1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Decl subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Decl.h" 14 #include "Linkage.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTDiagnostic.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/ASTMutationListener.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/CanonicalType.h" 21 #include "clang/AST/DeclBase.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/DeclOpenMP.h" 25 #include "clang/AST/DeclTemplate.h" 26 #include "clang/AST/DeclarationName.h" 27 #include "clang/AST/Expr.h" 28 #include "clang/AST/ExprCXX.h" 29 #include "clang/AST/ExternalASTSource.h" 30 #include "clang/AST/ODRHash.h" 31 #include "clang/AST/PrettyDeclStackTrace.h" 32 #include "clang/AST/PrettyPrinter.h" 33 #include "clang/AST/Redeclarable.h" 34 #include "clang/AST/Stmt.h" 35 #include "clang/AST/TemplateBase.h" 36 #include "clang/AST/Type.h" 37 #include "clang/AST/TypeLoc.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/IdentifierTable.h" 40 #include "clang/Basic/LLVM.h" 41 #include "clang/Basic/LangOptions.h" 42 #include "clang/Basic/Linkage.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/NoSanitizeList.h" 45 #include "clang/Basic/PartialDiagnostic.h" 46 #include "clang/Basic/Sanitizers.h" 47 #include "clang/Basic/SourceLocation.h" 48 #include "clang/Basic/SourceManager.h" 49 #include "clang/Basic/Specifiers.h" 50 #include "clang/Basic/TargetCXXABI.h" 51 #include "clang/Basic/TargetInfo.h" 52 #include "clang/Basic/Visibility.h" 53 #include "llvm/ADT/APSInt.h" 54 #include "llvm/ADT/ArrayRef.h" 55 #include "llvm/ADT/None.h" 56 #include "llvm/ADT/Optional.h" 57 #include "llvm/ADT/STLExtras.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/StringSwitch.h" 61 #include "llvm/ADT/Triple.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstddef> 68 #include <cstring> 69 #include <memory> 70 #include <string> 71 #include <tuple> 72 #include <type_traits> 73 74 using namespace clang; 75 76 Decl *clang::getPrimaryMergedDecl(Decl *D) { 77 return D->getASTContext().getPrimaryMergedDecl(D); 78 } 79 80 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const { 81 SourceLocation Loc = this->Loc; 82 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation(); 83 if (Loc.isValid()) { 84 Loc.print(OS, Context.getSourceManager()); 85 OS << ": "; 86 } 87 OS << Message; 88 89 if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) { 90 OS << " '"; 91 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true); 92 OS << "'"; 93 } 94 95 OS << '\n'; 96 } 97 98 // Defined here so that it can be inlined into its direct callers. 99 bool Decl::isOutOfLine() const { 100 return !getLexicalDeclContext()->Equals(getDeclContext()); 101 } 102 103 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx) 104 : Decl(TranslationUnit, nullptr, SourceLocation()), 105 DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {} 106 107 //===----------------------------------------------------------------------===// 108 // NamedDecl Implementation 109 //===----------------------------------------------------------------------===// 110 111 // Visibility rules aren't rigorously externally specified, but here 112 // are the basic principles behind what we implement: 113 // 114 // 1. An explicit visibility attribute is generally a direct expression 115 // of the user's intent and should be honored. Only the innermost 116 // visibility attribute applies. If no visibility attribute applies, 117 // global visibility settings are considered. 118 // 119 // 2. There is one caveat to the above: on or in a template pattern, 120 // an explicit visibility attribute is just a default rule, and 121 // visibility can be decreased by the visibility of template 122 // arguments. But this, too, has an exception: an attribute on an 123 // explicit specialization or instantiation causes all the visibility 124 // restrictions of the template arguments to be ignored. 125 // 126 // 3. A variable that does not otherwise have explicit visibility can 127 // be restricted by the visibility of its type. 128 // 129 // 4. A visibility restriction is explicit if it comes from an 130 // attribute (or something like it), not a global visibility setting. 131 // When emitting a reference to an external symbol, visibility 132 // restrictions are ignored unless they are explicit. 133 // 134 // 5. When computing the visibility of a non-type, including a 135 // non-type member of a class, only non-type visibility restrictions 136 // are considered: the 'visibility' attribute, global value-visibility 137 // settings, and a few special cases like __private_extern. 138 // 139 // 6. When computing the visibility of a type, including a type member 140 // of a class, only type visibility restrictions are considered: 141 // the 'type_visibility' attribute and global type-visibility settings. 142 // However, a 'visibility' attribute counts as a 'type_visibility' 143 // attribute on any declaration that only has the former. 144 // 145 // The visibility of a "secondary" entity, like a template argument, 146 // is computed using the kind of that entity, not the kind of the 147 // primary entity for which we are computing visibility. For example, 148 // the visibility of a specialization of either of these templates: 149 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); 150 // template <class T, bool (&compare)(T, X)> class matcher; 151 // is restricted according to the type visibility of the argument 'T', 152 // the type visibility of 'bool(&)(T,X)', and the value visibility of 153 // the argument function 'compare'. That 'has_match' is a value 154 // and 'matcher' is a type only matters when looking for attributes 155 // and settings from the immediate context. 156 157 /// Does this computation kind permit us to consider additional 158 /// visibility settings from attributes and the like? 159 static bool hasExplicitVisibilityAlready(LVComputationKind computation) { 160 return computation.IgnoreExplicitVisibility; 161 } 162 163 /// Given an LVComputationKind, return one of the same type/value sort 164 /// that records that it already has explicit visibility. 165 static LVComputationKind 166 withExplicitVisibilityAlready(LVComputationKind Kind) { 167 Kind.IgnoreExplicitVisibility = true; 168 return Kind; 169 } 170 171 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D, 172 LVComputationKind kind) { 173 assert(!kind.IgnoreExplicitVisibility && 174 "asking for explicit visibility when we shouldn't be"); 175 return D->getExplicitVisibility(kind.getExplicitVisibilityKind()); 176 } 177 178 /// Is the given declaration a "type" or a "value" for the purposes of 179 /// visibility computation? 180 static bool usesTypeVisibility(const NamedDecl *D) { 181 return isa<TypeDecl>(D) || 182 isa<ClassTemplateDecl>(D) || 183 isa<ObjCInterfaceDecl>(D); 184 } 185 186 /// Does the given declaration have member specialization information, 187 /// and if so, is it an explicit specialization? 188 template <class T> static typename 189 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type 190 isExplicitMemberSpecialization(const T *D) { 191 if (const MemberSpecializationInfo *member = 192 D->getMemberSpecializationInfo()) { 193 return member->isExplicitSpecialization(); 194 } 195 return false; 196 } 197 198 /// For templates, this question is easier: a member template can't be 199 /// explicitly instantiated, so there's a single bit indicating whether 200 /// or not this is an explicit member specialization. 201 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { 202 return D->isMemberSpecialization(); 203 } 204 205 /// Given a visibility attribute, return the explicit visibility 206 /// associated with it. 207 template <class T> 208 static Visibility getVisibilityFromAttr(const T *attr) { 209 switch (attr->getVisibility()) { 210 case T::Default: 211 return DefaultVisibility; 212 case T::Hidden: 213 return HiddenVisibility; 214 case T::Protected: 215 return ProtectedVisibility; 216 } 217 llvm_unreachable("bad visibility kind"); 218 } 219 220 /// Return the explicit visibility of the given declaration. 221 static Optional<Visibility> getVisibilityOf(const NamedDecl *D, 222 NamedDecl::ExplicitVisibilityKind kind) { 223 // If we're ultimately computing the visibility of a type, look for 224 // a 'type_visibility' attribute before looking for 'visibility'. 225 if (kind == NamedDecl::VisibilityForType) { 226 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) { 227 return getVisibilityFromAttr(A); 228 } 229 } 230 231 // If this declaration has an explicit visibility attribute, use it. 232 if (const auto *A = D->getAttr<VisibilityAttr>()) { 233 return getVisibilityFromAttr(A); 234 } 235 236 return None; 237 } 238 239 LinkageInfo LinkageComputer::getLVForType(const Type &T, 240 LVComputationKind computation) { 241 if (computation.IgnoreAllVisibility) 242 return LinkageInfo(T.getLinkage(), DefaultVisibility, true); 243 return getTypeLinkageAndVisibility(&T); 244 } 245 246 /// Get the most restrictive linkage for the types in the given 247 /// template parameter list. For visibility purposes, template 248 /// parameters are part of the signature of a template. 249 LinkageInfo LinkageComputer::getLVForTemplateParameterList( 250 const TemplateParameterList *Params, LVComputationKind computation) { 251 LinkageInfo LV; 252 for (const NamedDecl *P : *Params) { 253 // Template type parameters are the most common and never 254 // contribute to visibility, pack or not. 255 if (isa<TemplateTypeParmDecl>(P)) 256 continue; 257 258 // Non-type template parameters can be restricted by the value type, e.g. 259 // template <enum X> class A { ... }; 260 // We have to be careful here, though, because we can be dealing with 261 // dependent types. 262 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 263 // Handle the non-pack case first. 264 if (!NTTP->isExpandedParameterPack()) { 265 if (!NTTP->getType()->isDependentType()) { 266 LV.merge(getLVForType(*NTTP->getType(), computation)); 267 } 268 continue; 269 } 270 271 // Look at all the types in an expanded pack. 272 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { 273 QualType type = NTTP->getExpansionType(i); 274 if (!type->isDependentType()) 275 LV.merge(getTypeLinkageAndVisibility(type)); 276 } 277 continue; 278 } 279 280 // Template template parameters can be restricted by their 281 // template parameters, recursively. 282 const auto *TTP = cast<TemplateTemplateParmDecl>(P); 283 284 // Handle the non-pack case first. 285 if (!TTP->isExpandedParameterPack()) { 286 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), 287 computation)); 288 continue; 289 } 290 291 // Look at all expansions in an expanded pack. 292 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); 293 i != n; ++i) { 294 LV.merge(getLVForTemplateParameterList( 295 TTP->getExpansionTemplateParameters(i), computation)); 296 } 297 } 298 299 return LV; 300 } 301 302 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { 303 const Decl *Ret = nullptr; 304 const DeclContext *DC = D->getDeclContext(); 305 while (DC->getDeclKind() != Decl::TranslationUnit) { 306 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) 307 Ret = cast<Decl>(DC); 308 DC = DC->getParent(); 309 } 310 return Ret; 311 } 312 313 /// Get the most restrictive linkage for the types and 314 /// declarations in the given template argument list. 315 /// 316 /// Note that we don't take an LVComputationKind because we always 317 /// want to honor the visibility of template arguments in the same way. 318 LinkageInfo 319 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args, 320 LVComputationKind computation) { 321 LinkageInfo LV; 322 323 for (const TemplateArgument &Arg : Args) { 324 switch (Arg.getKind()) { 325 case TemplateArgument::Null: 326 case TemplateArgument::Integral: 327 case TemplateArgument::Expression: 328 continue; 329 330 case TemplateArgument::Type: 331 LV.merge(getLVForType(*Arg.getAsType(), computation)); 332 continue; 333 334 case TemplateArgument::Declaration: { 335 const NamedDecl *ND = Arg.getAsDecl(); 336 assert(!usesTypeVisibility(ND)); 337 LV.merge(getLVForDecl(ND, computation)); 338 continue; 339 } 340 341 case TemplateArgument::NullPtr: 342 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType())); 343 continue; 344 345 case TemplateArgument::Template: 346 case TemplateArgument::TemplateExpansion: 347 if (TemplateDecl *Template = 348 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) 349 LV.merge(getLVForDecl(Template, computation)); 350 continue; 351 352 case TemplateArgument::Pack: 353 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation)); 354 continue; 355 } 356 llvm_unreachable("bad template argument kind"); 357 } 358 359 return LV; 360 } 361 362 LinkageInfo 363 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, 364 LVComputationKind computation) { 365 return getLVForTemplateArgumentList(TArgs.asArray(), computation); 366 } 367 368 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, 369 const FunctionTemplateSpecializationInfo *specInfo) { 370 // Include visibility from the template parameters and arguments 371 // only if this is not an explicit instantiation or specialization 372 // with direct explicit visibility. (Implicit instantiations won't 373 // have a direct attribute.) 374 if (!specInfo->isExplicitInstantiationOrSpecialization()) 375 return true; 376 377 return !fn->hasAttr<VisibilityAttr>(); 378 } 379 380 /// Merge in template-related linkage and visibility for the given 381 /// function template specialization. 382 /// 383 /// We don't need a computation kind here because we can assume 384 /// LVForValue. 385 /// 386 /// \param[out] LV the computation to use for the parent 387 void LinkageComputer::mergeTemplateLV( 388 LinkageInfo &LV, const FunctionDecl *fn, 389 const FunctionTemplateSpecializationInfo *specInfo, 390 LVComputationKind computation) { 391 bool considerVisibility = 392 shouldConsiderTemplateVisibility(fn, specInfo); 393 394 // Merge information from the template parameters. 395 FunctionTemplateDecl *temp = specInfo->getTemplate(); 396 LinkageInfo tempLV = 397 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 398 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 399 400 // Merge information from the template arguments. 401 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; 402 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 403 LV.mergeMaybeWithVisibility(argsLV, considerVisibility); 404 } 405 406 /// Does the given declaration have a direct visibility attribute 407 /// that would match the given rules? 408 static bool hasDirectVisibilityAttribute(const NamedDecl *D, 409 LVComputationKind computation) { 410 if (computation.IgnoreAllVisibility) 411 return false; 412 413 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) || 414 D->hasAttr<VisibilityAttr>(); 415 } 416 417 /// Should we consider visibility associated with the template 418 /// arguments and parameters of the given class template specialization? 419 static bool shouldConsiderTemplateVisibility( 420 const ClassTemplateSpecializationDecl *spec, 421 LVComputationKind computation) { 422 // Include visibility from the template parameters and arguments 423 // only if this is not an explicit instantiation or specialization 424 // with direct explicit visibility (and note that implicit 425 // instantiations won't have a direct attribute). 426 // 427 // Furthermore, we want to ignore template parameters and arguments 428 // for an explicit specialization when computing the visibility of a 429 // member thereof with explicit visibility. 430 // 431 // This is a bit complex; let's unpack it. 432 // 433 // An explicit class specialization is an independent, top-level 434 // declaration. As such, if it or any of its members has an 435 // explicit visibility attribute, that must directly express the 436 // user's intent, and we should honor it. The same logic applies to 437 // an explicit instantiation of a member of such a thing. 438 439 // Fast path: if this is not an explicit instantiation or 440 // specialization, we always want to consider template-related 441 // visibility restrictions. 442 if (!spec->isExplicitInstantiationOrSpecialization()) 443 return true; 444 445 // This is the 'member thereof' check. 446 if (spec->isExplicitSpecialization() && 447 hasExplicitVisibilityAlready(computation)) 448 return false; 449 450 return !hasDirectVisibilityAttribute(spec, computation); 451 } 452 453 /// Merge in template-related linkage and visibility for the given 454 /// class template specialization. 455 void LinkageComputer::mergeTemplateLV( 456 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec, 457 LVComputationKind computation) { 458 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 459 460 // Merge information from the template parameters, but ignore 461 // visibility if we're only considering template arguments. 462 463 ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 464 LinkageInfo tempLV = 465 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 466 LV.mergeMaybeWithVisibility(tempLV, 467 considerVisibility && !hasExplicitVisibilityAlready(computation)); 468 469 // Merge information from the template arguments. We ignore 470 // template-argument visibility if we've got an explicit 471 // instantiation with a visibility attribute. 472 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 473 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 474 if (considerVisibility) 475 LV.mergeVisibility(argsLV); 476 LV.mergeExternalVisibility(argsLV); 477 } 478 479 /// Should we consider visibility associated with the template 480 /// arguments and parameters of the given variable template 481 /// specialization? As usual, follow class template specialization 482 /// logic up to initialization. 483 static bool shouldConsiderTemplateVisibility( 484 const VarTemplateSpecializationDecl *spec, 485 LVComputationKind computation) { 486 // Include visibility from the template parameters and arguments 487 // only if this is not an explicit instantiation or specialization 488 // with direct explicit visibility (and note that implicit 489 // instantiations won't have a direct attribute). 490 if (!spec->isExplicitInstantiationOrSpecialization()) 491 return true; 492 493 // An explicit variable specialization is an independent, top-level 494 // declaration. As such, if it has an explicit visibility attribute, 495 // that must directly express the user's intent, and we should honor 496 // it. 497 if (spec->isExplicitSpecialization() && 498 hasExplicitVisibilityAlready(computation)) 499 return false; 500 501 return !hasDirectVisibilityAttribute(spec, computation); 502 } 503 504 /// Merge in template-related linkage and visibility for the given 505 /// variable template specialization. As usual, follow class template 506 /// specialization logic up to initialization. 507 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV, 508 const VarTemplateSpecializationDecl *spec, 509 LVComputationKind computation) { 510 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 511 512 // Merge information from the template parameters, but ignore 513 // visibility if we're only considering template arguments. 514 515 VarTemplateDecl *temp = spec->getSpecializedTemplate(); 516 LinkageInfo tempLV = 517 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 518 LV.mergeMaybeWithVisibility(tempLV, 519 considerVisibility && !hasExplicitVisibilityAlready(computation)); 520 521 // Merge information from the template arguments. We ignore 522 // template-argument visibility if we've got an explicit 523 // instantiation with a visibility attribute. 524 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 525 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 526 if (considerVisibility) 527 LV.mergeVisibility(argsLV); 528 LV.mergeExternalVisibility(argsLV); 529 } 530 531 static bool useInlineVisibilityHidden(const NamedDecl *D) { 532 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. 533 const LangOptions &Opts = D->getASTContext().getLangOpts(); 534 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) 535 return false; 536 537 const auto *FD = dyn_cast<FunctionDecl>(D); 538 if (!FD) 539 return false; 540 541 TemplateSpecializationKind TSK = TSK_Undeclared; 542 if (FunctionTemplateSpecializationInfo *spec 543 = FD->getTemplateSpecializationInfo()) { 544 TSK = spec->getTemplateSpecializationKind(); 545 } else if (MemberSpecializationInfo *MSI = 546 FD->getMemberSpecializationInfo()) { 547 TSK = MSI->getTemplateSpecializationKind(); 548 } 549 550 const FunctionDecl *Def = nullptr; 551 // InlineVisibilityHidden only applies to definitions, and 552 // isInlined() only gives meaningful answers on definitions 553 // anyway. 554 return TSK != TSK_ExplicitInstantiationDeclaration && 555 TSK != TSK_ExplicitInstantiationDefinition && 556 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); 557 } 558 559 template <typename T> static bool isFirstInExternCContext(T *D) { 560 const T *First = D->getFirstDecl(); 561 return First->isInExternCContext(); 562 } 563 564 static bool isSingleLineLanguageLinkage(const Decl &D) { 565 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) 566 if (!SD->hasBraces()) 567 return true; 568 return false; 569 } 570 571 /// Determine whether D is declared in the purview of a named module. 572 static bool isInModulePurview(const NamedDecl *D) { 573 if (auto *M = D->getOwningModule()) 574 return M->isModulePurview(); 575 return false; 576 } 577 578 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) { 579 // FIXME: Handle isModulePrivate. 580 switch (D->getModuleOwnershipKind()) { 581 case Decl::ModuleOwnershipKind::Unowned: 582 case Decl::ModuleOwnershipKind::ModulePrivate: 583 return false; 584 case Decl::ModuleOwnershipKind::Visible: 585 case Decl::ModuleOwnershipKind::VisibleWhenImported: 586 return isInModulePurview(D); 587 } 588 llvm_unreachable("unexpected module ownership kind"); 589 } 590 591 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) { 592 // Internal linkage declarations within a module interface unit are modeled 593 // as "module-internal linkage", which means that they have internal linkage 594 // formally but can be indirectly accessed from outside the module via inline 595 // functions and templates defined within the module. 596 if (isInModulePurview(D)) 597 return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false); 598 599 return LinkageInfo::internal(); 600 } 601 602 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) { 603 // C++ Modules TS [basic.link]/6.8: 604 // - A name declared at namespace scope that does not have internal linkage 605 // by the previous rules and that is introduced by a non-exported 606 // declaration has module linkage. 607 if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit( 608 cast<NamedDecl>(D->getCanonicalDecl()))) 609 return LinkageInfo(ModuleLinkage, DefaultVisibility, false); 610 611 return LinkageInfo::external(); 612 } 613 614 static StorageClass getStorageClass(const Decl *D) { 615 if (auto *TD = dyn_cast<TemplateDecl>(D)) 616 D = TD->getTemplatedDecl(); 617 if (D) { 618 if (auto *VD = dyn_cast<VarDecl>(D)) 619 return VD->getStorageClass(); 620 if (auto *FD = dyn_cast<FunctionDecl>(D)) 621 return FD->getStorageClass(); 622 } 623 return SC_None; 624 } 625 626 LinkageInfo 627 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D, 628 LVComputationKind computation, 629 bool IgnoreVarTypeLinkage) { 630 assert(D->getDeclContext()->getRedeclContext()->isFileContext() && 631 "Not a name having namespace scope"); 632 ASTContext &Context = D->getASTContext(); 633 634 // C++ [basic.link]p3: 635 // A name having namespace scope (3.3.6) has internal linkage if it 636 // is the name of 637 638 if (getStorageClass(D->getCanonicalDecl()) == SC_Static) { 639 // - a variable, variable template, function, or function template 640 // that is explicitly declared static; or 641 // (This bullet corresponds to C99 6.2.2p3.) 642 return getInternalLinkageFor(D); 643 } 644 645 if (const auto *Var = dyn_cast<VarDecl>(D)) { 646 // - a non-template variable of non-volatile const-qualified type, unless 647 // - it is explicitly declared extern, or 648 // - it is inline or exported, or 649 // - it was previously declared and the prior declaration did not have 650 // internal linkage 651 // (There is no equivalent in C99.) 652 if (Context.getLangOpts().CPlusPlus && 653 Var->getType().isConstQualified() && 654 !Var->getType().isVolatileQualified() && 655 !Var->isInline() && 656 !isExportedFromModuleInterfaceUnit(Var) && 657 !isa<VarTemplateSpecializationDecl>(Var) && 658 !Var->getDescribedVarTemplate()) { 659 const VarDecl *PrevVar = Var->getPreviousDecl(); 660 if (PrevVar) 661 return getLVForDecl(PrevVar, computation); 662 663 if (Var->getStorageClass() != SC_Extern && 664 Var->getStorageClass() != SC_PrivateExtern && 665 !isSingleLineLanguageLinkage(*Var)) 666 return getInternalLinkageFor(Var); 667 } 668 669 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; 670 PrevVar = PrevVar->getPreviousDecl()) { 671 if (PrevVar->getStorageClass() == SC_PrivateExtern && 672 Var->getStorageClass() == SC_None) 673 return getDeclLinkageAndVisibility(PrevVar); 674 // Explicitly declared static. 675 if (PrevVar->getStorageClass() == SC_Static) 676 return getInternalLinkageFor(Var); 677 } 678 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) { 679 // - a data member of an anonymous union. 680 const VarDecl *VD = IFD->getVarDecl(); 681 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!"); 682 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage); 683 } 684 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"); 685 686 // FIXME: This gives internal linkage to names that should have no linkage 687 // (those not covered by [basic.link]p6). 688 if (D->isInAnonymousNamespace()) { 689 const auto *Var = dyn_cast<VarDecl>(D); 690 const auto *Func = dyn_cast<FunctionDecl>(D); 691 // FIXME: The check for extern "C" here is not justified by the standard 692 // wording, but we retain it from the pre-DR1113 model to avoid breaking 693 // code. 694 // 695 // C++11 [basic.link]p4: 696 // An unnamed namespace or a namespace declared directly or indirectly 697 // within an unnamed namespace has internal linkage. 698 if ((!Var || !isFirstInExternCContext(Var)) && 699 (!Func || !isFirstInExternCContext(Func))) 700 return getInternalLinkageFor(D); 701 } 702 703 // Set up the defaults. 704 705 // C99 6.2.2p5: 706 // If the declaration of an identifier for an object has file 707 // scope and no storage-class specifier, its linkage is 708 // external. 709 LinkageInfo LV = getExternalLinkageFor(D); 710 711 if (!hasExplicitVisibilityAlready(computation)) { 712 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) { 713 LV.mergeVisibility(*Vis, true); 714 } else { 715 // If we're declared in a namespace with a visibility attribute, 716 // use that namespace's visibility, and it still counts as explicit. 717 for (const DeclContext *DC = D->getDeclContext(); 718 !isa<TranslationUnitDecl>(DC); 719 DC = DC->getParent()) { 720 const auto *ND = dyn_cast<NamespaceDecl>(DC); 721 if (!ND) continue; 722 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) { 723 LV.mergeVisibility(*Vis, true); 724 break; 725 } 726 } 727 } 728 729 // Add in global settings if the above didn't give us direct visibility. 730 if (!LV.isVisibilityExplicit()) { 731 // Use global type/value visibility as appropriate. 732 Visibility globalVisibility = 733 computation.isValueVisibility() 734 ? Context.getLangOpts().getValueVisibilityMode() 735 : Context.getLangOpts().getTypeVisibilityMode(); 736 LV.mergeVisibility(globalVisibility, /*explicit*/ false); 737 738 // If we're paying attention to global visibility, apply 739 // -finline-visibility-hidden if this is an inline method. 740 if (useInlineVisibilityHidden(D)) 741 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 742 } 743 } 744 745 // C++ [basic.link]p4: 746 747 // A name having namespace scope that has not been given internal linkage 748 // above and that is the name of 749 // [...bullets...] 750 // has its linkage determined as follows: 751 // - if the enclosing namespace has internal linkage, the name has 752 // internal linkage; [handled above] 753 // - otherwise, if the declaration of the name is attached to a named 754 // module and is not exported, the name has module linkage; 755 // - otherwise, the name has external linkage. 756 // LV is currently set up to handle the last two bullets. 757 // 758 // The bullets are: 759 760 // - a variable; or 761 if (const auto *Var = dyn_cast<VarDecl>(D)) { 762 // GCC applies the following optimization to variables and static 763 // data members, but not to functions: 764 // 765 // Modify the variable's LV by the LV of its type unless this is 766 // C or extern "C". This follows from [basic.link]p9: 767 // A type without linkage shall not be used as the type of a 768 // variable or function with external linkage unless 769 // - the entity has C language linkage, or 770 // - the entity is declared within an unnamed namespace, or 771 // - the entity is not used or is defined in the same 772 // translation unit. 773 // and [basic.link]p10: 774 // ...the types specified by all declarations referring to a 775 // given variable or function shall be identical... 776 // C does not have an equivalent rule. 777 // 778 // Ignore this if we've got an explicit attribute; the user 779 // probably knows what they're doing. 780 // 781 // Note that we don't want to make the variable non-external 782 // because of this, but unique-external linkage suits us. 783 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) && 784 !IgnoreVarTypeLinkage) { 785 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); 786 if (!isExternallyVisible(TypeLV.getLinkage())) 787 return LinkageInfo::uniqueExternal(); 788 if (!LV.isVisibilityExplicit()) 789 LV.mergeVisibility(TypeLV); 790 } 791 792 if (Var->getStorageClass() == SC_PrivateExtern) 793 LV.mergeVisibility(HiddenVisibility, true); 794 795 // Note that Sema::MergeVarDecl already takes care of implementing 796 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have 797 // to do it here. 798 799 // As per function and class template specializations (below), 800 // consider LV for the template and template arguments. We're at file 801 // scope, so we do not need to worry about nested specializations. 802 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 803 mergeTemplateLV(LV, spec, computation); 804 } 805 806 // - a function; or 807 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 808 // In theory, we can modify the function's LV by the LV of its 809 // type unless it has C linkage (see comment above about variables 810 // for justification). In practice, GCC doesn't do this, so it's 811 // just too painful to make work. 812 813 if (Function->getStorageClass() == SC_PrivateExtern) 814 LV.mergeVisibility(HiddenVisibility, true); 815 816 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 817 // merging storage classes and visibility attributes, so we don't have to 818 // look at previous decls in here. 819 820 // In C++, then if the type of the function uses a type with 821 // unique-external linkage, it's not legally usable from outside 822 // this translation unit. However, we should use the C linkage 823 // rules instead for extern "C" declarations. 824 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) { 825 // Only look at the type-as-written. Otherwise, deducing the return type 826 // of a function could change its linkage. 827 QualType TypeAsWritten = Function->getType(); 828 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) 829 TypeAsWritten = TSI->getType(); 830 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 831 return LinkageInfo::uniqueExternal(); 832 } 833 834 // Consider LV from the template and the template arguments. 835 // We're at file scope, so we do not need to worry about nested 836 // specializations. 837 if (FunctionTemplateSpecializationInfo *specInfo 838 = Function->getTemplateSpecializationInfo()) { 839 mergeTemplateLV(LV, Function, specInfo, computation); 840 } 841 842 // - a named class (Clause 9), or an unnamed class defined in a 843 // typedef declaration in which the class has the typedef name 844 // for linkage purposes (7.1.3); or 845 // - a named enumeration (7.2), or an unnamed enumeration 846 // defined in a typedef declaration in which the enumeration 847 // has the typedef name for linkage purposes (7.1.3); or 848 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) { 849 // Unnamed tags have no linkage. 850 if (!Tag->hasNameForLinkage()) 851 return LinkageInfo::none(); 852 853 // If this is a class template specialization, consider the 854 // linkage of the template and template arguments. We're at file 855 // scope, so we do not need to worry about nested specializations. 856 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { 857 mergeTemplateLV(LV, spec, computation); 858 } 859 860 // FIXME: This is not part of the C++ standard any more. 861 // - an enumerator belonging to an enumeration with external linkage; or 862 } else if (isa<EnumConstantDecl>(D)) { 863 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), 864 computation); 865 if (!isExternalFormalLinkage(EnumLV.getLinkage())) 866 return LinkageInfo::none(); 867 LV.merge(EnumLV); 868 869 // - a template 870 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 871 bool considerVisibility = !hasExplicitVisibilityAlready(computation); 872 LinkageInfo tempLV = 873 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 874 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 875 876 // An unnamed namespace or a namespace declared directly or indirectly 877 // within an unnamed namespace has internal linkage. All other namespaces 878 // have external linkage. 879 // 880 // We handled names in anonymous namespaces above. 881 } else if (isa<NamespaceDecl>(D)) { 882 return LV; 883 884 // By extension, we assign external linkage to Objective-C 885 // interfaces. 886 } else if (isa<ObjCInterfaceDecl>(D)) { 887 // fallout 888 889 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 890 // A typedef declaration has linkage if it gives a type a name for 891 // linkage purposes. 892 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 893 return LinkageInfo::none(); 894 895 } else if (isa<MSGuidDecl>(D)) { 896 // A GUID behaves like an inline variable with external linkage. Fall 897 // through. 898 899 // Everything not covered here has no linkage. 900 } else { 901 return LinkageInfo::none(); 902 } 903 904 // If we ended up with non-externally-visible linkage, visibility should 905 // always be default. 906 if (!isExternallyVisible(LV.getLinkage())) 907 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); 908 909 // Mark the symbols as hidden when compiling for the device. 910 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice) 911 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false); 912 913 return LV; 914 } 915 916 LinkageInfo 917 LinkageComputer::getLVForClassMember(const NamedDecl *D, 918 LVComputationKind computation, 919 bool IgnoreVarTypeLinkage) { 920 // Only certain class members have linkage. Note that fields don't 921 // really have linkage, but it's convenient to say they do for the 922 // purposes of calculating linkage of pointer-to-data-member 923 // template arguments. 924 // 925 // Templates also don't officially have linkage, but since we ignore 926 // the C++ standard and look at template arguments when determining 927 // linkage and visibility of a template specialization, we might hit 928 // a template template argument that way. If we do, we need to 929 // consider its linkage. 930 if (!(isa<CXXMethodDecl>(D) || 931 isa<VarDecl>(D) || 932 isa<FieldDecl>(D) || 933 isa<IndirectFieldDecl>(D) || 934 isa<TagDecl>(D) || 935 isa<TemplateDecl>(D))) 936 return LinkageInfo::none(); 937 938 LinkageInfo LV; 939 940 // If we have an explicit visibility attribute, merge that in. 941 if (!hasExplicitVisibilityAlready(computation)) { 942 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) 943 LV.mergeVisibility(*Vis, true); 944 // If we're paying attention to global visibility, apply 945 // -finline-visibility-hidden if this is an inline method. 946 // 947 // Note that we do this before merging information about 948 // the class visibility. 949 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) 950 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 951 } 952 953 // If this class member has an explicit visibility attribute, the only 954 // thing that can change its visibility is the template arguments, so 955 // only look for them when processing the class. 956 LVComputationKind classComputation = computation; 957 if (LV.isVisibilityExplicit()) 958 classComputation = withExplicitVisibilityAlready(computation); 959 960 LinkageInfo classLV = 961 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); 962 // The member has the same linkage as the class. If that's not externally 963 // visible, we don't need to compute anything about the linkage. 964 // FIXME: If we're only computing linkage, can we bail out here? 965 if (!isExternallyVisible(classLV.getLinkage())) 966 return classLV; 967 968 969 // Otherwise, don't merge in classLV yet, because in certain cases 970 // we need to completely ignore the visibility from it. 971 972 // Specifically, if this decl exists and has an explicit attribute. 973 const NamedDecl *explicitSpecSuppressor = nullptr; 974 975 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 976 // Only look at the type-as-written. Otherwise, deducing the return type 977 // of a function could change its linkage. 978 QualType TypeAsWritten = MD->getType(); 979 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 980 TypeAsWritten = TSI->getType(); 981 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 982 return LinkageInfo::uniqueExternal(); 983 984 // If this is a method template specialization, use the linkage for 985 // the template parameters and arguments. 986 if (FunctionTemplateSpecializationInfo *spec 987 = MD->getTemplateSpecializationInfo()) { 988 mergeTemplateLV(LV, MD, spec, computation); 989 if (spec->isExplicitSpecialization()) { 990 explicitSpecSuppressor = MD; 991 } else if (isExplicitMemberSpecialization(spec->getTemplate())) { 992 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); 993 } 994 } else if (isExplicitMemberSpecialization(MD)) { 995 explicitSpecSuppressor = MD; 996 } 997 998 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 999 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 1000 mergeTemplateLV(LV, spec, computation); 1001 if (spec->isExplicitSpecialization()) { 1002 explicitSpecSuppressor = spec; 1003 } else { 1004 const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 1005 if (isExplicitMemberSpecialization(temp)) { 1006 explicitSpecSuppressor = temp->getTemplatedDecl(); 1007 } 1008 } 1009 } else if (isExplicitMemberSpecialization(RD)) { 1010 explicitSpecSuppressor = RD; 1011 } 1012 1013 // Static data members. 1014 } else if (const auto *VD = dyn_cast<VarDecl>(D)) { 1015 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD)) 1016 mergeTemplateLV(LV, spec, computation); 1017 1018 // Modify the variable's linkage by its type, but ignore the 1019 // type's visibility unless it's a definition. 1020 if (!IgnoreVarTypeLinkage) { 1021 LinkageInfo typeLV = getLVForType(*VD->getType(), computation); 1022 // FIXME: If the type's linkage is not externally visible, we can 1023 // give this static data member UniqueExternalLinkage. 1024 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) 1025 LV.mergeVisibility(typeLV); 1026 LV.mergeExternalVisibility(typeLV); 1027 } 1028 1029 if (isExplicitMemberSpecialization(VD)) { 1030 explicitSpecSuppressor = VD; 1031 } 1032 1033 // Template members. 1034 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 1035 bool considerVisibility = 1036 (!LV.isVisibilityExplicit() && 1037 !classLV.isVisibilityExplicit() && 1038 !hasExplicitVisibilityAlready(computation)); 1039 LinkageInfo tempLV = 1040 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 1041 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 1042 1043 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) { 1044 if (isExplicitMemberSpecialization(redeclTemp)) { 1045 explicitSpecSuppressor = temp->getTemplatedDecl(); 1046 } 1047 } 1048 } 1049 1050 // We should never be looking for an attribute directly on a template. 1051 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); 1052 1053 // If this member is an explicit member specialization, and it has 1054 // an explicit attribute, ignore visibility from the parent. 1055 bool considerClassVisibility = true; 1056 if (explicitSpecSuppressor && 1057 // optimization: hasDVA() is true only with explicit visibility. 1058 LV.isVisibilityExplicit() && 1059 classLV.getVisibility() != DefaultVisibility && 1060 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { 1061 considerClassVisibility = false; 1062 } 1063 1064 // Finally, merge in information from the class. 1065 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); 1066 return LV; 1067 } 1068 1069 void NamedDecl::anchor() {} 1070 1071 bool NamedDecl::isLinkageValid() const { 1072 if (!hasCachedLinkage()) 1073 return true; 1074 1075 Linkage L = LinkageComputer{} 1076 .computeLVForDecl(this, LVComputationKind::forLinkageOnly()) 1077 .getLinkage(); 1078 return L == getCachedLinkage(); 1079 } 1080 1081 ReservedIdentifierStatus 1082 NamedDecl::isReserved(const LangOptions &LangOpts) const { 1083 const IdentifierInfo *II = getIdentifier(); 1084 1085 // This triggers at least for CXXLiteralIdentifiers, which we already checked 1086 // at lexing time. 1087 if (!II) 1088 return ReservedIdentifierStatus::NotReserved; 1089 1090 ReservedIdentifierStatus Status = II->isReserved(LangOpts); 1091 if (Status == ReservedIdentifierStatus::StartsWithUnderscoreAtGlobalScope) { 1092 // Check if we're at TU level or not. 1093 if (isa<ParmVarDecl>(this) || isTemplateParameter()) 1094 return ReservedIdentifierStatus::NotReserved; 1095 const DeclContext *DC = getDeclContext()->getRedeclContext(); 1096 if (!DC->isTranslationUnit()) 1097 return ReservedIdentifierStatus::NotReserved; 1098 } 1099 1100 return Status; 1101 } 1102 1103 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const { 1104 StringRef name = getName(); 1105 if (name.empty()) return SFF_None; 1106 1107 if (name.front() == 'C') 1108 if (name == "CFStringCreateWithFormat" || 1109 name == "CFStringCreateWithFormatAndArguments" || 1110 name == "CFStringAppendFormat" || 1111 name == "CFStringAppendFormatAndArguments") 1112 return SFF_CFString; 1113 return SFF_None; 1114 } 1115 1116 Linkage NamedDecl::getLinkageInternal() const { 1117 // We don't care about visibility here, so ask for the cheapest 1118 // possible visibility analysis. 1119 return LinkageComputer{} 1120 .getLVForDecl(this, LVComputationKind::forLinkageOnly()) 1121 .getLinkage(); 1122 } 1123 1124 LinkageInfo NamedDecl::getLinkageAndVisibility() const { 1125 return LinkageComputer{}.getDeclLinkageAndVisibility(this); 1126 } 1127 1128 static Optional<Visibility> 1129 getExplicitVisibilityAux(const NamedDecl *ND, 1130 NamedDecl::ExplicitVisibilityKind kind, 1131 bool IsMostRecent) { 1132 assert(!IsMostRecent || ND == ND->getMostRecentDecl()); 1133 1134 // Check the declaration itself first. 1135 if (Optional<Visibility> V = getVisibilityOf(ND, kind)) 1136 return V; 1137 1138 // If this is a member class of a specialization of a class template 1139 // and the corresponding decl has explicit visibility, use that. 1140 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 1141 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); 1142 if (InstantiatedFrom) 1143 return getVisibilityOf(InstantiatedFrom, kind); 1144 } 1145 1146 // If there wasn't explicit visibility there, and this is a 1147 // specialization of a class template, check for visibility 1148 // on the pattern. 1149 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 1150 // Walk all the template decl till this point to see if there are 1151 // explicit visibility attributes. 1152 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl(); 1153 while (TD != nullptr) { 1154 auto Vis = getVisibilityOf(TD, kind); 1155 if (Vis != None) 1156 return Vis; 1157 TD = TD->getPreviousDecl(); 1158 } 1159 return None; 1160 } 1161 1162 // Use the most recent declaration. 1163 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) { 1164 const NamedDecl *MostRecent = ND->getMostRecentDecl(); 1165 if (MostRecent != ND) 1166 return getExplicitVisibilityAux(MostRecent, kind, true); 1167 } 1168 1169 if (const auto *Var = dyn_cast<VarDecl>(ND)) { 1170 if (Var->isStaticDataMember()) { 1171 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); 1172 if (InstantiatedFrom) 1173 return getVisibilityOf(InstantiatedFrom, kind); 1174 } 1175 1176 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var)) 1177 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(), 1178 kind); 1179 1180 return None; 1181 } 1182 // Also handle function template specializations. 1183 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) { 1184 // If the function is a specialization of a template with an 1185 // explicit visibility attribute, use that. 1186 if (FunctionTemplateSpecializationInfo *templateInfo 1187 = fn->getTemplateSpecializationInfo()) 1188 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), 1189 kind); 1190 1191 // If the function is a member of a specialization of a class template 1192 // and the corresponding decl has explicit visibility, use that. 1193 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); 1194 if (InstantiatedFrom) 1195 return getVisibilityOf(InstantiatedFrom, kind); 1196 1197 return None; 1198 } 1199 1200 // The visibility of a template is stored in the templated decl. 1201 if (const auto *TD = dyn_cast<TemplateDecl>(ND)) 1202 return getVisibilityOf(TD->getTemplatedDecl(), kind); 1203 1204 return None; 1205 } 1206 1207 Optional<Visibility> 1208 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { 1209 return getExplicitVisibilityAux(this, kind, false); 1210 } 1211 1212 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC, 1213 Decl *ContextDecl, 1214 LVComputationKind computation) { 1215 // This lambda has its linkage/visibility determined by its owner. 1216 const NamedDecl *Owner; 1217 if (!ContextDecl) 1218 Owner = dyn_cast<NamedDecl>(DC); 1219 else if (isa<ParmVarDecl>(ContextDecl)) 1220 Owner = 1221 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext()); 1222 else 1223 Owner = cast<NamedDecl>(ContextDecl); 1224 1225 if (!Owner) 1226 return LinkageInfo::none(); 1227 1228 // If the owner has a deduced type, we need to skip querying the linkage and 1229 // visibility of that type, because it might involve this closure type. The 1230 // only effect of this is that we might give a lambda VisibleNoLinkage rather 1231 // than NoLinkage when we don't strictly need to, which is benign. 1232 auto *VD = dyn_cast<VarDecl>(Owner); 1233 LinkageInfo OwnerLV = 1234 VD && VD->getType()->getContainedDeducedType() 1235 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true) 1236 : getLVForDecl(Owner, computation); 1237 1238 // A lambda never formally has linkage. But if the owner is externally 1239 // visible, then the lambda is too. We apply the same rules to blocks. 1240 if (!isExternallyVisible(OwnerLV.getLinkage())) 1241 return LinkageInfo::none(); 1242 return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(), 1243 OwnerLV.isVisibilityExplicit()); 1244 } 1245 1246 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D, 1247 LVComputationKind computation) { 1248 if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 1249 if (Function->isInAnonymousNamespace() && 1250 !isFirstInExternCContext(Function)) 1251 return getInternalLinkageFor(Function); 1252 1253 // This is a "void f();" which got merged with a file static. 1254 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 1255 return getInternalLinkageFor(Function); 1256 1257 LinkageInfo LV; 1258 if (!hasExplicitVisibilityAlready(computation)) { 1259 if (Optional<Visibility> Vis = 1260 getExplicitVisibility(Function, computation)) 1261 LV.mergeVisibility(*Vis, true); 1262 } 1263 1264 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 1265 // merging storage classes and visibility attributes, so we don't have to 1266 // look at previous decls in here. 1267 1268 return LV; 1269 } 1270 1271 if (const auto *Var = dyn_cast<VarDecl>(D)) { 1272 if (Var->hasExternalStorage()) { 1273 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var)) 1274 return getInternalLinkageFor(Var); 1275 1276 LinkageInfo LV; 1277 if (Var->getStorageClass() == SC_PrivateExtern) 1278 LV.mergeVisibility(HiddenVisibility, true); 1279 else if (!hasExplicitVisibilityAlready(computation)) { 1280 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation)) 1281 LV.mergeVisibility(*Vis, true); 1282 } 1283 1284 if (const VarDecl *Prev = Var->getPreviousDecl()) { 1285 LinkageInfo PrevLV = getLVForDecl(Prev, computation); 1286 if (PrevLV.getLinkage()) 1287 LV.setLinkage(PrevLV.getLinkage()); 1288 LV.mergeVisibility(PrevLV); 1289 } 1290 1291 return LV; 1292 } 1293 1294 if (!Var->isStaticLocal()) 1295 return LinkageInfo::none(); 1296 } 1297 1298 ASTContext &Context = D->getASTContext(); 1299 if (!Context.getLangOpts().CPlusPlus) 1300 return LinkageInfo::none(); 1301 1302 const Decl *OuterD = getOutermostFuncOrBlockContext(D); 1303 if (!OuterD || OuterD->isInvalidDecl()) 1304 return LinkageInfo::none(); 1305 1306 LinkageInfo LV; 1307 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) { 1308 if (!BD->getBlockManglingNumber()) 1309 return LinkageInfo::none(); 1310 1311 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), 1312 BD->getBlockManglingContextDecl(), computation); 1313 } else { 1314 const auto *FD = cast<FunctionDecl>(OuterD); 1315 if (!FD->isInlined() && 1316 !isTemplateInstantiation(FD->getTemplateSpecializationKind())) 1317 return LinkageInfo::none(); 1318 1319 // If a function is hidden by -fvisibility-inlines-hidden option and 1320 // is not explicitly attributed as a hidden function, 1321 // we should not make static local variables in the function hidden. 1322 LV = getLVForDecl(FD, computation); 1323 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) && 1324 !LV.isVisibilityExplicit() && 1325 !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) { 1326 assert(cast<VarDecl>(D)->isStaticLocal()); 1327 // If this was an implicitly hidden inline method, check again for 1328 // explicit visibility on the parent class, and use that for static locals 1329 // if present. 1330 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1331 LV = getLVForDecl(MD->getParent(), computation); 1332 if (!LV.isVisibilityExplicit()) { 1333 Visibility globalVisibility = 1334 computation.isValueVisibility() 1335 ? Context.getLangOpts().getValueVisibilityMode() 1336 : Context.getLangOpts().getTypeVisibilityMode(); 1337 return LinkageInfo(VisibleNoLinkage, globalVisibility, 1338 /*visibilityExplicit=*/false); 1339 } 1340 } 1341 } 1342 if (!isExternallyVisible(LV.getLinkage())) 1343 return LinkageInfo::none(); 1344 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), 1345 LV.isVisibilityExplicit()); 1346 } 1347 1348 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D, 1349 LVComputationKind computation, 1350 bool IgnoreVarTypeLinkage) { 1351 // Internal_linkage attribute overrides other considerations. 1352 if (D->hasAttr<InternalLinkageAttr>()) 1353 return getInternalLinkageFor(D); 1354 1355 // Objective-C: treat all Objective-C declarations as having external 1356 // linkage. 1357 switch (D->getKind()) { 1358 default: 1359 break; 1360 1361 // Per C++ [basic.link]p2, only the names of objects, references, 1362 // functions, types, templates, namespaces, and values ever have linkage. 1363 // 1364 // Note that the name of a typedef, namespace alias, using declaration, 1365 // and so on are not the name of the corresponding type, namespace, or 1366 // declaration, so they do *not* have linkage. 1367 case Decl::ImplicitParam: 1368 case Decl::Label: 1369 case Decl::NamespaceAlias: 1370 case Decl::ParmVar: 1371 case Decl::Using: 1372 case Decl::UsingEnum: 1373 case Decl::UsingShadow: 1374 case Decl::UsingDirective: 1375 return LinkageInfo::none(); 1376 1377 case Decl::EnumConstant: 1378 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration. 1379 if (D->getASTContext().getLangOpts().CPlusPlus) 1380 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation); 1381 return LinkageInfo::visible_none(); 1382 1383 case Decl::Typedef: 1384 case Decl::TypeAlias: 1385 // A typedef declaration has linkage if it gives a type a name for 1386 // linkage purposes. 1387 if (!cast<TypedefNameDecl>(D) 1388 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 1389 return LinkageInfo::none(); 1390 break; 1391 1392 case Decl::TemplateTemplateParm: // count these as external 1393 case Decl::NonTypeTemplateParm: 1394 case Decl::ObjCAtDefsField: 1395 case Decl::ObjCCategory: 1396 case Decl::ObjCCategoryImpl: 1397 case Decl::ObjCCompatibleAlias: 1398 case Decl::ObjCImplementation: 1399 case Decl::ObjCMethod: 1400 case Decl::ObjCProperty: 1401 case Decl::ObjCPropertyImpl: 1402 case Decl::ObjCProtocol: 1403 return getExternalLinkageFor(D); 1404 1405 case Decl::CXXRecord: { 1406 const auto *Record = cast<CXXRecordDecl>(D); 1407 if (Record->isLambda()) { 1408 if (Record->hasKnownLambdaInternalLinkage() || 1409 !Record->getLambdaManglingNumber()) { 1410 // This lambda has no mangling number, so it's internal. 1411 return getInternalLinkageFor(D); 1412 } 1413 1414 return getLVForClosure( 1415 Record->getDeclContext()->getRedeclContext(), 1416 Record->getLambdaContextDecl(), computation); 1417 } 1418 1419 break; 1420 } 1421 1422 case Decl::TemplateParamObject: { 1423 // The template parameter object can be referenced from anywhere its type 1424 // and value can be referenced. 1425 auto *TPO = cast<TemplateParamObjectDecl>(D); 1426 LinkageInfo LV = getLVForType(*TPO->getType(), computation); 1427 LV.merge(getLVForValue(TPO->getValue(), computation)); 1428 return LV; 1429 } 1430 } 1431 1432 // Handle linkage for namespace-scope names. 1433 if (D->getDeclContext()->getRedeclContext()->isFileContext()) 1434 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage); 1435 1436 // C++ [basic.link]p5: 1437 // In addition, a member function, static data member, a named 1438 // class or enumeration of class scope, or an unnamed class or 1439 // enumeration defined in a class-scope typedef declaration such 1440 // that the class or enumeration has the typedef name for linkage 1441 // purposes (7.1.3), has external linkage if the name of the class 1442 // has external linkage. 1443 if (D->getDeclContext()->isRecord()) 1444 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage); 1445 1446 // C++ [basic.link]p6: 1447 // The name of a function declared in block scope and the name of 1448 // an object declared by a block scope extern declaration have 1449 // linkage. If there is a visible declaration of an entity with 1450 // linkage having the same name and type, ignoring entities 1451 // declared outside the innermost enclosing namespace scope, the 1452 // block scope declaration declares that same entity and receives 1453 // the linkage of the previous declaration. If there is more than 1454 // one such matching entity, the program is ill-formed. Otherwise, 1455 // if no matching entity is found, the block scope entity receives 1456 // external linkage. 1457 if (D->getDeclContext()->isFunctionOrMethod()) 1458 return getLVForLocalDecl(D, computation); 1459 1460 // C++ [basic.link]p6: 1461 // Names not covered by these rules have no linkage. 1462 return LinkageInfo::none(); 1463 } 1464 1465 /// getLVForDecl - Get the linkage and visibility for the given declaration. 1466 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D, 1467 LVComputationKind computation) { 1468 // Internal_linkage attribute overrides other considerations. 1469 if (D->hasAttr<InternalLinkageAttr>()) 1470 return getInternalLinkageFor(D); 1471 1472 if (computation.IgnoreAllVisibility && D->hasCachedLinkage()) 1473 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); 1474 1475 if (llvm::Optional<LinkageInfo> LI = lookup(D, computation)) 1476 return *LI; 1477 1478 LinkageInfo LV = computeLVForDecl(D, computation); 1479 if (D->hasCachedLinkage()) 1480 assert(D->getCachedLinkage() == LV.getLinkage()); 1481 1482 D->setCachedLinkage(LV.getLinkage()); 1483 cache(D, computation, LV); 1484 1485 #ifndef NDEBUG 1486 // In C (because of gnu inline) and in c++ with microsoft extensions an 1487 // static can follow an extern, so we can have two decls with different 1488 // linkages. 1489 const LangOptions &Opts = D->getASTContext().getLangOpts(); 1490 if (!Opts.CPlusPlus || Opts.MicrosoftExt) 1491 return LV; 1492 1493 // We have just computed the linkage for this decl. By induction we know 1494 // that all other computed linkages match, check that the one we just 1495 // computed also does. 1496 NamedDecl *Old = nullptr; 1497 for (auto I : D->redecls()) { 1498 auto *T = cast<NamedDecl>(I); 1499 if (T == D) 1500 continue; 1501 if (!T->isInvalidDecl() && T->hasCachedLinkage()) { 1502 Old = T; 1503 break; 1504 } 1505 } 1506 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); 1507 #endif 1508 1509 return LV; 1510 } 1511 1512 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) { 1513 NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D) 1514 ? NamedDecl::VisibilityForType 1515 : NamedDecl::VisibilityForValue; 1516 LVComputationKind CK(EK); 1517 return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility 1518 ? CK.forLinkageOnly() 1519 : CK); 1520 } 1521 1522 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const { 1523 Module *M = getOwningModule(); 1524 if (!M) 1525 return nullptr; 1526 1527 switch (M->Kind) { 1528 case Module::ModuleMapModule: 1529 // Module map modules have no special linkage semantics. 1530 return nullptr; 1531 1532 case Module::ModuleInterfaceUnit: 1533 return M; 1534 1535 case Module::GlobalModuleFragment: { 1536 // External linkage declarations in the global module have no owning module 1537 // for linkage purposes. But internal linkage declarations in the global 1538 // module fragment of a particular module are owned by that module for 1539 // linkage purposes. 1540 if (IgnoreLinkage) 1541 return nullptr; 1542 bool InternalLinkage; 1543 if (auto *ND = dyn_cast<NamedDecl>(this)) 1544 InternalLinkage = !ND->hasExternalFormalLinkage(); 1545 else { 1546 auto *NSD = dyn_cast<NamespaceDecl>(this); 1547 InternalLinkage = (NSD && NSD->isAnonymousNamespace()) || 1548 isInAnonymousNamespace(); 1549 } 1550 return InternalLinkage ? M->Parent : nullptr; 1551 } 1552 1553 case Module::PrivateModuleFragment: 1554 // The private module fragment is part of its containing module for linkage 1555 // purposes. 1556 return M->Parent; 1557 } 1558 1559 llvm_unreachable("unknown module kind"); 1560 } 1561 1562 void NamedDecl::printName(raw_ostream &os) const { 1563 os << Name; 1564 } 1565 1566 std::string NamedDecl::getQualifiedNameAsString() const { 1567 std::string QualName; 1568 llvm::raw_string_ostream OS(QualName); 1569 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1570 return OS.str(); 1571 } 1572 1573 void NamedDecl::printQualifiedName(raw_ostream &OS) const { 1574 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1575 } 1576 1577 void NamedDecl::printQualifiedName(raw_ostream &OS, 1578 const PrintingPolicy &P) const { 1579 if (getDeclContext()->isFunctionOrMethod()) { 1580 // We do not print '(anonymous)' for function parameters without name. 1581 printName(OS); 1582 return; 1583 } 1584 printNestedNameSpecifier(OS, P); 1585 if (getDeclName()) 1586 OS << *this; 1587 else { 1588 // Give the printName override a chance to pick a different name before we 1589 // fall back to "(anonymous)". 1590 SmallString<64> NameBuffer; 1591 llvm::raw_svector_ostream NameOS(NameBuffer); 1592 printName(NameOS); 1593 if (NameBuffer.empty()) 1594 OS << "(anonymous)"; 1595 else 1596 OS << NameBuffer; 1597 } 1598 } 1599 1600 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const { 1601 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy()); 1602 } 1603 1604 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS, 1605 const PrintingPolicy &P) const { 1606 const DeclContext *Ctx = getDeclContext(); 1607 1608 // For ObjC methods and properties, look through categories and use the 1609 // interface as context. 1610 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) { 1611 if (auto *ID = MD->getClassInterface()) 1612 Ctx = ID; 1613 } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) { 1614 if (auto *MD = PD->getGetterMethodDecl()) 1615 if (auto *ID = MD->getClassInterface()) 1616 Ctx = ID; 1617 } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) { 1618 if (auto *CI = ID->getContainingInterface()) 1619 Ctx = CI; 1620 } 1621 1622 if (Ctx->isFunctionOrMethod()) 1623 return; 1624 1625 using ContextsTy = SmallVector<const DeclContext *, 8>; 1626 ContextsTy Contexts; 1627 1628 // Collect named contexts. 1629 DeclarationName NameInScope = getDeclName(); 1630 for (; Ctx; Ctx = Ctx->getParent()) { 1631 // Suppress anonymous namespace if requested. 1632 if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) && 1633 cast<NamespaceDecl>(Ctx)->isAnonymousNamespace()) 1634 continue; 1635 1636 // Suppress inline namespace if it doesn't make the result ambiguous. 1637 if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope && 1638 cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope)) 1639 continue; 1640 1641 // Skip non-named contexts such as linkage specifications and ExportDecls. 1642 const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx); 1643 if (!ND) 1644 continue; 1645 1646 Contexts.push_back(Ctx); 1647 NameInScope = ND->getDeclName(); 1648 } 1649 1650 for (unsigned I = Contexts.size(); I != 0; --I) { 1651 const DeclContext *DC = Contexts[I - 1]; 1652 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { 1653 OS << Spec->getName(); 1654 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 1655 printTemplateArgumentList( 1656 OS, TemplateArgs.asArray(), P, 1657 Spec->getSpecializedTemplate()->getTemplateParameters()); 1658 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 1659 if (ND->isAnonymousNamespace()) { 1660 OS << (P.MSVCFormatting ? "`anonymous namespace\'" 1661 : "(anonymous namespace)"); 1662 } 1663 else 1664 OS << *ND; 1665 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) { 1666 if (!RD->getIdentifier()) 1667 OS << "(anonymous " << RD->getKindName() << ')'; 1668 else 1669 OS << *RD; 1670 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1671 const FunctionProtoType *FT = nullptr; 1672 if (FD->hasWrittenPrototype()) 1673 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); 1674 1675 OS << *FD << '('; 1676 if (FT) { 1677 unsigned NumParams = FD->getNumParams(); 1678 for (unsigned i = 0; i < NumParams; ++i) { 1679 if (i) 1680 OS << ", "; 1681 OS << FD->getParamDecl(i)->getType().stream(P); 1682 } 1683 1684 if (FT->isVariadic()) { 1685 if (NumParams > 0) 1686 OS << ", "; 1687 OS << "..."; 1688 } 1689 } 1690 OS << ')'; 1691 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) { 1692 // C++ [dcl.enum]p10: Each enum-name and each unscoped 1693 // enumerator is declared in the scope that immediately contains 1694 // the enum-specifier. Each scoped enumerator is declared in the 1695 // scope of the enumeration. 1696 // For the case of unscoped enumerator, do not include in the qualified 1697 // name any information about its enum enclosing scope, as its visibility 1698 // is global. 1699 if (ED->isScoped()) 1700 OS << *ED; 1701 else 1702 continue; 1703 } else { 1704 OS << *cast<NamedDecl>(DC); 1705 } 1706 OS << "::"; 1707 } 1708 } 1709 1710 void NamedDecl::getNameForDiagnostic(raw_ostream &OS, 1711 const PrintingPolicy &Policy, 1712 bool Qualified) const { 1713 if (Qualified) 1714 printQualifiedName(OS, Policy); 1715 else 1716 printName(OS); 1717 } 1718 1719 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) { 1720 return true; 1721 } 1722 static bool isRedeclarableImpl(...) { return false; } 1723 static bool isRedeclarable(Decl::Kind K) { 1724 switch (K) { 1725 #define DECL(Type, Base) \ 1726 case Decl::Type: \ 1727 return isRedeclarableImpl((Type##Decl *)nullptr); 1728 #define ABSTRACT_DECL(DECL) 1729 #include "clang/AST/DeclNodes.inc" 1730 } 1731 llvm_unreachable("unknown decl kind"); 1732 } 1733 1734 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const { 1735 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); 1736 1737 // Never replace one imported declaration with another; we need both results 1738 // when re-exporting. 1739 if (OldD->isFromASTFile() && isFromASTFile()) 1740 return false; 1741 1742 // A kind mismatch implies that the declaration is not replaced. 1743 if (OldD->getKind() != getKind()) 1744 return false; 1745 1746 // For method declarations, we never replace. (Why?) 1747 if (isa<ObjCMethodDecl>(this)) 1748 return false; 1749 1750 // For parameters, pick the newer one. This is either an error or (in 1751 // Objective-C) permitted as an extension. 1752 if (isa<ParmVarDecl>(this)) 1753 return true; 1754 1755 // Inline namespaces can give us two declarations with the same 1756 // name and kind in the same scope but different contexts; we should 1757 // keep both declarations in this case. 1758 if (!this->getDeclContext()->getRedeclContext()->Equals( 1759 OldD->getDeclContext()->getRedeclContext())) 1760 return false; 1761 1762 // Using declarations can be replaced if they import the same name from the 1763 // same context. 1764 if (auto *UD = dyn_cast<UsingDecl>(this)) { 1765 ASTContext &Context = getASTContext(); 1766 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) == 1767 Context.getCanonicalNestedNameSpecifier( 1768 cast<UsingDecl>(OldD)->getQualifier()); 1769 } 1770 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) { 1771 ASTContext &Context = getASTContext(); 1772 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) == 1773 Context.getCanonicalNestedNameSpecifier( 1774 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier()); 1775 } 1776 1777 if (isRedeclarable(getKind())) { 1778 if (getCanonicalDecl() != OldD->getCanonicalDecl()) 1779 return false; 1780 1781 if (IsKnownNewer) 1782 return true; 1783 1784 // Check whether this is actually newer than OldD. We want to keep the 1785 // newer declaration. This loop will usually only iterate once, because 1786 // OldD is usually the previous declaration. 1787 for (auto D : redecls()) { 1788 if (D == OldD) 1789 break; 1790 1791 // If we reach the canonical declaration, then OldD is not actually older 1792 // than this one. 1793 // 1794 // FIXME: In this case, we should not add this decl to the lookup table. 1795 if (D->isCanonicalDecl()) 1796 return false; 1797 } 1798 1799 // It's a newer declaration of the same kind of declaration in the same 1800 // scope: we want this decl instead of the existing one. 1801 return true; 1802 } 1803 1804 // In all other cases, we need to keep both declarations in case they have 1805 // different visibility. Any attempt to use the name will result in an 1806 // ambiguity if more than one is visible. 1807 return false; 1808 } 1809 1810 bool NamedDecl::hasLinkage() const { 1811 return getFormalLinkage() != NoLinkage; 1812 } 1813 1814 NamedDecl *NamedDecl::getUnderlyingDeclImpl() { 1815 NamedDecl *ND = this; 1816 while (auto *UD = dyn_cast<UsingShadowDecl>(ND)) 1817 ND = UD->getTargetDecl(); 1818 1819 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) 1820 return AD->getClassInterface(); 1821 1822 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND)) 1823 return AD->getNamespace(); 1824 1825 return ND; 1826 } 1827 1828 bool NamedDecl::isCXXInstanceMember() const { 1829 if (!isCXXClassMember()) 1830 return false; 1831 1832 const NamedDecl *D = this; 1833 if (isa<UsingShadowDecl>(D)) 1834 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1835 1836 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) 1837 return true; 1838 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction())) 1839 return MD->isInstance(); 1840 return false; 1841 } 1842 1843 //===----------------------------------------------------------------------===// 1844 // DeclaratorDecl Implementation 1845 //===----------------------------------------------------------------------===// 1846 1847 template <typename DeclT> 1848 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { 1849 if (decl->getNumTemplateParameterLists() > 0) 1850 return decl->getTemplateParameterList(0)->getTemplateLoc(); 1851 return decl->getInnerLocStart(); 1852 } 1853 1854 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { 1855 TypeSourceInfo *TSI = getTypeSourceInfo(); 1856 if (TSI) return TSI->getTypeLoc().getBeginLoc(); 1857 return SourceLocation(); 1858 } 1859 1860 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const { 1861 TypeSourceInfo *TSI = getTypeSourceInfo(); 1862 if (TSI) return TSI->getTypeLoc().getEndLoc(); 1863 return SourceLocation(); 1864 } 1865 1866 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 1867 if (QualifierLoc) { 1868 // Make sure the extended decl info is allocated. 1869 if (!hasExtInfo()) { 1870 // Save (non-extended) type source info pointer. 1871 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1872 // Allocate external info struct. 1873 DeclInfo = new (getASTContext()) ExtInfo; 1874 // Restore savedTInfo into (extended) decl info. 1875 getExtInfo()->TInfo = savedTInfo; 1876 } 1877 // Set qualifier info. 1878 getExtInfo()->QualifierLoc = QualifierLoc; 1879 } else if (hasExtInfo()) { 1880 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 1881 getExtInfo()->QualifierLoc = QualifierLoc; 1882 } 1883 } 1884 1885 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) { 1886 assert(TrailingRequiresClause); 1887 // Make sure the extended decl info is allocated. 1888 if (!hasExtInfo()) { 1889 // Save (non-extended) type source info pointer. 1890 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1891 // Allocate external info struct. 1892 DeclInfo = new (getASTContext()) ExtInfo; 1893 // Restore savedTInfo into (extended) decl info. 1894 getExtInfo()->TInfo = savedTInfo; 1895 } 1896 // Set requires clause info. 1897 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause; 1898 } 1899 1900 void DeclaratorDecl::setTemplateParameterListsInfo( 1901 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1902 assert(!TPLists.empty()); 1903 // Make sure the extended decl info is allocated. 1904 if (!hasExtInfo()) { 1905 // Save (non-extended) type source info pointer. 1906 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 1907 // Allocate external info struct. 1908 DeclInfo = new (getASTContext()) ExtInfo; 1909 // Restore savedTInfo into (extended) decl info. 1910 getExtInfo()->TInfo = savedTInfo; 1911 } 1912 // Set the template parameter lists info. 1913 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 1914 } 1915 1916 SourceLocation DeclaratorDecl::getOuterLocStart() const { 1917 return getTemplateOrInnerLocStart(this); 1918 } 1919 1920 // Helper function: returns true if QT is or contains a type 1921 // having a postfix component. 1922 static bool typeIsPostfix(QualType QT) { 1923 while (true) { 1924 const Type* T = QT.getTypePtr(); 1925 switch (T->getTypeClass()) { 1926 default: 1927 return false; 1928 case Type::Pointer: 1929 QT = cast<PointerType>(T)->getPointeeType(); 1930 break; 1931 case Type::BlockPointer: 1932 QT = cast<BlockPointerType>(T)->getPointeeType(); 1933 break; 1934 case Type::MemberPointer: 1935 QT = cast<MemberPointerType>(T)->getPointeeType(); 1936 break; 1937 case Type::LValueReference: 1938 case Type::RValueReference: 1939 QT = cast<ReferenceType>(T)->getPointeeType(); 1940 break; 1941 case Type::PackExpansion: 1942 QT = cast<PackExpansionType>(T)->getPattern(); 1943 break; 1944 case Type::Paren: 1945 case Type::ConstantArray: 1946 case Type::DependentSizedArray: 1947 case Type::IncompleteArray: 1948 case Type::VariableArray: 1949 case Type::FunctionProto: 1950 case Type::FunctionNoProto: 1951 return true; 1952 } 1953 } 1954 } 1955 1956 SourceRange DeclaratorDecl::getSourceRange() const { 1957 SourceLocation RangeEnd = getLocation(); 1958 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 1959 // If the declaration has no name or the type extends past the name take the 1960 // end location of the type. 1961 if (!getDeclName() || typeIsPostfix(TInfo->getType())) 1962 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 1963 } 1964 return SourceRange(getOuterLocStart(), RangeEnd); 1965 } 1966 1967 void QualifierInfo::setTemplateParameterListsInfo( 1968 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 1969 // Free previous template parameters (if any). 1970 if (NumTemplParamLists > 0) { 1971 Context.Deallocate(TemplParamLists); 1972 TemplParamLists = nullptr; 1973 NumTemplParamLists = 0; 1974 } 1975 // Set info on matched template parameter lists (if any). 1976 if (!TPLists.empty()) { 1977 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()]; 1978 NumTemplParamLists = TPLists.size(); 1979 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists); 1980 } 1981 } 1982 1983 //===----------------------------------------------------------------------===// 1984 // VarDecl Implementation 1985 //===----------------------------------------------------------------------===// 1986 1987 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { 1988 switch (SC) { 1989 case SC_None: break; 1990 case SC_Auto: return "auto"; 1991 case SC_Extern: return "extern"; 1992 case SC_PrivateExtern: return "__private_extern__"; 1993 case SC_Register: return "register"; 1994 case SC_Static: return "static"; 1995 } 1996 1997 llvm_unreachable("Invalid storage class"); 1998 } 1999 2000 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC, 2001 SourceLocation StartLoc, SourceLocation IdLoc, 2002 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 2003 StorageClass SC) 2004 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), 2005 redeclarable_base(C) { 2006 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned), 2007 "VarDeclBitfields too large!"); 2008 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned), 2009 "ParmVarDeclBitfields too large!"); 2010 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned), 2011 "NonParmVarDeclBitfields too large!"); 2012 AllBits = 0; 2013 VarDeclBits.SClass = SC; 2014 // Everything else is implicitly initialized to false. 2015 } 2016 2017 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, 2018 SourceLocation StartL, SourceLocation IdL, 2019 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 2020 StorageClass S) { 2021 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S); 2022 } 2023 2024 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2025 return new (C, ID) 2026 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr, 2027 QualType(), nullptr, SC_None); 2028 } 2029 2030 void VarDecl::setStorageClass(StorageClass SC) { 2031 assert(isLegalForVariable(SC)); 2032 VarDeclBits.SClass = SC; 2033 } 2034 2035 VarDecl::TLSKind VarDecl::getTLSKind() const { 2036 switch (VarDeclBits.TSCSpec) { 2037 case TSCS_unspecified: 2038 if (!hasAttr<ThreadAttr>() && 2039 !(getASTContext().getLangOpts().OpenMPUseTLS && 2040 getASTContext().getTargetInfo().isTLSSupported() && 2041 hasAttr<OMPThreadPrivateDeclAttr>())) 2042 return TLS_None; 2043 return ((getASTContext().getLangOpts().isCompatibleWithMSVC( 2044 LangOptions::MSVC2015)) || 2045 hasAttr<OMPThreadPrivateDeclAttr>()) 2046 ? TLS_Dynamic 2047 : TLS_Static; 2048 case TSCS___thread: // Fall through. 2049 case TSCS__Thread_local: 2050 return TLS_Static; 2051 case TSCS_thread_local: 2052 return TLS_Dynamic; 2053 } 2054 llvm_unreachable("Unknown thread storage class specifier!"); 2055 } 2056 2057 SourceRange VarDecl::getSourceRange() const { 2058 if (const Expr *Init = getInit()) { 2059 SourceLocation InitEnd = Init->getEndLoc(); 2060 // If Init is implicit, ignore its source range and fallback on 2061 // DeclaratorDecl::getSourceRange() to handle postfix elements. 2062 if (InitEnd.isValid() && InitEnd != getLocation()) 2063 return SourceRange(getOuterLocStart(), InitEnd); 2064 } 2065 return DeclaratorDecl::getSourceRange(); 2066 } 2067 2068 template<typename T> 2069 static LanguageLinkage getDeclLanguageLinkage(const T &D) { 2070 // C++ [dcl.link]p1: All function types, function names with external linkage, 2071 // and variable names with external linkage have a language linkage. 2072 if (!D.hasExternalFormalLinkage()) 2073 return NoLanguageLinkage; 2074 2075 // Language linkage is a C++ concept, but saying that everything else in C has 2076 // C language linkage fits the implementation nicely. 2077 ASTContext &Context = D.getASTContext(); 2078 if (!Context.getLangOpts().CPlusPlus) 2079 return CLanguageLinkage; 2080 2081 // C++ [dcl.link]p4: A C language linkage is ignored in determining the 2082 // language linkage of the names of class members and the function type of 2083 // class member functions. 2084 const DeclContext *DC = D.getDeclContext(); 2085 if (DC->isRecord()) 2086 return CXXLanguageLinkage; 2087 2088 // If the first decl is in an extern "C" context, any other redeclaration 2089 // will have C language linkage. If the first one is not in an extern "C" 2090 // context, we would have reported an error for any other decl being in one. 2091 if (isFirstInExternCContext(&D)) 2092 return CLanguageLinkage; 2093 return CXXLanguageLinkage; 2094 } 2095 2096 template<typename T> 2097 static bool isDeclExternC(const T &D) { 2098 // Since the context is ignored for class members, they can only have C++ 2099 // language linkage or no language linkage. 2100 const DeclContext *DC = D.getDeclContext(); 2101 if (DC->isRecord()) { 2102 assert(D.getASTContext().getLangOpts().CPlusPlus); 2103 return false; 2104 } 2105 2106 return D.getLanguageLinkage() == CLanguageLinkage; 2107 } 2108 2109 LanguageLinkage VarDecl::getLanguageLinkage() const { 2110 return getDeclLanguageLinkage(*this); 2111 } 2112 2113 bool VarDecl::isExternC() const { 2114 return isDeclExternC(*this); 2115 } 2116 2117 bool VarDecl::isInExternCContext() const { 2118 return getLexicalDeclContext()->isExternCContext(); 2119 } 2120 2121 bool VarDecl::isInExternCXXContext() const { 2122 return getLexicalDeclContext()->isExternCXXContext(); 2123 } 2124 2125 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); } 2126 2127 VarDecl::DefinitionKind 2128 VarDecl::isThisDeclarationADefinition(ASTContext &C) const { 2129 if (isThisDeclarationADemotedDefinition()) 2130 return DeclarationOnly; 2131 2132 // C++ [basic.def]p2: 2133 // A declaration is a definition unless [...] it contains the 'extern' 2134 // specifier or a linkage-specification and neither an initializer [...], 2135 // it declares a non-inline static data member in a class declaration [...], 2136 // it declares a static data member outside a class definition and the variable 2137 // was defined within the class with the constexpr specifier [...], 2138 // C++1y [temp.expl.spec]p15: 2139 // An explicit specialization of a static data member or an explicit 2140 // specialization of a static data member template is a definition if the 2141 // declaration includes an initializer; otherwise, it is a declaration. 2142 // 2143 // FIXME: How do you declare (but not define) a partial specialization of 2144 // a static data member template outside the containing class? 2145 if (isStaticDataMember()) { 2146 if (isOutOfLine() && 2147 !(getCanonicalDecl()->isInline() && 2148 getCanonicalDecl()->isConstexpr()) && 2149 (hasInit() || 2150 // If the first declaration is out-of-line, this may be an 2151 // instantiation of an out-of-line partial specialization of a variable 2152 // template for which we have not yet instantiated the initializer. 2153 (getFirstDecl()->isOutOfLine() 2154 ? getTemplateSpecializationKind() == TSK_Undeclared 2155 : getTemplateSpecializationKind() != 2156 TSK_ExplicitSpecialization) || 2157 isa<VarTemplatePartialSpecializationDecl>(this))) 2158 return Definition; 2159 if (!isOutOfLine() && isInline()) 2160 return Definition; 2161 return DeclarationOnly; 2162 } 2163 // C99 6.7p5: 2164 // A definition of an identifier is a declaration for that identifier that 2165 // [...] causes storage to be reserved for that object. 2166 // Note: that applies for all non-file-scope objects. 2167 // C99 6.9.2p1: 2168 // If the declaration of an identifier for an object has file scope and an 2169 // initializer, the declaration is an external definition for the identifier 2170 if (hasInit()) 2171 return Definition; 2172 2173 if (hasDefiningAttr()) 2174 return Definition; 2175 2176 if (const auto *SAA = getAttr<SelectAnyAttr>()) 2177 if (!SAA->isInherited()) 2178 return Definition; 2179 2180 // A variable template specialization (other than a static data member 2181 // template or an explicit specialization) is a declaration until we 2182 // instantiate its initializer. 2183 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) { 2184 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2185 !isa<VarTemplatePartialSpecializationDecl>(VTSD) && 2186 !VTSD->IsCompleteDefinition) 2187 return DeclarationOnly; 2188 } 2189 2190 if (hasExternalStorage()) 2191 return DeclarationOnly; 2192 2193 // [dcl.link] p7: 2194 // A declaration directly contained in a linkage-specification is treated 2195 // as if it contains the extern specifier for the purpose of determining 2196 // the linkage of the declared name and whether it is a definition. 2197 if (isSingleLineLanguageLinkage(*this)) 2198 return DeclarationOnly; 2199 2200 // C99 6.9.2p2: 2201 // A declaration of an object that has file scope without an initializer, 2202 // and without a storage class specifier or the scs 'static', constitutes 2203 // a tentative definition. 2204 // No such thing in C++. 2205 if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) 2206 return TentativeDefinition; 2207 2208 // What's left is (in C, block-scope) declarations without initializers or 2209 // external storage. These are definitions. 2210 return Definition; 2211 } 2212 2213 VarDecl *VarDecl::getActingDefinition() { 2214 DefinitionKind Kind = isThisDeclarationADefinition(); 2215 if (Kind != TentativeDefinition) 2216 return nullptr; 2217 2218 VarDecl *LastTentative = nullptr; 2219 2220 // Loop through the declaration chain, starting with the most recent. 2221 for (VarDecl *Decl = getMostRecentDecl(); Decl; 2222 Decl = Decl->getPreviousDecl()) { 2223 Kind = Decl->isThisDeclarationADefinition(); 2224 if (Kind == Definition) 2225 return nullptr; 2226 // Record the first (most recent) TentativeDefinition that is encountered. 2227 if (Kind == TentativeDefinition && !LastTentative) 2228 LastTentative = Decl; 2229 } 2230 2231 return LastTentative; 2232 } 2233 2234 VarDecl *VarDecl::getDefinition(ASTContext &C) { 2235 VarDecl *First = getFirstDecl(); 2236 for (auto I : First->redecls()) { 2237 if (I->isThisDeclarationADefinition(C) == Definition) 2238 return I; 2239 } 2240 return nullptr; 2241 } 2242 2243 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { 2244 DefinitionKind Kind = DeclarationOnly; 2245 2246 const VarDecl *First = getFirstDecl(); 2247 for (auto I : First->redecls()) { 2248 Kind = std::max(Kind, I->isThisDeclarationADefinition(C)); 2249 if (Kind == Definition) 2250 break; 2251 } 2252 2253 return Kind; 2254 } 2255 2256 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { 2257 for (auto I : redecls()) { 2258 if (auto Expr = I->getInit()) { 2259 D = I; 2260 return Expr; 2261 } 2262 } 2263 return nullptr; 2264 } 2265 2266 bool VarDecl::hasInit() const { 2267 if (auto *P = dyn_cast<ParmVarDecl>(this)) 2268 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg()) 2269 return false; 2270 2271 return !Init.isNull(); 2272 } 2273 2274 Expr *VarDecl::getInit() { 2275 if (!hasInit()) 2276 return nullptr; 2277 2278 if (auto *S = Init.dyn_cast<Stmt *>()) 2279 return cast<Expr>(S); 2280 2281 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value); 2282 } 2283 2284 Stmt **VarDecl::getInitAddress() { 2285 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>()) 2286 return &ES->Value; 2287 2288 return Init.getAddrOfPtr1(); 2289 } 2290 2291 VarDecl *VarDecl::getInitializingDeclaration() { 2292 VarDecl *Def = nullptr; 2293 for (auto I : redecls()) { 2294 if (I->hasInit()) 2295 return I; 2296 2297 if (I->isThisDeclarationADefinition()) { 2298 if (isStaticDataMember()) 2299 return I; 2300 Def = I; 2301 } 2302 } 2303 return Def; 2304 } 2305 2306 bool VarDecl::isOutOfLine() const { 2307 if (Decl::isOutOfLine()) 2308 return true; 2309 2310 if (!isStaticDataMember()) 2311 return false; 2312 2313 // If this static data member was instantiated from a static data member of 2314 // a class template, check whether that static data member was defined 2315 // out-of-line. 2316 if (VarDecl *VD = getInstantiatedFromStaticDataMember()) 2317 return VD->isOutOfLine(); 2318 2319 return false; 2320 } 2321 2322 void VarDecl::setInit(Expr *I) { 2323 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) { 2324 Eval->~EvaluatedStmt(); 2325 getASTContext().Deallocate(Eval); 2326 } 2327 2328 Init = I; 2329 } 2330 2331 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const { 2332 const LangOptions &Lang = C.getLangOpts(); 2333 2334 // OpenCL permits const integral variables to be used in constant 2335 // expressions, like in C++98. 2336 if (!Lang.CPlusPlus && !Lang.OpenCL) 2337 return false; 2338 2339 // Function parameters are never usable in constant expressions. 2340 if (isa<ParmVarDecl>(this)) 2341 return false; 2342 2343 // The values of weak variables are never usable in constant expressions. 2344 if (isWeak()) 2345 return false; 2346 2347 // In C++11, any variable of reference type can be used in a constant 2348 // expression if it is initialized by a constant expression. 2349 if (Lang.CPlusPlus11 && getType()->isReferenceType()) 2350 return true; 2351 2352 // Only const objects can be used in constant expressions in C++. C++98 does 2353 // not require the variable to be non-volatile, but we consider this to be a 2354 // defect. 2355 if (!getType().isConstant(C) || getType().isVolatileQualified()) 2356 return false; 2357 2358 // In C++, const, non-volatile variables of integral or enumeration types 2359 // can be used in constant expressions. 2360 if (getType()->isIntegralOrEnumerationType()) 2361 return true; 2362 2363 // Additionally, in C++11, non-volatile constexpr variables can be used in 2364 // constant expressions. 2365 return Lang.CPlusPlus11 && isConstexpr(); 2366 } 2367 2368 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const { 2369 // C++2a [expr.const]p3: 2370 // A variable is usable in constant expressions after its initializing 2371 // declaration is encountered... 2372 const VarDecl *DefVD = nullptr; 2373 const Expr *Init = getAnyInitializer(DefVD); 2374 if (!Init || Init->isValueDependent() || getType()->isDependentType()) 2375 return false; 2376 // ... if it is a constexpr variable, or it is of reference type or of 2377 // const-qualified integral or enumeration type, ... 2378 if (!DefVD->mightBeUsableInConstantExpressions(Context)) 2379 return false; 2380 // ... and its initializer is a constant initializer. 2381 if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization()) 2382 return false; 2383 // C++98 [expr.const]p1: 2384 // An integral constant-expression can involve only [...] const variables 2385 // or static data members of integral or enumeration types initialized with 2386 // [integer] constant expressions (dcl.init) 2387 if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) && 2388 !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context)) 2389 return false; 2390 return true; 2391 } 2392 2393 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt 2394 /// form, which contains extra information on the evaluated value of the 2395 /// initializer. 2396 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { 2397 auto *Eval = Init.dyn_cast<EvaluatedStmt *>(); 2398 if (!Eval) { 2399 // Note: EvaluatedStmt contains an APValue, which usually holds 2400 // resources not allocated from the ASTContext. We need to do some 2401 // work to avoid leaking those, but we do so in VarDecl::evaluateValue 2402 // where we can detect whether there's anything to clean up or not. 2403 Eval = new (getASTContext()) EvaluatedStmt; 2404 Eval->Value = Init.get<Stmt *>(); 2405 Init = Eval; 2406 } 2407 return Eval; 2408 } 2409 2410 EvaluatedStmt *VarDecl::getEvaluatedStmt() const { 2411 return Init.dyn_cast<EvaluatedStmt *>(); 2412 } 2413 2414 APValue *VarDecl::evaluateValue() const { 2415 SmallVector<PartialDiagnosticAt, 8> Notes; 2416 return evaluateValueImpl(Notes, hasConstantInitialization()); 2417 } 2418 2419 APValue *VarDecl::evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes, 2420 bool IsConstantInitialization) const { 2421 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2422 2423 const auto *Init = cast<Expr>(Eval->Value); 2424 assert(!Init->isValueDependent()); 2425 2426 // We only produce notes indicating why an initializer is non-constant the 2427 // first time it is evaluated. FIXME: The notes won't always be emitted the 2428 // first time we try evaluation, so might not be produced at all. 2429 if (Eval->WasEvaluated) 2430 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated; 2431 2432 if (Eval->IsEvaluating) { 2433 // FIXME: Produce a diagnostic for self-initialization. 2434 return nullptr; 2435 } 2436 2437 Eval->IsEvaluating = true; 2438 2439 ASTContext &Ctx = getASTContext(); 2440 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, Ctx, this, Notes, 2441 IsConstantInitialization); 2442 2443 // In C++11, this isn't a constant initializer if we produced notes. In that 2444 // case, we can't keep the result, because it may only be correct under the 2445 // assumption that the initializer is a constant context. 2446 if (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11 && 2447 !Notes.empty()) 2448 Result = false; 2449 2450 // Ensure the computed APValue is cleaned up later if evaluation succeeded, 2451 // or that it's empty (so that there's nothing to clean up) if evaluation 2452 // failed. 2453 if (!Result) 2454 Eval->Evaluated = APValue(); 2455 else if (Eval->Evaluated.needsCleanup()) 2456 Ctx.addDestruction(&Eval->Evaluated); 2457 2458 Eval->IsEvaluating = false; 2459 Eval->WasEvaluated = true; 2460 2461 return Result ? &Eval->Evaluated : nullptr; 2462 } 2463 2464 APValue *VarDecl::getEvaluatedValue() const { 2465 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2466 if (Eval->WasEvaluated) 2467 return &Eval->Evaluated; 2468 2469 return nullptr; 2470 } 2471 2472 bool VarDecl::hasICEInitializer(const ASTContext &Context) const { 2473 const Expr *Init = getInit(); 2474 assert(Init && "no initializer"); 2475 2476 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2477 if (!Eval->CheckedForICEInit) { 2478 Eval->CheckedForICEInit = true; 2479 Eval->HasICEInit = Init->isIntegerConstantExpr(Context); 2480 } 2481 return Eval->HasICEInit; 2482 } 2483 2484 bool VarDecl::hasConstantInitialization() const { 2485 // In C, all globals (and only globals) have constant initialization. 2486 if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus) 2487 return true; 2488 2489 // In C++, it depends on whether the evaluation at the point of definition 2490 // was evaluatable as a constant initializer. 2491 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2492 return Eval->HasConstantInitialization; 2493 2494 return false; 2495 } 2496 2497 bool VarDecl::checkForConstantInitialization( 2498 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 2499 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2500 // If we ask for the value before we know whether we have a constant 2501 // initializer, we can compute the wrong value (for example, due to 2502 // std::is_constant_evaluated()). 2503 assert(!Eval->WasEvaluated && 2504 "already evaluated var value before checking for constant init"); 2505 assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++"); 2506 2507 assert(!cast<Expr>(Eval->Value)->isValueDependent()); 2508 2509 // Evaluate the initializer to check whether it's a constant expression. 2510 Eval->HasConstantInitialization = 2511 evaluateValueImpl(Notes, true) && Notes.empty(); 2512 2513 // If evaluation as a constant initializer failed, allow re-evaluation as a 2514 // non-constant initializer if we later find we want the value. 2515 if (!Eval->HasConstantInitialization) 2516 Eval->WasEvaluated = false; 2517 2518 return Eval->HasConstantInitialization; 2519 } 2520 2521 bool VarDecl::isParameterPack() const { 2522 return isa<PackExpansionType>(getType()); 2523 } 2524 2525 template<typename DeclT> 2526 static DeclT *getDefinitionOrSelf(DeclT *D) { 2527 assert(D); 2528 if (auto *Def = D->getDefinition()) 2529 return Def; 2530 return D; 2531 } 2532 2533 bool VarDecl::isEscapingByref() const { 2534 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref; 2535 } 2536 2537 bool VarDecl::isNonEscapingByref() const { 2538 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref; 2539 } 2540 2541 bool VarDecl::hasDependentAlignment() const { 2542 QualType T = getType(); 2543 return T->isDependentType() || T->isUndeducedAutoType() || 2544 llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) { 2545 return AA->isAlignmentDependent(); 2546 }); 2547 } 2548 2549 VarDecl *VarDecl::getTemplateInstantiationPattern() const { 2550 const VarDecl *VD = this; 2551 2552 // If this is an instantiated member, walk back to the template from which 2553 // it was instantiated. 2554 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) { 2555 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 2556 VD = VD->getInstantiatedFromStaticDataMember(); 2557 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember()) 2558 VD = NewVD; 2559 } 2560 } 2561 2562 // If it's an instantiated variable template specialization, find the 2563 // template or partial specialization from which it was instantiated. 2564 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 2565 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) { 2566 auto From = VDTemplSpec->getInstantiatedFrom(); 2567 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) { 2568 while (!VTD->isMemberSpecialization()) { 2569 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate(); 2570 if (!NewVTD) 2571 break; 2572 VTD = NewVTD; 2573 } 2574 return getDefinitionOrSelf(VTD->getTemplatedDecl()); 2575 } 2576 if (auto *VTPSD = 2577 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 2578 while (!VTPSD->isMemberSpecialization()) { 2579 auto *NewVTPSD = VTPSD->getInstantiatedFromMember(); 2580 if (!NewVTPSD) 2581 break; 2582 VTPSD = NewVTPSD; 2583 } 2584 return getDefinitionOrSelf<VarDecl>(VTPSD); 2585 } 2586 } 2587 } 2588 2589 // If this is the pattern of a variable template, find where it was 2590 // instantiated from. FIXME: Is this necessary? 2591 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) { 2592 while (!VarTemplate->isMemberSpecialization()) { 2593 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate(); 2594 if (!NewVT) 2595 break; 2596 VarTemplate = NewVT; 2597 } 2598 2599 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl()); 2600 } 2601 2602 if (VD == this) 2603 return nullptr; 2604 return getDefinitionOrSelf(const_cast<VarDecl*>(VD)); 2605 } 2606 2607 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { 2608 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2609 return cast<VarDecl>(MSI->getInstantiatedFrom()); 2610 2611 return nullptr; 2612 } 2613 2614 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { 2615 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2616 return Spec->getSpecializationKind(); 2617 2618 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2619 return MSI->getTemplateSpecializationKind(); 2620 2621 return TSK_Undeclared; 2622 } 2623 2624 TemplateSpecializationKind 2625 VarDecl::getTemplateSpecializationKindForInstantiation() const { 2626 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2627 return MSI->getTemplateSpecializationKind(); 2628 2629 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2630 return Spec->getSpecializationKind(); 2631 2632 return TSK_Undeclared; 2633 } 2634 2635 SourceLocation VarDecl::getPointOfInstantiation() const { 2636 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2637 return Spec->getPointOfInstantiation(); 2638 2639 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2640 return MSI->getPointOfInstantiation(); 2641 2642 return SourceLocation(); 2643 } 2644 2645 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { 2646 return getASTContext().getTemplateOrSpecializationInfo(this) 2647 .dyn_cast<VarTemplateDecl *>(); 2648 } 2649 2650 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { 2651 getASTContext().setTemplateOrSpecializationInfo(this, Template); 2652 } 2653 2654 bool VarDecl::isKnownToBeDefined() const { 2655 const auto &LangOpts = getASTContext().getLangOpts(); 2656 // In CUDA mode without relocatable device code, variables of form 'extern 2657 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared 2658 // memory pool. These are never undefined variables, even if they appear 2659 // inside of an anon namespace or static function. 2660 // 2661 // With CUDA relocatable device code enabled, these variables don't get 2662 // special handling; they're treated like regular extern variables. 2663 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode && 2664 hasExternalStorage() && hasAttr<CUDASharedAttr>() && 2665 isa<IncompleteArrayType>(getType())) 2666 return true; 2667 2668 return hasDefinition(); 2669 } 2670 2671 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const { 2672 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() || 2673 (!Ctx.getLangOpts().RegisterStaticDestructors && 2674 !hasAttr<AlwaysDestroyAttr>())); 2675 } 2676 2677 QualType::DestructionKind 2678 VarDecl::needsDestruction(const ASTContext &Ctx) const { 2679 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2680 if (Eval->HasConstantDestruction) 2681 return QualType::DK_none; 2682 2683 if (isNoDestroy(Ctx)) 2684 return QualType::DK_none; 2685 2686 return getType().isDestructedType(); 2687 } 2688 2689 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { 2690 if (isStaticDataMember()) 2691 // FIXME: Remove ? 2692 // return getASTContext().getInstantiatedFromStaticDataMember(this); 2693 return getASTContext().getTemplateOrSpecializationInfo(this) 2694 .dyn_cast<MemberSpecializationInfo *>(); 2695 return nullptr; 2696 } 2697 2698 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 2699 SourceLocation PointOfInstantiation) { 2700 assert((isa<VarTemplateSpecializationDecl>(this) || 2701 getMemberSpecializationInfo()) && 2702 "not a variable or static data member template specialization"); 2703 2704 if (VarTemplateSpecializationDecl *Spec = 2705 dyn_cast<VarTemplateSpecializationDecl>(this)) { 2706 Spec->setSpecializationKind(TSK); 2707 if (TSK != TSK_ExplicitSpecialization && 2708 PointOfInstantiation.isValid() && 2709 Spec->getPointOfInstantiation().isInvalid()) { 2710 Spec->setPointOfInstantiation(PointOfInstantiation); 2711 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2712 L->InstantiationRequested(this); 2713 } 2714 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { 2715 MSI->setTemplateSpecializationKind(TSK); 2716 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2717 MSI->getPointOfInstantiation().isInvalid()) { 2718 MSI->setPointOfInstantiation(PointOfInstantiation); 2719 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2720 L->InstantiationRequested(this); 2721 } 2722 } 2723 } 2724 2725 void 2726 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, 2727 TemplateSpecializationKind TSK) { 2728 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && 2729 "Previous template or instantiation?"); 2730 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); 2731 } 2732 2733 //===----------------------------------------------------------------------===// 2734 // ParmVarDecl Implementation 2735 //===----------------------------------------------------------------------===// 2736 2737 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, 2738 SourceLocation StartLoc, 2739 SourceLocation IdLoc, IdentifierInfo *Id, 2740 QualType T, TypeSourceInfo *TInfo, 2741 StorageClass S, Expr *DefArg) { 2742 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo, 2743 S, DefArg); 2744 } 2745 2746 QualType ParmVarDecl::getOriginalType() const { 2747 TypeSourceInfo *TSI = getTypeSourceInfo(); 2748 QualType T = TSI ? TSI->getType() : getType(); 2749 if (const auto *DT = dyn_cast<DecayedType>(T)) 2750 return DT->getOriginalType(); 2751 return T; 2752 } 2753 2754 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2755 return new (C, ID) 2756 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(), 2757 nullptr, QualType(), nullptr, SC_None, nullptr); 2758 } 2759 2760 SourceRange ParmVarDecl::getSourceRange() const { 2761 if (!hasInheritedDefaultArg()) { 2762 SourceRange ArgRange = getDefaultArgRange(); 2763 if (ArgRange.isValid()) 2764 return SourceRange(getOuterLocStart(), ArgRange.getEnd()); 2765 } 2766 2767 // DeclaratorDecl considers the range of postfix types as overlapping with the 2768 // declaration name, but this is not the case with parameters in ObjC methods. 2769 if (isa<ObjCMethodDecl>(getDeclContext())) 2770 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation()); 2771 2772 return DeclaratorDecl::getSourceRange(); 2773 } 2774 2775 bool ParmVarDecl::isDestroyedInCallee() const { 2776 if (hasAttr<NSConsumedAttr>()) 2777 return true; 2778 2779 auto *RT = getType()->getAs<RecordType>(); 2780 if (RT && RT->getDecl()->isParamDestroyedInCallee()) 2781 return true; 2782 2783 return false; 2784 } 2785 2786 Expr *ParmVarDecl::getDefaultArg() { 2787 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); 2788 assert(!hasUninstantiatedDefaultArg() && 2789 "Default argument is not yet instantiated!"); 2790 2791 Expr *Arg = getInit(); 2792 if (auto *E = dyn_cast_or_null<FullExpr>(Arg)) 2793 return E->getSubExpr(); 2794 2795 return Arg; 2796 } 2797 2798 void ParmVarDecl::setDefaultArg(Expr *defarg) { 2799 ParmVarDeclBits.DefaultArgKind = DAK_Normal; 2800 Init = defarg; 2801 } 2802 2803 SourceRange ParmVarDecl::getDefaultArgRange() const { 2804 switch (ParmVarDeclBits.DefaultArgKind) { 2805 case DAK_None: 2806 case DAK_Unparsed: 2807 // Nothing we can do here. 2808 return SourceRange(); 2809 2810 case DAK_Uninstantiated: 2811 return getUninstantiatedDefaultArg()->getSourceRange(); 2812 2813 case DAK_Normal: 2814 if (const Expr *E = getInit()) 2815 return E->getSourceRange(); 2816 2817 // Missing an actual expression, may be invalid. 2818 return SourceRange(); 2819 } 2820 llvm_unreachable("Invalid default argument kind."); 2821 } 2822 2823 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) { 2824 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated; 2825 Init = arg; 2826 } 2827 2828 Expr *ParmVarDecl::getUninstantiatedDefaultArg() { 2829 assert(hasUninstantiatedDefaultArg() && 2830 "Wrong kind of initialization expression!"); 2831 return cast_or_null<Expr>(Init.get<Stmt *>()); 2832 } 2833 2834 bool ParmVarDecl::hasDefaultArg() const { 2835 // FIXME: We should just return false for DAK_None here once callers are 2836 // prepared for the case that we encountered an invalid default argument and 2837 // were unable to even build an invalid expression. 2838 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() || 2839 !Init.isNull(); 2840 } 2841 2842 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { 2843 getASTContext().setParameterIndex(this, parameterIndex); 2844 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; 2845 } 2846 2847 unsigned ParmVarDecl::getParameterIndexLarge() const { 2848 return getASTContext().getParameterIndex(this); 2849 } 2850 2851 //===----------------------------------------------------------------------===// 2852 // FunctionDecl Implementation 2853 //===----------------------------------------------------------------------===// 2854 2855 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, 2856 SourceLocation StartLoc, 2857 const DeclarationNameInfo &NameInfo, QualType T, 2858 TypeSourceInfo *TInfo, StorageClass S, 2859 bool UsesFPIntrin, bool isInlineSpecified, 2860 ConstexprSpecKind ConstexprKind, 2861 Expr *TrailingRequiresClause) 2862 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo, 2863 StartLoc), 2864 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0), 2865 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) { 2866 assert(T.isNull() || T->isFunctionType()); 2867 FunctionDeclBits.SClass = S; 2868 FunctionDeclBits.IsInline = isInlineSpecified; 2869 FunctionDeclBits.IsInlineSpecified = isInlineSpecified; 2870 FunctionDeclBits.IsVirtualAsWritten = false; 2871 FunctionDeclBits.IsPure = false; 2872 FunctionDeclBits.HasInheritedPrototype = false; 2873 FunctionDeclBits.HasWrittenPrototype = true; 2874 FunctionDeclBits.IsDeleted = false; 2875 FunctionDeclBits.IsTrivial = false; 2876 FunctionDeclBits.IsTrivialForCall = false; 2877 FunctionDeclBits.IsDefaulted = false; 2878 FunctionDeclBits.IsExplicitlyDefaulted = false; 2879 FunctionDeclBits.HasDefaultedFunctionInfo = false; 2880 FunctionDeclBits.HasImplicitReturnZero = false; 2881 FunctionDeclBits.IsLateTemplateParsed = false; 2882 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind); 2883 FunctionDeclBits.InstantiationIsPending = false; 2884 FunctionDeclBits.UsesSEHTry = false; 2885 FunctionDeclBits.UsesFPIntrin = UsesFPIntrin; 2886 FunctionDeclBits.HasSkippedBody = false; 2887 FunctionDeclBits.WillHaveBody = false; 2888 FunctionDeclBits.IsMultiVersion = false; 2889 FunctionDeclBits.IsCopyDeductionCandidate = false; 2890 FunctionDeclBits.HasODRHash = false; 2891 if (TrailingRequiresClause) 2892 setTrailingRequiresClause(TrailingRequiresClause); 2893 } 2894 2895 void FunctionDecl::getNameForDiagnostic( 2896 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { 2897 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); 2898 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); 2899 if (TemplateArgs) 2900 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy); 2901 } 2902 2903 bool FunctionDecl::isVariadic() const { 2904 if (const auto *FT = getType()->getAs<FunctionProtoType>()) 2905 return FT->isVariadic(); 2906 return false; 2907 } 2908 2909 FunctionDecl::DefaultedFunctionInfo * 2910 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context, 2911 ArrayRef<DeclAccessPair> Lookups) { 2912 DefaultedFunctionInfo *Info = new (Context.Allocate( 2913 totalSizeToAlloc<DeclAccessPair>(Lookups.size()), 2914 std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair)))) 2915 DefaultedFunctionInfo; 2916 Info->NumLookups = Lookups.size(); 2917 std::uninitialized_copy(Lookups.begin(), Lookups.end(), 2918 Info->getTrailingObjects<DeclAccessPair>()); 2919 return Info; 2920 } 2921 2922 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) { 2923 assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this"); 2924 assert(!Body && "can't replace function body with defaulted function info"); 2925 2926 FunctionDeclBits.HasDefaultedFunctionInfo = true; 2927 DefaultedInfo = Info; 2928 } 2929 2930 FunctionDecl::DefaultedFunctionInfo * 2931 FunctionDecl::getDefaultedFunctionInfo() const { 2932 return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr; 2933 } 2934 2935 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { 2936 for (auto I : redecls()) { 2937 if (I->doesThisDeclarationHaveABody()) { 2938 Definition = I; 2939 return true; 2940 } 2941 } 2942 2943 return false; 2944 } 2945 2946 bool FunctionDecl::hasTrivialBody() const { 2947 Stmt *S = getBody(); 2948 if (!S) { 2949 // Since we don't have a body for this function, we don't know if it's 2950 // trivial or not. 2951 return false; 2952 } 2953 2954 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) 2955 return true; 2956 return false; 2957 } 2958 2959 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const { 2960 if (!getFriendObjectKind()) 2961 return false; 2962 2963 // Check for a friend function instantiated from a friend function 2964 // definition in a templated class. 2965 if (const FunctionDecl *InstantiatedFrom = 2966 getInstantiatedFromMemberFunction()) 2967 return InstantiatedFrom->getFriendObjectKind() && 2968 InstantiatedFrom->isThisDeclarationADefinition(); 2969 2970 // Check for a friend function template instantiated from a friend 2971 // function template definition in a templated class. 2972 if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) { 2973 if (const FunctionTemplateDecl *InstantiatedFrom = 2974 Template->getInstantiatedFromMemberTemplate()) 2975 return InstantiatedFrom->getFriendObjectKind() && 2976 InstantiatedFrom->isThisDeclarationADefinition(); 2977 } 2978 2979 return false; 2980 } 2981 2982 bool FunctionDecl::isDefined(const FunctionDecl *&Definition, 2983 bool CheckForPendingFriendDefinition) const { 2984 for (const FunctionDecl *FD : redecls()) { 2985 if (FD->isThisDeclarationADefinition()) { 2986 Definition = FD; 2987 return true; 2988 } 2989 2990 // If this is a friend function defined in a class template, it does not 2991 // have a body until it is used, nevertheless it is a definition, see 2992 // [temp.inst]p2: 2993 // 2994 // ... for the purpose of determining whether an instantiated redeclaration 2995 // is valid according to [basic.def.odr] and [class.mem], a declaration that 2996 // corresponds to a definition in the template is considered to be a 2997 // definition. 2998 // 2999 // The following code must produce redefinition error: 3000 // 3001 // template<typename T> struct C20 { friend void func_20() {} }; 3002 // C20<int> c20i; 3003 // void func_20() {} 3004 // 3005 if (CheckForPendingFriendDefinition && 3006 FD->isThisDeclarationInstantiatedFromAFriendDefinition()) { 3007 Definition = FD; 3008 return true; 3009 } 3010 } 3011 3012 return false; 3013 } 3014 3015 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { 3016 if (!hasBody(Definition)) 3017 return nullptr; 3018 3019 assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && 3020 "definition should not have a body"); 3021 if (Definition->Body) 3022 return Definition->Body.get(getASTContext().getExternalSource()); 3023 3024 return nullptr; 3025 } 3026 3027 void FunctionDecl::setBody(Stmt *B) { 3028 FunctionDeclBits.HasDefaultedFunctionInfo = false; 3029 Body = LazyDeclStmtPtr(B); 3030 if (B) 3031 EndRangeLoc = B->getEndLoc(); 3032 } 3033 3034 void FunctionDecl::setPure(bool P) { 3035 FunctionDeclBits.IsPure = P; 3036 if (P) 3037 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) 3038 Parent->markedVirtualFunctionPure(); 3039 } 3040 3041 template<std::size_t Len> 3042 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { 3043 IdentifierInfo *II = ND->getIdentifier(); 3044 return II && II->isStr(Str); 3045 } 3046 3047 bool FunctionDecl::isMain() const { 3048 const TranslationUnitDecl *tunit = 3049 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 3050 return tunit && 3051 !tunit->getASTContext().getLangOpts().Freestanding && 3052 isNamed(this, "main"); 3053 } 3054 3055 bool FunctionDecl::isMSVCRTEntryPoint() const { 3056 const TranslationUnitDecl *TUnit = 3057 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 3058 if (!TUnit) 3059 return false; 3060 3061 // Even though we aren't really targeting MSVCRT if we are freestanding, 3062 // semantic analysis for these functions remains the same. 3063 3064 // MSVCRT entry points only exist on MSVCRT targets. 3065 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) 3066 return false; 3067 3068 // Nameless functions like constructors cannot be entry points. 3069 if (!getIdentifier()) 3070 return false; 3071 3072 return llvm::StringSwitch<bool>(getName()) 3073 .Cases("main", // an ANSI console app 3074 "wmain", // a Unicode console App 3075 "WinMain", // an ANSI GUI app 3076 "wWinMain", // a Unicode GUI app 3077 "DllMain", // a DLL 3078 true) 3079 .Default(false); 3080 } 3081 3082 bool FunctionDecl::isReservedGlobalPlacementOperator() const { 3083 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName); 3084 assert(getDeclName().getCXXOverloadedOperator() == OO_New || 3085 getDeclName().getCXXOverloadedOperator() == OO_Delete || 3086 getDeclName().getCXXOverloadedOperator() == OO_Array_New || 3087 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete); 3088 3089 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 3090 return false; 3091 3092 const auto *proto = getType()->castAs<FunctionProtoType>(); 3093 if (proto->getNumParams() != 2 || proto->isVariadic()) 3094 return false; 3095 3096 ASTContext &Context = 3097 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) 3098 ->getASTContext(); 3099 3100 // The result type and first argument type are constant across all 3101 // these operators. The second argument must be exactly void*. 3102 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy); 3103 } 3104 3105 bool FunctionDecl::isReplaceableGlobalAllocationFunction( 3106 Optional<unsigned> *AlignmentParam, bool *IsNothrow) const { 3107 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 3108 return false; 3109 if (getDeclName().getCXXOverloadedOperator() != OO_New && 3110 getDeclName().getCXXOverloadedOperator() != OO_Delete && 3111 getDeclName().getCXXOverloadedOperator() != OO_Array_New && 3112 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 3113 return false; 3114 3115 if (isa<CXXRecordDecl>(getDeclContext())) 3116 return false; 3117 3118 // This can only fail for an invalid 'operator new' declaration. 3119 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 3120 return false; 3121 3122 const auto *FPT = getType()->castAs<FunctionProtoType>(); 3123 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic()) 3124 return false; 3125 3126 // If this is a single-parameter function, it must be a replaceable global 3127 // allocation or deallocation function. 3128 if (FPT->getNumParams() == 1) 3129 return true; 3130 3131 unsigned Params = 1; 3132 QualType Ty = FPT->getParamType(Params); 3133 ASTContext &Ctx = getASTContext(); 3134 3135 auto Consume = [&] { 3136 ++Params; 3137 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType(); 3138 }; 3139 3140 // In C++14, the next parameter can be a 'std::size_t' for sized delete. 3141 bool IsSizedDelete = false; 3142 if (Ctx.getLangOpts().SizedDeallocation && 3143 (getDeclName().getCXXOverloadedOperator() == OO_Delete || 3144 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) && 3145 Ctx.hasSameType(Ty, Ctx.getSizeType())) { 3146 IsSizedDelete = true; 3147 Consume(); 3148 } 3149 3150 // In C++17, the next parameter can be a 'std::align_val_t' for aligned 3151 // new/delete. 3152 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) { 3153 Consume(); 3154 if (AlignmentParam) 3155 *AlignmentParam = Params; 3156 } 3157 3158 // Finally, if this is not a sized delete, the final parameter can 3159 // be a 'const std::nothrow_t&'. 3160 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) { 3161 Ty = Ty->getPointeeType(); 3162 if (Ty.getCVRQualifiers() != Qualifiers::Const) 3163 return false; 3164 if (Ty->isNothrowT()) { 3165 if (IsNothrow) 3166 *IsNothrow = true; 3167 Consume(); 3168 } 3169 } 3170 3171 return Params == FPT->getNumParams(); 3172 } 3173 3174 bool FunctionDecl::isInlineBuiltinDeclaration() const { 3175 if (!getBuiltinID()) 3176 return false; 3177 3178 const FunctionDecl *Definition; 3179 return hasBody(Definition) && Definition->isInlineSpecified() && 3180 Definition->hasAttr<AlwaysInlineAttr>(); 3181 } 3182 3183 bool FunctionDecl::isDestroyingOperatorDelete() const { 3184 // C++ P0722: 3185 // Within a class C, a single object deallocation function with signature 3186 // (T, std::destroying_delete_t, <more params>) 3187 // is a destroying operator delete. 3188 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete || 3189 getNumParams() < 2) 3190 return false; 3191 3192 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl(); 3193 return RD && RD->isInStdNamespace() && RD->getIdentifier() && 3194 RD->getIdentifier()->isStr("destroying_delete_t"); 3195 } 3196 3197 LanguageLinkage FunctionDecl::getLanguageLinkage() const { 3198 return getDeclLanguageLinkage(*this); 3199 } 3200 3201 bool FunctionDecl::isExternC() const { 3202 return isDeclExternC(*this); 3203 } 3204 3205 bool FunctionDecl::isInExternCContext() const { 3206 if (hasAttr<OpenCLKernelAttr>()) 3207 return true; 3208 return getLexicalDeclContext()->isExternCContext(); 3209 } 3210 3211 bool FunctionDecl::isInExternCXXContext() const { 3212 return getLexicalDeclContext()->isExternCXXContext(); 3213 } 3214 3215 bool FunctionDecl::isGlobal() const { 3216 if (const auto *Method = dyn_cast<CXXMethodDecl>(this)) 3217 return Method->isStatic(); 3218 3219 if (getCanonicalDecl()->getStorageClass() == SC_Static) 3220 return false; 3221 3222 for (const DeclContext *DC = getDeclContext(); 3223 DC->isNamespace(); 3224 DC = DC->getParent()) { 3225 if (const auto *Namespace = cast<NamespaceDecl>(DC)) { 3226 if (!Namespace->getDeclName()) 3227 return false; 3228 break; 3229 } 3230 } 3231 3232 return true; 3233 } 3234 3235 bool FunctionDecl::isNoReturn() const { 3236 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || 3237 hasAttr<C11NoReturnAttr>()) 3238 return true; 3239 3240 if (auto *FnTy = getType()->getAs<FunctionType>()) 3241 return FnTy->getNoReturnAttr(); 3242 3243 return false; 3244 } 3245 3246 3247 MultiVersionKind FunctionDecl::getMultiVersionKind() const { 3248 if (hasAttr<TargetAttr>()) 3249 return MultiVersionKind::Target; 3250 if (hasAttr<CPUDispatchAttr>()) 3251 return MultiVersionKind::CPUDispatch; 3252 if (hasAttr<CPUSpecificAttr>()) 3253 return MultiVersionKind::CPUSpecific; 3254 return MultiVersionKind::None; 3255 } 3256 3257 bool FunctionDecl::isCPUDispatchMultiVersion() const { 3258 return isMultiVersion() && hasAttr<CPUDispatchAttr>(); 3259 } 3260 3261 bool FunctionDecl::isCPUSpecificMultiVersion() const { 3262 return isMultiVersion() && hasAttr<CPUSpecificAttr>(); 3263 } 3264 3265 bool FunctionDecl::isTargetMultiVersion() const { 3266 return isMultiVersion() && hasAttr<TargetAttr>(); 3267 } 3268 3269 void 3270 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { 3271 redeclarable_base::setPreviousDecl(PrevDecl); 3272 3273 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { 3274 FunctionTemplateDecl *PrevFunTmpl 3275 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr; 3276 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); 3277 FunTmpl->setPreviousDecl(PrevFunTmpl); 3278 } 3279 3280 if (PrevDecl && PrevDecl->isInlined()) 3281 setImplicitlyInline(true); 3282 } 3283 3284 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); } 3285 3286 /// Returns a value indicating whether this function corresponds to a builtin 3287 /// function. 3288 /// 3289 /// The function corresponds to a built-in function if it is declared at 3290 /// translation scope or within an extern "C" block and its name matches with 3291 /// the name of a builtin. The returned value will be 0 for functions that do 3292 /// not correspond to a builtin, a value of type \c Builtin::ID if in the 3293 /// target-independent range \c [1,Builtin::First), or a target-specific builtin 3294 /// value. 3295 /// 3296 /// \param ConsiderWrapperFunctions If true, we should consider wrapper 3297 /// functions as their wrapped builtins. This shouldn't be done in general, but 3298 /// it's useful in Sema to diagnose calls to wrappers based on their semantics. 3299 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const { 3300 unsigned BuiltinID = 0; 3301 3302 if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) { 3303 BuiltinID = ABAA->getBuiltinName()->getBuiltinID(); 3304 } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) { 3305 BuiltinID = BAA->getBuiltinName()->getBuiltinID(); 3306 } else if (const auto *A = getAttr<BuiltinAttr>()) { 3307 BuiltinID = A->getID(); 3308 } 3309 3310 if (!BuiltinID) 3311 return 0; 3312 3313 // If the function is marked "overloadable", it has a different mangled name 3314 // and is not the C library function. 3315 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() && 3316 (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>())) 3317 return 0; 3318 3319 ASTContext &Context = getASTContext(); 3320 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3321 return BuiltinID; 3322 3323 // This function has the name of a known C library 3324 // function. Determine whether it actually refers to the C library 3325 // function or whether it just has the same name. 3326 3327 // If this is a static function, it's not a builtin. 3328 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static) 3329 return 0; 3330 3331 // OpenCL v1.2 s6.9.f - The library functions defined in 3332 // the C99 standard headers are not available. 3333 if (Context.getLangOpts().OpenCL && 3334 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3335 return 0; 3336 3337 // CUDA does not have device-side standard library. printf and malloc are the 3338 // only special cases that are supported by device-side runtime. 3339 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() && 3340 !hasAttr<CUDAHostAttr>() && 3341 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) 3342 return 0; 3343 3344 // As AMDGCN implementation of OpenMP does not have a device-side standard 3345 // library, none of the predefined library functions except printf and malloc 3346 // should be treated as a builtin i.e. 0 should be returned for them. 3347 if (Context.getTargetInfo().getTriple().isAMDGCN() && 3348 Context.getLangOpts().OpenMPIsDevice && 3349 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && 3350 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) 3351 return 0; 3352 3353 return BuiltinID; 3354 } 3355 3356 /// getNumParams - Return the number of parameters this function must have 3357 /// based on its FunctionType. This is the length of the ParamInfo array 3358 /// after it has been created. 3359 unsigned FunctionDecl::getNumParams() const { 3360 const auto *FPT = getType()->getAs<FunctionProtoType>(); 3361 return FPT ? FPT->getNumParams() : 0; 3362 } 3363 3364 void FunctionDecl::setParams(ASTContext &C, 3365 ArrayRef<ParmVarDecl *> NewParamInfo) { 3366 assert(!ParamInfo && "Already has param info!"); 3367 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); 3368 3369 // Zero params -> null pointer. 3370 if (!NewParamInfo.empty()) { 3371 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; 3372 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 3373 } 3374 } 3375 3376 /// getMinRequiredArguments - Returns the minimum number of arguments 3377 /// needed to call this function. This may be fewer than the number of 3378 /// function parameters, if some of the parameters have default 3379 /// arguments (in C++) or are parameter packs (C++11). 3380 unsigned FunctionDecl::getMinRequiredArguments() const { 3381 if (!getASTContext().getLangOpts().CPlusPlus) 3382 return getNumParams(); 3383 3384 // Note that it is possible for a parameter with no default argument to 3385 // follow a parameter with a default argument. 3386 unsigned NumRequiredArgs = 0; 3387 unsigned MinParamsSoFar = 0; 3388 for (auto *Param : parameters()) { 3389 if (!Param->isParameterPack()) { 3390 ++MinParamsSoFar; 3391 if (!Param->hasDefaultArg()) 3392 NumRequiredArgs = MinParamsSoFar; 3393 } 3394 } 3395 return NumRequiredArgs; 3396 } 3397 3398 bool FunctionDecl::hasOneParamOrDefaultArgs() const { 3399 return getNumParams() == 1 || 3400 (getNumParams() > 1 && 3401 std::all_of(param_begin() + 1, param_end(), 3402 [](ParmVarDecl *P) { return P->hasDefaultArg(); })); 3403 } 3404 3405 /// The combination of the extern and inline keywords under MSVC forces 3406 /// the function to be required. 3407 /// 3408 /// Note: This function assumes that we will only get called when isInlined() 3409 /// would return true for this FunctionDecl. 3410 bool FunctionDecl::isMSExternInline() const { 3411 assert(isInlined() && "expected to get called on an inlined function!"); 3412 3413 const ASTContext &Context = getASTContext(); 3414 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && 3415 !hasAttr<DLLExportAttr>()) 3416 return false; 3417 3418 for (const FunctionDecl *FD = getMostRecentDecl(); FD; 3419 FD = FD->getPreviousDecl()) 3420 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3421 return true; 3422 3423 return false; 3424 } 3425 3426 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) { 3427 if (Redecl->getStorageClass() != SC_Extern) 3428 return false; 3429 3430 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD; 3431 FD = FD->getPreviousDecl()) 3432 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3433 return false; 3434 3435 return true; 3436 } 3437 3438 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { 3439 // Only consider file-scope declarations in this test. 3440 if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) 3441 return false; 3442 3443 // Only consider explicit declarations; the presence of a builtin for a 3444 // libcall shouldn't affect whether a definition is externally visible. 3445 if (Redecl->isImplicit()) 3446 return false; 3447 3448 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) 3449 return true; // Not an inline definition 3450 3451 return false; 3452 } 3453 3454 /// For a function declaration in C or C++, determine whether this 3455 /// declaration causes the definition to be externally visible. 3456 /// 3457 /// For instance, this determines if adding the current declaration to the set 3458 /// of redeclarations of the given functions causes 3459 /// isInlineDefinitionExternallyVisible to change from false to true. 3460 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { 3461 assert(!doesThisDeclarationHaveABody() && 3462 "Must have a declaration without a body."); 3463 3464 ASTContext &Context = getASTContext(); 3465 3466 if (Context.getLangOpts().MSVCCompat) { 3467 const FunctionDecl *Definition; 3468 if (hasBody(Definition) && Definition->isInlined() && 3469 redeclForcesDefMSVC(this)) 3470 return true; 3471 } 3472 3473 if (Context.getLangOpts().CPlusPlus) 3474 return false; 3475 3476 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3477 // With GNU inlining, a declaration with 'inline' but not 'extern', forces 3478 // an externally visible definition. 3479 // 3480 // FIXME: What happens if gnu_inline gets added on after the first 3481 // declaration? 3482 if (!isInlineSpecified() || getStorageClass() == SC_Extern) 3483 return false; 3484 3485 const FunctionDecl *Prev = this; 3486 bool FoundBody = false; 3487 while ((Prev = Prev->getPreviousDecl())) { 3488 FoundBody |= Prev->doesThisDeclarationHaveABody(); 3489 3490 if (Prev->doesThisDeclarationHaveABody()) { 3491 // If it's not the case that both 'inline' and 'extern' are 3492 // specified on the definition, then it is always externally visible. 3493 if (!Prev->isInlineSpecified() || 3494 Prev->getStorageClass() != SC_Extern) 3495 return false; 3496 } else if (Prev->isInlineSpecified() && 3497 Prev->getStorageClass() != SC_Extern) { 3498 return false; 3499 } 3500 } 3501 return FoundBody; 3502 } 3503 3504 // C99 6.7.4p6: 3505 // [...] If all of the file scope declarations for a function in a 3506 // translation unit include the inline function specifier without extern, 3507 // then the definition in that translation unit is an inline definition. 3508 if (isInlineSpecified() && getStorageClass() != SC_Extern) 3509 return false; 3510 const FunctionDecl *Prev = this; 3511 bool FoundBody = false; 3512 while ((Prev = Prev->getPreviousDecl())) { 3513 FoundBody |= Prev->doesThisDeclarationHaveABody(); 3514 if (RedeclForcesDefC99(Prev)) 3515 return false; 3516 } 3517 return FoundBody; 3518 } 3519 3520 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const { 3521 const TypeSourceInfo *TSI = getTypeSourceInfo(); 3522 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>() 3523 : FunctionTypeLoc(); 3524 } 3525 3526 SourceRange FunctionDecl::getReturnTypeSourceRange() const { 3527 FunctionTypeLoc FTL = getFunctionTypeLoc(); 3528 if (!FTL) 3529 return SourceRange(); 3530 3531 // Skip self-referential return types. 3532 const SourceManager &SM = getASTContext().getSourceManager(); 3533 SourceRange RTRange = FTL.getReturnLoc().getSourceRange(); 3534 SourceLocation Boundary = getNameInfo().getBeginLoc(); 3535 if (RTRange.isInvalid() || Boundary.isInvalid() || 3536 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary)) 3537 return SourceRange(); 3538 3539 return RTRange; 3540 } 3541 3542 SourceRange FunctionDecl::getParametersSourceRange() const { 3543 unsigned NP = getNumParams(); 3544 SourceLocation EllipsisLoc = getEllipsisLoc(); 3545 3546 if (NP == 0 && EllipsisLoc.isInvalid()) 3547 return SourceRange(); 3548 3549 SourceLocation Begin = 3550 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc; 3551 SourceLocation End = EllipsisLoc.isValid() 3552 ? EllipsisLoc 3553 : ParamInfo[NP - 1]->getSourceRange().getEnd(); 3554 3555 return SourceRange(Begin, End); 3556 } 3557 3558 SourceRange FunctionDecl::getExceptionSpecSourceRange() const { 3559 FunctionTypeLoc FTL = getFunctionTypeLoc(); 3560 return FTL ? FTL.getExceptionSpecRange() : SourceRange(); 3561 } 3562 3563 /// For an inline function definition in C, or for a gnu_inline function 3564 /// in C++, determine whether the definition will be externally visible. 3565 /// 3566 /// Inline function definitions are always available for inlining optimizations. 3567 /// However, depending on the language dialect, declaration specifiers, and 3568 /// attributes, the definition of an inline function may or may not be 3569 /// "externally" visible to other translation units in the program. 3570 /// 3571 /// In C99, inline definitions are not externally visible by default. However, 3572 /// if even one of the global-scope declarations is marked "extern inline", the 3573 /// inline definition becomes externally visible (C99 6.7.4p6). 3574 /// 3575 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function 3576 /// definition, we use the GNU semantics for inline, which are nearly the 3577 /// opposite of C99 semantics. In particular, "inline" by itself will create 3578 /// an externally visible symbol, but "extern inline" will not create an 3579 /// externally visible symbol. 3580 bool FunctionDecl::isInlineDefinitionExternallyVisible() const { 3581 assert((doesThisDeclarationHaveABody() || willHaveBody() || 3582 hasAttr<AliasAttr>()) && 3583 "Must be a function definition"); 3584 assert(isInlined() && "Function must be inline"); 3585 ASTContext &Context = getASTContext(); 3586 3587 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3588 // Note: If you change the logic here, please change 3589 // doesDeclarationForceExternallyVisibleDefinition as well. 3590 // 3591 // If it's not the case that both 'inline' and 'extern' are 3592 // specified on the definition, then this inline definition is 3593 // externally visible. 3594 if (Context.getLangOpts().CPlusPlus) 3595 return false; 3596 if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) 3597 return true; 3598 3599 // If any declaration is 'inline' but not 'extern', then this definition 3600 // is externally visible. 3601 for (auto Redecl : redecls()) { 3602 if (Redecl->isInlineSpecified() && 3603 Redecl->getStorageClass() != SC_Extern) 3604 return true; 3605 } 3606 3607 return false; 3608 } 3609 3610 // The rest of this function is C-only. 3611 assert(!Context.getLangOpts().CPlusPlus && 3612 "should not use C inline rules in C++"); 3613 3614 // C99 6.7.4p6: 3615 // [...] If all of the file scope declarations for a function in a 3616 // translation unit include the inline function specifier without extern, 3617 // then the definition in that translation unit is an inline definition. 3618 for (auto Redecl : redecls()) { 3619 if (RedeclForcesDefC99(Redecl)) 3620 return true; 3621 } 3622 3623 // C99 6.7.4p6: 3624 // An inline definition does not provide an external definition for the 3625 // function, and does not forbid an external definition in another 3626 // translation unit. 3627 return false; 3628 } 3629 3630 /// getOverloadedOperator - Which C++ overloaded operator this 3631 /// function represents, if any. 3632 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { 3633 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 3634 return getDeclName().getCXXOverloadedOperator(); 3635 return OO_None; 3636 } 3637 3638 /// getLiteralIdentifier - The literal suffix identifier this function 3639 /// represents, if any. 3640 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { 3641 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) 3642 return getDeclName().getCXXLiteralIdentifier(); 3643 return nullptr; 3644 } 3645 3646 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { 3647 if (TemplateOrSpecialization.isNull()) 3648 return TK_NonTemplate; 3649 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>()) 3650 return TK_FunctionTemplate; 3651 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) 3652 return TK_MemberSpecialization; 3653 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) 3654 return TK_FunctionTemplateSpecialization; 3655 if (TemplateOrSpecialization.is 3656 <DependentFunctionTemplateSpecializationInfo*>()) 3657 return TK_DependentFunctionTemplateSpecialization; 3658 3659 llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); 3660 } 3661 3662 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { 3663 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) 3664 return cast<FunctionDecl>(Info->getInstantiatedFrom()); 3665 3666 return nullptr; 3667 } 3668 3669 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const { 3670 if (auto *MSI = 3671 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3672 return MSI; 3673 if (auto *FTSI = TemplateOrSpecialization 3674 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 3675 return FTSI->getMemberSpecializationInfo(); 3676 return nullptr; 3677 } 3678 3679 void 3680 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, 3681 FunctionDecl *FD, 3682 TemplateSpecializationKind TSK) { 3683 assert(TemplateOrSpecialization.isNull() && 3684 "Member function is already a specialization"); 3685 MemberSpecializationInfo *Info 3686 = new (C) MemberSpecializationInfo(FD, TSK); 3687 TemplateOrSpecialization = Info; 3688 } 3689 3690 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const { 3691 return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>(); 3692 } 3693 3694 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) { 3695 assert(TemplateOrSpecialization.isNull() && 3696 "Member function is already a specialization"); 3697 TemplateOrSpecialization = Template; 3698 } 3699 3700 bool FunctionDecl::isImplicitlyInstantiable() const { 3701 // If the function is invalid, it can't be implicitly instantiated. 3702 if (isInvalidDecl()) 3703 return false; 3704 3705 switch (getTemplateSpecializationKindForInstantiation()) { 3706 case TSK_Undeclared: 3707 case TSK_ExplicitInstantiationDefinition: 3708 case TSK_ExplicitSpecialization: 3709 return false; 3710 3711 case TSK_ImplicitInstantiation: 3712 return true; 3713 3714 case TSK_ExplicitInstantiationDeclaration: 3715 // Handled below. 3716 break; 3717 } 3718 3719 // Find the actual template from which we will instantiate. 3720 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); 3721 bool HasPattern = false; 3722 if (PatternDecl) 3723 HasPattern = PatternDecl->hasBody(PatternDecl); 3724 3725 // C++0x [temp.explicit]p9: 3726 // Except for inline functions, other explicit instantiation declarations 3727 // have the effect of suppressing the implicit instantiation of the entity 3728 // to which they refer. 3729 if (!HasPattern || !PatternDecl) 3730 return true; 3731 3732 return PatternDecl->isInlined(); 3733 } 3734 3735 bool FunctionDecl::isTemplateInstantiation() const { 3736 // FIXME: Remove this, it's not clear what it means. (Which template 3737 // specialization kind?) 3738 return clang::isTemplateInstantiation(getTemplateSpecializationKind()); 3739 } 3740 3741 FunctionDecl * 3742 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const { 3743 // If this is a generic lambda call operator specialization, its 3744 // instantiation pattern is always its primary template's pattern 3745 // even if its primary template was instantiated from another 3746 // member template (which happens with nested generic lambdas). 3747 // Since a lambda's call operator's body is transformed eagerly, 3748 // we don't have to go hunting for a prototype definition template 3749 // (i.e. instantiated-from-member-template) to use as an instantiation 3750 // pattern. 3751 3752 if (isGenericLambdaCallOperatorSpecialization( 3753 dyn_cast<CXXMethodDecl>(this))) { 3754 assert(getPrimaryTemplate() && "not a generic lambda call operator?"); 3755 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl()); 3756 } 3757 3758 // Check for a declaration of this function that was instantiated from a 3759 // friend definition. 3760 const FunctionDecl *FD = nullptr; 3761 if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true)) 3762 FD = this; 3763 3764 if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) { 3765 if (ForDefinition && 3766 !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind())) 3767 return nullptr; 3768 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom())); 3769 } 3770 3771 if (ForDefinition && 3772 !clang::isTemplateInstantiation(getTemplateSpecializationKind())) 3773 return nullptr; 3774 3775 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { 3776 // If we hit a point where the user provided a specialization of this 3777 // template, we're done looking. 3778 while (!ForDefinition || !Primary->isMemberSpecialization()) { 3779 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate(); 3780 if (!NewPrimary) 3781 break; 3782 Primary = NewPrimary; 3783 } 3784 3785 return getDefinitionOrSelf(Primary->getTemplatedDecl()); 3786 } 3787 3788 return nullptr; 3789 } 3790 3791 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { 3792 if (FunctionTemplateSpecializationInfo *Info 3793 = TemplateOrSpecialization 3794 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3795 return Info->getTemplate(); 3796 } 3797 return nullptr; 3798 } 3799 3800 FunctionTemplateSpecializationInfo * 3801 FunctionDecl::getTemplateSpecializationInfo() const { 3802 return TemplateOrSpecialization 3803 .dyn_cast<FunctionTemplateSpecializationInfo *>(); 3804 } 3805 3806 const TemplateArgumentList * 3807 FunctionDecl::getTemplateSpecializationArgs() const { 3808 if (FunctionTemplateSpecializationInfo *Info 3809 = TemplateOrSpecialization 3810 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3811 return Info->TemplateArguments; 3812 } 3813 return nullptr; 3814 } 3815 3816 const ASTTemplateArgumentListInfo * 3817 FunctionDecl::getTemplateSpecializationArgsAsWritten() const { 3818 if (FunctionTemplateSpecializationInfo *Info 3819 = TemplateOrSpecialization 3820 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 3821 return Info->TemplateArgumentsAsWritten; 3822 } 3823 return nullptr; 3824 } 3825 3826 void 3827 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, 3828 FunctionTemplateDecl *Template, 3829 const TemplateArgumentList *TemplateArgs, 3830 void *InsertPos, 3831 TemplateSpecializationKind TSK, 3832 const TemplateArgumentListInfo *TemplateArgsAsWritten, 3833 SourceLocation PointOfInstantiation) { 3834 assert((TemplateOrSpecialization.isNull() || 3835 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && 3836 "Member function is already a specialization"); 3837 assert(TSK != TSK_Undeclared && 3838 "Must specify the type of function template specialization"); 3839 assert((TemplateOrSpecialization.isNull() || 3840 TSK == TSK_ExplicitSpecialization) && 3841 "Member specialization must be an explicit specialization"); 3842 FunctionTemplateSpecializationInfo *Info = 3843 FunctionTemplateSpecializationInfo::Create( 3844 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten, 3845 PointOfInstantiation, 3846 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()); 3847 TemplateOrSpecialization = Info; 3848 Template->addSpecialization(Info, InsertPos); 3849 } 3850 3851 void 3852 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, 3853 const UnresolvedSetImpl &Templates, 3854 const TemplateArgumentListInfo &TemplateArgs) { 3855 assert(TemplateOrSpecialization.isNull()); 3856 DependentFunctionTemplateSpecializationInfo *Info = 3857 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates, 3858 TemplateArgs); 3859 TemplateOrSpecialization = Info; 3860 } 3861 3862 DependentFunctionTemplateSpecializationInfo * 3863 FunctionDecl::getDependentSpecializationInfo() const { 3864 return TemplateOrSpecialization 3865 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>(); 3866 } 3867 3868 DependentFunctionTemplateSpecializationInfo * 3869 DependentFunctionTemplateSpecializationInfo::Create( 3870 ASTContext &Context, const UnresolvedSetImpl &Ts, 3871 const TemplateArgumentListInfo &TArgs) { 3872 void *Buffer = Context.Allocate( 3873 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>( 3874 TArgs.size(), Ts.size())); 3875 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs); 3876 } 3877 3878 DependentFunctionTemplateSpecializationInfo:: 3879 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, 3880 const TemplateArgumentListInfo &TArgs) 3881 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { 3882 NumTemplates = Ts.size(); 3883 NumArgs = TArgs.size(); 3884 3885 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>(); 3886 for (unsigned I = 0, E = Ts.size(); I != E; ++I) 3887 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl()); 3888 3889 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>(); 3890 for (unsigned I = 0, E = TArgs.size(); I != E; ++I) 3891 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); 3892 } 3893 3894 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { 3895 // For a function template specialization, query the specialization 3896 // information object. 3897 if (FunctionTemplateSpecializationInfo *FTSInfo = 3898 TemplateOrSpecialization 3899 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 3900 return FTSInfo->getTemplateSpecializationKind(); 3901 3902 if (MemberSpecializationInfo *MSInfo = 3903 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3904 return MSInfo->getTemplateSpecializationKind(); 3905 3906 return TSK_Undeclared; 3907 } 3908 3909 TemplateSpecializationKind 3910 FunctionDecl::getTemplateSpecializationKindForInstantiation() const { 3911 // This is the same as getTemplateSpecializationKind(), except that for a 3912 // function that is both a function template specialization and a member 3913 // specialization, we prefer the member specialization information. Eg: 3914 // 3915 // template<typename T> struct A { 3916 // template<typename U> void f() {} 3917 // template<> void f<int>() {} 3918 // }; 3919 // 3920 // For A<int>::f<int>(): 3921 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization 3922 // * getTemplateSpecializationKindForInstantiation() will return 3923 // TSK_ImplicitInstantiation 3924 // 3925 // This reflects the facts that A<int>::f<int> is an explicit specialization 3926 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated 3927 // from A::f<int> if a definition is needed. 3928 if (FunctionTemplateSpecializationInfo *FTSInfo = 3929 TemplateOrSpecialization 3930 .dyn_cast<FunctionTemplateSpecializationInfo *>()) { 3931 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo()) 3932 return MSInfo->getTemplateSpecializationKind(); 3933 return FTSInfo->getTemplateSpecializationKind(); 3934 } 3935 3936 if (MemberSpecializationInfo *MSInfo = 3937 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3938 return MSInfo->getTemplateSpecializationKind(); 3939 3940 return TSK_Undeclared; 3941 } 3942 3943 void 3944 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 3945 SourceLocation PointOfInstantiation) { 3946 if (FunctionTemplateSpecializationInfo *FTSInfo 3947 = TemplateOrSpecialization.dyn_cast< 3948 FunctionTemplateSpecializationInfo*>()) { 3949 FTSInfo->setTemplateSpecializationKind(TSK); 3950 if (TSK != TSK_ExplicitSpecialization && 3951 PointOfInstantiation.isValid() && 3952 FTSInfo->getPointOfInstantiation().isInvalid()) { 3953 FTSInfo->setPointOfInstantiation(PointOfInstantiation); 3954 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 3955 L->InstantiationRequested(this); 3956 } 3957 } else if (MemberSpecializationInfo *MSInfo 3958 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { 3959 MSInfo->setTemplateSpecializationKind(TSK); 3960 if (TSK != TSK_ExplicitSpecialization && 3961 PointOfInstantiation.isValid() && 3962 MSInfo->getPointOfInstantiation().isInvalid()) { 3963 MSInfo->setPointOfInstantiation(PointOfInstantiation); 3964 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 3965 L->InstantiationRequested(this); 3966 } 3967 } else 3968 llvm_unreachable("Function cannot have a template specialization kind"); 3969 } 3970 3971 SourceLocation FunctionDecl::getPointOfInstantiation() const { 3972 if (FunctionTemplateSpecializationInfo *FTSInfo 3973 = TemplateOrSpecialization.dyn_cast< 3974 FunctionTemplateSpecializationInfo*>()) 3975 return FTSInfo->getPointOfInstantiation(); 3976 if (MemberSpecializationInfo *MSInfo = 3977 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3978 return MSInfo->getPointOfInstantiation(); 3979 3980 return SourceLocation(); 3981 } 3982 3983 bool FunctionDecl::isOutOfLine() const { 3984 if (Decl::isOutOfLine()) 3985 return true; 3986 3987 // If this function was instantiated from a member function of a 3988 // class template, check whether that member function was defined out-of-line. 3989 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { 3990 const FunctionDecl *Definition; 3991 if (FD->hasBody(Definition)) 3992 return Definition->isOutOfLine(); 3993 } 3994 3995 // If this function was instantiated from a function template, 3996 // check whether that function template was defined out-of-line. 3997 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { 3998 const FunctionDecl *Definition; 3999 if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) 4000 return Definition->isOutOfLine(); 4001 } 4002 4003 return false; 4004 } 4005 4006 SourceRange FunctionDecl::getSourceRange() const { 4007 return SourceRange(getOuterLocStart(), EndRangeLoc); 4008 } 4009 4010 unsigned FunctionDecl::getMemoryFunctionKind() const { 4011 IdentifierInfo *FnInfo = getIdentifier(); 4012 4013 if (!FnInfo) 4014 return 0; 4015 4016 // Builtin handling. 4017 switch (getBuiltinID()) { 4018 case Builtin::BI__builtin_memset: 4019 case Builtin::BI__builtin___memset_chk: 4020 case Builtin::BImemset: 4021 return Builtin::BImemset; 4022 4023 case Builtin::BI__builtin_memcpy: 4024 case Builtin::BI__builtin___memcpy_chk: 4025 case Builtin::BImemcpy: 4026 return Builtin::BImemcpy; 4027 4028 case Builtin::BI__builtin_mempcpy: 4029 case Builtin::BI__builtin___mempcpy_chk: 4030 case Builtin::BImempcpy: 4031 return Builtin::BImempcpy; 4032 4033 case Builtin::BI__builtin_memmove: 4034 case Builtin::BI__builtin___memmove_chk: 4035 case Builtin::BImemmove: 4036 return Builtin::BImemmove; 4037 4038 case Builtin::BIstrlcpy: 4039 case Builtin::BI__builtin___strlcpy_chk: 4040 return Builtin::BIstrlcpy; 4041 4042 case Builtin::BIstrlcat: 4043 case Builtin::BI__builtin___strlcat_chk: 4044 return Builtin::BIstrlcat; 4045 4046 case Builtin::BI__builtin_memcmp: 4047 case Builtin::BImemcmp: 4048 return Builtin::BImemcmp; 4049 4050 case Builtin::BI__builtin_bcmp: 4051 case Builtin::BIbcmp: 4052 return Builtin::BIbcmp; 4053 4054 case Builtin::BI__builtin_strncpy: 4055 case Builtin::BI__builtin___strncpy_chk: 4056 case Builtin::BIstrncpy: 4057 return Builtin::BIstrncpy; 4058 4059 case Builtin::BI__builtin_strncmp: 4060 case Builtin::BIstrncmp: 4061 return Builtin::BIstrncmp; 4062 4063 case Builtin::BI__builtin_strncasecmp: 4064 case Builtin::BIstrncasecmp: 4065 return Builtin::BIstrncasecmp; 4066 4067 case Builtin::BI__builtin_strncat: 4068 case Builtin::BI__builtin___strncat_chk: 4069 case Builtin::BIstrncat: 4070 return Builtin::BIstrncat; 4071 4072 case Builtin::BI__builtin_strndup: 4073 case Builtin::BIstrndup: 4074 return Builtin::BIstrndup; 4075 4076 case Builtin::BI__builtin_strlen: 4077 case Builtin::BIstrlen: 4078 return Builtin::BIstrlen; 4079 4080 case Builtin::BI__builtin_bzero: 4081 case Builtin::BIbzero: 4082 return Builtin::BIbzero; 4083 4084 case Builtin::BIfree: 4085 return Builtin::BIfree; 4086 4087 default: 4088 if (isExternC()) { 4089 if (FnInfo->isStr("memset")) 4090 return Builtin::BImemset; 4091 if (FnInfo->isStr("memcpy")) 4092 return Builtin::BImemcpy; 4093 if (FnInfo->isStr("mempcpy")) 4094 return Builtin::BImempcpy; 4095 if (FnInfo->isStr("memmove")) 4096 return Builtin::BImemmove; 4097 if (FnInfo->isStr("memcmp")) 4098 return Builtin::BImemcmp; 4099 if (FnInfo->isStr("bcmp")) 4100 return Builtin::BIbcmp; 4101 if (FnInfo->isStr("strncpy")) 4102 return Builtin::BIstrncpy; 4103 if (FnInfo->isStr("strncmp")) 4104 return Builtin::BIstrncmp; 4105 if (FnInfo->isStr("strncasecmp")) 4106 return Builtin::BIstrncasecmp; 4107 if (FnInfo->isStr("strncat")) 4108 return Builtin::BIstrncat; 4109 if (FnInfo->isStr("strndup")) 4110 return Builtin::BIstrndup; 4111 if (FnInfo->isStr("strlen")) 4112 return Builtin::BIstrlen; 4113 if (FnInfo->isStr("bzero")) 4114 return Builtin::BIbzero; 4115 } else if (isInStdNamespace()) { 4116 if (FnInfo->isStr("free")) 4117 return Builtin::BIfree; 4118 } 4119 break; 4120 } 4121 return 0; 4122 } 4123 4124 unsigned FunctionDecl::getODRHash() const { 4125 assert(hasODRHash()); 4126 return ODRHash; 4127 } 4128 4129 unsigned FunctionDecl::getODRHash() { 4130 if (hasODRHash()) 4131 return ODRHash; 4132 4133 if (auto *FT = getInstantiatedFromMemberFunction()) { 4134 setHasODRHash(true); 4135 ODRHash = FT->getODRHash(); 4136 return ODRHash; 4137 } 4138 4139 class ODRHash Hash; 4140 Hash.AddFunctionDecl(this); 4141 setHasODRHash(true); 4142 ODRHash = Hash.CalculateHash(); 4143 return ODRHash; 4144 } 4145 4146 //===----------------------------------------------------------------------===// 4147 // FieldDecl Implementation 4148 //===----------------------------------------------------------------------===// 4149 4150 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, 4151 SourceLocation StartLoc, SourceLocation IdLoc, 4152 IdentifierInfo *Id, QualType T, 4153 TypeSourceInfo *TInfo, Expr *BW, bool Mutable, 4154 InClassInitStyle InitStyle) { 4155 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, 4156 BW, Mutable, InitStyle); 4157 } 4158 4159 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4160 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(), 4161 SourceLocation(), nullptr, QualType(), nullptr, 4162 nullptr, false, ICIS_NoInit); 4163 } 4164 4165 bool FieldDecl::isAnonymousStructOrUnion() const { 4166 if (!isImplicit() || getDeclName()) 4167 return false; 4168 4169 if (const auto *Record = getType()->getAs<RecordType>()) 4170 return Record->getDecl()->isAnonymousStructOrUnion(); 4171 4172 return false; 4173 } 4174 4175 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { 4176 assert(isBitField() && "not a bitfield"); 4177 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue(); 4178 } 4179 4180 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const { 4181 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() && 4182 getBitWidthValue(Ctx) == 0; 4183 } 4184 4185 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const { 4186 if (isZeroLengthBitField(Ctx)) 4187 return true; 4188 4189 // C++2a [intro.object]p7: 4190 // An object has nonzero size if it 4191 // -- is not a potentially-overlapping subobject, or 4192 if (!hasAttr<NoUniqueAddressAttr>()) 4193 return false; 4194 4195 // -- is not of class type, or 4196 const auto *RT = getType()->getAs<RecordType>(); 4197 if (!RT) 4198 return false; 4199 const RecordDecl *RD = RT->getDecl()->getDefinition(); 4200 if (!RD) { 4201 assert(isInvalidDecl() && "valid field has incomplete type"); 4202 return false; 4203 } 4204 4205 // -- [has] virtual member functions or virtual base classes, or 4206 // -- has subobjects of nonzero size or bit-fields of nonzero length 4207 const auto *CXXRD = cast<CXXRecordDecl>(RD); 4208 if (!CXXRD->isEmpty()) 4209 return false; 4210 4211 // Otherwise, [...] the circumstances under which the object has zero size 4212 // are implementation-defined. 4213 // FIXME: This might be Itanium ABI specific; we don't yet know what the MS 4214 // ABI will do. 4215 return true; 4216 } 4217 4218 unsigned FieldDecl::getFieldIndex() const { 4219 const FieldDecl *Canonical = getCanonicalDecl(); 4220 if (Canonical != this) 4221 return Canonical->getFieldIndex(); 4222 4223 if (CachedFieldIndex) return CachedFieldIndex - 1; 4224 4225 unsigned Index = 0; 4226 const RecordDecl *RD = getParent()->getDefinition(); 4227 assert(RD && "requested index for field of struct with no definition"); 4228 4229 for (auto *Field : RD->fields()) { 4230 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1; 4231 ++Index; 4232 } 4233 4234 assert(CachedFieldIndex && "failed to find field in parent"); 4235 return CachedFieldIndex - 1; 4236 } 4237 4238 SourceRange FieldDecl::getSourceRange() const { 4239 const Expr *FinalExpr = getInClassInitializer(); 4240 if (!FinalExpr) 4241 FinalExpr = getBitWidth(); 4242 if (FinalExpr) 4243 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc()); 4244 return DeclaratorDecl::getSourceRange(); 4245 } 4246 4247 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) { 4248 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) && 4249 "capturing type in non-lambda or captured record."); 4250 assert(InitStorage.getInt() == ISK_NoInit && 4251 InitStorage.getPointer() == nullptr && 4252 "bit width, initializer or captured type already set"); 4253 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType), 4254 ISK_CapturedVLAType); 4255 } 4256 4257 //===----------------------------------------------------------------------===// 4258 // TagDecl Implementation 4259 //===----------------------------------------------------------------------===// 4260 4261 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC, 4262 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl, 4263 SourceLocation StartL) 4264 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C), 4265 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) { 4266 assert((DK != Enum || TK == TTK_Enum) && 4267 "EnumDecl not matched with TTK_Enum"); 4268 setPreviousDecl(PrevDecl); 4269 setTagKind(TK); 4270 setCompleteDefinition(false); 4271 setBeingDefined(false); 4272 setEmbeddedInDeclarator(false); 4273 setFreeStanding(false); 4274 setCompleteDefinitionRequired(false); 4275 } 4276 4277 SourceLocation TagDecl::getOuterLocStart() const { 4278 return getTemplateOrInnerLocStart(this); 4279 } 4280 4281 SourceRange TagDecl::getSourceRange() const { 4282 SourceLocation RBraceLoc = BraceRange.getEnd(); 4283 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); 4284 return SourceRange(getOuterLocStart(), E); 4285 } 4286 4287 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); } 4288 4289 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { 4290 TypedefNameDeclOrQualifier = TDD; 4291 if (const Type *T = getTypeForDecl()) { 4292 (void)T; 4293 assert(T->isLinkageValid()); 4294 } 4295 assert(isLinkageValid()); 4296 } 4297 4298 void TagDecl::startDefinition() { 4299 setBeingDefined(true); 4300 4301 if (auto *D = dyn_cast<CXXRecordDecl>(this)) { 4302 struct CXXRecordDecl::DefinitionData *Data = 4303 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); 4304 for (auto I : redecls()) 4305 cast<CXXRecordDecl>(I)->DefinitionData = Data; 4306 } 4307 } 4308 4309 void TagDecl::completeDefinition() { 4310 assert((!isa<CXXRecordDecl>(this) || 4311 cast<CXXRecordDecl>(this)->hasDefinition()) && 4312 "definition completed but not started"); 4313 4314 setCompleteDefinition(true); 4315 setBeingDefined(false); 4316 4317 if (ASTMutationListener *L = getASTMutationListener()) 4318 L->CompletedTagDefinition(this); 4319 } 4320 4321 TagDecl *TagDecl::getDefinition() const { 4322 if (isCompleteDefinition()) 4323 return const_cast<TagDecl *>(this); 4324 4325 // If it's possible for us to have an out-of-date definition, check now. 4326 if (mayHaveOutOfDateDef()) { 4327 if (IdentifierInfo *II = getIdentifier()) { 4328 if (II->isOutOfDate()) { 4329 updateOutOfDate(*II); 4330 } 4331 } 4332 } 4333 4334 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this)) 4335 return CXXRD->getDefinition(); 4336 4337 for (auto R : redecls()) 4338 if (R->isCompleteDefinition()) 4339 return R; 4340 4341 return nullptr; 4342 } 4343 4344 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 4345 if (QualifierLoc) { 4346 // Make sure the extended qualifier info is allocated. 4347 if (!hasExtInfo()) 4348 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4349 // Set qualifier info. 4350 getExtInfo()->QualifierLoc = QualifierLoc; 4351 } else { 4352 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 4353 if (hasExtInfo()) { 4354 if (getExtInfo()->NumTemplParamLists == 0) { 4355 getASTContext().Deallocate(getExtInfo()); 4356 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr; 4357 } 4358 else 4359 getExtInfo()->QualifierLoc = QualifierLoc; 4360 } 4361 } 4362 } 4363 4364 void TagDecl::setTemplateParameterListsInfo( 4365 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 4366 assert(!TPLists.empty()); 4367 // Make sure the extended decl info is allocated. 4368 if (!hasExtInfo()) 4369 // Allocate external info struct. 4370 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4371 // Set the template parameter lists info. 4372 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 4373 } 4374 4375 //===----------------------------------------------------------------------===// 4376 // EnumDecl Implementation 4377 //===----------------------------------------------------------------------===// 4378 4379 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, 4380 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, 4381 bool Scoped, bool ScopedUsingClassTag, bool Fixed) 4382 : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4383 assert(Scoped || !ScopedUsingClassTag); 4384 IntegerType = nullptr; 4385 setNumPositiveBits(0); 4386 setNumNegativeBits(0); 4387 setScoped(Scoped); 4388 setScopedUsingClassTag(ScopedUsingClassTag); 4389 setFixed(Fixed); 4390 setHasODRHash(false); 4391 ODRHash = 0; 4392 } 4393 4394 void EnumDecl::anchor() {} 4395 4396 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, 4397 SourceLocation StartLoc, SourceLocation IdLoc, 4398 IdentifierInfo *Id, 4399 EnumDecl *PrevDecl, bool IsScoped, 4400 bool IsScopedUsingClassTag, bool IsFixed) { 4401 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl, 4402 IsScoped, IsScopedUsingClassTag, IsFixed); 4403 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4404 C.getTypeDeclType(Enum, PrevDecl); 4405 return Enum; 4406 } 4407 4408 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4409 EnumDecl *Enum = 4410 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(), 4411 nullptr, nullptr, false, false, false); 4412 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4413 return Enum; 4414 } 4415 4416 SourceRange EnumDecl::getIntegerTypeRange() const { 4417 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo()) 4418 return TI->getTypeLoc().getSourceRange(); 4419 return SourceRange(); 4420 } 4421 4422 void EnumDecl::completeDefinition(QualType NewType, 4423 QualType NewPromotionType, 4424 unsigned NumPositiveBits, 4425 unsigned NumNegativeBits) { 4426 assert(!isCompleteDefinition() && "Cannot redefine enums!"); 4427 if (!IntegerType) 4428 IntegerType = NewType.getTypePtr(); 4429 PromotionType = NewPromotionType; 4430 setNumPositiveBits(NumPositiveBits); 4431 setNumNegativeBits(NumNegativeBits); 4432 TagDecl::completeDefinition(); 4433 } 4434 4435 bool EnumDecl::isClosed() const { 4436 if (const auto *A = getAttr<EnumExtensibilityAttr>()) 4437 return A->getExtensibility() == EnumExtensibilityAttr::Closed; 4438 return true; 4439 } 4440 4441 bool EnumDecl::isClosedFlag() const { 4442 return isClosed() && hasAttr<FlagEnumAttr>(); 4443 } 4444 4445 bool EnumDecl::isClosedNonFlag() const { 4446 return isClosed() && !hasAttr<FlagEnumAttr>(); 4447 } 4448 4449 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { 4450 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 4451 return MSI->getTemplateSpecializationKind(); 4452 4453 return TSK_Undeclared; 4454 } 4455 4456 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 4457 SourceLocation PointOfInstantiation) { 4458 MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); 4459 assert(MSI && "Not an instantiated member enumeration?"); 4460 MSI->setTemplateSpecializationKind(TSK); 4461 if (TSK != TSK_ExplicitSpecialization && 4462 PointOfInstantiation.isValid() && 4463 MSI->getPointOfInstantiation().isInvalid()) 4464 MSI->setPointOfInstantiation(PointOfInstantiation); 4465 } 4466 4467 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const { 4468 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 4469 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 4470 EnumDecl *ED = getInstantiatedFromMemberEnum(); 4471 while (auto *NewED = ED->getInstantiatedFromMemberEnum()) 4472 ED = NewED; 4473 return getDefinitionOrSelf(ED); 4474 } 4475 } 4476 4477 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) && 4478 "couldn't find pattern for enum instantiation"); 4479 return nullptr; 4480 } 4481 4482 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { 4483 if (SpecializationInfo) 4484 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); 4485 4486 return nullptr; 4487 } 4488 4489 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, 4490 TemplateSpecializationKind TSK) { 4491 assert(!SpecializationInfo && "Member enum is already a specialization"); 4492 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); 4493 } 4494 4495 unsigned EnumDecl::getODRHash() { 4496 if (hasODRHash()) 4497 return ODRHash; 4498 4499 class ODRHash Hash; 4500 Hash.AddEnumDecl(this); 4501 setHasODRHash(true); 4502 ODRHash = Hash.CalculateHash(); 4503 return ODRHash; 4504 } 4505 4506 //===----------------------------------------------------------------------===// 4507 // RecordDecl Implementation 4508 //===----------------------------------------------------------------------===// 4509 4510 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C, 4511 DeclContext *DC, SourceLocation StartLoc, 4512 SourceLocation IdLoc, IdentifierInfo *Id, 4513 RecordDecl *PrevDecl) 4514 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4515 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!"); 4516 setHasFlexibleArrayMember(false); 4517 setAnonymousStructOrUnion(false); 4518 setHasObjectMember(false); 4519 setHasVolatileMember(false); 4520 setHasLoadedFieldsFromExternalStorage(false); 4521 setNonTrivialToPrimitiveDefaultInitialize(false); 4522 setNonTrivialToPrimitiveCopy(false); 4523 setNonTrivialToPrimitiveDestroy(false); 4524 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false); 4525 setHasNonTrivialToPrimitiveDestructCUnion(false); 4526 setHasNonTrivialToPrimitiveCopyCUnion(false); 4527 setParamDestroyedInCallee(false); 4528 setArgPassingRestrictions(APK_CanPassInRegs); 4529 } 4530 4531 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, 4532 SourceLocation StartLoc, SourceLocation IdLoc, 4533 IdentifierInfo *Id, RecordDecl* PrevDecl) { 4534 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC, 4535 StartLoc, IdLoc, Id, PrevDecl); 4536 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4537 4538 C.getTypeDeclType(R, PrevDecl); 4539 return R; 4540 } 4541 4542 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 4543 RecordDecl *R = 4544 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(), 4545 SourceLocation(), nullptr, nullptr); 4546 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4547 return R; 4548 } 4549 4550 bool RecordDecl::isInjectedClassName() const { 4551 return isImplicit() && getDeclName() && getDeclContext()->isRecord() && 4552 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); 4553 } 4554 4555 bool RecordDecl::isLambda() const { 4556 if (auto RD = dyn_cast<CXXRecordDecl>(this)) 4557 return RD->isLambda(); 4558 return false; 4559 } 4560 4561 bool RecordDecl::isCapturedRecord() const { 4562 return hasAttr<CapturedRecordAttr>(); 4563 } 4564 4565 void RecordDecl::setCapturedRecord() { 4566 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext())); 4567 } 4568 4569 bool RecordDecl::isOrContainsUnion() const { 4570 if (isUnion()) 4571 return true; 4572 4573 if (const RecordDecl *Def = getDefinition()) { 4574 for (const FieldDecl *FD : Def->fields()) { 4575 const RecordType *RT = FD->getType()->getAs<RecordType>(); 4576 if (RT && RT->getDecl()->isOrContainsUnion()) 4577 return true; 4578 } 4579 } 4580 4581 return false; 4582 } 4583 4584 RecordDecl::field_iterator RecordDecl::field_begin() const { 4585 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage()) 4586 LoadFieldsFromExternalStorage(); 4587 4588 return field_iterator(decl_iterator(FirstDecl)); 4589 } 4590 4591 /// completeDefinition - Notes that the definition of this type is now 4592 /// complete. 4593 void RecordDecl::completeDefinition() { 4594 assert(!isCompleteDefinition() && "Cannot redefine record!"); 4595 TagDecl::completeDefinition(); 4596 4597 ASTContext &Ctx = getASTContext(); 4598 4599 // Layouts are dumped when computed, so if we are dumping for all complete 4600 // types, we need to force usage to get types that wouldn't be used elsewhere. 4601 if (Ctx.getLangOpts().DumpRecordLayoutsComplete) 4602 (void)Ctx.getASTRecordLayout(this); 4603 } 4604 4605 /// isMsStruct - Get whether or not this record uses ms_struct layout. 4606 /// This which can be turned on with an attribute, pragma, or the 4607 /// -mms-bitfields command-line option. 4608 bool RecordDecl::isMsStruct(const ASTContext &C) const { 4609 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1; 4610 } 4611 4612 void RecordDecl::LoadFieldsFromExternalStorage() const { 4613 ExternalASTSource *Source = getASTContext().getExternalSource(); 4614 assert(hasExternalLexicalStorage() && Source && "No external storage?"); 4615 4616 // Notify that we have a RecordDecl doing some initialization. 4617 ExternalASTSource::Deserializing TheFields(Source); 4618 4619 SmallVector<Decl*, 64> Decls; 4620 setHasLoadedFieldsFromExternalStorage(true); 4621 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) { 4622 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); 4623 }, Decls); 4624 4625 #ifndef NDEBUG 4626 // Check that all decls we got were FieldDecls. 4627 for (unsigned i=0, e=Decls.size(); i != e; ++i) 4628 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); 4629 #endif 4630 4631 if (Decls.empty()) 4632 return; 4633 4634 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, 4635 /*FieldsAlreadyLoaded=*/false); 4636 } 4637 4638 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const { 4639 ASTContext &Context = getASTContext(); 4640 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask & 4641 (SanitizerKind::Address | SanitizerKind::KernelAddress); 4642 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding) 4643 return false; 4644 const auto &NoSanitizeList = Context.getNoSanitizeList(); 4645 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this); 4646 // We may be able to relax some of these requirements. 4647 int ReasonToReject = -1; 4648 if (!CXXRD || CXXRD->isExternCContext()) 4649 ReasonToReject = 0; // is not C++. 4650 else if (CXXRD->hasAttr<PackedAttr>()) 4651 ReasonToReject = 1; // is packed. 4652 else if (CXXRD->isUnion()) 4653 ReasonToReject = 2; // is a union. 4654 else if (CXXRD->isTriviallyCopyable()) 4655 ReasonToReject = 3; // is trivially copyable. 4656 else if (CXXRD->hasTrivialDestructor()) 4657 ReasonToReject = 4; // has trivial destructor. 4658 else if (CXXRD->isStandardLayout()) 4659 ReasonToReject = 5; // is standard layout. 4660 else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(), 4661 "field-padding")) 4662 ReasonToReject = 6; // is in an excluded file. 4663 else if (NoSanitizeList.containsType( 4664 EnabledAsanMask, getQualifiedNameAsString(), "field-padding")) 4665 ReasonToReject = 7; // The type is excluded. 4666 4667 if (EmitRemark) { 4668 if (ReasonToReject >= 0) 4669 Context.getDiagnostics().Report( 4670 getLocation(), 4671 diag::remark_sanitize_address_insert_extra_padding_rejected) 4672 << getQualifiedNameAsString() << ReasonToReject; 4673 else 4674 Context.getDiagnostics().Report( 4675 getLocation(), 4676 diag::remark_sanitize_address_insert_extra_padding_accepted) 4677 << getQualifiedNameAsString(); 4678 } 4679 return ReasonToReject < 0; 4680 } 4681 4682 const FieldDecl *RecordDecl::findFirstNamedDataMember() const { 4683 for (const auto *I : fields()) { 4684 if (I->getIdentifier()) 4685 return I; 4686 4687 if (const auto *RT = I->getType()->getAs<RecordType>()) 4688 if (const FieldDecl *NamedDataMember = 4689 RT->getDecl()->findFirstNamedDataMember()) 4690 return NamedDataMember; 4691 } 4692 4693 // We didn't find a named data member. 4694 return nullptr; 4695 } 4696 4697 //===----------------------------------------------------------------------===// 4698 // BlockDecl Implementation 4699 //===----------------------------------------------------------------------===// 4700 4701 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc) 4702 : Decl(Block, DC, CaretLoc), DeclContext(Block) { 4703 setIsVariadic(false); 4704 setCapturesCXXThis(false); 4705 setBlockMissingReturnType(true); 4706 setIsConversionFromLambda(false); 4707 setDoesNotEscape(false); 4708 setCanAvoidCopyToHeap(false); 4709 } 4710 4711 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { 4712 assert(!ParamInfo && "Already has param info!"); 4713 4714 // Zero params -> null pointer. 4715 if (!NewParamInfo.empty()) { 4716 NumParams = NewParamInfo.size(); 4717 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; 4718 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 4719 } 4720 } 4721 4722 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures, 4723 bool CapturesCXXThis) { 4724 this->setCapturesCXXThis(CapturesCXXThis); 4725 this->NumCaptures = Captures.size(); 4726 4727 if (Captures.empty()) { 4728 this->Captures = nullptr; 4729 return; 4730 } 4731 4732 this->Captures = Captures.copy(Context).data(); 4733 } 4734 4735 bool BlockDecl::capturesVariable(const VarDecl *variable) const { 4736 for (const auto &I : captures()) 4737 // Only auto vars can be captured, so no redeclaration worries. 4738 if (I.getVariable() == variable) 4739 return true; 4740 4741 return false; 4742 } 4743 4744 SourceRange BlockDecl::getSourceRange() const { 4745 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation()); 4746 } 4747 4748 //===----------------------------------------------------------------------===// 4749 // Other Decl Allocation/Deallocation Method Implementations 4750 //===----------------------------------------------------------------------===// 4751 4752 void TranslationUnitDecl::anchor() {} 4753 4754 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { 4755 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C); 4756 } 4757 4758 void PragmaCommentDecl::anchor() {} 4759 4760 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C, 4761 TranslationUnitDecl *DC, 4762 SourceLocation CommentLoc, 4763 PragmaMSCommentKind CommentKind, 4764 StringRef Arg) { 4765 PragmaCommentDecl *PCD = 4766 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1)) 4767 PragmaCommentDecl(DC, CommentLoc, CommentKind); 4768 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size()); 4769 PCD->getTrailingObjects<char>()[Arg.size()] = '\0'; 4770 return PCD; 4771 } 4772 4773 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C, 4774 unsigned ID, 4775 unsigned ArgSize) { 4776 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1)) 4777 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown); 4778 } 4779 4780 void PragmaDetectMismatchDecl::anchor() {} 4781 4782 PragmaDetectMismatchDecl * 4783 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC, 4784 SourceLocation Loc, StringRef Name, 4785 StringRef Value) { 4786 size_t ValueStart = Name.size() + 1; 4787 PragmaDetectMismatchDecl *PDMD = 4788 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1)) 4789 PragmaDetectMismatchDecl(DC, Loc, ValueStart); 4790 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size()); 4791 PDMD->getTrailingObjects<char>()[Name.size()] = '\0'; 4792 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(), 4793 Value.size()); 4794 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0'; 4795 return PDMD; 4796 } 4797 4798 PragmaDetectMismatchDecl * 4799 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4800 unsigned NameValueSize) { 4801 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1)) 4802 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0); 4803 } 4804 4805 void ExternCContextDecl::anchor() {} 4806 4807 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C, 4808 TranslationUnitDecl *DC) { 4809 return new (C, DC) ExternCContextDecl(DC); 4810 } 4811 4812 void LabelDecl::anchor() {} 4813 4814 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 4815 SourceLocation IdentL, IdentifierInfo *II) { 4816 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL); 4817 } 4818 4819 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 4820 SourceLocation IdentL, IdentifierInfo *II, 4821 SourceLocation GnuLabelL) { 4822 assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); 4823 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL); 4824 } 4825 4826 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4827 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr, 4828 SourceLocation()); 4829 } 4830 4831 void LabelDecl::setMSAsmLabel(StringRef Name) { 4832 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1]; 4833 memcpy(Buffer, Name.data(), Name.size()); 4834 Buffer[Name.size()] = '\0'; 4835 MSAsmName = Buffer; 4836 } 4837 4838 void ValueDecl::anchor() {} 4839 4840 bool ValueDecl::isWeak() const { 4841 auto *MostRecent = getMostRecentDecl(); 4842 return MostRecent->hasAttr<WeakAttr>() || 4843 MostRecent->hasAttr<WeakRefAttr>() || isWeakImported(); 4844 } 4845 4846 void ImplicitParamDecl::anchor() {} 4847 4848 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, 4849 SourceLocation IdLoc, 4850 IdentifierInfo *Id, QualType Type, 4851 ImplicitParamKind ParamKind) { 4852 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind); 4853 } 4854 4855 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type, 4856 ImplicitParamKind ParamKind) { 4857 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind); 4858 } 4859 4860 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, 4861 unsigned ID) { 4862 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other); 4863 } 4864 4865 FunctionDecl * 4866 FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, 4867 const DeclarationNameInfo &NameInfo, QualType T, 4868 TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin, 4869 bool isInlineSpecified, bool hasWrittenPrototype, 4870 ConstexprSpecKind ConstexprKind, 4871 Expr *TrailingRequiresClause) { 4872 FunctionDecl *New = new (C, DC) FunctionDecl( 4873 Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin, 4874 isInlineSpecified, ConstexprKind, TrailingRequiresClause); 4875 New->setHasWrittenPrototype(hasWrittenPrototype); 4876 return New; 4877 } 4878 4879 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4880 return new (C, ID) FunctionDecl( 4881 Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), 4882 nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr); 4883 } 4884 4885 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 4886 return new (C, DC) BlockDecl(DC, L); 4887 } 4888 4889 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4890 return new (C, ID) BlockDecl(nullptr, SourceLocation()); 4891 } 4892 4893 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams) 4894 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured), 4895 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {} 4896 4897 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC, 4898 unsigned NumParams) { 4899 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4900 CapturedDecl(DC, NumParams); 4901 } 4902 4903 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID, 4904 unsigned NumParams) { 4905 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 4906 CapturedDecl(nullptr, NumParams); 4907 } 4908 4909 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); } 4910 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); } 4911 4912 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); } 4913 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); } 4914 4915 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, 4916 SourceLocation L, 4917 IdentifierInfo *Id, QualType T, 4918 Expr *E, const llvm::APSInt &V) { 4919 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V); 4920 } 4921 4922 EnumConstantDecl * 4923 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4924 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr, 4925 QualType(), nullptr, llvm::APSInt()); 4926 } 4927 4928 void IndirectFieldDecl::anchor() {} 4929 4930 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC, 4931 SourceLocation L, DeclarationName N, 4932 QualType T, 4933 MutableArrayRef<NamedDecl *> CH) 4934 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()), 4935 ChainingSize(CH.size()) { 4936 // In C++, indirect field declarations conflict with tag declarations in the 4937 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them. 4938 if (C.getLangOpts().CPlusPlus) 4939 IdentifierNamespace |= IDNS_Tag; 4940 } 4941 4942 IndirectFieldDecl * 4943 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, 4944 IdentifierInfo *Id, QualType T, 4945 llvm::MutableArrayRef<NamedDecl *> CH) { 4946 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH); 4947 } 4948 4949 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, 4950 unsigned ID) { 4951 return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(), 4952 DeclarationName(), QualType(), None); 4953 } 4954 4955 SourceRange EnumConstantDecl::getSourceRange() const { 4956 SourceLocation End = getLocation(); 4957 if (Init) 4958 End = Init->getEndLoc(); 4959 return SourceRange(getLocation(), End); 4960 } 4961 4962 void TypeDecl::anchor() {} 4963 4964 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, 4965 SourceLocation StartLoc, SourceLocation IdLoc, 4966 IdentifierInfo *Id, TypeSourceInfo *TInfo) { 4967 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 4968 } 4969 4970 void TypedefNameDecl::anchor() {} 4971 4972 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const { 4973 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) { 4974 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl(); 4975 auto *ThisTypedef = this; 4976 if (AnyRedecl && OwningTypedef) { 4977 OwningTypedef = OwningTypedef->getCanonicalDecl(); 4978 ThisTypedef = ThisTypedef->getCanonicalDecl(); 4979 } 4980 if (OwningTypedef == ThisTypedef) 4981 return TT->getDecl(); 4982 } 4983 4984 return nullptr; 4985 } 4986 4987 bool TypedefNameDecl::isTransparentTagSlow() const { 4988 auto determineIsTransparent = [&]() { 4989 if (auto *TT = getUnderlyingType()->getAs<TagType>()) { 4990 if (auto *TD = TT->getDecl()) { 4991 if (TD->getName() != getName()) 4992 return false; 4993 SourceLocation TTLoc = getLocation(); 4994 SourceLocation TDLoc = TD->getLocation(); 4995 if (!TTLoc.isMacroID() || !TDLoc.isMacroID()) 4996 return false; 4997 SourceManager &SM = getASTContext().getSourceManager(); 4998 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc); 4999 } 5000 } 5001 return false; 5002 }; 5003 5004 bool isTransparent = determineIsTransparent(); 5005 MaybeModedTInfo.setInt((isTransparent << 1) | 1); 5006 return isTransparent; 5007 } 5008 5009 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5010 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(), 5011 nullptr, nullptr); 5012 } 5013 5014 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, 5015 SourceLocation StartLoc, 5016 SourceLocation IdLoc, IdentifierInfo *Id, 5017 TypeSourceInfo *TInfo) { 5018 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 5019 } 5020 5021 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5022 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(), 5023 SourceLocation(), nullptr, nullptr); 5024 } 5025 5026 SourceRange TypedefDecl::getSourceRange() const { 5027 SourceLocation RangeEnd = getLocation(); 5028 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 5029 if (typeIsPostfix(TInfo->getType())) 5030 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 5031 } 5032 return SourceRange(getBeginLoc(), RangeEnd); 5033 } 5034 5035 SourceRange TypeAliasDecl::getSourceRange() const { 5036 SourceLocation RangeEnd = getBeginLoc(); 5037 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) 5038 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 5039 return SourceRange(getBeginLoc(), RangeEnd); 5040 } 5041 5042 void FileScopeAsmDecl::anchor() {} 5043 5044 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, 5045 StringLiteral *Str, 5046 SourceLocation AsmLoc, 5047 SourceLocation RParenLoc) { 5048 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); 5049 } 5050 5051 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, 5052 unsigned ID) { 5053 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(), 5054 SourceLocation()); 5055 } 5056 5057 void EmptyDecl::anchor() {} 5058 5059 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 5060 return new (C, DC) EmptyDecl(DC, L); 5061 } 5062 5063 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5064 return new (C, ID) EmptyDecl(nullptr, SourceLocation()); 5065 } 5066 5067 //===----------------------------------------------------------------------===// 5068 // ImportDecl Implementation 5069 //===----------------------------------------------------------------------===// 5070 5071 /// Retrieve the number of module identifiers needed to name the given 5072 /// module. 5073 static unsigned getNumModuleIdentifiers(Module *Mod) { 5074 unsigned Result = 1; 5075 while (Mod->Parent) { 5076 Mod = Mod->Parent; 5077 ++Result; 5078 } 5079 return Result; 5080 } 5081 5082 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 5083 Module *Imported, 5084 ArrayRef<SourceLocation> IdentifierLocs) 5085 : Decl(Import, DC, StartLoc), ImportedModule(Imported), 5086 NextLocalImportAndComplete(nullptr, true) { 5087 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); 5088 auto *StoredLocs = getTrailingObjects<SourceLocation>(); 5089 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(), 5090 StoredLocs); 5091 } 5092 5093 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 5094 Module *Imported, SourceLocation EndLoc) 5095 : Decl(Import, DC, StartLoc), ImportedModule(Imported), 5096 NextLocalImportAndComplete(nullptr, false) { 5097 *getTrailingObjects<SourceLocation>() = EndLoc; 5098 } 5099 5100 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, 5101 SourceLocation StartLoc, Module *Imported, 5102 ArrayRef<SourceLocation> IdentifierLocs) { 5103 return new (C, DC, 5104 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size())) 5105 ImportDecl(DC, StartLoc, Imported, IdentifierLocs); 5106 } 5107 5108 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, 5109 SourceLocation StartLoc, 5110 Module *Imported, 5111 SourceLocation EndLoc) { 5112 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1)) 5113 ImportDecl(DC, StartLoc, Imported, EndLoc); 5114 Import->setImplicit(); 5115 return Import; 5116 } 5117 5118 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, 5119 unsigned NumLocations) { 5120 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations)) 5121 ImportDecl(EmptyShell()); 5122 } 5123 5124 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { 5125 if (!isImportComplete()) 5126 return None; 5127 5128 const auto *StoredLocs = getTrailingObjects<SourceLocation>(); 5129 return llvm::makeArrayRef(StoredLocs, 5130 getNumModuleIdentifiers(getImportedModule())); 5131 } 5132 5133 SourceRange ImportDecl::getSourceRange() const { 5134 if (!isImportComplete()) 5135 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>()); 5136 5137 return SourceRange(getLocation(), getIdentifierLocs().back()); 5138 } 5139 5140 //===----------------------------------------------------------------------===// 5141 // ExportDecl Implementation 5142 //===----------------------------------------------------------------------===// 5143 5144 void ExportDecl::anchor() {} 5145 5146 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC, 5147 SourceLocation ExportLoc) { 5148 return new (C, DC) ExportDecl(DC, ExportLoc); 5149 } 5150 5151 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5152 return new (C, ID) ExportDecl(nullptr, SourceLocation()); 5153 } 5154