xref: /llvm-project-15.0.7/clang/lib/AST/Decl.cpp (revision 2da3facd)
1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CanonicalType.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclOpenMP.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/DeclarationName.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ExternalASTSource.h"
30 #include "clang/AST/ODRHash.h"
31 #include "clang/AST/PrettyDeclStackTrace.h"
32 #include "clang/AST/PrettyPrinter.h"
33 #include "clang/AST/Redeclarable.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/IdentifierTable.h"
40 #include "clang/Basic/LLVM.h"
41 #include "clang/Basic/LangOptions.h"
42 #include "clang/Basic/Linkage.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/NoSanitizeList.h"
45 #include "clang/Basic/PartialDiagnostic.h"
46 #include "clang/Basic/Sanitizers.h"
47 #include "clang/Basic/SourceLocation.h"
48 #include "clang/Basic/SourceManager.h"
49 #include "clang/Basic/Specifiers.h"
50 #include "clang/Basic/TargetCXXABI.h"
51 #include "clang/Basic/TargetInfo.h"
52 #include "clang/Basic/Visibility.h"
53 #include "llvm/ADT/APSInt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/None.h"
56 #include "llvm/ADT/Optional.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/StringSwitch.h"
61 #include "llvm/ADT/Triple.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstring>
69 #include <memory>
70 #include <string>
71 #include <tuple>
72 #include <type_traits>
73 
74 using namespace clang;
75 
76 Decl *clang::getPrimaryMergedDecl(Decl *D) {
77   return D->getASTContext().getPrimaryMergedDecl(D);
78 }
79 
80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81   SourceLocation Loc = this->Loc;
82   if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83   if (Loc.isValid()) {
84     Loc.print(OS, Context.getSourceManager());
85     OS << ": ";
86   }
87   OS << Message;
88 
89   if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
90     OS << " '";
91     ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
92     OS << "'";
93   }
94 
95   OS << '\n';
96 }
97 
98 // Defined here so that it can be inlined into its direct callers.
99 bool Decl::isOutOfLine() const {
100   return !getLexicalDeclContext()->Equals(getDeclContext());
101 }
102 
103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104     : Decl(TranslationUnit, nullptr, SourceLocation()),
105       DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {}
106 
107 //===----------------------------------------------------------------------===//
108 // NamedDecl Implementation
109 //===----------------------------------------------------------------------===//
110 
111 // Visibility rules aren't rigorously externally specified, but here
112 // are the basic principles behind what we implement:
113 //
114 // 1. An explicit visibility attribute is generally a direct expression
115 // of the user's intent and should be honored.  Only the innermost
116 // visibility attribute applies.  If no visibility attribute applies,
117 // global visibility settings are considered.
118 //
119 // 2. There is one caveat to the above: on or in a template pattern,
120 // an explicit visibility attribute is just a default rule, and
121 // visibility can be decreased by the visibility of template
122 // arguments.  But this, too, has an exception: an attribute on an
123 // explicit specialization or instantiation causes all the visibility
124 // restrictions of the template arguments to be ignored.
125 //
126 // 3. A variable that does not otherwise have explicit visibility can
127 // be restricted by the visibility of its type.
128 //
129 // 4. A visibility restriction is explicit if it comes from an
130 // attribute (or something like it), not a global visibility setting.
131 // When emitting a reference to an external symbol, visibility
132 // restrictions are ignored unless they are explicit.
133 //
134 // 5. When computing the visibility of a non-type, including a
135 // non-type member of a class, only non-type visibility restrictions
136 // are considered: the 'visibility' attribute, global value-visibility
137 // settings, and a few special cases like __private_extern.
138 //
139 // 6. When computing the visibility of a type, including a type member
140 // of a class, only type visibility restrictions are considered:
141 // the 'type_visibility' attribute and global type-visibility settings.
142 // However, a 'visibility' attribute counts as a 'type_visibility'
143 // attribute on any declaration that only has the former.
144 //
145 // The visibility of a "secondary" entity, like a template argument,
146 // is computed using the kind of that entity, not the kind of the
147 // primary entity for which we are computing visibility.  For example,
148 // the visibility of a specialization of either of these templates:
149 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150 //   template <class T, bool (&compare)(T, X)> class matcher;
151 // is restricted according to the type visibility of the argument 'T',
152 // the type visibility of 'bool(&)(T,X)', and the value visibility of
153 // the argument function 'compare'.  That 'has_match' is a value
154 // and 'matcher' is a type only matters when looking for attributes
155 // and settings from the immediate context.
156 
157 /// Does this computation kind permit us to consider additional
158 /// visibility settings from attributes and the like?
159 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
160   return computation.IgnoreExplicitVisibility;
161 }
162 
163 /// Given an LVComputationKind, return one of the same type/value sort
164 /// that records that it already has explicit visibility.
165 static LVComputationKind
166 withExplicitVisibilityAlready(LVComputationKind Kind) {
167   Kind.IgnoreExplicitVisibility = true;
168   return Kind;
169 }
170 
171 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
172                                                   LVComputationKind kind) {
173   assert(!kind.IgnoreExplicitVisibility &&
174          "asking for explicit visibility when we shouldn't be");
175   return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
176 }
177 
178 /// Is the given declaration a "type" or a "value" for the purposes of
179 /// visibility computation?
180 static bool usesTypeVisibility(const NamedDecl *D) {
181   return isa<TypeDecl>(D) ||
182          isa<ClassTemplateDecl>(D) ||
183          isa<ObjCInterfaceDecl>(D);
184 }
185 
186 /// Does the given declaration have member specialization information,
187 /// and if so, is it an explicit specialization?
188 template <class T> static typename
189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
190 isExplicitMemberSpecialization(const T *D) {
191   if (const MemberSpecializationInfo *member =
192         D->getMemberSpecializationInfo()) {
193     return member->isExplicitSpecialization();
194   }
195   return false;
196 }
197 
198 /// For templates, this question is easier: a member template can't be
199 /// explicitly instantiated, so there's a single bit indicating whether
200 /// or not this is an explicit member specialization.
201 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
202   return D->isMemberSpecialization();
203 }
204 
205 /// Given a visibility attribute, return the explicit visibility
206 /// associated with it.
207 template <class T>
208 static Visibility getVisibilityFromAttr(const T *attr) {
209   switch (attr->getVisibility()) {
210   case T::Default:
211     return DefaultVisibility;
212   case T::Hidden:
213     return HiddenVisibility;
214   case T::Protected:
215     return ProtectedVisibility;
216   }
217   llvm_unreachable("bad visibility kind");
218 }
219 
220 /// Return the explicit visibility of the given declaration.
221 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
222                                     NamedDecl::ExplicitVisibilityKind kind) {
223   // If we're ultimately computing the visibility of a type, look for
224   // a 'type_visibility' attribute before looking for 'visibility'.
225   if (kind == NamedDecl::VisibilityForType) {
226     if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227       return getVisibilityFromAttr(A);
228     }
229   }
230 
231   // If this declaration has an explicit visibility attribute, use it.
232   if (const auto *A = D->getAttr<VisibilityAttr>()) {
233     return getVisibilityFromAttr(A);
234   }
235 
236   return None;
237 }
238 
239 LinkageInfo LinkageComputer::getLVForType(const Type &T,
240                                           LVComputationKind computation) {
241   if (computation.IgnoreAllVisibility)
242     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
243   return getTypeLinkageAndVisibility(&T);
244 }
245 
246 /// Get the most restrictive linkage for the types in the given
247 /// template parameter list.  For visibility purposes, template
248 /// parameters are part of the signature of a template.
249 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250     const TemplateParameterList *Params, LVComputationKind computation) {
251   LinkageInfo LV;
252   for (const NamedDecl *P : *Params) {
253     // Template type parameters are the most common and never
254     // contribute to visibility, pack or not.
255     if (isa<TemplateTypeParmDecl>(P))
256       continue;
257 
258     // Non-type template parameters can be restricted by the value type, e.g.
259     //   template <enum X> class A { ... };
260     // We have to be careful here, though, because we can be dealing with
261     // dependent types.
262     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
263       // Handle the non-pack case first.
264       if (!NTTP->isExpandedParameterPack()) {
265         if (!NTTP->getType()->isDependentType()) {
266           LV.merge(getLVForType(*NTTP->getType(), computation));
267         }
268         continue;
269       }
270 
271       // Look at all the types in an expanded pack.
272       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273         QualType type = NTTP->getExpansionType(i);
274         if (!type->isDependentType())
275           LV.merge(getTypeLinkageAndVisibility(type));
276       }
277       continue;
278     }
279 
280     // Template template parameters can be restricted by their
281     // template parameters, recursively.
282     const auto *TTP = cast<TemplateTemplateParmDecl>(P);
283 
284     // Handle the non-pack case first.
285     if (!TTP->isExpandedParameterPack()) {
286       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
287                                              computation));
288       continue;
289     }
290 
291     // Look at all expansions in an expanded pack.
292     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293            i != n; ++i) {
294       LV.merge(getLVForTemplateParameterList(
295           TTP->getExpansionTemplateParameters(i), computation));
296     }
297   }
298 
299   return LV;
300 }
301 
302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
303   const Decl *Ret = nullptr;
304   const DeclContext *DC = D->getDeclContext();
305   while (DC->getDeclKind() != Decl::TranslationUnit) {
306     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
307       Ret = cast<Decl>(DC);
308     DC = DC->getParent();
309   }
310   return Ret;
311 }
312 
313 /// Get the most restrictive linkage for the types and
314 /// declarations in the given template argument list.
315 ///
316 /// Note that we don't take an LVComputationKind because we always
317 /// want to honor the visibility of template arguments in the same way.
318 LinkageInfo
319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320                                               LVComputationKind computation) {
321   LinkageInfo LV;
322 
323   for (const TemplateArgument &Arg : Args) {
324     switch (Arg.getKind()) {
325     case TemplateArgument::Null:
326     case TemplateArgument::Integral:
327     case TemplateArgument::Expression:
328       continue;
329 
330     case TemplateArgument::Type:
331       LV.merge(getLVForType(*Arg.getAsType(), computation));
332       continue;
333 
334     case TemplateArgument::Declaration: {
335       const NamedDecl *ND = Arg.getAsDecl();
336       assert(!usesTypeVisibility(ND));
337       LV.merge(getLVForDecl(ND, computation));
338       continue;
339     }
340 
341     case TemplateArgument::NullPtr:
342       LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
343       continue;
344 
345     case TemplateArgument::Template:
346     case TemplateArgument::TemplateExpansion:
347       if (TemplateDecl *Template =
348               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
349         LV.merge(getLVForDecl(Template, computation));
350       continue;
351 
352     case TemplateArgument::Pack:
353       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
354       continue;
355     }
356     llvm_unreachable("bad template argument kind");
357   }
358 
359   return LV;
360 }
361 
362 LinkageInfo
363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
364                                               LVComputationKind computation) {
365   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
366 }
367 
368 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
369                         const FunctionTemplateSpecializationInfo *specInfo) {
370   // Include visibility from the template parameters and arguments
371   // only if this is not an explicit instantiation or specialization
372   // with direct explicit visibility.  (Implicit instantiations won't
373   // have a direct attribute.)
374   if (!specInfo->isExplicitInstantiationOrSpecialization())
375     return true;
376 
377   return !fn->hasAttr<VisibilityAttr>();
378 }
379 
380 /// Merge in template-related linkage and visibility for the given
381 /// function template specialization.
382 ///
383 /// We don't need a computation kind here because we can assume
384 /// LVForValue.
385 ///
386 /// \param[out] LV the computation to use for the parent
387 void LinkageComputer::mergeTemplateLV(
388     LinkageInfo &LV, const FunctionDecl *fn,
389     const FunctionTemplateSpecializationInfo *specInfo,
390     LVComputationKind computation) {
391   bool considerVisibility =
392     shouldConsiderTemplateVisibility(fn, specInfo);
393 
394   // Merge information from the template parameters.
395   FunctionTemplateDecl *temp = specInfo->getTemplate();
396   LinkageInfo tempLV =
397     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
398   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
399 
400   // Merge information from the template arguments.
401   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
402   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
403   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
404 }
405 
406 /// Does the given declaration have a direct visibility attribute
407 /// that would match the given rules?
408 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
409                                          LVComputationKind computation) {
410   if (computation.IgnoreAllVisibility)
411     return false;
412 
413   return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
414          D->hasAttr<VisibilityAttr>();
415 }
416 
417 /// Should we consider visibility associated with the template
418 /// arguments and parameters of the given class template specialization?
419 static bool shouldConsiderTemplateVisibility(
420                                  const ClassTemplateSpecializationDecl *spec,
421                                  LVComputationKind computation) {
422   // Include visibility from the template parameters and arguments
423   // only if this is not an explicit instantiation or specialization
424   // with direct explicit visibility (and note that implicit
425   // instantiations won't have a direct attribute).
426   //
427   // Furthermore, we want to ignore template parameters and arguments
428   // for an explicit specialization when computing the visibility of a
429   // member thereof with explicit visibility.
430   //
431   // This is a bit complex; let's unpack it.
432   //
433   // An explicit class specialization is an independent, top-level
434   // declaration.  As such, if it or any of its members has an
435   // explicit visibility attribute, that must directly express the
436   // user's intent, and we should honor it.  The same logic applies to
437   // an explicit instantiation of a member of such a thing.
438 
439   // Fast path: if this is not an explicit instantiation or
440   // specialization, we always want to consider template-related
441   // visibility restrictions.
442   if (!spec->isExplicitInstantiationOrSpecialization())
443     return true;
444 
445   // This is the 'member thereof' check.
446   if (spec->isExplicitSpecialization() &&
447       hasExplicitVisibilityAlready(computation))
448     return false;
449 
450   return !hasDirectVisibilityAttribute(spec, computation);
451 }
452 
453 /// Merge in template-related linkage and visibility for the given
454 /// class template specialization.
455 void LinkageComputer::mergeTemplateLV(
456     LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
457     LVComputationKind computation) {
458   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
459 
460   // Merge information from the template parameters, but ignore
461   // visibility if we're only considering template arguments.
462 
463   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
464   LinkageInfo tempLV =
465     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
466   LV.mergeMaybeWithVisibility(tempLV,
467            considerVisibility && !hasExplicitVisibilityAlready(computation));
468 
469   // Merge information from the template arguments.  We ignore
470   // template-argument visibility if we've got an explicit
471   // instantiation with a visibility attribute.
472   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
473   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
474   if (considerVisibility)
475     LV.mergeVisibility(argsLV);
476   LV.mergeExternalVisibility(argsLV);
477 }
478 
479 /// Should we consider visibility associated with the template
480 /// arguments and parameters of the given variable template
481 /// specialization? As usual, follow class template specialization
482 /// logic up to initialization.
483 static bool shouldConsiderTemplateVisibility(
484                                  const VarTemplateSpecializationDecl *spec,
485                                  LVComputationKind computation) {
486   // Include visibility from the template parameters and arguments
487   // only if this is not an explicit instantiation or specialization
488   // with direct explicit visibility (and note that implicit
489   // instantiations won't have a direct attribute).
490   if (!spec->isExplicitInstantiationOrSpecialization())
491     return true;
492 
493   // An explicit variable specialization is an independent, top-level
494   // declaration.  As such, if it has an explicit visibility attribute,
495   // that must directly express the user's intent, and we should honor
496   // it.
497   if (spec->isExplicitSpecialization() &&
498       hasExplicitVisibilityAlready(computation))
499     return false;
500 
501   return !hasDirectVisibilityAttribute(spec, computation);
502 }
503 
504 /// Merge in template-related linkage and visibility for the given
505 /// variable template specialization. As usual, follow class template
506 /// specialization logic up to initialization.
507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
508                                       const VarTemplateSpecializationDecl *spec,
509                                       LVComputationKind computation) {
510   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
511 
512   // Merge information from the template parameters, but ignore
513   // visibility if we're only considering template arguments.
514 
515   VarTemplateDecl *temp = spec->getSpecializedTemplate();
516   LinkageInfo tempLV =
517     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
518   LV.mergeMaybeWithVisibility(tempLV,
519            considerVisibility && !hasExplicitVisibilityAlready(computation));
520 
521   // Merge information from the template arguments.  We ignore
522   // template-argument visibility if we've got an explicit
523   // instantiation with a visibility attribute.
524   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
525   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
526   if (considerVisibility)
527     LV.mergeVisibility(argsLV);
528   LV.mergeExternalVisibility(argsLV);
529 }
530 
531 static bool useInlineVisibilityHidden(const NamedDecl *D) {
532   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
533   const LangOptions &Opts = D->getASTContext().getLangOpts();
534   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
535     return false;
536 
537   const auto *FD = dyn_cast<FunctionDecl>(D);
538   if (!FD)
539     return false;
540 
541   TemplateSpecializationKind TSK = TSK_Undeclared;
542   if (FunctionTemplateSpecializationInfo *spec
543       = FD->getTemplateSpecializationInfo()) {
544     TSK = spec->getTemplateSpecializationKind();
545   } else if (MemberSpecializationInfo *MSI =
546              FD->getMemberSpecializationInfo()) {
547     TSK = MSI->getTemplateSpecializationKind();
548   }
549 
550   const FunctionDecl *Def = nullptr;
551   // InlineVisibilityHidden only applies to definitions, and
552   // isInlined() only gives meaningful answers on definitions
553   // anyway.
554   return TSK != TSK_ExplicitInstantiationDeclaration &&
555     TSK != TSK_ExplicitInstantiationDefinition &&
556     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
557 }
558 
559 template <typename T> static bool isFirstInExternCContext(T *D) {
560   const T *First = D->getFirstDecl();
561   return First->isInExternCContext();
562 }
563 
564 static bool isSingleLineLanguageLinkage(const Decl &D) {
565   if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
566     if (!SD->hasBraces())
567       return true;
568   return false;
569 }
570 
571 /// Determine whether D is declared in the purview of a named module.
572 static bool isInModulePurview(const NamedDecl *D) {
573   if (auto *M = D->getOwningModule())
574     return M->isModulePurview();
575   return false;
576 }
577 
578 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
579   // FIXME: Handle isModulePrivate.
580   switch (D->getModuleOwnershipKind()) {
581   case Decl::ModuleOwnershipKind::Unowned:
582   case Decl::ModuleOwnershipKind::ModulePrivate:
583     return false;
584   case Decl::ModuleOwnershipKind::Visible:
585   case Decl::ModuleOwnershipKind::VisibleWhenImported:
586     return isInModulePurview(D);
587   }
588   llvm_unreachable("unexpected module ownership kind");
589 }
590 
591 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
592   // Internal linkage declarations within a module interface unit are modeled
593   // as "module-internal linkage", which means that they have internal linkage
594   // formally but can be indirectly accessed from outside the module via inline
595   // functions and templates defined within the module.
596   if (isInModulePurview(D))
597     return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
598 
599   return LinkageInfo::internal();
600 }
601 
602 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
603   // C++ Modules TS [basic.link]/6.8:
604   //   - A name declared at namespace scope that does not have internal linkage
605   //     by the previous rules and that is introduced by a non-exported
606   //     declaration has module linkage.
607   if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit(
608                                   cast<NamedDecl>(D->getCanonicalDecl())))
609     return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
610 
611   return LinkageInfo::external();
612 }
613 
614 static StorageClass getStorageClass(const Decl *D) {
615   if (auto *TD = dyn_cast<TemplateDecl>(D))
616     D = TD->getTemplatedDecl();
617   if (D) {
618     if (auto *VD = dyn_cast<VarDecl>(D))
619       return VD->getStorageClass();
620     if (auto *FD = dyn_cast<FunctionDecl>(D))
621       return FD->getStorageClass();
622   }
623   return SC_None;
624 }
625 
626 LinkageInfo
627 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
628                                             LVComputationKind computation,
629                                             bool IgnoreVarTypeLinkage) {
630   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
631          "Not a name having namespace scope");
632   ASTContext &Context = D->getASTContext();
633 
634   // C++ [basic.link]p3:
635   //   A name having namespace scope (3.3.6) has internal linkage if it
636   //   is the name of
637 
638   if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
639     // - a variable, variable template, function, or function template
640     //   that is explicitly declared static; or
641     // (This bullet corresponds to C99 6.2.2p3.)
642     return getInternalLinkageFor(D);
643   }
644 
645   if (const auto *Var = dyn_cast<VarDecl>(D)) {
646     // - a non-template variable of non-volatile const-qualified type, unless
647     //   - it is explicitly declared extern, or
648     //   - it is inline or exported, or
649     //   - it was previously declared and the prior declaration did not have
650     //     internal linkage
651     // (There is no equivalent in C99.)
652     if (Context.getLangOpts().CPlusPlus &&
653         Var->getType().isConstQualified() &&
654         !Var->getType().isVolatileQualified() &&
655         !Var->isInline() &&
656         !isExportedFromModuleInterfaceUnit(Var) &&
657         !isa<VarTemplateSpecializationDecl>(Var) &&
658         !Var->getDescribedVarTemplate()) {
659       const VarDecl *PrevVar = Var->getPreviousDecl();
660       if (PrevVar)
661         return getLVForDecl(PrevVar, computation);
662 
663       if (Var->getStorageClass() != SC_Extern &&
664           Var->getStorageClass() != SC_PrivateExtern &&
665           !isSingleLineLanguageLinkage(*Var))
666         return getInternalLinkageFor(Var);
667     }
668 
669     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
670          PrevVar = PrevVar->getPreviousDecl()) {
671       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
672           Var->getStorageClass() == SC_None)
673         return getDeclLinkageAndVisibility(PrevVar);
674       // Explicitly declared static.
675       if (PrevVar->getStorageClass() == SC_Static)
676         return getInternalLinkageFor(Var);
677     }
678   } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
679     //   - a data member of an anonymous union.
680     const VarDecl *VD = IFD->getVarDecl();
681     assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
682     return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
683   }
684   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
685 
686   // FIXME: This gives internal linkage to names that should have no linkage
687   // (those not covered by [basic.link]p6).
688   if (D->isInAnonymousNamespace()) {
689     const auto *Var = dyn_cast<VarDecl>(D);
690     const auto *Func = dyn_cast<FunctionDecl>(D);
691     // FIXME: The check for extern "C" here is not justified by the standard
692     // wording, but we retain it from the pre-DR1113 model to avoid breaking
693     // code.
694     //
695     // C++11 [basic.link]p4:
696     //   An unnamed namespace or a namespace declared directly or indirectly
697     //   within an unnamed namespace has internal linkage.
698     if ((!Var || !isFirstInExternCContext(Var)) &&
699         (!Func || !isFirstInExternCContext(Func)))
700       return getInternalLinkageFor(D);
701   }
702 
703   // Set up the defaults.
704 
705   // C99 6.2.2p5:
706   //   If the declaration of an identifier for an object has file
707   //   scope and no storage-class specifier, its linkage is
708   //   external.
709   LinkageInfo LV = getExternalLinkageFor(D);
710 
711   if (!hasExplicitVisibilityAlready(computation)) {
712     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
713       LV.mergeVisibility(*Vis, true);
714     } else {
715       // If we're declared in a namespace with a visibility attribute,
716       // use that namespace's visibility, and it still counts as explicit.
717       for (const DeclContext *DC = D->getDeclContext();
718            !isa<TranslationUnitDecl>(DC);
719            DC = DC->getParent()) {
720         const auto *ND = dyn_cast<NamespaceDecl>(DC);
721         if (!ND) continue;
722         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
723           LV.mergeVisibility(*Vis, true);
724           break;
725         }
726       }
727     }
728 
729     // Add in global settings if the above didn't give us direct visibility.
730     if (!LV.isVisibilityExplicit()) {
731       // Use global type/value visibility as appropriate.
732       Visibility globalVisibility =
733           computation.isValueVisibility()
734               ? Context.getLangOpts().getValueVisibilityMode()
735               : Context.getLangOpts().getTypeVisibilityMode();
736       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
737 
738       // If we're paying attention to global visibility, apply
739       // -finline-visibility-hidden if this is an inline method.
740       if (useInlineVisibilityHidden(D))
741         LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
742     }
743   }
744 
745   // C++ [basic.link]p4:
746 
747   //   A name having namespace scope that has not been given internal linkage
748   //   above and that is the name of
749   //   [...bullets...]
750   //   has its linkage determined as follows:
751   //     - if the enclosing namespace has internal linkage, the name has
752   //       internal linkage; [handled above]
753   //     - otherwise, if the declaration of the name is attached to a named
754   //       module and is not exported, the name has module linkage;
755   //     - otherwise, the name has external linkage.
756   // LV is currently set up to handle the last two bullets.
757   //
758   //   The bullets are:
759 
760   //     - a variable; or
761   if (const auto *Var = dyn_cast<VarDecl>(D)) {
762     // GCC applies the following optimization to variables and static
763     // data members, but not to functions:
764     //
765     // Modify the variable's LV by the LV of its type unless this is
766     // C or extern "C".  This follows from [basic.link]p9:
767     //   A type without linkage shall not be used as the type of a
768     //   variable or function with external linkage unless
769     //    - the entity has C language linkage, or
770     //    - the entity is declared within an unnamed namespace, or
771     //    - the entity is not used or is defined in the same
772     //      translation unit.
773     // and [basic.link]p10:
774     //   ...the types specified by all declarations referring to a
775     //   given variable or function shall be identical...
776     // C does not have an equivalent rule.
777     //
778     // Ignore this if we've got an explicit attribute;  the user
779     // probably knows what they're doing.
780     //
781     // Note that we don't want to make the variable non-external
782     // because of this, but unique-external linkage suits us.
783     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
784         !IgnoreVarTypeLinkage) {
785       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
786       if (!isExternallyVisible(TypeLV.getLinkage()))
787         return LinkageInfo::uniqueExternal();
788       if (!LV.isVisibilityExplicit())
789         LV.mergeVisibility(TypeLV);
790     }
791 
792     if (Var->getStorageClass() == SC_PrivateExtern)
793       LV.mergeVisibility(HiddenVisibility, true);
794 
795     // Note that Sema::MergeVarDecl already takes care of implementing
796     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
797     // to do it here.
798 
799     // As per function and class template specializations (below),
800     // consider LV for the template and template arguments.  We're at file
801     // scope, so we do not need to worry about nested specializations.
802     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
803       mergeTemplateLV(LV, spec, computation);
804     }
805 
806   //     - a function; or
807   } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
808     // In theory, we can modify the function's LV by the LV of its
809     // type unless it has C linkage (see comment above about variables
810     // for justification).  In practice, GCC doesn't do this, so it's
811     // just too painful to make work.
812 
813     if (Function->getStorageClass() == SC_PrivateExtern)
814       LV.mergeVisibility(HiddenVisibility, true);
815 
816     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
817     // merging storage classes and visibility attributes, so we don't have to
818     // look at previous decls in here.
819 
820     // In C++, then if the type of the function uses a type with
821     // unique-external linkage, it's not legally usable from outside
822     // this translation unit.  However, we should use the C linkage
823     // rules instead for extern "C" declarations.
824     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
825       // Only look at the type-as-written. Otherwise, deducing the return type
826       // of a function could change its linkage.
827       QualType TypeAsWritten = Function->getType();
828       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
829         TypeAsWritten = TSI->getType();
830       if (!isExternallyVisible(TypeAsWritten->getLinkage()))
831         return LinkageInfo::uniqueExternal();
832     }
833 
834     // Consider LV from the template and the template arguments.
835     // We're at file scope, so we do not need to worry about nested
836     // specializations.
837     if (FunctionTemplateSpecializationInfo *specInfo
838                                = Function->getTemplateSpecializationInfo()) {
839       mergeTemplateLV(LV, Function, specInfo, computation);
840     }
841 
842   //     - a named class (Clause 9), or an unnamed class defined in a
843   //       typedef declaration in which the class has the typedef name
844   //       for linkage purposes (7.1.3); or
845   //     - a named enumeration (7.2), or an unnamed enumeration
846   //       defined in a typedef declaration in which the enumeration
847   //       has the typedef name for linkage purposes (7.1.3); or
848   } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
849     // Unnamed tags have no linkage.
850     if (!Tag->hasNameForLinkage())
851       return LinkageInfo::none();
852 
853     // If this is a class template specialization, consider the
854     // linkage of the template and template arguments.  We're at file
855     // scope, so we do not need to worry about nested specializations.
856     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
857       mergeTemplateLV(LV, spec, computation);
858     }
859 
860   // FIXME: This is not part of the C++ standard any more.
861   //     - an enumerator belonging to an enumeration with external linkage; or
862   } else if (isa<EnumConstantDecl>(D)) {
863     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
864                                       computation);
865     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
866       return LinkageInfo::none();
867     LV.merge(EnumLV);
868 
869   //     - a template
870   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
871     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
872     LinkageInfo tempLV =
873       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
874     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
875 
876   //     An unnamed namespace or a namespace declared directly or indirectly
877   //     within an unnamed namespace has internal linkage. All other namespaces
878   //     have external linkage.
879   //
880   // We handled names in anonymous namespaces above.
881   } else if (isa<NamespaceDecl>(D)) {
882     return LV;
883 
884   // By extension, we assign external linkage to Objective-C
885   // interfaces.
886   } else if (isa<ObjCInterfaceDecl>(D)) {
887     // fallout
888 
889   } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
890     // A typedef declaration has linkage if it gives a type a name for
891     // linkage purposes.
892     if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
893       return LinkageInfo::none();
894 
895   } else if (isa<MSGuidDecl>(D)) {
896     // A GUID behaves like an inline variable with external linkage. Fall
897     // through.
898 
899   // Everything not covered here has no linkage.
900   } else {
901     return LinkageInfo::none();
902   }
903 
904   // If we ended up with non-externally-visible linkage, visibility should
905   // always be default.
906   if (!isExternallyVisible(LV.getLinkage()))
907     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
908 
909   // Mark the symbols as hidden when compiling for the device.
910   if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice)
911     LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
912 
913   return LV;
914 }
915 
916 LinkageInfo
917 LinkageComputer::getLVForClassMember(const NamedDecl *D,
918                                      LVComputationKind computation,
919                                      bool IgnoreVarTypeLinkage) {
920   // Only certain class members have linkage.  Note that fields don't
921   // really have linkage, but it's convenient to say they do for the
922   // purposes of calculating linkage of pointer-to-data-member
923   // template arguments.
924   //
925   // Templates also don't officially have linkage, but since we ignore
926   // the C++ standard and look at template arguments when determining
927   // linkage and visibility of a template specialization, we might hit
928   // a template template argument that way. If we do, we need to
929   // consider its linkage.
930   if (!(isa<CXXMethodDecl>(D) ||
931         isa<VarDecl>(D) ||
932         isa<FieldDecl>(D) ||
933         isa<IndirectFieldDecl>(D) ||
934         isa<TagDecl>(D) ||
935         isa<TemplateDecl>(D)))
936     return LinkageInfo::none();
937 
938   LinkageInfo LV;
939 
940   // If we have an explicit visibility attribute, merge that in.
941   if (!hasExplicitVisibilityAlready(computation)) {
942     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
943       LV.mergeVisibility(*Vis, true);
944     // If we're paying attention to global visibility, apply
945     // -finline-visibility-hidden if this is an inline method.
946     //
947     // Note that we do this before merging information about
948     // the class visibility.
949     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
950       LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
951   }
952 
953   // If this class member has an explicit visibility attribute, the only
954   // thing that can change its visibility is the template arguments, so
955   // only look for them when processing the class.
956   LVComputationKind classComputation = computation;
957   if (LV.isVisibilityExplicit())
958     classComputation = withExplicitVisibilityAlready(computation);
959 
960   LinkageInfo classLV =
961     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
962   // The member has the same linkage as the class. If that's not externally
963   // visible, we don't need to compute anything about the linkage.
964   // FIXME: If we're only computing linkage, can we bail out here?
965   if (!isExternallyVisible(classLV.getLinkage()))
966     return classLV;
967 
968 
969   // Otherwise, don't merge in classLV yet, because in certain cases
970   // we need to completely ignore the visibility from it.
971 
972   // Specifically, if this decl exists and has an explicit attribute.
973   const NamedDecl *explicitSpecSuppressor = nullptr;
974 
975   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
976     // Only look at the type-as-written. Otherwise, deducing the return type
977     // of a function could change its linkage.
978     QualType TypeAsWritten = MD->getType();
979     if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
980       TypeAsWritten = TSI->getType();
981     if (!isExternallyVisible(TypeAsWritten->getLinkage()))
982       return LinkageInfo::uniqueExternal();
983 
984     // If this is a method template specialization, use the linkage for
985     // the template parameters and arguments.
986     if (FunctionTemplateSpecializationInfo *spec
987            = MD->getTemplateSpecializationInfo()) {
988       mergeTemplateLV(LV, MD, spec, computation);
989       if (spec->isExplicitSpecialization()) {
990         explicitSpecSuppressor = MD;
991       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
992         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
993       }
994     } else if (isExplicitMemberSpecialization(MD)) {
995       explicitSpecSuppressor = MD;
996     }
997 
998   } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
999     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1000       mergeTemplateLV(LV, spec, computation);
1001       if (spec->isExplicitSpecialization()) {
1002         explicitSpecSuppressor = spec;
1003       } else {
1004         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1005         if (isExplicitMemberSpecialization(temp)) {
1006           explicitSpecSuppressor = temp->getTemplatedDecl();
1007         }
1008       }
1009     } else if (isExplicitMemberSpecialization(RD)) {
1010       explicitSpecSuppressor = RD;
1011     }
1012 
1013   // Static data members.
1014   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1015     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1016       mergeTemplateLV(LV, spec, computation);
1017 
1018     // Modify the variable's linkage by its type, but ignore the
1019     // type's visibility unless it's a definition.
1020     if (!IgnoreVarTypeLinkage) {
1021       LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1022       // FIXME: If the type's linkage is not externally visible, we can
1023       // give this static data member UniqueExternalLinkage.
1024       if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1025         LV.mergeVisibility(typeLV);
1026       LV.mergeExternalVisibility(typeLV);
1027     }
1028 
1029     if (isExplicitMemberSpecialization(VD)) {
1030       explicitSpecSuppressor = VD;
1031     }
1032 
1033   // Template members.
1034   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1035     bool considerVisibility =
1036       (!LV.isVisibilityExplicit() &&
1037        !classLV.isVisibilityExplicit() &&
1038        !hasExplicitVisibilityAlready(computation));
1039     LinkageInfo tempLV =
1040       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1041     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1042 
1043     if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1044       if (isExplicitMemberSpecialization(redeclTemp)) {
1045         explicitSpecSuppressor = temp->getTemplatedDecl();
1046       }
1047     }
1048   }
1049 
1050   // We should never be looking for an attribute directly on a template.
1051   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1052 
1053   // If this member is an explicit member specialization, and it has
1054   // an explicit attribute, ignore visibility from the parent.
1055   bool considerClassVisibility = true;
1056   if (explicitSpecSuppressor &&
1057       // optimization: hasDVA() is true only with explicit visibility.
1058       LV.isVisibilityExplicit() &&
1059       classLV.getVisibility() != DefaultVisibility &&
1060       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1061     considerClassVisibility = false;
1062   }
1063 
1064   // Finally, merge in information from the class.
1065   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1066   return LV;
1067 }
1068 
1069 void NamedDecl::anchor() {}
1070 
1071 bool NamedDecl::isLinkageValid() const {
1072   if (!hasCachedLinkage())
1073     return true;
1074 
1075   Linkage L = LinkageComputer{}
1076                   .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1077                   .getLinkage();
1078   return L == getCachedLinkage();
1079 }
1080 
1081 ReservedIdentifierStatus
1082 NamedDecl::isReserved(const LangOptions &LangOpts) const {
1083   const IdentifierInfo *II = getIdentifier();
1084 
1085   // This triggers at least for CXXLiteralIdentifiers, which we already checked
1086   // at lexing time.
1087   if (!II)
1088     return ReservedIdentifierStatus::NotReserved;
1089 
1090   ReservedIdentifierStatus Status = II->isReserved(LangOpts);
1091   if (Status == ReservedIdentifierStatus::StartsWithUnderscoreAtGlobalScope) {
1092     // Check if we're at TU level or not.
1093     if (isa<ParmVarDecl>(this) || isTemplateParameter())
1094       return ReservedIdentifierStatus::NotReserved;
1095     const DeclContext *DC = getDeclContext()->getRedeclContext();
1096     if (!DC->isTranslationUnit())
1097       return ReservedIdentifierStatus::NotReserved;
1098   }
1099 
1100   return Status;
1101 }
1102 
1103 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1104   StringRef name = getName();
1105   if (name.empty()) return SFF_None;
1106 
1107   if (name.front() == 'C')
1108     if (name == "CFStringCreateWithFormat" ||
1109         name == "CFStringCreateWithFormatAndArguments" ||
1110         name == "CFStringAppendFormat" ||
1111         name == "CFStringAppendFormatAndArguments")
1112       return SFF_CFString;
1113   return SFF_None;
1114 }
1115 
1116 Linkage NamedDecl::getLinkageInternal() const {
1117   // We don't care about visibility here, so ask for the cheapest
1118   // possible visibility analysis.
1119   return LinkageComputer{}
1120       .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1121       .getLinkage();
1122 }
1123 
1124 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1125   return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1126 }
1127 
1128 static Optional<Visibility>
1129 getExplicitVisibilityAux(const NamedDecl *ND,
1130                          NamedDecl::ExplicitVisibilityKind kind,
1131                          bool IsMostRecent) {
1132   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1133 
1134   // Check the declaration itself first.
1135   if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1136     return V;
1137 
1138   // If this is a member class of a specialization of a class template
1139   // and the corresponding decl has explicit visibility, use that.
1140   if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1141     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1142     if (InstantiatedFrom)
1143       return getVisibilityOf(InstantiatedFrom, kind);
1144   }
1145 
1146   // If there wasn't explicit visibility there, and this is a
1147   // specialization of a class template, check for visibility
1148   // on the pattern.
1149   if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1150     // Walk all the template decl till this point to see if there are
1151     // explicit visibility attributes.
1152     const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1153     while (TD != nullptr) {
1154       auto Vis = getVisibilityOf(TD, kind);
1155       if (Vis != None)
1156         return Vis;
1157       TD = TD->getPreviousDecl();
1158     }
1159     return None;
1160   }
1161 
1162   // Use the most recent declaration.
1163   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1164     const NamedDecl *MostRecent = ND->getMostRecentDecl();
1165     if (MostRecent != ND)
1166       return getExplicitVisibilityAux(MostRecent, kind, true);
1167   }
1168 
1169   if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1170     if (Var->isStaticDataMember()) {
1171       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1172       if (InstantiatedFrom)
1173         return getVisibilityOf(InstantiatedFrom, kind);
1174     }
1175 
1176     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1177       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1178                              kind);
1179 
1180     return None;
1181   }
1182   // Also handle function template specializations.
1183   if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1184     // If the function is a specialization of a template with an
1185     // explicit visibility attribute, use that.
1186     if (FunctionTemplateSpecializationInfo *templateInfo
1187           = fn->getTemplateSpecializationInfo())
1188       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1189                              kind);
1190 
1191     // If the function is a member of a specialization of a class template
1192     // and the corresponding decl has explicit visibility, use that.
1193     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1194     if (InstantiatedFrom)
1195       return getVisibilityOf(InstantiatedFrom, kind);
1196 
1197     return None;
1198   }
1199 
1200   // The visibility of a template is stored in the templated decl.
1201   if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1202     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1203 
1204   return None;
1205 }
1206 
1207 Optional<Visibility>
1208 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1209   return getExplicitVisibilityAux(this, kind, false);
1210 }
1211 
1212 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1213                                              Decl *ContextDecl,
1214                                              LVComputationKind computation) {
1215   // This lambda has its linkage/visibility determined by its owner.
1216   const NamedDecl *Owner;
1217   if (!ContextDecl)
1218     Owner = dyn_cast<NamedDecl>(DC);
1219   else if (isa<ParmVarDecl>(ContextDecl))
1220     Owner =
1221         dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1222   else
1223     Owner = cast<NamedDecl>(ContextDecl);
1224 
1225   if (!Owner)
1226     return LinkageInfo::none();
1227 
1228   // If the owner has a deduced type, we need to skip querying the linkage and
1229   // visibility of that type, because it might involve this closure type.  The
1230   // only effect of this is that we might give a lambda VisibleNoLinkage rather
1231   // than NoLinkage when we don't strictly need to, which is benign.
1232   auto *VD = dyn_cast<VarDecl>(Owner);
1233   LinkageInfo OwnerLV =
1234       VD && VD->getType()->getContainedDeducedType()
1235           ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1236           : getLVForDecl(Owner, computation);
1237 
1238   // A lambda never formally has linkage. But if the owner is externally
1239   // visible, then the lambda is too. We apply the same rules to blocks.
1240   if (!isExternallyVisible(OwnerLV.getLinkage()))
1241     return LinkageInfo::none();
1242   return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1243                      OwnerLV.isVisibilityExplicit());
1244 }
1245 
1246 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1247                                                LVComputationKind computation) {
1248   if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1249     if (Function->isInAnonymousNamespace() &&
1250         !isFirstInExternCContext(Function))
1251       return getInternalLinkageFor(Function);
1252 
1253     // This is a "void f();" which got merged with a file static.
1254     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1255       return getInternalLinkageFor(Function);
1256 
1257     LinkageInfo LV;
1258     if (!hasExplicitVisibilityAlready(computation)) {
1259       if (Optional<Visibility> Vis =
1260               getExplicitVisibility(Function, computation))
1261         LV.mergeVisibility(*Vis, true);
1262     }
1263 
1264     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1265     // merging storage classes and visibility attributes, so we don't have to
1266     // look at previous decls in here.
1267 
1268     return LV;
1269   }
1270 
1271   if (const auto *Var = dyn_cast<VarDecl>(D)) {
1272     if (Var->hasExternalStorage()) {
1273       if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1274         return getInternalLinkageFor(Var);
1275 
1276       LinkageInfo LV;
1277       if (Var->getStorageClass() == SC_PrivateExtern)
1278         LV.mergeVisibility(HiddenVisibility, true);
1279       else if (!hasExplicitVisibilityAlready(computation)) {
1280         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1281           LV.mergeVisibility(*Vis, true);
1282       }
1283 
1284       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1285         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1286         if (PrevLV.getLinkage())
1287           LV.setLinkage(PrevLV.getLinkage());
1288         LV.mergeVisibility(PrevLV);
1289       }
1290 
1291       return LV;
1292     }
1293 
1294     if (!Var->isStaticLocal())
1295       return LinkageInfo::none();
1296   }
1297 
1298   ASTContext &Context = D->getASTContext();
1299   if (!Context.getLangOpts().CPlusPlus)
1300     return LinkageInfo::none();
1301 
1302   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1303   if (!OuterD || OuterD->isInvalidDecl())
1304     return LinkageInfo::none();
1305 
1306   LinkageInfo LV;
1307   if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1308     if (!BD->getBlockManglingNumber())
1309       return LinkageInfo::none();
1310 
1311     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1312                          BD->getBlockManglingContextDecl(), computation);
1313   } else {
1314     const auto *FD = cast<FunctionDecl>(OuterD);
1315     if (!FD->isInlined() &&
1316         !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1317       return LinkageInfo::none();
1318 
1319     // If a function is hidden by -fvisibility-inlines-hidden option and
1320     // is not explicitly attributed as a hidden function,
1321     // we should not make static local variables in the function hidden.
1322     LV = getLVForDecl(FD, computation);
1323     if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1324         !LV.isVisibilityExplicit() &&
1325         !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1326       assert(cast<VarDecl>(D)->isStaticLocal());
1327       // If this was an implicitly hidden inline method, check again for
1328       // explicit visibility on the parent class, and use that for static locals
1329       // if present.
1330       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1331         LV = getLVForDecl(MD->getParent(), computation);
1332       if (!LV.isVisibilityExplicit()) {
1333         Visibility globalVisibility =
1334             computation.isValueVisibility()
1335                 ? Context.getLangOpts().getValueVisibilityMode()
1336                 : Context.getLangOpts().getTypeVisibilityMode();
1337         return LinkageInfo(VisibleNoLinkage, globalVisibility,
1338                            /*visibilityExplicit=*/false);
1339       }
1340     }
1341   }
1342   if (!isExternallyVisible(LV.getLinkage()))
1343     return LinkageInfo::none();
1344   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1345                      LV.isVisibilityExplicit());
1346 }
1347 
1348 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1349                                               LVComputationKind computation,
1350                                               bool IgnoreVarTypeLinkage) {
1351   // Internal_linkage attribute overrides other considerations.
1352   if (D->hasAttr<InternalLinkageAttr>())
1353     return getInternalLinkageFor(D);
1354 
1355   // Objective-C: treat all Objective-C declarations as having external
1356   // linkage.
1357   switch (D->getKind()) {
1358     default:
1359       break;
1360 
1361     // Per C++ [basic.link]p2, only the names of objects, references,
1362     // functions, types, templates, namespaces, and values ever have linkage.
1363     //
1364     // Note that the name of a typedef, namespace alias, using declaration,
1365     // and so on are not the name of the corresponding type, namespace, or
1366     // declaration, so they do *not* have linkage.
1367     case Decl::ImplicitParam:
1368     case Decl::Label:
1369     case Decl::NamespaceAlias:
1370     case Decl::ParmVar:
1371     case Decl::Using:
1372     case Decl::UsingEnum:
1373     case Decl::UsingShadow:
1374     case Decl::UsingDirective:
1375       return LinkageInfo::none();
1376 
1377     case Decl::EnumConstant:
1378       // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1379       if (D->getASTContext().getLangOpts().CPlusPlus)
1380         return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1381       return LinkageInfo::visible_none();
1382 
1383     case Decl::Typedef:
1384     case Decl::TypeAlias:
1385       // A typedef declaration has linkage if it gives a type a name for
1386       // linkage purposes.
1387       if (!cast<TypedefNameDecl>(D)
1388                ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1389         return LinkageInfo::none();
1390       break;
1391 
1392     case Decl::TemplateTemplateParm: // count these as external
1393     case Decl::NonTypeTemplateParm:
1394     case Decl::ObjCAtDefsField:
1395     case Decl::ObjCCategory:
1396     case Decl::ObjCCategoryImpl:
1397     case Decl::ObjCCompatibleAlias:
1398     case Decl::ObjCImplementation:
1399     case Decl::ObjCMethod:
1400     case Decl::ObjCProperty:
1401     case Decl::ObjCPropertyImpl:
1402     case Decl::ObjCProtocol:
1403       return getExternalLinkageFor(D);
1404 
1405     case Decl::CXXRecord: {
1406       const auto *Record = cast<CXXRecordDecl>(D);
1407       if (Record->isLambda()) {
1408         if (Record->hasKnownLambdaInternalLinkage() ||
1409             !Record->getLambdaManglingNumber()) {
1410           // This lambda has no mangling number, so it's internal.
1411           return getInternalLinkageFor(D);
1412         }
1413 
1414         return getLVForClosure(
1415                   Record->getDeclContext()->getRedeclContext(),
1416                   Record->getLambdaContextDecl(), computation);
1417       }
1418 
1419       break;
1420     }
1421 
1422     case Decl::TemplateParamObject: {
1423       // The template parameter object can be referenced from anywhere its type
1424       // and value can be referenced.
1425       auto *TPO = cast<TemplateParamObjectDecl>(D);
1426       LinkageInfo LV = getLVForType(*TPO->getType(), computation);
1427       LV.merge(getLVForValue(TPO->getValue(), computation));
1428       return LV;
1429     }
1430   }
1431 
1432   // Handle linkage for namespace-scope names.
1433   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1434     return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1435 
1436   // C++ [basic.link]p5:
1437   //   In addition, a member function, static data member, a named
1438   //   class or enumeration of class scope, or an unnamed class or
1439   //   enumeration defined in a class-scope typedef declaration such
1440   //   that the class or enumeration has the typedef name for linkage
1441   //   purposes (7.1.3), has external linkage if the name of the class
1442   //   has external linkage.
1443   if (D->getDeclContext()->isRecord())
1444     return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1445 
1446   // C++ [basic.link]p6:
1447   //   The name of a function declared in block scope and the name of
1448   //   an object declared by a block scope extern declaration have
1449   //   linkage. If there is a visible declaration of an entity with
1450   //   linkage having the same name and type, ignoring entities
1451   //   declared outside the innermost enclosing namespace scope, the
1452   //   block scope declaration declares that same entity and receives
1453   //   the linkage of the previous declaration. If there is more than
1454   //   one such matching entity, the program is ill-formed. Otherwise,
1455   //   if no matching entity is found, the block scope entity receives
1456   //   external linkage.
1457   if (D->getDeclContext()->isFunctionOrMethod())
1458     return getLVForLocalDecl(D, computation);
1459 
1460   // C++ [basic.link]p6:
1461   //   Names not covered by these rules have no linkage.
1462   return LinkageInfo::none();
1463 }
1464 
1465 /// getLVForDecl - Get the linkage and visibility for the given declaration.
1466 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1467                                           LVComputationKind computation) {
1468   // Internal_linkage attribute overrides other considerations.
1469   if (D->hasAttr<InternalLinkageAttr>())
1470     return getInternalLinkageFor(D);
1471 
1472   if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1473     return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1474 
1475   if (llvm::Optional<LinkageInfo> LI = lookup(D, computation))
1476     return *LI;
1477 
1478   LinkageInfo LV = computeLVForDecl(D, computation);
1479   if (D->hasCachedLinkage())
1480     assert(D->getCachedLinkage() == LV.getLinkage());
1481 
1482   D->setCachedLinkage(LV.getLinkage());
1483   cache(D, computation, LV);
1484 
1485 #ifndef NDEBUG
1486   // In C (because of gnu inline) and in c++ with microsoft extensions an
1487   // static can follow an extern, so we can have two decls with different
1488   // linkages.
1489   const LangOptions &Opts = D->getASTContext().getLangOpts();
1490   if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1491     return LV;
1492 
1493   // We have just computed the linkage for this decl. By induction we know
1494   // that all other computed linkages match, check that the one we just
1495   // computed also does.
1496   NamedDecl *Old = nullptr;
1497   for (auto I : D->redecls()) {
1498     auto *T = cast<NamedDecl>(I);
1499     if (T == D)
1500       continue;
1501     if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1502       Old = T;
1503       break;
1504     }
1505   }
1506   assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1507 #endif
1508 
1509   return LV;
1510 }
1511 
1512 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1513   NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D)
1514                                              ? NamedDecl::VisibilityForType
1515                                              : NamedDecl::VisibilityForValue;
1516   LVComputationKind CK(EK);
1517   return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility
1518                              ? CK.forLinkageOnly()
1519                              : CK);
1520 }
1521 
1522 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1523   Module *M = getOwningModule();
1524   if (!M)
1525     return nullptr;
1526 
1527   switch (M->Kind) {
1528   case Module::ModuleMapModule:
1529     // Module map modules have no special linkage semantics.
1530     return nullptr;
1531 
1532   case Module::ModuleInterfaceUnit:
1533     return M;
1534 
1535   case Module::GlobalModuleFragment: {
1536     // External linkage declarations in the global module have no owning module
1537     // for linkage purposes. But internal linkage declarations in the global
1538     // module fragment of a particular module are owned by that module for
1539     // linkage purposes.
1540     if (IgnoreLinkage)
1541       return nullptr;
1542     bool InternalLinkage;
1543     if (auto *ND = dyn_cast<NamedDecl>(this))
1544       InternalLinkage = !ND->hasExternalFormalLinkage();
1545     else {
1546       auto *NSD = dyn_cast<NamespaceDecl>(this);
1547       InternalLinkage = (NSD && NSD->isAnonymousNamespace()) ||
1548                         isInAnonymousNamespace();
1549     }
1550     return InternalLinkage ? M->Parent : nullptr;
1551   }
1552 
1553   case Module::PrivateModuleFragment:
1554     // The private module fragment is part of its containing module for linkage
1555     // purposes.
1556     return M->Parent;
1557   }
1558 
1559   llvm_unreachable("unknown module kind");
1560 }
1561 
1562 void NamedDecl::printName(raw_ostream &os) const {
1563   os << Name;
1564 }
1565 
1566 std::string NamedDecl::getQualifiedNameAsString() const {
1567   std::string QualName;
1568   llvm::raw_string_ostream OS(QualName);
1569   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1570   return OS.str();
1571 }
1572 
1573 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1574   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1575 }
1576 
1577 void NamedDecl::printQualifiedName(raw_ostream &OS,
1578                                    const PrintingPolicy &P) const {
1579   if (getDeclContext()->isFunctionOrMethod()) {
1580     // We do not print '(anonymous)' for function parameters without name.
1581     printName(OS);
1582     return;
1583   }
1584   printNestedNameSpecifier(OS, P);
1585   if (getDeclName())
1586     OS << *this;
1587   else {
1588     // Give the printName override a chance to pick a different name before we
1589     // fall back to "(anonymous)".
1590     SmallString<64> NameBuffer;
1591     llvm::raw_svector_ostream NameOS(NameBuffer);
1592     printName(NameOS);
1593     if (NameBuffer.empty())
1594       OS << "(anonymous)";
1595     else
1596       OS << NameBuffer;
1597   }
1598 }
1599 
1600 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1601   printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1602 }
1603 
1604 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1605                                          const PrintingPolicy &P) const {
1606   const DeclContext *Ctx = getDeclContext();
1607 
1608   // For ObjC methods and properties, look through categories and use the
1609   // interface as context.
1610   if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1611     if (auto *ID = MD->getClassInterface())
1612       Ctx = ID;
1613   } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1614     if (auto *MD = PD->getGetterMethodDecl())
1615       if (auto *ID = MD->getClassInterface())
1616         Ctx = ID;
1617   } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1618     if (auto *CI = ID->getContainingInterface())
1619       Ctx = CI;
1620   }
1621 
1622   if (Ctx->isFunctionOrMethod())
1623     return;
1624 
1625   using ContextsTy = SmallVector<const DeclContext *, 8>;
1626   ContextsTy Contexts;
1627 
1628   // Collect named contexts.
1629   DeclarationName NameInScope = getDeclName();
1630   for (; Ctx; Ctx = Ctx->getParent()) {
1631     // Suppress anonymous namespace if requested.
1632     if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
1633         cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
1634       continue;
1635 
1636     // Suppress inline namespace if it doesn't make the result ambiguous.
1637     if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope &&
1638         cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope))
1639       continue;
1640 
1641     // Skip non-named contexts such as linkage specifications and ExportDecls.
1642     const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
1643     if (!ND)
1644       continue;
1645 
1646     Contexts.push_back(Ctx);
1647     NameInScope = ND->getDeclName();
1648   }
1649 
1650   for (unsigned I = Contexts.size(); I != 0; --I) {
1651     const DeclContext *DC = Contexts[I - 1];
1652     if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1653       OS << Spec->getName();
1654       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1655       printTemplateArgumentList(
1656           OS, TemplateArgs.asArray(), P,
1657           Spec->getSpecializedTemplate()->getTemplateParameters());
1658     } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1659       if (ND->isAnonymousNamespace()) {
1660         OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1661                                 : "(anonymous namespace)");
1662       }
1663       else
1664         OS << *ND;
1665     } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1666       if (!RD->getIdentifier())
1667         OS << "(anonymous " << RD->getKindName() << ')';
1668       else
1669         OS << *RD;
1670     } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1671       const FunctionProtoType *FT = nullptr;
1672       if (FD->hasWrittenPrototype())
1673         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1674 
1675       OS << *FD << '(';
1676       if (FT) {
1677         unsigned NumParams = FD->getNumParams();
1678         for (unsigned i = 0; i < NumParams; ++i) {
1679           if (i)
1680             OS << ", ";
1681           OS << FD->getParamDecl(i)->getType().stream(P);
1682         }
1683 
1684         if (FT->isVariadic()) {
1685           if (NumParams > 0)
1686             OS << ", ";
1687           OS << "...";
1688         }
1689       }
1690       OS << ')';
1691     } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1692       // C++ [dcl.enum]p10: Each enum-name and each unscoped
1693       // enumerator is declared in the scope that immediately contains
1694       // the enum-specifier. Each scoped enumerator is declared in the
1695       // scope of the enumeration.
1696       // For the case of unscoped enumerator, do not include in the qualified
1697       // name any information about its enum enclosing scope, as its visibility
1698       // is global.
1699       if (ED->isScoped())
1700         OS << *ED;
1701       else
1702         continue;
1703     } else {
1704       OS << *cast<NamedDecl>(DC);
1705     }
1706     OS << "::";
1707   }
1708 }
1709 
1710 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1711                                      const PrintingPolicy &Policy,
1712                                      bool Qualified) const {
1713   if (Qualified)
1714     printQualifiedName(OS, Policy);
1715   else
1716     printName(OS);
1717 }
1718 
1719 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1720   return true;
1721 }
1722 static bool isRedeclarableImpl(...) { return false; }
1723 static bool isRedeclarable(Decl::Kind K) {
1724   switch (K) {
1725 #define DECL(Type, Base) \
1726   case Decl::Type: \
1727     return isRedeclarableImpl((Type##Decl *)nullptr);
1728 #define ABSTRACT_DECL(DECL)
1729 #include "clang/AST/DeclNodes.inc"
1730   }
1731   llvm_unreachable("unknown decl kind");
1732 }
1733 
1734 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1735   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1736 
1737   // Never replace one imported declaration with another; we need both results
1738   // when re-exporting.
1739   if (OldD->isFromASTFile() && isFromASTFile())
1740     return false;
1741 
1742   // A kind mismatch implies that the declaration is not replaced.
1743   if (OldD->getKind() != getKind())
1744     return false;
1745 
1746   // For method declarations, we never replace. (Why?)
1747   if (isa<ObjCMethodDecl>(this))
1748     return false;
1749 
1750   // For parameters, pick the newer one. This is either an error or (in
1751   // Objective-C) permitted as an extension.
1752   if (isa<ParmVarDecl>(this))
1753     return true;
1754 
1755   // Inline namespaces can give us two declarations with the same
1756   // name and kind in the same scope but different contexts; we should
1757   // keep both declarations in this case.
1758   if (!this->getDeclContext()->getRedeclContext()->Equals(
1759           OldD->getDeclContext()->getRedeclContext()))
1760     return false;
1761 
1762   // Using declarations can be replaced if they import the same name from the
1763   // same context.
1764   if (auto *UD = dyn_cast<UsingDecl>(this)) {
1765     ASTContext &Context = getASTContext();
1766     return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1767            Context.getCanonicalNestedNameSpecifier(
1768                cast<UsingDecl>(OldD)->getQualifier());
1769   }
1770   if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1771     ASTContext &Context = getASTContext();
1772     return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1773            Context.getCanonicalNestedNameSpecifier(
1774                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1775   }
1776 
1777   if (isRedeclarable(getKind())) {
1778     if (getCanonicalDecl() != OldD->getCanonicalDecl())
1779       return false;
1780 
1781     if (IsKnownNewer)
1782       return true;
1783 
1784     // Check whether this is actually newer than OldD. We want to keep the
1785     // newer declaration. This loop will usually only iterate once, because
1786     // OldD is usually the previous declaration.
1787     for (auto D : redecls()) {
1788       if (D == OldD)
1789         break;
1790 
1791       // If we reach the canonical declaration, then OldD is not actually older
1792       // than this one.
1793       //
1794       // FIXME: In this case, we should not add this decl to the lookup table.
1795       if (D->isCanonicalDecl())
1796         return false;
1797     }
1798 
1799     // It's a newer declaration of the same kind of declaration in the same
1800     // scope: we want this decl instead of the existing one.
1801     return true;
1802   }
1803 
1804   // In all other cases, we need to keep both declarations in case they have
1805   // different visibility. Any attempt to use the name will result in an
1806   // ambiguity if more than one is visible.
1807   return false;
1808 }
1809 
1810 bool NamedDecl::hasLinkage() const {
1811   return getFormalLinkage() != NoLinkage;
1812 }
1813 
1814 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1815   NamedDecl *ND = this;
1816   while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1817     ND = UD->getTargetDecl();
1818 
1819   if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1820     return AD->getClassInterface();
1821 
1822   if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1823     return AD->getNamespace();
1824 
1825   return ND;
1826 }
1827 
1828 bool NamedDecl::isCXXInstanceMember() const {
1829   if (!isCXXClassMember())
1830     return false;
1831 
1832   const NamedDecl *D = this;
1833   if (isa<UsingShadowDecl>(D))
1834     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1835 
1836   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1837     return true;
1838   if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1839     return MD->isInstance();
1840   return false;
1841 }
1842 
1843 //===----------------------------------------------------------------------===//
1844 // DeclaratorDecl Implementation
1845 //===----------------------------------------------------------------------===//
1846 
1847 template <typename DeclT>
1848 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1849   if (decl->getNumTemplateParameterLists() > 0)
1850     return decl->getTemplateParameterList(0)->getTemplateLoc();
1851   return decl->getInnerLocStart();
1852 }
1853 
1854 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1855   TypeSourceInfo *TSI = getTypeSourceInfo();
1856   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1857   return SourceLocation();
1858 }
1859 
1860 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1861   TypeSourceInfo *TSI = getTypeSourceInfo();
1862   if (TSI) return TSI->getTypeLoc().getEndLoc();
1863   return SourceLocation();
1864 }
1865 
1866 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1867   if (QualifierLoc) {
1868     // Make sure the extended decl info is allocated.
1869     if (!hasExtInfo()) {
1870       // Save (non-extended) type source info pointer.
1871       auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1872       // Allocate external info struct.
1873       DeclInfo = new (getASTContext()) ExtInfo;
1874       // Restore savedTInfo into (extended) decl info.
1875       getExtInfo()->TInfo = savedTInfo;
1876     }
1877     // Set qualifier info.
1878     getExtInfo()->QualifierLoc = QualifierLoc;
1879   } else if (hasExtInfo()) {
1880     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1881     getExtInfo()->QualifierLoc = QualifierLoc;
1882   }
1883 }
1884 
1885 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1886   assert(TrailingRequiresClause);
1887   // Make sure the extended decl info is allocated.
1888   if (!hasExtInfo()) {
1889     // Save (non-extended) type source info pointer.
1890     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1891     // Allocate external info struct.
1892     DeclInfo = new (getASTContext()) ExtInfo;
1893     // Restore savedTInfo into (extended) decl info.
1894     getExtInfo()->TInfo = savedTInfo;
1895   }
1896   // Set requires clause info.
1897   getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1898 }
1899 
1900 void DeclaratorDecl::setTemplateParameterListsInfo(
1901     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1902   assert(!TPLists.empty());
1903   // Make sure the extended decl info is allocated.
1904   if (!hasExtInfo()) {
1905     // Save (non-extended) type source info pointer.
1906     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1907     // Allocate external info struct.
1908     DeclInfo = new (getASTContext()) ExtInfo;
1909     // Restore savedTInfo into (extended) decl info.
1910     getExtInfo()->TInfo = savedTInfo;
1911   }
1912   // Set the template parameter lists info.
1913   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1914 }
1915 
1916 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1917   return getTemplateOrInnerLocStart(this);
1918 }
1919 
1920 // Helper function: returns true if QT is or contains a type
1921 // having a postfix component.
1922 static bool typeIsPostfix(QualType QT) {
1923   while (true) {
1924     const Type* T = QT.getTypePtr();
1925     switch (T->getTypeClass()) {
1926     default:
1927       return false;
1928     case Type::Pointer:
1929       QT = cast<PointerType>(T)->getPointeeType();
1930       break;
1931     case Type::BlockPointer:
1932       QT = cast<BlockPointerType>(T)->getPointeeType();
1933       break;
1934     case Type::MemberPointer:
1935       QT = cast<MemberPointerType>(T)->getPointeeType();
1936       break;
1937     case Type::LValueReference:
1938     case Type::RValueReference:
1939       QT = cast<ReferenceType>(T)->getPointeeType();
1940       break;
1941     case Type::PackExpansion:
1942       QT = cast<PackExpansionType>(T)->getPattern();
1943       break;
1944     case Type::Paren:
1945     case Type::ConstantArray:
1946     case Type::DependentSizedArray:
1947     case Type::IncompleteArray:
1948     case Type::VariableArray:
1949     case Type::FunctionProto:
1950     case Type::FunctionNoProto:
1951       return true;
1952     }
1953   }
1954 }
1955 
1956 SourceRange DeclaratorDecl::getSourceRange() const {
1957   SourceLocation RangeEnd = getLocation();
1958   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1959     // If the declaration has no name or the type extends past the name take the
1960     // end location of the type.
1961     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1962       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1963   }
1964   return SourceRange(getOuterLocStart(), RangeEnd);
1965 }
1966 
1967 void QualifierInfo::setTemplateParameterListsInfo(
1968     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1969   // Free previous template parameters (if any).
1970   if (NumTemplParamLists > 0) {
1971     Context.Deallocate(TemplParamLists);
1972     TemplParamLists = nullptr;
1973     NumTemplParamLists = 0;
1974   }
1975   // Set info on matched template parameter lists (if any).
1976   if (!TPLists.empty()) {
1977     TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1978     NumTemplParamLists = TPLists.size();
1979     std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1980   }
1981 }
1982 
1983 //===----------------------------------------------------------------------===//
1984 // VarDecl Implementation
1985 //===----------------------------------------------------------------------===//
1986 
1987 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1988   switch (SC) {
1989   case SC_None:                 break;
1990   case SC_Auto:                 return "auto";
1991   case SC_Extern:               return "extern";
1992   case SC_PrivateExtern:        return "__private_extern__";
1993   case SC_Register:             return "register";
1994   case SC_Static:               return "static";
1995   }
1996 
1997   llvm_unreachable("Invalid storage class");
1998 }
1999 
2000 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
2001                  SourceLocation StartLoc, SourceLocation IdLoc,
2002                  IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2003                  StorageClass SC)
2004     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2005       redeclarable_base(C) {
2006   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
2007                 "VarDeclBitfields too large!");
2008   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
2009                 "ParmVarDeclBitfields too large!");
2010   static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
2011                 "NonParmVarDeclBitfields too large!");
2012   AllBits = 0;
2013   VarDeclBits.SClass = SC;
2014   // Everything else is implicitly initialized to false.
2015 }
2016 
2017 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
2018                          SourceLocation StartL, SourceLocation IdL,
2019                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2020                          StorageClass S) {
2021   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
2022 }
2023 
2024 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2025   return new (C, ID)
2026       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2027               QualType(), nullptr, SC_None);
2028 }
2029 
2030 void VarDecl::setStorageClass(StorageClass SC) {
2031   assert(isLegalForVariable(SC));
2032   VarDeclBits.SClass = SC;
2033 }
2034 
2035 VarDecl::TLSKind VarDecl::getTLSKind() const {
2036   switch (VarDeclBits.TSCSpec) {
2037   case TSCS_unspecified:
2038     if (!hasAttr<ThreadAttr>() &&
2039         !(getASTContext().getLangOpts().OpenMPUseTLS &&
2040           getASTContext().getTargetInfo().isTLSSupported() &&
2041           hasAttr<OMPThreadPrivateDeclAttr>()))
2042       return TLS_None;
2043     return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2044                 LangOptions::MSVC2015)) ||
2045             hasAttr<OMPThreadPrivateDeclAttr>())
2046                ? TLS_Dynamic
2047                : TLS_Static;
2048   case TSCS___thread: // Fall through.
2049   case TSCS__Thread_local:
2050     return TLS_Static;
2051   case TSCS_thread_local:
2052     return TLS_Dynamic;
2053   }
2054   llvm_unreachable("Unknown thread storage class specifier!");
2055 }
2056 
2057 SourceRange VarDecl::getSourceRange() const {
2058   if (const Expr *Init = getInit()) {
2059     SourceLocation InitEnd = Init->getEndLoc();
2060     // If Init is implicit, ignore its source range and fallback on
2061     // DeclaratorDecl::getSourceRange() to handle postfix elements.
2062     if (InitEnd.isValid() && InitEnd != getLocation())
2063       return SourceRange(getOuterLocStart(), InitEnd);
2064   }
2065   return DeclaratorDecl::getSourceRange();
2066 }
2067 
2068 template<typename T>
2069 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2070   // C++ [dcl.link]p1: All function types, function names with external linkage,
2071   // and variable names with external linkage have a language linkage.
2072   if (!D.hasExternalFormalLinkage())
2073     return NoLanguageLinkage;
2074 
2075   // Language linkage is a C++ concept, but saying that everything else in C has
2076   // C language linkage fits the implementation nicely.
2077   ASTContext &Context = D.getASTContext();
2078   if (!Context.getLangOpts().CPlusPlus)
2079     return CLanguageLinkage;
2080 
2081   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2082   // language linkage of the names of class members and the function type of
2083   // class member functions.
2084   const DeclContext *DC = D.getDeclContext();
2085   if (DC->isRecord())
2086     return CXXLanguageLinkage;
2087 
2088   // If the first decl is in an extern "C" context, any other redeclaration
2089   // will have C language linkage. If the first one is not in an extern "C"
2090   // context, we would have reported an error for any other decl being in one.
2091   if (isFirstInExternCContext(&D))
2092     return CLanguageLinkage;
2093   return CXXLanguageLinkage;
2094 }
2095 
2096 template<typename T>
2097 static bool isDeclExternC(const T &D) {
2098   // Since the context is ignored for class members, they can only have C++
2099   // language linkage or no language linkage.
2100   const DeclContext *DC = D.getDeclContext();
2101   if (DC->isRecord()) {
2102     assert(D.getASTContext().getLangOpts().CPlusPlus);
2103     return false;
2104   }
2105 
2106   return D.getLanguageLinkage() == CLanguageLinkage;
2107 }
2108 
2109 LanguageLinkage VarDecl::getLanguageLinkage() const {
2110   return getDeclLanguageLinkage(*this);
2111 }
2112 
2113 bool VarDecl::isExternC() const {
2114   return isDeclExternC(*this);
2115 }
2116 
2117 bool VarDecl::isInExternCContext() const {
2118   return getLexicalDeclContext()->isExternCContext();
2119 }
2120 
2121 bool VarDecl::isInExternCXXContext() const {
2122   return getLexicalDeclContext()->isExternCXXContext();
2123 }
2124 
2125 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2126 
2127 VarDecl::DefinitionKind
2128 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2129   if (isThisDeclarationADemotedDefinition())
2130     return DeclarationOnly;
2131 
2132   // C++ [basic.def]p2:
2133   //   A declaration is a definition unless [...] it contains the 'extern'
2134   //   specifier or a linkage-specification and neither an initializer [...],
2135   //   it declares a non-inline static data member in a class declaration [...],
2136   //   it declares a static data member outside a class definition and the variable
2137   //   was defined within the class with the constexpr specifier [...],
2138   // C++1y [temp.expl.spec]p15:
2139   //   An explicit specialization of a static data member or an explicit
2140   //   specialization of a static data member template is a definition if the
2141   //   declaration includes an initializer; otherwise, it is a declaration.
2142   //
2143   // FIXME: How do you declare (but not define) a partial specialization of
2144   // a static data member template outside the containing class?
2145   if (isStaticDataMember()) {
2146     if (isOutOfLine() &&
2147         !(getCanonicalDecl()->isInline() &&
2148           getCanonicalDecl()->isConstexpr()) &&
2149         (hasInit() ||
2150          // If the first declaration is out-of-line, this may be an
2151          // instantiation of an out-of-line partial specialization of a variable
2152          // template for which we have not yet instantiated the initializer.
2153          (getFirstDecl()->isOutOfLine()
2154               ? getTemplateSpecializationKind() == TSK_Undeclared
2155               : getTemplateSpecializationKind() !=
2156                     TSK_ExplicitSpecialization) ||
2157          isa<VarTemplatePartialSpecializationDecl>(this)))
2158       return Definition;
2159     if (!isOutOfLine() && isInline())
2160       return Definition;
2161     return DeclarationOnly;
2162   }
2163   // C99 6.7p5:
2164   //   A definition of an identifier is a declaration for that identifier that
2165   //   [...] causes storage to be reserved for that object.
2166   // Note: that applies for all non-file-scope objects.
2167   // C99 6.9.2p1:
2168   //   If the declaration of an identifier for an object has file scope and an
2169   //   initializer, the declaration is an external definition for the identifier
2170   if (hasInit())
2171     return Definition;
2172 
2173   if (hasDefiningAttr())
2174     return Definition;
2175 
2176   if (const auto *SAA = getAttr<SelectAnyAttr>())
2177     if (!SAA->isInherited())
2178       return Definition;
2179 
2180   // A variable template specialization (other than a static data member
2181   // template or an explicit specialization) is a declaration until we
2182   // instantiate its initializer.
2183   if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2184     if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2185         !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2186         !VTSD->IsCompleteDefinition)
2187       return DeclarationOnly;
2188   }
2189 
2190   if (hasExternalStorage())
2191     return DeclarationOnly;
2192 
2193   // [dcl.link] p7:
2194   //   A declaration directly contained in a linkage-specification is treated
2195   //   as if it contains the extern specifier for the purpose of determining
2196   //   the linkage of the declared name and whether it is a definition.
2197   if (isSingleLineLanguageLinkage(*this))
2198     return DeclarationOnly;
2199 
2200   // C99 6.9.2p2:
2201   //   A declaration of an object that has file scope without an initializer,
2202   //   and without a storage class specifier or the scs 'static', constitutes
2203   //   a tentative definition.
2204   // No such thing in C++.
2205   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2206     return TentativeDefinition;
2207 
2208   // What's left is (in C, block-scope) declarations without initializers or
2209   // external storage. These are definitions.
2210   return Definition;
2211 }
2212 
2213 VarDecl *VarDecl::getActingDefinition() {
2214   DefinitionKind Kind = isThisDeclarationADefinition();
2215   if (Kind != TentativeDefinition)
2216     return nullptr;
2217 
2218   VarDecl *LastTentative = nullptr;
2219 
2220   // Loop through the declaration chain, starting with the most recent.
2221   for (VarDecl *Decl = getMostRecentDecl(); Decl;
2222        Decl = Decl->getPreviousDecl()) {
2223     Kind = Decl->isThisDeclarationADefinition();
2224     if (Kind == Definition)
2225       return nullptr;
2226     // Record the first (most recent) TentativeDefinition that is encountered.
2227     if (Kind == TentativeDefinition && !LastTentative)
2228       LastTentative = Decl;
2229   }
2230 
2231   return LastTentative;
2232 }
2233 
2234 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2235   VarDecl *First = getFirstDecl();
2236   for (auto I : First->redecls()) {
2237     if (I->isThisDeclarationADefinition(C) == Definition)
2238       return I;
2239   }
2240   return nullptr;
2241 }
2242 
2243 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2244   DefinitionKind Kind = DeclarationOnly;
2245 
2246   const VarDecl *First = getFirstDecl();
2247   for (auto I : First->redecls()) {
2248     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2249     if (Kind == Definition)
2250       break;
2251   }
2252 
2253   return Kind;
2254 }
2255 
2256 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2257   for (auto I : redecls()) {
2258     if (auto Expr = I->getInit()) {
2259       D = I;
2260       return Expr;
2261     }
2262   }
2263   return nullptr;
2264 }
2265 
2266 bool VarDecl::hasInit() const {
2267   if (auto *P = dyn_cast<ParmVarDecl>(this))
2268     if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2269       return false;
2270 
2271   return !Init.isNull();
2272 }
2273 
2274 Expr *VarDecl::getInit() {
2275   if (!hasInit())
2276     return nullptr;
2277 
2278   if (auto *S = Init.dyn_cast<Stmt *>())
2279     return cast<Expr>(S);
2280 
2281   return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2282 }
2283 
2284 Stmt **VarDecl::getInitAddress() {
2285   if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2286     return &ES->Value;
2287 
2288   return Init.getAddrOfPtr1();
2289 }
2290 
2291 VarDecl *VarDecl::getInitializingDeclaration() {
2292   VarDecl *Def = nullptr;
2293   for (auto I : redecls()) {
2294     if (I->hasInit())
2295       return I;
2296 
2297     if (I->isThisDeclarationADefinition()) {
2298       if (isStaticDataMember())
2299         return I;
2300       Def = I;
2301     }
2302   }
2303   return Def;
2304 }
2305 
2306 bool VarDecl::isOutOfLine() const {
2307   if (Decl::isOutOfLine())
2308     return true;
2309 
2310   if (!isStaticDataMember())
2311     return false;
2312 
2313   // If this static data member was instantiated from a static data member of
2314   // a class template, check whether that static data member was defined
2315   // out-of-line.
2316   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2317     return VD->isOutOfLine();
2318 
2319   return false;
2320 }
2321 
2322 void VarDecl::setInit(Expr *I) {
2323   if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2324     Eval->~EvaluatedStmt();
2325     getASTContext().Deallocate(Eval);
2326   }
2327 
2328   Init = I;
2329 }
2330 
2331 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const {
2332   const LangOptions &Lang = C.getLangOpts();
2333 
2334   // OpenCL permits const integral variables to be used in constant
2335   // expressions, like in C++98.
2336   if (!Lang.CPlusPlus && !Lang.OpenCL)
2337     return false;
2338 
2339   // Function parameters are never usable in constant expressions.
2340   if (isa<ParmVarDecl>(this))
2341     return false;
2342 
2343   // The values of weak variables are never usable in constant expressions.
2344   if (isWeak())
2345     return false;
2346 
2347   // In C++11, any variable of reference type can be used in a constant
2348   // expression if it is initialized by a constant expression.
2349   if (Lang.CPlusPlus11 && getType()->isReferenceType())
2350     return true;
2351 
2352   // Only const objects can be used in constant expressions in C++. C++98 does
2353   // not require the variable to be non-volatile, but we consider this to be a
2354   // defect.
2355   if (!getType().isConstant(C) || getType().isVolatileQualified())
2356     return false;
2357 
2358   // In C++, const, non-volatile variables of integral or enumeration types
2359   // can be used in constant expressions.
2360   if (getType()->isIntegralOrEnumerationType())
2361     return true;
2362 
2363   // Additionally, in C++11, non-volatile constexpr variables can be used in
2364   // constant expressions.
2365   return Lang.CPlusPlus11 && isConstexpr();
2366 }
2367 
2368 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const {
2369   // C++2a [expr.const]p3:
2370   //   A variable is usable in constant expressions after its initializing
2371   //   declaration is encountered...
2372   const VarDecl *DefVD = nullptr;
2373   const Expr *Init = getAnyInitializer(DefVD);
2374   if (!Init || Init->isValueDependent() || getType()->isDependentType())
2375     return false;
2376   //   ... if it is a constexpr variable, or it is of reference type or of
2377   //   const-qualified integral or enumeration type, ...
2378   if (!DefVD->mightBeUsableInConstantExpressions(Context))
2379     return false;
2380   //   ... and its initializer is a constant initializer.
2381   if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization())
2382     return false;
2383   // C++98 [expr.const]p1:
2384   //   An integral constant-expression can involve only [...] const variables
2385   //   or static data members of integral or enumeration types initialized with
2386   //   [integer] constant expressions (dcl.init)
2387   if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2388       !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2389     return false;
2390   return true;
2391 }
2392 
2393 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2394 /// form, which contains extra information on the evaluated value of the
2395 /// initializer.
2396 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2397   auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2398   if (!Eval) {
2399     // Note: EvaluatedStmt contains an APValue, which usually holds
2400     // resources not allocated from the ASTContext.  We need to do some
2401     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2402     // where we can detect whether there's anything to clean up or not.
2403     Eval = new (getASTContext()) EvaluatedStmt;
2404     Eval->Value = Init.get<Stmt *>();
2405     Init = Eval;
2406   }
2407   return Eval;
2408 }
2409 
2410 EvaluatedStmt *VarDecl::getEvaluatedStmt() const {
2411   return Init.dyn_cast<EvaluatedStmt *>();
2412 }
2413 
2414 APValue *VarDecl::evaluateValue() const {
2415   SmallVector<PartialDiagnosticAt, 8> Notes;
2416   return evaluateValueImpl(Notes, hasConstantInitialization());
2417 }
2418 
2419 APValue *VarDecl::evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
2420                                     bool IsConstantInitialization) const {
2421   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2422 
2423   const auto *Init = cast<Expr>(Eval->Value);
2424   assert(!Init->isValueDependent());
2425 
2426   // We only produce notes indicating why an initializer is non-constant the
2427   // first time it is evaluated. FIXME: The notes won't always be emitted the
2428   // first time we try evaluation, so might not be produced at all.
2429   if (Eval->WasEvaluated)
2430     return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2431 
2432   if (Eval->IsEvaluating) {
2433     // FIXME: Produce a diagnostic for self-initialization.
2434     return nullptr;
2435   }
2436 
2437   Eval->IsEvaluating = true;
2438 
2439   ASTContext &Ctx = getASTContext();
2440   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, Ctx, this, Notes,
2441                                             IsConstantInitialization);
2442 
2443   // In C++11, this isn't a constant initializer if we produced notes. In that
2444   // case, we can't keep the result, because it may only be correct under the
2445   // assumption that the initializer is a constant context.
2446   if (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11 &&
2447       !Notes.empty())
2448     Result = false;
2449 
2450   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2451   // or that it's empty (so that there's nothing to clean up) if evaluation
2452   // failed.
2453   if (!Result)
2454     Eval->Evaluated = APValue();
2455   else if (Eval->Evaluated.needsCleanup())
2456     Ctx.addDestruction(&Eval->Evaluated);
2457 
2458   Eval->IsEvaluating = false;
2459   Eval->WasEvaluated = true;
2460 
2461   return Result ? &Eval->Evaluated : nullptr;
2462 }
2463 
2464 APValue *VarDecl::getEvaluatedValue() const {
2465   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2466     if (Eval->WasEvaluated)
2467       return &Eval->Evaluated;
2468 
2469   return nullptr;
2470 }
2471 
2472 bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2473   const Expr *Init = getInit();
2474   assert(Init && "no initializer");
2475 
2476   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2477   if (!Eval->CheckedForICEInit) {
2478     Eval->CheckedForICEInit = true;
2479     Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
2480   }
2481   return Eval->HasICEInit;
2482 }
2483 
2484 bool VarDecl::hasConstantInitialization() const {
2485   // In C, all globals (and only globals) have constant initialization.
2486   if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus)
2487     return true;
2488 
2489   // In C++, it depends on whether the evaluation at the point of definition
2490   // was evaluatable as a constant initializer.
2491   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2492     return Eval->HasConstantInitialization;
2493 
2494   return false;
2495 }
2496 
2497 bool VarDecl::checkForConstantInitialization(
2498     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2499   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2500   // If we ask for the value before we know whether we have a constant
2501   // initializer, we can compute the wrong value (for example, due to
2502   // std::is_constant_evaluated()).
2503   assert(!Eval->WasEvaluated &&
2504          "already evaluated var value before checking for constant init");
2505   assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++");
2506 
2507   assert(!cast<Expr>(Eval->Value)->isValueDependent());
2508 
2509   // Evaluate the initializer to check whether it's a constant expression.
2510   Eval->HasConstantInitialization =
2511       evaluateValueImpl(Notes, true) && Notes.empty();
2512 
2513   // If evaluation as a constant initializer failed, allow re-evaluation as a
2514   // non-constant initializer if we later find we want the value.
2515   if (!Eval->HasConstantInitialization)
2516     Eval->WasEvaluated = false;
2517 
2518   return Eval->HasConstantInitialization;
2519 }
2520 
2521 bool VarDecl::isParameterPack() const {
2522   return isa<PackExpansionType>(getType());
2523 }
2524 
2525 template<typename DeclT>
2526 static DeclT *getDefinitionOrSelf(DeclT *D) {
2527   assert(D);
2528   if (auto *Def = D->getDefinition())
2529     return Def;
2530   return D;
2531 }
2532 
2533 bool VarDecl::isEscapingByref() const {
2534   return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2535 }
2536 
2537 bool VarDecl::isNonEscapingByref() const {
2538   return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2539 }
2540 
2541 bool VarDecl::hasDependentAlignment() const {
2542   QualType T = getType();
2543   return T->isDependentType() || T->isUndeducedAutoType() ||
2544          llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) {
2545            return AA->isAlignmentDependent();
2546          });
2547 }
2548 
2549 VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2550   const VarDecl *VD = this;
2551 
2552   // If this is an instantiated member, walk back to the template from which
2553   // it was instantiated.
2554   if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2555     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2556       VD = VD->getInstantiatedFromStaticDataMember();
2557       while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2558         VD = NewVD;
2559     }
2560   }
2561 
2562   // If it's an instantiated variable template specialization, find the
2563   // template or partial specialization from which it was instantiated.
2564   if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2565     if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2566       auto From = VDTemplSpec->getInstantiatedFrom();
2567       if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2568         while (!VTD->isMemberSpecialization()) {
2569           auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2570           if (!NewVTD)
2571             break;
2572           VTD = NewVTD;
2573         }
2574         return getDefinitionOrSelf(VTD->getTemplatedDecl());
2575       }
2576       if (auto *VTPSD =
2577               From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2578         while (!VTPSD->isMemberSpecialization()) {
2579           auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2580           if (!NewVTPSD)
2581             break;
2582           VTPSD = NewVTPSD;
2583         }
2584         return getDefinitionOrSelf<VarDecl>(VTPSD);
2585       }
2586     }
2587   }
2588 
2589   // If this is the pattern of a variable template, find where it was
2590   // instantiated from. FIXME: Is this necessary?
2591   if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2592     while (!VarTemplate->isMemberSpecialization()) {
2593       auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2594       if (!NewVT)
2595         break;
2596       VarTemplate = NewVT;
2597     }
2598 
2599     return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2600   }
2601 
2602   if (VD == this)
2603     return nullptr;
2604   return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2605 }
2606 
2607 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2608   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2609     return cast<VarDecl>(MSI->getInstantiatedFrom());
2610 
2611   return nullptr;
2612 }
2613 
2614 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2615   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2616     return Spec->getSpecializationKind();
2617 
2618   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2619     return MSI->getTemplateSpecializationKind();
2620 
2621   return TSK_Undeclared;
2622 }
2623 
2624 TemplateSpecializationKind
2625 VarDecl::getTemplateSpecializationKindForInstantiation() const {
2626   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2627     return MSI->getTemplateSpecializationKind();
2628 
2629   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2630     return Spec->getSpecializationKind();
2631 
2632   return TSK_Undeclared;
2633 }
2634 
2635 SourceLocation VarDecl::getPointOfInstantiation() const {
2636   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2637     return Spec->getPointOfInstantiation();
2638 
2639   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2640     return MSI->getPointOfInstantiation();
2641 
2642   return SourceLocation();
2643 }
2644 
2645 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2646   return getASTContext().getTemplateOrSpecializationInfo(this)
2647       .dyn_cast<VarTemplateDecl *>();
2648 }
2649 
2650 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2651   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2652 }
2653 
2654 bool VarDecl::isKnownToBeDefined() const {
2655   const auto &LangOpts = getASTContext().getLangOpts();
2656   // In CUDA mode without relocatable device code, variables of form 'extern
2657   // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2658   // memory pool.  These are never undefined variables, even if they appear
2659   // inside of an anon namespace or static function.
2660   //
2661   // With CUDA relocatable device code enabled, these variables don't get
2662   // special handling; they're treated like regular extern variables.
2663   if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2664       hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2665       isa<IncompleteArrayType>(getType()))
2666     return true;
2667 
2668   return hasDefinition();
2669 }
2670 
2671 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2672   return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2673                                 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2674                                  !hasAttr<AlwaysDestroyAttr>()));
2675 }
2676 
2677 QualType::DestructionKind
2678 VarDecl::needsDestruction(const ASTContext &Ctx) const {
2679   if (EvaluatedStmt *Eval = getEvaluatedStmt())
2680     if (Eval->HasConstantDestruction)
2681       return QualType::DK_none;
2682 
2683   if (isNoDestroy(Ctx))
2684     return QualType::DK_none;
2685 
2686   return getType().isDestructedType();
2687 }
2688 
2689 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2690   if (isStaticDataMember())
2691     // FIXME: Remove ?
2692     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2693     return getASTContext().getTemplateOrSpecializationInfo(this)
2694         .dyn_cast<MemberSpecializationInfo *>();
2695   return nullptr;
2696 }
2697 
2698 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2699                                          SourceLocation PointOfInstantiation) {
2700   assert((isa<VarTemplateSpecializationDecl>(this) ||
2701           getMemberSpecializationInfo()) &&
2702          "not a variable or static data member template specialization");
2703 
2704   if (VarTemplateSpecializationDecl *Spec =
2705           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2706     Spec->setSpecializationKind(TSK);
2707     if (TSK != TSK_ExplicitSpecialization &&
2708         PointOfInstantiation.isValid() &&
2709         Spec->getPointOfInstantiation().isInvalid()) {
2710       Spec->setPointOfInstantiation(PointOfInstantiation);
2711       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2712         L->InstantiationRequested(this);
2713     }
2714   } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2715     MSI->setTemplateSpecializationKind(TSK);
2716     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2717         MSI->getPointOfInstantiation().isInvalid()) {
2718       MSI->setPointOfInstantiation(PointOfInstantiation);
2719       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2720         L->InstantiationRequested(this);
2721     }
2722   }
2723 }
2724 
2725 void
2726 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2727                                             TemplateSpecializationKind TSK) {
2728   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2729          "Previous template or instantiation?");
2730   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2731 }
2732 
2733 //===----------------------------------------------------------------------===//
2734 // ParmVarDecl Implementation
2735 //===----------------------------------------------------------------------===//
2736 
2737 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2738                                  SourceLocation StartLoc,
2739                                  SourceLocation IdLoc, IdentifierInfo *Id,
2740                                  QualType T, TypeSourceInfo *TInfo,
2741                                  StorageClass S, Expr *DefArg) {
2742   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2743                                  S, DefArg);
2744 }
2745 
2746 QualType ParmVarDecl::getOriginalType() const {
2747   TypeSourceInfo *TSI = getTypeSourceInfo();
2748   QualType T = TSI ? TSI->getType() : getType();
2749   if (const auto *DT = dyn_cast<DecayedType>(T))
2750     return DT->getOriginalType();
2751   return T;
2752 }
2753 
2754 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2755   return new (C, ID)
2756       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2757                   nullptr, QualType(), nullptr, SC_None, nullptr);
2758 }
2759 
2760 SourceRange ParmVarDecl::getSourceRange() const {
2761   if (!hasInheritedDefaultArg()) {
2762     SourceRange ArgRange = getDefaultArgRange();
2763     if (ArgRange.isValid())
2764       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2765   }
2766 
2767   // DeclaratorDecl considers the range of postfix types as overlapping with the
2768   // declaration name, but this is not the case with parameters in ObjC methods.
2769   if (isa<ObjCMethodDecl>(getDeclContext()))
2770     return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2771 
2772   return DeclaratorDecl::getSourceRange();
2773 }
2774 
2775 bool ParmVarDecl::isDestroyedInCallee() const {
2776   if (hasAttr<NSConsumedAttr>())
2777     return true;
2778 
2779   auto *RT = getType()->getAs<RecordType>();
2780   if (RT && RT->getDecl()->isParamDestroyedInCallee())
2781     return true;
2782 
2783   return false;
2784 }
2785 
2786 Expr *ParmVarDecl::getDefaultArg() {
2787   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2788   assert(!hasUninstantiatedDefaultArg() &&
2789          "Default argument is not yet instantiated!");
2790 
2791   Expr *Arg = getInit();
2792   if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2793     return E->getSubExpr();
2794 
2795   return Arg;
2796 }
2797 
2798 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2799   ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2800   Init = defarg;
2801 }
2802 
2803 SourceRange ParmVarDecl::getDefaultArgRange() const {
2804   switch (ParmVarDeclBits.DefaultArgKind) {
2805   case DAK_None:
2806   case DAK_Unparsed:
2807     // Nothing we can do here.
2808     return SourceRange();
2809 
2810   case DAK_Uninstantiated:
2811     return getUninstantiatedDefaultArg()->getSourceRange();
2812 
2813   case DAK_Normal:
2814     if (const Expr *E = getInit())
2815       return E->getSourceRange();
2816 
2817     // Missing an actual expression, may be invalid.
2818     return SourceRange();
2819   }
2820   llvm_unreachable("Invalid default argument kind.");
2821 }
2822 
2823 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2824   ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2825   Init = arg;
2826 }
2827 
2828 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2829   assert(hasUninstantiatedDefaultArg() &&
2830          "Wrong kind of initialization expression!");
2831   return cast_or_null<Expr>(Init.get<Stmt *>());
2832 }
2833 
2834 bool ParmVarDecl::hasDefaultArg() const {
2835   // FIXME: We should just return false for DAK_None here once callers are
2836   // prepared for the case that we encountered an invalid default argument and
2837   // were unable to even build an invalid expression.
2838   return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2839          !Init.isNull();
2840 }
2841 
2842 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2843   getASTContext().setParameterIndex(this, parameterIndex);
2844   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2845 }
2846 
2847 unsigned ParmVarDecl::getParameterIndexLarge() const {
2848   return getASTContext().getParameterIndex(this);
2849 }
2850 
2851 //===----------------------------------------------------------------------===//
2852 // FunctionDecl Implementation
2853 //===----------------------------------------------------------------------===//
2854 
2855 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2856                            SourceLocation StartLoc,
2857                            const DeclarationNameInfo &NameInfo, QualType T,
2858                            TypeSourceInfo *TInfo, StorageClass S,
2859                            bool UsesFPIntrin, bool isInlineSpecified,
2860                            ConstexprSpecKind ConstexprKind,
2861                            Expr *TrailingRequiresClause)
2862     : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2863                      StartLoc),
2864       DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2865       EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2866   assert(T.isNull() || T->isFunctionType());
2867   FunctionDeclBits.SClass = S;
2868   FunctionDeclBits.IsInline = isInlineSpecified;
2869   FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2870   FunctionDeclBits.IsVirtualAsWritten = false;
2871   FunctionDeclBits.IsPure = false;
2872   FunctionDeclBits.HasInheritedPrototype = false;
2873   FunctionDeclBits.HasWrittenPrototype = true;
2874   FunctionDeclBits.IsDeleted = false;
2875   FunctionDeclBits.IsTrivial = false;
2876   FunctionDeclBits.IsTrivialForCall = false;
2877   FunctionDeclBits.IsDefaulted = false;
2878   FunctionDeclBits.IsExplicitlyDefaulted = false;
2879   FunctionDeclBits.HasDefaultedFunctionInfo = false;
2880   FunctionDeclBits.HasImplicitReturnZero = false;
2881   FunctionDeclBits.IsLateTemplateParsed = false;
2882   FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
2883   FunctionDeclBits.InstantiationIsPending = false;
2884   FunctionDeclBits.UsesSEHTry = false;
2885   FunctionDeclBits.UsesFPIntrin = UsesFPIntrin;
2886   FunctionDeclBits.HasSkippedBody = false;
2887   FunctionDeclBits.WillHaveBody = false;
2888   FunctionDeclBits.IsMultiVersion = false;
2889   FunctionDeclBits.IsCopyDeductionCandidate = false;
2890   FunctionDeclBits.HasODRHash = false;
2891   if (TrailingRequiresClause)
2892     setTrailingRequiresClause(TrailingRequiresClause);
2893 }
2894 
2895 void FunctionDecl::getNameForDiagnostic(
2896     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2897   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2898   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2899   if (TemplateArgs)
2900     printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
2901 }
2902 
2903 bool FunctionDecl::isVariadic() const {
2904   if (const auto *FT = getType()->getAs<FunctionProtoType>())
2905     return FT->isVariadic();
2906   return false;
2907 }
2908 
2909 FunctionDecl::DefaultedFunctionInfo *
2910 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
2911                                             ArrayRef<DeclAccessPair> Lookups) {
2912   DefaultedFunctionInfo *Info = new (Context.Allocate(
2913       totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
2914       std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
2915       DefaultedFunctionInfo;
2916   Info->NumLookups = Lookups.size();
2917   std::uninitialized_copy(Lookups.begin(), Lookups.end(),
2918                           Info->getTrailingObjects<DeclAccessPair>());
2919   return Info;
2920 }
2921 
2922 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
2923   assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this");
2924   assert(!Body && "can't replace function body with defaulted function info");
2925 
2926   FunctionDeclBits.HasDefaultedFunctionInfo = true;
2927   DefaultedInfo = Info;
2928 }
2929 
2930 FunctionDecl::DefaultedFunctionInfo *
2931 FunctionDecl::getDefaultedFunctionInfo() const {
2932   return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
2933 }
2934 
2935 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2936   for (auto I : redecls()) {
2937     if (I->doesThisDeclarationHaveABody()) {
2938       Definition = I;
2939       return true;
2940     }
2941   }
2942 
2943   return false;
2944 }
2945 
2946 bool FunctionDecl::hasTrivialBody() const {
2947   Stmt *S = getBody();
2948   if (!S) {
2949     // Since we don't have a body for this function, we don't know if it's
2950     // trivial or not.
2951     return false;
2952   }
2953 
2954   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2955     return true;
2956   return false;
2957 }
2958 
2959 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const {
2960   if (!getFriendObjectKind())
2961     return false;
2962 
2963   // Check for a friend function instantiated from a friend function
2964   // definition in a templated class.
2965   if (const FunctionDecl *InstantiatedFrom =
2966           getInstantiatedFromMemberFunction())
2967     return InstantiatedFrom->getFriendObjectKind() &&
2968            InstantiatedFrom->isThisDeclarationADefinition();
2969 
2970   // Check for a friend function template instantiated from a friend
2971   // function template definition in a templated class.
2972   if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
2973     if (const FunctionTemplateDecl *InstantiatedFrom =
2974             Template->getInstantiatedFromMemberTemplate())
2975       return InstantiatedFrom->getFriendObjectKind() &&
2976              InstantiatedFrom->isThisDeclarationADefinition();
2977   }
2978 
2979   return false;
2980 }
2981 
2982 bool FunctionDecl::isDefined(const FunctionDecl *&Definition,
2983                              bool CheckForPendingFriendDefinition) const {
2984   for (const FunctionDecl *FD : redecls()) {
2985     if (FD->isThisDeclarationADefinition()) {
2986       Definition = FD;
2987       return true;
2988     }
2989 
2990     // If this is a friend function defined in a class template, it does not
2991     // have a body until it is used, nevertheless it is a definition, see
2992     // [temp.inst]p2:
2993     //
2994     // ... for the purpose of determining whether an instantiated redeclaration
2995     // is valid according to [basic.def.odr] and [class.mem], a declaration that
2996     // corresponds to a definition in the template is considered to be a
2997     // definition.
2998     //
2999     // The following code must produce redefinition error:
3000     //
3001     //     template<typename T> struct C20 { friend void func_20() {} };
3002     //     C20<int> c20i;
3003     //     void func_20() {}
3004     //
3005     if (CheckForPendingFriendDefinition &&
3006         FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
3007       Definition = FD;
3008       return true;
3009     }
3010   }
3011 
3012   return false;
3013 }
3014 
3015 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
3016   if (!hasBody(Definition))
3017     return nullptr;
3018 
3019   assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
3020          "definition should not have a body");
3021   if (Definition->Body)
3022     return Definition->Body.get(getASTContext().getExternalSource());
3023 
3024   return nullptr;
3025 }
3026 
3027 void FunctionDecl::setBody(Stmt *B) {
3028   FunctionDeclBits.HasDefaultedFunctionInfo = false;
3029   Body = LazyDeclStmtPtr(B);
3030   if (B)
3031     EndRangeLoc = B->getEndLoc();
3032 }
3033 
3034 void FunctionDecl::setPure(bool P) {
3035   FunctionDeclBits.IsPure = P;
3036   if (P)
3037     if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
3038       Parent->markedVirtualFunctionPure();
3039 }
3040 
3041 template<std::size_t Len>
3042 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
3043   IdentifierInfo *II = ND->getIdentifier();
3044   return II && II->isStr(Str);
3045 }
3046 
3047 bool FunctionDecl::isMain() const {
3048   const TranslationUnitDecl *tunit =
3049     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3050   return tunit &&
3051          !tunit->getASTContext().getLangOpts().Freestanding &&
3052          isNamed(this, "main");
3053 }
3054 
3055 bool FunctionDecl::isMSVCRTEntryPoint() const {
3056   const TranslationUnitDecl *TUnit =
3057       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3058   if (!TUnit)
3059     return false;
3060 
3061   // Even though we aren't really targeting MSVCRT if we are freestanding,
3062   // semantic analysis for these functions remains the same.
3063 
3064   // MSVCRT entry points only exist on MSVCRT targets.
3065   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
3066     return false;
3067 
3068   // Nameless functions like constructors cannot be entry points.
3069   if (!getIdentifier())
3070     return false;
3071 
3072   return llvm::StringSwitch<bool>(getName())
3073       .Cases("main",     // an ANSI console app
3074              "wmain",    // a Unicode console App
3075              "WinMain",  // an ANSI GUI app
3076              "wWinMain", // a Unicode GUI app
3077              "DllMain",  // a DLL
3078              true)
3079       .Default(false);
3080 }
3081 
3082 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
3083   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
3084   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
3085          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3086          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
3087          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
3088 
3089   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3090     return false;
3091 
3092   const auto *proto = getType()->castAs<FunctionProtoType>();
3093   if (proto->getNumParams() != 2 || proto->isVariadic())
3094     return false;
3095 
3096   ASTContext &Context =
3097     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
3098       ->getASTContext();
3099 
3100   // The result type and first argument type are constant across all
3101   // these operators.  The second argument must be exactly void*.
3102   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
3103 }
3104 
3105 bool FunctionDecl::isReplaceableGlobalAllocationFunction(
3106     Optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
3107   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3108     return false;
3109   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3110       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3111       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3112       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3113     return false;
3114 
3115   if (isa<CXXRecordDecl>(getDeclContext()))
3116     return false;
3117 
3118   // This can only fail for an invalid 'operator new' declaration.
3119   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3120     return false;
3121 
3122   const auto *FPT = getType()->castAs<FunctionProtoType>();
3123   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
3124     return false;
3125 
3126   // If this is a single-parameter function, it must be a replaceable global
3127   // allocation or deallocation function.
3128   if (FPT->getNumParams() == 1)
3129     return true;
3130 
3131   unsigned Params = 1;
3132   QualType Ty = FPT->getParamType(Params);
3133   ASTContext &Ctx = getASTContext();
3134 
3135   auto Consume = [&] {
3136     ++Params;
3137     Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3138   };
3139 
3140   // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3141   bool IsSizedDelete = false;
3142   if (Ctx.getLangOpts().SizedDeallocation &&
3143       (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3144        getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3145       Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3146     IsSizedDelete = true;
3147     Consume();
3148   }
3149 
3150   // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3151   // new/delete.
3152   if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3153     Consume();
3154     if (AlignmentParam)
3155       *AlignmentParam = Params;
3156   }
3157 
3158   // Finally, if this is not a sized delete, the final parameter can
3159   // be a 'const std::nothrow_t&'.
3160   if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3161     Ty = Ty->getPointeeType();
3162     if (Ty.getCVRQualifiers() != Qualifiers::Const)
3163       return false;
3164     if (Ty->isNothrowT()) {
3165       if (IsNothrow)
3166         *IsNothrow = true;
3167       Consume();
3168     }
3169   }
3170 
3171   return Params == FPT->getNumParams();
3172 }
3173 
3174 bool FunctionDecl::isInlineBuiltinDeclaration() const {
3175   if (!getBuiltinID())
3176     return false;
3177 
3178   const FunctionDecl *Definition;
3179   return hasBody(Definition) && Definition->isInlineSpecified() &&
3180          Definition->hasAttr<AlwaysInlineAttr>();
3181 }
3182 
3183 bool FunctionDecl::isDestroyingOperatorDelete() const {
3184   // C++ P0722:
3185   //   Within a class C, a single object deallocation function with signature
3186   //     (T, std::destroying_delete_t, <more params>)
3187   //   is a destroying operator delete.
3188   if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3189       getNumParams() < 2)
3190     return false;
3191 
3192   auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3193   return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3194          RD->getIdentifier()->isStr("destroying_delete_t");
3195 }
3196 
3197 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3198   return getDeclLanguageLinkage(*this);
3199 }
3200 
3201 bool FunctionDecl::isExternC() const {
3202   return isDeclExternC(*this);
3203 }
3204 
3205 bool FunctionDecl::isInExternCContext() const {
3206   if (hasAttr<OpenCLKernelAttr>())
3207     return true;
3208   return getLexicalDeclContext()->isExternCContext();
3209 }
3210 
3211 bool FunctionDecl::isInExternCXXContext() const {
3212   return getLexicalDeclContext()->isExternCXXContext();
3213 }
3214 
3215 bool FunctionDecl::isGlobal() const {
3216   if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3217     return Method->isStatic();
3218 
3219   if (getCanonicalDecl()->getStorageClass() == SC_Static)
3220     return false;
3221 
3222   for (const DeclContext *DC = getDeclContext();
3223        DC->isNamespace();
3224        DC = DC->getParent()) {
3225     if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3226       if (!Namespace->getDeclName())
3227         return false;
3228       break;
3229     }
3230   }
3231 
3232   return true;
3233 }
3234 
3235 bool FunctionDecl::isNoReturn() const {
3236   if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3237       hasAttr<C11NoReturnAttr>())
3238     return true;
3239 
3240   if (auto *FnTy = getType()->getAs<FunctionType>())
3241     return FnTy->getNoReturnAttr();
3242 
3243   return false;
3244 }
3245 
3246 
3247 MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3248   if (hasAttr<TargetAttr>())
3249     return MultiVersionKind::Target;
3250   if (hasAttr<CPUDispatchAttr>())
3251     return MultiVersionKind::CPUDispatch;
3252   if (hasAttr<CPUSpecificAttr>())
3253     return MultiVersionKind::CPUSpecific;
3254   return MultiVersionKind::None;
3255 }
3256 
3257 bool FunctionDecl::isCPUDispatchMultiVersion() const {
3258   return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3259 }
3260 
3261 bool FunctionDecl::isCPUSpecificMultiVersion() const {
3262   return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3263 }
3264 
3265 bool FunctionDecl::isTargetMultiVersion() const {
3266   return isMultiVersion() && hasAttr<TargetAttr>();
3267 }
3268 
3269 void
3270 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3271   redeclarable_base::setPreviousDecl(PrevDecl);
3272 
3273   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3274     FunctionTemplateDecl *PrevFunTmpl
3275       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3276     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3277     FunTmpl->setPreviousDecl(PrevFunTmpl);
3278   }
3279 
3280   if (PrevDecl && PrevDecl->isInlined())
3281     setImplicitlyInline(true);
3282 }
3283 
3284 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3285 
3286 /// Returns a value indicating whether this function corresponds to a builtin
3287 /// function.
3288 ///
3289 /// The function corresponds to a built-in function if it is declared at
3290 /// translation scope or within an extern "C" block and its name matches with
3291 /// the name of a builtin. The returned value will be 0 for functions that do
3292 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3293 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3294 /// value.
3295 ///
3296 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3297 /// functions as their wrapped builtins. This shouldn't be done in general, but
3298 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3299 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3300   unsigned BuiltinID = 0;
3301 
3302   if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3303     BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3304   } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) {
3305     BuiltinID = BAA->getBuiltinName()->getBuiltinID();
3306   } else if (const auto *A = getAttr<BuiltinAttr>()) {
3307     BuiltinID = A->getID();
3308   }
3309 
3310   if (!BuiltinID)
3311     return 0;
3312 
3313   // If the function is marked "overloadable", it has a different mangled name
3314   // and is not the C library function.
3315   if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3316       (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>()))
3317     return 0;
3318 
3319   ASTContext &Context = getASTContext();
3320   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3321     return BuiltinID;
3322 
3323   // This function has the name of a known C library
3324   // function. Determine whether it actually refers to the C library
3325   // function or whether it just has the same name.
3326 
3327   // If this is a static function, it's not a builtin.
3328   if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3329     return 0;
3330 
3331   // OpenCL v1.2 s6.9.f - The library functions defined in
3332   // the C99 standard headers are not available.
3333   if (Context.getLangOpts().OpenCL &&
3334       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3335     return 0;
3336 
3337   // CUDA does not have device-side standard library. printf and malloc are the
3338   // only special cases that are supported by device-side runtime.
3339   if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3340       !hasAttr<CUDAHostAttr>() &&
3341       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3342     return 0;
3343 
3344   // As AMDGCN implementation of OpenMP does not have a device-side standard
3345   // library, none of the predefined library functions except printf and malloc
3346   // should be treated as a builtin i.e. 0 should be returned for them.
3347   if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3348       Context.getLangOpts().OpenMPIsDevice &&
3349       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3350       !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3351     return 0;
3352 
3353   return BuiltinID;
3354 }
3355 
3356 /// getNumParams - Return the number of parameters this function must have
3357 /// based on its FunctionType.  This is the length of the ParamInfo array
3358 /// after it has been created.
3359 unsigned FunctionDecl::getNumParams() const {
3360   const auto *FPT = getType()->getAs<FunctionProtoType>();
3361   return FPT ? FPT->getNumParams() : 0;
3362 }
3363 
3364 void FunctionDecl::setParams(ASTContext &C,
3365                              ArrayRef<ParmVarDecl *> NewParamInfo) {
3366   assert(!ParamInfo && "Already has param info!");
3367   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3368 
3369   // Zero params -> null pointer.
3370   if (!NewParamInfo.empty()) {
3371     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3372     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3373   }
3374 }
3375 
3376 /// getMinRequiredArguments - Returns the minimum number of arguments
3377 /// needed to call this function. This may be fewer than the number of
3378 /// function parameters, if some of the parameters have default
3379 /// arguments (in C++) or are parameter packs (C++11).
3380 unsigned FunctionDecl::getMinRequiredArguments() const {
3381   if (!getASTContext().getLangOpts().CPlusPlus)
3382     return getNumParams();
3383 
3384   // Note that it is possible for a parameter with no default argument to
3385   // follow a parameter with a default argument.
3386   unsigned NumRequiredArgs = 0;
3387   unsigned MinParamsSoFar = 0;
3388   for (auto *Param : parameters()) {
3389     if (!Param->isParameterPack()) {
3390       ++MinParamsSoFar;
3391       if (!Param->hasDefaultArg())
3392         NumRequiredArgs = MinParamsSoFar;
3393     }
3394   }
3395   return NumRequiredArgs;
3396 }
3397 
3398 bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3399   return getNumParams() == 1 ||
3400          (getNumParams() > 1 &&
3401           std::all_of(param_begin() + 1, param_end(),
3402                       [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3403 }
3404 
3405 /// The combination of the extern and inline keywords under MSVC forces
3406 /// the function to be required.
3407 ///
3408 /// Note: This function assumes that we will only get called when isInlined()
3409 /// would return true for this FunctionDecl.
3410 bool FunctionDecl::isMSExternInline() const {
3411   assert(isInlined() && "expected to get called on an inlined function!");
3412 
3413   const ASTContext &Context = getASTContext();
3414   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3415       !hasAttr<DLLExportAttr>())
3416     return false;
3417 
3418   for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3419        FD = FD->getPreviousDecl())
3420     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3421       return true;
3422 
3423   return false;
3424 }
3425 
3426 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3427   if (Redecl->getStorageClass() != SC_Extern)
3428     return false;
3429 
3430   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3431        FD = FD->getPreviousDecl())
3432     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3433       return false;
3434 
3435   return true;
3436 }
3437 
3438 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3439   // Only consider file-scope declarations in this test.
3440   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3441     return false;
3442 
3443   // Only consider explicit declarations; the presence of a builtin for a
3444   // libcall shouldn't affect whether a definition is externally visible.
3445   if (Redecl->isImplicit())
3446     return false;
3447 
3448   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3449     return true; // Not an inline definition
3450 
3451   return false;
3452 }
3453 
3454 /// For a function declaration in C or C++, determine whether this
3455 /// declaration causes the definition to be externally visible.
3456 ///
3457 /// For instance, this determines if adding the current declaration to the set
3458 /// of redeclarations of the given functions causes
3459 /// isInlineDefinitionExternallyVisible to change from false to true.
3460 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3461   assert(!doesThisDeclarationHaveABody() &&
3462          "Must have a declaration without a body.");
3463 
3464   ASTContext &Context = getASTContext();
3465 
3466   if (Context.getLangOpts().MSVCCompat) {
3467     const FunctionDecl *Definition;
3468     if (hasBody(Definition) && Definition->isInlined() &&
3469         redeclForcesDefMSVC(this))
3470       return true;
3471   }
3472 
3473   if (Context.getLangOpts().CPlusPlus)
3474     return false;
3475 
3476   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3477     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3478     // an externally visible definition.
3479     //
3480     // FIXME: What happens if gnu_inline gets added on after the first
3481     // declaration?
3482     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3483       return false;
3484 
3485     const FunctionDecl *Prev = this;
3486     bool FoundBody = false;
3487     while ((Prev = Prev->getPreviousDecl())) {
3488       FoundBody |= Prev->doesThisDeclarationHaveABody();
3489 
3490       if (Prev->doesThisDeclarationHaveABody()) {
3491         // If it's not the case that both 'inline' and 'extern' are
3492         // specified on the definition, then it is always externally visible.
3493         if (!Prev->isInlineSpecified() ||
3494             Prev->getStorageClass() != SC_Extern)
3495           return false;
3496       } else if (Prev->isInlineSpecified() &&
3497                  Prev->getStorageClass() != SC_Extern) {
3498         return false;
3499       }
3500     }
3501     return FoundBody;
3502   }
3503 
3504   // C99 6.7.4p6:
3505   //   [...] If all of the file scope declarations for a function in a
3506   //   translation unit include the inline function specifier without extern,
3507   //   then the definition in that translation unit is an inline definition.
3508   if (isInlineSpecified() && getStorageClass() != SC_Extern)
3509     return false;
3510   const FunctionDecl *Prev = this;
3511   bool FoundBody = false;
3512   while ((Prev = Prev->getPreviousDecl())) {
3513     FoundBody |= Prev->doesThisDeclarationHaveABody();
3514     if (RedeclForcesDefC99(Prev))
3515       return false;
3516   }
3517   return FoundBody;
3518 }
3519 
3520 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3521   const TypeSourceInfo *TSI = getTypeSourceInfo();
3522   return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3523              : FunctionTypeLoc();
3524 }
3525 
3526 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3527   FunctionTypeLoc FTL = getFunctionTypeLoc();
3528   if (!FTL)
3529     return SourceRange();
3530 
3531   // Skip self-referential return types.
3532   const SourceManager &SM = getASTContext().getSourceManager();
3533   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3534   SourceLocation Boundary = getNameInfo().getBeginLoc();
3535   if (RTRange.isInvalid() || Boundary.isInvalid() ||
3536       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3537     return SourceRange();
3538 
3539   return RTRange;
3540 }
3541 
3542 SourceRange FunctionDecl::getParametersSourceRange() const {
3543   unsigned NP = getNumParams();
3544   SourceLocation EllipsisLoc = getEllipsisLoc();
3545 
3546   if (NP == 0 && EllipsisLoc.isInvalid())
3547     return SourceRange();
3548 
3549   SourceLocation Begin =
3550       NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3551   SourceLocation End = EllipsisLoc.isValid()
3552                            ? EllipsisLoc
3553                            : ParamInfo[NP - 1]->getSourceRange().getEnd();
3554 
3555   return SourceRange(Begin, End);
3556 }
3557 
3558 SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3559   FunctionTypeLoc FTL = getFunctionTypeLoc();
3560   return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3561 }
3562 
3563 /// For an inline function definition in C, or for a gnu_inline function
3564 /// in C++, determine whether the definition will be externally visible.
3565 ///
3566 /// Inline function definitions are always available for inlining optimizations.
3567 /// However, depending on the language dialect, declaration specifiers, and
3568 /// attributes, the definition of an inline function may or may not be
3569 /// "externally" visible to other translation units in the program.
3570 ///
3571 /// In C99, inline definitions are not externally visible by default. However,
3572 /// if even one of the global-scope declarations is marked "extern inline", the
3573 /// inline definition becomes externally visible (C99 6.7.4p6).
3574 ///
3575 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3576 /// definition, we use the GNU semantics for inline, which are nearly the
3577 /// opposite of C99 semantics. In particular, "inline" by itself will create
3578 /// an externally visible symbol, but "extern inline" will not create an
3579 /// externally visible symbol.
3580 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3581   assert((doesThisDeclarationHaveABody() || willHaveBody() ||
3582           hasAttr<AliasAttr>()) &&
3583          "Must be a function definition");
3584   assert(isInlined() && "Function must be inline");
3585   ASTContext &Context = getASTContext();
3586 
3587   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3588     // Note: If you change the logic here, please change
3589     // doesDeclarationForceExternallyVisibleDefinition as well.
3590     //
3591     // If it's not the case that both 'inline' and 'extern' are
3592     // specified on the definition, then this inline definition is
3593     // externally visible.
3594     if (Context.getLangOpts().CPlusPlus)
3595       return false;
3596     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3597       return true;
3598 
3599     // If any declaration is 'inline' but not 'extern', then this definition
3600     // is externally visible.
3601     for (auto Redecl : redecls()) {
3602       if (Redecl->isInlineSpecified() &&
3603           Redecl->getStorageClass() != SC_Extern)
3604         return true;
3605     }
3606 
3607     return false;
3608   }
3609 
3610   // The rest of this function is C-only.
3611   assert(!Context.getLangOpts().CPlusPlus &&
3612          "should not use C inline rules in C++");
3613 
3614   // C99 6.7.4p6:
3615   //   [...] If all of the file scope declarations for a function in a
3616   //   translation unit include the inline function specifier without extern,
3617   //   then the definition in that translation unit is an inline definition.
3618   for (auto Redecl : redecls()) {
3619     if (RedeclForcesDefC99(Redecl))
3620       return true;
3621   }
3622 
3623   // C99 6.7.4p6:
3624   //   An inline definition does not provide an external definition for the
3625   //   function, and does not forbid an external definition in another
3626   //   translation unit.
3627   return false;
3628 }
3629 
3630 /// getOverloadedOperator - Which C++ overloaded operator this
3631 /// function represents, if any.
3632 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3633   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3634     return getDeclName().getCXXOverloadedOperator();
3635   return OO_None;
3636 }
3637 
3638 /// getLiteralIdentifier - The literal suffix identifier this function
3639 /// represents, if any.
3640 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3641   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3642     return getDeclName().getCXXLiteralIdentifier();
3643   return nullptr;
3644 }
3645 
3646 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3647   if (TemplateOrSpecialization.isNull())
3648     return TK_NonTemplate;
3649   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3650     return TK_FunctionTemplate;
3651   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3652     return TK_MemberSpecialization;
3653   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3654     return TK_FunctionTemplateSpecialization;
3655   if (TemplateOrSpecialization.is
3656                                <DependentFunctionTemplateSpecializationInfo*>())
3657     return TK_DependentFunctionTemplateSpecialization;
3658 
3659   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3660 }
3661 
3662 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3663   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3664     return cast<FunctionDecl>(Info->getInstantiatedFrom());
3665 
3666   return nullptr;
3667 }
3668 
3669 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3670   if (auto *MSI =
3671           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3672     return MSI;
3673   if (auto *FTSI = TemplateOrSpecialization
3674                        .dyn_cast<FunctionTemplateSpecializationInfo *>())
3675     return FTSI->getMemberSpecializationInfo();
3676   return nullptr;
3677 }
3678 
3679 void
3680 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3681                                                FunctionDecl *FD,
3682                                                TemplateSpecializationKind TSK) {
3683   assert(TemplateOrSpecialization.isNull() &&
3684          "Member function is already a specialization");
3685   MemberSpecializationInfo *Info
3686     = new (C) MemberSpecializationInfo(FD, TSK);
3687   TemplateOrSpecialization = Info;
3688 }
3689 
3690 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3691   return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3692 }
3693 
3694 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3695   assert(TemplateOrSpecialization.isNull() &&
3696          "Member function is already a specialization");
3697   TemplateOrSpecialization = Template;
3698 }
3699 
3700 bool FunctionDecl::isImplicitlyInstantiable() const {
3701   // If the function is invalid, it can't be implicitly instantiated.
3702   if (isInvalidDecl())
3703     return false;
3704 
3705   switch (getTemplateSpecializationKindForInstantiation()) {
3706   case TSK_Undeclared:
3707   case TSK_ExplicitInstantiationDefinition:
3708   case TSK_ExplicitSpecialization:
3709     return false;
3710 
3711   case TSK_ImplicitInstantiation:
3712     return true;
3713 
3714   case TSK_ExplicitInstantiationDeclaration:
3715     // Handled below.
3716     break;
3717   }
3718 
3719   // Find the actual template from which we will instantiate.
3720   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3721   bool HasPattern = false;
3722   if (PatternDecl)
3723     HasPattern = PatternDecl->hasBody(PatternDecl);
3724 
3725   // C++0x [temp.explicit]p9:
3726   //   Except for inline functions, other explicit instantiation declarations
3727   //   have the effect of suppressing the implicit instantiation of the entity
3728   //   to which they refer.
3729   if (!HasPattern || !PatternDecl)
3730     return true;
3731 
3732   return PatternDecl->isInlined();
3733 }
3734 
3735 bool FunctionDecl::isTemplateInstantiation() const {
3736   // FIXME: Remove this, it's not clear what it means. (Which template
3737   // specialization kind?)
3738   return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3739 }
3740 
3741 FunctionDecl *
3742 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
3743   // If this is a generic lambda call operator specialization, its
3744   // instantiation pattern is always its primary template's pattern
3745   // even if its primary template was instantiated from another
3746   // member template (which happens with nested generic lambdas).
3747   // Since a lambda's call operator's body is transformed eagerly,
3748   // we don't have to go hunting for a prototype definition template
3749   // (i.e. instantiated-from-member-template) to use as an instantiation
3750   // pattern.
3751 
3752   if (isGenericLambdaCallOperatorSpecialization(
3753           dyn_cast<CXXMethodDecl>(this))) {
3754     assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3755     return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3756   }
3757 
3758   // Check for a declaration of this function that was instantiated from a
3759   // friend definition.
3760   const FunctionDecl *FD = nullptr;
3761   if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
3762     FD = this;
3763 
3764   if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) {
3765     if (ForDefinition &&
3766         !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3767       return nullptr;
3768     return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3769   }
3770 
3771   if (ForDefinition &&
3772       !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3773     return nullptr;
3774 
3775   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3776     // If we hit a point where the user provided a specialization of this
3777     // template, we're done looking.
3778     while (!ForDefinition || !Primary->isMemberSpecialization()) {
3779       auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3780       if (!NewPrimary)
3781         break;
3782       Primary = NewPrimary;
3783     }
3784 
3785     return getDefinitionOrSelf(Primary->getTemplatedDecl());
3786   }
3787 
3788   return nullptr;
3789 }
3790 
3791 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3792   if (FunctionTemplateSpecializationInfo *Info
3793         = TemplateOrSpecialization
3794             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3795     return Info->getTemplate();
3796   }
3797   return nullptr;
3798 }
3799 
3800 FunctionTemplateSpecializationInfo *
3801 FunctionDecl::getTemplateSpecializationInfo() const {
3802   return TemplateOrSpecialization
3803       .dyn_cast<FunctionTemplateSpecializationInfo *>();
3804 }
3805 
3806 const TemplateArgumentList *
3807 FunctionDecl::getTemplateSpecializationArgs() const {
3808   if (FunctionTemplateSpecializationInfo *Info
3809         = TemplateOrSpecialization
3810             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3811     return Info->TemplateArguments;
3812   }
3813   return nullptr;
3814 }
3815 
3816 const ASTTemplateArgumentListInfo *
3817 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3818   if (FunctionTemplateSpecializationInfo *Info
3819         = TemplateOrSpecialization
3820             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3821     return Info->TemplateArgumentsAsWritten;
3822   }
3823   return nullptr;
3824 }
3825 
3826 void
3827 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3828                                                 FunctionTemplateDecl *Template,
3829                                      const TemplateArgumentList *TemplateArgs,
3830                                                 void *InsertPos,
3831                                                 TemplateSpecializationKind TSK,
3832                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
3833                                           SourceLocation PointOfInstantiation) {
3834   assert((TemplateOrSpecialization.isNull() ||
3835           TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
3836          "Member function is already a specialization");
3837   assert(TSK != TSK_Undeclared &&
3838          "Must specify the type of function template specialization");
3839   assert((TemplateOrSpecialization.isNull() ||
3840           TSK == TSK_ExplicitSpecialization) &&
3841          "Member specialization must be an explicit specialization");
3842   FunctionTemplateSpecializationInfo *Info =
3843       FunctionTemplateSpecializationInfo::Create(
3844           C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3845           PointOfInstantiation,
3846           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3847   TemplateOrSpecialization = Info;
3848   Template->addSpecialization(Info, InsertPos);
3849 }
3850 
3851 void
3852 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3853                                     const UnresolvedSetImpl &Templates,
3854                              const TemplateArgumentListInfo &TemplateArgs) {
3855   assert(TemplateOrSpecialization.isNull());
3856   DependentFunctionTemplateSpecializationInfo *Info =
3857       DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3858                                                           TemplateArgs);
3859   TemplateOrSpecialization = Info;
3860 }
3861 
3862 DependentFunctionTemplateSpecializationInfo *
3863 FunctionDecl::getDependentSpecializationInfo() const {
3864   return TemplateOrSpecialization
3865       .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3866 }
3867 
3868 DependentFunctionTemplateSpecializationInfo *
3869 DependentFunctionTemplateSpecializationInfo::Create(
3870     ASTContext &Context, const UnresolvedSetImpl &Ts,
3871     const TemplateArgumentListInfo &TArgs) {
3872   void *Buffer = Context.Allocate(
3873       totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3874           TArgs.size(), Ts.size()));
3875   return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3876 }
3877 
3878 DependentFunctionTemplateSpecializationInfo::
3879 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3880                                       const TemplateArgumentListInfo &TArgs)
3881   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3882   NumTemplates = Ts.size();
3883   NumArgs = TArgs.size();
3884 
3885   FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3886   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3887     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3888 
3889   TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3890   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3891     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3892 }
3893 
3894 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3895   // For a function template specialization, query the specialization
3896   // information object.
3897   if (FunctionTemplateSpecializationInfo *FTSInfo =
3898           TemplateOrSpecialization
3899               .dyn_cast<FunctionTemplateSpecializationInfo *>())
3900     return FTSInfo->getTemplateSpecializationKind();
3901 
3902   if (MemberSpecializationInfo *MSInfo =
3903           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3904     return MSInfo->getTemplateSpecializationKind();
3905 
3906   return TSK_Undeclared;
3907 }
3908 
3909 TemplateSpecializationKind
3910 FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
3911   // This is the same as getTemplateSpecializationKind(), except that for a
3912   // function that is both a function template specialization and a member
3913   // specialization, we prefer the member specialization information. Eg:
3914   //
3915   // template<typename T> struct A {
3916   //   template<typename U> void f() {}
3917   //   template<> void f<int>() {}
3918   // };
3919   //
3920   // For A<int>::f<int>():
3921   // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
3922   // * getTemplateSpecializationKindForInstantiation() will return
3923   //       TSK_ImplicitInstantiation
3924   //
3925   // This reflects the facts that A<int>::f<int> is an explicit specialization
3926   // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
3927   // from A::f<int> if a definition is needed.
3928   if (FunctionTemplateSpecializationInfo *FTSInfo =
3929           TemplateOrSpecialization
3930               .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
3931     if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
3932       return MSInfo->getTemplateSpecializationKind();
3933     return FTSInfo->getTemplateSpecializationKind();
3934   }
3935 
3936   if (MemberSpecializationInfo *MSInfo =
3937           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3938     return MSInfo->getTemplateSpecializationKind();
3939 
3940   return TSK_Undeclared;
3941 }
3942 
3943 void
3944 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3945                                           SourceLocation PointOfInstantiation) {
3946   if (FunctionTemplateSpecializationInfo *FTSInfo
3947         = TemplateOrSpecialization.dyn_cast<
3948                                     FunctionTemplateSpecializationInfo*>()) {
3949     FTSInfo->setTemplateSpecializationKind(TSK);
3950     if (TSK != TSK_ExplicitSpecialization &&
3951         PointOfInstantiation.isValid() &&
3952         FTSInfo->getPointOfInstantiation().isInvalid()) {
3953       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3954       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3955         L->InstantiationRequested(this);
3956     }
3957   } else if (MemberSpecializationInfo *MSInfo
3958              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3959     MSInfo->setTemplateSpecializationKind(TSK);
3960     if (TSK != TSK_ExplicitSpecialization &&
3961         PointOfInstantiation.isValid() &&
3962         MSInfo->getPointOfInstantiation().isInvalid()) {
3963       MSInfo->setPointOfInstantiation(PointOfInstantiation);
3964       if (ASTMutationListener *L = getASTContext().getASTMutationListener())
3965         L->InstantiationRequested(this);
3966     }
3967   } else
3968     llvm_unreachable("Function cannot have a template specialization kind");
3969 }
3970 
3971 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3972   if (FunctionTemplateSpecializationInfo *FTSInfo
3973         = TemplateOrSpecialization.dyn_cast<
3974                                         FunctionTemplateSpecializationInfo*>())
3975     return FTSInfo->getPointOfInstantiation();
3976   if (MemberSpecializationInfo *MSInfo =
3977           TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3978     return MSInfo->getPointOfInstantiation();
3979 
3980   return SourceLocation();
3981 }
3982 
3983 bool FunctionDecl::isOutOfLine() const {
3984   if (Decl::isOutOfLine())
3985     return true;
3986 
3987   // If this function was instantiated from a member function of a
3988   // class template, check whether that member function was defined out-of-line.
3989   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3990     const FunctionDecl *Definition;
3991     if (FD->hasBody(Definition))
3992       return Definition->isOutOfLine();
3993   }
3994 
3995   // If this function was instantiated from a function template,
3996   // check whether that function template was defined out-of-line.
3997   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3998     const FunctionDecl *Definition;
3999     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
4000       return Definition->isOutOfLine();
4001   }
4002 
4003   return false;
4004 }
4005 
4006 SourceRange FunctionDecl::getSourceRange() const {
4007   return SourceRange(getOuterLocStart(), EndRangeLoc);
4008 }
4009 
4010 unsigned FunctionDecl::getMemoryFunctionKind() const {
4011   IdentifierInfo *FnInfo = getIdentifier();
4012 
4013   if (!FnInfo)
4014     return 0;
4015 
4016   // Builtin handling.
4017   switch (getBuiltinID()) {
4018   case Builtin::BI__builtin_memset:
4019   case Builtin::BI__builtin___memset_chk:
4020   case Builtin::BImemset:
4021     return Builtin::BImemset;
4022 
4023   case Builtin::BI__builtin_memcpy:
4024   case Builtin::BI__builtin___memcpy_chk:
4025   case Builtin::BImemcpy:
4026     return Builtin::BImemcpy;
4027 
4028   case Builtin::BI__builtin_mempcpy:
4029   case Builtin::BI__builtin___mempcpy_chk:
4030   case Builtin::BImempcpy:
4031     return Builtin::BImempcpy;
4032 
4033   case Builtin::BI__builtin_memmove:
4034   case Builtin::BI__builtin___memmove_chk:
4035   case Builtin::BImemmove:
4036     return Builtin::BImemmove;
4037 
4038   case Builtin::BIstrlcpy:
4039   case Builtin::BI__builtin___strlcpy_chk:
4040     return Builtin::BIstrlcpy;
4041 
4042   case Builtin::BIstrlcat:
4043   case Builtin::BI__builtin___strlcat_chk:
4044     return Builtin::BIstrlcat;
4045 
4046   case Builtin::BI__builtin_memcmp:
4047   case Builtin::BImemcmp:
4048     return Builtin::BImemcmp;
4049 
4050   case Builtin::BI__builtin_bcmp:
4051   case Builtin::BIbcmp:
4052     return Builtin::BIbcmp;
4053 
4054   case Builtin::BI__builtin_strncpy:
4055   case Builtin::BI__builtin___strncpy_chk:
4056   case Builtin::BIstrncpy:
4057     return Builtin::BIstrncpy;
4058 
4059   case Builtin::BI__builtin_strncmp:
4060   case Builtin::BIstrncmp:
4061     return Builtin::BIstrncmp;
4062 
4063   case Builtin::BI__builtin_strncasecmp:
4064   case Builtin::BIstrncasecmp:
4065     return Builtin::BIstrncasecmp;
4066 
4067   case Builtin::BI__builtin_strncat:
4068   case Builtin::BI__builtin___strncat_chk:
4069   case Builtin::BIstrncat:
4070     return Builtin::BIstrncat;
4071 
4072   case Builtin::BI__builtin_strndup:
4073   case Builtin::BIstrndup:
4074     return Builtin::BIstrndup;
4075 
4076   case Builtin::BI__builtin_strlen:
4077   case Builtin::BIstrlen:
4078     return Builtin::BIstrlen;
4079 
4080   case Builtin::BI__builtin_bzero:
4081   case Builtin::BIbzero:
4082     return Builtin::BIbzero;
4083 
4084   case Builtin::BIfree:
4085     return Builtin::BIfree;
4086 
4087   default:
4088     if (isExternC()) {
4089       if (FnInfo->isStr("memset"))
4090         return Builtin::BImemset;
4091       if (FnInfo->isStr("memcpy"))
4092         return Builtin::BImemcpy;
4093       if (FnInfo->isStr("mempcpy"))
4094         return Builtin::BImempcpy;
4095       if (FnInfo->isStr("memmove"))
4096         return Builtin::BImemmove;
4097       if (FnInfo->isStr("memcmp"))
4098         return Builtin::BImemcmp;
4099       if (FnInfo->isStr("bcmp"))
4100         return Builtin::BIbcmp;
4101       if (FnInfo->isStr("strncpy"))
4102         return Builtin::BIstrncpy;
4103       if (FnInfo->isStr("strncmp"))
4104         return Builtin::BIstrncmp;
4105       if (FnInfo->isStr("strncasecmp"))
4106         return Builtin::BIstrncasecmp;
4107       if (FnInfo->isStr("strncat"))
4108         return Builtin::BIstrncat;
4109       if (FnInfo->isStr("strndup"))
4110         return Builtin::BIstrndup;
4111       if (FnInfo->isStr("strlen"))
4112         return Builtin::BIstrlen;
4113       if (FnInfo->isStr("bzero"))
4114         return Builtin::BIbzero;
4115     } else if (isInStdNamespace()) {
4116       if (FnInfo->isStr("free"))
4117         return Builtin::BIfree;
4118     }
4119     break;
4120   }
4121   return 0;
4122 }
4123 
4124 unsigned FunctionDecl::getODRHash() const {
4125   assert(hasODRHash());
4126   return ODRHash;
4127 }
4128 
4129 unsigned FunctionDecl::getODRHash() {
4130   if (hasODRHash())
4131     return ODRHash;
4132 
4133   if (auto *FT = getInstantiatedFromMemberFunction()) {
4134     setHasODRHash(true);
4135     ODRHash = FT->getODRHash();
4136     return ODRHash;
4137   }
4138 
4139   class ODRHash Hash;
4140   Hash.AddFunctionDecl(this);
4141   setHasODRHash(true);
4142   ODRHash = Hash.CalculateHash();
4143   return ODRHash;
4144 }
4145 
4146 //===----------------------------------------------------------------------===//
4147 // FieldDecl Implementation
4148 //===----------------------------------------------------------------------===//
4149 
4150 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4151                              SourceLocation StartLoc, SourceLocation IdLoc,
4152                              IdentifierInfo *Id, QualType T,
4153                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4154                              InClassInitStyle InitStyle) {
4155   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4156                                BW, Mutable, InitStyle);
4157 }
4158 
4159 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4160   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4161                                SourceLocation(), nullptr, QualType(), nullptr,
4162                                nullptr, false, ICIS_NoInit);
4163 }
4164 
4165 bool FieldDecl::isAnonymousStructOrUnion() const {
4166   if (!isImplicit() || getDeclName())
4167     return false;
4168 
4169   if (const auto *Record = getType()->getAs<RecordType>())
4170     return Record->getDecl()->isAnonymousStructOrUnion();
4171 
4172   return false;
4173 }
4174 
4175 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4176   assert(isBitField() && "not a bitfield");
4177   return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4178 }
4179 
4180 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4181   return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4182          getBitWidthValue(Ctx) == 0;
4183 }
4184 
4185 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4186   if (isZeroLengthBitField(Ctx))
4187     return true;
4188 
4189   // C++2a [intro.object]p7:
4190   //   An object has nonzero size if it
4191   //     -- is not a potentially-overlapping subobject, or
4192   if (!hasAttr<NoUniqueAddressAttr>())
4193     return false;
4194 
4195   //     -- is not of class type, or
4196   const auto *RT = getType()->getAs<RecordType>();
4197   if (!RT)
4198     return false;
4199   const RecordDecl *RD = RT->getDecl()->getDefinition();
4200   if (!RD) {
4201     assert(isInvalidDecl() && "valid field has incomplete type");
4202     return false;
4203   }
4204 
4205   //     -- [has] virtual member functions or virtual base classes, or
4206   //     -- has subobjects of nonzero size or bit-fields of nonzero length
4207   const auto *CXXRD = cast<CXXRecordDecl>(RD);
4208   if (!CXXRD->isEmpty())
4209     return false;
4210 
4211   // Otherwise, [...] the circumstances under which the object has zero size
4212   // are implementation-defined.
4213   // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4214   // ABI will do.
4215   return true;
4216 }
4217 
4218 unsigned FieldDecl::getFieldIndex() const {
4219   const FieldDecl *Canonical = getCanonicalDecl();
4220   if (Canonical != this)
4221     return Canonical->getFieldIndex();
4222 
4223   if (CachedFieldIndex) return CachedFieldIndex - 1;
4224 
4225   unsigned Index = 0;
4226   const RecordDecl *RD = getParent()->getDefinition();
4227   assert(RD && "requested index for field of struct with no definition");
4228 
4229   for (auto *Field : RD->fields()) {
4230     Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4231     ++Index;
4232   }
4233 
4234   assert(CachedFieldIndex && "failed to find field in parent");
4235   return CachedFieldIndex - 1;
4236 }
4237 
4238 SourceRange FieldDecl::getSourceRange() const {
4239   const Expr *FinalExpr = getInClassInitializer();
4240   if (!FinalExpr)
4241     FinalExpr = getBitWidth();
4242   if (FinalExpr)
4243     return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4244   return DeclaratorDecl::getSourceRange();
4245 }
4246 
4247 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4248   assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4249          "capturing type in non-lambda or captured record.");
4250   assert(InitStorage.getInt() == ISK_NoInit &&
4251          InitStorage.getPointer() == nullptr &&
4252          "bit width, initializer or captured type already set");
4253   InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4254                                ISK_CapturedVLAType);
4255 }
4256 
4257 //===----------------------------------------------------------------------===//
4258 // TagDecl Implementation
4259 //===----------------------------------------------------------------------===//
4260 
4261 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4262                  SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4263                  SourceLocation StartL)
4264     : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4265       TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4266   assert((DK != Enum || TK == TTK_Enum) &&
4267          "EnumDecl not matched with TTK_Enum");
4268   setPreviousDecl(PrevDecl);
4269   setTagKind(TK);
4270   setCompleteDefinition(false);
4271   setBeingDefined(false);
4272   setEmbeddedInDeclarator(false);
4273   setFreeStanding(false);
4274   setCompleteDefinitionRequired(false);
4275 }
4276 
4277 SourceLocation TagDecl::getOuterLocStart() const {
4278   return getTemplateOrInnerLocStart(this);
4279 }
4280 
4281 SourceRange TagDecl::getSourceRange() const {
4282   SourceLocation RBraceLoc = BraceRange.getEnd();
4283   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4284   return SourceRange(getOuterLocStart(), E);
4285 }
4286 
4287 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4288 
4289 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4290   TypedefNameDeclOrQualifier = TDD;
4291   if (const Type *T = getTypeForDecl()) {
4292     (void)T;
4293     assert(T->isLinkageValid());
4294   }
4295   assert(isLinkageValid());
4296 }
4297 
4298 void TagDecl::startDefinition() {
4299   setBeingDefined(true);
4300 
4301   if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4302     struct CXXRecordDecl::DefinitionData *Data =
4303       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4304     for (auto I : redecls())
4305       cast<CXXRecordDecl>(I)->DefinitionData = Data;
4306   }
4307 }
4308 
4309 void TagDecl::completeDefinition() {
4310   assert((!isa<CXXRecordDecl>(this) ||
4311           cast<CXXRecordDecl>(this)->hasDefinition()) &&
4312          "definition completed but not started");
4313 
4314   setCompleteDefinition(true);
4315   setBeingDefined(false);
4316 
4317   if (ASTMutationListener *L = getASTMutationListener())
4318     L->CompletedTagDefinition(this);
4319 }
4320 
4321 TagDecl *TagDecl::getDefinition() const {
4322   if (isCompleteDefinition())
4323     return const_cast<TagDecl *>(this);
4324 
4325   // If it's possible for us to have an out-of-date definition, check now.
4326   if (mayHaveOutOfDateDef()) {
4327     if (IdentifierInfo *II = getIdentifier()) {
4328       if (II->isOutOfDate()) {
4329         updateOutOfDate(*II);
4330       }
4331     }
4332   }
4333 
4334   if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4335     return CXXRD->getDefinition();
4336 
4337   for (auto R : redecls())
4338     if (R->isCompleteDefinition())
4339       return R;
4340 
4341   return nullptr;
4342 }
4343 
4344 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4345   if (QualifierLoc) {
4346     // Make sure the extended qualifier info is allocated.
4347     if (!hasExtInfo())
4348       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4349     // Set qualifier info.
4350     getExtInfo()->QualifierLoc = QualifierLoc;
4351   } else {
4352     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4353     if (hasExtInfo()) {
4354       if (getExtInfo()->NumTemplParamLists == 0) {
4355         getASTContext().Deallocate(getExtInfo());
4356         TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4357       }
4358       else
4359         getExtInfo()->QualifierLoc = QualifierLoc;
4360     }
4361   }
4362 }
4363 
4364 void TagDecl::setTemplateParameterListsInfo(
4365     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4366   assert(!TPLists.empty());
4367   // Make sure the extended decl info is allocated.
4368   if (!hasExtInfo())
4369     // Allocate external info struct.
4370     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4371   // Set the template parameter lists info.
4372   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4373 }
4374 
4375 //===----------------------------------------------------------------------===//
4376 // EnumDecl Implementation
4377 //===----------------------------------------------------------------------===//
4378 
4379 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4380                    SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4381                    bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4382     : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4383   assert(Scoped || !ScopedUsingClassTag);
4384   IntegerType = nullptr;
4385   setNumPositiveBits(0);
4386   setNumNegativeBits(0);
4387   setScoped(Scoped);
4388   setScopedUsingClassTag(ScopedUsingClassTag);
4389   setFixed(Fixed);
4390   setHasODRHash(false);
4391   ODRHash = 0;
4392 }
4393 
4394 void EnumDecl::anchor() {}
4395 
4396 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4397                            SourceLocation StartLoc, SourceLocation IdLoc,
4398                            IdentifierInfo *Id,
4399                            EnumDecl *PrevDecl, bool IsScoped,
4400                            bool IsScopedUsingClassTag, bool IsFixed) {
4401   auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4402                                     IsScoped, IsScopedUsingClassTag, IsFixed);
4403   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4404   C.getTypeDeclType(Enum, PrevDecl);
4405   return Enum;
4406 }
4407 
4408 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4409   EnumDecl *Enum =
4410       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4411                            nullptr, nullptr, false, false, false);
4412   Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4413   return Enum;
4414 }
4415 
4416 SourceRange EnumDecl::getIntegerTypeRange() const {
4417   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4418     return TI->getTypeLoc().getSourceRange();
4419   return SourceRange();
4420 }
4421 
4422 void EnumDecl::completeDefinition(QualType NewType,
4423                                   QualType NewPromotionType,
4424                                   unsigned NumPositiveBits,
4425                                   unsigned NumNegativeBits) {
4426   assert(!isCompleteDefinition() && "Cannot redefine enums!");
4427   if (!IntegerType)
4428     IntegerType = NewType.getTypePtr();
4429   PromotionType = NewPromotionType;
4430   setNumPositiveBits(NumPositiveBits);
4431   setNumNegativeBits(NumNegativeBits);
4432   TagDecl::completeDefinition();
4433 }
4434 
4435 bool EnumDecl::isClosed() const {
4436   if (const auto *A = getAttr<EnumExtensibilityAttr>())
4437     return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4438   return true;
4439 }
4440 
4441 bool EnumDecl::isClosedFlag() const {
4442   return isClosed() && hasAttr<FlagEnumAttr>();
4443 }
4444 
4445 bool EnumDecl::isClosedNonFlag() const {
4446   return isClosed() && !hasAttr<FlagEnumAttr>();
4447 }
4448 
4449 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4450   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4451     return MSI->getTemplateSpecializationKind();
4452 
4453   return TSK_Undeclared;
4454 }
4455 
4456 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4457                                          SourceLocation PointOfInstantiation) {
4458   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4459   assert(MSI && "Not an instantiated member enumeration?");
4460   MSI->setTemplateSpecializationKind(TSK);
4461   if (TSK != TSK_ExplicitSpecialization &&
4462       PointOfInstantiation.isValid() &&
4463       MSI->getPointOfInstantiation().isInvalid())
4464     MSI->setPointOfInstantiation(PointOfInstantiation);
4465 }
4466 
4467 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4468   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4469     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4470       EnumDecl *ED = getInstantiatedFromMemberEnum();
4471       while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4472         ED = NewED;
4473       return getDefinitionOrSelf(ED);
4474     }
4475   }
4476 
4477   assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
4478          "couldn't find pattern for enum instantiation");
4479   return nullptr;
4480 }
4481 
4482 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4483   if (SpecializationInfo)
4484     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4485 
4486   return nullptr;
4487 }
4488 
4489 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4490                                             TemplateSpecializationKind TSK) {
4491   assert(!SpecializationInfo && "Member enum is already a specialization");
4492   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4493 }
4494 
4495 unsigned EnumDecl::getODRHash() {
4496   if (hasODRHash())
4497     return ODRHash;
4498 
4499   class ODRHash Hash;
4500   Hash.AddEnumDecl(this);
4501   setHasODRHash(true);
4502   ODRHash = Hash.CalculateHash();
4503   return ODRHash;
4504 }
4505 
4506 //===----------------------------------------------------------------------===//
4507 // RecordDecl Implementation
4508 //===----------------------------------------------------------------------===//
4509 
4510 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4511                        DeclContext *DC, SourceLocation StartLoc,
4512                        SourceLocation IdLoc, IdentifierInfo *Id,
4513                        RecordDecl *PrevDecl)
4514     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4515   assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4516   setHasFlexibleArrayMember(false);
4517   setAnonymousStructOrUnion(false);
4518   setHasObjectMember(false);
4519   setHasVolatileMember(false);
4520   setHasLoadedFieldsFromExternalStorage(false);
4521   setNonTrivialToPrimitiveDefaultInitialize(false);
4522   setNonTrivialToPrimitiveCopy(false);
4523   setNonTrivialToPrimitiveDestroy(false);
4524   setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4525   setHasNonTrivialToPrimitiveDestructCUnion(false);
4526   setHasNonTrivialToPrimitiveCopyCUnion(false);
4527   setParamDestroyedInCallee(false);
4528   setArgPassingRestrictions(APK_CanPassInRegs);
4529 }
4530 
4531 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4532                                SourceLocation StartLoc, SourceLocation IdLoc,
4533                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
4534   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4535                                          StartLoc, IdLoc, Id, PrevDecl);
4536   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4537 
4538   C.getTypeDeclType(R, PrevDecl);
4539   return R;
4540 }
4541 
4542 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4543   RecordDecl *R =
4544       new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4545                              SourceLocation(), nullptr, nullptr);
4546   R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4547   return R;
4548 }
4549 
4550 bool RecordDecl::isInjectedClassName() const {
4551   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4552     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4553 }
4554 
4555 bool RecordDecl::isLambda() const {
4556   if (auto RD = dyn_cast<CXXRecordDecl>(this))
4557     return RD->isLambda();
4558   return false;
4559 }
4560 
4561 bool RecordDecl::isCapturedRecord() const {
4562   return hasAttr<CapturedRecordAttr>();
4563 }
4564 
4565 void RecordDecl::setCapturedRecord() {
4566   addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4567 }
4568 
4569 bool RecordDecl::isOrContainsUnion() const {
4570   if (isUnion())
4571     return true;
4572 
4573   if (const RecordDecl *Def = getDefinition()) {
4574     for (const FieldDecl *FD : Def->fields()) {
4575       const RecordType *RT = FD->getType()->getAs<RecordType>();
4576       if (RT && RT->getDecl()->isOrContainsUnion())
4577         return true;
4578     }
4579   }
4580 
4581   return false;
4582 }
4583 
4584 RecordDecl::field_iterator RecordDecl::field_begin() const {
4585   if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4586     LoadFieldsFromExternalStorage();
4587 
4588   return field_iterator(decl_iterator(FirstDecl));
4589 }
4590 
4591 /// completeDefinition - Notes that the definition of this type is now
4592 /// complete.
4593 void RecordDecl::completeDefinition() {
4594   assert(!isCompleteDefinition() && "Cannot redefine record!");
4595   TagDecl::completeDefinition();
4596 
4597   ASTContext &Ctx = getASTContext();
4598 
4599   // Layouts are dumped when computed, so if we are dumping for all complete
4600   // types, we need to force usage to get types that wouldn't be used elsewhere.
4601   if (Ctx.getLangOpts().DumpRecordLayoutsComplete)
4602     (void)Ctx.getASTRecordLayout(this);
4603 }
4604 
4605 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4606 /// This which can be turned on with an attribute, pragma, or the
4607 /// -mms-bitfields command-line option.
4608 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4609   return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4610 }
4611 
4612 void RecordDecl::LoadFieldsFromExternalStorage() const {
4613   ExternalASTSource *Source = getASTContext().getExternalSource();
4614   assert(hasExternalLexicalStorage() && Source && "No external storage?");
4615 
4616   // Notify that we have a RecordDecl doing some initialization.
4617   ExternalASTSource::Deserializing TheFields(Source);
4618 
4619   SmallVector<Decl*, 64> Decls;
4620   setHasLoadedFieldsFromExternalStorage(true);
4621   Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4622     return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4623   }, Decls);
4624 
4625 #ifndef NDEBUG
4626   // Check that all decls we got were FieldDecls.
4627   for (unsigned i=0, e=Decls.size(); i != e; ++i)
4628     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4629 #endif
4630 
4631   if (Decls.empty())
4632     return;
4633 
4634   std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4635                                                  /*FieldsAlreadyLoaded=*/false);
4636 }
4637 
4638 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4639   ASTContext &Context = getASTContext();
4640   const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4641       (SanitizerKind::Address | SanitizerKind::KernelAddress);
4642   if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4643     return false;
4644   const auto &NoSanitizeList = Context.getNoSanitizeList();
4645   const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4646   // We may be able to relax some of these requirements.
4647   int ReasonToReject = -1;
4648   if (!CXXRD || CXXRD->isExternCContext())
4649     ReasonToReject = 0;  // is not C++.
4650   else if (CXXRD->hasAttr<PackedAttr>())
4651     ReasonToReject = 1;  // is packed.
4652   else if (CXXRD->isUnion())
4653     ReasonToReject = 2;  // is a union.
4654   else if (CXXRD->isTriviallyCopyable())
4655     ReasonToReject = 3;  // is trivially copyable.
4656   else if (CXXRD->hasTrivialDestructor())
4657     ReasonToReject = 4;  // has trivial destructor.
4658   else if (CXXRD->isStandardLayout())
4659     ReasonToReject = 5;  // is standard layout.
4660   else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(),
4661                                            "field-padding"))
4662     ReasonToReject = 6;  // is in an excluded file.
4663   else if (NoSanitizeList.containsType(
4664                EnabledAsanMask, getQualifiedNameAsString(), "field-padding"))
4665     ReasonToReject = 7;  // The type is excluded.
4666 
4667   if (EmitRemark) {
4668     if (ReasonToReject >= 0)
4669       Context.getDiagnostics().Report(
4670           getLocation(),
4671           diag::remark_sanitize_address_insert_extra_padding_rejected)
4672           << getQualifiedNameAsString() << ReasonToReject;
4673     else
4674       Context.getDiagnostics().Report(
4675           getLocation(),
4676           diag::remark_sanitize_address_insert_extra_padding_accepted)
4677           << getQualifiedNameAsString();
4678   }
4679   return ReasonToReject < 0;
4680 }
4681 
4682 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4683   for (const auto *I : fields()) {
4684     if (I->getIdentifier())
4685       return I;
4686 
4687     if (const auto *RT = I->getType()->getAs<RecordType>())
4688       if (const FieldDecl *NamedDataMember =
4689               RT->getDecl()->findFirstNamedDataMember())
4690         return NamedDataMember;
4691   }
4692 
4693   // We didn't find a named data member.
4694   return nullptr;
4695 }
4696 
4697 //===----------------------------------------------------------------------===//
4698 // BlockDecl Implementation
4699 //===----------------------------------------------------------------------===//
4700 
4701 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4702     : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4703   setIsVariadic(false);
4704   setCapturesCXXThis(false);
4705   setBlockMissingReturnType(true);
4706   setIsConversionFromLambda(false);
4707   setDoesNotEscape(false);
4708   setCanAvoidCopyToHeap(false);
4709 }
4710 
4711 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4712   assert(!ParamInfo && "Already has param info!");
4713 
4714   // Zero params -> null pointer.
4715   if (!NewParamInfo.empty()) {
4716     NumParams = NewParamInfo.size();
4717     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4718     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4719   }
4720 }
4721 
4722 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4723                             bool CapturesCXXThis) {
4724   this->setCapturesCXXThis(CapturesCXXThis);
4725   this->NumCaptures = Captures.size();
4726 
4727   if (Captures.empty()) {
4728     this->Captures = nullptr;
4729     return;
4730   }
4731 
4732   this->Captures = Captures.copy(Context).data();
4733 }
4734 
4735 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4736   for (const auto &I : captures())
4737     // Only auto vars can be captured, so no redeclaration worries.
4738     if (I.getVariable() == variable)
4739       return true;
4740 
4741   return false;
4742 }
4743 
4744 SourceRange BlockDecl::getSourceRange() const {
4745   return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4746 }
4747 
4748 //===----------------------------------------------------------------------===//
4749 // Other Decl Allocation/Deallocation Method Implementations
4750 //===----------------------------------------------------------------------===//
4751 
4752 void TranslationUnitDecl::anchor() {}
4753 
4754 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4755   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4756 }
4757 
4758 void PragmaCommentDecl::anchor() {}
4759 
4760 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4761                                              TranslationUnitDecl *DC,
4762                                              SourceLocation CommentLoc,
4763                                              PragmaMSCommentKind CommentKind,
4764                                              StringRef Arg) {
4765   PragmaCommentDecl *PCD =
4766       new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4767           PragmaCommentDecl(DC, CommentLoc, CommentKind);
4768   memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4769   PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4770   return PCD;
4771 }
4772 
4773 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4774                                                          unsigned ID,
4775                                                          unsigned ArgSize) {
4776   return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4777       PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4778 }
4779 
4780 void PragmaDetectMismatchDecl::anchor() {}
4781 
4782 PragmaDetectMismatchDecl *
4783 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
4784                                  SourceLocation Loc, StringRef Name,
4785                                  StringRef Value) {
4786   size_t ValueStart = Name.size() + 1;
4787   PragmaDetectMismatchDecl *PDMD =
4788       new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4789           PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4790   memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4791   PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4792   memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4793          Value.size());
4794   PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
4795   return PDMD;
4796 }
4797 
4798 PragmaDetectMismatchDecl *
4799 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4800                                              unsigned NameValueSize) {
4801   return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
4802       PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
4803 }
4804 
4805 void ExternCContextDecl::anchor() {}
4806 
4807 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
4808                                                TranslationUnitDecl *DC) {
4809   return new (C, DC) ExternCContextDecl(DC);
4810 }
4811 
4812 void LabelDecl::anchor() {}
4813 
4814 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4815                              SourceLocation IdentL, IdentifierInfo *II) {
4816   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
4817 }
4818 
4819 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
4820                              SourceLocation IdentL, IdentifierInfo *II,
4821                              SourceLocation GnuLabelL) {
4822   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
4823   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
4824 }
4825 
4826 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4827   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
4828                                SourceLocation());
4829 }
4830 
4831 void LabelDecl::setMSAsmLabel(StringRef Name) {
4832 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
4833   memcpy(Buffer, Name.data(), Name.size());
4834   Buffer[Name.size()] = '\0';
4835   MSAsmName = Buffer;
4836 }
4837 
4838 void ValueDecl::anchor() {}
4839 
4840 bool ValueDecl::isWeak() const {
4841   auto *MostRecent = getMostRecentDecl();
4842   return MostRecent->hasAttr<WeakAttr>() ||
4843          MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
4844 }
4845 
4846 void ImplicitParamDecl::anchor() {}
4847 
4848 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4849                                              SourceLocation IdLoc,
4850                                              IdentifierInfo *Id, QualType Type,
4851                                              ImplicitParamKind ParamKind) {
4852   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
4853 }
4854 
4855 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
4856                                              ImplicitParamKind ParamKind) {
4857   return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
4858 }
4859 
4860 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4861                                                          unsigned ID) {
4862   return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
4863 }
4864 
4865 FunctionDecl *
4866 FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4867                      const DeclarationNameInfo &NameInfo, QualType T,
4868                      TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
4869                      bool isInlineSpecified, bool hasWrittenPrototype,
4870                      ConstexprSpecKind ConstexprKind,
4871                      Expr *TrailingRequiresClause) {
4872   FunctionDecl *New = new (C, DC) FunctionDecl(
4873       Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
4874       isInlineSpecified, ConstexprKind, TrailingRequiresClause);
4875   New->setHasWrittenPrototype(hasWrittenPrototype);
4876   return New;
4877 }
4878 
4879 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4880   return new (C, ID) FunctionDecl(
4881       Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(),
4882       nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr);
4883 }
4884 
4885 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4886   return new (C, DC) BlockDecl(DC, L);
4887 }
4888 
4889 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4890   return new (C, ID) BlockDecl(nullptr, SourceLocation());
4891 }
4892 
4893 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4894     : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4895       NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4896 
4897 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
4898                                    unsigned NumParams) {
4899   return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4900       CapturedDecl(DC, NumParams);
4901 }
4902 
4903 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4904                                                unsigned NumParams) {
4905   return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4906       CapturedDecl(nullptr, NumParams);
4907 }
4908 
4909 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4910 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4911 
4912 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4913 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4914 
4915 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
4916                                            SourceLocation L,
4917                                            IdentifierInfo *Id, QualType T,
4918                                            Expr *E, const llvm::APSInt &V) {
4919   return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4920 }
4921 
4922 EnumConstantDecl *
4923 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4924   return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4925                                       QualType(), nullptr, llvm::APSInt());
4926 }
4927 
4928 void IndirectFieldDecl::anchor() {}
4929 
4930 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4931                                      SourceLocation L, DeclarationName N,
4932                                      QualType T,
4933                                      MutableArrayRef<NamedDecl *> CH)
4934     : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4935       ChainingSize(CH.size()) {
4936   // In C++, indirect field declarations conflict with tag declarations in the
4937   // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4938   if (C.getLangOpts().CPlusPlus)
4939     IdentifierNamespace |= IDNS_Tag;
4940 }
4941 
4942 IndirectFieldDecl *
4943 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
4944                           IdentifierInfo *Id, QualType T,
4945                           llvm::MutableArrayRef<NamedDecl *> CH) {
4946   return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4947 }
4948 
4949 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
4950                                                          unsigned ID) {
4951   return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4952                                        DeclarationName(), QualType(), None);
4953 }
4954 
4955 SourceRange EnumConstantDecl::getSourceRange() const {
4956   SourceLocation End = getLocation();
4957   if (Init)
4958     End = Init->getEndLoc();
4959   return SourceRange(getLocation(), End);
4960 }
4961 
4962 void TypeDecl::anchor() {}
4963 
4964 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
4965                                  SourceLocation StartLoc, SourceLocation IdLoc,
4966                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4967   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4968 }
4969 
4970 void TypedefNameDecl::anchor() {}
4971 
4972 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
4973   if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4974     auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4975     auto *ThisTypedef = this;
4976     if (AnyRedecl && OwningTypedef) {
4977       OwningTypedef = OwningTypedef->getCanonicalDecl();
4978       ThisTypedef = ThisTypedef->getCanonicalDecl();
4979     }
4980     if (OwningTypedef == ThisTypedef)
4981       return TT->getDecl();
4982   }
4983 
4984   return nullptr;
4985 }
4986 
4987 bool TypedefNameDecl::isTransparentTagSlow() const {
4988   auto determineIsTransparent = [&]() {
4989     if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
4990       if (auto *TD = TT->getDecl()) {
4991         if (TD->getName() != getName())
4992           return false;
4993         SourceLocation TTLoc = getLocation();
4994         SourceLocation TDLoc = TD->getLocation();
4995         if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
4996           return false;
4997         SourceManager &SM = getASTContext().getSourceManager();
4998         return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
4999       }
5000     }
5001     return false;
5002   };
5003 
5004   bool isTransparent = determineIsTransparent();
5005   MaybeModedTInfo.setInt((isTransparent << 1) | 1);
5006   return isTransparent;
5007 }
5008 
5009 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5010   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
5011                                  nullptr, nullptr);
5012 }
5013 
5014 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
5015                                      SourceLocation StartLoc,
5016                                      SourceLocation IdLoc, IdentifierInfo *Id,
5017                                      TypeSourceInfo *TInfo) {
5018   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5019 }
5020 
5021 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5022   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
5023                                    SourceLocation(), nullptr, nullptr);
5024 }
5025 
5026 SourceRange TypedefDecl::getSourceRange() const {
5027   SourceLocation RangeEnd = getLocation();
5028   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
5029     if (typeIsPostfix(TInfo->getType()))
5030       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5031   }
5032   return SourceRange(getBeginLoc(), RangeEnd);
5033 }
5034 
5035 SourceRange TypeAliasDecl::getSourceRange() const {
5036   SourceLocation RangeEnd = getBeginLoc();
5037   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
5038     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5039   return SourceRange(getBeginLoc(), RangeEnd);
5040 }
5041 
5042 void FileScopeAsmDecl::anchor() {}
5043 
5044 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
5045                                            StringLiteral *Str,
5046                                            SourceLocation AsmLoc,
5047                                            SourceLocation RParenLoc) {
5048   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
5049 }
5050 
5051 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
5052                                                        unsigned ID) {
5053   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
5054                                       SourceLocation());
5055 }
5056 
5057 void EmptyDecl::anchor() {}
5058 
5059 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5060   return new (C, DC) EmptyDecl(DC, L);
5061 }
5062 
5063 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5064   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
5065 }
5066 
5067 //===----------------------------------------------------------------------===//
5068 // ImportDecl Implementation
5069 //===----------------------------------------------------------------------===//
5070 
5071 /// Retrieve the number of module identifiers needed to name the given
5072 /// module.
5073 static unsigned getNumModuleIdentifiers(Module *Mod) {
5074   unsigned Result = 1;
5075   while (Mod->Parent) {
5076     Mod = Mod->Parent;
5077     ++Result;
5078   }
5079   return Result;
5080 }
5081 
5082 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5083                        Module *Imported,
5084                        ArrayRef<SourceLocation> IdentifierLocs)
5085     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5086       NextLocalImportAndComplete(nullptr, true) {
5087   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
5088   auto *StoredLocs = getTrailingObjects<SourceLocation>();
5089   std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
5090                           StoredLocs);
5091 }
5092 
5093 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5094                        Module *Imported, SourceLocation EndLoc)
5095     : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5096       NextLocalImportAndComplete(nullptr, false) {
5097   *getTrailingObjects<SourceLocation>() = EndLoc;
5098 }
5099 
5100 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
5101                                SourceLocation StartLoc, Module *Imported,
5102                                ArrayRef<SourceLocation> IdentifierLocs) {
5103   return new (C, DC,
5104               additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
5105       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
5106 }
5107 
5108 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
5109                                        SourceLocation StartLoc,
5110                                        Module *Imported,
5111                                        SourceLocation EndLoc) {
5112   ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
5113       ImportDecl(DC, StartLoc, Imported, EndLoc);
5114   Import->setImplicit();
5115   return Import;
5116 }
5117 
5118 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5119                                            unsigned NumLocations) {
5120   return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
5121       ImportDecl(EmptyShell());
5122 }
5123 
5124 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
5125   if (!isImportComplete())
5126     return None;
5127 
5128   const auto *StoredLocs = getTrailingObjects<SourceLocation>();
5129   return llvm::makeArrayRef(StoredLocs,
5130                             getNumModuleIdentifiers(getImportedModule()));
5131 }
5132 
5133 SourceRange ImportDecl::getSourceRange() const {
5134   if (!isImportComplete())
5135     return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
5136 
5137   return SourceRange(getLocation(), getIdentifierLocs().back());
5138 }
5139 
5140 //===----------------------------------------------------------------------===//
5141 // ExportDecl Implementation
5142 //===----------------------------------------------------------------------===//
5143 
5144 void ExportDecl::anchor() {}
5145 
5146 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
5147                                SourceLocation ExportLoc) {
5148   return new (C, DC) ExportDecl(DC, ExportLoc);
5149 }
5150 
5151 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5152   return new (C, ID) ExportDecl(nullptr, SourceLocation());
5153 }
5154