
3085   if (Context.getLangOpts().CPlusPlus) {
3086     const auto *LinkageDecl =
3087         dyn_cast<LinkageSpecDecl>(getFirstDecl()->getDeclContext());
3088     // In C++, the first declaration of a builtin is always inside an implicit
3089     // extern "C".
3090     // FIXME: A recognised library function may not be directly in an extern "C"
3091     // declaration, for instance "extern "C" { namespace std { decl } }".
3092     if (!LinkageDecl) {
3093       if (BuiltinID == Builtin::BI__GetExceptionInfo &&
3094           Context.getTargetInfo().getCXXABI().isMicrosoft())
3095         return Builtin::BI__GetExceptionInfo;
3096       return 0;
3097     }
3098     if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
3099       return 0;
3100   }
3101 
3102   // If the function is marked "overloadable", it has a different mangled name
3103   // and is not the C library function.
3104   if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>())
3105     return 0;
3106 
3107   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3108     return BuiltinID;
3109 
3110   // This function has the name of a known C library
3111   // function. Determine whether it actually refers to the C library
3112   // function or whether it just has the same name.
3113 
3114   // If this is a static function, it's not a builtin.
3115   if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3116     return 0;
3117 
3118   // OpenCL v1.2 s6.9.f - The library functions defined in
3119   // the C99 standard headers are not available.
3120   if (Context.getLangOpts().OpenCL &&
3121       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3122     return 0;
3123 
3124   // CUDA does not have device-side standard library. printf and malloc are the
3125   // only special cases that are supported by device-side runtime.
3126   if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3127       !hasAttr<CUDAHostAttr>() &&
3128       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3129     return 0;
3130 
3131   return BuiltinID;
3132 }
3133 
3134 /// getNumParams - Return the number of parameters this function must have
3135 /// based on its FunctionType.  This is the length of the ParamInfo array
3136 /// after it has been created.
3137 unsigned FunctionDecl::getNumParams() const {
3138   const auto *FPT = getType()->getAs<FunctionProtoType>();
3139   return FPT ? FPT->getNumParams() : 0;
3140 }
3141 
3142 void FunctionDecl::setParams(ASTContext &C,
3143                              ArrayRef<ParmVarDecl *> NewParamInfo) {
3144   assert(!ParamInfo && "Already has param info!");
3145   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3146 
3147   // Zero params -> null pointer.
3148   if (!NewParamInfo.empty()) {
3149     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3150     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3151   }
3152 }
3153 
3154 /// getMinRequiredArguments - Returns the minimum number of arguments
3155 /// needed to call this function. This may be fewer than the number of
3156 /// function parameters, if some of the parameters have default
3157 /// arguments (in C++) or are parameter packs (C++11).
3158 unsigned FunctionDecl::getMinRequiredArguments() const {
3159   if (!getASTContext().getLangOpts().CPlusPlus)
3160     return getNumParams();
3161 
3162   unsigned NumRequiredArgs = 0;
3163   for (auto *Param : parameters())
3164     if (!Param->isParameterPack() && !Param->hasDefaultArg())
3165       ++NumRequiredArgs;
3166   return NumRequiredArgs;
3167 }
3168 
3169 /// The combination of the extern and inline keywords under MSVC forces
3170 /// the function to be required.
3171 ///
3172 /// Note: This function assumes that we will only get called when isInlined()
3173 /// would return true for this FunctionDecl.
3174 bool FunctionDecl::isMSExternInline() const {
3175   assert(isInlined() && "expected to get called on an inlined function!");
3176 
3177   const ASTContext &Context = getASTContext();
3178   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3179       !hasAttr<DLLExportAttr>())
3180     return false;
3181 
3182   for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3183        FD = FD->getPreviousDecl())
3184     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3185       return true;
3186 
3187   return false;
3188 }
3189 
3190 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3191   if (Redecl->getStorageClass() != SC_Extern)
3192     return false;
3193 
3194   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3195        FD = FD->getPreviousDecl())
3196     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3197       return false;
3198 
3199   return true;
3200 }
3201 
3202 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3203   // Only consider file-scope declarations in this test.
3204   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3205     return false;
3206 
3207   // Only consider explicit declarations; the presence of a builtin for a
3208   // libcall shouldn't affect whether a definition is externally visible.
3209   if (Redecl->isImplicit())
3210     return false;
3211 
3212   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3213     return true; // Not an inline definition
3214 
3215   return false;
3216 }
3217 
3218 /// For a function declaration in C or C++, determine whether this
3219 /// declaration causes the definition to be externally visible.
3220 ///
3221 /// For instance, this determines if adding the current declaration to the set
3222 /// of redeclarations of the given functions causes
3223 /// isInlineDefinitionExternallyVisible to change from false to true.
3224 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3225   assert(!doesThisDeclarationHaveABody() &&
3226          "Must have a declaration without a body.");
3227 
3228   ASTContext &Context = getASTContext();
3229 
3230   if (Context.getLangOpts().MSVCCompat) {
3231     const FunctionDecl *Definition;
3232     if (hasBody(Definition) && Definition->isInlined() &&
3233         redeclForcesDefMSVC(this))
3234       return true;
3235   }
3236 
3237   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3238     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3239     // an externally visible definition.
3240     //
3241     // FIXME: What happens if gnu_inline gets added on after the first
3242     // declaration?
3243     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3244       return false;
3245 
3246     const FunctionDecl *Prev = this;
3247     bool FoundBody = false;
3248     while ((Prev = Prev->getPreviousDecl())) {
3249       FoundBody |= Prev->Body.isValid();
3250 
3251       if (Prev->Body) {
3252         // If it's not the case that both 'inline' and 'extern' are
3253         // specified on the definition, then it is always externally visible.
3254         if (!Prev->isInlineSpecified() ||
3255             Prev->getStorageClass() != SC_Extern)
3256           return false;
3257       } else if (Prev->isInlineSpecified() &&
3258                  Prev->getStorageClass() != SC_Extern) {
3259         return false;
3260       }
3261     }
3262     return FoundBody;
3263   }
3264 
3265   if (Context.getLangOpts().CPlusPlus)
3266     return false;
3267 
3268   // C99 6.7.4p6:
3269   //   [...] If all of the file scope declarations for a function in a
3270   //   translation unit include the inline function specifier without extern,
3271   //   then the definition in that translation unit is an inline definition.
3272   if (isInlineSpecified() && getStorageClass() != SC_Extern)
3273     return false;
3274   const FunctionDecl *Prev = this;
3275   bool FoundBody = false;
3276   while ((Prev = Prev->getPreviousDecl())) {
3277     FoundBody |= Prev->Body.isValid();
3278     if (RedeclForcesDefC99(Prev))
3279       return false;
3280   }
3281   return FoundBody;
3282 }
3283 
3284 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3285   const TypeSourceInfo *TSI = getTypeSourceInfo();
3286   if (!TSI)
3287     return SourceRange();
3288   FunctionTypeLoc FTL =
3289       TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>();
3290   if (!FTL)
3291     return SourceRange();
3292 
3293   // Skip self-referential return types.
3294   const SourceManager &SM = getASTContext().getSourceManager();
3295   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3296   SourceLocation Boundary = getNameInfo().getBeginLoc();
3297   if (RTRange.isInvalid() || Boundary.isInvalid() ||
3298       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3299     return SourceRange();
3300 
3301   return RTRange;
3302 }
3303 
3304 SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3305   const TypeSourceInfo *TSI = getTypeSourceInfo();
3306   if (!TSI)
3307     return SourceRange();
3308   FunctionTypeLoc FTL =
3309     TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>();
3310   if (!FTL)
3311     return SourceRange();
3312 
3313   return FTL.getExceptionSpecRange();
3314 }
3315 
3316 /// For an inline function definition in C, or for a gnu_inline function
3317 /// in C++, determine whether the definition will be externally visible.
3318 ///
3319 /// Inline function definitions are always available for inlining optimizations.
3320 /// However, depending on the language dialect, declaration specifiers, and
3321 /// attributes, the definition of an inline function may or may not be
3322 /// "externally" visible to other translation units in the program.
3323 ///
3324 /// In C99, inline definitions are not externally visible by default. However,
3325 /// if even one of the global-scope declarations is marked "extern inline", the
3326 /// inline definition becomes externally visible (C99 6.7.4p6).
3327 ///
3328 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3329 /// definition, we use the GNU semantics for inline, which are nearly the
3330 /// opposite of C99 semantics. In particular, "inline" by itself will create
3331 /// an externally visible symbol, but "extern inline" will not create an
3332 /// externally visible symbol.
3333 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3334   assert((doesThisDeclarationHaveABody() || willHaveBody()) &&
3335          "Must be a function definition");
3336   assert(isInlined() && "Function must be inline");
3337   ASTContext &Context = getASTContext();
3338 
3339   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3340     // Note: If you change the logic here, please change
3341     // doesDeclarationForceExternallyVisibleDefinition as well.
3342     //
3343     // If it's not the case that both 'inline' and 'extern' are
3344     // specified on the definition, then this inline definition is
3345     // externally visible.
3346     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3347       return true;
3348 
3349     // If any declaration is 'inline' but not 'extern', then this definition
3350     // is externally visible.
3351     for (auto Redecl : redecls()) {
3352       if (Redecl->isInlineSpecified() &&
3353           Redecl->getStorageClass() != SC_Extern)
3354         return true;
3355     }
3356 
3357     return false;
3358   }
3359 
3360   // The rest of this function is C-only.
3361   assert(!Context.getLangOpts().CPlusPlus &&
3362          "should not use C inline rules in C++");
3363 
3364   // C99 6.7.4p6:
3365   //   [...] If all of the file scope declarations for a function in a
3366   //   translation unit include the inline function specifier without extern,
3367   //   then the definition in that translation unit is an inline definition.
3368   for (auto Redecl : redecls()) {
3369     if (RedeclForcesDefC99(Redecl))
3370       return true;
3371   }
3372 
3373   // C99 6.7.4p6:
3374   //   An inline definition does not provide an external definition for the
3375   //   function, and does not forbid an external definition in another
3376   //   translation unit.
3377   return false;
3378 }
3379 
3380 /// getOverloadedOperator - Which C++ overloaded operator this
3381 /// function represents, if any.
3382 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3383   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3384     return getDeclName().getCXXOverloadedOperator();
3385   else
3386     return OO_None;
3387 }
3388 
3389 /// getLiteralIdentifier - The literal suffix identifier this function
3390 /// represents, if any.
3391 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3392   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3393     return getDeclName().getCXXLiteralIdentifier();
3394   else
3395     return nullptr;
3396 }
3397 
3398 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3399   if (TemplateOrSpecialization.isNull())
3400     return TK_NonTemplate;
3401   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3402     return TK_FunctionTemplate;
3403   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3404     return TK_MemberSpecialization;
3405   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3406     return TK_FunctionTemplateSpecialization;
3407   if (TemplateOrSpecialization.is
3408                                <DependentFunctionTemplateSpecializationInfo*>())
3409     return TK_DependentFunctionTemplateSpecialization;
3410 
3411   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3412 }
3413 
3414 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3415   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3416     return cast<FunctionDecl>(Info->getInstantiatedFrom());
3417 
3418   return nullptr;
3419 }
3420 
3421 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3422   if (auto *MSI =
3423           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3424     return MSI;
3425   if (auto *FTSI = TemplateOrSpecialization
3426                        .dyn_cast<FunctionTemplateSpecializationInfo *>())
3427     return FTSI->getMemberSpecializationInfo();
3428   return nullptr;
3429 }
3430 
3431 void
3432 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3433                                                FunctionDecl *FD,
3434                                                TemplateSpecializationKind TSK) {
3435   assert(TemplateOrSpecialization.isNull() &&
3436          "Member function is already a specialization");
3437   MemberSpecializationInfo *Info
3438     = new (C) MemberSpecializationInfo(FD, TSK);
3439   TemplateOrSpecialization = Info;
3440 }
3441 
3442 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3443   return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3444 }
3445 
3446 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3447   assert(TemplateOrSpecialization.isNull() &&
3448          "Member function is already a specialization");
3449   TemplateOrSpecialization = Template;
3450 }
3451 
3452 bool FunctionDecl::isImplicitlyInstantiable() const {
3453   // If the function is invalid, it can't be implicitly instantiated.
3454   if (isInvalidDecl())
3455     return false;
3456 
3457   switch (getTemplateSpecializationKindForInstantiation()) {
3458   case TSK_Undeclared:
3459   case TSK_ExplicitInstantiationDefinition:
3460   case TSK_ExplicitSpecialization:
3461     return false;
3462 
3463   case TSK_ImplicitInstantiation:
3464     return true;
3465 
3466   case TSK_ExplicitInstantiationDeclaration:
3467     // Handled below.
3468     break;
3469   }
3470 
3471   // Find the actual template from which we will instantiate.
3472   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3473   bool HasPattern = false;
3474   if (PatternDecl)
3475     HasPattern = PatternDecl->hasBody(PatternDecl);
3476 
3477   // C++0x [temp.explicit]p9:
3478   //   Except for inline functions, other explicit instantiation declarations
3479   //   have the effect of suppressing the implicit instantiation of the entity
3480   //   to which they refer.
3481   if (!HasPattern || !PatternDecl)
3482     return true;
3483 
3484   return PatternDecl->isInlined();
3485 }
3486 
3487 bool FunctionDecl::isTemplateInstantiation() const {
3488   // FIXME: Remove this, it's not clear what it means. (Which template
3489   // specialization kind?)
3490   return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3491 }
3492 
3493 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
3494   // If this is a generic lambda call operator specialization, its
3495   // instantiation pattern is always its primary template's pattern
3496   // even if its primary template was instantiated from another
3497   // member template (which happens with nested generic lambdas).
3498   // Since a lambda's call operator's body is transformed eagerly,
3499   // we don't have to go hunting for a prototype definition template
3500   // (i.e. instantiated-from-member-template) to use as an instantiation
3501   // pattern.
3502 
3503   if (isGenericLambdaCallOperatorSpecialization(
3504           dyn_cast<CXXMethodDecl>(this))) {
3505     assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3506     return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3507   }
3508 
3509   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) {
3510     if (!clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3511       return nullptr;
3512     return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3513   }
3514 
3515   if (!clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3516     return nullptr;
3517 
3518   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3519     // If we hit a point where the user provided a specialization of this
3520     // template, we're done looking.
3521     while (!Primary->isMemberSpecialization()) {
3522       auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3523       if (!NewPrimary)
3524         break;
3525       Primary = NewPrimary;
3526     }
3527 
3528     return getDefinitionOrSelf(Primary->getTemplatedDecl());
3529   }
3530 
3531   return nullptr;
3532 }
3533 
3534 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3535   if (FunctionTemplateSpecializationInfo *Info
3536         = TemplateOrSpecialization
3537             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3538     return Info->getTemplate();
3539   }
3540   return nullptr;
3541 }
3542 
3543 FunctionTemplateSpecializationInfo *
3544 FunctionDecl::getTemplateSpecializationInfo() const {
3545   return TemplateOrSpecialization
3546       .dyn_cast<FunctionTemplateSpecializationInfo *>();
3547 }
3548 
3549 const TemplateArgumentList *
3550 FunctionDecl::getTemplateSpecializationArgs() const {
3551   if (FunctionTemplateSpecializationInfo *Info
3552         = TemplateOrSpecialization
3553             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3554     return Info->TemplateArguments;
3555   }
3556   return nullptr;
3557 }
3558 
3559 const ASTTemplateArgumentListInfo *
3560 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3561   if (FunctionTemplateSpecializationInfo *Info
3562         = TemplateOrSpecialization
3563             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3564     return Info->TemplateArgumentsAsWritten;
3565   }
3566   return nullptr;
3567 }
3568 
3569 void
3570 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3571                                                 FunctionTemplateDecl *Template,
3572                                      const TemplateArgumentList *TemplateArgs,
3573                                                 void *InsertPos,
3574                                                 TemplateSpecializationKind TSK,
3575                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
3576                                           SourceLocation PointOfInstantiation) {
3577   assert((TemplateOrSpecialization.isNull() ||
3578           TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
3579          "Member function is already a specialization");
3580   assert(TSK != TSK_Undeclared &&
3581          "Must specify the type of function template specialization");
3582   assert((TemplateOrSpecialization.isNull() ||
3583           TSK == TSK_ExplicitSpecialization) &&
3584          "Member specialization must be an explicit specialization");
3585   FunctionTemplateSpecializationInfo *Info =
3586       FunctionTemplateSpecializationInfo::Create(
3587           C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3588           PointOfInstantiation,
3589           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3590   TemplateOrSpecialization = Info;
3591   Template->addSpecialization(Info, InsertPos);
3592 }
3593 
3594 void
3595 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3596                                     const UnresolvedSetImpl &Templates,
3597                              const TemplateArgumentListInfo &TemplateArgs) {
3598   assert(TemplateOrSpecialization.isNull());
3599   DependentFunctionTemplateSpecializationInfo *Info =
3600       DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3601                                                           TemplateArgs);
3602   TemplateOrSpecialization = Info;
3603 }
3604 
3605 DependentFunctionTemplateSpecializationInfo *
3606 FunctionDecl::getDependentSpecializationInfo() const {
3607   return TemplateOrSpecialization
3608       .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3609 }
3610 
3611 DependentFunctionTemplateSpecializationInfo *
3612 DependentFunctionTemplateSpecializationInfo::Create(
3613     ASTContext &Context, const UnresolvedSetImpl &Ts,
3614     const TemplateArgumentListInfo &TArgs) {
3615   void *Buffer = Context.Allocate(
3616       totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3617           TArgs.size(), Ts.size()));
3618   return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3619 }
3620 
3621 DependentFunctionTemplateSpecializationInfo::
3622 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3623                                       const TemplateArgumentListInfo &TArgs)
3624   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3625   NumTemplates = Ts.size();
3626   NumArgs = TArgs.size();
3627 
3628   FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3629   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3630     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3631 
3632   TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3633   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3634     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3635 }
3636 
3637 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3638   // For a function template specialization, query the specialization
3639   // information object.
3640   if (FunctionTemplateSpecializationInfo *FTSInfo =
3641           TemplateOrSpecialization
3642               .dyn_cast<FunctionTemplateSpecializationInfo *>())
3643     return FTSInfo->getTemplateSpecializationKind();
3644 
3645   if (MemberSpecializationInfo *MSInfo =
3646           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3647     return MSInfo->getTemplateSpecializationKind();
3648 
3649   return TSK_Undeclared;
3650 }
3651 
3652 TemplateSpecializationKind
3653 FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
3654   // This is the same as getTemplateSpecializationKind(), except that for a
3655   // function that is both a function template specialization and a member
3656   // specialization, we prefer the member specialization information. Eg:
3657   //
3658   // template<typename T> struct A {
3659   //   template<typename U> void f() {}
3660   //   template<> void f<int>() {}
3661   // };
3662   //
3663   // For A<int>::f<int>():
3664   // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
3665   // * getTemplateSpecializationKindForInstantiation() will return
3666   //       TSK_ImplicitInstantiation
3667   //
3668   // This reflects the facts that A<int>::f<int> is an explicit specialization
3669   // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
3670   // from A::f<int> if a definition is needed.
3671   if (FunctionTemplateSpecializationInfo *FTSInfo =
3672           TemplateOrSpecialization
3673               .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
3674     if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
3675       return MSInfo->getTemplateSpecializationKind();
3676     return FTSInfo->getTemplateSpecializationKind();
3677   }
3678 
3679   if (MemberSpecializationInfo *MSInfo =
3680           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3681     return MSInfo->getTemplateSpecializationKind();
3682 
3683   return TSK_Undeclared;
3684 }
3685 
3686 void
3687 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3688                                           SourceLocation PointOfInstantiation) {
3689   if (FunctionTemplateSpecializationInfo *FTSInfo
3690         = TemplateOrSpecialization.dyn_cast<
3691                                     FunctionTemplateSpecializationInfo*>()) {
3692     FTSInfo->setTemplateSpecializationKind(TSK);
3693     if (TSK != TSK_ExplicitSpecialization &&
3694         PointOfInstantiation.isValid() &&
3695         FTSInfo->getPointOfInstantiation().isInvalid()) {
3696       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3697       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3698         L->InstantiationRequested(this);
3699     }
3700   } else if (MemberSpecializationInfo *MSInfo
3701              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3702     MSInfo->setTemplateSpecializationKind(TSK);
3703     if (TSK != TSK_ExplicitSpecialization &&
3704         PointOfInstantiation.isValid() &&
3705         MSInfo->getPointOfInstantiation().isInvalid()) {
3706       MSInfo->setPointOfInstantiation(PointOfInstantiation);
3707       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3708         L->InstantiationRequested(this);
3709     }
3710   } else
3711     llvm_unreachable("Function cannot have a template specialization kind");
3712 }
3713 
3714 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3715   if (FunctionTemplateSpecializationInfo *FTSInfo
3716         = TemplateOrSpecialization.dyn_cast<
3717                                         FunctionTemplateSpecializationInfo*>())
3718     return FTSInfo->getPointOfInstantiation();
3719   else if (MemberSpecializationInfo *MSInfo
3720              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3721     return MSInfo->getPointOfInstantiation();
3722 
3723   return SourceLocation();
3724 }
3725 
3726 bool FunctionDecl::isOutOfLine() const {
3727   if (Decl::isOutOfLine())
3728     return true;
3729 
3730   // If this function was instantiated from a member function of a
3731   // class template, check whether that member function was defined out-of-line.
3732   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3733     const FunctionDecl *Definition;
3734     if (FD->hasBody(Definition))
3735       return Definition->isOutOfLine();
3736   }
3737 
3738   // If this function was instantiated from a function template,
3739   // check whether that function template was defined out-of-line.
3740   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3741     const FunctionDecl *Definition;
3742     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3743       return Definition->isOutOfLine();
3744   }
3745 
3746   return false;
3747 }
3748 
3749 SourceRange FunctionDecl::getSourceRange() const {
3750   return SourceRange(getOuterLocStart(), EndRangeLoc);
3751 }
3752 
3753 unsigned FunctionDecl::getMemoryFunctionKind() const {
3754   IdentifierInfo *FnInfo = getIdentifier();
3755 
3756   if (!FnInfo)
3757     return 0;
3758 
3759   // Builtin handling.
3760   switch (getBuiltinID()) {
3761   case Builtin::BI__builtin_memset:
3762   case Builtin::BI__builtin___memset_chk:
3763   case Builtin::BImemset:
3764     return Builtin::BImemset;
3765 
3766   case Builtin::BI__builtin_memcpy:
3767   case Builtin::BI__builtin___memcpy_chk:
3768   case Builtin::BImemcpy:
3769     return Builtin::BImemcpy;
3770 
3771   case Builtin::BI__builtin_memmove:
3772   case Builtin::BI__builtin___memmove_chk:
3773   case Builtin::BImemmove:
3774     return Builtin::BImemmove;
3775 
3776   case Builtin::BIstrlcpy:
3777   case Builtin::BI__builtin___strlcpy_chk:
3778     return Builtin::BIstrlcpy;
3779 
3780   case Builtin::BIstrlcat:
3781   case Builtin::BI__builtin___strlcat_chk:
3782     return Builtin::BIstrlcat;
3783 
3784   case Builtin::BI__builtin_memcmp:
3785   case Builtin::BImemcmp:
3786     return Builtin::BImemcmp;
3787 
3788   case Builtin::BI__builtin_bcmp:
3789   case Builtin::BIbcmp:
3790     return Builtin::BIbcmp;
3791 
3792   case Builtin::BI__builtin_strncpy:
3793   case Builtin::BI__builtin___strncpy_chk:
3794   case Builtin::BIstrncpy:
3795     return Builtin::BIstrncpy;
3796 
3797   case Builtin::BI__builtin_strncmp:
3798   case Builtin::BIstrncmp:
3799     return Builtin::BIstrncmp;
3800 
3801   case Builtin::BI__builtin_strncasecmp:
3802   case Builtin::BIstrncasecmp:
3803     return Builtin::BIstrncasecmp;
3804 
3805   case Builtin::BI__builtin_strncat:
3806   case Builtin::BI__builtin___strncat_chk:
3807   case Builtin::BIstrncat:
3808     return Builtin::BIstrncat;
3809 
3810   case Builtin::BI__builtin_strndup:
3811   case Builtin::BIstrndup:
3812     return Builtin::BIstrndup;
3813 
3814   case Builtin::BI__builtin_strlen:
3815   case Builtin::BIstrlen:
3816     return Builtin::BIstrlen;
3817 
3818   case Builtin::BI__builtin_bzero:
3819   case Builtin::BIbzero:
3820     return Builtin::BIbzero;
3821 
3822   default:
3823     if (isExternC()) {
3824       if (FnInfo->isStr("memset"))
3825         return Builtin::BImemset;
3826       else if (FnInfo->isStr("memcpy"))
3827         return Builtin::BImemcpy;
3828       else if (FnInfo->isStr("memmove"))
3829         return Builtin::BImemmove;
3830       else if (FnInfo->isStr("memcmp"))
3831         return Builtin::BImemcmp;
3832       else if (FnInfo->isStr("bcmp"))
3833         return Builtin::BIbcmp;
3834       else if (FnInfo->isStr("strncpy"))
3835         return Builtin::BIstrncpy;
3836       else if (FnInfo->isStr("strncmp"))
3837         return Builtin::BIstrncmp;
3838       else if (FnInfo->isStr("strncasecmp"))
3839         return Builtin::BIstrncasecmp;
3840       else if (FnInfo->isStr("strncat"))
3841         return Builtin::BIstrncat;
3842       else if (FnInfo->isStr("strndup"))
3843         return Builtin::BIstrndup;
3844       else if (FnInfo->isStr("strlen"))
3845         return Builtin::BIstrlen;
3846       else if (FnInfo->isStr("bzero"))
3847         return Builtin::BIbzero;
3848     }
3849     break;
3850   }
3851   return 0;
3852 }
3853 
3854 unsigned FunctionDecl::getODRHash() const {
3855   assert(hasODRHash());
3856   return ODRHash;
3857 }
3858 
3859 unsigned FunctionDecl::getODRHash() {
3860   if (hasODRHash())
3861     return ODRHash;
3862 
3863   if (auto *FT = getInstantiatedFromMemberFunction()) {
3864     setHasODRHash(true);
3865     ODRHash = FT->getODRHash();
3866     return ODRHash;
3867   }
3868 
3869   class ODRHash Hash;
3870   Hash.AddFunctionDecl(this);
3871   setHasODRHash(true);
3872   ODRHash = Hash.CalculateHash();
3873   return ODRHash;
3874 }
3875 
3876 //===----------------------------------------------------------------------===//
3877 // FieldDecl Implementation
3878 //===----------------------------------------------------------------------===//
3879 
3880 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
3881                              SourceLocation StartLoc, SourceLocation IdLoc,
3882                              IdentifierInfo *Id, QualType T,
3883                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3884                              InClassInitStyle InitStyle) {
3885   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3886                                BW, Mutable, InitStyle);
3887 }
3888 
3889 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3890   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3891                                SourceLocation(), nullptr, QualType(), nullptr,
3892                                nullptr, false, ICIS_NoInit);
3893 }
3894 
3895 bool FieldDecl::isAnonymousStructOrUnion() const {
3896   if (!isImplicit() || getDeclName())
3897     return false;
3898 
3899   if (const auto *Record = getType()->getAs<RecordType>())
3900     return Record->getDecl()->isAnonymousStructOrUnion();
3901 
3902   return false;
3903 }
3904 
3905 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3906   assert(isBitField() && "not a bitfield");
3907   return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
3908 }
3909 
3910 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
3911   return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
3912          getBitWidthValue(Ctx) == 0;
3913 }
3914 
3915 unsigned FieldDecl::getFieldIndex() const {
3916   const FieldDecl *Canonical = getCanonicalDecl();
3917   if (Canonical != this)
3918     return Canonical->getFieldIndex();
3919 
3920   if (CachedFieldIndex) return CachedFieldIndex - 1;
3921 
3922   unsigned Index = 0;
3923   const RecordDecl *RD = getParent()->getDefinition();
3924   assert(RD && "requested index for field of struct with no definition");
3925 
3926   for (auto *Field : RD->fields()) {
3927     Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
3928     ++Index;
3929   }
3930 
3931   assert(CachedFieldIndex && "failed to find field in parent");
3932   return CachedFieldIndex - 1;
3933 }
3934 
3935 SourceRange FieldDecl::getSourceRange() const {
3936   const Expr *FinalExpr = getInClassInitializer();
3937   if (!FinalExpr)
3938     FinalExpr = getBitWidth();
3939   if (FinalExpr)
3940     return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
3941   return DeclaratorDecl::getSourceRange();
3942 }
3943 
3944 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
3945   assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
3946          "capturing type in non-lambda or captured record.");
3947   assert(InitStorage.getInt() == ISK_NoInit &&
3948          InitStorage.getPointer() == nullptr &&
3949          "bit width, initializer or captured type already set");
3950   InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
3951                                ISK_CapturedVLAType);
3952 }
3953 
3954 //===----------------------------------------------------------------------===//
3955 // TagDecl Implementation
3956 //===----------------------------------------------------------------------===//
3957 
3958 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
3959                  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
3960                  SourceLocation StartL)
3961     : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
3962       TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
3963   assert((DK != Enum || TK == TTK_Enum) &&
3964          "EnumDecl not matched with TTK_Enum");
3965   setPreviousDecl(PrevDecl);
3966   setTagKind(TK);
3967   setCompleteDefinition(false);
3968   setBeingDefined(false);
3969   setEmbeddedInDeclarator(false);
3970   setFreeStanding(false);
3971   setCompleteDefinitionRequired(false);
3972 }
3973 
3974 SourceLocation TagDecl::getOuterLocStart() const {
3975   return getTemplateOrInnerLocStart(this);
3976 }
3977 
3978 SourceRange TagDecl::getSourceRange() const {
3979   SourceLocation RBraceLoc = BraceRange.getEnd();
3980   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
3981   return SourceRange(getOuterLocStart(), E);
3982 }
3983 
3984 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
3985 
3986 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
3987   TypedefNameDeclOrQualifier = TDD;
3988   if (const Type *T = getTypeForDecl()) {
3989     (void)T;
3990     assert(T->isLinkageValid());
3991   }
3992   assert(isLinkageValid());
3993 }
3994 
3995 void TagDecl::startDefinition() {
3996   setBeingDefined(true);
3997 
3998   if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
3999     struct CXXRecordDecl::DefinitionData *Data =
4000       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4001     for (auto I : redecls())
4002       cast<CXXRecordDecl>(I)->DefinitionData = Data;
4003   }
4004 }
4005 
4006 void TagDecl::completeDefinition() {
4007   assert((!isa<CXXRecordDecl>(this) ||
4008           cast<CXXRecordDecl>(this)->hasDefinition()) &&
4009          "definition completed but not started");
4010 
4011   setCompleteDefinition(true);
4012   setBeingDefined(false);
4013 
4014   if (ASTMutationListener *L = getASTMutationListener())
4015     L->CompletedTagDefinition(this);
4016 }
4017 
4018 TagDecl *TagDecl::getDefinition() const {
4019   if (isCompleteDefinition())
4020     return const_cast<TagDecl *>(this);
4021 
4022   // If it's possible for us to have an out-of-date definition, check now.
4023   if (mayHaveOutOfDateDef()) {
4024     if (IdentifierInfo *II = getIdentifier()) {
4025       if (II->isOutOfDate()) {
4026         updateOutOfDate(*II);
4027       }
4028     }
4029   }
4030 
4031   if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4032     return CXXRD->getDefinition();
4033 
4034   for (auto R : redecls())
4035     if (R->isCompleteDefinition())
4036       return R;
4037 
4038   return nullptr;
4039 }
4040 
4041 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4042   if (QualifierLoc) {
4043     // Make sure the extended qualifier info is allocated.
4044     if (!hasExtInfo())
4045       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4046     // Set qualifier info.
4047     getExtInfo()->QualifierLoc = QualifierLoc;
4048   } else {
4049     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4050     if (hasExtInfo()) {
4051       if (getExtInfo()->NumTemplParamLists == 0) {
4052         getASTContext().Deallocate(getExtInfo());
4053         TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4054       }
4055       else
4056         getExtInfo()->QualifierLoc = QualifierLoc;
4057     }
4058   }
4059 }
4060 
4061 void TagDecl::setTemplateParameterListsInfo(
4062     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4063   assert(!TPLists.empty());
4064   // Make sure the extended decl info is allocated.
4065   if (!hasExtInfo())
4066     // Allocate external info struct.
4067     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4068   // Set the template parameter lists info.
4069   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4070 }
4071 
4072 //===----------------------------------------------------------------------===//
4073 // EnumDecl Implementation
4074 //===----------------------------------------------------------------------===//
4075 
4076 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4077                    SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4078                    bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4079     : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4080   assert(Scoped || !ScopedUsingClassTag);
4081   IntegerType = nullptr;
4082   setNumPositiveBits(0);
4083   setNumNegativeBits(0);
4084   setScoped(Scoped);
4085   setScopedUsingClassTag(ScopedUsingClassTag);
4086   setFixed(Fixed);
4087   setHasODRHash(false);
4088   ODRHash = 0;
4089 }
4090 
4091 void EnumDecl::anchor() {}
4092 
4093 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4094                            SourceLocation StartLoc, SourceLocation IdLoc,
4095                            IdentifierInfo *Id,
4096                            EnumDecl *PrevDecl, bool IsScoped,
4097                            bool IsScopedUsingClassTag, bool IsFixed) {
4098   auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4099                                     IsScoped, IsScopedUsingClassTag, IsFixed);
4100   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4101   C.getTypeDeclType(Enum, PrevDecl);
4102   return Enum;
4103 }
4104 
4105 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4106   EnumDecl *Enum =
4107       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4108                            nullptr, nullptr, false, false, false);
4109   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4110   return Enum;
4111 }
4112 
4113 SourceRange EnumDecl::getIntegerTypeRange() const {
4114   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4115     return TI->getTypeLoc().getSourceRange();
4116   return SourceRange();
4117 }
4118 
4119 void EnumDecl::completeDefinition(QualType NewType,
4120                                   QualType NewPromotionType,
4121                                   unsigned NumPositiveBits,
4122                                   unsigned NumNegativeBits) {
4123   assert(!isCompleteDefinition() && "Cannot redefine enums!");
4124   if (!IntegerType)
4125     IntegerType = NewType.getTypePtr();
4126   PromotionType = NewPromotionType;
4127   setNumPositiveBits(NumPositiveBits);
4128   setNumNegativeBits(NumNegativeBits);
4129   TagDecl::completeDefinition();
4130 }
4131 
4132 bool EnumDecl::isClosed() const {
4133   if (const auto *A = getAttr<EnumExtensibilityAttr>())
4134     return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4135   return true;
4136 }
4137 
4138 bool EnumDecl::isClosedFlag() const {
4139   return isClosed() && hasAttr<FlagEnumAttr>();
4140 }
4141 
4142 bool EnumDecl::isClosedNonFlag() const {
4143   return isClosed() && !hasAttr<FlagEnumAttr>();
4144 }
4145 
4146 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4147   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4148     return MSI->getTemplateSpecializationKind();
4149 
4150   return TSK_Undeclared;
4151 }
4152 
4153 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4154                                          SourceLocation PointOfInstantiation) {
4155   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4156   assert(MSI && "Not an instantiated member enumeration?");
4157   MSI->setTemplateSpecializationKind(TSK);
4158   if (TSK != TSK_ExplicitSpecialization &&
4159       PointOfInstantiation.isValid() &&
4160       MSI->getPointOfInstantiation().isInvalid())
4161     MSI->setPointOfInstantiation(PointOfInstantiation);
4162 }
4163 
4164 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4165   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4166     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4167       EnumDecl *ED = getInstantiatedFromMemberEnum();
4168       while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4169         ED = NewED;
4170       return getDefinitionOrSelf(ED);
4171     }
4172   }
4173 
4174   assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
4175          "couldn't find pattern for enum instantiation");
4176   return nullptr;
4177 }
4178 
4179 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4180   if (SpecializationInfo)
4181     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4182 
4183   return nullptr;
4184 }
4185 
4186 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4187                                             TemplateSpecializationKind TSK) {
4188   assert(!SpecializationInfo && "Member enum is already a specialization");
4189   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4190 }
4191 
4192 unsigned EnumDecl::getODRHash() {
4193   if (hasODRHash())
4194     return ODRHash;
4195 
4196   class ODRHash Hash;
4197   Hash.AddEnumDecl(this);
4198   setHasODRHash(true);
4199   ODRHash = Hash.CalculateHash();
4200   return ODRHash;
4201 }
4202 
4203 //===----------------------------------------------------------------------===//
4204 // RecordDecl Implementation
4205 //===----------------------------------------------------------------------===//
4206 
4207 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4208                        DeclContext *DC, SourceLocation StartLoc,
4209                        SourceLocation IdLoc, IdentifierInfo *Id,
4210                        RecordDecl *PrevDecl)
4211     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4212   assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4213   setHasFlexibleArrayMember(false);
4214   setAnonymousStructOrUnion(false);
4215   setHasObjectMember(false);
4216   setHasVolatileMember(false);
4217   setHasLoadedFieldsFromExternalStorage(false);
4218   setNonTrivialToPrimitiveDefaultInitialize(false);
4219   setNonTrivialToPrimitiveCopy(false);
4220   setNonTrivialToPrimitiveDestroy(false);
4221   setParamDestroyedInCallee(false);
4222   setArgPassingRestrictions(APK_CanPassInRegs);
4223 }
4224 
4225 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4226                                SourceLocation StartLoc, SourceLocation IdLoc,
4227                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
4228   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4229                                          StartLoc, IdLoc, Id, PrevDecl);
4230   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4231 
4232   C.getTypeDeclType(R, PrevDecl);
4233   return R;
4234 }
4235 
4236 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4237   RecordDecl *R =
4238       new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4239                              SourceLocation(), nullptr, nullptr);
4240   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4241   return R;
4242 }
4243 
4244 bool RecordDecl::isInjectedClassName() const {
4245   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4246     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4247 }
4248 
4249 bool RecordDecl::isLambda() const {
4250   if (auto RD = dyn_cast<CXXRecordDecl>(this))
4251     return RD->isLambda();
4252   return false;
4253 }
4254 
4255 bool RecordDecl::isCapturedRecord() const {
4256   return hasAttr<CapturedRecordAttr>();
4257 }
4258 
4259 void RecordDecl::setCapturedRecord() {
4260   addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4261 }
4262 
4263 RecordDecl::field_iterator RecordDecl::field_begin() const {
4264   if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4265     LoadFieldsFromExternalStorage();
4266 
4267   return field_iterator(decl_iterator(FirstDecl));
4268 }
4269 
4270 /// completeDefinition - Notes that the definition of this type is now
4271 /// complete.
4272 void RecordDecl::completeDefinition() {
4273   assert(!isCompleteDefinition() && "Cannot redefine record!");
4274   TagDecl::completeDefinition();
4275 }
4276 
4277 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4278 /// This which can be turned on with an attribute, pragma, or the
4279 /// -mms-bitfields command-line option.
4280 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4281   return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4282 }
4283 
4284 void RecordDecl::LoadFieldsFromExternalStorage() const {
4285   ExternalASTSource *Source = getASTContext().getExternalSource();
4286   assert(hasExternalLexicalStorage() && Source && "No external storage?");
4287 
4288   // Notify that we have a RecordDecl doing some initialization.
4289   ExternalASTSource::Deserializing TheFields(Source);
4290 
4291   SmallVector<Decl*, 64> Decls;
4292   setHasLoadedFieldsFromExternalStorage(true);
4293   Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4294     return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4295   }, Decls);
4296 
4297 #ifndef NDEBUG
4298   // Check that all decls we got were FieldDecls.
4299   for (unsigned i=0, e=Decls.size(); i != e; ++i)
4300     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4301 #endif
4302 
4303   if (Decls.empty())
4304     return;
4305 
4306   std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4307                                                  /*FieldsAlreadyLoaded=*/false);
4308 }
4309 
4310 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4311   ASTContext &Context = getASTContext();
4312   const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4313       (SanitizerKind::Address | SanitizerKind::KernelAddress);
4314   if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4315     return false;
4316   const auto &Blacklist = Context.getSanitizerBlacklist();
4317   const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4318   // We may be able to relax some of these requirements.
4319   int ReasonToReject = -1;
4320   if (!CXXRD || CXXRD->isExternCContext())
4321     ReasonToReject = 0;  // is not C++.
4322   else if (CXXRD->hasAttr<PackedAttr>())
4323     ReasonToReject = 1;  // is packed.
4324   else if (CXXRD->isUnion())
4325     ReasonToReject = 2;  // is a union.
4326   else if (CXXRD->isTriviallyCopyable())
4327     ReasonToReject = 3;  // is trivially copyable.
4328   else if (CXXRD->hasTrivialDestructor())
4329     ReasonToReject = 4;  // has trivial destructor.
4330   else if (CXXRD->isStandardLayout())
4331     ReasonToReject = 5;  // is standard layout.
4332   else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(),
4333                                            "field-padding"))
4334     ReasonToReject = 6;  // is in a blacklisted file.
4335   else if (Blacklist.isBlacklistedType(EnabledAsanMask,
4336                                        getQualifiedNameAsString(),
4337                                        "field-padding"))
4338     ReasonToReject = 7;  // is blacklisted.
4339 
4340   if (EmitRemark) {
4341     if (ReasonToReject >= 0)
4342       Context.getDiagnostics().Report(
4343           getLocation(),
4344           diag::remark_sanitize_address_insert_extra_padding_rejected)
4345           << getQualifiedNameAsString() << ReasonToReject;
4346     else
4347       Context.getDiagnostics().Report(
4348           getLocation(),
4349           diag::remark_sanitize_address_insert_extra_padding_accepted)
4350           << getQualifiedNameAsString();
4351   }
4352   return ReasonToReject < 0;
4353 }
4354 
4355 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4356   for (const auto *I : fields()) {
4357     if (I->getIdentifier())
4358       return I;
4359 
4360     if (const auto *RT = I->getType()->getAs<RecordType>())
4361       if (const FieldDecl *NamedDataMember =
4362               RT->getDecl()->findFirstNamedDataMember())
4363         return NamedDataMember;
4364   }
4365 
4366   // We didn't find a named data member.
4367   return nullptr;
4368 }
4369 
4370 //===----------------------------------------------------------------------===//
4371 // BlockDecl Implementation
4372 //===----------------------------------------------------------------------===//
4373 
4374 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4375     : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4376   setIsVariadic(false);
4377   setCapturesCXXThis(false);
4378   setBlockMissingReturnType(true);
4379   setIsConversionFromLambda(false);
4380   setDoesNotEscape(false);
4381   setCanAvoidCopyToHeap(false);
4382 }
4383 
4384 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4385   assert(!ParamInfo && "Already has param info!");
4386 
4387   // Zero params -> null pointer.
4388   if (!NewParamInfo.empty()) {
4389     NumParams = NewParamInfo.size();
4390     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4391     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4392   }
4393 }
4394 
4395 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4396                             bool CapturesCXXThis) {
4397   this->setCapturesCXXThis(CapturesCXXThis);
4398   this->NumCaptures = Captures.size();
4399 
4400   if (Captures.empty()) {
4401     this->Captures = nullptr;
4402     return;
4403   }
4404 
4405   this->Captures = Captures.copy(Context).data();
4406 }
4407 
4408 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4409   for (const auto &I : captures())
4410     // Only auto vars can be captured, so no redeclaration worries.
4411     if (I.getVariable() == variable)
4412       return true;
4413 
4414   return false;
4415 }
4416 
4417 SourceRange BlockDecl::getSourceRange() const {
4418   return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4419 }
4420 
4421 //===----------------------------------------------------------------------===//
4422 // Other Decl Allocation/Deallocation Method Implementations
4423 //===----------------------------------------------------------------------===//
4424 
4425 void TranslationUnitDecl::anchor() {}
4426 
4427 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4428   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4429 }
4430 
4431 void PragmaCommentDecl::anchor() {}
4432 
4433 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4434                                              TranslationUnitDecl *DC,
4435                                              SourceLocation CommentLoc,
4436                                              PragmaMSCommentKind CommentKind,
4437                                              StringRef Arg) {
4438   PragmaCommentDecl *PCD =
4439       new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4440           PragmaCommentDecl(DC, CommentLoc, CommentKind);
4441   memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4442   PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4443   return PCD;
4444 }
4445 
4446 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4447                                                          unsigned ID,
4448                                                          unsigned ArgSize) {
4449   return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4450       PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4451 }
4452 
4453 void PragmaDetectMismatchDecl::anchor() {}
4454 
4455 PragmaDetectMismatchDecl *
4456 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
4457                                  SourceLocation Loc, StringRef Name,
4458                                  StringRef Value) {
4459   size_t ValueStart = Name.size() + 1;
4460   PragmaDetectMismatchDecl *PDMD =
4461       new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4462           PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4463   memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4464   PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4465   memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4466          Value.size());
4467   PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4468   return PDMD;
4469 }
4470 
4471 PragmaDetectMismatchDecl *
4472 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4473                                              unsigned NameValueSize) {
4474   return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4475       PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
4476 }
4477 
4478 void ExternCContextDecl::anchor() {}
4479 
4480 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
4481                                                TranslationUnitDecl *DC) {
4482   return new (C, DC) ExternCContextDecl(DC);
4483 }
4484 
4485 void LabelDecl::anchor() {}
4486 
4487 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4488                              SourceLocation IdentL, IdentifierInfo *II) {
4489   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4490 }
4491 
4492 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4493                              SourceLocation IdentL, IdentifierInfo *II,
4494                              SourceLocation GnuLabelL) {
4495   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4496   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4497 }
4498 
4499 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4500   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4501                                SourceLocation());
4502 }
4503 
4504 void LabelDecl::setMSAsmLabel(StringRef Name) {
4505   char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4506   memcpy(Buffer, Name.data(), Name.size());
4507   Buffer[Name.size()] = '\0';
4508   MSAsmName = Buffer;
4509 }
4510 
4511 void ValueDecl::anchor() {}
4512 
4513 bool ValueDecl::isWeak() const {
4514   for (const auto *I : attrs())
4515     if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
4516       return true;
4517 
4518   return isWeakImported();
4519 }
4520 
4521 void ImplicitParamDecl::anchor() {}
4522 
4523 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4524                                              SourceLocation IdLoc,
4525                                              IdentifierInfo *Id, QualType Type,
4526                                              ImplicitParamKind ParamKind) {
4527   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4528 }
4529 
4530 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
4531                                              ImplicitParamKind ParamKind) {
4532   return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4533 }
4534 
4535 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4536                                                          unsigned ID) {
4537   return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4538 }
4539 
4540 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
4541                                    SourceLocation StartLoc,
4542                                    const DeclarationNameInfo &NameInfo,
4543                                    QualType T, TypeSourceInfo *TInfo,
4544                                    StorageClass SC,
4545                                    bool isInlineSpecified,
4546                                    bool hasWrittenPrototype,
4547                                    bool isConstexprSpecified) {
4548   FunctionDecl *New =
4549       new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4550                                SC, isInlineSpecified, isConstexprSpecified);
4551   New->setHasWrittenPrototype(hasWrittenPrototype);
4552   return New;
4553 }
4554 
4555 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4556   return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
4557                                   DeclarationNameInfo(), QualType(), nullptr,
4558                                   SC_None, false, false);
4559 }
4560 
4561 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4562   return new (C, DC) BlockDecl(DC, L);
4563 }
4564 
4565 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4566   return new (C, ID) BlockDecl(nullptr, SourceLocation());
4567 }
4568 
4569 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4570     : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4571       NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4572 
4573 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
4574                                    unsigned NumParams) {
4575   return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4576       CapturedDecl(DC, NumParams);
4577 }
4578 
4579 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4580                                                unsigned NumParams) {
4581   return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4582       CapturedDecl(nullptr, NumParams);
4583 }
4584 
4585 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4586 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4587 
4588 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4589 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4590 
4591 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
4592                                            SourceLocation L,
4593                                            IdentifierInfo *Id, QualType T,
4594                                            Expr *E, const llvm::APSInt &V) {
4595   return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4596 }
4597 
4598 EnumConstantDecl *
4599 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4600   return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4601                                       QualType(), nullptr, llvm::APSInt());
4602 }
4603 
4604 void IndirectFieldDecl::anchor() {}
4605 
4606 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4607                                      SourceLocation L, DeclarationName N,
4608                                      QualType T,
4609                                      MutableArrayRef<NamedDecl *> CH)
4610     : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4611       ChainingSize(CH.size()) {
4612   // In C++, indirect field declarations conflict with tag declarations in the
4613   // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4614   if (C.getLangOpts().CPlusPlus)
4615     IdentifierNamespace |= IDNS_Tag;
4616 }
4617 
4618 IndirectFieldDecl *
4619 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
4620                           IdentifierInfo *Id, QualType T,
4621                           llvm::MutableArrayRef<NamedDecl *> CH) {
4622   return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4623 }
4624 
4625 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
4626                                                          unsigned ID) {
4627   return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4628                                        DeclarationName(), QualType(), None);
4629 }
4630 
4631 SourceRange EnumConstantDecl::getSourceRange() const {
4632   SourceLocation End = getLocation();
4633   if (Init)
4634     End = Init->getEndLoc();
4635   return SourceRange(getLocation(), End);
4636 }
4637 
4638 void TypeDecl::anchor() {}
4639 
4640 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
4641                                  SourceLocation StartLoc, SourceLocation IdLoc,
4642                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4643   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4644 }
4645 
4646 void TypedefNameDecl::anchor() {}
4647 
4648 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
4649   if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4650     auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4651     auto *ThisTypedef = this;
4652     if (AnyRedecl && OwningTypedef) {
4653       OwningTypedef = OwningTypedef->getCanonicalDecl();
4654       ThisTypedef = ThisTypedef->getCanonicalDecl();
4655     }
4656     if (OwningTypedef == ThisTypedef)
4657       return TT->getDecl();
4658   }
4659 
4660   return nullptr;
4661 }
4662 
4663 bool TypedefNameDecl::isTransparentTagSlow() const {
4664   auto determineIsTransparent = [&]() {
4665     if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4666       if (auto *TD = TT->getDecl()) {
4667         if (TD->getName() != getName())
4668           return false;
4669         SourceLocation TTLoc = getLocation();
4670         SourceLocation TDLoc = TD->getLocation();
4671         if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4672           return false;
4673         SourceManager &SM = getASTContext().getSourceManager();
4674         return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4675       }
4676     }
4677     return false;
4678   };
4679 
4680   bool isTransparent = determineIsTransparent();
4681   MaybeModedTInfo.setInt((isTransparent << 1) | 1);
4682   return isTransparent;
4683 }
4684 
4685 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4686   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4687                                  nullptr, nullptr);
4688 }
4689 
4690 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
4691                                      SourceLocation StartLoc,
4692                                      SourceLocation IdLoc, IdentifierInfo *Id,
4693                                      TypeSourceInfo *TInfo) {
4694   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4695 }
4696 
4697 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4698   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4699                                    SourceLocation(), nullptr, nullptr);
4700 }
4701 
4702 SourceRange TypedefDecl::getSourceRange() const {
4703   SourceLocation RangeEnd = getLocation();
4704   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4705     if (typeIsPostfix(TInfo->getType()))
4706       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4707   }
4708   return SourceRange(getBeginLoc(), RangeEnd);
4709 }
4710 
4711 SourceRange TypeAliasDecl::getSourceRange() const {
4712   SourceLocation RangeEnd = getBeginLoc();
4713   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4714     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4715   return SourceRange(getBeginLoc(), RangeEnd);
4716 }
4717 
4718 void FileScopeAsmDecl::anchor() {}
4719 
4720 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
4721                                            StringLiteral *Str,
4722                                            SourceLocation AsmLoc,
4723                                            SourceLocation RParenLoc) {
4724   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
4725 }
4726 
4727 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
4728                                                        unsigned ID) {
4729   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4730                                       SourceLocation());
4731 }
4732 
4733 void EmptyDecl::anchor() {}
4734 
4735 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4736   return new (C, DC) EmptyDecl(DC, L);
4737 }
4738 
4739 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4740   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
4741 }
4742 
4743 //===----------------------------------------------------------------------===//
4744 // ImportDecl Implementation
4745 //===----------------------------------------------------------------------===//
4746 
4747 /// Retrieve the number of module identifiers needed to name the given
4748 /// module.
4749 static unsigned getNumModuleIdentifiers(Module *Mod) {
4750   unsigned Result = 1;
4751   while (Mod->Parent) {
4752     Mod = Mod->Parent;
4753     ++Result;
4754   }
4755   return Result;
4756 }
4757 
4758 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4759                        Module *Imported,
4760                        ArrayRef<SourceLocation> IdentifierLocs)
4761   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true) {
4762   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4763   auto *StoredLocs = getTrailingObjects<SourceLocation>();
4764   std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4765                           StoredLocs);
4766 }
4767 
4768 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4769                        Module *Imported, SourceLocation EndLoc)
4770   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false) {
4771   *getTrailingObjects<SourceLocation>() = EndLoc;
4772 }
4773 
4774 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
4775                                SourceLocation StartLoc, Module *Imported,
4776                                ArrayRef<SourceLocation> IdentifierLocs) {
4777   return new (C, DC,
4778               additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4779       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4780 }
4781 
4782 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
4783                                        SourceLocation StartLoc,
4784                                        Module *Imported,
4785                                        SourceLocation EndLoc) {
4786   ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4787       ImportDecl(DC, StartLoc, Imported, EndLoc);
4788   Import->setImplicit();
4789   return Import;
4790 }
4791 
4792 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4793                                            unsigned NumLocations) {
4794   return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4795       ImportDecl(EmptyShell());
4796 }
4797 
4798 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
4799   if (!ImportedAndComplete.getInt())
4800     return None;
4801 
4802   const auto *StoredLocs = getTrailingObjects<SourceLocation>();
4803   return llvm::makeArrayRef(StoredLocs,
4804                             getNumModuleIdentifiers(getImportedModule()));
4805 }
4806 
4807 SourceRange ImportDecl::getSourceRange() const {
4808   if (!ImportedAndComplete.getInt())
4809     return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
4810 
4811   return SourceRange(getLocation(), getIdentifierLocs().back());
4812 }
4813 
4814 //===----------------------------------------------------------------------===//
4815 // ExportDecl Implementation
4816 //===----------------------------------------------------------------------===//
4817 
4818 void ExportDecl::anchor() {}
4819 
4820 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
4821                                SourceLocation ExportLoc) {
4822   return new (C, DC) ExportDecl(DC, ExportLoc);
4823 }
4824 
4825 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4826   return new (C, ID) ExportDecl(nullptr, SourceLocation());
4827 }
4828