1 //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the ASTContext interface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "CXXABI.h"
15 #include "Interp/Context.h"
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTConcept.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/ASTTypeTraits.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/AttrIterator.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/Comment.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclBase.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclContextInternals.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/DeclarationName.h"
32 #include "clang/AST/DependenceFlags.h"
33 #include "clang/AST/Expr.h"
34 #include "clang/AST/ExprCXX.h"
35 #include "clang/AST/ExprConcepts.h"
36 #include "clang/AST/ExternalASTSource.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/MangleNumberingContext.h"
39 #include "clang/AST/NestedNameSpecifier.h"
40 #include "clang/AST/ParentMapContext.h"
41 #include "clang/AST/RawCommentList.h"
42 #include "clang/AST/RecordLayout.h"
43 #include "clang/AST/Stmt.h"
44 #include "clang/AST/TemplateBase.h"
45 #include "clang/AST/TemplateName.h"
46 #include "clang/AST/Type.h"
47 #include "clang/AST/TypeLoc.h"
48 #include "clang/AST/UnresolvedSet.h"
49 #include "clang/AST/VTableBuilder.h"
50 #include "clang/Basic/AddressSpaces.h"
51 #include "clang/Basic/Builtins.h"
52 #include "clang/Basic/CommentOptions.h"
53 #include "clang/Basic/ExceptionSpecificationType.h"
54 #include "clang/Basic/IdentifierTable.h"
55 #include "clang/Basic/LLVM.h"
56 #include "clang/Basic/LangOptions.h"
57 #include "clang/Basic/Linkage.h"
58 #include "clang/Basic/Module.h"
59 #include "clang/Basic/NoSanitizeList.h"
60 #include "clang/Basic/ObjCRuntime.h"
61 #include "clang/Basic/SourceLocation.h"
62 #include "clang/Basic/SourceManager.h"
63 #include "clang/Basic/Specifiers.h"
64 #include "clang/Basic/TargetCXXABI.h"
65 #include "clang/Basic/TargetInfo.h"
66 #include "clang/Basic/XRayLists.h"
67 #include "llvm/ADT/APFixedPoint.h"
68 #include "llvm/ADT/APInt.h"
69 #include "llvm/ADT/APSInt.h"
70 #include "llvm/ADT/ArrayRef.h"
71 #include "llvm/ADT/DenseMap.h"
72 #include "llvm/ADT/DenseSet.h"
73 #include "llvm/ADT/FoldingSet.h"
74 #include "llvm/ADT/None.h"
75 #include "llvm/ADT/Optional.h"
76 #include "llvm/ADT/PointerUnion.h"
77 #include "llvm/ADT/STLExtras.h"
78 #include "llvm/ADT/SmallPtrSet.h"
79 #include "llvm/ADT/SmallVector.h"
80 #include "llvm/ADT/StringExtras.h"
81 #include "llvm/ADT/StringRef.h"
82 #include "llvm/ADT/Triple.h"
83 #include "llvm/Support/Capacity.h"
84 #include "llvm/Support/Casting.h"
85 #include "llvm/Support/Compiler.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/MD5.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstddef>
93 #include <cstdint>
94 #include <cstdlib>
95 #include <map>
96 #include <memory>
97 #include <string>
98 #include <tuple>
99 #include <utility>
100 
101 using namespace clang;
102 
103 enum FloatingRank {
104   BFloat16Rank,
105   Float16Rank,
106   HalfRank,
107   FloatRank,
108   DoubleRank,
109   LongDoubleRank,
110   Float128Rank,
111   Ibm128Rank
112 };
113 
114 /// \returns location that is relevant when searching for Doc comments related
115 /// to \p D.
116 static SourceLocation getDeclLocForCommentSearch(const Decl *D,
117                                                  SourceManager &SourceMgr) {
118   assert(D);
119 
120   // User can not attach documentation to implicit declarations.
121   if (D->isImplicit())
122     return {};
123 
124   // User can not attach documentation to implicit instantiations.
125   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
126     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
127       return {};
128   }
129 
130   if (const auto *VD = dyn_cast<VarDecl>(D)) {
131     if (VD->isStaticDataMember() &&
132         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
133       return {};
134   }
135 
136   if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
137     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
138       return {};
139   }
140 
141   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
142     TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
143     if (TSK == TSK_ImplicitInstantiation ||
144         TSK == TSK_Undeclared)
145       return {};
146   }
147 
148   if (const auto *ED = dyn_cast<EnumDecl>(D)) {
149     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
150       return {};
151   }
152   if (const auto *TD = dyn_cast<TagDecl>(D)) {
153     // When tag declaration (but not definition!) is part of the
154     // decl-specifier-seq of some other declaration, it doesn't get comment
155     if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
156       return {};
157   }
158   // TODO: handle comments for function parameters properly.
159   if (isa<ParmVarDecl>(D))
160     return {};
161 
162   // TODO: we could look up template parameter documentation in the template
163   // documentation.
164   if (isa<TemplateTypeParmDecl>(D) ||
165       isa<NonTypeTemplateParmDecl>(D) ||
166       isa<TemplateTemplateParmDecl>(D))
167     return {};
168 
169   // Find declaration location.
170   // For Objective-C declarations we generally don't expect to have multiple
171   // declarators, thus use declaration starting location as the "declaration
172   // location".
173   // For all other declarations multiple declarators are used quite frequently,
174   // so we use the location of the identifier as the "declaration location".
175   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
176       isa<ObjCPropertyDecl>(D) ||
177       isa<RedeclarableTemplateDecl>(D) ||
178       isa<ClassTemplateSpecializationDecl>(D) ||
179       // Allow association with Y across {} in `typedef struct X {} Y`.
180       isa<TypedefDecl>(D))
181     return D->getBeginLoc();
182 
183   const SourceLocation DeclLoc = D->getLocation();
184   if (DeclLoc.isMacroID()) {
185     if (isa<TypedefDecl>(D)) {
186       // If location of the typedef name is in a macro, it is because being
187       // declared via a macro. Try using declaration's starting location as
188       // the "declaration location".
189       return D->getBeginLoc();
190     }
191 
192     if (const auto *TD = dyn_cast<TagDecl>(D)) {
193       // If location of the tag decl is inside a macro, but the spelling of
194       // the tag name comes from a macro argument, it looks like a special
195       // macro like NS_ENUM is being used to define the tag decl.  In that
196       // case, adjust the source location to the expansion loc so that we can
197       // attach the comment to the tag decl.
198       if (SourceMgr.isMacroArgExpansion(DeclLoc) && TD->isCompleteDefinition())
199         return SourceMgr.getExpansionLoc(DeclLoc);
200     }
201   }
202 
203   return DeclLoc;
204 }
205 
206 RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
207     const Decl *D, const SourceLocation RepresentativeLocForDecl,
208     const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
209   // If the declaration doesn't map directly to a location in a file, we
210   // can't find the comment.
211   if (RepresentativeLocForDecl.isInvalid() ||
212       !RepresentativeLocForDecl.isFileID())
213     return nullptr;
214 
215   // If there are no comments anywhere, we won't find anything.
216   if (CommentsInTheFile.empty())
217     return nullptr;
218 
219   // Decompose the location for the declaration and find the beginning of the
220   // file buffer.
221   const std::pair<FileID, unsigned> DeclLocDecomp =
222       SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);
223 
224   // Slow path.
225   auto OffsetCommentBehindDecl =
226       CommentsInTheFile.lower_bound(DeclLocDecomp.second);
227 
228   // First check whether we have a trailing comment.
229   if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
230     RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
231     if ((CommentBehindDecl->isDocumentation() ||
232          LangOpts.CommentOpts.ParseAllComments) &&
233         CommentBehindDecl->isTrailingComment() &&
234         (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
235          isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
236 
237       // Check that Doxygen trailing comment comes after the declaration, starts
238       // on the same line and in the same file as the declaration.
239       if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
240           Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
241                                        OffsetCommentBehindDecl->first)) {
242         return CommentBehindDecl;
243       }
244     }
245   }
246 
247   // The comment just after the declaration was not a trailing comment.
248   // Let's look at the previous comment.
249   if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
250     return nullptr;
251 
252   auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
253   RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;
254 
255   // Check that we actually have a non-member Doxygen comment.
256   if (!(CommentBeforeDecl->isDocumentation() ||
257         LangOpts.CommentOpts.ParseAllComments) ||
258       CommentBeforeDecl->isTrailingComment())
259     return nullptr;
260 
261   // Decompose the end of the comment.
262   const unsigned CommentEndOffset =
263       Comments.getCommentEndOffset(CommentBeforeDecl);
264 
265   // Get the corresponding buffer.
266   bool Invalid = false;
267   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
268                                                &Invalid).data();
269   if (Invalid)
270     return nullptr;
271 
272   // Extract text between the comment and declaration.
273   StringRef Text(Buffer + CommentEndOffset,
274                  DeclLocDecomp.second - CommentEndOffset);
275 
276   // There should be no other declarations or preprocessor directives between
277   // comment and declaration.
278   if (Text.find_first_of(";{}#@") != StringRef::npos)
279     return nullptr;
280 
281   return CommentBeforeDecl;
282 }
283 
284 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
285   const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
286 
287   // If the declaration doesn't map directly to a location in a file, we
288   // can't find the comment.
289   if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
290     return nullptr;
291 
292   if (ExternalSource && !CommentsLoaded) {
293     ExternalSource->ReadComments();
294     CommentsLoaded = true;
295   }
296 
297   if (Comments.empty())
298     return nullptr;
299 
300   const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
301   const auto CommentsInThisFile = Comments.getCommentsInFile(File);
302   if (!CommentsInThisFile || CommentsInThisFile->empty())
303     return nullptr;
304 
305   return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile);
306 }
307 
308 void ASTContext::addComment(const RawComment &RC) {
309   assert(LangOpts.RetainCommentsFromSystemHeaders ||
310          !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
311   Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
312 }
313 
314 /// If we have a 'templated' declaration for a template, adjust 'D' to
315 /// refer to the actual template.
316 /// If we have an implicit instantiation, adjust 'D' to refer to template.
317 static const Decl &adjustDeclToTemplate(const Decl &D) {
318   if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
319     // Is this function declaration part of a function template?
320     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
321       return *FTD;
322 
323     // Nothing to do if function is not an implicit instantiation.
324     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
325       return D;
326 
327     // Function is an implicit instantiation of a function template?
328     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
329       return *FTD;
330 
331     // Function is instantiated from a member definition of a class template?
332     if (const FunctionDecl *MemberDecl =
333             FD->getInstantiatedFromMemberFunction())
334       return *MemberDecl;
335 
336     return D;
337   }
338   if (const auto *VD = dyn_cast<VarDecl>(&D)) {
339     // Static data member is instantiated from a member definition of a class
340     // template?
341     if (VD->isStaticDataMember())
342       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
343         return *MemberDecl;
344 
345     return D;
346   }
347   if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
348     // Is this class declaration part of a class template?
349     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
350       return *CTD;
351 
352     // Class is an implicit instantiation of a class template or partial
353     // specialization?
354     if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
355       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
356         return D;
357       llvm::PointerUnion<ClassTemplateDecl *,
358                          ClassTemplatePartialSpecializationDecl *>
359           PU = CTSD->getSpecializedTemplateOrPartial();
360       return PU.is<ClassTemplateDecl *>()
361                  ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
362                  : *static_cast<const Decl *>(
363                        PU.get<ClassTemplatePartialSpecializationDecl *>());
364     }
365 
366     // Class is instantiated from a member definition of a class template?
367     if (const MemberSpecializationInfo *Info =
368             CRD->getMemberSpecializationInfo())
369       return *Info->getInstantiatedFrom();
370 
371     return D;
372   }
373   if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
374     // Enum is instantiated from a member definition of a class template?
375     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
376       return *MemberDecl;
377 
378     return D;
379   }
380   // FIXME: Adjust alias templates?
381   return D;
382 }
383 
384 const RawComment *ASTContext::getRawCommentForAnyRedecl(
385                                                 const Decl *D,
386                                                 const Decl **OriginalDecl) const {
387   if (!D) {
388     if (OriginalDecl)
389       OriginalDecl = nullptr;
390     return nullptr;
391   }
392 
393   D = &adjustDeclToTemplate(*D);
394 
395   // Any comment directly attached to D?
396   {
397     auto DeclComment = DeclRawComments.find(D);
398     if (DeclComment != DeclRawComments.end()) {
399       if (OriginalDecl)
400         *OriginalDecl = D;
401       return DeclComment->second;
402     }
403   }
404 
405   // Any comment attached to any redeclaration of D?
406   const Decl *CanonicalD = D->getCanonicalDecl();
407   if (!CanonicalD)
408     return nullptr;
409 
410   {
411     auto RedeclComment = RedeclChainComments.find(CanonicalD);
412     if (RedeclComment != RedeclChainComments.end()) {
413       if (OriginalDecl)
414         *OriginalDecl = RedeclComment->second;
415       auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
416       assert(CommentAtRedecl != DeclRawComments.end() &&
417              "This decl is supposed to have comment attached.");
418       return CommentAtRedecl->second;
419     }
420   }
421 
422   // Any redeclarations of D that we haven't checked for comments yet?
423   // We can't use DenseMap::iterator directly since it'd get invalid.
424   auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
425     auto LookupRes = CommentlessRedeclChains.find(CanonicalD);
426     if (LookupRes != CommentlessRedeclChains.end())
427       return LookupRes->second;
428     return nullptr;
429   }();
430 
431   for (const auto Redecl : D->redecls()) {
432     assert(Redecl);
433     // Skip all redeclarations that have been checked previously.
434     if (LastCheckedRedecl) {
435       if (LastCheckedRedecl == Redecl) {
436         LastCheckedRedecl = nullptr;
437       }
438       continue;
439     }
440     const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
441     if (RedeclComment) {
442       cacheRawCommentForDecl(*Redecl, *RedeclComment);
443       if (OriginalDecl)
444         *OriginalDecl = Redecl;
445       return RedeclComment;
446     }
447     CommentlessRedeclChains[CanonicalD] = Redecl;
448   }
449 
450   if (OriginalDecl)
451     *OriginalDecl = nullptr;
452   return nullptr;
453 }
454 
455 void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
456                                         const RawComment &Comment) const {
457   assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
458   DeclRawComments.try_emplace(&OriginalD, &Comment);
459   const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
460   RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
461   CommentlessRedeclChains.erase(CanonicalDecl);
462 }
463 
464 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
465                    SmallVectorImpl<const NamedDecl *> &Redeclared) {
466   const DeclContext *DC = ObjCMethod->getDeclContext();
467   if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
468     const ObjCInterfaceDecl *ID = IMD->getClassInterface();
469     if (!ID)
470       return;
471     // Add redeclared method here.
472     for (const auto *Ext : ID->known_extensions()) {
473       if (ObjCMethodDecl *RedeclaredMethod =
474             Ext->getMethod(ObjCMethod->getSelector(),
475                                   ObjCMethod->isInstanceMethod()))
476         Redeclared.push_back(RedeclaredMethod);
477     }
478   }
479 }
480 
481 void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
482                                                  const Preprocessor *PP) {
483   if (Comments.empty() || Decls.empty())
484     return;
485 
486   FileID File;
487   for (Decl *D : Decls) {
488     SourceLocation Loc = D->getLocation();
489     if (Loc.isValid()) {
490       // See if there are any new comments that are not attached to a decl.
491       // The location doesn't have to be precise - we care only about the file.
492       File = SourceMgr.getDecomposedLoc(Loc).first;
493       break;
494     }
495   }
496 
497   if (File.isInvalid())
498     return;
499 
500   auto CommentsInThisFile = Comments.getCommentsInFile(File);
501   if (!CommentsInThisFile || CommentsInThisFile->empty() ||
502       CommentsInThisFile->rbegin()->second->isAttached())
503     return;
504 
505   // There is at least one comment not attached to a decl.
506   // Maybe it should be attached to one of Decls?
507   //
508   // Note that this way we pick up not only comments that precede the
509   // declaration, but also comments that *follow* the declaration -- thanks to
510   // the lookahead in the lexer: we've consumed the semicolon and looked
511   // ahead through comments.
512 
513   for (const Decl *D : Decls) {
514     assert(D);
515     if (D->isInvalidDecl())
516       continue;
517 
518     D = &adjustDeclToTemplate(*D);
519 
520     const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
521 
522     if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
523       continue;
524 
525     if (DeclRawComments.count(D) > 0)
526       continue;
527 
528     if (RawComment *const DocComment =
529             getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) {
530       cacheRawCommentForDecl(*D, *DocComment);
531       comments::FullComment *FC = DocComment->parse(*this, PP, D);
532       ParsedComments[D->getCanonicalDecl()] = FC;
533     }
534   }
535 }
536 
537 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
538                                                     const Decl *D) const {
539   auto *ThisDeclInfo = new (*this) comments::DeclInfo;
540   ThisDeclInfo->CommentDecl = D;
541   ThisDeclInfo->IsFilled = false;
542   ThisDeclInfo->fill();
543   ThisDeclInfo->CommentDecl = FC->getDecl();
544   if (!ThisDeclInfo->TemplateParameters)
545     ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
546   comments::FullComment *CFC =
547     new (*this) comments::FullComment(FC->getBlocks(),
548                                       ThisDeclInfo);
549   return CFC;
550 }
551 
552 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
553   const RawComment *RC = getRawCommentForDeclNoCache(D);
554   return RC ? RC->parse(*this, nullptr, D) : nullptr;
555 }
556 
557 comments::FullComment *ASTContext::getCommentForDecl(
558                                               const Decl *D,
559                                               const Preprocessor *PP) const {
560   if (!D || D->isInvalidDecl())
561     return nullptr;
562   D = &adjustDeclToTemplate(*D);
563 
564   const Decl *Canonical = D->getCanonicalDecl();
565   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
566       ParsedComments.find(Canonical);
567 
568   if (Pos != ParsedComments.end()) {
569     if (Canonical != D) {
570       comments::FullComment *FC = Pos->second;
571       comments::FullComment *CFC = cloneFullComment(FC, D);
572       return CFC;
573     }
574     return Pos->second;
575   }
576 
577   const Decl *OriginalDecl = nullptr;
578 
579   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
580   if (!RC) {
581     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
582       SmallVector<const NamedDecl*, 8> Overridden;
583       const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
584       if (OMD && OMD->isPropertyAccessor())
585         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
586           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
587             return cloneFullComment(FC, D);
588       if (OMD)
589         addRedeclaredMethods(OMD, Overridden);
590       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
591       for (unsigned i = 0, e = Overridden.size(); i < e; i++)
592         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
593           return cloneFullComment(FC, D);
594     }
595     else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
596       // Attach any tag type's documentation to its typedef if latter
597       // does not have one of its own.
598       QualType QT = TD->getUnderlyingType();
599       if (const auto *TT = QT->getAs<TagType>())
600         if (const Decl *TD = TT->getDecl())
601           if (comments::FullComment *FC = getCommentForDecl(TD, PP))
602             return cloneFullComment(FC, D);
603     }
604     else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
605       while (IC->getSuperClass()) {
606         IC = IC->getSuperClass();
607         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
608           return cloneFullComment(FC, D);
609       }
610     }
611     else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
612       if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
613         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
614           return cloneFullComment(FC, D);
615     }
616     else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
617       if (!(RD = RD->getDefinition()))
618         return nullptr;
619       // Check non-virtual bases.
620       for (const auto &I : RD->bases()) {
621         if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
622           continue;
623         QualType Ty = I.getType();
624         if (Ty.isNull())
625           continue;
626         if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
627           if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
628             continue;
629 
630           if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
631             return cloneFullComment(FC, D);
632         }
633       }
634       // Check virtual bases.
635       for (const auto &I : RD->vbases()) {
636         if (I.getAccessSpecifier() != AS_public)
637           continue;
638         QualType Ty = I.getType();
639         if (Ty.isNull())
640           continue;
641         if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
642           if (!(VirtualBase= VirtualBase->getDefinition()))
643             continue;
644           if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
645             return cloneFullComment(FC, D);
646         }
647       }
648     }
649     return nullptr;
650   }
651 
652   // If the RawComment was attached to other redeclaration of this Decl, we
653   // should parse the comment in context of that other Decl.  This is important
654   // because comments can contain references to parameter names which can be
655   // different across redeclarations.
656   if (D != OriginalDecl && OriginalDecl)
657     return getCommentForDecl(OriginalDecl, PP);
658 
659   comments::FullComment *FC = RC->parse(*this, PP, D);
660   ParsedComments[Canonical] = FC;
661   return FC;
662 }
663 
664 void
665 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
666                                                    const ASTContext &C,
667                                                TemplateTemplateParmDecl *Parm) {
668   ID.AddInteger(Parm->getDepth());
669   ID.AddInteger(Parm->getPosition());
670   ID.AddBoolean(Parm->isParameterPack());
671 
672   TemplateParameterList *Params = Parm->getTemplateParameters();
673   ID.AddInteger(Params->size());
674   for (TemplateParameterList::const_iterator P = Params->begin(),
675                                           PEnd = Params->end();
676        P != PEnd; ++P) {
677     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
678       ID.AddInteger(0);
679       ID.AddBoolean(TTP->isParameterPack());
680       const TypeConstraint *TC = TTP->getTypeConstraint();
681       ID.AddBoolean(TC != nullptr);
682       if (TC)
683         TC->getImmediatelyDeclaredConstraint()->Profile(ID, C,
684                                                         /*Canonical=*/true);
685       if (TTP->isExpandedParameterPack()) {
686         ID.AddBoolean(true);
687         ID.AddInteger(TTP->getNumExpansionParameters());
688       } else
689         ID.AddBoolean(false);
690       continue;
691     }
692 
693     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
694       ID.AddInteger(1);
695       ID.AddBoolean(NTTP->isParameterPack());
696       ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
697       if (NTTP->isExpandedParameterPack()) {
698         ID.AddBoolean(true);
699         ID.AddInteger(NTTP->getNumExpansionTypes());
700         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
701           QualType T = NTTP->getExpansionType(I);
702           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
703         }
704       } else
705         ID.AddBoolean(false);
706       continue;
707     }
708 
709     auto *TTP = cast<TemplateTemplateParmDecl>(*P);
710     ID.AddInteger(2);
711     Profile(ID, C, TTP);
712   }
713   Expr *RequiresClause = Parm->getTemplateParameters()->getRequiresClause();
714   ID.AddBoolean(RequiresClause != nullptr);
715   if (RequiresClause)
716     RequiresClause->Profile(ID, C, /*Canonical=*/true);
717 }
718 
719 static Expr *
720 canonicalizeImmediatelyDeclaredConstraint(const ASTContext &C, Expr *IDC,
721                                           QualType ConstrainedType) {
722   // This is a bit ugly - we need to form a new immediately-declared
723   // constraint that references the new parameter; this would ideally
724   // require semantic analysis (e.g. template<C T> struct S {}; - the
725   // converted arguments of C<T> could be an argument pack if C is
726   // declared as template<typename... T> concept C = ...).
727   // We don't have semantic analysis here so we dig deep into the
728   // ready-made constraint expr and change the thing manually.
729   ConceptSpecializationExpr *CSE;
730   if (const auto *Fold = dyn_cast<CXXFoldExpr>(IDC))
731     CSE = cast<ConceptSpecializationExpr>(Fold->getLHS());
732   else
733     CSE = cast<ConceptSpecializationExpr>(IDC);
734   ArrayRef<TemplateArgument> OldConverted = CSE->getTemplateArguments();
735   SmallVector<TemplateArgument, 3> NewConverted;
736   NewConverted.reserve(OldConverted.size());
737   if (OldConverted.front().getKind() == TemplateArgument::Pack) {
738     // The case:
739     // template<typename... T> concept C = true;
740     // template<C<int> T> struct S; -> constraint is C<{T, int}>
741     NewConverted.push_back(ConstrainedType);
742     llvm::append_range(NewConverted,
743                        OldConverted.front().pack_elements().drop_front(1));
744     TemplateArgument NewPack(NewConverted);
745 
746     NewConverted.clear();
747     NewConverted.push_back(NewPack);
748     assert(OldConverted.size() == 1 &&
749            "Template parameter pack should be the last parameter");
750   } else {
751     assert(OldConverted.front().getKind() == TemplateArgument::Type &&
752            "Unexpected first argument kind for immediately-declared "
753            "constraint");
754     NewConverted.push_back(ConstrainedType);
755     llvm::append_range(NewConverted, OldConverted.drop_front(1));
756   }
757   Expr *NewIDC = ConceptSpecializationExpr::Create(
758       C, CSE->getNamedConcept(), NewConverted, nullptr,
759       CSE->isInstantiationDependent(), CSE->containsUnexpandedParameterPack());
760 
761   if (auto *OrigFold = dyn_cast<CXXFoldExpr>(IDC))
762     NewIDC = new (C) CXXFoldExpr(
763         OrigFold->getType(), /*Callee*/nullptr, SourceLocation(), NewIDC,
764         BinaryOperatorKind::BO_LAnd, SourceLocation(), /*RHS=*/nullptr,
765         SourceLocation(), /*NumExpansions=*/None);
766   return NewIDC;
767 }
768 
769 TemplateTemplateParmDecl *
770 ASTContext::getCanonicalTemplateTemplateParmDecl(
771                                           TemplateTemplateParmDecl *TTP) const {
772   // Check if we already have a canonical template template parameter.
773   llvm::FoldingSetNodeID ID;
774   CanonicalTemplateTemplateParm::Profile(ID, *this, TTP);
775   void *InsertPos = nullptr;
776   CanonicalTemplateTemplateParm *Canonical
777     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
778   if (Canonical)
779     return Canonical->getParam();
780 
781   // Build a canonical template parameter list.
782   TemplateParameterList *Params = TTP->getTemplateParameters();
783   SmallVector<NamedDecl *, 4> CanonParams;
784   CanonParams.reserve(Params->size());
785   for (TemplateParameterList::const_iterator P = Params->begin(),
786                                           PEnd = Params->end();
787        P != PEnd; ++P) {
788     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
789       TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(*this,
790           getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
791           TTP->getDepth(), TTP->getIndex(), nullptr, false,
792           TTP->isParameterPack(), TTP->hasTypeConstraint(),
793           TTP->isExpandedParameterPack() ?
794           llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
795       if (const auto *TC = TTP->getTypeConstraint()) {
796         QualType ParamAsArgument(NewTTP->getTypeForDecl(), 0);
797         Expr *NewIDC = canonicalizeImmediatelyDeclaredConstraint(
798                 *this, TC->getImmediatelyDeclaredConstraint(),
799                 ParamAsArgument);
800         TemplateArgumentListInfo CanonArgsAsWritten;
801         if (auto *Args = TC->getTemplateArgsAsWritten())
802           for (const auto &ArgLoc : Args->arguments())
803             CanonArgsAsWritten.addArgument(
804                 TemplateArgumentLoc(ArgLoc.getArgument(),
805                                     TemplateArgumentLocInfo()));
806         NewTTP->setTypeConstraint(
807             NestedNameSpecifierLoc(),
808             DeclarationNameInfo(TC->getNamedConcept()->getDeclName(),
809                                 SourceLocation()), /*FoundDecl=*/nullptr,
810             // Actually canonicalizing a TemplateArgumentLoc is difficult so we
811             // simply omit the ArgsAsWritten
812             TC->getNamedConcept(), /*ArgsAsWritten=*/nullptr, NewIDC);
813       }
814       CanonParams.push_back(NewTTP);
815     } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
816       QualType T = getCanonicalType(NTTP->getType());
817       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
818       NonTypeTemplateParmDecl *Param;
819       if (NTTP->isExpandedParameterPack()) {
820         SmallVector<QualType, 2> ExpandedTypes;
821         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
822         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
823           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
824           ExpandedTInfos.push_back(
825                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
826         }
827 
828         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
829                                                 SourceLocation(),
830                                                 SourceLocation(),
831                                                 NTTP->getDepth(),
832                                                 NTTP->getPosition(), nullptr,
833                                                 T,
834                                                 TInfo,
835                                                 ExpandedTypes,
836                                                 ExpandedTInfos);
837       } else {
838         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
839                                                 SourceLocation(),
840                                                 SourceLocation(),
841                                                 NTTP->getDepth(),
842                                                 NTTP->getPosition(), nullptr,
843                                                 T,
844                                                 NTTP->isParameterPack(),
845                                                 TInfo);
846       }
847       if (AutoType *AT = T->getContainedAutoType()) {
848         if (AT->isConstrained()) {
849           Param->setPlaceholderTypeConstraint(
850               canonicalizeImmediatelyDeclaredConstraint(
851                   *this, NTTP->getPlaceholderTypeConstraint(), T));
852         }
853       }
854       CanonParams.push_back(Param);
855 
856     } else
857       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
858                                            cast<TemplateTemplateParmDecl>(*P)));
859   }
860 
861   Expr *CanonRequiresClause = nullptr;
862   if (Expr *RequiresClause = TTP->getTemplateParameters()->getRequiresClause())
863     CanonRequiresClause = RequiresClause;
864 
865   TemplateTemplateParmDecl *CanonTTP
866     = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
867                                        SourceLocation(), TTP->getDepth(),
868                                        TTP->getPosition(),
869                                        TTP->isParameterPack(),
870                                        nullptr,
871                          TemplateParameterList::Create(*this, SourceLocation(),
872                                                        SourceLocation(),
873                                                        CanonParams,
874                                                        SourceLocation(),
875                                                        CanonRequiresClause));
876 
877   // Get the new insert position for the node we care about.
878   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
879   assert(!Canonical && "Shouldn't be in the map!");
880   (void)Canonical;
881 
882   // Create the canonical template template parameter entry.
883   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
884   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
885   return CanonTTP;
886 }
887 
888 TargetCXXABI::Kind ASTContext::getCXXABIKind() const {
889   auto Kind = getTargetInfo().getCXXABI().getKind();
890   return getLangOpts().CXXABI.getValueOr(Kind);
891 }
892 
893 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
894   if (!LangOpts.CPlusPlus) return nullptr;
895 
896   switch (getCXXABIKind()) {
897   case TargetCXXABI::AppleARM64:
898   case TargetCXXABI::Fuchsia:
899   case TargetCXXABI::GenericARM: // Same as Itanium at this level
900   case TargetCXXABI::iOS:
901   case TargetCXXABI::WatchOS:
902   case TargetCXXABI::GenericAArch64:
903   case TargetCXXABI::GenericMIPS:
904   case TargetCXXABI::GenericItanium:
905   case TargetCXXABI::WebAssembly:
906   case TargetCXXABI::XL:
907     return CreateItaniumCXXABI(*this);
908   case TargetCXXABI::Microsoft:
909     return CreateMicrosoftCXXABI(*this);
910   }
911   llvm_unreachable("Invalid CXXABI type!");
912 }
913 
914 interp::Context &ASTContext::getInterpContext() {
915   if (!InterpContext) {
916     InterpContext.reset(new interp::Context(*this));
917   }
918   return *InterpContext.get();
919 }
920 
921 ParentMapContext &ASTContext::getParentMapContext() {
922   if (!ParentMapCtx)
923     ParentMapCtx.reset(new ParentMapContext(*this));
924   return *ParentMapCtx.get();
925 }
926 
927 static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
928                                            const LangOptions &LOpts) {
929   if (LOpts.FakeAddressSpaceMap) {
930     // The fake address space map must have a distinct entry for each
931     // language-specific address space.
932     static const unsigned FakeAddrSpaceMap[] = {
933         0,  // Default
934         1,  // opencl_global
935         3,  // opencl_local
936         2,  // opencl_constant
937         0,  // opencl_private
938         4,  // opencl_generic
939         5,  // opencl_global_device
940         6,  // opencl_global_host
941         7,  // cuda_device
942         8,  // cuda_constant
943         9,  // cuda_shared
944         1,  // sycl_global
945         5,  // sycl_global_device
946         6,  // sycl_global_host
947         3,  // sycl_local
948         0,  // sycl_private
949         10, // ptr32_sptr
950         11, // ptr32_uptr
951         12  // ptr64
952     };
953     return &FakeAddrSpaceMap;
954   } else {
955     return &T.getAddressSpaceMap();
956   }
957 }
958 
959 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
960                                           const LangOptions &LangOpts) {
961   switch (LangOpts.getAddressSpaceMapMangling()) {
962   case LangOptions::ASMM_Target:
963     return TI.useAddressSpaceMapMangling();
964   case LangOptions::ASMM_On:
965     return true;
966   case LangOptions::ASMM_Off:
967     return false;
968   }
969   llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
970 }
971 
972 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
973                        IdentifierTable &idents, SelectorTable &sels,
974                        Builtin::Context &builtins, TranslationUnitKind TUKind)
975     : ConstantArrayTypes(this_(), ConstantArrayTypesLog2InitSize),
976       FunctionProtoTypes(this_(), FunctionProtoTypesLog2InitSize),
977       TemplateSpecializationTypes(this_()),
978       DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()),
979       SubstTemplateTemplateParmPacks(this_()),
980       CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts),
981       NoSanitizeL(new NoSanitizeList(LangOpts.NoSanitizeFiles, SM)),
982       XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
983                                         LangOpts.XRayNeverInstrumentFiles,
984                                         LangOpts.XRayAttrListFiles, SM)),
985       ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)),
986       PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
987       BuiltinInfo(builtins), TUKind(TUKind), DeclarationNames(*this),
988       Comments(SM), CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
989       CompCategories(this_()), LastSDM(nullptr, 0) {
990   addTranslationUnitDecl();
991 }
992 
993 void ASTContext::cleanup() {
994   // Release the DenseMaps associated with DeclContext objects.
995   // FIXME: Is this the ideal solution?
996   ReleaseDeclContextMaps();
997 
998   // Call all of the deallocation functions on all of their targets.
999   for (auto &Pair : Deallocations)
1000     (Pair.first)(Pair.second);
1001   Deallocations.clear();
1002 
1003   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
1004   // because they can contain DenseMaps.
1005   for (llvm::DenseMap<const ObjCContainerDecl*,
1006        const ASTRecordLayout*>::iterator
1007        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
1008     // Increment in loop to prevent using deallocated memory.
1009     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
1010       R->Destroy(*this);
1011   ObjCLayouts.clear();
1012 
1013   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
1014        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
1015     // Increment in loop to prevent using deallocated memory.
1016     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
1017       R->Destroy(*this);
1018   }
1019   ASTRecordLayouts.clear();
1020 
1021   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
1022                                                     AEnd = DeclAttrs.end();
1023        A != AEnd; ++A)
1024     A->second->~AttrVec();
1025   DeclAttrs.clear();
1026 
1027   for (const auto &Value : ModuleInitializers)
1028     Value.second->~PerModuleInitializers();
1029   ModuleInitializers.clear();
1030 }
1031 
1032 ASTContext::~ASTContext() { cleanup(); }
1033 
1034 void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
1035   TraversalScope = TopLevelDecls;
1036   getParentMapContext().clear();
1037 }
1038 
1039 void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
1040   Deallocations.push_back({Callback, Data});
1041 }
1042 
1043 void
1044 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
1045   ExternalSource = std::move(Source);
1046 }
1047 
1048 void ASTContext::PrintStats() const {
1049   llvm::errs() << "\n*** AST Context Stats:\n";
1050   llvm::errs() << "  " << Types.size() << " types total.\n";
1051 
1052   unsigned counts[] = {
1053 #define TYPE(Name, Parent) 0,
1054 #define ABSTRACT_TYPE(Name, Parent)
1055 #include "clang/AST/TypeNodes.inc"
1056     0 // Extra
1057   };
1058 
1059   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1060     Type *T = Types[i];
1061     counts[(unsigned)T->getTypeClass()]++;
1062   }
1063 
1064   unsigned Idx = 0;
1065   unsigned TotalBytes = 0;
1066 #define TYPE(Name, Parent)                                              \
1067   if (counts[Idx])                                                      \
1068     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
1069                  << " types, " << sizeof(Name##Type) << " each "        \
1070                  << "(" << counts[Idx] * sizeof(Name##Type)             \
1071                  << " bytes)\n";                                        \
1072   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
1073   ++Idx;
1074 #define ABSTRACT_TYPE(Name, Parent)
1075 #include "clang/AST/TypeNodes.inc"
1076 
1077   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
1078 
1079   // Implicit special member functions.
1080   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
1081                << NumImplicitDefaultConstructors
1082                << " implicit default constructors created\n";
1083   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
1084                << NumImplicitCopyConstructors
1085                << " implicit copy constructors created\n";
1086   if (getLangOpts().CPlusPlus)
1087     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
1088                  << NumImplicitMoveConstructors
1089                  << " implicit move constructors created\n";
1090   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
1091                << NumImplicitCopyAssignmentOperators
1092                << " implicit copy assignment operators created\n";
1093   if (getLangOpts().CPlusPlus)
1094     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
1095                  << NumImplicitMoveAssignmentOperators
1096                  << " implicit move assignment operators created\n";
1097   llvm::errs() << NumImplicitDestructorsDeclared << "/"
1098                << NumImplicitDestructors
1099                << " implicit destructors created\n";
1100 
1101   if (ExternalSource) {
1102     llvm::errs() << "\n";
1103     ExternalSource->PrintStats();
1104   }
1105 
1106   BumpAlloc.PrintStats();
1107 }
1108 
1109 void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1110                                            bool NotifyListeners) {
1111   if (NotifyListeners)
1112     if (auto *Listener = getASTMutationListener())
1113       Listener->RedefinedHiddenDefinition(ND, M);
1114 
1115   MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
1116 }
1117 
1118 void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
1119   auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
1120   if (It == MergedDefModules.end())
1121     return;
1122 
1123   auto &Merged = It->second;
1124   llvm::DenseSet<Module*> Found;
1125   for (Module *&M : Merged)
1126     if (!Found.insert(M).second)
1127       M = nullptr;
1128   llvm::erase_value(Merged, nullptr);
1129 }
1130 
1131 ArrayRef<Module *>
1132 ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) {
1133   auto MergedIt =
1134       MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
1135   if (MergedIt == MergedDefModules.end())
1136     return None;
1137   return MergedIt->second;
1138 }
1139 
1140 void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
1141   if (LazyInitializers.empty())
1142     return;
1143 
1144   auto *Source = Ctx.getExternalSource();
1145   assert(Source && "lazy initializers but no external source");
1146 
1147   auto LazyInits = std::move(LazyInitializers);
1148   LazyInitializers.clear();
1149 
1150   for (auto ID : LazyInits)
1151     Initializers.push_back(Source->GetExternalDecl(ID));
1152 
1153   assert(LazyInitializers.empty() &&
1154          "GetExternalDecl for lazy module initializer added more inits");
1155 }
1156 
1157 void ASTContext::addModuleInitializer(Module *M, Decl *D) {
1158   // One special case: if we add a module initializer that imports another
1159   // module, and that module's only initializer is an ImportDecl, simplify.
1160   if (const auto *ID = dyn_cast<ImportDecl>(D)) {
1161     auto It = ModuleInitializers.find(ID->getImportedModule());
1162 
1163     // Maybe the ImportDecl does nothing at all. (Common case.)
1164     if (It == ModuleInitializers.end())
1165       return;
1166 
1167     // Maybe the ImportDecl only imports another ImportDecl.
1168     auto &Imported = *It->second;
1169     if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
1170       Imported.resolve(*this);
1171       auto *OnlyDecl = Imported.Initializers.front();
1172       if (isa<ImportDecl>(OnlyDecl))
1173         D = OnlyDecl;
1174     }
1175   }
1176 
1177   auto *&Inits = ModuleInitializers[M];
1178   if (!Inits)
1179     Inits = new (*this) PerModuleInitializers;
1180   Inits->Initializers.push_back(D);
1181 }
1182 
1183 void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
1184   auto *&Inits = ModuleInitializers[M];
1185   if (!Inits)
1186     Inits = new (*this) PerModuleInitializers;
1187   Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
1188                                  IDs.begin(), IDs.end());
1189 }
1190 
1191 ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
1192   auto It = ModuleInitializers.find(M);
1193   if (It == ModuleInitializers.end())
1194     return None;
1195 
1196   auto *Inits = It->second;
1197   Inits->resolve(*this);
1198   return Inits->Initializers;
1199 }
1200 
1201 ExternCContextDecl *ASTContext::getExternCContextDecl() const {
1202   if (!ExternCContext)
1203     ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
1204 
1205   return ExternCContext;
1206 }
1207 
1208 BuiltinTemplateDecl *
1209 ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1210                                      const IdentifierInfo *II) const {
1211   auto *BuiltinTemplate =
1212       BuiltinTemplateDecl::Create(*this, getTranslationUnitDecl(), II, BTK);
1213   BuiltinTemplate->setImplicit();
1214   getTranslationUnitDecl()->addDecl(BuiltinTemplate);
1215 
1216   return BuiltinTemplate;
1217 }
1218 
1219 BuiltinTemplateDecl *
1220 ASTContext::getMakeIntegerSeqDecl() const {
1221   if (!MakeIntegerSeqDecl)
1222     MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
1223                                                   getMakeIntegerSeqName());
1224   return MakeIntegerSeqDecl;
1225 }
1226 
1227 BuiltinTemplateDecl *
1228 ASTContext::getTypePackElementDecl() const {
1229   if (!TypePackElementDecl)
1230     TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
1231                                                    getTypePackElementName());
1232   return TypePackElementDecl;
1233 }
1234 
1235 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
1236                                             RecordDecl::TagKind TK) const {
1237   SourceLocation Loc;
1238   RecordDecl *NewDecl;
1239   if (getLangOpts().CPlusPlus)
1240     NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
1241                                     Loc, &Idents.get(Name));
1242   else
1243     NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
1244                                  &Idents.get(Name));
1245   NewDecl->setImplicit();
1246   NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
1247       const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
1248   return NewDecl;
1249 }
1250 
1251 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
1252                                               StringRef Name) const {
1253   TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
1254   TypedefDecl *NewDecl = TypedefDecl::Create(
1255       const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
1256       SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
1257   NewDecl->setImplicit();
1258   return NewDecl;
1259 }
1260 
1261 TypedefDecl *ASTContext::getInt128Decl() const {
1262   if (!Int128Decl)
1263     Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
1264   return Int128Decl;
1265 }
1266 
1267 TypedefDecl *ASTContext::getUInt128Decl() const {
1268   if (!UInt128Decl)
1269     UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
1270   return UInt128Decl;
1271 }
1272 
1273 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
1274   auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
1275   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
1276   Types.push_back(Ty);
1277 }
1278 
1279 void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
1280                                   const TargetInfo *AuxTarget) {
1281   assert((!this->Target || this->Target == &Target) &&
1282          "Incorrect target reinitialization");
1283   assert(VoidTy.isNull() && "Context reinitialized?");
1284 
1285   this->Target = &Target;
1286   this->AuxTarget = AuxTarget;
1287 
1288   ABI.reset(createCXXABI(Target));
1289   AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
1290   AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
1291 
1292   // C99 6.2.5p19.
1293   InitBuiltinType(VoidTy,              BuiltinType::Void);
1294 
1295   // C99 6.2.5p2.
1296   InitBuiltinType(BoolTy,              BuiltinType::Bool);
1297   // C99 6.2.5p3.
1298   if (LangOpts.CharIsSigned)
1299     InitBuiltinType(CharTy,            BuiltinType::Char_S);
1300   else
1301     InitBuiltinType(CharTy,            BuiltinType::Char_U);
1302   // C99 6.2.5p4.
1303   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
1304   InitBuiltinType(ShortTy,             BuiltinType::Short);
1305   InitBuiltinType(IntTy,               BuiltinType::Int);
1306   InitBuiltinType(LongTy,              BuiltinType::Long);
1307   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
1308 
1309   // C99 6.2.5p6.
1310   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
1311   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
1312   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
1313   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
1314   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
1315 
1316   // C99 6.2.5p10.
1317   InitBuiltinType(FloatTy,             BuiltinType::Float);
1318   InitBuiltinType(DoubleTy,            BuiltinType::Double);
1319   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
1320 
1321   // GNU extension, __float128 for IEEE quadruple precision
1322   InitBuiltinType(Float128Ty,          BuiltinType::Float128);
1323 
1324   // __ibm128 for IBM extended precision
1325   InitBuiltinType(Ibm128Ty, BuiltinType::Ibm128);
1326 
1327   // C11 extension ISO/IEC TS 18661-3
1328   InitBuiltinType(Float16Ty,           BuiltinType::Float16);
1329 
1330   // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1331   InitBuiltinType(ShortAccumTy,            BuiltinType::ShortAccum);
1332   InitBuiltinType(AccumTy,                 BuiltinType::Accum);
1333   InitBuiltinType(LongAccumTy,             BuiltinType::LongAccum);
1334   InitBuiltinType(UnsignedShortAccumTy,    BuiltinType::UShortAccum);
1335   InitBuiltinType(UnsignedAccumTy,         BuiltinType::UAccum);
1336   InitBuiltinType(UnsignedLongAccumTy,     BuiltinType::ULongAccum);
1337   InitBuiltinType(ShortFractTy,            BuiltinType::ShortFract);
1338   InitBuiltinType(FractTy,                 BuiltinType::Fract);
1339   InitBuiltinType(LongFractTy,             BuiltinType::LongFract);
1340   InitBuiltinType(UnsignedShortFractTy,    BuiltinType::UShortFract);
1341   InitBuiltinType(UnsignedFractTy,         BuiltinType::UFract);
1342   InitBuiltinType(UnsignedLongFractTy,     BuiltinType::ULongFract);
1343   InitBuiltinType(SatShortAccumTy,         BuiltinType::SatShortAccum);
1344   InitBuiltinType(SatAccumTy,              BuiltinType::SatAccum);
1345   InitBuiltinType(SatLongAccumTy,          BuiltinType::SatLongAccum);
1346   InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
1347   InitBuiltinType(SatUnsignedAccumTy,      BuiltinType::SatUAccum);
1348   InitBuiltinType(SatUnsignedLongAccumTy,  BuiltinType::SatULongAccum);
1349   InitBuiltinType(SatShortFractTy,         BuiltinType::SatShortFract);
1350   InitBuiltinType(SatFractTy,              BuiltinType::SatFract);
1351   InitBuiltinType(SatLongFractTy,          BuiltinType::SatLongFract);
1352   InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
1353   InitBuiltinType(SatUnsignedFractTy,      BuiltinType::SatUFract);
1354   InitBuiltinType(SatUnsignedLongFractTy,  BuiltinType::SatULongFract);
1355 
1356   // GNU extension, 128-bit integers.
1357   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
1358   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
1359 
1360   // C++ 3.9.1p5
1361   if (TargetInfo::isTypeSigned(Target.getWCharType()))
1362     InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
1363   else  // -fshort-wchar makes wchar_t be unsigned.
1364     InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
1365   if (LangOpts.CPlusPlus && LangOpts.WChar)
1366     WideCharTy = WCharTy;
1367   else {
1368     // C99 (or C++ using -fno-wchar).
1369     WideCharTy = getFromTargetType(Target.getWCharType());
1370   }
1371 
1372   WIntTy = getFromTargetType(Target.getWIntType());
1373 
1374   // C++20 (proposed)
1375   InitBuiltinType(Char8Ty,              BuiltinType::Char8);
1376 
1377   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1378     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
1379   else // C99
1380     Char16Ty = getFromTargetType(Target.getChar16Type());
1381 
1382   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1383     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
1384   else // C99
1385     Char32Ty = getFromTargetType(Target.getChar32Type());
1386 
1387   // Placeholder type for type-dependent expressions whose type is
1388   // completely unknown. No code should ever check a type against
1389   // DependentTy and users should never see it; however, it is here to
1390   // help diagnose failures to properly check for type-dependent
1391   // expressions.
1392   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
1393 
1394   // Placeholder type for functions.
1395   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
1396 
1397   // Placeholder type for bound members.
1398   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
1399 
1400   // Placeholder type for pseudo-objects.
1401   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
1402 
1403   // "any" type; useful for debugger-like clients.
1404   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
1405 
1406   // Placeholder type for unbridged ARC casts.
1407   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
1408 
1409   // Placeholder type for builtin functions.
1410   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
1411 
1412   // Placeholder type for OMP array sections.
1413   if (LangOpts.OpenMP) {
1414     InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1415     InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping);
1416     InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator);
1417   }
1418   if (LangOpts.MatrixTypes)
1419     InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx);
1420 
1421   // Builtin types for 'id', 'Class', and 'SEL'.
1422   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1423   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1424   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1425 
1426   if (LangOpts.OpenCL) {
1427 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1428     InitBuiltinType(SingletonId, BuiltinType::Id);
1429 #include "clang/Basic/OpenCLImageTypes.def"
1430 
1431     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1432     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1433     InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1434     InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1435     InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1436 
1437 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1438     InitBuiltinType(Id##Ty, BuiltinType::Id);
1439 #include "clang/Basic/OpenCLExtensionTypes.def"
1440   }
1441 
1442   if (Target.hasAArch64SVETypes()) {
1443 #define SVE_TYPE(Name, Id, SingletonId) \
1444     InitBuiltinType(SingletonId, BuiltinType::Id);
1445 #include "clang/Basic/AArch64SVEACLETypes.def"
1446   }
1447 
1448   if (Target.getTriple().isPPC64()) {
1449 #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \
1450       InitBuiltinType(Id##Ty, BuiltinType::Id);
1451 #include "clang/Basic/PPCTypes.def"
1452 #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \
1453     InitBuiltinType(Id##Ty, BuiltinType::Id);
1454 #include "clang/Basic/PPCTypes.def"
1455   }
1456 
1457   if (Target.hasRISCVVTypes()) {
1458 #define RVV_TYPE(Name, Id, SingletonId)                                        \
1459   InitBuiltinType(SingletonId, BuiltinType::Id);
1460 #include "clang/Basic/RISCVVTypes.def"
1461   }
1462 
1463   // Builtin type for __objc_yes and __objc_no
1464   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1465                        SignedCharTy : BoolTy);
1466 
1467   ObjCConstantStringType = QualType();
1468 
1469   ObjCSuperType = QualType();
1470 
1471   // void * type
1472   if (LangOpts.OpenCLGenericAddressSpace) {
1473     auto Q = VoidTy.getQualifiers();
1474     Q.setAddressSpace(LangAS::opencl_generic);
1475     VoidPtrTy = getPointerType(getCanonicalType(
1476         getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
1477   } else {
1478     VoidPtrTy = getPointerType(VoidTy);
1479   }
1480 
1481   // nullptr type (C++0x 2.14.7)
1482   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1483 
1484   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1485   InitBuiltinType(HalfTy, BuiltinType::Half);
1486 
1487   InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16);
1488 
1489   // Builtin type used to help define __builtin_va_list.
1490   VaListTagDecl = nullptr;
1491 
1492   // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls.
1493   if (LangOpts.MicrosoftExt || LangOpts.Borland) {
1494     MSGuidTagDecl = buildImplicitRecord("_GUID");
1495     getTranslationUnitDecl()->addDecl(MSGuidTagDecl);
1496   }
1497 }
1498 
1499 DiagnosticsEngine &ASTContext::getDiagnostics() const {
1500   return SourceMgr.getDiagnostics();
1501 }
1502 
1503 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1504   AttrVec *&Result = DeclAttrs[D];
1505   if (!Result) {
1506     void *Mem = Allocate(sizeof(AttrVec));
1507     Result = new (Mem) AttrVec;
1508   }
1509 
1510   return *Result;
1511 }
1512 
1513 /// Erase the attributes corresponding to the given declaration.
1514 void ASTContext::eraseDeclAttrs(const Decl *D) {
1515   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1516   if (Pos != DeclAttrs.end()) {
1517     Pos->second->~AttrVec();
1518     DeclAttrs.erase(Pos);
1519   }
1520 }
1521 
1522 // FIXME: Remove ?
1523 MemberSpecializationInfo *
1524 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1525   assert(Var->isStaticDataMember() && "Not a static data member");
1526   return getTemplateOrSpecializationInfo(Var)
1527       .dyn_cast<MemberSpecializationInfo *>();
1528 }
1529 
1530 ASTContext::TemplateOrSpecializationInfo
1531 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1532   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1533       TemplateOrInstantiation.find(Var);
1534   if (Pos == TemplateOrInstantiation.end())
1535     return {};
1536 
1537   return Pos->second;
1538 }
1539 
1540 void
1541 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1542                                                 TemplateSpecializationKind TSK,
1543                                           SourceLocation PointOfInstantiation) {
1544   assert(Inst->isStaticDataMember() && "Not a static data member");
1545   assert(Tmpl->isStaticDataMember() && "Not a static data member");
1546   setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1547                                             Tmpl, TSK, PointOfInstantiation));
1548 }
1549 
1550 void
1551 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1552                                             TemplateOrSpecializationInfo TSI) {
1553   assert(!TemplateOrInstantiation[Inst] &&
1554          "Already noted what the variable was instantiated from");
1555   TemplateOrInstantiation[Inst] = TSI;
1556 }
1557 
1558 NamedDecl *
1559 ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
1560   auto Pos = InstantiatedFromUsingDecl.find(UUD);
1561   if (Pos == InstantiatedFromUsingDecl.end())
1562     return nullptr;
1563 
1564   return Pos->second;
1565 }
1566 
1567 void
1568 ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
1569   assert((isa<UsingDecl>(Pattern) ||
1570           isa<UnresolvedUsingValueDecl>(Pattern) ||
1571           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1572          "pattern decl is not a using decl");
1573   assert((isa<UsingDecl>(Inst) ||
1574           isa<UnresolvedUsingValueDecl>(Inst) ||
1575           isa<UnresolvedUsingTypenameDecl>(Inst)) &&
1576          "instantiation did not produce a using decl");
1577   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1578   InstantiatedFromUsingDecl[Inst] = Pattern;
1579 }
1580 
1581 UsingEnumDecl *
1582 ASTContext::getInstantiatedFromUsingEnumDecl(UsingEnumDecl *UUD) {
1583   auto Pos = InstantiatedFromUsingEnumDecl.find(UUD);
1584   if (Pos == InstantiatedFromUsingEnumDecl.end())
1585     return nullptr;
1586 
1587   return Pos->second;
1588 }
1589 
1590 void ASTContext::setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst,
1591                                                   UsingEnumDecl *Pattern) {
1592   assert(!InstantiatedFromUsingEnumDecl[Inst] && "pattern already exists");
1593   InstantiatedFromUsingEnumDecl[Inst] = Pattern;
1594 }
1595 
1596 UsingShadowDecl *
1597 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1598   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1599     = InstantiatedFromUsingShadowDecl.find(Inst);
1600   if (Pos == InstantiatedFromUsingShadowDecl.end())
1601     return nullptr;
1602 
1603   return Pos->second;
1604 }
1605 
1606 void
1607 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1608                                                UsingShadowDecl *Pattern) {
1609   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1610   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1611 }
1612 
1613 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1614   llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1615     = InstantiatedFromUnnamedFieldDecl.find(Field);
1616   if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1617     return nullptr;
1618 
1619   return Pos->second;
1620 }
1621 
1622 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1623                                                      FieldDecl *Tmpl) {
1624   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1625   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1626   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1627          "Already noted what unnamed field was instantiated from");
1628 
1629   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1630 }
1631 
1632 ASTContext::overridden_cxx_method_iterator
1633 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1634   return overridden_methods(Method).begin();
1635 }
1636 
1637 ASTContext::overridden_cxx_method_iterator
1638 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1639   return overridden_methods(Method).end();
1640 }
1641 
1642 unsigned
1643 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1644   auto Range = overridden_methods(Method);
1645   return Range.end() - Range.begin();
1646 }
1647 
1648 ASTContext::overridden_method_range
1649 ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
1650   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1651       OverriddenMethods.find(Method->getCanonicalDecl());
1652   if (Pos == OverriddenMethods.end())
1653     return overridden_method_range(nullptr, nullptr);
1654   return overridden_method_range(Pos->second.begin(), Pos->second.end());
1655 }
1656 
1657 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1658                                      const CXXMethodDecl *Overridden) {
1659   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1660   OverriddenMethods[Method].push_back(Overridden);
1661 }
1662 
1663 void ASTContext::getOverriddenMethods(
1664                       const NamedDecl *D,
1665                       SmallVectorImpl<const NamedDecl *> &Overridden) const {
1666   assert(D);
1667 
1668   if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1669     Overridden.append(overridden_methods_begin(CXXMethod),
1670                       overridden_methods_end(CXXMethod));
1671     return;
1672   }
1673 
1674   const auto *Method = dyn_cast<ObjCMethodDecl>(D);
1675   if (!Method)
1676     return;
1677 
1678   SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1679   Method->getOverriddenMethods(OverDecls);
1680   Overridden.append(OverDecls.begin(), OverDecls.end());
1681 }
1682 
1683 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1684   assert(!Import->getNextLocalImport() &&
1685          "Import declaration already in the chain");
1686   assert(!Import->isFromASTFile() && "Non-local import declaration");
1687   if (!FirstLocalImport) {
1688     FirstLocalImport = Import;
1689     LastLocalImport = Import;
1690     return;
1691   }
1692 
1693   LastLocalImport->setNextLocalImport(Import);
1694   LastLocalImport = Import;
1695 }
1696 
1697 //===----------------------------------------------------------------------===//
1698 //                         Type Sizing and Analysis
1699 //===----------------------------------------------------------------------===//
1700 
1701 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1702 /// scalar floating point type.
1703 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1704   switch (T->castAs<BuiltinType>()->getKind()) {
1705   default:
1706     llvm_unreachable("Not a floating point type!");
1707   case BuiltinType::BFloat16:
1708     return Target->getBFloat16Format();
1709   case BuiltinType::Float16:
1710   case BuiltinType::Half:
1711     return Target->getHalfFormat();
1712   case BuiltinType::Float:      return Target->getFloatFormat();
1713   case BuiltinType::Double:     return Target->getDoubleFormat();
1714   case BuiltinType::Ibm128:
1715     return Target->getIbm128Format();
1716   case BuiltinType::LongDouble:
1717     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1718       return AuxTarget->getLongDoubleFormat();
1719     return Target->getLongDoubleFormat();
1720   case BuiltinType::Float128:
1721     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1722       return AuxTarget->getFloat128Format();
1723     return Target->getFloat128Format();
1724   }
1725 }
1726 
1727 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1728   unsigned Align = Target->getCharWidth();
1729 
1730   bool UseAlignAttrOnly = false;
1731   if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1732     Align = AlignFromAttr;
1733 
1734     // __attribute__((aligned)) can increase or decrease alignment
1735     // *except* on a struct or struct member, where it only increases
1736     // alignment unless 'packed' is also specified.
1737     //
1738     // It is an error for alignas to decrease alignment, so we can
1739     // ignore that possibility;  Sema should diagnose it.
1740     if (isa<FieldDecl>(D)) {
1741       UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1742         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1743     } else {
1744       UseAlignAttrOnly = true;
1745     }
1746   }
1747   else if (isa<FieldDecl>(D))
1748       UseAlignAttrOnly =
1749         D->hasAttr<PackedAttr>() ||
1750         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1751 
1752   // If we're using the align attribute only, just ignore everything
1753   // else about the declaration and its type.
1754   if (UseAlignAttrOnly) {
1755     // do nothing
1756   } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
1757     QualType T = VD->getType();
1758     if (const auto *RT = T->getAs<ReferenceType>()) {
1759       if (ForAlignof)
1760         T = RT->getPointeeType();
1761       else
1762         T = getPointerType(RT->getPointeeType());
1763     }
1764     QualType BaseT = getBaseElementType(T);
1765     if (T->isFunctionType())
1766       Align = getTypeInfoImpl(T.getTypePtr()).Align;
1767     else if (!BaseT->isIncompleteType()) {
1768       // Adjust alignments of declarations with array type by the
1769       // large-array alignment on the target.
1770       if (const ArrayType *arrayType = getAsArrayType(T)) {
1771         unsigned MinWidth = Target->getLargeArrayMinWidth();
1772         if (!ForAlignof && MinWidth) {
1773           if (isa<VariableArrayType>(arrayType))
1774             Align = std::max(Align, Target->getLargeArrayAlign());
1775           else if (isa<ConstantArrayType>(arrayType) &&
1776                    MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1777             Align = std::max(Align, Target->getLargeArrayAlign());
1778         }
1779       }
1780       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1781       if (BaseT.getQualifiers().hasUnaligned())
1782         Align = Target->getCharWidth();
1783       if (const auto *VD = dyn_cast<VarDecl>(D)) {
1784         if (VD->hasGlobalStorage() && !ForAlignof) {
1785           uint64_t TypeSize = getTypeSize(T.getTypePtr());
1786           Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
1787         }
1788       }
1789     }
1790 
1791     // Fields can be subject to extra alignment constraints, like if
1792     // the field is packed, the struct is packed, or the struct has a
1793     // a max-field-alignment constraint (#pragma pack).  So calculate
1794     // the actual alignment of the field within the struct, and then
1795     // (as we're expected to) constrain that by the alignment of the type.
1796     if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
1797       const RecordDecl *Parent = Field->getParent();
1798       // We can only produce a sensible answer if the record is valid.
1799       if (!Parent->isInvalidDecl()) {
1800         const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1801 
1802         // Start with the record's overall alignment.
1803         unsigned FieldAlign = toBits(Layout.getAlignment());
1804 
1805         // Use the GCD of that and the offset within the record.
1806         uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1807         if (Offset > 0) {
1808           // Alignment is always a power of 2, so the GCD will be a power of 2,
1809           // which means we get to do this crazy thing instead of Euclid's.
1810           uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1811           if (LowBitOfOffset < FieldAlign)
1812             FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1813         }
1814 
1815         Align = std::min(Align, FieldAlign);
1816       }
1817     }
1818   }
1819 
1820   // Some targets have hard limitation on the maximum requestable alignment in
1821   // aligned attribute for static variables.
1822   const unsigned MaxAlignedAttr = getTargetInfo().getMaxAlignedAttribute();
1823   const auto *VD = dyn_cast<VarDecl>(D);
1824   if (MaxAlignedAttr && VD && VD->getStorageClass() == SC_Static)
1825     Align = std::min(Align, MaxAlignedAttr);
1826 
1827   return toCharUnitsFromBits(Align);
1828 }
1829 
1830 CharUnits ASTContext::getExnObjectAlignment() const {
1831   return toCharUnitsFromBits(Target->getExnObjectAlignment());
1832 }
1833 
1834 // getTypeInfoDataSizeInChars - Return the size of a type, in
1835 // chars. If the type is a record, its data size is returned.  This is
1836 // the size of the memcpy that's performed when assigning this type
1837 // using a trivial copy/move assignment operator.
1838 TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1839   TypeInfoChars Info = getTypeInfoInChars(T);
1840 
1841   // In C++, objects can sometimes be allocated into the tail padding
1842   // of a base-class subobject.  We decide whether that's possible
1843   // during class layout, so here we can just trust the layout results.
1844   if (getLangOpts().CPlusPlus) {
1845     if (const auto *RT = T->getAs<RecordType>()) {
1846       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1847       Info.Width = layout.getDataSize();
1848     }
1849   }
1850 
1851   return Info;
1852 }
1853 
1854 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1855 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1856 TypeInfoChars
1857 static getConstantArrayInfoInChars(const ASTContext &Context,
1858                                    const ConstantArrayType *CAT) {
1859   TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType());
1860   uint64_t Size = CAT->getSize().getZExtValue();
1861   assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <=
1862               (uint64_t)(-1)/Size) &&
1863          "Overflow in array type char size evaluation");
1864   uint64_t Width = EltInfo.Width.getQuantity() * Size;
1865   unsigned Align = EltInfo.Align.getQuantity();
1866   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1867       Context.getTargetInfo().getPointerWidth(0) == 64)
1868     Width = llvm::alignTo(Width, Align);
1869   return TypeInfoChars(CharUnits::fromQuantity(Width),
1870                        CharUnits::fromQuantity(Align),
1871                        EltInfo.AlignRequirement);
1872 }
1873 
1874 TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const {
1875   if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1876     return getConstantArrayInfoInChars(*this, CAT);
1877   TypeInfo Info = getTypeInfo(T);
1878   return TypeInfoChars(toCharUnitsFromBits(Info.Width),
1879                        toCharUnitsFromBits(Info.Align), Info.AlignRequirement);
1880 }
1881 
1882 TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const {
1883   return getTypeInfoInChars(T.getTypePtr());
1884 }
1885 
1886 bool ASTContext::isAlignmentRequired(const Type *T) const {
1887   return getTypeInfo(T).AlignRequirement != AlignRequirementKind::None;
1888 }
1889 
1890 bool ASTContext::isAlignmentRequired(QualType T) const {
1891   return isAlignmentRequired(T.getTypePtr());
1892 }
1893 
1894 unsigned ASTContext::getTypeAlignIfKnown(QualType T,
1895                                          bool NeedsPreferredAlignment) const {
1896   // An alignment on a typedef overrides anything else.
1897   if (const auto *TT = T->getAs<TypedefType>())
1898     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1899       return Align;
1900 
1901   // If we have an (array of) complete type, we're done.
1902   T = getBaseElementType(T);
1903   if (!T->isIncompleteType())
1904     return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T);
1905 
1906   // If we had an array type, its element type might be a typedef
1907   // type with an alignment attribute.
1908   if (const auto *TT = T->getAs<TypedefType>())
1909     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1910       return Align;
1911 
1912   // Otherwise, see if the declaration of the type had an attribute.
1913   if (const auto *TT = T->getAs<TagType>())
1914     return TT->getDecl()->getMaxAlignment();
1915 
1916   return 0;
1917 }
1918 
1919 TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1920   TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1921   if (I != MemoizedTypeInfo.end())
1922     return I->second;
1923 
1924   // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1925   TypeInfo TI = getTypeInfoImpl(T);
1926   MemoizedTypeInfo[T] = TI;
1927   return TI;
1928 }
1929 
1930 /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1931 /// method does not work on incomplete types.
1932 ///
1933 /// FIXME: Pointers into different addr spaces could have different sizes and
1934 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1935 /// should take a QualType, &c.
1936 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1937   uint64_t Width = 0;
1938   unsigned Align = 8;
1939   AlignRequirementKind AlignRequirement = AlignRequirementKind::None;
1940   unsigned AS = 0;
1941   switch (T->getTypeClass()) {
1942 #define TYPE(Class, Base)
1943 #define ABSTRACT_TYPE(Class, Base)
1944 #define NON_CANONICAL_TYPE(Class, Base)
1945 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1946 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1947   case Type::Class:                                                            \
1948   assert(!T->isDependentType() && "should not see dependent types here");      \
1949   return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1950 #include "clang/AST/TypeNodes.inc"
1951     llvm_unreachable("Should not see dependent types");
1952 
1953   case Type::FunctionNoProto:
1954   case Type::FunctionProto:
1955     // GCC extension: alignof(function) = 32 bits
1956     Width = 0;
1957     Align = 32;
1958     break;
1959 
1960   case Type::IncompleteArray:
1961   case Type::VariableArray:
1962   case Type::ConstantArray: {
1963     // Model non-constant sized arrays as size zero, but track the alignment.
1964     uint64_t Size = 0;
1965     if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1966       Size = CAT->getSize().getZExtValue();
1967 
1968     TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType());
1969     assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1970            "Overflow in array type bit size evaluation");
1971     Width = EltInfo.Width * Size;
1972     Align = EltInfo.Align;
1973     AlignRequirement = EltInfo.AlignRequirement;
1974     if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1975         getTargetInfo().getPointerWidth(0) == 64)
1976       Width = llvm::alignTo(Width, Align);
1977     break;
1978   }
1979 
1980   case Type::ExtVector:
1981   case Type::Vector: {
1982     const auto *VT = cast<VectorType>(T);
1983     TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1984     Width = VT->isExtVectorBoolType() ? VT->getNumElements()
1985                                       : EltInfo.Width * VT->getNumElements();
1986     // Enforce at least byte alignment.
1987     Align = std::max<unsigned>(8, Width);
1988 
1989     // If the alignment is not a power of 2, round up to the next power of 2.
1990     // This happens for non-power-of-2 length vectors.
1991     if (Align & (Align-1)) {
1992       Align = llvm::NextPowerOf2(Align);
1993       Width = llvm::alignTo(Width, Align);
1994     }
1995     // Adjust the alignment based on the target max.
1996     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1997     if (TargetVectorAlign && TargetVectorAlign < Align)
1998       Align = TargetVectorAlign;
1999     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
2000       // Adjust the alignment for fixed-length SVE vectors. This is important
2001       // for non-power-of-2 vector lengths.
2002       Align = 128;
2003     else if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
2004       // Adjust the alignment for fixed-length SVE predicates.
2005       Align = 16;
2006     break;
2007   }
2008 
2009   case Type::ConstantMatrix: {
2010     const auto *MT = cast<ConstantMatrixType>(T);
2011     TypeInfo ElementInfo = getTypeInfo(MT->getElementType());
2012     // The internal layout of a matrix value is implementation defined.
2013     // Initially be ABI compatible with arrays with respect to alignment and
2014     // size.
2015     Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns();
2016     Align = ElementInfo.Align;
2017     break;
2018   }
2019 
2020   case Type::Builtin:
2021     switch (cast<BuiltinType>(T)->getKind()) {
2022     default: llvm_unreachable("Unknown builtin type!");
2023     case BuiltinType::Void:
2024       // GCC extension: alignof(void) = 8 bits.
2025       Width = 0;
2026       Align = 8;
2027       break;
2028     case BuiltinType::Bool:
2029       Width = Target->getBoolWidth();
2030       Align = Target->getBoolAlign();
2031       break;
2032     case BuiltinType::Char_S:
2033     case BuiltinType::Char_U:
2034     case BuiltinType::UChar:
2035     case BuiltinType::SChar:
2036     case BuiltinType::Char8:
2037       Width = Target->getCharWidth();
2038       Align = Target->getCharAlign();
2039       break;
2040     case BuiltinType::WChar_S:
2041     case BuiltinType::WChar_U:
2042       Width = Target->getWCharWidth();
2043       Align = Target->getWCharAlign();
2044       break;
2045     case BuiltinType::Char16:
2046       Width = Target->getChar16Width();
2047       Align = Target->getChar16Align();
2048       break;
2049     case BuiltinType::Char32:
2050       Width = Target->getChar32Width();
2051       Align = Target->getChar32Align();
2052       break;
2053     case BuiltinType::UShort:
2054     case BuiltinType::Short:
2055       Width = Target->getShortWidth();
2056       Align = Target->getShortAlign();
2057       break;
2058     case BuiltinType::UInt:
2059     case BuiltinType::Int:
2060       Width = Target->getIntWidth();
2061       Align = Target->getIntAlign();
2062       break;
2063     case BuiltinType::ULong:
2064     case BuiltinType::Long:
2065       Width = Target->getLongWidth();
2066       Align = Target->getLongAlign();
2067       break;
2068     case BuiltinType::ULongLong:
2069     case BuiltinType::LongLong:
2070       Width = Target->getLongLongWidth();
2071       Align = Target->getLongLongAlign();
2072       break;
2073     case BuiltinType::Int128:
2074     case BuiltinType::UInt128:
2075       Width = 128;
2076       Align = 128; // int128_t is 128-bit aligned on all targets.
2077       break;
2078     case BuiltinType::ShortAccum:
2079     case BuiltinType::UShortAccum:
2080     case BuiltinType::SatShortAccum:
2081     case BuiltinType::SatUShortAccum:
2082       Width = Target->getShortAccumWidth();
2083       Align = Target->getShortAccumAlign();
2084       break;
2085     case BuiltinType::Accum:
2086     case BuiltinType::UAccum:
2087     case BuiltinType::SatAccum:
2088     case BuiltinType::SatUAccum:
2089       Width = Target->getAccumWidth();
2090       Align = Target->getAccumAlign();
2091       break;
2092     case BuiltinType::LongAccum:
2093     case BuiltinType::ULongAccum:
2094     case BuiltinType::SatLongAccum:
2095     case BuiltinType::SatULongAccum:
2096       Width = Target->getLongAccumWidth();
2097       Align = Target->getLongAccumAlign();
2098       break;
2099     case BuiltinType::ShortFract:
2100     case BuiltinType::UShortFract:
2101     case BuiltinType::SatShortFract:
2102     case BuiltinType::SatUShortFract:
2103       Width = Target->getShortFractWidth();
2104       Align = Target->getShortFractAlign();
2105       break;
2106     case BuiltinType::Fract:
2107     case BuiltinType::UFract:
2108     case BuiltinType::SatFract:
2109     case BuiltinType::SatUFract:
2110       Width = Target->getFractWidth();
2111       Align = Target->getFractAlign();
2112       break;
2113     case BuiltinType::LongFract:
2114     case BuiltinType::ULongFract:
2115     case BuiltinType::SatLongFract:
2116     case BuiltinType::SatULongFract:
2117       Width = Target->getLongFractWidth();
2118       Align = Target->getLongFractAlign();
2119       break;
2120     case BuiltinType::BFloat16:
2121       if (Target->hasBFloat16Type()) {
2122         Width = Target->getBFloat16Width();
2123         Align = Target->getBFloat16Align();
2124       }
2125       break;
2126     case BuiltinType::Float16:
2127     case BuiltinType::Half:
2128       if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
2129           !getLangOpts().OpenMPIsDevice) {
2130         Width = Target->getHalfWidth();
2131         Align = Target->getHalfAlign();
2132       } else {
2133         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2134                "Expected OpenMP device compilation.");
2135         Width = AuxTarget->getHalfWidth();
2136         Align = AuxTarget->getHalfAlign();
2137       }
2138       break;
2139     case BuiltinType::Float:
2140       Width = Target->getFloatWidth();
2141       Align = Target->getFloatAlign();
2142       break;
2143     case BuiltinType::Double:
2144       Width = Target->getDoubleWidth();
2145       Align = Target->getDoubleAlign();
2146       break;
2147     case BuiltinType::Ibm128:
2148       Width = Target->getIbm128Width();
2149       Align = Target->getIbm128Align();
2150       break;
2151     case BuiltinType::LongDouble:
2152       if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2153           (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
2154            Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
2155         Width = AuxTarget->getLongDoubleWidth();
2156         Align = AuxTarget->getLongDoubleAlign();
2157       } else {
2158         Width = Target->getLongDoubleWidth();
2159         Align = Target->getLongDoubleAlign();
2160       }
2161       break;
2162     case BuiltinType::Float128:
2163       if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
2164           !getLangOpts().OpenMPIsDevice) {
2165         Width = Target->getFloat128Width();
2166         Align = Target->getFloat128Align();
2167       } else {
2168         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2169                "Expected OpenMP device compilation.");
2170         Width = AuxTarget->getFloat128Width();
2171         Align = AuxTarget->getFloat128Align();
2172       }
2173       break;
2174     case BuiltinType::NullPtr:
2175       Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
2176       Align = Target->getPointerAlign(0); //   == sizeof(void*)
2177       break;
2178     case BuiltinType::ObjCId:
2179     case BuiltinType::ObjCClass:
2180     case BuiltinType::ObjCSel:
2181       Width = Target->getPointerWidth(0);
2182       Align = Target->getPointerAlign(0);
2183       break;
2184     case BuiltinType::OCLSampler:
2185     case BuiltinType::OCLEvent:
2186     case BuiltinType::OCLClkEvent:
2187     case BuiltinType::OCLQueue:
2188     case BuiltinType::OCLReserveID:
2189 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2190     case BuiltinType::Id:
2191 #include "clang/Basic/OpenCLImageTypes.def"
2192 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2193   case BuiltinType::Id:
2194 #include "clang/Basic/OpenCLExtensionTypes.def"
2195       AS = getTargetAddressSpace(
2196           Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)));
2197       Width = Target->getPointerWidth(AS);
2198       Align = Target->getPointerAlign(AS);
2199       break;
2200     // The SVE types are effectively target-specific.  The length of an
2201     // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
2202     // of 128 bits.  There is one predicate bit for each vector byte, so the
2203     // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
2204     //
2205     // Because the length is only known at runtime, we use a dummy value
2206     // of 0 for the static length.  The alignment values are those defined
2207     // by the Procedure Call Standard for the Arm Architecture.
2208 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
2209                         IsSigned, IsFP, IsBF)                                  \
2210   case BuiltinType::Id:                                                        \
2211     Width = 0;                                                                 \
2212     Align = 128;                                                               \
2213     break;
2214 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
2215   case BuiltinType::Id:                                                        \
2216     Width = 0;                                                                 \
2217     Align = 16;                                                                \
2218     break;
2219 #include "clang/Basic/AArch64SVEACLETypes.def"
2220 #define PPC_VECTOR_TYPE(Name, Id, Size)                                        \
2221   case BuiltinType::Id:                                                        \
2222     Width = Size;                                                              \
2223     Align = Size;                                                              \
2224     break;
2225 #include "clang/Basic/PPCTypes.def"
2226 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, NF, IsSigned,   \
2227                         IsFP)                                                  \
2228   case BuiltinType::Id:                                                        \
2229     Width = 0;                                                                 \
2230     Align = ElBits;                                                            \
2231     break;
2232 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, ElKind)                      \
2233   case BuiltinType::Id:                                                        \
2234     Width = 0;                                                                 \
2235     Align = 8;                                                                 \
2236     break;
2237 #include "clang/Basic/RISCVVTypes.def"
2238     }
2239     break;
2240   case Type::ObjCObjectPointer:
2241     Width = Target->getPointerWidth(0);
2242     Align = Target->getPointerAlign(0);
2243     break;
2244   case Type::BlockPointer:
2245     AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
2246     Width = Target->getPointerWidth(AS);
2247     Align = Target->getPointerAlign(AS);
2248     break;
2249   case Type::LValueReference:
2250   case Type::RValueReference:
2251     // alignof and sizeof should never enter this code path here, so we go
2252     // the pointer route.
2253     AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
2254     Width = Target->getPointerWidth(AS);
2255     Align = Target->getPointerAlign(AS);
2256     break;
2257   case Type::Pointer:
2258     AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
2259     Width = Target->getPointerWidth(AS);
2260     Align = Target->getPointerAlign(AS);
2261     break;
2262   case Type::MemberPointer: {
2263     const auto *MPT = cast<MemberPointerType>(T);
2264     CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
2265     Width = MPI.Width;
2266     Align = MPI.Align;
2267     break;
2268   }
2269   case Type::Complex: {
2270     // Complex types have the same alignment as their elements, but twice the
2271     // size.
2272     TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
2273     Width = EltInfo.Width * 2;
2274     Align = EltInfo.Align;
2275     break;
2276   }
2277   case Type::ObjCObject:
2278     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
2279   case Type::Adjusted:
2280   case Type::Decayed:
2281     return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
2282   case Type::ObjCInterface: {
2283     const auto *ObjCI = cast<ObjCInterfaceType>(T);
2284     if (ObjCI->getDecl()->isInvalidDecl()) {
2285       Width = 8;
2286       Align = 8;
2287       break;
2288     }
2289     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2290     Width = toBits(Layout.getSize());
2291     Align = toBits(Layout.getAlignment());
2292     break;
2293   }
2294   case Type::BitInt: {
2295     const auto *EIT = cast<BitIntType>(T);
2296     Align =
2297         std::min(static_cast<unsigned>(std::max(
2298                      getCharWidth(), llvm::PowerOf2Ceil(EIT->getNumBits()))),
2299                  Target->getLongLongAlign());
2300     Width = llvm::alignTo(EIT->getNumBits(), Align);
2301     break;
2302   }
2303   case Type::Record:
2304   case Type::Enum: {
2305     const auto *TT = cast<TagType>(T);
2306 
2307     if (TT->getDecl()->isInvalidDecl()) {
2308       Width = 8;
2309       Align = 8;
2310       break;
2311     }
2312 
2313     if (const auto *ET = dyn_cast<EnumType>(TT)) {
2314       const EnumDecl *ED = ET->getDecl();
2315       TypeInfo Info =
2316           getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
2317       if (unsigned AttrAlign = ED->getMaxAlignment()) {
2318         Info.Align = AttrAlign;
2319         Info.AlignRequirement = AlignRequirementKind::RequiredByEnum;
2320       }
2321       return Info;
2322     }
2323 
2324     const auto *RT = cast<RecordType>(TT);
2325     const RecordDecl *RD = RT->getDecl();
2326     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2327     Width = toBits(Layout.getSize());
2328     Align = toBits(Layout.getAlignment());
2329     AlignRequirement = RD->hasAttr<AlignedAttr>()
2330                            ? AlignRequirementKind::RequiredByRecord
2331                            : AlignRequirementKind::None;
2332     break;
2333   }
2334 
2335   case Type::SubstTemplateTypeParm:
2336     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
2337                        getReplacementType().getTypePtr());
2338 
2339   case Type::Auto:
2340   case Type::DeducedTemplateSpecialization: {
2341     const auto *A = cast<DeducedType>(T);
2342     assert(!A->getDeducedType().isNull() &&
2343            "cannot request the size of an undeduced or dependent auto type");
2344     return getTypeInfo(A->getDeducedType().getTypePtr());
2345   }
2346 
2347   case Type::Paren:
2348     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
2349 
2350   case Type::MacroQualified:
2351     return getTypeInfo(
2352         cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());
2353 
2354   case Type::ObjCTypeParam:
2355     return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
2356 
2357   case Type::Using:
2358     return getTypeInfo(cast<UsingType>(T)->desugar().getTypePtr());
2359 
2360   case Type::Typedef: {
2361     const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
2362     TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
2363     // If the typedef has an aligned attribute on it, it overrides any computed
2364     // alignment we have.  This violates the GCC documentation (which says that
2365     // attribute(aligned) can only round up) but matches its implementation.
2366     if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
2367       Align = AttrAlign;
2368       AlignRequirement = AlignRequirementKind::RequiredByTypedef;
2369     } else {
2370       Align = Info.Align;
2371       AlignRequirement = Info.AlignRequirement;
2372     }
2373     Width = Info.Width;
2374     break;
2375   }
2376 
2377   case Type::Elaborated:
2378     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
2379 
2380   case Type::Attributed:
2381     return getTypeInfo(
2382                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
2383 
2384   case Type::BTFTagAttributed:
2385     return getTypeInfo(
2386         cast<BTFTagAttributedType>(T)->getWrappedType().getTypePtr());
2387 
2388   case Type::Atomic: {
2389     // Start with the base type information.
2390     TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
2391     Width = Info.Width;
2392     Align = Info.Align;
2393 
2394     if (!Width) {
2395       // An otherwise zero-sized type should still generate an
2396       // atomic operation.
2397       Width = Target->getCharWidth();
2398       assert(Align);
2399     } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
2400       // If the size of the type doesn't exceed the platform's max
2401       // atomic promotion width, make the size and alignment more
2402       // favorable to atomic operations:
2403 
2404       // Round the size up to a power of 2.
2405       if (!llvm::isPowerOf2_64(Width))
2406         Width = llvm::NextPowerOf2(Width);
2407 
2408       // Set the alignment equal to the size.
2409       Align = static_cast<unsigned>(Width);
2410     }
2411   }
2412   break;
2413 
2414   case Type::Pipe:
2415     Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global));
2416     Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global));
2417     break;
2418   }
2419 
2420   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
2421   return TypeInfo(Width, Align, AlignRequirement);
2422 }
2423 
2424 unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
2425   UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
2426   if (I != MemoizedUnadjustedAlign.end())
2427     return I->second;
2428 
2429   unsigned UnadjustedAlign;
2430   if (const auto *RT = T->getAs<RecordType>()) {
2431     const RecordDecl *RD = RT->getDecl();
2432     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2433     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2434   } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
2435     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2436     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2437   } else {
2438     UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
2439   }
2440 
2441   MemoizedUnadjustedAlign[T] = UnadjustedAlign;
2442   return UnadjustedAlign;
2443 }
2444 
2445 unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
2446   unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
2447   return SimdAlign;
2448 }
2449 
2450 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
2451 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
2452   return CharUnits::fromQuantity(BitSize / getCharWidth());
2453 }
2454 
2455 /// toBits - Convert a size in characters to a size in characters.
2456 int64_t ASTContext::toBits(CharUnits CharSize) const {
2457   return CharSize.getQuantity() * getCharWidth();
2458 }
2459 
2460 /// getTypeSizeInChars - Return the size of the specified type, in characters.
2461 /// This method does not work on incomplete types.
2462 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
2463   return getTypeInfoInChars(T).Width;
2464 }
2465 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
2466   return getTypeInfoInChars(T).Width;
2467 }
2468 
2469 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
2470 /// characters. This method does not work on incomplete types.
2471 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
2472   return toCharUnitsFromBits(getTypeAlign(T));
2473 }
2474 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
2475   return toCharUnitsFromBits(getTypeAlign(T));
2476 }
2477 
2478 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
2479 /// type, in characters, before alignment adustments. This method does
2480 /// not work on incomplete types.
2481 CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
2482   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2483 }
2484 CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
2485   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2486 }
2487 
2488 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
2489 /// type for the current target in bits.  This can be different than the ABI
2490 /// alignment in cases where it is beneficial for performance or backwards
2491 /// compatibility preserving to overalign a data type. (Note: despite the name,
2492 /// the preferred alignment is ABI-impacting, and not an optimization.)
2493 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
2494   TypeInfo TI = getTypeInfo(T);
2495   unsigned ABIAlign = TI.Align;
2496 
2497   T = T->getBaseElementTypeUnsafe();
2498 
2499   // The preferred alignment of member pointers is that of a pointer.
2500   if (T->isMemberPointerType())
2501     return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
2502 
2503   if (!Target->allowsLargerPreferedTypeAlignment())
2504     return ABIAlign;
2505 
2506   if (const auto *RT = T->getAs<RecordType>()) {
2507     const RecordDecl *RD = RT->getDecl();
2508 
2509     // When used as part of a typedef, or together with a 'packed' attribute,
2510     // the 'aligned' attribute can be used to decrease alignment. Note that the
2511     // 'packed' case is already taken into consideration when computing the
2512     // alignment, we only need to handle the typedef case here.
2513     if (TI.AlignRequirement == AlignRequirementKind::RequiredByTypedef ||
2514         RD->isInvalidDecl())
2515       return ABIAlign;
2516 
2517     unsigned PreferredAlign = static_cast<unsigned>(
2518         toBits(getASTRecordLayout(RD).PreferredAlignment));
2519     assert(PreferredAlign >= ABIAlign &&
2520            "PreferredAlign should be at least as large as ABIAlign.");
2521     return PreferredAlign;
2522   }
2523 
2524   // Double (and, for targets supporting AIX `power` alignment, long double) and
2525   // long long should be naturally aligned (despite requiring less alignment) if
2526   // possible.
2527   if (const auto *CT = T->getAs<ComplexType>())
2528     T = CT->getElementType().getTypePtr();
2529   if (const auto *ET = T->getAs<EnumType>())
2530     T = ET->getDecl()->getIntegerType().getTypePtr();
2531   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
2532       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
2533       T->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2534       (T->isSpecificBuiltinType(BuiltinType::LongDouble) &&
2535        Target->defaultsToAIXPowerAlignment()))
2536     // Don't increase the alignment if an alignment attribute was specified on a
2537     // typedef declaration.
2538     if (!TI.isAlignRequired())
2539       return std::max(ABIAlign, (unsigned)getTypeSize(T));
2540 
2541   return ABIAlign;
2542 }
2543 
2544 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment
2545 /// for __attribute__((aligned)) on this target, to be used if no alignment
2546 /// value is specified.
2547 unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
2548   return getTargetInfo().getDefaultAlignForAttributeAligned();
2549 }
2550 
2551 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
2552 /// to a global variable of the specified type.
2553 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
2554   uint64_t TypeSize = getTypeSize(T.getTypePtr());
2555   return std::max(getPreferredTypeAlign(T),
2556                   getTargetInfo().getMinGlobalAlign(TypeSize));
2557 }
2558 
2559 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
2560 /// should be given to a global variable of the specified type.
2561 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
2562   return toCharUnitsFromBits(getAlignOfGlobalVar(T));
2563 }
2564 
2565 CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
2566   CharUnits Offset = CharUnits::Zero();
2567   const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
2568   while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
2569     Offset += Layout->getBaseClassOffset(Base);
2570     Layout = &getASTRecordLayout(Base);
2571   }
2572   return Offset;
2573 }
2574 
2575 CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const {
2576   const ValueDecl *MPD = MP.getMemberPointerDecl();
2577   CharUnits ThisAdjustment = CharUnits::Zero();
2578   ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath();
2579   bool DerivedMember = MP.isMemberPointerToDerivedMember();
2580   const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext());
2581   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
2582     const CXXRecordDecl *Base = RD;
2583     const CXXRecordDecl *Derived = Path[I];
2584     if (DerivedMember)
2585       std::swap(Base, Derived);
2586     ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base);
2587     RD = Path[I];
2588   }
2589   if (DerivedMember)
2590     ThisAdjustment = -ThisAdjustment;
2591   return ThisAdjustment;
2592 }
2593 
2594 /// DeepCollectObjCIvars -
2595 /// This routine first collects all declared, but not synthesized, ivars in
2596 /// super class and then collects all ivars, including those synthesized for
2597 /// current class. This routine is used for implementation of current class
2598 /// when all ivars, declared and synthesized are known.
2599 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
2600                                       bool leafClass,
2601                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
2602   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
2603     DeepCollectObjCIvars(SuperClass, false, Ivars);
2604   if (!leafClass) {
2605     llvm::append_range(Ivars, OI->ivars());
2606   } else {
2607     auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
2608     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
2609          Iv= Iv->getNextIvar())
2610       Ivars.push_back(Iv);
2611   }
2612 }
2613 
2614 /// CollectInheritedProtocols - Collect all protocols in current class and
2615 /// those inherited by it.
2616 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
2617                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
2618   if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2619     // We can use protocol_iterator here instead of
2620     // all_referenced_protocol_iterator since we are walking all categories.
2621     for (auto *Proto : OI->all_referenced_protocols()) {
2622       CollectInheritedProtocols(Proto, Protocols);
2623     }
2624 
2625     // Categories of this Interface.
2626     for (const auto *Cat : OI->visible_categories())
2627       CollectInheritedProtocols(Cat, Protocols);
2628 
2629     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
2630       while (SD) {
2631         CollectInheritedProtocols(SD, Protocols);
2632         SD = SD->getSuperClass();
2633       }
2634   } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2635     for (auto *Proto : OC->protocols()) {
2636       CollectInheritedProtocols(Proto, Protocols);
2637     }
2638   } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
2639     // Insert the protocol.
2640     if (!Protocols.insert(
2641           const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
2642       return;
2643 
2644     for (auto *Proto : OP->protocols())
2645       CollectInheritedProtocols(Proto, Protocols);
2646   }
2647 }
2648 
2649 static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
2650                                                 const RecordDecl *RD) {
2651   assert(RD->isUnion() && "Must be union type");
2652   CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
2653 
2654   for (const auto *Field : RD->fields()) {
2655     if (!Context.hasUniqueObjectRepresentations(Field->getType()))
2656       return false;
2657     CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
2658     if (FieldSize != UnionSize)
2659       return false;
2660   }
2661   return !RD->field_empty();
2662 }
2663 
2664 static int64_t getSubobjectOffset(const FieldDecl *Field,
2665                                   const ASTContext &Context,
2666                                   const clang::ASTRecordLayout & /*Layout*/) {
2667   return Context.getFieldOffset(Field);
2668 }
2669 
2670 static int64_t getSubobjectOffset(const CXXRecordDecl *RD,
2671                                   const ASTContext &Context,
2672                                   const clang::ASTRecordLayout &Layout) {
2673   return Context.toBits(Layout.getBaseClassOffset(RD));
2674 }
2675 
2676 static llvm::Optional<int64_t>
2677 structHasUniqueObjectRepresentations(const ASTContext &Context,
2678                                      const RecordDecl *RD);
2679 
2680 static llvm::Optional<int64_t>
2681 getSubobjectSizeInBits(const FieldDecl *Field, const ASTContext &Context) {
2682   if (Field->getType()->isRecordType()) {
2683     const RecordDecl *RD = Field->getType()->getAsRecordDecl();
2684     if (!RD->isUnion())
2685       return structHasUniqueObjectRepresentations(Context, RD);
2686   }
2687 
2688   // A _BitInt type may not be unique if it has padding bits
2689   // but if it is a bitfield the padding bits are not used.
2690   bool IsBitIntType = Field->getType()->isBitIntType();
2691   if (!Field->getType()->isReferenceType() && !IsBitIntType &&
2692       !Context.hasUniqueObjectRepresentations(Field->getType()))
2693     return llvm::None;
2694 
2695   int64_t FieldSizeInBits =
2696       Context.toBits(Context.getTypeSizeInChars(Field->getType()));
2697   if (Field->isBitField()) {
2698     int64_t BitfieldSize = Field->getBitWidthValue(Context);
2699     if (IsBitIntType) {
2700       if ((unsigned)BitfieldSize >
2701           cast<BitIntType>(Field->getType())->getNumBits())
2702         return llvm::None;
2703     } else if (BitfieldSize > FieldSizeInBits) {
2704       return llvm::None;
2705     }
2706     FieldSizeInBits = BitfieldSize;
2707   } else if (IsBitIntType &&
2708              !Context.hasUniqueObjectRepresentations(Field->getType())) {
2709     return llvm::None;
2710   }
2711   return FieldSizeInBits;
2712 }
2713 
2714 static llvm::Optional<int64_t>
2715 getSubobjectSizeInBits(const CXXRecordDecl *RD, const ASTContext &Context) {
2716   return structHasUniqueObjectRepresentations(Context, RD);
2717 }
2718 
2719 template <typename RangeT>
2720 static llvm::Optional<int64_t> structSubobjectsHaveUniqueObjectRepresentations(
2721     const RangeT &Subobjects, int64_t CurOffsetInBits,
2722     const ASTContext &Context, const clang::ASTRecordLayout &Layout) {
2723   for (const auto *Subobject : Subobjects) {
2724     llvm::Optional<int64_t> SizeInBits =
2725         getSubobjectSizeInBits(Subobject, Context);
2726     if (!SizeInBits)
2727       return llvm::None;
2728     if (*SizeInBits != 0) {
2729       int64_t Offset = getSubobjectOffset(Subobject, Context, Layout);
2730       if (Offset != CurOffsetInBits)
2731         return llvm::None;
2732       CurOffsetInBits += *SizeInBits;
2733     }
2734   }
2735   return CurOffsetInBits;
2736 }
2737 
2738 static llvm::Optional<int64_t>
2739 structHasUniqueObjectRepresentations(const ASTContext &Context,
2740                                      const RecordDecl *RD) {
2741   assert(!RD->isUnion() && "Must be struct/class type");
2742   const auto &Layout = Context.getASTRecordLayout(RD);
2743 
2744   int64_t CurOffsetInBits = 0;
2745   if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
2746     if (ClassDecl->isDynamicClass())
2747       return llvm::None;
2748 
2749     SmallVector<CXXRecordDecl *, 4> Bases;
2750     for (const auto &Base : ClassDecl->bases()) {
2751       // Empty types can be inherited from, and non-empty types can potentially
2752       // have tail padding, so just make sure there isn't an error.
2753       Bases.emplace_back(Base.getType()->getAsCXXRecordDecl());
2754     }
2755 
2756     llvm::sort(Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
2757       return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
2758     });
2759 
2760     llvm::Optional<int64_t> OffsetAfterBases =
2761         structSubobjectsHaveUniqueObjectRepresentations(Bases, CurOffsetInBits,
2762                                                         Context, Layout);
2763     if (!OffsetAfterBases)
2764       return llvm::None;
2765     CurOffsetInBits = *OffsetAfterBases;
2766   }
2767 
2768   llvm::Optional<int64_t> OffsetAfterFields =
2769       structSubobjectsHaveUniqueObjectRepresentations(
2770           RD->fields(), CurOffsetInBits, Context, Layout);
2771   if (!OffsetAfterFields)
2772     return llvm::None;
2773   CurOffsetInBits = *OffsetAfterFields;
2774 
2775   return CurOffsetInBits;
2776 }
2777 
2778 bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const {
2779   // C++17 [meta.unary.prop]:
2780   //   The predicate condition for a template specialization
2781   //   has_unique_object_representations<T> shall be
2782   //   satisfied if and only if:
2783   //     (9.1) - T is trivially copyable, and
2784   //     (9.2) - any two objects of type T with the same value have the same
2785   //     object representation, where two objects
2786   //   of array or non-union class type are considered to have the same value
2787   //   if their respective sequences of
2788   //   direct subobjects have the same values, and two objects of union type
2789   //   are considered to have the same
2790   //   value if they have the same active member and the corresponding members
2791   //   have the same value.
2792   //   The set of scalar types for which this condition holds is
2793   //   implementation-defined. [ Note: If a type has padding
2794   //   bits, the condition does not hold; otherwise, the condition holds true
2795   //   for unsigned integral types. -- end note ]
2796   assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
2797 
2798   // Arrays are unique only if their element type is unique.
2799   if (Ty->isArrayType())
2800     return hasUniqueObjectRepresentations(getBaseElementType(Ty));
2801 
2802   // (9.1) - T is trivially copyable...
2803   if (!Ty.isTriviallyCopyableType(*this))
2804     return false;
2805 
2806   // All integrals and enums are unique.
2807   if (Ty->isIntegralOrEnumerationType()) {
2808     // Except _BitInt types that have padding bits.
2809     if (const auto *BIT = dyn_cast<BitIntType>(Ty))
2810       return getTypeSize(BIT) == BIT->getNumBits();
2811 
2812     return true;
2813   }
2814 
2815   // All other pointers are unique.
2816   if (Ty->isPointerType())
2817     return true;
2818 
2819   if (Ty->isMemberPointerType()) {
2820     const auto *MPT = Ty->getAs<MemberPointerType>();
2821     return !ABI->getMemberPointerInfo(MPT).HasPadding;
2822   }
2823 
2824   if (Ty->isRecordType()) {
2825     const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl();
2826 
2827     if (Record->isInvalidDecl())
2828       return false;
2829 
2830     if (Record->isUnion())
2831       return unionHasUniqueObjectRepresentations(*this, Record);
2832 
2833     Optional<int64_t> StructSize =
2834         structHasUniqueObjectRepresentations(*this, Record);
2835 
2836     return StructSize &&
2837            StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty));
2838   }
2839 
2840   // FIXME: More cases to handle here (list by rsmith):
2841   // vectors (careful about, eg, vector of 3 foo)
2842   // _Complex int and friends
2843   // _Atomic T
2844   // Obj-C block pointers
2845   // Obj-C object pointers
2846   // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
2847   // clk_event_t, queue_t, reserve_id_t)
2848   // There're also Obj-C class types and the Obj-C selector type, but I think it
2849   // makes sense for those to return false here.
2850 
2851   return false;
2852 }
2853 
2854 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
2855   unsigned count = 0;
2856   // Count ivars declared in class extension.
2857   for (const auto *Ext : OI->known_extensions())
2858     count += Ext->ivar_size();
2859 
2860   // Count ivar defined in this class's implementation.  This
2861   // includes synthesized ivars.
2862   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2863     count += ImplDecl->ivar_size();
2864 
2865   return count;
2866 }
2867 
2868 bool ASTContext::isSentinelNullExpr(const Expr *E) {
2869   if (!E)
2870     return false;
2871 
2872   // nullptr_t is always treated as null.
2873   if (E->getType()->isNullPtrType()) return true;
2874 
2875   if (E->getType()->isAnyPointerType() &&
2876       E->IgnoreParenCasts()->isNullPointerConstant(*this,
2877                                                 Expr::NPC_ValueDependentIsNull))
2878     return true;
2879 
2880   // Unfortunately, __null has type 'int'.
2881   if (isa<GNUNullExpr>(E)) return true;
2882 
2883   return false;
2884 }
2885 
2886 /// Get the implementation of ObjCInterfaceDecl, or nullptr if none
2887 /// exists.
2888 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2889   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2890     I = ObjCImpls.find(D);
2891   if (I != ObjCImpls.end())
2892     return cast<ObjCImplementationDecl>(I->second);
2893   return nullptr;
2894 }
2895 
2896 /// Get the implementation of ObjCCategoryDecl, or nullptr if none
2897 /// exists.
2898 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2899   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2900     I = ObjCImpls.find(D);
2901   if (I != ObjCImpls.end())
2902     return cast<ObjCCategoryImplDecl>(I->second);
2903   return nullptr;
2904 }
2905 
2906 /// Set the implementation of ObjCInterfaceDecl.
2907 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2908                            ObjCImplementationDecl *ImplD) {
2909   assert(IFaceD && ImplD && "Passed null params");
2910   ObjCImpls[IFaceD] = ImplD;
2911 }
2912 
2913 /// Set the implementation of ObjCCategoryDecl.
2914 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2915                            ObjCCategoryImplDecl *ImplD) {
2916   assert(CatD && ImplD && "Passed null params");
2917   ObjCImpls[CatD] = ImplD;
2918 }
2919 
2920 const ObjCMethodDecl *
2921 ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
2922   return ObjCMethodRedecls.lookup(MD);
2923 }
2924 
2925 void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2926                                             const ObjCMethodDecl *Redecl) {
2927   assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2928   ObjCMethodRedecls[MD] = Redecl;
2929 }
2930 
2931 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2932                                               const NamedDecl *ND) const {
2933   if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2934     return ID;
2935   if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2936     return CD->getClassInterface();
2937   if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2938     return IMD->getClassInterface();
2939 
2940   return nullptr;
2941 }
2942 
2943 /// Get the copy initialization expression of VarDecl, or nullptr if
2944 /// none exists.
2945 BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const {
2946   assert(VD && "Passed null params");
2947   assert(VD->hasAttr<BlocksAttr>() &&
2948          "getBlockVarCopyInits - not __block var");
2949   auto I = BlockVarCopyInits.find(VD);
2950   if (I != BlockVarCopyInits.end())
2951     return I->second;
2952   return {nullptr, false};
2953 }
2954 
2955 /// Set the copy initialization expression of a block var decl.
2956 void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
2957                                      bool CanThrow) {
2958   assert(VD && CopyExpr && "Passed null params");
2959   assert(VD->hasAttr<BlocksAttr>() &&
2960          "setBlockVarCopyInits - not __block var");
2961   BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
2962 }
2963 
2964 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
2965                                                  unsigned DataSize) const {
2966   if (!DataSize)
2967     DataSize = TypeLoc::getFullDataSizeForType(T);
2968   else
2969     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
2970            "incorrect data size provided to CreateTypeSourceInfo!");
2971 
2972   auto *TInfo =
2973     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2974   new (TInfo) TypeSourceInfo(T);
2975   return TInfo;
2976 }
2977 
2978 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2979                                                      SourceLocation L) const {
2980   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
2981   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2982   return DI;
2983 }
2984 
2985 const ASTRecordLayout &
2986 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
2987   return getObjCLayout(D, nullptr);
2988 }
2989 
2990 const ASTRecordLayout &
2991 ASTContext::getASTObjCImplementationLayout(
2992                                         const ObjCImplementationDecl *D) const {
2993   return getObjCLayout(D->getClassInterface(), D);
2994 }
2995 
2996 //===----------------------------------------------------------------------===//
2997 //                   Type creation/memoization methods
2998 //===----------------------------------------------------------------------===//
2999 
3000 QualType
3001 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
3002   unsigned fastQuals = quals.getFastQualifiers();
3003   quals.removeFastQualifiers();
3004 
3005   // Check if we've already instantiated this type.
3006   llvm::FoldingSetNodeID ID;
3007   ExtQuals::Profile(ID, baseType, quals);
3008   void *insertPos = nullptr;
3009   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
3010     assert(eq->getQualifiers() == quals);
3011     return QualType(eq, fastQuals);
3012   }
3013 
3014   // If the base type is not canonical, make the appropriate canonical type.
3015   QualType canon;
3016   if (!baseType->isCanonicalUnqualified()) {
3017     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
3018     canonSplit.Quals.addConsistentQualifiers(quals);
3019     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
3020 
3021     // Re-find the insert position.
3022     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
3023   }
3024 
3025   auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
3026   ExtQualNodes.InsertNode(eq, insertPos);
3027   return QualType(eq, fastQuals);
3028 }
3029 
3030 QualType ASTContext::getAddrSpaceQualType(QualType T,
3031                                           LangAS AddressSpace) const {
3032   QualType CanT = getCanonicalType(T);
3033   if (CanT.getAddressSpace() == AddressSpace)
3034     return T;
3035 
3036   // If we are composing extended qualifiers together, merge together
3037   // into one ExtQuals node.
3038   QualifierCollector Quals;
3039   const Type *TypeNode = Quals.strip(T);
3040 
3041   // If this type already has an address space specified, it cannot get
3042   // another one.
3043   assert(!Quals.hasAddressSpace() &&
3044          "Type cannot be in multiple addr spaces!");
3045   Quals.addAddressSpace(AddressSpace);
3046 
3047   return getExtQualType(TypeNode, Quals);
3048 }
3049 
3050 QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
3051   // If the type is not qualified with an address space, just return it
3052   // immediately.
3053   if (!T.hasAddressSpace())
3054     return T;
3055 
3056   // If we are composing extended qualifiers together, merge together
3057   // into one ExtQuals node.
3058   QualifierCollector Quals;
3059   const Type *TypeNode;
3060 
3061   while (T.hasAddressSpace()) {
3062     TypeNode = Quals.strip(T);
3063 
3064     // If the type no longer has an address space after stripping qualifiers,
3065     // jump out.
3066     if (!QualType(TypeNode, 0).hasAddressSpace())
3067       break;
3068 
3069     // There might be sugar in the way. Strip it and try again.
3070     T = T.getSingleStepDesugaredType(*this);
3071   }
3072 
3073   Quals.removeAddressSpace();
3074 
3075   // Removal of the address space can mean there are no longer any
3076   // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
3077   // or required.
3078   if (Quals.hasNonFastQualifiers())
3079     return getExtQualType(TypeNode, Quals);
3080   else
3081     return QualType(TypeNode, Quals.getFastQualifiers());
3082 }
3083 
3084 QualType ASTContext::getObjCGCQualType(QualType T,
3085                                        Qualifiers::GC GCAttr) const {
3086   QualType CanT = getCanonicalType(T);
3087   if (CanT.getObjCGCAttr() == GCAttr)
3088     return T;
3089 
3090   if (const auto *ptr = T->getAs<PointerType>()) {
3091     QualType Pointee = ptr->getPointeeType();
3092     if (Pointee->isAnyPointerType()) {
3093       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
3094       return getPointerType(ResultType);
3095     }
3096   }
3097 
3098   // If we are composing extended qualifiers together, merge together
3099   // into one ExtQuals node.
3100   QualifierCollector Quals;
3101   const Type *TypeNode = Quals.strip(T);
3102 
3103   // If this type already has an ObjCGC specified, it cannot get
3104   // another one.
3105   assert(!Quals.hasObjCGCAttr() &&
3106          "Type cannot have multiple ObjCGCs!");
3107   Quals.addObjCGCAttr(GCAttr);
3108 
3109   return getExtQualType(TypeNode, Quals);
3110 }
3111 
3112 QualType ASTContext::removePtrSizeAddrSpace(QualType T) const {
3113   if (const PointerType *Ptr = T->getAs<PointerType>()) {
3114     QualType Pointee = Ptr->getPointeeType();
3115     if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) {
3116       return getPointerType(removeAddrSpaceQualType(Pointee));
3117     }
3118   }
3119   return T;
3120 }
3121 
3122 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
3123                                                    FunctionType::ExtInfo Info) {
3124   if (T->getExtInfo() == Info)
3125     return T;
3126 
3127   QualType Result;
3128   if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
3129     Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
3130   } else {
3131     const auto *FPT = cast<FunctionProtoType>(T);
3132     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3133     EPI.ExtInfo = Info;
3134     Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
3135   }
3136 
3137   return cast<FunctionType>(Result.getTypePtr());
3138 }
3139 
3140 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
3141                                                  QualType ResultType) {
3142   FD = FD->getMostRecentDecl();
3143   while (true) {
3144     const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
3145     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3146     FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
3147     if (FunctionDecl *Next = FD->getPreviousDecl())
3148       FD = Next;
3149     else
3150       break;
3151   }
3152   if (ASTMutationListener *L = getASTMutationListener())
3153     L->DeducedReturnType(FD, ResultType);
3154 }
3155 
3156 /// Get a function type and produce the equivalent function type with the
3157 /// specified exception specification. Type sugar that can be present on a
3158 /// declaration of a function with an exception specification is permitted
3159 /// and preserved. Other type sugar (for instance, typedefs) is not.
3160 QualType ASTContext::getFunctionTypeWithExceptionSpec(
3161     QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) {
3162   // Might have some parens.
3163   if (const auto *PT = dyn_cast<ParenType>(Orig))
3164     return getParenType(
3165         getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
3166 
3167   // Might be wrapped in a macro qualified type.
3168   if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig))
3169     return getMacroQualifiedType(
3170         getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI),
3171         MQT->getMacroIdentifier());
3172 
3173   // Might have a calling-convention attribute.
3174   if (const auto *AT = dyn_cast<AttributedType>(Orig))
3175     return getAttributedType(
3176         AT->getAttrKind(),
3177         getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
3178         getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
3179 
3180   // Anything else must be a function type. Rebuild it with the new exception
3181   // specification.
3182   const auto *Proto = Orig->castAs<FunctionProtoType>();
3183   return getFunctionType(
3184       Proto->getReturnType(), Proto->getParamTypes(),
3185       Proto->getExtProtoInfo().withExceptionSpec(ESI));
3186 }
3187 
3188 bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
3189                                                           QualType U) {
3190   return hasSameType(T, U) ||
3191          (getLangOpts().CPlusPlus17 &&
3192           hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
3193                       getFunctionTypeWithExceptionSpec(U, EST_None)));
3194 }
3195 
3196 QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) {
3197   if (const auto *Proto = T->getAs<FunctionProtoType>()) {
3198     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3199     SmallVector<QualType, 16> Args(Proto->param_types());
3200     for (unsigned i = 0, n = Args.size(); i != n; ++i)
3201       Args[i] = removePtrSizeAddrSpace(Args[i]);
3202     return getFunctionType(RetTy, Args, Proto->getExtProtoInfo());
3203   }
3204 
3205   if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) {
3206     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3207     return getFunctionNoProtoType(RetTy, Proto->getExtInfo());
3208   }
3209 
3210   return T;
3211 }
3212 
3213 bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) {
3214   return hasSameType(T, U) ||
3215          hasSameType(getFunctionTypeWithoutPtrSizes(T),
3216                      getFunctionTypeWithoutPtrSizes(U));
3217 }
3218 
3219 void ASTContext::adjustExceptionSpec(
3220     FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
3221     bool AsWritten) {
3222   // Update the type.
3223   QualType Updated =
3224       getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
3225   FD->setType(Updated);
3226 
3227   if (!AsWritten)
3228     return;
3229 
3230   // Update the type in the type source information too.
3231   if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
3232     // If the type and the type-as-written differ, we may need to update
3233     // the type-as-written too.
3234     if (TSInfo->getType() != FD->getType())
3235       Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
3236 
3237     // FIXME: When we get proper type location information for exceptions,
3238     // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
3239     // up the TypeSourceInfo;
3240     assert(TypeLoc::getFullDataSizeForType(Updated) ==
3241                TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
3242            "TypeLoc size mismatch from updating exception specification");
3243     TSInfo->overrideType(Updated);
3244   }
3245 }
3246 
3247 /// getComplexType - Return the uniqued reference to the type for a complex
3248 /// number with the specified element type.
3249 QualType ASTContext::getComplexType(QualType T) const {
3250   // Unique pointers, to guarantee there is only one pointer of a particular
3251   // structure.
3252   llvm::FoldingSetNodeID ID;
3253   ComplexType::Profile(ID, T);
3254 
3255   void *InsertPos = nullptr;
3256   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
3257     return QualType(CT, 0);
3258 
3259   // If the pointee type isn't canonical, this won't be a canonical type either,
3260   // so fill in the canonical type field.
3261   QualType Canonical;
3262   if (!T.isCanonical()) {
3263     Canonical = getComplexType(getCanonicalType(T));
3264 
3265     // Get the new insert position for the node we care about.
3266     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
3267     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3268   }
3269   auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
3270   Types.push_back(New);
3271   ComplexTypes.InsertNode(New, InsertPos);
3272   return QualType(New, 0);
3273 }
3274 
3275 /// getPointerType - Return the uniqued reference to the type for a pointer to
3276 /// the specified type.
3277 QualType ASTContext::getPointerType(QualType T) const {
3278   // Unique pointers, to guarantee there is only one pointer of a particular
3279   // structure.
3280   llvm::FoldingSetNodeID ID;
3281   PointerType::Profile(ID, T);
3282 
3283   void *InsertPos = nullptr;
3284   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3285     return QualType(PT, 0);
3286 
3287   // If the pointee type isn't canonical, this won't be a canonical type either,
3288   // so fill in the canonical type field.
3289   QualType Canonical;
3290   if (!T.isCanonical()) {
3291     Canonical = getPointerType(getCanonicalType(T));
3292 
3293     // Get the new insert position for the node we care about.
3294     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3295     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3296   }
3297   auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
3298   Types.push_back(New);
3299   PointerTypes.InsertNode(New, InsertPos);
3300   return QualType(New, 0);
3301 }
3302 
3303 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
3304   llvm::FoldingSetNodeID ID;
3305   AdjustedType::Profile(ID, Orig, New);
3306   void *InsertPos = nullptr;
3307   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3308   if (AT)
3309     return QualType(AT, 0);
3310 
3311   QualType Canonical = getCanonicalType(New);
3312 
3313   // Get the new insert position for the node we care about.
3314   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3315   assert(!AT && "Shouldn't be in the map!");
3316 
3317   AT = new (*this, TypeAlignment)
3318       AdjustedType(Type::Adjusted, Orig, New, Canonical);
3319   Types.push_back(AT);
3320   AdjustedTypes.InsertNode(AT, InsertPos);
3321   return QualType(AT, 0);
3322 }
3323 
3324 QualType ASTContext::getDecayedType(QualType T) const {
3325   assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
3326 
3327   QualType Decayed;
3328 
3329   // C99 6.7.5.3p7:
3330   //   A declaration of a parameter as "array of type" shall be
3331   //   adjusted to "qualified pointer to type", where the type
3332   //   qualifiers (if any) are those specified within the [ and ] of
3333   //   the array type derivation.
3334   if (T->isArrayType())
3335     Decayed = getArrayDecayedType(T);
3336 
3337   // C99 6.7.5.3p8:
3338   //   A declaration of a parameter as "function returning type"
3339   //   shall be adjusted to "pointer to function returning type", as
3340   //   in 6.3.2.1.
3341   if (T->isFunctionType())
3342     Decayed = getPointerType(T);
3343 
3344   llvm::FoldingSetNodeID ID;
3345   AdjustedType::Profile(ID, T, Decayed);
3346   void *InsertPos = nullptr;
3347   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3348   if (AT)
3349     return QualType(AT, 0);
3350 
3351   QualType Canonical = getCanonicalType(Decayed);
3352 
3353   // Get the new insert position for the node we care about.
3354   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3355   assert(!AT && "Shouldn't be in the map!");
3356 
3357   AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
3358   Types.push_back(AT);
3359   AdjustedTypes.InsertNode(AT, InsertPos);
3360   return QualType(AT, 0);
3361 }
3362 
3363 /// getBlockPointerType - Return the uniqued reference to the type for
3364 /// a pointer to the specified block.
3365 QualType ASTContext::getBlockPointerType(QualType T) const {
3366   assert(T->isFunctionType() && "block of function types only");
3367   // Unique pointers, to guarantee there is only one block of a particular
3368   // structure.
3369   llvm::FoldingSetNodeID ID;
3370   BlockPointerType::Profile(ID, T);
3371 
3372   void *InsertPos = nullptr;
3373   if (BlockPointerType *PT =
3374         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3375     return QualType(PT, 0);
3376 
3377   // If the block pointee type isn't canonical, this won't be a canonical
3378   // type either so fill in the canonical type field.
3379   QualType Canonical;
3380   if (!T.isCanonical()) {
3381     Canonical = getBlockPointerType(getCanonicalType(T));
3382 
3383     // Get the new insert position for the node we care about.
3384     BlockPointerType *NewIP =
3385       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3386     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3387   }
3388   auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
3389   Types.push_back(New);
3390   BlockPointerTypes.InsertNode(New, InsertPos);
3391   return QualType(New, 0);
3392 }
3393 
3394 /// getLValueReferenceType - Return the uniqued reference to the type for an
3395 /// lvalue reference to the specified type.
3396 QualType
3397 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
3398   assert((!T->isPlaceholderType() ||
3399           T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&
3400          "Unresolved placeholder type");
3401 
3402   // Unique pointers, to guarantee there is only one pointer of a particular
3403   // structure.
3404   llvm::FoldingSetNodeID ID;
3405   ReferenceType::Profile(ID, T, SpelledAsLValue);
3406 
3407   void *InsertPos = nullptr;
3408   if (LValueReferenceType *RT =
3409         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3410     return QualType(RT, 0);
3411 
3412   const auto *InnerRef = T->getAs<ReferenceType>();
3413 
3414   // If the referencee type isn't canonical, this won't be a canonical type
3415   // either, so fill in the canonical type field.
3416   QualType Canonical;
3417   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
3418     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3419     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
3420 
3421     // Get the new insert position for the node we care about.
3422     LValueReferenceType *NewIP =
3423       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3424     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3425   }
3426 
3427   auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
3428                                                              SpelledAsLValue);
3429   Types.push_back(New);
3430   LValueReferenceTypes.InsertNode(New, InsertPos);
3431 
3432   return QualType(New, 0);
3433 }
3434 
3435 /// getRValueReferenceType - Return the uniqued reference to the type for an
3436 /// rvalue reference to the specified type.
3437 QualType ASTContext::getRValueReferenceType(QualType T) const {
3438   assert((!T->isPlaceholderType() ||
3439           T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&
3440          "Unresolved placeholder type");
3441 
3442   // Unique pointers, to guarantee there is only one pointer of a particular
3443   // structure.
3444   llvm::FoldingSetNodeID ID;
3445   ReferenceType::Profile(ID, T, false);
3446 
3447   void *InsertPos = nullptr;
3448   if (RValueReferenceType *RT =
3449         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3450     return QualType(RT, 0);
3451 
3452   const auto *InnerRef = T->getAs<ReferenceType>();
3453 
3454   // If the referencee type isn't canonical, this won't be a canonical type
3455   // either, so fill in the canonical type field.
3456   QualType Canonical;
3457   if (InnerRef || !T.isCanonical()) {
3458     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3459     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
3460 
3461     // Get the new insert position for the node we care about.
3462     RValueReferenceType *NewIP =
3463       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3464     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3465   }
3466 
3467   auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
3468   Types.push_back(New);
3469   RValueReferenceTypes.InsertNode(New, InsertPos);
3470   return QualType(New, 0);
3471 }
3472 
3473 /// getMemberPointerType - Return the uniqued reference to the type for a
3474 /// member pointer to the specified type, in the specified class.
3475 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
3476   // Unique pointers, to guarantee there is only one pointer of a particular
3477   // structure.
3478   llvm::FoldingSetNodeID ID;
3479   MemberPointerType::Profile(ID, T, Cls);
3480 
3481   void *InsertPos = nullptr;
3482   if (MemberPointerType *PT =
3483       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3484     return QualType(PT, 0);
3485 
3486   // If the pointee or class type isn't canonical, this won't be a canonical
3487   // type either, so fill in the canonical type field.
3488   QualType Canonical;
3489   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
3490     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
3491 
3492     // Get the new insert position for the node we care about.
3493     MemberPointerType *NewIP =
3494       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3495     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3496   }
3497   auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
3498   Types.push_back(New);
3499   MemberPointerTypes.InsertNode(New, InsertPos);
3500   return QualType(New, 0);
3501 }
3502 
3503 /// getConstantArrayType - Return the unique reference to the type for an
3504 /// array of the specified element type.
3505 QualType ASTContext::getConstantArrayType(QualType EltTy,
3506                                           const llvm::APInt &ArySizeIn,
3507                                           const Expr *SizeExpr,
3508                                           ArrayType::ArraySizeModifier ASM,
3509                                           unsigned IndexTypeQuals) const {
3510   assert((EltTy->isDependentType() ||
3511           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
3512          "Constant array of VLAs is illegal!");
3513 
3514   // We only need the size as part of the type if it's instantiation-dependent.
3515   if (SizeExpr && !SizeExpr->isInstantiationDependent())
3516     SizeExpr = nullptr;
3517 
3518   // Convert the array size into a canonical width matching the pointer size for
3519   // the target.
3520   llvm::APInt ArySize(ArySizeIn);
3521   ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
3522 
3523   llvm::FoldingSetNodeID ID;
3524   ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM,
3525                              IndexTypeQuals);
3526 
3527   void *InsertPos = nullptr;
3528   if (ConstantArrayType *ATP =
3529       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
3530     return QualType(ATP, 0);
3531 
3532   // If the element type isn't canonical or has qualifiers, or the array bound
3533   // is instantiation-dependent, this won't be a canonical type either, so fill
3534   // in the canonical type field.
3535   QualType Canon;
3536   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) {
3537     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3538     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr,
3539                                  ASM, IndexTypeQuals);
3540     Canon = getQualifiedType(Canon, canonSplit.Quals);
3541 
3542     // Get the new insert position for the node we care about.
3543     ConstantArrayType *NewIP =
3544       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
3545     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3546   }
3547 
3548   void *Mem = Allocate(
3549       ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0),
3550       TypeAlignment);
3551   auto *New = new (Mem)
3552     ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals);
3553   ConstantArrayTypes.InsertNode(New, InsertPos);
3554   Types.push_back(New);
3555   return QualType(New, 0);
3556 }
3557 
3558 /// getVariableArrayDecayedType - Turns the given type, which may be
3559 /// variably-modified, into the corresponding type with all the known
3560 /// sizes replaced with [*].
3561 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
3562   // Vastly most common case.
3563   if (!type->isVariablyModifiedType()) return type;
3564 
3565   QualType result;
3566 
3567   SplitQualType split = type.getSplitDesugaredType();
3568   const Type *ty = split.Ty;
3569   switch (ty->getTypeClass()) {
3570 #define TYPE(Class, Base)
3571 #define ABSTRACT_TYPE(Class, Base)
3572 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3573 #include "clang/AST/TypeNodes.inc"
3574     llvm_unreachable("didn't desugar past all non-canonical types?");
3575 
3576   // These types should never be variably-modified.
3577   case Type::Builtin:
3578   case Type::Complex:
3579   case Type::Vector:
3580   case Type::DependentVector:
3581   case Type::ExtVector:
3582   case Type::DependentSizedExtVector:
3583   case Type::ConstantMatrix:
3584   case Type::DependentSizedMatrix:
3585   case Type::DependentAddressSpace:
3586   case Type::ObjCObject:
3587   case Type::ObjCInterface:
3588   case Type::ObjCObjectPointer:
3589   case Type::Record:
3590   case Type::Enum:
3591   case Type::UnresolvedUsing:
3592   case Type::TypeOfExpr:
3593   case Type::TypeOf:
3594   case Type::Decltype:
3595   case Type::UnaryTransform:
3596   case Type::DependentName:
3597   case Type::InjectedClassName:
3598   case Type::TemplateSpecialization:
3599   case Type::DependentTemplateSpecialization:
3600   case Type::TemplateTypeParm:
3601   case Type::SubstTemplateTypeParmPack:
3602   case Type::Auto:
3603   case Type::DeducedTemplateSpecialization:
3604   case Type::PackExpansion:
3605   case Type::BitInt:
3606   case Type::DependentBitInt:
3607     llvm_unreachable("type should never be variably-modified");
3608 
3609   // These types can be variably-modified but should never need to
3610   // further decay.
3611   case Type::FunctionNoProto:
3612   case Type::FunctionProto:
3613   case Type::BlockPointer:
3614   case Type::MemberPointer:
3615   case Type::Pipe:
3616     return type;
3617 
3618   // These types can be variably-modified.  All these modifications
3619   // preserve structure except as noted by comments.
3620   // TODO: if we ever care about optimizing VLAs, there are no-op
3621   // optimizations available here.
3622   case Type::Pointer:
3623     result = getPointerType(getVariableArrayDecayedType(
3624                               cast<PointerType>(ty)->getPointeeType()));
3625     break;
3626 
3627   case Type::LValueReference: {
3628     const auto *lv = cast<LValueReferenceType>(ty);
3629     result = getLValueReferenceType(
3630                  getVariableArrayDecayedType(lv->getPointeeType()),
3631                                     lv->isSpelledAsLValue());
3632     break;
3633   }
3634 
3635   case Type::RValueReference: {
3636     const auto *lv = cast<RValueReferenceType>(ty);
3637     result = getRValueReferenceType(
3638                  getVariableArrayDecayedType(lv->getPointeeType()));
3639     break;
3640   }
3641 
3642   case Type::Atomic: {
3643     const auto *at = cast<AtomicType>(ty);
3644     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
3645     break;
3646   }
3647 
3648   case Type::ConstantArray: {
3649     const auto *cat = cast<ConstantArrayType>(ty);
3650     result = getConstantArrayType(
3651                  getVariableArrayDecayedType(cat->getElementType()),
3652                                   cat->getSize(),
3653                                   cat->getSizeExpr(),
3654                                   cat->getSizeModifier(),
3655                                   cat->getIndexTypeCVRQualifiers());
3656     break;
3657   }
3658 
3659   case Type::DependentSizedArray: {
3660     const auto *dat = cast<DependentSizedArrayType>(ty);
3661     result = getDependentSizedArrayType(
3662                  getVariableArrayDecayedType(dat->getElementType()),
3663                                         dat->getSizeExpr(),
3664                                         dat->getSizeModifier(),
3665                                         dat->getIndexTypeCVRQualifiers(),
3666                                         dat->getBracketsRange());
3667     break;
3668   }
3669 
3670   // Turn incomplete types into [*] types.
3671   case Type::IncompleteArray: {
3672     const auto *iat = cast<IncompleteArrayType>(ty);
3673     result = getVariableArrayType(
3674                  getVariableArrayDecayedType(iat->getElementType()),
3675                                   /*size*/ nullptr,
3676                                   ArrayType::Normal,
3677                                   iat->getIndexTypeCVRQualifiers(),
3678                                   SourceRange());
3679     break;
3680   }
3681 
3682   // Turn VLA types into [*] types.
3683   case Type::VariableArray: {
3684     const auto *vat = cast<VariableArrayType>(ty);
3685     result = getVariableArrayType(
3686                  getVariableArrayDecayedType(vat->getElementType()),
3687                                   /*size*/ nullptr,
3688                                   ArrayType::Star,
3689                                   vat->getIndexTypeCVRQualifiers(),
3690                                   vat->getBracketsRange());
3691     break;
3692   }
3693   }
3694 
3695   // Apply the top-level qualifiers from the original.
3696   return getQualifiedType(result, split.Quals);
3697 }
3698 
3699 /// getVariableArrayType - Returns a non-unique reference to the type for a
3700 /// variable array of the specified element type.
3701 QualType ASTContext::getVariableArrayType(QualType EltTy,
3702                                           Expr *NumElts,
3703                                           ArrayType::ArraySizeModifier ASM,
3704                                           unsigned IndexTypeQuals,
3705                                           SourceRange Brackets) const {
3706   // Since we don't unique expressions, it isn't possible to unique VLA's
3707   // that have an expression provided for their size.
3708   QualType Canon;
3709 
3710   // Be sure to pull qualifiers off the element type.
3711   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3712     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3713     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
3714                                  IndexTypeQuals, Brackets);
3715     Canon = getQualifiedType(Canon, canonSplit.Quals);
3716   }
3717 
3718   auto *New = new (*this, TypeAlignment)
3719     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
3720 
3721   VariableArrayTypes.push_back(New);
3722   Types.push_back(New);
3723   return QualType(New, 0);
3724 }
3725 
3726 /// getDependentSizedArrayType - Returns a non-unique reference to
3727 /// the type for a dependently-sized array of the specified element
3728 /// type.
3729 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
3730                                                 Expr *numElements,
3731                                                 ArrayType::ArraySizeModifier ASM,
3732                                                 unsigned elementTypeQuals,
3733                                                 SourceRange brackets) const {
3734   assert((!numElements || numElements->isTypeDependent() ||
3735           numElements->isValueDependent()) &&
3736          "Size must be type- or value-dependent!");
3737 
3738   // Dependently-sized array types that do not have a specified number
3739   // of elements will have their sizes deduced from a dependent
3740   // initializer.  We do no canonicalization here at all, which is okay
3741   // because they can't be used in most locations.
3742   if (!numElements) {
3743     auto *newType
3744       = new (*this, TypeAlignment)
3745           DependentSizedArrayType(*this, elementType, QualType(),
3746                                   numElements, ASM, elementTypeQuals,
3747                                   brackets);
3748     Types.push_back(newType);
3749     return QualType(newType, 0);
3750   }
3751 
3752   // Otherwise, we actually build a new type every time, but we
3753   // also build a canonical type.
3754 
3755   SplitQualType canonElementType = getCanonicalType(elementType).split();
3756 
3757   void *insertPos = nullptr;
3758   llvm::FoldingSetNodeID ID;
3759   DependentSizedArrayType::Profile(ID, *this,
3760                                    QualType(canonElementType.Ty, 0),
3761                                    ASM, elementTypeQuals, numElements);
3762 
3763   // Look for an existing type with these properties.
3764   DependentSizedArrayType *canonTy =
3765     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3766 
3767   // If we don't have one, build one.
3768   if (!canonTy) {
3769     canonTy = new (*this, TypeAlignment)
3770       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
3771                               QualType(), numElements, ASM, elementTypeQuals,
3772                               brackets);
3773     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
3774     Types.push_back(canonTy);
3775   }
3776 
3777   // Apply qualifiers from the element type to the array.
3778   QualType canon = getQualifiedType(QualType(canonTy,0),
3779                                     canonElementType.Quals);
3780 
3781   // If we didn't need extra canonicalization for the element type or the size
3782   // expression, then just use that as our result.
3783   if (QualType(canonElementType.Ty, 0) == elementType &&
3784       canonTy->getSizeExpr() == numElements)
3785     return canon;
3786 
3787   // Otherwise, we need to build a type which follows the spelling
3788   // of the element type.
3789   auto *sugaredType
3790     = new (*this, TypeAlignment)
3791         DependentSizedArrayType(*this, elementType, canon, numElements,
3792                                 ASM, elementTypeQuals, brackets);
3793   Types.push_back(sugaredType);
3794   return QualType(sugaredType, 0);
3795 }
3796 
3797 QualType ASTContext::getIncompleteArrayType(QualType elementType,
3798                                             ArrayType::ArraySizeModifier ASM,
3799                                             unsigned elementTypeQuals) const {
3800   llvm::FoldingSetNodeID ID;
3801   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
3802 
3803   void *insertPos = nullptr;
3804   if (IncompleteArrayType *iat =
3805        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
3806     return QualType(iat, 0);
3807 
3808   // If the element type isn't canonical, this won't be a canonical type
3809   // either, so fill in the canonical type field.  We also have to pull
3810   // qualifiers off the element type.
3811   QualType canon;
3812 
3813   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
3814     SplitQualType canonSplit = getCanonicalType(elementType).split();
3815     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
3816                                    ASM, elementTypeQuals);
3817     canon = getQualifiedType(canon, canonSplit.Quals);
3818 
3819     // Get the new insert position for the node we care about.
3820     IncompleteArrayType *existing =
3821       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3822     assert(!existing && "Shouldn't be in the map!"); (void) existing;
3823   }
3824 
3825   auto *newType = new (*this, TypeAlignment)
3826     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
3827 
3828   IncompleteArrayTypes.InsertNode(newType, insertPos);
3829   Types.push_back(newType);
3830   return QualType(newType, 0);
3831 }
3832 
3833 ASTContext::BuiltinVectorTypeInfo
3834 ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const {
3835 #define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS)                          \
3836   {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \
3837    NUMVECTORS};
3838 
3839 #define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS)                                     \
3840   {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS};
3841 
3842   switch (Ty->getKind()) {
3843   default:
3844     llvm_unreachable("Unsupported builtin vector type");
3845   case BuiltinType::SveInt8:
3846     return SVE_INT_ELTTY(8, 16, true, 1);
3847   case BuiltinType::SveUint8:
3848     return SVE_INT_ELTTY(8, 16, false, 1);
3849   case BuiltinType::SveInt8x2:
3850     return SVE_INT_ELTTY(8, 16, true, 2);
3851   case BuiltinType::SveUint8x2:
3852     return SVE_INT_ELTTY(8, 16, false, 2);
3853   case BuiltinType::SveInt8x3:
3854     return SVE_INT_ELTTY(8, 16, true, 3);
3855   case BuiltinType::SveUint8x3:
3856     return SVE_INT_ELTTY(8, 16, false, 3);
3857   case BuiltinType::SveInt8x4:
3858     return SVE_INT_ELTTY(8, 16, true, 4);
3859   case BuiltinType::SveUint8x4:
3860     return SVE_INT_ELTTY(8, 16, false, 4);
3861   case BuiltinType::SveInt16:
3862     return SVE_INT_ELTTY(16, 8, true, 1);
3863   case BuiltinType::SveUint16:
3864     return SVE_INT_ELTTY(16, 8, false, 1);
3865   case BuiltinType::SveInt16x2:
3866     return SVE_INT_ELTTY(16, 8, true, 2);
3867   case BuiltinType::SveUint16x2:
3868     return SVE_INT_ELTTY(16, 8, false, 2);
3869   case BuiltinType::SveInt16x3:
3870     return SVE_INT_ELTTY(16, 8, true, 3);
3871   case BuiltinType::SveUint16x3:
3872     return SVE_INT_ELTTY(16, 8, false, 3);
3873   case BuiltinType::SveInt16x4:
3874     return SVE_INT_ELTTY(16, 8, true, 4);
3875   case BuiltinType::SveUint16x4:
3876     return SVE_INT_ELTTY(16, 8, false, 4);
3877   case BuiltinType::SveInt32:
3878     return SVE_INT_ELTTY(32, 4, true, 1);
3879   case BuiltinType::SveUint32:
3880     return SVE_INT_ELTTY(32, 4, false, 1);
3881   case BuiltinType::SveInt32x2:
3882     return SVE_INT_ELTTY(32, 4, true, 2);
3883   case BuiltinType::SveUint32x2:
3884     return SVE_INT_ELTTY(32, 4, false, 2);
3885   case BuiltinType::SveInt32x3:
3886     return SVE_INT_ELTTY(32, 4, true, 3);
3887   case BuiltinType::SveUint32x3:
3888     return SVE_INT_ELTTY(32, 4, false, 3);
3889   case BuiltinType::SveInt32x4:
3890     return SVE_INT_ELTTY(32, 4, true, 4);
3891   case BuiltinType::SveUint32x4:
3892     return SVE_INT_ELTTY(32, 4, false, 4);
3893   case BuiltinType::SveInt64:
3894     return SVE_INT_ELTTY(64, 2, true, 1);
3895   case BuiltinType::SveUint64:
3896     return SVE_INT_ELTTY(64, 2, false, 1);
3897   case BuiltinType::SveInt64x2:
3898     return SVE_INT_ELTTY(64, 2, true, 2);
3899   case BuiltinType::SveUint64x2:
3900     return SVE_INT_ELTTY(64, 2, false, 2);
3901   case BuiltinType::SveInt64x3:
3902     return SVE_INT_ELTTY(64, 2, true, 3);
3903   case BuiltinType::SveUint64x3:
3904     return SVE_INT_ELTTY(64, 2, false, 3);
3905   case BuiltinType::SveInt64x4:
3906     return SVE_INT_ELTTY(64, 2, true, 4);
3907   case BuiltinType::SveUint64x4:
3908     return SVE_INT_ELTTY(64, 2, false, 4);
3909   case BuiltinType::SveBool:
3910     return SVE_ELTTY(BoolTy, 16, 1);
3911   case BuiltinType::SveFloat16:
3912     return SVE_ELTTY(HalfTy, 8, 1);
3913   case BuiltinType::SveFloat16x2:
3914     return SVE_ELTTY(HalfTy, 8, 2);
3915   case BuiltinType::SveFloat16x3:
3916     return SVE_ELTTY(HalfTy, 8, 3);
3917   case BuiltinType::SveFloat16x4:
3918     return SVE_ELTTY(HalfTy, 8, 4);
3919   case BuiltinType::SveFloat32:
3920     return SVE_ELTTY(FloatTy, 4, 1);
3921   case BuiltinType::SveFloat32x2:
3922     return SVE_ELTTY(FloatTy, 4, 2);
3923   case BuiltinType::SveFloat32x3:
3924     return SVE_ELTTY(FloatTy, 4, 3);
3925   case BuiltinType::SveFloat32x4:
3926     return SVE_ELTTY(FloatTy, 4, 4);
3927   case BuiltinType::SveFloat64:
3928     return SVE_ELTTY(DoubleTy, 2, 1);
3929   case BuiltinType::SveFloat64x2:
3930     return SVE_ELTTY(DoubleTy, 2, 2);
3931   case BuiltinType::SveFloat64x3:
3932     return SVE_ELTTY(DoubleTy, 2, 3);
3933   case BuiltinType::SveFloat64x4:
3934     return SVE_ELTTY(DoubleTy, 2, 4);
3935   case BuiltinType::SveBFloat16:
3936     return SVE_ELTTY(BFloat16Ty, 8, 1);
3937   case BuiltinType::SveBFloat16x2:
3938     return SVE_ELTTY(BFloat16Ty, 8, 2);
3939   case BuiltinType::SveBFloat16x3:
3940     return SVE_ELTTY(BFloat16Ty, 8, 3);
3941   case BuiltinType::SveBFloat16x4:
3942     return SVE_ELTTY(BFloat16Ty, 8, 4);
3943 #define RVV_VECTOR_TYPE_INT(Name, Id, SingletonId, NumEls, ElBits, NF,         \
3944                             IsSigned)                                          \
3945   case BuiltinType::Id:                                                        \
3946     return {getIntTypeForBitwidth(ElBits, IsSigned),                           \
3947             llvm::ElementCount::getScalable(NumEls), NF};
3948 #define RVV_VECTOR_TYPE_FLOAT(Name, Id, SingletonId, NumEls, ElBits, NF)       \
3949   case BuiltinType::Id:                                                        \
3950     return {ElBits == 16 ? Float16Ty : (ElBits == 32 ? FloatTy : DoubleTy),    \
3951             llvm::ElementCount::getScalable(NumEls), NF};
3952 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
3953   case BuiltinType::Id:                                                        \
3954     return {BoolTy, llvm::ElementCount::getScalable(NumEls), 1};
3955 #include "clang/Basic/RISCVVTypes.def"
3956   }
3957 }
3958 
3959 /// getScalableVectorType - Return the unique reference to a scalable vector
3960 /// type of the specified element type and size. VectorType must be a built-in
3961 /// type.
3962 QualType ASTContext::getScalableVectorType(QualType EltTy,
3963                                            unsigned NumElts) const {
3964   if (Target->hasAArch64SVETypes()) {
3965     uint64_t EltTySize = getTypeSize(EltTy);
3966 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
3967                         IsSigned, IsFP, IsBF)                                  \
3968   if (!EltTy->isBooleanType() &&                                               \
3969       ((EltTy->hasIntegerRepresentation() &&                                   \
3970         EltTy->hasSignedIntegerRepresentation() == IsSigned) ||                \
3971        (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() &&      \
3972         IsFP && !IsBF) ||                                                      \
3973        (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() &&       \
3974         IsBF && !IsFP)) &&                                                     \
3975       EltTySize == ElBits && NumElts == NumEls) {                              \
3976     return SingletonId;                                                        \
3977   }
3978 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
3979   if (EltTy->isBooleanType() && NumElts == NumEls)                             \
3980     return SingletonId;
3981 #include "clang/Basic/AArch64SVEACLETypes.def"
3982   } else if (Target->hasRISCVVTypes()) {
3983     uint64_t EltTySize = getTypeSize(EltTy);
3984 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned,   \
3985                         IsFP)                                                  \
3986     if (!EltTy->isBooleanType() &&                                             \
3987         ((EltTy->hasIntegerRepresentation() &&                                 \
3988           EltTy->hasSignedIntegerRepresentation() == IsSigned) ||              \
3989          (EltTy->hasFloatingRepresentation() && IsFP)) &&                      \
3990         EltTySize == ElBits && NumElts == NumEls)                              \
3991       return SingletonId;
3992 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
3993     if (EltTy->isBooleanType() && NumElts == NumEls)                           \
3994       return SingletonId;
3995 #include "clang/Basic/RISCVVTypes.def"
3996   }
3997   return QualType();
3998 }
3999 
4000 /// getVectorType - Return the unique reference to a vector type of
4001 /// the specified element type and size. VectorType must be a built-in type.
4002 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
4003                                    VectorType::VectorKind VecKind) const {
4004   assert(vecType->isBuiltinType());
4005 
4006   // Check if we've already instantiated a vector of this type.
4007   llvm::FoldingSetNodeID ID;
4008   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
4009 
4010   void *InsertPos = nullptr;
4011   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
4012     return QualType(VTP, 0);
4013 
4014   // If the element type isn't canonical, this won't be a canonical type either,
4015   // so fill in the canonical type field.
4016   QualType Canonical;
4017   if (!vecType.isCanonical()) {
4018     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
4019 
4020     // Get the new insert position for the node we care about.
4021     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4022     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4023   }
4024   auto *New = new (*this, TypeAlignment)
4025     VectorType(vecType, NumElts, Canonical, VecKind);
4026   VectorTypes.InsertNode(New, InsertPos);
4027   Types.push_back(New);
4028   return QualType(New, 0);
4029 }
4030 
4031 QualType
4032 ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
4033                                    SourceLocation AttrLoc,
4034                                    VectorType::VectorKind VecKind) const {
4035   llvm::FoldingSetNodeID ID;
4036   DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
4037                                VecKind);
4038   void *InsertPos = nullptr;
4039   DependentVectorType *Canon =
4040       DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4041   DependentVectorType *New;
4042 
4043   if (Canon) {
4044     New = new (*this, TypeAlignment) DependentVectorType(
4045         *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
4046   } else {
4047     QualType CanonVecTy = getCanonicalType(VecType);
4048     if (CanonVecTy == VecType) {
4049       New = new (*this, TypeAlignment) DependentVectorType(
4050           *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
4051 
4052       DependentVectorType *CanonCheck =
4053           DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4054       assert(!CanonCheck &&
4055              "Dependent-sized vector_size canonical type broken");
4056       (void)CanonCheck;
4057       DependentVectorTypes.InsertNode(New, InsertPos);
4058     } else {
4059       QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr,
4060                                                 SourceLocation(), VecKind);
4061       New = new (*this, TypeAlignment) DependentVectorType(
4062           *this, VecType, CanonTy, SizeExpr, AttrLoc, VecKind);
4063     }
4064   }
4065 
4066   Types.push_back(New);
4067   return QualType(New, 0);
4068 }
4069 
4070 /// getExtVectorType - Return the unique reference to an extended vector type of
4071 /// the specified element type and size. VectorType must be a built-in type.
4072 QualType
4073 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
4074   assert(vecType->isBuiltinType() || vecType->isDependentType());
4075 
4076   // Check if we've already instantiated a vector of this type.
4077   llvm::FoldingSetNodeID ID;
4078   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
4079                       VectorType::GenericVector);
4080   void *InsertPos = nullptr;
4081   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
4082     return QualType(VTP, 0);
4083 
4084   // If the element type isn't canonical, this won't be a canonical type either,
4085   // so fill in the canonical type field.
4086   QualType Canonical;
4087   if (!vecType.isCanonical()) {
4088     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
4089 
4090     // Get the new insert position for the node we care about.
4091     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4092     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4093   }
4094   auto *New = new (*this, TypeAlignment)
4095     ExtVectorType(vecType, NumElts, Canonical);
4096   VectorTypes.InsertNode(New, InsertPos);
4097   Types.push_back(New);
4098   return QualType(New, 0);
4099 }
4100 
4101 QualType
4102 ASTContext::getDependentSizedExtVectorType(QualType vecType,
4103                                            Expr *SizeExpr,
4104                                            SourceLocation AttrLoc) const {
4105   llvm::FoldingSetNodeID ID;
4106   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
4107                                        SizeExpr);
4108 
4109   void *InsertPos = nullptr;
4110   DependentSizedExtVectorType *Canon
4111     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4112   DependentSizedExtVectorType *New;
4113   if (Canon) {
4114     // We already have a canonical version of this array type; use it as
4115     // the canonical type for a newly-built type.
4116     New = new (*this, TypeAlignment)
4117       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
4118                                   SizeExpr, AttrLoc);
4119   } else {
4120     QualType CanonVecTy = getCanonicalType(vecType);
4121     if (CanonVecTy == vecType) {
4122       New = new (*this, TypeAlignment)
4123         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
4124                                     AttrLoc);
4125 
4126       DependentSizedExtVectorType *CanonCheck
4127         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4128       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
4129       (void)CanonCheck;
4130       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
4131     } else {
4132       QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
4133                                                            SourceLocation());
4134       New = new (*this, TypeAlignment) DependentSizedExtVectorType(
4135           *this, vecType, CanonExtTy, SizeExpr, AttrLoc);
4136     }
4137   }
4138 
4139   Types.push_back(New);
4140   return QualType(New, 0);
4141 }
4142 
4143 QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows,
4144                                            unsigned NumColumns) const {
4145   llvm::FoldingSetNodeID ID;
4146   ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns,
4147                               Type::ConstantMatrix);
4148 
4149   assert(MatrixType::isValidElementType(ElementTy) &&
4150          "need a valid element type");
4151   assert(ConstantMatrixType::isDimensionValid(NumRows) &&
4152          ConstantMatrixType::isDimensionValid(NumColumns) &&
4153          "need valid matrix dimensions");
4154   void *InsertPos = nullptr;
4155   if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos))
4156     return QualType(MTP, 0);
4157 
4158   QualType Canonical;
4159   if (!ElementTy.isCanonical()) {
4160     Canonical =
4161         getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns);
4162 
4163     ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4164     assert(!NewIP && "Matrix type shouldn't already exist in the map");
4165     (void)NewIP;
4166   }
4167 
4168   auto *New = new (*this, TypeAlignment)
4169       ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical);
4170   MatrixTypes.InsertNode(New, InsertPos);
4171   Types.push_back(New);
4172   return QualType(New, 0);
4173 }
4174 
4175 QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy,
4176                                                  Expr *RowExpr,
4177                                                  Expr *ColumnExpr,
4178                                                  SourceLocation AttrLoc) const {
4179   QualType CanonElementTy = getCanonicalType(ElementTy);
4180   llvm::FoldingSetNodeID ID;
4181   DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr,
4182                                     ColumnExpr);
4183 
4184   void *InsertPos = nullptr;
4185   DependentSizedMatrixType *Canon =
4186       DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4187 
4188   if (!Canon) {
4189     Canon = new (*this, TypeAlignment) DependentSizedMatrixType(
4190         *this, CanonElementTy, QualType(), RowExpr, ColumnExpr, AttrLoc);
4191 #ifndef NDEBUG
4192     DependentSizedMatrixType *CanonCheck =
4193         DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4194     assert(!CanonCheck && "Dependent-sized matrix canonical type broken");
4195 #endif
4196     DependentSizedMatrixTypes.InsertNode(Canon, InsertPos);
4197     Types.push_back(Canon);
4198   }
4199 
4200   // Already have a canonical version of the matrix type
4201   //
4202   // If it exactly matches the requested type, use it directly.
4203   if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr &&
4204       Canon->getRowExpr() == ColumnExpr)
4205     return QualType(Canon, 0);
4206 
4207   // Use Canon as the canonical type for newly-built type.
4208   DependentSizedMatrixType *New = new (*this, TypeAlignment)
4209       DependentSizedMatrixType(*this, ElementTy, QualType(Canon, 0), RowExpr,
4210                                ColumnExpr, AttrLoc);
4211   Types.push_back(New);
4212   return QualType(New, 0);
4213 }
4214 
4215 QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
4216                                                   Expr *AddrSpaceExpr,
4217                                                   SourceLocation AttrLoc) const {
4218   assert(AddrSpaceExpr->isInstantiationDependent());
4219 
4220   QualType canonPointeeType = getCanonicalType(PointeeType);
4221 
4222   void *insertPos = nullptr;
4223   llvm::FoldingSetNodeID ID;
4224   DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
4225                                      AddrSpaceExpr);
4226 
4227   DependentAddressSpaceType *canonTy =
4228     DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
4229 
4230   if (!canonTy) {
4231     canonTy = new (*this, TypeAlignment)
4232       DependentAddressSpaceType(*this, canonPointeeType,
4233                                 QualType(), AddrSpaceExpr, AttrLoc);
4234     DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
4235     Types.push_back(canonTy);
4236   }
4237 
4238   if (canonPointeeType == PointeeType &&
4239       canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
4240     return QualType(canonTy, 0);
4241 
4242   auto *sugaredType
4243     = new (*this, TypeAlignment)
4244         DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
4245                                   AddrSpaceExpr, AttrLoc);
4246   Types.push_back(sugaredType);
4247   return QualType(sugaredType, 0);
4248 }
4249 
4250 /// Determine whether \p T is canonical as the result type of a function.
4251 static bool isCanonicalResultType(QualType T) {
4252   return T.isCanonical() &&
4253          (T.getObjCLifetime() == Qualifiers::OCL_None ||
4254           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
4255 }
4256 
4257 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
4258 QualType
4259 ASTContext::getFunctionNoProtoType(QualType ResultTy,
4260                                    const FunctionType::ExtInfo &Info) const {
4261   // FIXME: This assertion cannot be enabled (yet) because the ObjC rewriter
4262   // functionality creates a function without a prototype regardless of
4263   // language mode (so it makes them even in C++). Once the rewriter has been
4264   // fixed, this assertion can be enabled again.
4265   //assert(!LangOpts.requiresStrictPrototypes() &&
4266   //       "strict prototypes are disabled");
4267 
4268   // Unique functions, to guarantee there is only one function of a particular
4269   // structure.
4270   llvm::FoldingSetNodeID ID;
4271   FunctionNoProtoType::Profile(ID, ResultTy, Info);
4272 
4273   void *InsertPos = nullptr;
4274   if (FunctionNoProtoType *FT =
4275         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
4276     return QualType(FT, 0);
4277 
4278   QualType Canonical;
4279   if (!isCanonicalResultType(ResultTy)) {
4280     Canonical =
4281       getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
4282 
4283     // Get the new insert position for the node we care about.
4284     FunctionNoProtoType *NewIP =
4285       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4286     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4287   }
4288 
4289   auto *New = new (*this, TypeAlignment)
4290     FunctionNoProtoType(ResultTy, Canonical, Info);
4291   Types.push_back(New);
4292   FunctionNoProtoTypes.InsertNode(New, InsertPos);
4293   return QualType(New, 0);
4294 }
4295 
4296 CanQualType
4297 ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
4298   CanQualType CanResultType = getCanonicalType(ResultType);
4299 
4300   // Canonical result types do not have ARC lifetime qualifiers.
4301   if (CanResultType.getQualifiers().hasObjCLifetime()) {
4302     Qualifiers Qs = CanResultType.getQualifiers();
4303     Qs.removeObjCLifetime();
4304     return CanQualType::CreateUnsafe(
4305              getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
4306   }
4307 
4308   return CanResultType;
4309 }
4310 
4311 static bool isCanonicalExceptionSpecification(
4312     const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
4313   if (ESI.Type == EST_None)
4314     return true;
4315   if (!NoexceptInType)
4316     return false;
4317 
4318   // C++17 onwards: exception specification is part of the type, as a simple
4319   // boolean "can this function type throw".
4320   if (ESI.Type == EST_BasicNoexcept)
4321     return true;
4322 
4323   // A noexcept(expr) specification is (possibly) canonical if expr is
4324   // value-dependent.
4325   if (ESI.Type == EST_DependentNoexcept)
4326     return true;
4327 
4328   // A dynamic exception specification is canonical if it only contains pack
4329   // expansions (so we can't tell whether it's non-throwing) and all its
4330   // contained types are canonical.
4331   if (ESI.Type == EST_Dynamic) {
4332     bool AnyPackExpansions = false;
4333     for (QualType ET : ESI.Exceptions) {
4334       if (!ET.isCanonical())
4335         return false;
4336       if (ET->getAs<PackExpansionType>())
4337         AnyPackExpansions = true;
4338     }
4339     return AnyPackExpansions;
4340   }
4341 
4342   return false;
4343 }
4344 
4345 QualType ASTContext::getFunctionTypeInternal(
4346     QualType ResultTy, ArrayRef<QualType> ArgArray,
4347     const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
4348   size_t NumArgs = ArgArray.size();
4349 
4350   // Unique functions, to guarantee there is only one function of a particular
4351   // structure.
4352   llvm::FoldingSetNodeID ID;
4353   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
4354                              *this, true);
4355 
4356   QualType Canonical;
4357   bool Unique = false;
4358 
4359   void *InsertPos = nullptr;
4360   if (FunctionProtoType *FPT =
4361         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
4362     QualType Existing = QualType(FPT, 0);
4363 
4364     // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
4365     // it so long as our exception specification doesn't contain a dependent
4366     // noexcept expression, or we're just looking for a canonical type.
4367     // Otherwise, we're going to need to create a type
4368     // sugar node to hold the concrete expression.
4369     if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
4370         EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
4371       return Existing;
4372 
4373     // We need a new type sugar node for this one, to hold the new noexcept
4374     // expression. We do no canonicalization here, but that's OK since we don't
4375     // expect to see the same noexcept expression much more than once.
4376     Canonical = getCanonicalType(Existing);
4377     Unique = true;
4378   }
4379 
4380   bool NoexceptInType = getLangOpts().CPlusPlus17;
4381   bool IsCanonicalExceptionSpec =
4382       isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
4383 
4384   // Determine whether the type being created is already canonical or not.
4385   bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
4386                      isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
4387   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
4388     if (!ArgArray[i].isCanonicalAsParam())
4389       isCanonical = false;
4390 
4391   if (OnlyWantCanonical)
4392     assert(isCanonical &&
4393            "given non-canonical parameters constructing canonical type");
4394 
4395   // If this type isn't canonical, get the canonical version of it if we don't
4396   // already have it. The exception spec is only partially part of the
4397   // canonical type, and only in C++17 onwards.
4398   if (!isCanonical && Canonical.isNull()) {
4399     SmallVector<QualType, 16> CanonicalArgs;
4400     CanonicalArgs.reserve(NumArgs);
4401     for (unsigned i = 0; i != NumArgs; ++i)
4402       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
4403 
4404     llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
4405     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
4406     CanonicalEPI.HasTrailingReturn = false;
4407 
4408     if (IsCanonicalExceptionSpec) {
4409       // Exception spec is already OK.
4410     } else if (NoexceptInType) {
4411       switch (EPI.ExceptionSpec.Type) {
4412       case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
4413         // We don't know yet. It shouldn't matter what we pick here; no-one
4414         // should ever look at this.
4415         LLVM_FALLTHROUGH;
4416       case EST_None: case EST_MSAny: case EST_NoexceptFalse:
4417         CanonicalEPI.ExceptionSpec.Type = EST_None;
4418         break;
4419 
4420         // A dynamic exception specification is almost always "not noexcept",
4421         // with the exception that a pack expansion might expand to no types.
4422       case EST_Dynamic: {
4423         bool AnyPacks = false;
4424         for (QualType ET : EPI.ExceptionSpec.Exceptions) {
4425           if (ET->getAs<PackExpansionType>())
4426             AnyPacks = true;
4427           ExceptionTypeStorage.push_back(getCanonicalType(ET));
4428         }
4429         if (!AnyPacks)
4430           CanonicalEPI.ExceptionSpec.Type = EST_None;
4431         else {
4432           CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
4433           CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
4434         }
4435         break;
4436       }
4437 
4438       case EST_DynamicNone:
4439       case EST_BasicNoexcept:
4440       case EST_NoexceptTrue:
4441       case EST_NoThrow:
4442         CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
4443         break;
4444 
4445       case EST_DependentNoexcept:
4446         llvm_unreachable("dependent noexcept is already canonical");
4447       }
4448     } else {
4449       CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
4450     }
4451 
4452     // Adjust the canonical function result type.
4453     CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
4454     Canonical =
4455         getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
4456 
4457     // Get the new insert position for the node we care about.
4458     FunctionProtoType *NewIP =
4459       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4460     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4461   }
4462 
4463   // Compute the needed size to hold this FunctionProtoType and the
4464   // various trailing objects.
4465   auto ESH = FunctionProtoType::getExceptionSpecSize(
4466       EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
4467   size_t Size = FunctionProtoType::totalSizeToAlloc<
4468       QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields,
4469       FunctionType::ExceptionType, Expr *, FunctionDecl *,
4470       FunctionProtoType::ExtParameterInfo, Qualifiers>(
4471       NumArgs, EPI.Variadic, EPI.requiresFunctionProtoTypeExtraBitfields(),
4472       ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
4473       EPI.ExtParameterInfos ? NumArgs : 0,
4474       EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
4475 
4476   auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
4477   FunctionProtoType::ExtProtoInfo newEPI = EPI;
4478   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
4479   Types.push_back(FTP);
4480   if (!Unique)
4481     FunctionProtoTypes.InsertNode(FTP, InsertPos);
4482   return QualType(FTP, 0);
4483 }
4484 
4485 QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
4486   llvm::FoldingSetNodeID ID;
4487   PipeType::Profile(ID, T, ReadOnly);
4488 
4489   void *InsertPos = nullptr;
4490   if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
4491     return QualType(PT, 0);
4492 
4493   // If the pipe element type isn't canonical, this won't be a canonical type
4494   // either, so fill in the canonical type field.
4495   QualType Canonical;
4496   if (!T.isCanonical()) {
4497     Canonical = getPipeType(getCanonicalType(T), ReadOnly);
4498 
4499     // Get the new insert position for the node we care about.
4500     PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
4501     assert(!NewIP && "Shouldn't be in the map!");
4502     (void)NewIP;
4503   }
4504   auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
4505   Types.push_back(New);
4506   PipeTypes.InsertNode(New, InsertPos);
4507   return QualType(New, 0);
4508 }
4509 
4510 QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
4511   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
4512   return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
4513                          : Ty;
4514 }
4515 
4516 QualType ASTContext::getReadPipeType(QualType T) const {
4517   return getPipeType(T, true);
4518 }
4519 
4520 QualType ASTContext::getWritePipeType(QualType T) const {
4521   return getPipeType(T, false);
4522 }
4523 
4524 QualType ASTContext::getBitIntType(bool IsUnsigned, unsigned NumBits) const {
4525   llvm::FoldingSetNodeID ID;
4526   BitIntType::Profile(ID, IsUnsigned, NumBits);
4527 
4528   void *InsertPos = nullptr;
4529   if (BitIntType *EIT = BitIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4530     return QualType(EIT, 0);
4531 
4532   auto *New = new (*this, TypeAlignment) BitIntType(IsUnsigned, NumBits);
4533   BitIntTypes.InsertNode(New, InsertPos);
4534   Types.push_back(New);
4535   return QualType(New, 0);
4536 }
4537 
4538 QualType ASTContext::getDependentBitIntType(bool IsUnsigned,
4539                                             Expr *NumBitsExpr) const {
4540   assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent");
4541   llvm::FoldingSetNodeID ID;
4542   DependentBitIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr);
4543 
4544   void *InsertPos = nullptr;
4545   if (DependentBitIntType *Existing =
4546           DependentBitIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4547     return QualType(Existing, 0);
4548 
4549   auto *New = new (*this, TypeAlignment)
4550       DependentBitIntType(*this, IsUnsigned, NumBitsExpr);
4551   DependentBitIntTypes.InsertNode(New, InsertPos);
4552 
4553   Types.push_back(New);
4554   return QualType(New, 0);
4555 }
4556 
4557 #ifndef NDEBUG
4558 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
4559   if (!isa<CXXRecordDecl>(D)) return false;
4560   const auto *RD = cast<CXXRecordDecl>(D);
4561   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
4562     return true;
4563   if (RD->getDescribedClassTemplate() &&
4564       !isa<ClassTemplateSpecializationDecl>(RD))
4565     return true;
4566   return false;
4567 }
4568 #endif
4569 
4570 /// getInjectedClassNameType - Return the unique reference to the
4571 /// injected class name type for the specified templated declaration.
4572 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
4573                                               QualType TST) const {
4574   assert(NeedsInjectedClassNameType(Decl));
4575   if (Decl->TypeForDecl) {
4576     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4577   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
4578     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
4579     Decl->TypeForDecl = PrevDecl->TypeForDecl;
4580     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4581   } else {
4582     Type *newType =
4583       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
4584     Decl->TypeForDecl = newType;
4585     Types.push_back(newType);
4586   }
4587   return QualType(Decl->TypeForDecl, 0);
4588 }
4589 
4590 /// getTypeDeclType - Return the unique reference to the type for the
4591 /// specified type declaration.
4592 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
4593   assert(Decl && "Passed null for Decl param");
4594   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
4595 
4596   if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
4597     return getTypedefType(Typedef);
4598 
4599   assert(!isa<TemplateTypeParmDecl>(Decl) &&
4600          "Template type parameter types are always available.");
4601 
4602   if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
4603     assert(Record->isFirstDecl() && "struct/union has previous declaration");
4604     assert(!NeedsInjectedClassNameType(Record));
4605     return getRecordType(Record);
4606   } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
4607     assert(Enum->isFirstDecl() && "enum has previous declaration");
4608     return getEnumType(Enum);
4609   } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
4610     return getUnresolvedUsingType(Using);
4611   } else
4612     llvm_unreachable("TypeDecl without a type?");
4613 
4614   return QualType(Decl->TypeForDecl, 0);
4615 }
4616 
4617 /// getTypedefType - Return the unique reference to the type for the
4618 /// specified typedef name decl.
4619 QualType ASTContext::getTypedefType(const TypedefNameDecl *Decl,
4620                                     QualType Underlying) const {
4621   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4622 
4623   if (Underlying.isNull())
4624     Underlying = Decl->getUnderlyingType();
4625   QualType Canonical = getCanonicalType(Underlying);
4626   auto *newType = new (*this, TypeAlignment)
4627       TypedefType(Type::Typedef, Decl, Underlying, Canonical);
4628   Decl->TypeForDecl = newType;
4629   Types.push_back(newType);
4630   return QualType(newType, 0);
4631 }
4632 
4633 QualType ASTContext::getUsingType(const UsingShadowDecl *Found,
4634                                   QualType Underlying) const {
4635   llvm::FoldingSetNodeID ID;
4636   UsingType::Profile(ID, Found);
4637 
4638   void *InsertPos = nullptr;
4639   UsingType *T = UsingTypes.FindNodeOrInsertPos(ID, InsertPos);
4640   if (T)
4641     return QualType(T, 0);
4642 
4643   assert(!Underlying.hasLocalQualifiers());
4644   assert(Underlying == getTypeDeclType(cast<TypeDecl>(Found->getTargetDecl())));
4645   QualType Canon = Underlying.getCanonicalType();
4646 
4647   UsingType *NewType =
4648       new (*this, TypeAlignment) UsingType(Found, Underlying, Canon);
4649   Types.push_back(NewType);
4650   UsingTypes.InsertNode(NewType, InsertPos);
4651   return QualType(NewType, 0);
4652 }
4653 
4654 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
4655   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4656 
4657   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
4658     if (PrevDecl->TypeForDecl)
4659       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4660 
4661   auto *newType = new (*this, TypeAlignment) RecordType(Decl);
4662   Decl->TypeForDecl = newType;
4663   Types.push_back(newType);
4664   return QualType(newType, 0);
4665 }
4666 
4667 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
4668   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4669 
4670   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
4671     if (PrevDecl->TypeForDecl)
4672       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4673 
4674   auto *newType = new (*this, TypeAlignment) EnumType(Decl);
4675   Decl->TypeForDecl = newType;
4676   Types.push_back(newType);
4677   return QualType(newType, 0);
4678 }
4679 
4680 QualType ASTContext::getUnresolvedUsingType(
4681     const UnresolvedUsingTypenameDecl *Decl) const {
4682   if (Decl->TypeForDecl)
4683     return QualType(Decl->TypeForDecl, 0);
4684 
4685   if (const UnresolvedUsingTypenameDecl *CanonicalDecl =
4686           Decl->getCanonicalDecl())
4687     if (CanonicalDecl->TypeForDecl)
4688       return QualType(Decl->TypeForDecl = CanonicalDecl->TypeForDecl, 0);
4689 
4690   Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Decl);
4691   Decl->TypeForDecl = newType;
4692   Types.push_back(newType);
4693   return QualType(newType, 0);
4694 }
4695 
4696 QualType ASTContext::getAttributedType(attr::Kind attrKind,
4697                                        QualType modifiedType,
4698                                        QualType equivalentType) {
4699   llvm::FoldingSetNodeID id;
4700   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
4701 
4702   void *insertPos = nullptr;
4703   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
4704   if (type) return QualType(type, 0);
4705 
4706   QualType canon = getCanonicalType(equivalentType);
4707   type = new (*this, TypeAlignment)
4708       AttributedType(canon, attrKind, modifiedType, equivalentType);
4709 
4710   Types.push_back(type);
4711   AttributedTypes.InsertNode(type, insertPos);
4712 
4713   return QualType(type, 0);
4714 }
4715 
4716 QualType ASTContext::getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
4717                                              QualType Wrapped) {
4718   llvm::FoldingSetNodeID ID;
4719   BTFTagAttributedType::Profile(ID, Wrapped, BTFAttr);
4720 
4721   void *InsertPos = nullptr;
4722   BTFTagAttributedType *Ty =
4723       BTFTagAttributedTypes.FindNodeOrInsertPos(ID, InsertPos);
4724   if (Ty)
4725     return QualType(Ty, 0);
4726 
4727   QualType Canon = getCanonicalType(Wrapped);
4728   Ty = new (*this, TypeAlignment) BTFTagAttributedType(Canon, Wrapped, BTFAttr);
4729 
4730   Types.push_back(Ty);
4731   BTFTagAttributedTypes.InsertNode(Ty, InsertPos);
4732 
4733   return QualType(Ty, 0);
4734 }
4735 
4736 /// Retrieve a substitution-result type.
4737 QualType
4738 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
4739                                          QualType Replacement) const {
4740   assert(Replacement.isCanonical()
4741          && "replacement types must always be canonical");
4742 
4743   llvm::FoldingSetNodeID ID;
4744   SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
4745   void *InsertPos = nullptr;
4746   SubstTemplateTypeParmType *SubstParm
4747     = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4748 
4749   if (!SubstParm) {
4750     SubstParm = new (*this, TypeAlignment)
4751       SubstTemplateTypeParmType(Parm, Replacement);
4752     Types.push_back(SubstParm);
4753     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
4754   }
4755 
4756   return QualType(SubstParm, 0);
4757 }
4758 
4759 /// Retrieve a
4760 QualType ASTContext::getSubstTemplateTypeParmPackType(
4761                                           const TemplateTypeParmType *Parm,
4762                                               const TemplateArgument &ArgPack) {
4763 #ifndef NDEBUG
4764   for (const auto &P : ArgPack.pack_elements()) {
4765     assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
4766     assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
4767   }
4768 #endif
4769 
4770   llvm::FoldingSetNodeID ID;
4771   SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
4772   void *InsertPos = nullptr;
4773   if (SubstTemplateTypeParmPackType *SubstParm
4774         = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
4775     return QualType(SubstParm, 0);
4776 
4777   QualType Canon;
4778   if (!Parm->isCanonicalUnqualified()) {
4779     Canon = getCanonicalType(QualType(Parm, 0));
4780     Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
4781                                              ArgPack);
4782     SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
4783   }
4784 
4785   auto *SubstParm
4786     = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
4787                                                                ArgPack);
4788   Types.push_back(SubstParm);
4789   SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
4790   return QualType(SubstParm, 0);
4791 }
4792 
4793 /// Retrieve the template type parameter type for a template
4794 /// parameter or parameter pack with the given depth, index, and (optionally)
4795 /// name.
4796 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
4797                                              bool ParameterPack,
4798                                              TemplateTypeParmDecl *TTPDecl) const {
4799   llvm::FoldingSetNodeID ID;
4800   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
4801   void *InsertPos = nullptr;
4802   TemplateTypeParmType *TypeParm
4803     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4804 
4805   if (TypeParm)
4806     return QualType(TypeParm, 0);
4807 
4808   if (TTPDecl) {
4809     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
4810     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
4811 
4812     TemplateTypeParmType *TypeCheck
4813       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4814     assert(!TypeCheck && "Template type parameter canonical type broken");
4815     (void)TypeCheck;
4816   } else
4817     TypeParm = new (*this, TypeAlignment)
4818       TemplateTypeParmType(Depth, Index, ParameterPack);
4819 
4820   Types.push_back(TypeParm);
4821   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
4822 
4823   return QualType(TypeParm, 0);
4824 }
4825 
4826 TypeSourceInfo *
4827 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
4828                                               SourceLocation NameLoc,
4829                                         const TemplateArgumentListInfo &Args,
4830                                               QualType Underlying) const {
4831   assert(!Name.getAsDependentTemplateName() &&
4832          "No dependent template names here!");
4833   QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
4834 
4835   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
4836   TemplateSpecializationTypeLoc TL =
4837       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
4838   TL.setTemplateKeywordLoc(SourceLocation());
4839   TL.setTemplateNameLoc(NameLoc);
4840   TL.setLAngleLoc(Args.getLAngleLoc());
4841   TL.setRAngleLoc(Args.getRAngleLoc());
4842   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
4843     TL.setArgLocInfo(i, Args[i].getLocInfo());
4844   return DI;
4845 }
4846 
4847 QualType
4848 ASTContext::getTemplateSpecializationType(TemplateName Template,
4849                                           const TemplateArgumentListInfo &Args,
4850                                           QualType Underlying) const {
4851   assert(!Template.getAsDependentTemplateName() &&
4852          "No dependent template names here!");
4853 
4854   SmallVector<TemplateArgument, 4> ArgVec;
4855   ArgVec.reserve(Args.size());
4856   for (const TemplateArgumentLoc &Arg : Args.arguments())
4857     ArgVec.push_back(Arg.getArgument());
4858 
4859   return getTemplateSpecializationType(Template, ArgVec, Underlying);
4860 }
4861 
4862 #ifndef NDEBUG
4863 static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
4864   for (const TemplateArgument &Arg : Args)
4865     if (Arg.isPackExpansion())
4866       return true;
4867 
4868   return true;
4869 }
4870 #endif
4871 
4872 QualType
4873 ASTContext::getTemplateSpecializationType(TemplateName Template,
4874                                           ArrayRef<TemplateArgument> Args,
4875                                           QualType Underlying) const {
4876   assert(!Template.getAsDependentTemplateName() &&
4877          "No dependent template names here!");
4878   // Look through qualified template names.
4879   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4880     Template = QTN->getUnderlyingTemplate();
4881 
4882   bool IsTypeAlias =
4883       isa_and_nonnull<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
4884   QualType CanonType;
4885   if (!Underlying.isNull())
4886     CanonType = getCanonicalType(Underlying);
4887   else {
4888     // We can get here with an alias template when the specialization contains
4889     // a pack expansion that does not match up with a parameter pack.
4890     assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
4891            "Caller must compute aliased type");
4892     IsTypeAlias = false;
4893     CanonType = getCanonicalTemplateSpecializationType(Template, Args);
4894   }
4895 
4896   // Allocate the (non-canonical) template specialization type, but don't
4897   // try to unique it: these types typically have location information that
4898   // we don't unique and don't want to lose.
4899   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
4900                        sizeof(TemplateArgument) * Args.size() +
4901                        (IsTypeAlias? sizeof(QualType) : 0),
4902                        TypeAlignment);
4903   auto *Spec
4904     = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
4905                                          IsTypeAlias ? Underlying : QualType());
4906 
4907   Types.push_back(Spec);
4908   return QualType(Spec, 0);
4909 }
4910 
4911 static bool
4912 getCanonicalTemplateArguments(const ASTContext &C,
4913                               ArrayRef<TemplateArgument> OrigArgs,
4914                               SmallVectorImpl<TemplateArgument> &CanonArgs) {
4915   bool AnyNonCanonArgs = false;
4916   unsigned NumArgs = OrigArgs.size();
4917   CanonArgs.resize(NumArgs);
4918   for (unsigned I = 0; I != NumArgs; ++I) {
4919     const TemplateArgument &OrigArg = OrigArgs[I];
4920     TemplateArgument &CanonArg = CanonArgs[I];
4921     CanonArg = C.getCanonicalTemplateArgument(OrigArg);
4922     if (!CanonArg.structurallyEquals(OrigArg))
4923       AnyNonCanonArgs = true;
4924   }
4925   return AnyNonCanonArgs;
4926 }
4927 
4928 QualType ASTContext::getCanonicalTemplateSpecializationType(
4929     TemplateName Template, ArrayRef<TemplateArgument> Args) const {
4930   assert(!Template.getAsDependentTemplateName() &&
4931          "No dependent template names here!");
4932 
4933   // Look through qualified template names.
4934   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4935     Template = TemplateName(QTN->getUnderlyingTemplate());
4936 
4937   // Build the canonical template specialization type.
4938   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
4939   SmallVector<TemplateArgument, 4> CanonArgs;
4940   ::getCanonicalTemplateArguments(*this, Args, CanonArgs);
4941 
4942   // Determine whether this canonical template specialization type already
4943   // exists.
4944   llvm::FoldingSetNodeID ID;
4945   TemplateSpecializationType::Profile(ID, CanonTemplate,
4946                                       CanonArgs, *this);
4947 
4948   void *InsertPos = nullptr;
4949   TemplateSpecializationType *Spec
4950     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4951 
4952   if (!Spec) {
4953     // Allocate a new canonical template specialization type.
4954     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
4955                           sizeof(TemplateArgument) * CanonArgs.size()),
4956                          TypeAlignment);
4957     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
4958                                                 CanonArgs,
4959                                                 QualType(), QualType());
4960     Types.push_back(Spec);
4961     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
4962   }
4963 
4964   assert(Spec->isDependentType() &&
4965          "Non-dependent template-id type must have a canonical type");
4966   return QualType(Spec, 0);
4967 }
4968 
4969 QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
4970                                        NestedNameSpecifier *NNS,
4971                                        QualType NamedType,
4972                                        TagDecl *OwnedTagDecl) const {
4973   llvm::FoldingSetNodeID ID;
4974   ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
4975 
4976   void *InsertPos = nullptr;
4977   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4978   if (T)
4979     return QualType(T, 0);
4980 
4981   QualType Canon = NamedType;
4982   if (!Canon.isCanonical()) {
4983     Canon = getCanonicalType(NamedType);
4984     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4985     assert(!CheckT && "Elaborated canonical type broken");
4986     (void)CheckT;
4987   }
4988 
4989   void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
4990                        TypeAlignment);
4991   T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
4992 
4993   Types.push_back(T);
4994   ElaboratedTypes.InsertNode(T, InsertPos);
4995   return QualType(T, 0);
4996 }
4997 
4998 QualType
4999 ASTContext::getParenType(QualType InnerType) const {
5000   llvm::FoldingSetNodeID ID;
5001   ParenType::Profile(ID, InnerType);
5002 
5003   void *InsertPos = nullptr;
5004   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
5005   if (T)
5006     return QualType(T, 0);
5007 
5008   QualType Canon = InnerType;
5009   if (!Canon.isCanonical()) {
5010     Canon = getCanonicalType(InnerType);
5011     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
5012     assert(!CheckT && "Paren canonical type broken");
5013     (void)CheckT;
5014   }
5015 
5016   T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
5017   Types.push_back(T);
5018   ParenTypes.InsertNode(T, InsertPos);
5019   return QualType(T, 0);
5020 }
5021 
5022 QualType
5023 ASTContext::getMacroQualifiedType(QualType UnderlyingTy,
5024                                   const IdentifierInfo *MacroII) const {
5025   QualType Canon = UnderlyingTy;
5026   if (!Canon.isCanonical())
5027     Canon = getCanonicalType(UnderlyingTy);
5028 
5029   auto *newType = new (*this, TypeAlignment)
5030       MacroQualifiedType(UnderlyingTy, Canon, MacroII);
5031   Types.push_back(newType);
5032   return QualType(newType, 0);
5033 }
5034 
5035 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
5036                                           NestedNameSpecifier *NNS,
5037                                           const IdentifierInfo *Name,
5038                                           QualType Canon) const {
5039   if (Canon.isNull()) {
5040     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5041     if (CanonNNS != NNS)
5042       Canon = getDependentNameType(Keyword, CanonNNS, Name);
5043   }
5044 
5045   llvm::FoldingSetNodeID ID;
5046   DependentNameType::Profile(ID, Keyword, NNS, Name);
5047 
5048   void *InsertPos = nullptr;
5049   DependentNameType *T
5050     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
5051   if (T)
5052     return QualType(T, 0);
5053 
5054   T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
5055   Types.push_back(T);
5056   DependentNameTypes.InsertNode(T, InsertPos);
5057   return QualType(T, 0);
5058 }
5059 
5060 QualType
5061 ASTContext::getDependentTemplateSpecializationType(
5062                                  ElaboratedTypeKeyword Keyword,
5063                                  NestedNameSpecifier *NNS,
5064                                  const IdentifierInfo *Name,
5065                                  const TemplateArgumentListInfo &Args) const {
5066   // TODO: avoid this copy
5067   SmallVector<TemplateArgument, 16> ArgCopy;
5068   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5069     ArgCopy.push_back(Args[I].getArgument());
5070   return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
5071 }
5072 
5073 QualType
5074 ASTContext::getDependentTemplateSpecializationType(
5075                                  ElaboratedTypeKeyword Keyword,
5076                                  NestedNameSpecifier *NNS,
5077                                  const IdentifierInfo *Name,
5078                                  ArrayRef<TemplateArgument> Args) const {
5079   assert((!NNS || NNS->isDependent()) &&
5080          "nested-name-specifier must be dependent");
5081 
5082   llvm::FoldingSetNodeID ID;
5083   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
5084                                                Name, Args);
5085 
5086   void *InsertPos = nullptr;
5087   DependentTemplateSpecializationType *T
5088     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
5089   if (T)
5090     return QualType(T, 0);
5091 
5092   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5093 
5094   ElaboratedTypeKeyword CanonKeyword = Keyword;
5095   if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
5096 
5097   SmallVector<TemplateArgument, 16> CanonArgs;
5098   bool AnyNonCanonArgs =
5099       ::getCanonicalTemplateArguments(*this, Args, CanonArgs);
5100 
5101   QualType Canon;
5102   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
5103     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
5104                                                    Name,
5105                                                    CanonArgs);
5106 
5107     // Find the insert position again.
5108     DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
5109   }
5110 
5111   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
5112                         sizeof(TemplateArgument) * Args.size()),
5113                        TypeAlignment);
5114   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
5115                                                     Name, Args, Canon);
5116   Types.push_back(T);
5117   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
5118   return QualType(T, 0);
5119 }
5120 
5121 TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
5122   TemplateArgument Arg;
5123   if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5124     QualType ArgType = getTypeDeclType(TTP);
5125     if (TTP->isParameterPack())
5126       ArgType = getPackExpansionType(ArgType, None);
5127 
5128     Arg = TemplateArgument(ArgType);
5129   } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5130     QualType T =
5131         NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this);
5132     // For class NTTPs, ensure we include the 'const' so the type matches that
5133     // of a real template argument.
5134     // FIXME: It would be more faithful to model this as something like an
5135     // lvalue-to-rvalue conversion applied to a const-qualified lvalue.
5136     if (T->isRecordType())
5137       T.addConst();
5138     Expr *E = new (*this) DeclRefExpr(
5139         *this, NTTP, /*enclosing*/ false, T,
5140         Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
5141 
5142     if (NTTP->isParameterPack())
5143       E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(),
5144                                         None);
5145     Arg = TemplateArgument(E);
5146   } else {
5147     auto *TTP = cast<TemplateTemplateParmDecl>(Param);
5148     if (TTP->isParameterPack())
5149       Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>());
5150     else
5151       Arg = TemplateArgument(TemplateName(TTP));
5152   }
5153 
5154   if (Param->isTemplateParameterPack())
5155     Arg = TemplateArgument::CreatePackCopy(*this, Arg);
5156 
5157   return Arg;
5158 }
5159 
5160 void
5161 ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
5162                                     SmallVectorImpl<TemplateArgument> &Args) {
5163   Args.reserve(Args.size() + Params->size());
5164 
5165   for (NamedDecl *Param : *Params)
5166     Args.push_back(getInjectedTemplateArg(Param));
5167 }
5168 
5169 QualType ASTContext::getPackExpansionType(QualType Pattern,
5170                                           Optional<unsigned> NumExpansions,
5171                                           bool ExpectPackInType) {
5172   assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) &&
5173          "Pack expansions must expand one or more parameter packs");
5174 
5175   llvm::FoldingSetNodeID ID;
5176   PackExpansionType::Profile(ID, Pattern, NumExpansions);
5177 
5178   void *InsertPos = nullptr;
5179   PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5180   if (T)
5181     return QualType(T, 0);
5182 
5183   QualType Canon;
5184   if (!Pattern.isCanonical()) {
5185     Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions,
5186                                  /*ExpectPackInType=*/false);
5187 
5188     // Find the insert position again, in case we inserted an element into
5189     // PackExpansionTypes and invalidated our insert position.
5190     PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5191   }
5192 
5193   T = new (*this, TypeAlignment)
5194       PackExpansionType(Pattern, Canon, NumExpansions);
5195   Types.push_back(T);
5196   PackExpansionTypes.InsertNode(T, InsertPos);
5197   return QualType(T, 0);
5198 }
5199 
5200 /// CmpProtocolNames - Comparison predicate for sorting protocols
5201 /// alphabetically.
5202 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
5203                             ObjCProtocolDecl *const *RHS) {
5204   return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
5205 }
5206 
5207 static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
5208   if (Protocols.empty()) return true;
5209 
5210   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
5211     return false;
5212 
5213   for (unsigned i = 1; i != Protocols.size(); ++i)
5214     if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
5215         Protocols[i]->getCanonicalDecl() != Protocols[i])
5216       return false;
5217   return true;
5218 }
5219 
5220 static void
5221 SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
5222   // Sort protocols, keyed by name.
5223   llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
5224 
5225   // Canonicalize.
5226   for (ObjCProtocolDecl *&P : Protocols)
5227     P = P->getCanonicalDecl();
5228 
5229   // Remove duplicates.
5230   auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
5231   Protocols.erase(ProtocolsEnd, Protocols.end());
5232 }
5233 
5234 QualType ASTContext::getObjCObjectType(QualType BaseType,
5235                                        ObjCProtocolDecl * const *Protocols,
5236                                        unsigned NumProtocols) const {
5237   return getObjCObjectType(BaseType, {},
5238                            llvm::makeArrayRef(Protocols, NumProtocols),
5239                            /*isKindOf=*/false);
5240 }
5241 
5242 QualType ASTContext::getObjCObjectType(
5243            QualType baseType,
5244            ArrayRef<QualType> typeArgs,
5245            ArrayRef<ObjCProtocolDecl *> protocols,
5246            bool isKindOf) const {
5247   // If the base type is an interface and there aren't any protocols or
5248   // type arguments to add, then the interface type will do just fine.
5249   if (typeArgs.empty() && protocols.empty() && !isKindOf &&
5250       isa<ObjCInterfaceType>(baseType))
5251     return baseType;
5252 
5253   // Look in the folding set for an existing type.
5254   llvm::FoldingSetNodeID ID;
5255   ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
5256   void *InsertPos = nullptr;
5257   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
5258     return QualType(QT, 0);
5259 
5260   // Determine the type arguments to be used for canonicalization,
5261   // which may be explicitly specified here or written on the base
5262   // type.
5263   ArrayRef<QualType> effectiveTypeArgs = typeArgs;
5264   if (effectiveTypeArgs.empty()) {
5265     if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
5266       effectiveTypeArgs = baseObject->getTypeArgs();
5267   }
5268 
5269   // Build the canonical type, which has the canonical base type and a
5270   // sorted-and-uniqued list of protocols and the type arguments
5271   // canonicalized.
5272   QualType canonical;
5273   bool typeArgsAreCanonical = llvm::all_of(
5274       effectiveTypeArgs, [&](QualType type) { return type.isCanonical(); });
5275   bool protocolsSorted = areSortedAndUniqued(protocols);
5276   if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
5277     // Determine the canonical type arguments.
5278     ArrayRef<QualType> canonTypeArgs;
5279     SmallVector<QualType, 4> canonTypeArgsVec;
5280     if (!typeArgsAreCanonical) {
5281       canonTypeArgsVec.reserve(effectiveTypeArgs.size());
5282       for (auto typeArg : effectiveTypeArgs)
5283         canonTypeArgsVec.push_back(getCanonicalType(typeArg));
5284       canonTypeArgs = canonTypeArgsVec;
5285     } else {
5286       canonTypeArgs = effectiveTypeArgs;
5287     }
5288 
5289     ArrayRef<ObjCProtocolDecl *> canonProtocols;
5290     SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
5291     if (!protocolsSorted) {
5292       canonProtocolsVec.append(protocols.begin(), protocols.end());
5293       SortAndUniqueProtocols(canonProtocolsVec);
5294       canonProtocols = canonProtocolsVec;
5295     } else {
5296       canonProtocols = protocols;
5297     }
5298 
5299     canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
5300                                   canonProtocols, isKindOf);
5301 
5302     // Regenerate InsertPos.
5303     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
5304   }
5305 
5306   unsigned size = sizeof(ObjCObjectTypeImpl);
5307   size += typeArgs.size() * sizeof(QualType);
5308   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5309   void *mem = Allocate(size, TypeAlignment);
5310   auto *T =
5311     new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
5312                                  isKindOf);
5313 
5314   Types.push_back(T);
5315   ObjCObjectTypes.InsertNode(T, InsertPos);
5316   return QualType(T, 0);
5317 }
5318 
5319 /// Apply Objective-C protocol qualifiers to the given type.
5320 /// If this is for the canonical type of a type parameter, we can apply
5321 /// protocol qualifiers on the ObjCObjectPointerType.
5322 QualType
5323 ASTContext::applyObjCProtocolQualifiers(QualType type,
5324                   ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
5325                   bool allowOnPointerType) const {
5326   hasError = false;
5327 
5328   if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
5329     return getObjCTypeParamType(objT->getDecl(), protocols);
5330   }
5331 
5332   // Apply protocol qualifiers to ObjCObjectPointerType.
5333   if (allowOnPointerType) {
5334     if (const auto *objPtr =
5335             dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
5336       const ObjCObjectType *objT = objPtr->getObjectType();
5337       // Merge protocol lists and construct ObjCObjectType.
5338       SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
5339       protocolsVec.append(objT->qual_begin(),
5340                           objT->qual_end());
5341       protocolsVec.append(protocols.begin(), protocols.end());
5342       ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
5343       type = getObjCObjectType(
5344              objT->getBaseType(),
5345              objT->getTypeArgsAsWritten(),
5346              protocols,
5347              objT->isKindOfTypeAsWritten());
5348       return getObjCObjectPointerType(type);
5349     }
5350   }
5351 
5352   // Apply protocol qualifiers to ObjCObjectType.
5353   if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
5354     // FIXME: Check for protocols to which the class type is already
5355     // known to conform.
5356 
5357     return getObjCObjectType(objT->getBaseType(),
5358                              objT->getTypeArgsAsWritten(),
5359                              protocols,
5360                              objT->isKindOfTypeAsWritten());
5361   }
5362 
5363   // If the canonical type is ObjCObjectType, ...
5364   if (type->isObjCObjectType()) {
5365     // Silently overwrite any existing protocol qualifiers.
5366     // TODO: determine whether that's the right thing to do.
5367 
5368     // FIXME: Check for protocols to which the class type is already
5369     // known to conform.
5370     return getObjCObjectType(type, {}, protocols, false);
5371   }
5372 
5373   // id<protocol-list>
5374   if (type->isObjCIdType()) {
5375     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5376     type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
5377                                  objPtr->isKindOfType());
5378     return getObjCObjectPointerType(type);
5379   }
5380 
5381   // Class<protocol-list>
5382   if (type->isObjCClassType()) {
5383     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5384     type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
5385                                  objPtr->isKindOfType());
5386     return getObjCObjectPointerType(type);
5387   }
5388 
5389   hasError = true;
5390   return type;
5391 }
5392 
5393 QualType
5394 ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
5395                                  ArrayRef<ObjCProtocolDecl *> protocols) const {
5396   // Look in the folding set for an existing type.
5397   llvm::FoldingSetNodeID ID;
5398   ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols);
5399   void *InsertPos = nullptr;
5400   if (ObjCTypeParamType *TypeParam =
5401       ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
5402     return QualType(TypeParam, 0);
5403 
5404   // We canonicalize to the underlying type.
5405   QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
5406   if (!protocols.empty()) {
5407     // Apply the protocol qualifers.
5408     bool hasError;
5409     Canonical = getCanonicalType(applyObjCProtocolQualifiers(
5410         Canonical, protocols, hasError, true /*allowOnPointerType*/));
5411     assert(!hasError && "Error when apply protocol qualifier to bound type");
5412   }
5413 
5414   unsigned size = sizeof(ObjCTypeParamType);
5415   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5416   void *mem = Allocate(size, TypeAlignment);
5417   auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
5418 
5419   Types.push_back(newType);
5420   ObjCTypeParamTypes.InsertNode(newType, InsertPos);
5421   return QualType(newType, 0);
5422 }
5423 
5424 void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
5425                                               ObjCTypeParamDecl *New) const {
5426   New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType()));
5427   // Update TypeForDecl after updating TypeSourceInfo.
5428   auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl());
5429   SmallVector<ObjCProtocolDecl *, 8> protocols;
5430   protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end());
5431   QualType UpdatedTy = getObjCTypeParamType(New, protocols);
5432   New->setTypeForDecl(UpdatedTy.getTypePtr());
5433 }
5434 
5435 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
5436 /// protocol list adopt all protocols in QT's qualified-id protocol
5437 /// list.
5438 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
5439                                                 ObjCInterfaceDecl *IC) {
5440   if (!QT->isObjCQualifiedIdType())
5441     return false;
5442 
5443   if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
5444     // If both the right and left sides have qualifiers.
5445     for (auto *Proto : OPT->quals()) {
5446       if (!IC->ClassImplementsProtocol(Proto, false))
5447         return false;
5448     }
5449     return true;
5450   }
5451   return false;
5452 }
5453 
5454 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
5455 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
5456 /// of protocols.
5457 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
5458                                                 ObjCInterfaceDecl *IDecl) {
5459   if (!QT->isObjCQualifiedIdType())
5460     return false;
5461   const auto *OPT = QT->getAs<ObjCObjectPointerType>();
5462   if (!OPT)
5463     return false;
5464   if (!IDecl->hasDefinition())
5465     return false;
5466   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
5467   CollectInheritedProtocols(IDecl, InheritedProtocols);
5468   if (InheritedProtocols.empty())
5469     return false;
5470   // Check that if every protocol in list of id<plist> conforms to a protocol
5471   // of IDecl's, then bridge casting is ok.
5472   bool Conforms = false;
5473   for (auto *Proto : OPT->quals()) {
5474     Conforms = false;
5475     for (auto *PI : InheritedProtocols) {
5476       if (ProtocolCompatibleWithProtocol(Proto, PI)) {
5477         Conforms = true;
5478         break;
5479       }
5480     }
5481     if (!Conforms)
5482       break;
5483   }
5484   if (Conforms)
5485     return true;
5486 
5487   for (auto *PI : InheritedProtocols) {
5488     // If both the right and left sides have qualifiers.
5489     bool Adopts = false;
5490     for (auto *Proto : OPT->quals()) {
5491       // return 'true' if 'PI' is in the inheritance hierarchy of Proto
5492       if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
5493         break;
5494     }
5495     if (!Adopts)
5496       return false;
5497   }
5498   return true;
5499 }
5500 
5501 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
5502 /// the given object type.
5503 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
5504   llvm::FoldingSetNodeID ID;
5505   ObjCObjectPointerType::Profile(ID, ObjectT);
5506 
5507   void *InsertPos = nullptr;
5508   if (ObjCObjectPointerType *QT =
5509               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
5510     return QualType(QT, 0);
5511 
5512   // Find the canonical object type.
5513   QualType Canonical;
5514   if (!ObjectT.isCanonical()) {
5515     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
5516 
5517     // Regenerate InsertPos.
5518     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
5519   }
5520 
5521   // No match.
5522   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
5523   auto *QType =
5524     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
5525 
5526   Types.push_back(QType);
5527   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
5528   return QualType(QType, 0);
5529 }
5530 
5531 /// getObjCInterfaceType - Return the unique reference to the type for the
5532 /// specified ObjC interface decl. The list of protocols is optional.
5533 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
5534                                           ObjCInterfaceDecl *PrevDecl) const {
5535   if (Decl->TypeForDecl)
5536     return QualType(Decl->TypeForDecl, 0);
5537 
5538   if (PrevDecl) {
5539     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
5540     Decl->TypeForDecl = PrevDecl->TypeForDecl;
5541     return QualType(PrevDecl->TypeForDecl, 0);
5542   }
5543 
5544   // Prefer the definition, if there is one.
5545   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
5546     Decl = Def;
5547 
5548   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
5549   auto *T = new (Mem) ObjCInterfaceType(Decl);
5550   Decl->TypeForDecl = T;
5551   Types.push_back(T);
5552   return QualType(T, 0);
5553 }
5554 
5555 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
5556 /// TypeOfExprType AST's (since expression's are never shared). For example,
5557 /// multiple declarations that refer to "typeof(x)" all contain different
5558 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
5559 /// on canonical type's (which are always unique).
5560 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
5561   TypeOfExprType *toe;
5562   if (tofExpr->isTypeDependent()) {
5563     llvm::FoldingSetNodeID ID;
5564     DependentTypeOfExprType::Profile(ID, *this, tofExpr);
5565 
5566     void *InsertPos = nullptr;
5567     DependentTypeOfExprType *Canon
5568       = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
5569     if (Canon) {
5570       // We already have a "canonical" version of an identical, dependent
5571       // typeof(expr) type. Use that as our canonical type.
5572       toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
5573                                           QualType((TypeOfExprType*)Canon, 0));
5574     } else {
5575       // Build a new, canonical typeof(expr) type.
5576       Canon
5577         = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
5578       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
5579       toe = Canon;
5580     }
5581   } else {
5582     QualType Canonical = getCanonicalType(tofExpr->getType());
5583     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
5584   }
5585   Types.push_back(toe);
5586   return QualType(toe, 0);
5587 }
5588 
5589 /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
5590 /// TypeOfType nodes. The only motivation to unique these nodes would be
5591 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
5592 /// an issue. This doesn't affect the type checker, since it operates
5593 /// on canonical types (which are always unique).
5594 QualType ASTContext::getTypeOfType(QualType tofType) const {
5595   QualType Canonical = getCanonicalType(tofType);
5596   auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
5597   Types.push_back(tot);
5598   return QualType(tot, 0);
5599 }
5600 
5601 /// getReferenceQualifiedType - Given an expr, will return the type for
5602 /// that expression, as in [dcl.type.simple]p4 but without taking id-expressions
5603 /// and class member access into account.
5604 QualType ASTContext::getReferenceQualifiedType(const Expr *E) const {
5605   // C++11 [dcl.type.simple]p4:
5606   //   [...]
5607   QualType T = E->getType();
5608   switch (E->getValueKind()) {
5609   //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
5610   //       type of e;
5611   case VK_XValue:
5612     return getRValueReferenceType(T);
5613   //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
5614   //       type of e;
5615   case VK_LValue:
5616     return getLValueReferenceType(T);
5617   //  - otherwise, decltype(e) is the type of e.
5618   case VK_PRValue:
5619     return T;
5620   }
5621   llvm_unreachable("Unknown value kind");
5622 }
5623 
5624 /// Unlike many "get<Type>" functions, we don't unique DecltypeType
5625 /// nodes. This would never be helpful, since each such type has its own
5626 /// expression, and would not give a significant memory saving, since there
5627 /// is an Expr tree under each such type.
5628 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
5629   DecltypeType *dt;
5630 
5631   // C++11 [temp.type]p2:
5632   //   If an expression e involves a template parameter, decltype(e) denotes a
5633   //   unique dependent type. Two such decltype-specifiers refer to the same
5634   //   type only if their expressions are equivalent (14.5.6.1).
5635   if (e->isInstantiationDependent()) {
5636     llvm::FoldingSetNodeID ID;
5637     DependentDecltypeType::Profile(ID, *this, e);
5638 
5639     void *InsertPos = nullptr;
5640     DependentDecltypeType *Canon
5641       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
5642     if (!Canon) {
5643       // Build a new, canonical decltype(expr) type.
5644       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
5645       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
5646     }
5647     dt = new (*this, TypeAlignment)
5648         DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
5649   } else {
5650     dt = new (*this, TypeAlignment)
5651         DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
5652   }
5653   Types.push_back(dt);
5654   return QualType(dt, 0);
5655 }
5656 
5657 /// getUnaryTransformationType - We don't unique these, since the memory
5658 /// savings are minimal and these are rare.
5659 QualType ASTContext::getUnaryTransformType(QualType BaseType,
5660                                            QualType UnderlyingType,
5661                                            UnaryTransformType::UTTKind Kind)
5662     const {
5663   UnaryTransformType *ut = nullptr;
5664 
5665   if (BaseType->isDependentType()) {
5666     // Look in the folding set for an existing type.
5667     llvm::FoldingSetNodeID ID;
5668     DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
5669 
5670     void *InsertPos = nullptr;
5671     DependentUnaryTransformType *Canon
5672       = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
5673 
5674     if (!Canon) {
5675       // Build a new, canonical __underlying_type(type) type.
5676       Canon = new (*this, TypeAlignment)
5677              DependentUnaryTransformType(*this, getCanonicalType(BaseType),
5678                                          Kind);
5679       DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
5680     }
5681     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5682                                                         QualType(), Kind,
5683                                                         QualType(Canon, 0));
5684   } else {
5685     QualType CanonType = getCanonicalType(UnderlyingType);
5686     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5687                                                         UnderlyingType, Kind,
5688                                                         CanonType);
5689   }
5690   Types.push_back(ut);
5691   return QualType(ut, 0);
5692 }
5693 
5694 QualType ASTContext::getAutoTypeInternal(
5695     QualType DeducedType, AutoTypeKeyword Keyword, bool IsDependent,
5696     bool IsPack, ConceptDecl *TypeConstraintConcept,
5697     ArrayRef<TemplateArgument> TypeConstraintArgs, bool IsCanon) const {
5698   if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto &&
5699       !TypeConstraintConcept && !IsDependent)
5700     return getAutoDeductType();
5701 
5702   // Look in the folding set for an existing type.
5703   void *InsertPos = nullptr;
5704   llvm::FoldingSetNodeID ID;
5705   AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent,
5706                     TypeConstraintConcept, TypeConstraintArgs);
5707   if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
5708     return QualType(AT, 0);
5709 
5710   QualType Canon;
5711   if (!IsCanon) {
5712     if (DeducedType.isNull()) {
5713       SmallVector<TemplateArgument, 4> CanonArgs;
5714       bool AnyNonCanonArgs =
5715           ::getCanonicalTemplateArguments(*this, TypeConstraintArgs, CanonArgs);
5716       if (AnyNonCanonArgs) {
5717         Canon = getAutoTypeInternal(QualType(), Keyword, IsDependent, IsPack,
5718                                     TypeConstraintConcept, CanonArgs, true);
5719         // Find the insert position again.
5720         AutoTypes.FindNodeOrInsertPos(ID, InsertPos);
5721       }
5722     } else {
5723       Canon = DeducedType.getCanonicalType();
5724     }
5725   }
5726 
5727   void *Mem = Allocate(sizeof(AutoType) +
5728                            sizeof(TemplateArgument) * TypeConstraintArgs.size(),
5729                        TypeAlignment);
5730   auto *AT = new (Mem) AutoType(
5731       DeducedType, Keyword,
5732       (IsDependent ? TypeDependence::DependentInstantiation
5733                    : TypeDependence::None) |
5734           (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None),
5735       Canon, TypeConstraintConcept, TypeConstraintArgs);
5736   Types.push_back(AT);
5737   AutoTypes.InsertNode(AT, InsertPos);
5738   return QualType(AT, 0);
5739 }
5740 
5741 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
5742 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
5743 /// canonical deduced-but-dependent 'auto' type.
5744 QualType
5745 ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
5746                         bool IsDependent, bool IsPack,
5747                         ConceptDecl *TypeConstraintConcept,
5748                         ArrayRef<TemplateArgument> TypeConstraintArgs) const {
5749   assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack");
5750   assert((!IsDependent || DeducedType.isNull()) &&
5751          "A dependent auto should be undeduced");
5752   return getAutoTypeInternal(DeducedType, Keyword, IsDependent, IsPack,
5753                              TypeConstraintConcept, TypeConstraintArgs);
5754 }
5755 
5756 /// Return the uniqued reference to the deduced template specialization type
5757 /// which has been deduced to the given type, or to the canonical undeduced
5758 /// such type, or the canonical deduced-but-dependent such type.
5759 QualType ASTContext::getDeducedTemplateSpecializationType(
5760     TemplateName Template, QualType DeducedType, bool IsDependent) const {
5761   // Look in the folding set for an existing type.
5762   void *InsertPos = nullptr;
5763   llvm::FoldingSetNodeID ID;
5764   DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
5765                                              IsDependent);
5766   if (DeducedTemplateSpecializationType *DTST =
5767           DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
5768     return QualType(DTST, 0);
5769 
5770   auto *DTST = new (*this, TypeAlignment)
5771       DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
5772   llvm::FoldingSetNodeID TempID;
5773   DTST->Profile(TempID);
5774   assert(ID == TempID && "ID does not match");
5775   Types.push_back(DTST);
5776   DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
5777   return QualType(DTST, 0);
5778 }
5779 
5780 /// getAtomicType - Return the uniqued reference to the atomic type for
5781 /// the given value type.
5782 QualType ASTContext::getAtomicType(QualType T) const {
5783   // Unique pointers, to guarantee there is only one pointer of a particular
5784   // structure.
5785   llvm::FoldingSetNodeID ID;
5786   AtomicType::Profile(ID, T);
5787 
5788   void *InsertPos = nullptr;
5789   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
5790     return QualType(AT, 0);
5791 
5792   // If the atomic value type isn't canonical, this won't be a canonical type
5793   // either, so fill in the canonical type field.
5794   QualType Canonical;
5795   if (!T.isCanonical()) {
5796     Canonical = getAtomicType(getCanonicalType(T));
5797 
5798     // Get the new insert position for the node we care about.
5799     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
5800     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
5801   }
5802   auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
5803   Types.push_back(New);
5804   AtomicTypes.InsertNode(New, InsertPos);
5805   return QualType(New, 0);
5806 }
5807 
5808 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
5809 QualType ASTContext::getAutoDeductType() const {
5810   if (AutoDeductTy.isNull())
5811     AutoDeductTy = QualType(new (*this, TypeAlignment)
5812                                 AutoType(QualType(), AutoTypeKeyword::Auto,
5813                                          TypeDependence::None, QualType(),
5814                                          /*concept*/ nullptr, /*args*/ {}),
5815                             0);
5816   return AutoDeductTy;
5817 }
5818 
5819 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
5820 QualType ASTContext::getAutoRRefDeductType() const {
5821   if (AutoRRefDeductTy.isNull())
5822     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
5823   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
5824   return AutoRRefDeductTy;
5825 }
5826 
5827 /// getTagDeclType - Return the unique reference to the type for the
5828 /// specified TagDecl (struct/union/class/enum) decl.
5829 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
5830   assert(Decl);
5831   // FIXME: What is the design on getTagDeclType when it requires casting
5832   // away const?  mutable?
5833   return getTypeDeclType(const_cast<TagDecl*>(Decl));
5834 }
5835 
5836 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
5837 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
5838 /// needs to agree with the definition in <stddef.h>.
5839 CanQualType ASTContext::getSizeType() const {
5840   return getFromTargetType(Target->getSizeType());
5841 }
5842 
5843 /// Return the unique signed counterpart of the integer type
5844 /// corresponding to size_t.
5845 CanQualType ASTContext::getSignedSizeType() const {
5846   return getFromTargetType(Target->getSignedSizeType());
5847 }
5848 
5849 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
5850 CanQualType ASTContext::getIntMaxType() const {
5851   return getFromTargetType(Target->getIntMaxType());
5852 }
5853 
5854 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
5855 CanQualType ASTContext::getUIntMaxType() const {
5856   return getFromTargetType(Target->getUIntMaxType());
5857 }
5858 
5859 /// getSignedWCharType - Return the type of "signed wchar_t".
5860 /// Used when in C++, as a GCC extension.
5861 QualType ASTContext::getSignedWCharType() const {
5862   // FIXME: derive from "Target" ?
5863   return WCharTy;
5864 }
5865 
5866 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
5867 /// Used when in C++, as a GCC extension.
5868 QualType ASTContext::getUnsignedWCharType() const {
5869   // FIXME: derive from "Target" ?
5870   return UnsignedIntTy;
5871 }
5872 
5873 QualType ASTContext::getIntPtrType() const {
5874   return getFromTargetType(Target->getIntPtrType());
5875 }
5876 
5877 QualType ASTContext::getUIntPtrType() const {
5878   return getCorrespondingUnsignedType(getIntPtrType());
5879 }
5880 
5881 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
5882 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
5883 QualType ASTContext::getPointerDiffType() const {
5884   return getFromTargetType(Target->getPtrDiffType(0));
5885 }
5886 
5887 /// Return the unique unsigned counterpart of "ptrdiff_t"
5888 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
5889 /// in the definition of %tu format specifier.
5890 QualType ASTContext::getUnsignedPointerDiffType() const {
5891   return getFromTargetType(Target->getUnsignedPtrDiffType(0));
5892 }
5893 
5894 /// Return the unique type for "pid_t" defined in
5895 /// <sys/types.h>. We need this to compute the correct type for vfork().
5896 QualType ASTContext::getProcessIDType() const {
5897   return getFromTargetType(Target->getProcessIDType());
5898 }
5899 
5900 //===----------------------------------------------------------------------===//
5901 //                              Type Operators
5902 //===----------------------------------------------------------------------===//
5903 
5904 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
5905   // Push qualifiers into arrays, and then discard any remaining
5906   // qualifiers.
5907   T = getCanonicalType(T);
5908   T = getVariableArrayDecayedType(T);
5909   const Type *Ty = T.getTypePtr();
5910   QualType Result;
5911   if (isa<ArrayType>(Ty)) {
5912     Result = getArrayDecayedType(QualType(Ty,0));
5913   } else if (isa<FunctionType>(Ty)) {
5914     Result = getPointerType(QualType(Ty, 0));
5915   } else {
5916     Result = QualType(Ty, 0);
5917   }
5918 
5919   return CanQualType::CreateUnsafe(Result);
5920 }
5921 
5922 QualType ASTContext::getUnqualifiedArrayType(QualType type,
5923                                              Qualifiers &quals) {
5924   SplitQualType splitType = type.getSplitUnqualifiedType();
5925 
5926   // FIXME: getSplitUnqualifiedType() actually walks all the way to
5927   // the unqualified desugared type and then drops it on the floor.
5928   // We then have to strip that sugar back off with
5929   // getUnqualifiedDesugaredType(), which is silly.
5930   const auto *AT =
5931       dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
5932 
5933   // If we don't have an array, just use the results in splitType.
5934   if (!AT) {
5935     quals = splitType.Quals;
5936     return QualType(splitType.Ty, 0);
5937   }
5938 
5939   // Otherwise, recurse on the array's element type.
5940   QualType elementType = AT->getElementType();
5941   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
5942 
5943   // If that didn't change the element type, AT has no qualifiers, so we
5944   // can just use the results in splitType.
5945   if (elementType == unqualElementType) {
5946     assert(quals.empty()); // from the recursive call
5947     quals = splitType.Quals;
5948     return QualType(splitType.Ty, 0);
5949   }
5950 
5951   // Otherwise, add in the qualifiers from the outermost type, then
5952   // build the type back up.
5953   quals.addConsistentQualifiers(splitType.Quals);
5954 
5955   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
5956     return getConstantArrayType(unqualElementType, CAT->getSize(),
5957                                 CAT->getSizeExpr(), CAT->getSizeModifier(), 0);
5958   }
5959 
5960   if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
5961     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
5962   }
5963 
5964   if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
5965     return getVariableArrayType(unqualElementType,
5966                                 VAT->getSizeExpr(),
5967                                 VAT->getSizeModifier(),
5968                                 VAT->getIndexTypeCVRQualifiers(),
5969                                 VAT->getBracketsRange());
5970   }
5971 
5972   const auto *DSAT = cast<DependentSizedArrayType>(AT);
5973   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
5974                                     DSAT->getSizeModifier(), 0,
5975                                     SourceRange());
5976 }
5977 
5978 /// Attempt to unwrap two types that may both be array types with the same bound
5979 /// (or both be array types of unknown bound) for the purpose of comparing the
5980 /// cv-decomposition of two types per C++ [conv.qual].
5981 ///
5982 /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in
5983 ///        C++20 [conv.qual], if permitted by the current language mode.
5984 void ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2,
5985                                          bool AllowPiMismatch) {
5986   while (true) {
5987     auto *AT1 = getAsArrayType(T1);
5988     if (!AT1)
5989       return;
5990 
5991     auto *AT2 = getAsArrayType(T2);
5992     if (!AT2)
5993       return;
5994 
5995     // If we don't have two array types with the same constant bound nor two
5996     // incomplete array types, we've unwrapped everything we can.
5997     // C++20 also permits one type to be a constant array type and the other
5998     // to be an incomplete array type.
5999     // FIXME: Consider also unwrapping array of unknown bound and VLA.
6000     if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
6001       auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
6002       if (!((CAT2 && CAT1->getSize() == CAT2->getSize()) ||
6003             (AllowPiMismatch && getLangOpts().CPlusPlus20 &&
6004              isa<IncompleteArrayType>(AT2))))
6005         return;
6006     } else if (isa<IncompleteArrayType>(AT1)) {
6007       if (!(isa<IncompleteArrayType>(AT2) ||
6008             (AllowPiMismatch && getLangOpts().CPlusPlus20 &&
6009              isa<ConstantArrayType>(AT2))))
6010         return;
6011     } else {
6012       return;
6013     }
6014 
6015     T1 = AT1->getElementType();
6016     T2 = AT2->getElementType();
6017   }
6018 }
6019 
6020 /// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
6021 ///
6022 /// If T1 and T2 are both pointer types of the same kind, or both array types
6023 /// with the same bound, unwraps layers from T1 and T2 until a pointer type is
6024 /// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
6025 ///
6026 /// This function will typically be called in a loop that successively
6027 /// "unwraps" pointer and pointer-to-member types to compare them at each
6028 /// level.
6029 ///
6030 /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in
6031 ///        C++20 [conv.qual], if permitted by the current language mode.
6032 ///
6033 /// \return \c true if a pointer type was unwrapped, \c false if we reached a
6034 /// pair of types that can't be unwrapped further.
6035 bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2,
6036                                     bool AllowPiMismatch) {
6037   UnwrapSimilarArrayTypes(T1, T2, AllowPiMismatch);
6038 
6039   const auto *T1PtrType = T1->getAs<PointerType>();
6040   const auto *T2PtrType = T2->getAs<PointerType>();
6041   if (T1PtrType && T2PtrType) {
6042     T1 = T1PtrType->getPointeeType();
6043     T2 = T2PtrType->getPointeeType();
6044     return true;
6045   }
6046 
6047   const auto *T1MPType = T1->getAs<MemberPointerType>();
6048   const auto *T2MPType = T2->getAs<MemberPointerType>();
6049   if (T1MPType && T2MPType &&
6050       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
6051                              QualType(T2MPType->getClass(), 0))) {
6052     T1 = T1MPType->getPointeeType();
6053     T2 = T2MPType->getPointeeType();
6054     return true;
6055   }
6056 
6057   if (getLangOpts().ObjC) {
6058     const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
6059     const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
6060     if (T1OPType && T2OPType) {
6061       T1 = T1OPType->getPointeeType();
6062       T2 = T2OPType->getPointeeType();
6063       return true;
6064     }
6065   }
6066 
6067   // FIXME: Block pointers, too?
6068 
6069   return false;
6070 }
6071 
6072 bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
6073   while (true) {
6074     Qualifiers Quals;
6075     T1 = getUnqualifiedArrayType(T1, Quals);
6076     T2 = getUnqualifiedArrayType(T2, Quals);
6077     if (hasSameType(T1, T2))
6078       return true;
6079     if (!UnwrapSimilarTypes(T1, T2))
6080       return false;
6081   }
6082 }
6083 
6084 bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
6085   while (true) {
6086     Qualifiers Quals1, Quals2;
6087     T1 = getUnqualifiedArrayType(T1, Quals1);
6088     T2 = getUnqualifiedArrayType(T2, Quals2);
6089 
6090     Quals1.removeCVRQualifiers();
6091     Quals2.removeCVRQualifiers();
6092     if (Quals1 != Quals2)
6093       return false;
6094 
6095     if (hasSameType(T1, T2))
6096       return true;
6097 
6098     if (!UnwrapSimilarTypes(T1, T2, /*AllowPiMismatch*/ false))
6099       return false;
6100   }
6101 }
6102 
6103 DeclarationNameInfo
6104 ASTContext::getNameForTemplate(TemplateName Name,
6105                                SourceLocation NameLoc) const {
6106   switch (Name.getKind()) {
6107   case TemplateName::QualifiedTemplate:
6108   case TemplateName::Template:
6109     // DNInfo work in progress: CHECKME: what about DNLoc?
6110     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
6111                                NameLoc);
6112 
6113   case TemplateName::OverloadedTemplate: {
6114     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
6115     // DNInfo work in progress: CHECKME: what about DNLoc?
6116     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
6117   }
6118 
6119   case TemplateName::AssumedTemplate: {
6120     AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName();
6121     return DeclarationNameInfo(Storage->getDeclName(), NameLoc);
6122   }
6123 
6124   case TemplateName::DependentTemplate: {
6125     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
6126     DeclarationName DName;
6127     if (DTN->isIdentifier()) {
6128       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
6129       return DeclarationNameInfo(DName, NameLoc);
6130     } else {
6131       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
6132       // DNInfo work in progress: FIXME: source locations?
6133       DeclarationNameLoc DNLoc =
6134           DeclarationNameLoc::makeCXXOperatorNameLoc(SourceRange());
6135       return DeclarationNameInfo(DName, NameLoc, DNLoc);
6136     }
6137   }
6138 
6139   case TemplateName::SubstTemplateTemplateParm: {
6140     SubstTemplateTemplateParmStorage *subst
6141       = Name.getAsSubstTemplateTemplateParm();
6142     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
6143                                NameLoc);
6144   }
6145 
6146   case TemplateName::SubstTemplateTemplateParmPack: {
6147     SubstTemplateTemplateParmPackStorage *subst
6148       = Name.getAsSubstTemplateTemplateParmPack();
6149     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
6150                                NameLoc);
6151   }
6152   case TemplateName::UsingTemplate:
6153     return DeclarationNameInfo(Name.getAsUsingShadowDecl()->getDeclName(),
6154                                NameLoc);
6155   }
6156 
6157   llvm_unreachable("bad template name kind!");
6158 }
6159 
6160 TemplateName
6161 ASTContext::getCanonicalTemplateName(const TemplateName &Name) const {
6162   switch (Name.getKind()) {
6163   case TemplateName::UsingTemplate:
6164   case TemplateName::QualifiedTemplate:
6165   case TemplateName::Template: {
6166     TemplateDecl *Template = Name.getAsTemplateDecl();
6167     if (auto *TTP  = dyn_cast<TemplateTemplateParmDecl>(Template))
6168       Template = getCanonicalTemplateTemplateParmDecl(TTP);
6169 
6170     // The canonical template name is the canonical template declaration.
6171     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
6172   }
6173 
6174   case TemplateName::OverloadedTemplate:
6175   case TemplateName::AssumedTemplate:
6176     llvm_unreachable("cannot canonicalize unresolved template");
6177 
6178   case TemplateName::DependentTemplate: {
6179     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
6180     assert(DTN && "Non-dependent template names must refer to template decls.");
6181     return DTN->CanonicalTemplateName;
6182   }
6183 
6184   case TemplateName::SubstTemplateTemplateParm: {
6185     SubstTemplateTemplateParmStorage *subst
6186       = Name.getAsSubstTemplateTemplateParm();
6187     return getCanonicalTemplateName(subst->getReplacement());
6188   }
6189 
6190   case TemplateName::SubstTemplateTemplateParmPack: {
6191     SubstTemplateTemplateParmPackStorage *subst
6192                                   = Name.getAsSubstTemplateTemplateParmPack();
6193     TemplateTemplateParmDecl *canonParameter
6194       = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
6195     TemplateArgument canonArgPack
6196       = getCanonicalTemplateArgument(subst->getArgumentPack());
6197     return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
6198   }
6199   }
6200 
6201   llvm_unreachable("bad template name!");
6202 }
6203 
6204 bool ASTContext::hasSameTemplateName(const TemplateName &X,
6205                                      const TemplateName &Y) const {
6206   return getCanonicalTemplateName(X).getAsVoidPointer() ==
6207          getCanonicalTemplateName(Y).getAsVoidPointer();
6208 }
6209 
6210 bool ASTContext::isSameTemplateParameter(const NamedDecl *X,
6211                                          const NamedDecl *Y) {
6212   if (X->getKind() != Y->getKind())
6213     return false;
6214 
6215   if (auto *TX = dyn_cast<TemplateTypeParmDecl>(X)) {
6216     auto *TY = cast<TemplateTypeParmDecl>(Y);
6217     if (TX->isParameterPack() != TY->isParameterPack())
6218       return false;
6219     if (TX->hasTypeConstraint() != TY->hasTypeConstraint())
6220       return false;
6221     const TypeConstraint *TXTC = TX->getTypeConstraint();
6222     const TypeConstraint *TYTC = TY->getTypeConstraint();
6223     if (!TXTC != !TYTC)
6224       return false;
6225     if (TXTC && TYTC) {
6226       auto *NCX = TXTC->getNamedConcept();
6227       auto *NCY = TYTC->getNamedConcept();
6228       if (!NCX || !NCY || !isSameEntity(NCX, NCY))
6229         return false;
6230       if (TXTC->hasExplicitTemplateArgs() != TYTC->hasExplicitTemplateArgs())
6231         return false;
6232       if (TXTC->hasExplicitTemplateArgs()) {
6233         auto *TXTCArgs = TXTC->getTemplateArgsAsWritten();
6234         auto *TYTCArgs = TYTC->getTemplateArgsAsWritten();
6235         if (TXTCArgs->NumTemplateArgs != TYTCArgs->NumTemplateArgs)
6236           return false;
6237         llvm::FoldingSetNodeID XID, YID;
6238         for (auto &ArgLoc : TXTCArgs->arguments())
6239           ArgLoc.getArgument().Profile(XID, X->getASTContext());
6240         for (auto &ArgLoc : TYTCArgs->arguments())
6241           ArgLoc.getArgument().Profile(YID, Y->getASTContext());
6242         if (XID != YID)
6243           return false;
6244       }
6245     }
6246     return true;
6247   }
6248 
6249   if (auto *TX = dyn_cast<NonTypeTemplateParmDecl>(X)) {
6250     auto *TY = cast<NonTypeTemplateParmDecl>(Y);
6251     return TX->isParameterPack() == TY->isParameterPack() &&
6252            TX->getASTContext().hasSameType(TX->getType(), TY->getType());
6253   }
6254 
6255   auto *TX = cast<TemplateTemplateParmDecl>(X);
6256   auto *TY = cast<TemplateTemplateParmDecl>(Y);
6257   return TX->isParameterPack() == TY->isParameterPack() &&
6258          isSameTemplateParameterList(TX->getTemplateParameters(),
6259                                      TY->getTemplateParameters());
6260 }
6261 
6262 bool ASTContext::isSameTemplateParameterList(const TemplateParameterList *X,
6263                                              const TemplateParameterList *Y) {
6264   if (X->size() != Y->size())
6265     return false;
6266 
6267   for (unsigned I = 0, N = X->size(); I != N; ++I)
6268     if (!isSameTemplateParameter(X->getParam(I), Y->getParam(I)))
6269       return false;
6270 
6271   const Expr *XRC = X->getRequiresClause();
6272   const Expr *YRC = Y->getRequiresClause();
6273   if (!XRC != !YRC)
6274     return false;
6275   if (XRC) {
6276     llvm::FoldingSetNodeID XRCID, YRCID;
6277     XRC->Profile(XRCID, *this, /*Canonical=*/true);
6278     YRC->Profile(YRCID, *this, /*Canonical=*/true);
6279     if (XRCID != YRCID)
6280       return false;
6281   }
6282 
6283   return true;
6284 }
6285 
6286 static NamespaceDecl *getNamespace(const NestedNameSpecifier *X) {
6287   if (auto *NS = X->getAsNamespace())
6288     return NS;
6289   if (auto *NAS = X->getAsNamespaceAlias())
6290     return NAS->getNamespace();
6291   return nullptr;
6292 }
6293 
6294 static bool isSameQualifier(const NestedNameSpecifier *X,
6295                             const NestedNameSpecifier *Y) {
6296   if (auto *NSX = getNamespace(X)) {
6297     auto *NSY = getNamespace(Y);
6298     if (!NSY || NSX->getCanonicalDecl() != NSY->getCanonicalDecl())
6299       return false;
6300   } else if (X->getKind() != Y->getKind())
6301     return false;
6302 
6303   // FIXME: For namespaces and types, we're permitted to check that the entity
6304   // is named via the same tokens. We should probably do so.
6305   switch (X->getKind()) {
6306   case NestedNameSpecifier::Identifier:
6307     if (X->getAsIdentifier() != Y->getAsIdentifier())
6308       return false;
6309     break;
6310   case NestedNameSpecifier::Namespace:
6311   case NestedNameSpecifier::NamespaceAlias:
6312     // We've already checked that we named the same namespace.
6313     break;
6314   case NestedNameSpecifier::TypeSpec:
6315   case NestedNameSpecifier::TypeSpecWithTemplate:
6316     if (X->getAsType()->getCanonicalTypeInternal() !=
6317         Y->getAsType()->getCanonicalTypeInternal())
6318       return false;
6319     break;
6320   case NestedNameSpecifier::Global:
6321   case NestedNameSpecifier::Super:
6322     return true;
6323   }
6324 
6325   // Recurse into earlier portion of NNS, if any.
6326   auto *PX = X->getPrefix();
6327   auto *PY = Y->getPrefix();
6328   if (PX && PY)
6329     return isSameQualifier(PX, PY);
6330   return !PX && !PY;
6331 }
6332 
6333 /// Determine whether the attributes we can overload on are identical for A and
6334 /// B. Will ignore any overloadable attrs represented in the type of A and B.
6335 static bool hasSameOverloadableAttrs(const FunctionDecl *A,
6336                                      const FunctionDecl *B) {
6337   // Note that pass_object_size attributes are represented in the function's
6338   // ExtParameterInfo, so we don't need to check them here.
6339 
6340   llvm::FoldingSetNodeID Cand1ID, Cand2ID;
6341   auto AEnableIfAttrs = A->specific_attrs<EnableIfAttr>();
6342   auto BEnableIfAttrs = B->specific_attrs<EnableIfAttr>();
6343 
6344   for (auto Pair : zip_longest(AEnableIfAttrs, BEnableIfAttrs)) {
6345     Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
6346     Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
6347 
6348     // Return false if the number of enable_if attributes is different.
6349     if (!Cand1A || !Cand2A)
6350       return false;
6351 
6352     Cand1ID.clear();
6353     Cand2ID.clear();
6354 
6355     (*Cand1A)->getCond()->Profile(Cand1ID, A->getASTContext(), true);
6356     (*Cand2A)->getCond()->Profile(Cand2ID, B->getASTContext(), true);
6357 
6358     // Return false if any of the enable_if expressions of A and B are
6359     // different.
6360     if (Cand1ID != Cand2ID)
6361       return false;
6362   }
6363   return true;
6364 }
6365 
6366 bool ASTContext::isSameEntity(const NamedDecl *X, const NamedDecl *Y) {
6367   if (X == Y)
6368     return true;
6369 
6370   if (X->getDeclName() != Y->getDeclName())
6371     return false;
6372 
6373   // Must be in the same context.
6374   //
6375   // Note that we can't use DeclContext::Equals here, because the DeclContexts
6376   // could be two different declarations of the same function. (We will fix the
6377   // semantic DC to refer to the primary definition after merging.)
6378   if (!declaresSameEntity(cast<Decl>(X->getDeclContext()->getRedeclContext()),
6379                           cast<Decl>(Y->getDeclContext()->getRedeclContext())))
6380     return false;
6381 
6382   // Two typedefs refer to the same entity if they have the same underlying
6383   // type.
6384   if (const auto *TypedefX = dyn_cast<TypedefNameDecl>(X))
6385     if (const auto *TypedefY = dyn_cast<TypedefNameDecl>(Y))
6386       return hasSameType(TypedefX->getUnderlyingType(),
6387                          TypedefY->getUnderlyingType());
6388 
6389   // Must have the same kind.
6390   if (X->getKind() != Y->getKind())
6391     return false;
6392 
6393   // Objective-C classes and protocols with the same name always match.
6394   if (isa<ObjCInterfaceDecl>(X) || isa<ObjCProtocolDecl>(X))
6395     return true;
6396 
6397   if (isa<ClassTemplateSpecializationDecl>(X)) {
6398     // No need to handle these here: we merge them when adding them to the
6399     // template.
6400     return false;
6401   }
6402 
6403   // Compatible tags match.
6404   if (const auto *TagX = dyn_cast<TagDecl>(X)) {
6405     const auto *TagY = cast<TagDecl>(Y);
6406     return (TagX->getTagKind() == TagY->getTagKind()) ||
6407            ((TagX->getTagKind() == TTK_Struct ||
6408              TagX->getTagKind() == TTK_Class ||
6409              TagX->getTagKind() == TTK_Interface) &&
6410             (TagY->getTagKind() == TTK_Struct ||
6411              TagY->getTagKind() == TTK_Class ||
6412              TagY->getTagKind() == TTK_Interface));
6413   }
6414 
6415   // Functions with the same type and linkage match.
6416   // FIXME: This needs to cope with merging of prototyped/non-prototyped
6417   // functions, etc.
6418   if (const auto *FuncX = dyn_cast<FunctionDecl>(X)) {
6419     const auto *FuncY = cast<FunctionDecl>(Y);
6420     if (const auto *CtorX = dyn_cast<CXXConstructorDecl>(X)) {
6421       const auto *CtorY = cast<CXXConstructorDecl>(Y);
6422       if (CtorX->getInheritedConstructor() &&
6423           !isSameEntity(CtorX->getInheritedConstructor().getConstructor(),
6424                         CtorY->getInheritedConstructor().getConstructor()))
6425         return false;
6426     }
6427 
6428     if (FuncX->isMultiVersion() != FuncY->isMultiVersion())
6429       return false;
6430 
6431     // Multiversioned functions with different feature strings are represented
6432     // as separate declarations.
6433     if (FuncX->isMultiVersion()) {
6434       const auto *TAX = FuncX->getAttr<TargetAttr>();
6435       const auto *TAY = FuncY->getAttr<TargetAttr>();
6436       assert(TAX && TAY && "Multiversion Function without target attribute");
6437 
6438       if (TAX->getFeaturesStr() != TAY->getFeaturesStr())
6439         return false;
6440     }
6441 
6442     const Expr *XRC = FuncX->getTrailingRequiresClause();
6443     const Expr *YRC = FuncY->getTrailingRequiresClause();
6444     if (!XRC != !YRC)
6445       return false;
6446     if (XRC) {
6447       llvm::FoldingSetNodeID XRCID, YRCID;
6448       XRC->Profile(XRCID, *this, /*Canonical=*/true);
6449       YRC->Profile(YRCID, *this, /*Canonical=*/true);
6450       if (XRCID != YRCID)
6451         return false;
6452     }
6453 
6454     auto GetTypeAsWritten = [](const FunctionDecl *FD) {
6455       // Map to the first declaration that we've already merged into this one.
6456       // The TSI of redeclarations might not match (due to calling conventions
6457       // being inherited onto the type but not the TSI), but the TSI type of
6458       // the first declaration of the function should match across modules.
6459       FD = FD->getCanonicalDecl();
6460       return FD->getTypeSourceInfo() ? FD->getTypeSourceInfo()->getType()
6461                                      : FD->getType();
6462     };
6463     QualType XT = GetTypeAsWritten(FuncX), YT = GetTypeAsWritten(FuncY);
6464     if (!hasSameType(XT, YT)) {
6465       // We can get functions with different types on the redecl chain in C++17
6466       // if they have differing exception specifications and at least one of
6467       // the excpetion specs is unresolved.
6468       auto *XFPT = XT->getAs<FunctionProtoType>();
6469       auto *YFPT = YT->getAs<FunctionProtoType>();
6470       if (getLangOpts().CPlusPlus17 && XFPT && YFPT &&
6471           (isUnresolvedExceptionSpec(XFPT->getExceptionSpecType()) ||
6472            isUnresolvedExceptionSpec(YFPT->getExceptionSpecType())) &&
6473           // FIXME: We could make isSameEntity const after we make
6474           // hasSameFunctionTypeIgnoringExceptionSpec const.
6475           hasSameFunctionTypeIgnoringExceptionSpec(XT, YT))
6476         return true;
6477       return false;
6478     }
6479 
6480     return FuncX->getLinkageInternal() == FuncY->getLinkageInternal() &&
6481            hasSameOverloadableAttrs(FuncX, FuncY);
6482   }
6483 
6484   // Variables with the same type and linkage match.
6485   if (const auto *VarX = dyn_cast<VarDecl>(X)) {
6486     const auto *VarY = cast<VarDecl>(Y);
6487     if (VarX->getLinkageInternal() == VarY->getLinkageInternal()) {
6488       if (hasSameType(VarX->getType(), VarY->getType()))
6489         return true;
6490 
6491       // We can get decls with different types on the redecl chain. Eg.
6492       // template <typename T> struct S { static T Var[]; }; // #1
6493       // template <typename T> T S<T>::Var[sizeof(T)]; // #2
6494       // Only? happens when completing an incomplete array type. In this case
6495       // when comparing #1 and #2 we should go through their element type.
6496       const ArrayType *VarXTy = getAsArrayType(VarX->getType());
6497       const ArrayType *VarYTy = getAsArrayType(VarY->getType());
6498       if (!VarXTy || !VarYTy)
6499         return false;
6500       if (VarXTy->isIncompleteArrayType() || VarYTy->isIncompleteArrayType())
6501         return hasSameType(VarXTy->getElementType(), VarYTy->getElementType());
6502     }
6503     return false;
6504   }
6505 
6506   // Namespaces with the same name and inlinedness match.
6507   if (const auto *NamespaceX = dyn_cast<NamespaceDecl>(X)) {
6508     const auto *NamespaceY = cast<NamespaceDecl>(Y);
6509     return NamespaceX->isInline() == NamespaceY->isInline();
6510   }
6511 
6512   // Identical template names and kinds match if their template parameter lists
6513   // and patterns match.
6514   if (const auto *TemplateX = dyn_cast<TemplateDecl>(X)) {
6515     const auto *TemplateY = cast<TemplateDecl>(Y);
6516     return isSameEntity(TemplateX->getTemplatedDecl(),
6517                         TemplateY->getTemplatedDecl()) &&
6518            isSameTemplateParameterList(TemplateX->getTemplateParameters(),
6519                                        TemplateY->getTemplateParameters());
6520   }
6521 
6522   // Fields with the same name and the same type match.
6523   if (const auto *FDX = dyn_cast<FieldDecl>(X)) {
6524     const auto *FDY = cast<FieldDecl>(Y);
6525     // FIXME: Also check the bitwidth is odr-equivalent, if any.
6526     return hasSameType(FDX->getType(), FDY->getType());
6527   }
6528 
6529   // Indirect fields with the same target field match.
6530   if (const auto *IFDX = dyn_cast<IndirectFieldDecl>(X)) {
6531     const auto *IFDY = cast<IndirectFieldDecl>(Y);
6532     return IFDX->getAnonField()->getCanonicalDecl() ==
6533            IFDY->getAnonField()->getCanonicalDecl();
6534   }
6535 
6536   // Enumerators with the same name match.
6537   if (isa<EnumConstantDecl>(X))
6538     // FIXME: Also check the value is odr-equivalent.
6539     return true;
6540 
6541   // Using shadow declarations with the same target match.
6542   if (const auto *USX = dyn_cast<UsingShadowDecl>(X)) {
6543     const auto *USY = cast<UsingShadowDecl>(Y);
6544     return USX->getTargetDecl() == USY->getTargetDecl();
6545   }
6546 
6547   // Using declarations with the same qualifier match. (We already know that
6548   // the name matches.)
6549   if (const auto *UX = dyn_cast<UsingDecl>(X)) {
6550     const auto *UY = cast<UsingDecl>(Y);
6551     return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
6552            UX->hasTypename() == UY->hasTypename() &&
6553            UX->isAccessDeclaration() == UY->isAccessDeclaration();
6554   }
6555   if (const auto *UX = dyn_cast<UnresolvedUsingValueDecl>(X)) {
6556     const auto *UY = cast<UnresolvedUsingValueDecl>(Y);
6557     return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
6558            UX->isAccessDeclaration() == UY->isAccessDeclaration();
6559   }
6560   if (const auto *UX = dyn_cast<UnresolvedUsingTypenameDecl>(X)) {
6561     return isSameQualifier(
6562         UX->getQualifier(),
6563         cast<UnresolvedUsingTypenameDecl>(Y)->getQualifier());
6564   }
6565 
6566   // Using-pack declarations are only created by instantiation, and match if
6567   // they're instantiated from matching UnresolvedUsing...Decls.
6568   if (const auto *UX = dyn_cast<UsingPackDecl>(X)) {
6569     return declaresSameEntity(
6570         UX->getInstantiatedFromUsingDecl(),
6571         cast<UsingPackDecl>(Y)->getInstantiatedFromUsingDecl());
6572   }
6573 
6574   // Namespace alias definitions with the same target match.
6575   if (const auto *NAX = dyn_cast<NamespaceAliasDecl>(X)) {
6576     const auto *NAY = cast<NamespaceAliasDecl>(Y);
6577     return NAX->getNamespace()->Equals(NAY->getNamespace());
6578   }
6579 
6580   return false;
6581 }
6582 
6583 TemplateArgument
6584 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
6585   switch (Arg.getKind()) {
6586     case TemplateArgument::Null:
6587       return Arg;
6588 
6589     case TemplateArgument::Expression:
6590       return Arg;
6591 
6592     case TemplateArgument::Declaration: {
6593       auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
6594       return TemplateArgument(D, Arg.getParamTypeForDecl());
6595     }
6596 
6597     case TemplateArgument::NullPtr:
6598       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
6599                               /*isNullPtr*/true);
6600 
6601     case TemplateArgument::Template:
6602       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
6603 
6604     case TemplateArgument::TemplateExpansion:
6605       return TemplateArgument(getCanonicalTemplateName(
6606                                          Arg.getAsTemplateOrTemplatePattern()),
6607                               Arg.getNumTemplateExpansions());
6608 
6609     case TemplateArgument::Integral:
6610       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
6611 
6612     case TemplateArgument::Type:
6613       return TemplateArgument(getCanonicalType(Arg.getAsType()));
6614 
6615     case TemplateArgument::Pack: {
6616       if (Arg.pack_size() == 0)
6617         return Arg;
6618 
6619       auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()];
6620       unsigned Idx = 0;
6621       for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
6622                                         AEnd = Arg.pack_end();
6623            A != AEnd; (void)++A, ++Idx)
6624         CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
6625 
6626       return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
6627     }
6628   }
6629 
6630   // Silence GCC warning
6631   llvm_unreachable("Unhandled template argument kind");
6632 }
6633 
6634 NestedNameSpecifier *
6635 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
6636   if (!NNS)
6637     return nullptr;
6638 
6639   switch (NNS->getKind()) {
6640   case NestedNameSpecifier::Identifier:
6641     // Canonicalize the prefix but keep the identifier the same.
6642     return NestedNameSpecifier::Create(*this,
6643                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
6644                                        NNS->getAsIdentifier());
6645 
6646   case NestedNameSpecifier::Namespace:
6647     // A namespace is canonical; build a nested-name-specifier with
6648     // this namespace and no prefix.
6649     return NestedNameSpecifier::Create(*this, nullptr,
6650                                  NNS->getAsNamespace()->getOriginalNamespace());
6651 
6652   case NestedNameSpecifier::NamespaceAlias:
6653     // A namespace is canonical; build a nested-name-specifier with
6654     // this namespace and no prefix.
6655     return NestedNameSpecifier::Create(*this, nullptr,
6656                                     NNS->getAsNamespaceAlias()->getNamespace()
6657                                                       ->getOriginalNamespace());
6658 
6659   // The difference between TypeSpec and TypeSpecWithTemplate is that the
6660   // latter will have the 'template' keyword when printed.
6661   case NestedNameSpecifier::TypeSpec:
6662   case NestedNameSpecifier::TypeSpecWithTemplate: {
6663     const Type *T = getCanonicalType(NNS->getAsType());
6664 
6665     // If we have some kind of dependent-named type (e.g., "typename T::type"),
6666     // break it apart into its prefix and identifier, then reconsititute those
6667     // as the canonical nested-name-specifier. This is required to canonicalize
6668     // a dependent nested-name-specifier involving typedefs of dependent-name
6669     // types, e.g.,
6670     //   typedef typename T::type T1;
6671     //   typedef typename T1::type T2;
6672     if (const auto *DNT = T->getAs<DependentNameType>())
6673       return NestedNameSpecifier::Create(
6674           *this, DNT->getQualifier(),
6675           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
6676     if (const auto *DTST = T->getAs<DependentTemplateSpecializationType>())
6677       return NestedNameSpecifier::Create(*this, DTST->getQualifier(), true,
6678                                          const_cast<Type *>(T));
6679 
6680     // TODO: Set 'Template' parameter to true for other template types.
6681     return NestedNameSpecifier::Create(*this, nullptr, false,
6682                                        const_cast<Type *>(T));
6683   }
6684 
6685   case NestedNameSpecifier::Global:
6686   case NestedNameSpecifier::Super:
6687     // The global specifier and __super specifer are canonical and unique.
6688     return NNS;
6689   }
6690 
6691   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6692 }
6693 
6694 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
6695   // Handle the non-qualified case efficiently.
6696   if (!T.hasLocalQualifiers()) {
6697     // Handle the common positive case fast.
6698     if (const auto *AT = dyn_cast<ArrayType>(T))
6699       return AT;
6700   }
6701 
6702   // Handle the common negative case fast.
6703   if (!isa<ArrayType>(T.getCanonicalType()))
6704     return nullptr;
6705 
6706   // Apply any qualifiers from the array type to the element type.  This
6707   // implements C99 6.7.3p8: "If the specification of an array type includes
6708   // any type qualifiers, the element type is so qualified, not the array type."
6709 
6710   // If we get here, we either have type qualifiers on the type, or we have
6711   // sugar such as a typedef in the way.  If we have type qualifiers on the type
6712   // we must propagate them down into the element type.
6713 
6714   SplitQualType split = T.getSplitDesugaredType();
6715   Qualifiers qs = split.Quals;
6716 
6717   // If we have a simple case, just return now.
6718   const auto *ATy = dyn_cast<ArrayType>(split.Ty);
6719   if (!ATy || qs.empty())
6720     return ATy;
6721 
6722   // Otherwise, we have an array and we have qualifiers on it.  Push the
6723   // qualifiers into the array element type and return a new array type.
6724   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
6725 
6726   if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
6727     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
6728                                                 CAT->getSizeExpr(),
6729                                                 CAT->getSizeModifier(),
6730                                            CAT->getIndexTypeCVRQualifiers()));
6731   if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
6732     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
6733                                                   IAT->getSizeModifier(),
6734                                            IAT->getIndexTypeCVRQualifiers()));
6735 
6736   if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
6737     return cast<ArrayType>(
6738                      getDependentSizedArrayType(NewEltTy,
6739                                                 DSAT->getSizeExpr(),
6740                                                 DSAT->getSizeModifier(),
6741                                               DSAT->getIndexTypeCVRQualifiers(),
6742                                                 DSAT->getBracketsRange()));
6743 
6744   const auto *VAT = cast<VariableArrayType>(ATy);
6745   return cast<ArrayType>(getVariableArrayType(NewEltTy,
6746                                               VAT->getSizeExpr(),
6747                                               VAT->getSizeModifier(),
6748                                               VAT->getIndexTypeCVRQualifiers(),
6749                                               VAT->getBracketsRange()));
6750 }
6751 
6752 QualType ASTContext::getAdjustedParameterType(QualType T) const {
6753   if (T->isArrayType() || T->isFunctionType())
6754     return getDecayedType(T);
6755   return T;
6756 }
6757 
6758 QualType ASTContext::getSignatureParameterType(QualType T) const {
6759   T = getVariableArrayDecayedType(T);
6760   T = getAdjustedParameterType(T);
6761   return T.getUnqualifiedType();
6762 }
6763 
6764 QualType ASTContext::getExceptionObjectType(QualType T) const {
6765   // C++ [except.throw]p3:
6766   //   A throw-expression initializes a temporary object, called the exception
6767   //   object, the type of which is determined by removing any top-level
6768   //   cv-qualifiers from the static type of the operand of throw and adjusting
6769   //   the type from "array of T" or "function returning T" to "pointer to T"
6770   //   or "pointer to function returning T", [...]
6771   T = getVariableArrayDecayedType(T);
6772   if (T->isArrayType() || T->isFunctionType())
6773     T = getDecayedType(T);
6774   return T.getUnqualifiedType();
6775 }
6776 
6777 /// getArrayDecayedType - Return the properly qualified result of decaying the
6778 /// specified array type to a pointer.  This operation is non-trivial when
6779 /// handling typedefs etc.  The canonical type of "T" must be an array type,
6780 /// this returns a pointer to a properly qualified element of the array.
6781 ///
6782 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
6783 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
6784   // Get the element type with 'getAsArrayType' so that we don't lose any
6785   // typedefs in the element type of the array.  This also handles propagation
6786   // of type qualifiers from the array type into the element type if present
6787   // (C99 6.7.3p8).
6788   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
6789   assert(PrettyArrayType && "Not an array type!");
6790 
6791   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
6792 
6793   // int x[restrict 4] ->  int *restrict
6794   QualType Result = getQualifiedType(PtrTy,
6795                                      PrettyArrayType->getIndexTypeQualifiers());
6796 
6797   // int x[_Nullable] -> int * _Nullable
6798   if (auto Nullability = Ty->getNullability(*this)) {
6799     Result = const_cast<ASTContext *>(this)->getAttributedType(
6800         AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
6801   }
6802   return Result;
6803 }
6804 
6805 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
6806   return getBaseElementType(array->getElementType());
6807 }
6808 
6809 QualType ASTContext::getBaseElementType(QualType type) const {
6810   Qualifiers qs;
6811   while (true) {
6812     SplitQualType split = type.getSplitDesugaredType();
6813     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
6814     if (!array) break;
6815 
6816     type = array->getElementType();
6817     qs.addConsistentQualifiers(split.Quals);
6818   }
6819 
6820   return getQualifiedType(type, qs);
6821 }
6822 
6823 /// getConstantArrayElementCount - Returns number of constant array elements.
6824 uint64_t
6825 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
6826   uint64_t ElementCount = 1;
6827   do {
6828     ElementCount *= CA->getSize().getZExtValue();
6829     CA = dyn_cast_or_null<ConstantArrayType>(
6830       CA->getElementType()->getAsArrayTypeUnsafe());
6831   } while (CA);
6832   return ElementCount;
6833 }
6834 
6835 /// getFloatingRank - Return a relative rank for floating point types.
6836 /// This routine will assert if passed a built-in type that isn't a float.
6837 static FloatingRank getFloatingRank(QualType T) {
6838   if (const auto *CT = T->getAs<ComplexType>())
6839     return getFloatingRank(CT->getElementType());
6840 
6841   switch (T->castAs<BuiltinType>()->getKind()) {
6842   default: llvm_unreachable("getFloatingRank(): not a floating type");
6843   case BuiltinType::Float16:    return Float16Rank;
6844   case BuiltinType::Half:       return HalfRank;
6845   case BuiltinType::Float:      return FloatRank;
6846   case BuiltinType::Double:     return DoubleRank;
6847   case BuiltinType::LongDouble: return LongDoubleRank;
6848   case BuiltinType::Float128:   return Float128Rank;
6849   case BuiltinType::BFloat16:   return BFloat16Rank;
6850   case BuiltinType::Ibm128:     return Ibm128Rank;
6851   }
6852 }
6853 
6854 /// getFloatingTypeOrder - Compare the rank of the two specified floating
6855 /// point types, ignoring the domain of the type (i.e. 'double' ==
6856 /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
6857 /// LHS < RHS, return -1.
6858 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
6859   FloatingRank LHSR = getFloatingRank(LHS);
6860   FloatingRank RHSR = getFloatingRank(RHS);
6861 
6862   if (LHSR == RHSR)
6863     return 0;
6864   if (LHSR > RHSR)
6865     return 1;
6866   return -1;
6867 }
6868 
6869 int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const {
6870   if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS))
6871     return 0;
6872   return getFloatingTypeOrder(LHS, RHS);
6873 }
6874 
6875 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
6876 /// routine will assert if passed a built-in type that isn't an integer or enum,
6877 /// or if it is not canonicalized.
6878 unsigned ASTContext::getIntegerRank(const Type *T) const {
6879   assert(T->isCanonicalUnqualified() && "T should be canonicalized");
6880 
6881   // Results in this 'losing' to any type of the same size, but winning if
6882   // larger.
6883   if (const auto *EIT = dyn_cast<BitIntType>(T))
6884     return 0 + (EIT->getNumBits() << 3);
6885 
6886   switch (cast<BuiltinType>(T)->getKind()) {
6887   default: llvm_unreachable("getIntegerRank(): not a built-in integer");
6888   case BuiltinType::Bool:
6889     return 1 + (getIntWidth(BoolTy) << 3);
6890   case BuiltinType::Char_S:
6891   case BuiltinType::Char_U:
6892   case BuiltinType::SChar:
6893   case BuiltinType::UChar:
6894     return 2 + (getIntWidth(CharTy) << 3);
6895   case BuiltinType::Short:
6896   case BuiltinType::UShort:
6897     return 3 + (getIntWidth(ShortTy) << 3);
6898   case BuiltinType::Int:
6899   case BuiltinType::UInt:
6900     return 4 + (getIntWidth(IntTy) << 3);
6901   case BuiltinType::Long:
6902   case BuiltinType::ULong:
6903     return 5 + (getIntWidth(LongTy) << 3);
6904   case BuiltinType::LongLong:
6905   case BuiltinType::ULongLong:
6906     return 6 + (getIntWidth(LongLongTy) << 3);
6907   case BuiltinType::Int128:
6908   case BuiltinType::UInt128:
6909     return 7 + (getIntWidth(Int128Ty) << 3);
6910   }
6911 }
6912 
6913 /// Whether this is a promotable bitfield reference according
6914 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
6915 ///
6916 /// \returns the type this bit-field will promote to, or NULL if no
6917 /// promotion occurs.
6918 QualType ASTContext::isPromotableBitField(Expr *E) const {
6919   if (E->isTypeDependent() || E->isValueDependent())
6920     return {};
6921 
6922   // C++ [conv.prom]p5:
6923   //    If the bit-field has an enumerated type, it is treated as any other
6924   //    value of that type for promotion purposes.
6925   if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
6926     return {};
6927 
6928   // FIXME: We should not do this unless E->refersToBitField() is true. This
6929   // matters in C where getSourceBitField() will find bit-fields for various
6930   // cases where the source expression is not a bit-field designator.
6931 
6932   FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
6933   if (!Field)
6934     return {};
6935 
6936   QualType FT = Field->getType();
6937 
6938   uint64_t BitWidth = Field->getBitWidthValue(*this);
6939   uint64_t IntSize = getTypeSize(IntTy);
6940   // C++ [conv.prom]p5:
6941   //   A prvalue for an integral bit-field can be converted to a prvalue of type
6942   //   int if int can represent all the values of the bit-field; otherwise, it
6943   //   can be converted to unsigned int if unsigned int can represent all the
6944   //   values of the bit-field. If the bit-field is larger yet, no integral
6945   //   promotion applies to it.
6946   // C11 6.3.1.1/2:
6947   //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
6948   //   If an int can represent all values of the original type (as restricted by
6949   //   the width, for a bit-field), the value is converted to an int; otherwise,
6950   //   it is converted to an unsigned int.
6951   //
6952   // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
6953   //        We perform that promotion here to match GCC and C++.
6954   // FIXME: C does not permit promotion of an enum bit-field whose rank is
6955   //        greater than that of 'int'. We perform that promotion to match GCC.
6956   if (BitWidth < IntSize)
6957     return IntTy;
6958 
6959   if (BitWidth == IntSize)
6960     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
6961 
6962   // Bit-fields wider than int are not subject to promotions, and therefore act
6963   // like the base type. GCC has some weird bugs in this area that we
6964   // deliberately do not follow (GCC follows a pre-standard resolution to
6965   // C's DR315 which treats bit-width as being part of the type, and this leaks
6966   // into their semantics in some cases).
6967   return {};
6968 }
6969 
6970 /// getPromotedIntegerType - Returns the type that Promotable will
6971 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
6972 /// integer type.
6973 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
6974   assert(!Promotable.isNull());
6975   assert(Promotable->isPromotableIntegerType());
6976   if (const auto *ET = Promotable->getAs<EnumType>())
6977     return ET->getDecl()->getPromotionType();
6978 
6979   if (const auto *BT = Promotable->getAs<BuiltinType>()) {
6980     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
6981     // (3.9.1) can be converted to a prvalue of the first of the following
6982     // types that can represent all the values of its underlying type:
6983     // int, unsigned int, long int, unsigned long int, long long int, or
6984     // unsigned long long int [...]
6985     // FIXME: Is there some better way to compute this?
6986     if (BT->getKind() == BuiltinType::WChar_S ||
6987         BT->getKind() == BuiltinType::WChar_U ||
6988         BT->getKind() == BuiltinType::Char8 ||
6989         BT->getKind() == BuiltinType::Char16 ||
6990         BT->getKind() == BuiltinType::Char32) {
6991       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
6992       uint64_t FromSize = getTypeSize(BT);
6993       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
6994                                   LongLongTy, UnsignedLongLongTy };
6995       for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
6996         uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
6997         if (FromSize < ToSize ||
6998             (FromSize == ToSize &&
6999              FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
7000           return PromoteTypes[Idx];
7001       }
7002       llvm_unreachable("char type should fit into long long");
7003     }
7004   }
7005 
7006   // At this point, we should have a signed or unsigned integer type.
7007   if (Promotable->isSignedIntegerType())
7008     return IntTy;
7009   uint64_t PromotableSize = getIntWidth(Promotable);
7010   uint64_t IntSize = getIntWidth(IntTy);
7011   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
7012   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
7013 }
7014 
7015 /// Recurses in pointer/array types until it finds an objc retainable
7016 /// type and returns its ownership.
7017 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
7018   while (!T.isNull()) {
7019     if (T.getObjCLifetime() != Qualifiers::OCL_None)
7020       return T.getObjCLifetime();
7021     if (T->isArrayType())
7022       T = getBaseElementType(T);
7023     else if (const auto *PT = T->getAs<PointerType>())
7024       T = PT->getPointeeType();
7025     else if (const auto *RT = T->getAs<ReferenceType>())
7026       T = RT->getPointeeType();
7027     else
7028       break;
7029   }
7030 
7031   return Qualifiers::OCL_None;
7032 }
7033 
7034 static const Type *getIntegerTypeForEnum(const EnumType *ET) {
7035   // Incomplete enum types are not treated as integer types.
7036   // FIXME: In C++, enum types are never integer types.
7037   if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
7038     return ET->getDecl()->getIntegerType().getTypePtr();
7039   return nullptr;
7040 }
7041 
7042 /// getIntegerTypeOrder - Returns the highest ranked integer type:
7043 /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
7044 /// LHS < RHS, return -1.
7045 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
7046   const Type *LHSC = getCanonicalType(LHS).getTypePtr();
7047   const Type *RHSC = getCanonicalType(RHS).getTypePtr();
7048 
7049   // Unwrap enums to their underlying type.
7050   if (const auto *ET = dyn_cast<EnumType>(LHSC))
7051     LHSC = getIntegerTypeForEnum(ET);
7052   if (const auto *ET = dyn_cast<EnumType>(RHSC))
7053     RHSC = getIntegerTypeForEnum(ET);
7054 
7055   if (LHSC == RHSC) return 0;
7056 
7057   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
7058   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
7059 
7060   unsigned LHSRank = getIntegerRank(LHSC);
7061   unsigned RHSRank = getIntegerRank(RHSC);
7062 
7063   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
7064     if (LHSRank == RHSRank) return 0;
7065     return LHSRank > RHSRank ? 1 : -1;
7066   }
7067 
7068   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
7069   if (LHSUnsigned) {
7070     // If the unsigned [LHS] type is larger, return it.
7071     if (LHSRank >= RHSRank)
7072       return 1;
7073 
7074     // If the signed type can represent all values of the unsigned type, it
7075     // wins.  Because we are dealing with 2's complement and types that are
7076     // powers of two larger than each other, this is always safe.
7077     return -1;
7078   }
7079 
7080   // If the unsigned [RHS] type is larger, return it.
7081   if (RHSRank >= LHSRank)
7082     return -1;
7083 
7084   // If the signed type can represent all values of the unsigned type, it
7085   // wins.  Because we are dealing with 2's complement and types that are
7086   // powers of two larger than each other, this is always safe.
7087   return 1;
7088 }
7089 
7090 TypedefDecl *ASTContext::getCFConstantStringDecl() const {
7091   if (CFConstantStringTypeDecl)
7092     return CFConstantStringTypeDecl;
7093 
7094   assert(!CFConstantStringTagDecl &&
7095          "tag and typedef should be initialized together");
7096   CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
7097   CFConstantStringTagDecl->startDefinition();
7098 
7099   struct {
7100     QualType Type;
7101     const char *Name;
7102   } Fields[5];
7103   unsigned Count = 0;
7104 
7105   /// Objective-C ABI
7106   ///
7107   ///    typedef struct __NSConstantString_tag {
7108   ///      const int *isa;
7109   ///      int flags;
7110   ///      const char *str;
7111   ///      long length;
7112   ///    } __NSConstantString;
7113   ///
7114   /// Swift ABI (4.1, 4.2)
7115   ///
7116   ///    typedef struct __NSConstantString_tag {
7117   ///      uintptr_t _cfisa;
7118   ///      uintptr_t _swift_rc;
7119   ///      _Atomic(uint64_t) _cfinfoa;
7120   ///      const char *_ptr;
7121   ///      uint32_t _length;
7122   ///    } __NSConstantString;
7123   ///
7124   /// Swift ABI (5.0)
7125   ///
7126   ///    typedef struct __NSConstantString_tag {
7127   ///      uintptr_t _cfisa;
7128   ///      uintptr_t _swift_rc;
7129   ///      _Atomic(uint64_t) _cfinfoa;
7130   ///      const char *_ptr;
7131   ///      uintptr_t _length;
7132   ///    } __NSConstantString;
7133 
7134   const auto CFRuntime = getLangOpts().CFRuntime;
7135   if (static_cast<unsigned>(CFRuntime) <
7136       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
7137     Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
7138     Fields[Count++] = { IntTy, "flags" };
7139     Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
7140     Fields[Count++] = { LongTy, "length" };
7141   } else {
7142     Fields[Count++] = { getUIntPtrType(), "_cfisa" };
7143     Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
7144     Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
7145     Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
7146     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
7147         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
7148       Fields[Count++] = { IntTy, "_ptr" };
7149     else
7150       Fields[Count++] = { getUIntPtrType(), "_ptr" };
7151   }
7152 
7153   // Create fields
7154   for (unsigned i = 0; i < Count; ++i) {
7155     FieldDecl *Field =
7156         FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
7157                           SourceLocation(), &Idents.get(Fields[i].Name),
7158                           Fields[i].Type, /*TInfo=*/nullptr,
7159                           /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
7160     Field->setAccess(AS_public);
7161     CFConstantStringTagDecl->addDecl(Field);
7162   }
7163 
7164   CFConstantStringTagDecl->completeDefinition();
7165   // This type is designed to be compatible with NSConstantString, but cannot
7166   // use the same name, since NSConstantString is an interface.
7167   auto tagType = getTagDeclType(CFConstantStringTagDecl);
7168   CFConstantStringTypeDecl =
7169       buildImplicitTypedef(tagType, "__NSConstantString");
7170 
7171   return CFConstantStringTypeDecl;
7172 }
7173 
7174 RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
7175   if (!CFConstantStringTagDecl)
7176     getCFConstantStringDecl(); // Build the tag and the typedef.
7177   return CFConstantStringTagDecl;
7178 }
7179 
7180 // getCFConstantStringType - Return the type used for constant CFStrings.
7181 QualType ASTContext::getCFConstantStringType() const {
7182   return getTypedefType(getCFConstantStringDecl());
7183 }
7184 
7185 QualType ASTContext::getObjCSuperType() const {
7186   if (ObjCSuperType.isNull()) {
7187     RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
7188     getTranslationUnitDecl()->addDecl(ObjCSuperTypeDecl);
7189     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
7190   }
7191   return ObjCSuperType;
7192 }
7193 
7194 void ASTContext::setCFConstantStringType(QualType T) {
7195   const auto *TD = T->castAs<TypedefType>();
7196   CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
7197   const auto *TagType =
7198       CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>();
7199   CFConstantStringTagDecl = TagType->getDecl();
7200 }
7201 
7202 QualType ASTContext::getBlockDescriptorType() const {
7203   if (BlockDescriptorType)
7204     return getTagDeclType(BlockDescriptorType);
7205 
7206   RecordDecl *RD;
7207   // FIXME: Needs the FlagAppleBlock bit.
7208   RD = buildImplicitRecord("__block_descriptor");
7209   RD->startDefinition();
7210 
7211   QualType FieldTypes[] = {
7212     UnsignedLongTy,
7213     UnsignedLongTy,
7214   };
7215 
7216   static const char *const FieldNames[] = {
7217     "reserved",
7218     "Size"
7219   };
7220 
7221   for (size_t i = 0; i < 2; ++i) {
7222     FieldDecl *Field = FieldDecl::Create(
7223         *this, RD, SourceLocation(), SourceLocation(),
7224         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
7225         /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
7226     Field->setAccess(AS_public);
7227     RD->addDecl(Field);
7228   }
7229 
7230   RD->completeDefinition();
7231 
7232   BlockDescriptorType = RD;
7233 
7234   return getTagDeclType(BlockDescriptorType);
7235 }
7236 
7237 QualType ASTContext::getBlockDescriptorExtendedType() const {
7238   if (BlockDescriptorExtendedType)
7239     return getTagDeclType(BlockDescriptorExtendedType);
7240 
7241   RecordDecl *RD;
7242   // FIXME: Needs the FlagAppleBlock bit.
7243   RD = buildImplicitRecord("__block_descriptor_withcopydispose");
7244   RD->startDefinition();
7245 
7246   QualType FieldTypes[] = {
7247     UnsignedLongTy,
7248     UnsignedLongTy,
7249     getPointerType(VoidPtrTy),
7250     getPointerType(VoidPtrTy)
7251   };
7252 
7253   static const char *const FieldNames[] = {
7254     "reserved",
7255     "Size",
7256     "CopyFuncPtr",
7257     "DestroyFuncPtr"
7258   };
7259 
7260   for (size_t i = 0; i < 4; ++i) {
7261     FieldDecl *Field = FieldDecl::Create(
7262         *this, RD, SourceLocation(), SourceLocation(),
7263         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
7264         /*BitWidth=*/nullptr,
7265         /*Mutable=*/false, ICIS_NoInit);
7266     Field->setAccess(AS_public);
7267     RD->addDecl(Field);
7268   }
7269 
7270   RD->completeDefinition();
7271 
7272   BlockDescriptorExtendedType = RD;
7273   return getTagDeclType(BlockDescriptorExtendedType);
7274 }
7275 
7276 OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
7277   const auto *BT = dyn_cast<BuiltinType>(T);
7278 
7279   if (!BT) {
7280     if (isa<PipeType>(T))
7281       return OCLTK_Pipe;
7282 
7283     return OCLTK_Default;
7284   }
7285 
7286   switch (BT->getKind()) {
7287 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \
7288   case BuiltinType::Id:                                                        \
7289     return OCLTK_Image;
7290 #include "clang/Basic/OpenCLImageTypes.def"
7291 
7292   case BuiltinType::OCLClkEvent:
7293     return OCLTK_ClkEvent;
7294 
7295   case BuiltinType::OCLEvent:
7296     return OCLTK_Event;
7297 
7298   case BuiltinType::OCLQueue:
7299     return OCLTK_Queue;
7300 
7301   case BuiltinType::OCLReserveID:
7302     return OCLTK_ReserveID;
7303 
7304   case BuiltinType::OCLSampler:
7305     return OCLTK_Sampler;
7306 
7307   default:
7308     return OCLTK_Default;
7309   }
7310 }
7311 
7312 LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
7313   return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
7314 }
7315 
7316 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
7317 /// requires copy/dispose. Note that this must match the logic
7318 /// in buildByrefHelpers.
7319 bool ASTContext::BlockRequiresCopying(QualType Ty,
7320                                       const VarDecl *D) {
7321   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
7322     const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
7323     if (!copyExpr && record->hasTrivialDestructor()) return false;
7324 
7325     return true;
7326   }
7327 
7328   // The block needs copy/destroy helpers if Ty is non-trivial to destructively
7329   // move or destroy.
7330   if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
7331     return true;
7332 
7333   if (!Ty->isObjCRetainableType()) return false;
7334 
7335   Qualifiers qs = Ty.getQualifiers();
7336 
7337   // If we have lifetime, that dominates.
7338   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
7339     switch (lifetime) {
7340       case Qualifiers::OCL_None: llvm_unreachable("impossible");
7341 
7342       // These are just bits as far as the runtime is concerned.
7343       case Qualifiers::OCL_ExplicitNone:
7344       case Qualifiers::OCL_Autoreleasing:
7345         return false;
7346 
7347       // These cases should have been taken care of when checking the type's
7348       // non-triviality.
7349       case Qualifiers::OCL_Weak:
7350       case Qualifiers::OCL_Strong:
7351         llvm_unreachable("impossible");
7352     }
7353     llvm_unreachable("fell out of lifetime switch!");
7354   }
7355   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
7356           Ty->isObjCObjectPointerType());
7357 }
7358 
7359 bool ASTContext::getByrefLifetime(QualType Ty,
7360                               Qualifiers::ObjCLifetime &LifeTime,
7361                               bool &HasByrefExtendedLayout) const {
7362   if (!getLangOpts().ObjC ||
7363       getLangOpts().getGC() != LangOptions::NonGC)
7364     return false;
7365 
7366   HasByrefExtendedLayout = false;
7367   if (Ty->isRecordType()) {
7368     HasByrefExtendedLayout = true;
7369     LifeTime = Qualifiers::OCL_None;
7370   } else if ((LifeTime = Ty.getObjCLifetime())) {
7371     // Honor the ARC qualifiers.
7372   } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
7373     // The MRR rule.
7374     LifeTime = Qualifiers::OCL_ExplicitNone;
7375   } else {
7376     LifeTime = Qualifiers::OCL_None;
7377   }
7378   return true;
7379 }
7380 
7381 CanQualType ASTContext::getNSUIntegerType() const {
7382   assert(Target && "Expected target to be initialized");
7383   const llvm::Triple &T = Target->getTriple();
7384   // Windows is LLP64 rather than LP64
7385   if (T.isOSWindows() && T.isArch64Bit())
7386     return UnsignedLongLongTy;
7387   return UnsignedLongTy;
7388 }
7389 
7390 CanQualType ASTContext::getNSIntegerType() const {
7391   assert(Target && "Expected target to be initialized");
7392   const llvm::Triple &T = Target->getTriple();
7393   // Windows is LLP64 rather than LP64
7394   if (T.isOSWindows() && T.isArch64Bit())
7395     return LongLongTy;
7396   return LongTy;
7397 }
7398 
7399 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
7400   if (!ObjCInstanceTypeDecl)
7401     ObjCInstanceTypeDecl =
7402         buildImplicitTypedef(getObjCIdType(), "instancetype");
7403   return ObjCInstanceTypeDecl;
7404 }
7405 
7406 // This returns true if a type has been typedefed to BOOL:
7407 // typedef <type> BOOL;
7408 static bool isTypeTypedefedAsBOOL(QualType T) {
7409   if (const auto *TT = dyn_cast<TypedefType>(T))
7410     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
7411       return II->isStr("BOOL");
7412 
7413   return false;
7414 }
7415 
7416 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
7417 /// purpose.
7418 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
7419   if (!type->isIncompleteArrayType() && type->isIncompleteType())
7420     return CharUnits::Zero();
7421 
7422   CharUnits sz = getTypeSizeInChars(type);
7423 
7424   // Make all integer and enum types at least as large as an int
7425   if (sz.isPositive() && type->isIntegralOrEnumerationType())
7426     sz = std::max(sz, getTypeSizeInChars(IntTy));
7427   // Treat arrays as pointers, since that's how they're passed in.
7428   else if (type->isArrayType())
7429     sz = getTypeSizeInChars(VoidPtrTy);
7430   return sz;
7431 }
7432 
7433 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
7434   return getTargetInfo().getCXXABI().isMicrosoft() &&
7435          VD->isStaticDataMember() &&
7436          VD->getType()->isIntegralOrEnumerationType() &&
7437          !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
7438 }
7439 
7440 ASTContext::InlineVariableDefinitionKind
7441 ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
7442   if (!VD->isInline())
7443     return InlineVariableDefinitionKind::None;
7444 
7445   // In almost all cases, it's a weak definition.
7446   auto *First = VD->getFirstDecl();
7447   if (First->isInlineSpecified() || !First->isStaticDataMember())
7448     return InlineVariableDefinitionKind::Weak;
7449 
7450   // If there's a file-context declaration in this translation unit, it's a
7451   // non-discardable definition.
7452   for (auto *D : VD->redecls())
7453     if (D->getLexicalDeclContext()->isFileContext() &&
7454         !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
7455       return InlineVariableDefinitionKind::Strong;
7456 
7457   // If we've not seen one yet, we don't know.
7458   return InlineVariableDefinitionKind::WeakUnknown;
7459 }
7460 
7461 static std::string charUnitsToString(const CharUnits &CU) {
7462   return llvm::itostr(CU.getQuantity());
7463 }
7464 
7465 /// getObjCEncodingForBlock - Return the encoded type for this block
7466 /// declaration.
7467 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
7468   std::string S;
7469 
7470   const BlockDecl *Decl = Expr->getBlockDecl();
7471   QualType BlockTy =
7472       Expr->getType()->castAs<BlockPointerType>()->getPointeeType();
7473   QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType();
7474   // Encode result type.
7475   if (getLangOpts().EncodeExtendedBlockSig)
7476     getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S,
7477                                       true /*Extended*/);
7478   else
7479     getObjCEncodingForType(BlockReturnTy, S);
7480   // Compute size of all parameters.
7481   // Start with computing size of a pointer in number of bytes.
7482   // FIXME: There might(should) be a better way of doing this computation!
7483   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
7484   CharUnits ParmOffset = PtrSize;
7485   for (auto PI : Decl->parameters()) {
7486     QualType PType = PI->getType();
7487     CharUnits sz = getObjCEncodingTypeSize(PType);
7488     if (sz.isZero())
7489       continue;
7490     assert(sz.isPositive() && "BlockExpr - Incomplete param type");
7491     ParmOffset += sz;
7492   }
7493   // Size of the argument frame
7494   S += charUnitsToString(ParmOffset);
7495   // Block pointer and offset.
7496   S += "@?0";
7497 
7498   // Argument types.
7499   ParmOffset = PtrSize;
7500   for (auto PVDecl : Decl->parameters()) {
7501     QualType PType = PVDecl->getOriginalType();
7502     if (const auto *AT =
7503             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7504       // Use array's original type only if it has known number of
7505       // elements.
7506       if (!isa<ConstantArrayType>(AT))
7507         PType = PVDecl->getType();
7508     } else if (PType->isFunctionType())
7509       PType = PVDecl->getType();
7510     if (getLangOpts().EncodeExtendedBlockSig)
7511       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
7512                                       S, true /*Extended*/);
7513     else
7514       getObjCEncodingForType(PType, S);
7515     S += charUnitsToString(ParmOffset);
7516     ParmOffset += getObjCEncodingTypeSize(PType);
7517   }
7518 
7519   return S;
7520 }
7521 
7522 std::string
7523 ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
7524   std::string S;
7525   // Encode result type.
7526   getObjCEncodingForType(Decl->getReturnType(), S);
7527   CharUnits ParmOffset;
7528   // Compute size of all parameters.
7529   for (auto PI : Decl->parameters()) {
7530     QualType PType = PI->getType();
7531     CharUnits sz = getObjCEncodingTypeSize(PType);
7532     if (sz.isZero())
7533       continue;
7534 
7535     assert(sz.isPositive() &&
7536            "getObjCEncodingForFunctionDecl - Incomplete param type");
7537     ParmOffset += sz;
7538   }
7539   S += charUnitsToString(ParmOffset);
7540   ParmOffset = CharUnits::Zero();
7541 
7542   // Argument types.
7543   for (auto PVDecl : Decl->parameters()) {
7544     QualType PType = PVDecl->getOriginalType();
7545     if (const auto *AT =
7546             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7547       // Use array's original type only if it has known number of
7548       // elements.
7549       if (!isa<ConstantArrayType>(AT))
7550         PType = PVDecl->getType();
7551     } else if (PType->isFunctionType())
7552       PType = PVDecl->getType();
7553     getObjCEncodingForType(PType, S);
7554     S += charUnitsToString(ParmOffset);
7555     ParmOffset += getObjCEncodingTypeSize(PType);
7556   }
7557 
7558   return S;
7559 }
7560 
7561 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
7562 /// method parameter or return type. If Extended, include class names and
7563 /// block object types.
7564 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
7565                                                    QualType T, std::string& S,
7566                                                    bool Extended) const {
7567   // Encode type qualifier, 'in', 'inout', etc. for the parameter.
7568   getObjCEncodingForTypeQualifier(QT, S);
7569   // Encode parameter type.
7570   ObjCEncOptions Options = ObjCEncOptions()
7571                                .setExpandPointedToStructures()
7572                                .setExpandStructures()
7573                                .setIsOutermostType();
7574   if (Extended)
7575     Options.setEncodeBlockParameters().setEncodeClassNames();
7576   getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr);
7577 }
7578 
7579 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
7580 /// declaration.
7581 std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
7582                                                      bool Extended) const {
7583   // FIXME: This is not very efficient.
7584   // Encode return type.
7585   std::string S;
7586   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
7587                                     Decl->getReturnType(), S, Extended);
7588   // Compute size of all parameters.
7589   // Start with computing size of a pointer in number of bytes.
7590   // FIXME: There might(should) be a better way of doing this computation!
7591   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
7592   // The first two arguments (self and _cmd) are pointers; account for
7593   // their size.
7594   CharUnits ParmOffset = 2 * PtrSize;
7595   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7596        E = Decl->sel_param_end(); PI != E; ++PI) {
7597     QualType PType = (*PI)->getType();
7598     CharUnits sz = getObjCEncodingTypeSize(PType);
7599     if (sz.isZero())
7600       continue;
7601 
7602     assert(sz.isPositive() &&
7603            "getObjCEncodingForMethodDecl - Incomplete param type");
7604     ParmOffset += sz;
7605   }
7606   S += charUnitsToString(ParmOffset);
7607   S += "@0:";
7608   S += charUnitsToString(PtrSize);
7609 
7610   // Argument types.
7611   ParmOffset = 2 * PtrSize;
7612   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7613        E = Decl->sel_param_end(); PI != E; ++PI) {
7614     const ParmVarDecl *PVDecl = *PI;
7615     QualType PType = PVDecl->getOriginalType();
7616     if (const auto *AT =
7617             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7618       // Use array's original type only if it has known number of
7619       // elements.
7620       if (!isa<ConstantArrayType>(AT))
7621         PType = PVDecl->getType();
7622     } else if (PType->isFunctionType())
7623       PType = PVDecl->getType();
7624     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
7625                                       PType, S, Extended);
7626     S += charUnitsToString(ParmOffset);
7627     ParmOffset += getObjCEncodingTypeSize(PType);
7628   }
7629 
7630   return S;
7631 }
7632 
7633 ObjCPropertyImplDecl *
7634 ASTContext::getObjCPropertyImplDeclForPropertyDecl(
7635                                       const ObjCPropertyDecl *PD,
7636                                       const Decl *Container) const {
7637   if (!Container)
7638     return nullptr;
7639   if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
7640     for (auto *PID : CID->property_impls())
7641       if (PID->getPropertyDecl() == PD)
7642         return PID;
7643   } else {
7644     const auto *OID = cast<ObjCImplementationDecl>(Container);
7645     for (auto *PID : OID->property_impls())
7646       if (PID->getPropertyDecl() == PD)
7647         return PID;
7648   }
7649   return nullptr;
7650 }
7651 
7652 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
7653 /// property declaration. If non-NULL, Container must be either an
7654 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
7655 /// NULL when getting encodings for protocol properties.
7656 /// Property attributes are stored as a comma-delimited C string. The simple
7657 /// attributes readonly and bycopy are encoded as single characters. The
7658 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
7659 /// encoded as single characters, followed by an identifier. Property types
7660 /// are also encoded as a parametrized attribute. The characters used to encode
7661 /// these attributes are defined by the following enumeration:
7662 /// @code
7663 /// enum PropertyAttributes {
7664 /// kPropertyReadOnly = 'R',   // property is read-only.
7665 /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
7666 /// kPropertyByref = '&',  // property is a reference to the value last assigned
7667 /// kPropertyDynamic = 'D',    // property is dynamic
7668 /// kPropertyGetter = 'G',     // followed by getter selector name
7669 /// kPropertySetter = 'S',     // followed by setter selector name
7670 /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
7671 /// kPropertyType = 'T'              // followed by old-style type encoding.
7672 /// kPropertyWeak = 'W'              // 'weak' property
7673 /// kPropertyStrong = 'P'            // property GC'able
7674 /// kPropertyNonAtomic = 'N'         // property non-atomic
7675 /// };
7676 /// @endcode
7677 std::string
7678 ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
7679                                            const Decl *Container) const {
7680   // Collect information from the property implementation decl(s).
7681   bool Dynamic = false;
7682   ObjCPropertyImplDecl *SynthesizePID = nullptr;
7683 
7684   if (ObjCPropertyImplDecl *PropertyImpDecl =
7685       getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
7686     if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
7687       Dynamic = true;
7688     else
7689       SynthesizePID = PropertyImpDecl;
7690   }
7691 
7692   // FIXME: This is not very efficient.
7693   std::string S = "T";
7694 
7695   // Encode result type.
7696   // GCC has some special rules regarding encoding of properties which
7697   // closely resembles encoding of ivars.
7698   getObjCEncodingForPropertyType(PD->getType(), S);
7699 
7700   if (PD->isReadOnly()) {
7701     S += ",R";
7702     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy)
7703       S += ",C";
7704     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain)
7705       S += ",&";
7706     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak)
7707       S += ",W";
7708   } else {
7709     switch (PD->getSetterKind()) {
7710     case ObjCPropertyDecl::Assign: break;
7711     case ObjCPropertyDecl::Copy:   S += ",C"; break;
7712     case ObjCPropertyDecl::Retain: S += ",&"; break;
7713     case ObjCPropertyDecl::Weak:   S += ",W"; break;
7714     }
7715   }
7716 
7717   // It really isn't clear at all what this means, since properties
7718   // are "dynamic by default".
7719   if (Dynamic)
7720     S += ",D";
7721 
7722   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic)
7723     S += ",N";
7724 
7725   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) {
7726     S += ",G";
7727     S += PD->getGetterName().getAsString();
7728   }
7729 
7730   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) {
7731     S += ",S";
7732     S += PD->getSetterName().getAsString();
7733   }
7734 
7735   if (SynthesizePID) {
7736     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
7737     S += ",V";
7738     S += OID->getNameAsString();
7739   }
7740 
7741   // FIXME: OBJCGC: weak & strong
7742   return S;
7743 }
7744 
7745 /// getLegacyIntegralTypeEncoding -
7746 /// Another legacy compatibility encoding: 32-bit longs are encoded as
7747 /// 'l' or 'L' , but not always.  For typedefs, we need to use
7748 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
7749 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
7750   if (isa<TypedefType>(PointeeTy.getTypePtr())) {
7751     if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
7752       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
7753         PointeeTy = UnsignedIntTy;
7754       else
7755         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
7756           PointeeTy = IntTy;
7757     }
7758   }
7759 }
7760 
7761 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
7762                                         const FieldDecl *Field,
7763                                         QualType *NotEncodedT) const {
7764   // We follow the behavior of gcc, expanding structures which are
7765   // directly pointed to, and expanding embedded structures. Note that
7766   // these rules are sufficient to prevent recursive encoding of the
7767   // same type.
7768   getObjCEncodingForTypeImpl(T, S,
7769                              ObjCEncOptions()
7770                                  .setExpandPointedToStructures()
7771                                  .setExpandStructures()
7772                                  .setIsOutermostType(),
7773                              Field, NotEncodedT);
7774 }
7775 
7776 void ASTContext::getObjCEncodingForPropertyType(QualType T,
7777                                                 std::string& S) const {
7778   // Encode result type.
7779   // GCC has some special rules regarding encoding of properties which
7780   // closely resembles encoding of ivars.
7781   getObjCEncodingForTypeImpl(T, S,
7782                              ObjCEncOptions()
7783                                  .setExpandPointedToStructures()
7784                                  .setExpandStructures()
7785                                  .setIsOutermostType()
7786                                  .setEncodingProperty(),
7787                              /*Field=*/nullptr);
7788 }
7789 
7790 static char getObjCEncodingForPrimitiveType(const ASTContext *C,
7791                                             const BuiltinType *BT) {
7792     BuiltinType::Kind kind = BT->getKind();
7793     switch (kind) {
7794     case BuiltinType::Void:       return 'v';
7795     case BuiltinType::Bool:       return 'B';
7796     case BuiltinType::Char8:
7797     case BuiltinType::Char_U:
7798     case BuiltinType::UChar:      return 'C';
7799     case BuiltinType::Char16:
7800     case BuiltinType::UShort:     return 'S';
7801     case BuiltinType::Char32:
7802     case BuiltinType::UInt:       return 'I';
7803     case BuiltinType::ULong:
7804         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
7805     case BuiltinType::UInt128:    return 'T';
7806     case BuiltinType::ULongLong:  return 'Q';
7807     case BuiltinType::Char_S:
7808     case BuiltinType::SChar:      return 'c';
7809     case BuiltinType::Short:      return 's';
7810     case BuiltinType::WChar_S:
7811     case BuiltinType::WChar_U:
7812     case BuiltinType::Int:        return 'i';
7813     case BuiltinType::Long:
7814       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
7815     case BuiltinType::LongLong:   return 'q';
7816     case BuiltinType::Int128:     return 't';
7817     case BuiltinType::Float:      return 'f';
7818     case BuiltinType::Double:     return 'd';
7819     case BuiltinType::LongDouble: return 'D';
7820     case BuiltinType::NullPtr:    return '*'; // like char*
7821 
7822     case BuiltinType::BFloat16:
7823     case BuiltinType::Float16:
7824     case BuiltinType::Float128:
7825     case BuiltinType::Ibm128:
7826     case BuiltinType::Half:
7827     case BuiltinType::ShortAccum:
7828     case BuiltinType::Accum:
7829     case BuiltinType::LongAccum:
7830     case BuiltinType::UShortAccum:
7831     case BuiltinType::UAccum:
7832     case BuiltinType::ULongAccum:
7833     case BuiltinType::ShortFract:
7834     case BuiltinType::Fract:
7835     case BuiltinType::LongFract:
7836     case BuiltinType::UShortFract:
7837     case BuiltinType::UFract:
7838     case BuiltinType::ULongFract:
7839     case BuiltinType::SatShortAccum:
7840     case BuiltinType::SatAccum:
7841     case BuiltinType::SatLongAccum:
7842     case BuiltinType::SatUShortAccum:
7843     case BuiltinType::SatUAccum:
7844     case BuiltinType::SatULongAccum:
7845     case BuiltinType::SatShortFract:
7846     case BuiltinType::SatFract:
7847     case BuiltinType::SatLongFract:
7848     case BuiltinType::SatUShortFract:
7849     case BuiltinType::SatUFract:
7850     case BuiltinType::SatULongFract:
7851       // FIXME: potentially need @encodes for these!
7852       return ' ';
7853 
7854 #define SVE_TYPE(Name, Id, SingletonId) \
7855     case BuiltinType::Id:
7856 #include "clang/Basic/AArch64SVEACLETypes.def"
7857 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
7858 #include "clang/Basic/RISCVVTypes.def"
7859       {
7860         DiagnosticsEngine &Diags = C->getDiagnostics();
7861         unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
7862                                                 "cannot yet @encode type %0");
7863         Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy());
7864         return ' ';
7865       }
7866 
7867     case BuiltinType::ObjCId:
7868     case BuiltinType::ObjCClass:
7869     case BuiltinType::ObjCSel:
7870       llvm_unreachable("@encoding ObjC primitive type");
7871 
7872     // OpenCL and placeholder types don't need @encodings.
7873 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7874     case BuiltinType::Id:
7875 #include "clang/Basic/OpenCLImageTypes.def"
7876 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
7877     case BuiltinType::Id:
7878 #include "clang/Basic/OpenCLExtensionTypes.def"
7879     case BuiltinType::OCLEvent:
7880     case BuiltinType::OCLClkEvent:
7881     case BuiltinType::OCLQueue:
7882     case BuiltinType::OCLReserveID:
7883     case BuiltinType::OCLSampler:
7884     case BuiltinType::Dependent:
7885 #define PPC_VECTOR_TYPE(Name, Id, Size) \
7886     case BuiltinType::Id:
7887 #include "clang/Basic/PPCTypes.def"
7888 #define BUILTIN_TYPE(KIND, ID)
7889 #define PLACEHOLDER_TYPE(KIND, ID) \
7890     case BuiltinType::KIND:
7891 #include "clang/AST/BuiltinTypes.def"
7892       llvm_unreachable("invalid builtin type for @encode");
7893     }
7894     llvm_unreachable("invalid BuiltinType::Kind value");
7895 }
7896 
7897 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
7898   EnumDecl *Enum = ET->getDecl();
7899 
7900   // The encoding of an non-fixed enum type is always 'i', regardless of size.
7901   if (!Enum->isFixed())
7902     return 'i';
7903 
7904   // The encoding of a fixed enum type matches its fixed underlying type.
7905   const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
7906   return getObjCEncodingForPrimitiveType(C, BT);
7907 }
7908 
7909 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
7910                            QualType T, const FieldDecl *FD) {
7911   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
7912   S += 'b';
7913   // The NeXT runtime encodes bit fields as b followed by the number of bits.
7914   // The GNU runtime requires more information; bitfields are encoded as b,
7915   // then the offset (in bits) of the first element, then the type of the
7916   // bitfield, then the size in bits.  For example, in this structure:
7917   //
7918   // struct
7919   // {
7920   //    int integer;
7921   //    int flags:2;
7922   // };
7923   // On a 32-bit system, the encoding for flags would be b2 for the NeXT
7924   // runtime, but b32i2 for the GNU runtime.  The reason for this extra
7925   // information is not especially sensible, but we're stuck with it for
7926   // compatibility with GCC, although providing it breaks anything that
7927   // actually uses runtime introspection and wants to work on both runtimes...
7928   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
7929     uint64_t Offset;
7930 
7931     if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
7932       Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
7933                                          IVD);
7934     } else {
7935       const RecordDecl *RD = FD->getParent();
7936       const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
7937       Offset = RL.getFieldOffset(FD->getFieldIndex());
7938     }
7939 
7940     S += llvm::utostr(Offset);
7941 
7942     if (const auto *ET = T->getAs<EnumType>())
7943       S += ObjCEncodingForEnumType(Ctx, ET);
7944     else {
7945       const auto *BT = T->castAs<BuiltinType>();
7946       S += getObjCEncodingForPrimitiveType(Ctx, BT);
7947     }
7948   }
7949   S += llvm::utostr(FD->getBitWidthValue(*Ctx));
7950 }
7951 
7952 // Helper function for determining whether the encoded type string would include
7953 // a template specialization type.
7954 static bool hasTemplateSpecializationInEncodedString(const Type *T,
7955                                                      bool VisitBasesAndFields) {
7956   T = T->getBaseElementTypeUnsafe();
7957 
7958   if (auto *PT = T->getAs<PointerType>())
7959     return hasTemplateSpecializationInEncodedString(
7960         PT->getPointeeType().getTypePtr(), false);
7961 
7962   auto *CXXRD = T->getAsCXXRecordDecl();
7963 
7964   if (!CXXRD)
7965     return false;
7966 
7967   if (isa<ClassTemplateSpecializationDecl>(CXXRD))
7968     return true;
7969 
7970   if (!CXXRD->hasDefinition() || !VisitBasesAndFields)
7971     return false;
7972 
7973   for (auto B : CXXRD->bases())
7974     if (hasTemplateSpecializationInEncodedString(B.getType().getTypePtr(),
7975                                                  true))
7976       return true;
7977 
7978   for (auto *FD : CXXRD->fields())
7979     if (hasTemplateSpecializationInEncodedString(FD->getType().getTypePtr(),
7980                                                  true))
7981       return true;
7982 
7983   return false;
7984 }
7985 
7986 // FIXME: Use SmallString for accumulating string.
7987 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S,
7988                                             const ObjCEncOptions Options,
7989                                             const FieldDecl *FD,
7990                                             QualType *NotEncodedT) const {
7991   CanQualType CT = getCanonicalType(T);
7992   switch (CT->getTypeClass()) {
7993   case Type::Builtin:
7994   case Type::Enum:
7995     if (FD && FD->isBitField())
7996       return EncodeBitField(this, S, T, FD);
7997     if (const auto *BT = dyn_cast<BuiltinType>(CT))
7998       S += getObjCEncodingForPrimitiveType(this, BT);
7999     else
8000       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
8001     return;
8002 
8003   case Type::Complex:
8004     S += 'j';
8005     getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S,
8006                                ObjCEncOptions(),
8007                                /*Field=*/nullptr);
8008     return;
8009 
8010   case Type::Atomic:
8011     S += 'A';
8012     getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S,
8013                                ObjCEncOptions(),
8014                                /*Field=*/nullptr);
8015     return;
8016 
8017   // encoding for pointer or reference types.
8018   case Type::Pointer:
8019   case Type::LValueReference:
8020   case Type::RValueReference: {
8021     QualType PointeeTy;
8022     if (isa<PointerType>(CT)) {
8023       const auto *PT = T->castAs<PointerType>();
8024       if (PT->isObjCSelType()) {
8025         S += ':';
8026         return;
8027       }
8028       PointeeTy = PT->getPointeeType();
8029     } else {
8030       PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
8031     }
8032 
8033     bool isReadOnly = false;
8034     // For historical/compatibility reasons, the read-only qualifier of the
8035     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
8036     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
8037     // Also, do not emit the 'r' for anything but the outermost type!
8038     if (isa<TypedefType>(T.getTypePtr())) {
8039       if (Options.IsOutermostType() && T.isConstQualified()) {
8040         isReadOnly = true;
8041         S += 'r';
8042       }
8043     } else if (Options.IsOutermostType()) {
8044       QualType P = PointeeTy;
8045       while (auto PT = P->getAs<PointerType>())
8046         P = PT->getPointeeType();
8047       if (P.isConstQualified()) {
8048         isReadOnly = true;
8049         S += 'r';
8050       }
8051     }
8052     if (isReadOnly) {
8053       // Another legacy compatibility encoding. Some ObjC qualifier and type
8054       // combinations need to be rearranged.
8055       // Rewrite "in const" from "nr" to "rn"
8056       if (StringRef(S).endswith("nr"))
8057         S.replace(S.end()-2, S.end(), "rn");
8058     }
8059 
8060     if (PointeeTy->isCharType()) {
8061       // char pointer types should be encoded as '*' unless it is a
8062       // type that has been typedef'd to 'BOOL'.
8063       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
8064         S += '*';
8065         return;
8066       }
8067     } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
8068       // GCC binary compat: Need to convert "struct objc_class *" to "#".
8069       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
8070         S += '#';
8071         return;
8072       }
8073       // GCC binary compat: Need to convert "struct objc_object *" to "@".
8074       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
8075         S += '@';
8076         return;
8077       }
8078       // If the encoded string for the class includes template names, just emit
8079       // "^v" for pointers to the class.
8080       if (getLangOpts().CPlusPlus &&
8081           (!getLangOpts().EncodeCXXClassTemplateSpec &&
8082            hasTemplateSpecializationInEncodedString(
8083                RTy, Options.ExpandPointedToStructures()))) {
8084         S += "^v";
8085         return;
8086       }
8087       // fall through...
8088     }
8089     S += '^';
8090     getLegacyIntegralTypeEncoding(PointeeTy);
8091 
8092     ObjCEncOptions NewOptions;
8093     if (Options.ExpandPointedToStructures())
8094       NewOptions.setExpandStructures();
8095     getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions,
8096                                /*Field=*/nullptr, NotEncodedT);
8097     return;
8098   }
8099 
8100   case Type::ConstantArray:
8101   case Type::IncompleteArray:
8102   case Type::VariableArray: {
8103     const auto *AT = cast<ArrayType>(CT);
8104 
8105     if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) {
8106       // Incomplete arrays are encoded as a pointer to the array element.
8107       S += '^';
8108 
8109       getObjCEncodingForTypeImpl(
8110           AT->getElementType(), S,
8111           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD);
8112     } else {
8113       S += '[';
8114 
8115       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
8116         S += llvm::utostr(CAT->getSize().getZExtValue());
8117       else {
8118         //Variable length arrays are encoded as a regular array with 0 elements.
8119         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
8120                "Unknown array type!");
8121         S += '0';
8122       }
8123 
8124       getObjCEncodingForTypeImpl(
8125           AT->getElementType(), S,
8126           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD,
8127           NotEncodedT);
8128       S += ']';
8129     }
8130     return;
8131   }
8132 
8133   case Type::FunctionNoProto:
8134   case Type::FunctionProto:
8135     S += '?';
8136     return;
8137 
8138   case Type::Record: {
8139     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
8140     S += RDecl->isUnion() ? '(' : '{';
8141     // Anonymous structures print as '?'
8142     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
8143       S += II->getName();
8144       if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
8145         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
8146         llvm::raw_string_ostream OS(S);
8147         printTemplateArgumentList(OS, TemplateArgs.asArray(),
8148                                   getPrintingPolicy());
8149       }
8150     } else {
8151       S += '?';
8152     }
8153     if (Options.ExpandStructures()) {
8154       S += '=';
8155       if (!RDecl->isUnion()) {
8156         getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
8157       } else {
8158         for (const auto *Field : RDecl->fields()) {
8159           if (FD) {
8160             S += '"';
8161             S += Field->getNameAsString();
8162             S += '"';
8163           }
8164 
8165           // Special case bit-fields.
8166           if (Field->isBitField()) {
8167             getObjCEncodingForTypeImpl(Field->getType(), S,
8168                                        ObjCEncOptions().setExpandStructures(),
8169                                        Field);
8170           } else {
8171             QualType qt = Field->getType();
8172             getLegacyIntegralTypeEncoding(qt);
8173             getObjCEncodingForTypeImpl(
8174                 qt, S,
8175                 ObjCEncOptions().setExpandStructures().setIsStructField(), FD,
8176                 NotEncodedT);
8177           }
8178         }
8179       }
8180     }
8181     S += RDecl->isUnion() ? ')' : '}';
8182     return;
8183   }
8184 
8185   case Type::BlockPointer: {
8186     const auto *BT = T->castAs<BlockPointerType>();
8187     S += "@?"; // Unlike a pointer-to-function, which is "^?".
8188     if (Options.EncodeBlockParameters()) {
8189       const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
8190 
8191       S += '<';
8192       // Block return type
8193       getObjCEncodingForTypeImpl(FT->getReturnType(), S,
8194                                  Options.forComponentType(), FD, NotEncodedT);
8195       // Block self
8196       S += "@?";
8197       // Block parameters
8198       if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
8199         for (const auto &I : FPT->param_types())
8200           getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD,
8201                                      NotEncodedT);
8202       }
8203       S += '>';
8204     }
8205     return;
8206   }
8207 
8208   case Type::ObjCObject: {
8209     // hack to match legacy encoding of *id and *Class
8210     QualType Ty = getObjCObjectPointerType(CT);
8211     if (Ty->isObjCIdType()) {
8212       S += "{objc_object=}";
8213       return;
8214     }
8215     else if (Ty->isObjCClassType()) {
8216       S += "{objc_class=}";
8217       return;
8218     }
8219     // TODO: Double check to make sure this intentionally falls through.
8220     LLVM_FALLTHROUGH;
8221   }
8222 
8223   case Type::ObjCInterface: {
8224     // Ignore protocol qualifiers when mangling at this level.
8225     // @encode(class_name)
8226     ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
8227     S += '{';
8228     S += OI->getObjCRuntimeNameAsString();
8229     if (Options.ExpandStructures()) {
8230       S += '=';
8231       SmallVector<const ObjCIvarDecl*, 32> Ivars;
8232       DeepCollectObjCIvars(OI, true, Ivars);
8233       for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
8234         const FieldDecl *Field = Ivars[i];
8235         if (Field->isBitField())
8236           getObjCEncodingForTypeImpl(Field->getType(), S,
8237                                      ObjCEncOptions().setExpandStructures(),
8238                                      Field);
8239         else
8240           getObjCEncodingForTypeImpl(Field->getType(), S,
8241                                      ObjCEncOptions().setExpandStructures(), FD,
8242                                      NotEncodedT);
8243       }
8244     }
8245     S += '}';
8246     return;
8247   }
8248 
8249   case Type::ObjCObjectPointer: {
8250     const auto *OPT = T->castAs<ObjCObjectPointerType>();
8251     if (OPT->isObjCIdType()) {
8252       S += '@';
8253       return;
8254     }
8255 
8256     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
8257       // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
8258       // Since this is a binary compatibility issue, need to consult with
8259       // runtime folks. Fortunately, this is a *very* obscure construct.
8260       S += '#';
8261       return;
8262     }
8263 
8264     if (OPT->isObjCQualifiedIdType()) {
8265       getObjCEncodingForTypeImpl(
8266           getObjCIdType(), S,
8267           Options.keepingOnly(ObjCEncOptions()
8268                                   .setExpandPointedToStructures()
8269                                   .setExpandStructures()),
8270           FD);
8271       if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) {
8272         // Note that we do extended encoding of protocol qualifier list
8273         // Only when doing ivar or property encoding.
8274         S += '"';
8275         for (const auto *I : OPT->quals()) {
8276           S += '<';
8277           S += I->getObjCRuntimeNameAsString();
8278           S += '>';
8279         }
8280         S += '"';
8281       }
8282       return;
8283     }
8284 
8285     S += '@';
8286     if (OPT->getInterfaceDecl() &&
8287         (FD || Options.EncodingProperty() || Options.EncodeClassNames())) {
8288       S += '"';
8289       S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
8290       for (const auto *I : OPT->quals()) {
8291         S += '<';
8292         S += I->getObjCRuntimeNameAsString();
8293         S += '>';
8294       }
8295       S += '"';
8296     }
8297     return;
8298   }
8299 
8300   // gcc just blithely ignores member pointers.
8301   // FIXME: we should do better than that.  'M' is available.
8302   case Type::MemberPointer:
8303   // This matches gcc's encoding, even though technically it is insufficient.
8304   //FIXME. We should do a better job than gcc.
8305   case Type::Vector:
8306   case Type::ExtVector:
8307   // Until we have a coherent encoding of these three types, issue warning.
8308     if (NotEncodedT)
8309       *NotEncodedT = T;
8310     return;
8311 
8312   case Type::ConstantMatrix:
8313     if (NotEncodedT)
8314       *NotEncodedT = T;
8315     return;
8316 
8317   case Type::BitInt:
8318     if (NotEncodedT)
8319       *NotEncodedT = T;
8320     return;
8321 
8322   // We could see an undeduced auto type here during error recovery.
8323   // Just ignore it.
8324   case Type::Auto:
8325   case Type::DeducedTemplateSpecialization:
8326     return;
8327 
8328   case Type::Pipe:
8329 #define ABSTRACT_TYPE(KIND, BASE)
8330 #define TYPE(KIND, BASE)
8331 #define DEPENDENT_TYPE(KIND, BASE) \
8332   case Type::KIND:
8333 #define NON_CANONICAL_TYPE(KIND, BASE) \
8334   case Type::KIND:
8335 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
8336   case Type::KIND:
8337 #include "clang/AST/TypeNodes.inc"
8338     llvm_unreachable("@encode for dependent type!");
8339   }
8340   llvm_unreachable("bad type kind!");
8341 }
8342 
8343 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
8344                                                  std::string &S,
8345                                                  const FieldDecl *FD,
8346                                                  bool includeVBases,
8347                                                  QualType *NotEncodedT) const {
8348   assert(RDecl && "Expected non-null RecordDecl");
8349   assert(!RDecl->isUnion() && "Should not be called for unions");
8350   if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
8351     return;
8352 
8353   const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
8354   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
8355   const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
8356 
8357   if (CXXRec) {
8358     for (const auto &BI : CXXRec->bases()) {
8359       if (!BI.isVirtual()) {
8360         CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
8361         if (base->isEmpty())
8362           continue;
8363         uint64_t offs = toBits(layout.getBaseClassOffset(base));
8364         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8365                                   std::make_pair(offs, base));
8366       }
8367     }
8368   }
8369 
8370   unsigned i = 0;
8371   for (FieldDecl *Field : RDecl->fields()) {
8372     if (!Field->isZeroLengthBitField(*this) && Field->isZeroSize(*this))
8373       continue;
8374     uint64_t offs = layout.getFieldOffset(i);
8375     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8376                               std::make_pair(offs, Field));
8377     ++i;
8378   }
8379 
8380   if (CXXRec && includeVBases) {
8381     for (const auto &BI : CXXRec->vbases()) {
8382       CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
8383       if (base->isEmpty())
8384         continue;
8385       uint64_t offs = toBits(layout.getVBaseClassOffset(base));
8386       if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
8387           FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
8388         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
8389                                   std::make_pair(offs, base));
8390     }
8391   }
8392 
8393   CharUnits size;
8394   if (CXXRec) {
8395     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
8396   } else {
8397     size = layout.getSize();
8398   }
8399 
8400 #ifndef NDEBUG
8401   uint64_t CurOffs = 0;
8402 #endif
8403   std::multimap<uint64_t, NamedDecl *>::iterator
8404     CurLayObj = FieldOrBaseOffsets.begin();
8405 
8406   if (CXXRec && CXXRec->isDynamicClass() &&
8407       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
8408     if (FD) {
8409       S += "\"_vptr$";
8410       std::string recname = CXXRec->getNameAsString();
8411       if (recname.empty()) recname = "?";
8412       S += recname;
8413       S += '"';
8414     }
8415     S += "^^?";
8416 #ifndef NDEBUG
8417     CurOffs += getTypeSize(VoidPtrTy);
8418 #endif
8419   }
8420 
8421   if (!RDecl->hasFlexibleArrayMember()) {
8422     // Mark the end of the structure.
8423     uint64_t offs = toBits(size);
8424     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8425                               std::make_pair(offs, nullptr));
8426   }
8427 
8428   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
8429 #ifndef NDEBUG
8430     assert(CurOffs <= CurLayObj->first);
8431     if (CurOffs < CurLayObj->first) {
8432       uint64_t padding = CurLayObj->first - CurOffs;
8433       // FIXME: There doesn't seem to be a way to indicate in the encoding that
8434       // packing/alignment of members is different that normal, in which case
8435       // the encoding will be out-of-sync with the real layout.
8436       // If the runtime switches to just consider the size of types without
8437       // taking into account alignment, we could make padding explicit in the
8438       // encoding (e.g. using arrays of chars). The encoding strings would be
8439       // longer then though.
8440       CurOffs += padding;
8441     }
8442 #endif
8443 
8444     NamedDecl *dcl = CurLayObj->second;
8445     if (!dcl)
8446       break; // reached end of structure.
8447 
8448     if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
8449       // We expand the bases without their virtual bases since those are going
8450       // in the initial structure. Note that this differs from gcc which
8451       // expands virtual bases each time one is encountered in the hierarchy,
8452       // making the encoding type bigger than it really is.
8453       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
8454                                       NotEncodedT);
8455       assert(!base->isEmpty());
8456 #ifndef NDEBUG
8457       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
8458 #endif
8459     } else {
8460       const auto *field = cast<FieldDecl>(dcl);
8461       if (FD) {
8462         S += '"';
8463         S += field->getNameAsString();
8464         S += '"';
8465       }
8466 
8467       if (field->isBitField()) {
8468         EncodeBitField(this, S, field->getType(), field);
8469 #ifndef NDEBUG
8470         CurOffs += field->getBitWidthValue(*this);
8471 #endif
8472       } else {
8473         QualType qt = field->getType();
8474         getLegacyIntegralTypeEncoding(qt);
8475         getObjCEncodingForTypeImpl(
8476             qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(),
8477             FD, NotEncodedT);
8478 #ifndef NDEBUG
8479         CurOffs += getTypeSize(field->getType());
8480 #endif
8481       }
8482     }
8483   }
8484 }
8485 
8486 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
8487                                                  std::string& S) const {
8488   if (QT & Decl::OBJC_TQ_In)
8489     S += 'n';
8490   if (QT & Decl::OBJC_TQ_Inout)
8491     S += 'N';
8492   if (QT & Decl::OBJC_TQ_Out)
8493     S += 'o';
8494   if (QT & Decl::OBJC_TQ_Bycopy)
8495     S += 'O';
8496   if (QT & Decl::OBJC_TQ_Byref)
8497     S += 'R';
8498   if (QT & Decl::OBJC_TQ_Oneway)
8499     S += 'V';
8500 }
8501 
8502 TypedefDecl *ASTContext::getObjCIdDecl() const {
8503   if (!ObjCIdDecl) {
8504     QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
8505     T = getObjCObjectPointerType(T);
8506     ObjCIdDecl = buildImplicitTypedef(T, "id");
8507   }
8508   return ObjCIdDecl;
8509 }
8510 
8511 TypedefDecl *ASTContext::getObjCSelDecl() const {
8512   if (!ObjCSelDecl) {
8513     QualType T = getPointerType(ObjCBuiltinSelTy);
8514     ObjCSelDecl = buildImplicitTypedef(T, "SEL");
8515   }
8516   return ObjCSelDecl;
8517 }
8518 
8519 TypedefDecl *ASTContext::getObjCClassDecl() const {
8520   if (!ObjCClassDecl) {
8521     QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
8522     T = getObjCObjectPointerType(T);
8523     ObjCClassDecl = buildImplicitTypedef(T, "Class");
8524   }
8525   return ObjCClassDecl;
8526 }
8527 
8528 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
8529   if (!ObjCProtocolClassDecl) {
8530     ObjCProtocolClassDecl
8531       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
8532                                   SourceLocation(),
8533                                   &Idents.get("Protocol"),
8534                                   /*typeParamList=*/nullptr,
8535                                   /*PrevDecl=*/nullptr,
8536                                   SourceLocation(), true);
8537   }
8538 
8539   return ObjCProtocolClassDecl;
8540 }
8541 
8542 //===----------------------------------------------------------------------===//
8543 // __builtin_va_list Construction Functions
8544 //===----------------------------------------------------------------------===//
8545 
8546 static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
8547                                                  StringRef Name) {
8548   // typedef char* __builtin[_ms]_va_list;
8549   QualType T = Context->getPointerType(Context->CharTy);
8550   return Context->buildImplicitTypedef(T, Name);
8551 }
8552 
8553 static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
8554   return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
8555 }
8556 
8557 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
8558   return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
8559 }
8560 
8561 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
8562   // typedef void* __builtin_va_list;
8563   QualType T = Context->getPointerType(Context->VoidTy);
8564   return Context->buildImplicitTypedef(T, "__builtin_va_list");
8565 }
8566 
8567 static TypedefDecl *
8568 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
8569   // struct __va_list
8570   RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
8571   if (Context->getLangOpts().CPlusPlus) {
8572     // namespace std { struct __va_list {
8573     auto *NS = NamespaceDecl::Create(
8574         const_cast<ASTContext &>(*Context), Context->getTranslationUnitDecl(),
8575         /*Inline*/ false, SourceLocation(), SourceLocation(),
8576         &Context->Idents.get("std"),
8577         /*PrevDecl*/ nullptr);
8578     NS->setImplicit();
8579     VaListTagDecl->setDeclContext(NS);
8580   }
8581 
8582   VaListTagDecl->startDefinition();
8583 
8584   const size_t NumFields = 5;
8585   QualType FieldTypes[NumFields];
8586   const char *FieldNames[NumFields];
8587 
8588   // void *__stack;
8589   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
8590   FieldNames[0] = "__stack";
8591 
8592   // void *__gr_top;
8593   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
8594   FieldNames[1] = "__gr_top";
8595 
8596   // void *__vr_top;
8597   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8598   FieldNames[2] = "__vr_top";
8599 
8600   // int __gr_offs;
8601   FieldTypes[3] = Context->IntTy;
8602   FieldNames[3] = "__gr_offs";
8603 
8604   // int __vr_offs;
8605   FieldTypes[4] = Context->IntTy;
8606   FieldNames[4] = "__vr_offs";
8607 
8608   // Create fields
8609   for (unsigned i = 0; i < NumFields; ++i) {
8610     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8611                                          VaListTagDecl,
8612                                          SourceLocation(),
8613                                          SourceLocation(),
8614                                          &Context->Idents.get(FieldNames[i]),
8615                                          FieldTypes[i], /*TInfo=*/nullptr,
8616                                          /*BitWidth=*/nullptr,
8617                                          /*Mutable=*/false,
8618                                          ICIS_NoInit);
8619     Field->setAccess(AS_public);
8620     VaListTagDecl->addDecl(Field);
8621   }
8622   VaListTagDecl->completeDefinition();
8623   Context->VaListTagDecl = VaListTagDecl;
8624   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8625 
8626   // } __builtin_va_list;
8627   return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
8628 }
8629 
8630 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
8631   // typedef struct __va_list_tag {
8632   RecordDecl *VaListTagDecl;
8633 
8634   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8635   VaListTagDecl->startDefinition();
8636 
8637   const size_t NumFields = 5;
8638   QualType FieldTypes[NumFields];
8639   const char *FieldNames[NumFields];
8640 
8641   //   unsigned char gpr;
8642   FieldTypes[0] = Context->UnsignedCharTy;
8643   FieldNames[0] = "gpr";
8644 
8645   //   unsigned char fpr;
8646   FieldTypes[1] = Context->UnsignedCharTy;
8647   FieldNames[1] = "fpr";
8648 
8649   //   unsigned short reserved;
8650   FieldTypes[2] = Context->UnsignedShortTy;
8651   FieldNames[2] = "reserved";
8652 
8653   //   void* overflow_arg_area;
8654   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8655   FieldNames[3] = "overflow_arg_area";
8656 
8657   //   void* reg_save_area;
8658   FieldTypes[4] = Context->getPointerType(Context->VoidTy);
8659   FieldNames[4] = "reg_save_area";
8660 
8661   // Create fields
8662   for (unsigned i = 0; i < NumFields; ++i) {
8663     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
8664                                          SourceLocation(),
8665                                          SourceLocation(),
8666                                          &Context->Idents.get(FieldNames[i]),
8667                                          FieldTypes[i], /*TInfo=*/nullptr,
8668                                          /*BitWidth=*/nullptr,
8669                                          /*Mutable=*/false,
8670                                          ICIS_NoInit);
8671     Field->setAccess(AS_public);
8672     VaListTagDecl->addDecl(Field);
8673   }
8674   VaListTagDecl->completeDefinition();
8675   Context->VaListTagDecl = VaListTagDecl;
8676   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8677 
8678   // } __va_list_tag;
8679   TypedefDecl *VaListTagTypedefDecl =
8680       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
8681 
8682   QualType VaListTagTypedefType =
8683     Context->getTypedefType(VaListTagTypedefDecl);
8684 
8685   // typedef __va_list_tag __builtin_va_list[1];
8686   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8687   QualType VaListTagArrayType
8688     = Context->getConstantArrayType(VaListTagTypedefType,
8689                                     Size, nullptr, ArrayType::Normal, 0);
8690   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8691 }
8692 
8693 static TypedefDecl *
8694 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
8695   // struct __va_list_tag {
8696   RecordDecl *VaListTagDecl;
8697   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8698   VaListTagDecl->startDefinition();
8699 
8700   const size_t NumFields = 4;
8701   QualType FieldTypes[NumFields];
8702   const char *FieldNames[NumFields];
8703 
8704   //   unsigned gp_offset;
8705   FieldTypes[0] = Context->UnsignedIntTy;
8706   FieldNames[0] = "gp_offset";
8707 
8708   //   unsigned fp_offset;
8709   FieldTypes[1] = Context->UnsignedIntTy;
8710   FieldNames[1] = "fp_offset";
8711 
8712   //   void* overflow_arg_area;
8713   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8714   FieldNames[2] = "overflow_arg_area";
8715 
8716   //   void* reg_save_area;
8717   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8718   FieldNames[3] = "reg_save_area";
8719 
8720   // Create fields
8721   for (unsigned i = 0; i < NumFields; ++i) {
8722     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8723                                          VaListTagDecl,
8724                                          SourceLocation(),
8725                                          SourceLocation(),
8726                                          &Context->Idents.get(FieldNames[i]),
8727                                          FieldTypes[i], /*TInfo=*/nullptr,
8728                                          /*BitWidth=*/nullptr,
8729                                          /*Mutable=*/false,
8730                                          ICIS_NoInit);
8731     Field->setAccess(AS_public);
8732     VaListTagDecl->addDecl(Field);
8733   }
8734   VaListTagDecl->completeDefinition();
8735   Context->VaListTagDecl = VaListTagDecl;
8736   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8737 
8738   // };
8739 
8740   // typedef struct __va_list_tag __builtin_va_list[1];
8741   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8742   QualType VaListTagArrayType = Context->getConstantArrayType(
8743       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
8744   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8745 }
8746 
8747 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
8748   // typedef int __builtin_va_list[4];
8749   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
8750   QualType IntArrayType = Context->getConstantArrayType(
8751       Context->IntTy, Size, nullptr, ArrayType::Normal, 0);
8752   return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
8753 }
8754 
8755 static TypedefDecl *
8756 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
8757   // struct __va_list
8758   RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
8759   if (Context->getLangOpts().CPlusPlus) {
8760     // namespace std { struct __va_list {
8761     NamespaceDecl *NS;
8762     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
8763                                Context->getTranslationUnitDecl(),
8764                                /*Inline*/false, SourceLocation(),
8765                                SourceLocation(), &Context->Idents.get("std"),
8766                                /*PrevDecl*/ nullptr);
8767     NS->setImplicit();
8768     VaListDecl->setDeclContext(NS);
8769   }
8770 
8771   VaListDecl->startDefinition();
8772 
8773   // void * __ap;
8774   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8775                                        VaListDecl,
8776                                        SourceLocation(),
8777                                        SourceLocation(),
8778                                        &Context->Idents.get("__ap"),
8779                                        Context->getPointerType(Context->VoidTy),
8780                                        /*TInfo=*/nullptr,
8781                                        /*BitWidth=*/nullptr,
8782                                        /*Mutable=*/false,
8783                                        ICIS_NoInit);
8784   Field->setAccess(AS_public);
8785   VaListDecl->addDecl(Field);
8786 
8787   // };
8788   VaListDecl->completeDefinition();
8789   Context->VaListTagDecl = VaListDecl;
8790 
8791   // typedef struct __va_list __builtin_va_list;
8792   QualType T = Context->getRecordType(VaListDecl);
8793   return Context->buildImplicitTypedef(T, "__builtin_va_list");
8794 }
8795 
8796 static TypedefDecl *
8797 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
8798   // struct __va_list_tag {
8799   RecordDecl *VaListTagDecl;
8800   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8801   VaListTagDecl->startDefinition();
8802 
8803   const size_t NumFields = 4;
8804   QualType FieldTypes[NumFields];
8805   const char *FieldNames[NumFields];
8806 
8807   //   long __gpr;
8808   FieldTypes[0] = Context->LongTy;
8809   FieldNames[0] = "__gpr";
8810 
8811   //   long __fpr;
8812   FieldTypes[1] = Context->LongTy;
8813   FieldNames[1] = "__fpr";
8814 
8815   //   void *__overflow_arg_area;
8816   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8817   FieldNames[2] = "__overflow_arg_area";
8818 
8819   //   void *__reg_save_area;
8820   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8821   FieldNames[3] = "__reg_save_area";
8822 
8823   // Create fields
8824   for (unsigned i = 0; i < NumFields; ++i) {
8825     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8826                                          VaListTagDecl,
8827                                          SourceLocation(),
8828                                          SourceLocation(),
8829                                          &Context->Idents.get(FieldNames[i]),
8830                                          FieldTypes[i], /*TInfo=*/nullptr,
8831                                          /*BitWidth=*/nullptr,
8832                                          /*Mutable=*/false,
8833                                          ICIS_NoInit);
8834     Field->setAccess(AS_public);
8835     VaListTagDecl->addDecl(Field);
8836   }
8837   VaListTagDecl->completeDefinition();
8838   Context->VaListTagDecl = VaListTagDecl;
8839   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8840 
8841   // };
8842 
8843   // typedef __va_list_tag __builtin_va_list[1];
8844   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8845   QualType VaListTagArrayType = Context->getConstantArrayType(
8846       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
8847 
8848   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8849 }
8850 
8851 static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) {
8852   // typedef struct __va_list_tag {
8853   RecordDecl *VaListTagDecl;
8854   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8855   VaListTagDecl->startDefinition();
8856 
8857   const size_t NumFields = 3;
8858   QualType FieldTypes[NumFields];
8859   const char *FieldNames[NumFields];
8860 
8861   //   void *CurrentSavedRegisterArea;
8862   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
8863   FieldNames[0] = "__current_saved_reg_area_pointer";
8864 
8865   //   void *SavedRegAreaEnd;
8866   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
8867   FieldNames[1] = "__saved_reg_area_end_pointer";
8868 
8869   //   void *OverflowArea;
8870   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8871   FieldNames[2] = "__overflow_area_pointer";
8872 
8873   // Create fields
8874   for (unsigned i = 0; i < NumFields; ++i) {
8875     FieldDecl *Field = FieldDecl::Create(
8876         const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(),
8877         SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i],
8878         /*TInfo=*/nullptr,
8879         /*BitWidth=*/nullptr,
8880         /*Mutable=*/false, ICIS_NoInit);
8881     Field->setAccess(AS_public);
8882     VaListTagDecl->addDecl(Field);
8883   }
8884   VaListTagDecl->completeDefinition();
8885   Context->VaListTagDecl = VaListTagDecl;
8886   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8887 
8888   // } __va_list_tag;
8889   TypedefDecl *VaListTagTypedefDecl =
8890       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
8891 
8892   QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl);
8893 
8894   // typedef __va_list_tag __builtin_va_list[1];
8895   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8896   QualType VaListTagArrayType = Context->getConstantArrayType(
8897       VaListTagTypedefType, Size, nullptr, ArrayType::Normal, 0);
8898 
8899   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8900 }
8901 
8902 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
8903                                      TargetInfo::BuiltinVaListKind Kind) {
8904   switch (Kind) {
8905   case TargetInfo::CharPtrBuiltinVaList:
8906     return CreateCharPtrBuiltinVaListDecl(Context);
8907   case TargetInfo::VoidPtrBuiltinVaList:
8908     return CreateVoidPtrBuiltinVaListDecl(Context);
8909   case TargetInfo::AArch64ABIBuiltinVaList:
8910     return CreateAArch64ABIBuiltinVaListDecl(Context);
8911   case TargetInfo::PowerABIBuiltinVaList:
8912     return CreatePowerABIBuiltinVaListDecl(Context);
8913   case TargetInfo::X86_64ABIBuiltinVaList:
8914     return CreateX86_64ABIBuiltinVaListDecl(Context);
8915   case TargetInfo::PNaClABIBuiltinVaList:
8916     return CreatePNaClABIBuiltinVaListDecl(Context);
8917   case TargetInfo::AAPCSABIBuiltinVaList:
8918     return CreateAAPCSABIBuiltinVaListDecl(Context);
8919   case TargetInfo::SystemZBuiltinVaList:
8920     return CreateSystemZBuiltinVaListDecl(Context);
8921   case TargetInfo::HexagonBuiltinVaList:
8922     return CreateHexagonBuiltinVaListDecl(Context);
8923   }
8924 
8925   llvm_unreachable("Unhandled __builtin_va_list type kind");
8926 }
8927 
8928 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
8929   if (!BuiltinVaListDecl) {
8930     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
8931     assert(BuiltinVaListDecl->isImplicit());
8932   }
8933 
8934   return BuiltinVaListDecl;
8935 }
8936 
8937 Decl *ASTContext::getVaListTagDecl() const {
8938   // Force the creation of VaListTagDecl by building the __builtin_va_list
8939   // declaration.
8940   if (!VaListTagDecl)
8941     (void)getBuiltinVaListDecl();
8942 
8943   return VaListTagDecl;
8944 }
8945 
8946 TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
8947   if (!BuiltinMSVaListDecl)
8948     BuiltinMSVaListDecl = CreateMSVaListDecl(this);
8949 
8950   return BuiltinMSVaListDecl;
8951 }
8952 
8953 bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
8954   return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
8955 }
8956 
8957 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
8958   assert(ObjCConstantStringType.isNull() &&
8959          "'NSConstantString' type already set!");
8960 
8961   ObjCConstantStringType = getObjCInterfaceType(Decl);
8962 }
8963 
8964 /// Retrieve the template name that corresponds to a non-empty
8965 /// lookup.
8966 TemplateName
8967 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
8968                                       UnresolvedSetIterator End) const {
8969   unsigned size = End - Begin;
8970   assert(size > 1 && "set is not overloaded!");
8971 
8972   void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
8973                           size * sizeof(FunctionTemplateDecl*));
8974   auto *OT = new (memory) OverloadedTemplateStorage(size);
8975 
8976   NamedDecl **Storage = OT->getStorage();
8977   for (UnresolvedSetIterator I = Begin; I != End; ++I) {
8978     NamedDecl *D = *I;
8979     assert(isa<FunctionTemplateDecl>(D) ||
8980            isa<UnresolvedUsingValueDecl>(D) ||
8981            (isa<UsingShadowDecl>(D) &&
8982             isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
8983     *Storage++ = D;
8984   }
8985 
8986   return TemplateName(OT);
8987 }
8988 
8989 /// Retrieve a template name representing an unqualified-id that has been
8990 /// assumed to name a template for ADL purposes.
8991 TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const {
8992   auto *OT = new (*this) AssumedTemplateStorage(Name);
8993   return TemplateName(OT);
8994 }
8995 
8996 /// Retrieve the template name that represents a qualified
8997 /// template name such as \c std::vector.
8998 TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
8999                                                   bool TemplateKeyword,
9000                                                   TemplateName Template) const {
9001   assert(NNS && "Missing nested-name-specifier in qualified template name");
9002 
9003   // FIXME: Canonicalization?
9004   llvm::FoldingSetNodeID ID;
9005   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
9006 
9007   void *InsertPos = nullptr;
9008   QualifiedTemplateName *QTN =
9009     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9010   if (!QTN) {
9011     QTN = new (*this, alignof(QualifiedTemplateName))
9012         QualifiedTemplateName(NNS, TemplateKeyword, Template);
9013     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
9014   }
9015 
9016   return TemplateName(QTN);
9017 }
9018 
9019 /// Retrieve the template name that represents a dependent
9020 /// template name such as \c MetaFun::template apply.
9021 TemplateName
9022 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
9023                                      const IdentifierInfo *Name) const {
9024   assert((!NNS || NNS->isDependent()) &&
9025          "Nested name specifier must be dependent");
9026 
9027   llvm::FoldingSetNodeID ID;
9028   DependentTemplateName::Profile(ID, NNS, Name);
9029 
9030   void *InsertPos = nullptr;
9031   DependentTemplateName *QTN =
9032     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9033 
9034   if (QTN)
9035     return TemplateName(QTN);
9036 
9037   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
9038   if (CanonNNS == NNS) {
9039     QTN = new (*this, alignof(DependentTemplateName))
9040         DependentTemplateName(NNS, Name);
9041   } else {
9042     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
9043     QTN = new (*this, alignof(DependentTemplateName))
9044         DependentTemplateName(NNS, Name, Canon);
9045     DependentTemplateName *CheckQTN =
9046       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9047     assert(!CheckQTN && "Dependent type name canonicalization broken");
9048     (void)CheckQTN;
9049   }
9050 
9051   DependentTemplateNames.InsertNode(QTN, InsertPos);
9052   return TemplateName(QTN);
9053 }
9054 
9055 /// Retrieve the template name that represents a dependent
9056 /// template name such as \c MetaFun::template operator+.
9057 TemplateName
9058 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
9059                                      OverloadedOperatorKind Operator) const {
9060   assert((!NNS || NNS->isDependent()) &&
9061          "Nested name specifier must be dependent");
9062 
9063   llvm::FoldingSetNodeID ID;
9064   DependentTemplateName::Profile(ID, NNS, Operator);
9065 
9066   void *InsertPos = nullptr;
9067   DependentTemplateName *QTN
9068     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9069 
9070   if (QTN)
9071     return TemplateName(QTN);
9072 
9073   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
9074   if (CanonNNS == NNS) {
9075     QTN = new (*this, alignof(DependentTemplateName))
9076         DependentTemplateName(NNS, Operator);
9077   } else {
9078     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
9079     QTN = new (*this, alignof(DependentTemplateName))
9080         DependentTemplateName(NNS, Operator, Canon);
9081 
9082     DependentTemplateName *CheckQTN
9083       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9084     assert(!CheckQTN && "Dependent template name canonicalization broken");
9085     (void)CheckQTN;
9086   }
9087 
9088   DependentTemplateNames.InsertNode(QTN, InsertPos);
9089   return TemplateName(QTN);
9090 }
9091 
9092 TemplateName
9093 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
9094                                          TemplateName replacement) const {
9095   llvm::FoldingSetNodeID ID;
9096   SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
9097 
9098   void *insertPos = nullptr;
9099   SubstTemplateTemplateParmStorage *subst
9100     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
9101 
9102   if (!subst) {
9103     subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
9104     SubstTemplateTemplateParms.InsertNode(subst, insertPos);
9105   }
9106 
9107   return TemplateName(subst);
9108 }
9109 
9110 TemplateName
9111 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
9112                                        const TemplateArgument &ArgPack) const {
9113   auto &Self = const_cast<ASTContext &>(*this);
9114   llvm::FoldingSetNodeID ID;
9115   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
9116 
9117   void *InsertPos = nullptr;
9118   SubstTemplateTemplateParmPackStorage *Subst
9119     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
9120 
9121   if (!Subst) {
9122     Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
9123                                                            ArgPack.pack_size(),
9124                                                          ArgPack.pack_begin());
9125     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
9126   }
9127 
9128   return TemplateName(Subst);
9129 }
9130 
9131 /// getFromTargetType - Given one of the integer types provided by
9132 /// TargetInfo, produce the corresponding type. The unsigned @p Type
9133 /// is actually a value of type @c TargetInfo::IntType.
9134 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
9135   switch (Type) {
9136   case TargetInfo::NoInt: return {};
9137   case TargetInfo::SignedChar: return SignedCharTy;
9138   case TargetInfo::UnsignedChar: return UnsignedCharTy;
9139   case TargetInfo::SignedShort: return ShortTy;
9140   case TargetInfo::UnsignedShort: return UnsignedShortTy;
9141   case TargetInfo::SignedInt: return IntTy;
9142   case TargetInfo::UnsignedInt: return UnsignedIntTy;
9143   case TargetInfo::SignedLong: return LongTy;
9144   case TargetInfo::UnsignedLong: return UnsignedLongTy;
9145   case TargetInfo::SignedLongLong: return LongLongTy;
9146   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
9147   }
9148 
9149   llvm_unreachable("Unhandled TargetInfo::IntType value");
9150 }
9151 
9152 //===----------------------------------------------------------------------===//
9153 //                        Type Predicates.
9154 //===----------------------------------------------------------------------===//
9155 
9156 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
9157 /// garbage collection attribute.
9158 ///
9159 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
9160   if (getLangOpts().getGC() == LangOptions::NonGC)
9161     return Qualifiers::GCNone;
9162 
9163   assert(getLangOpts().ObjC);
9164   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
9165 
9166   // Default behaviour under objective-C's gc is for ObjC pointers
9167   // (or pointers to them) be treated as though they were declared
9168   // as __strong.
9169   if (GCAttrs == Qualifiers::GCNone) {
9170     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
9171       return Qualifiers::Strong;
9172     else if (Ty->isPointerType())
9173       return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType());
9174   } else {
9175     // It's not valid to set GC attributes on anything that isn't a
9176     // pointer.
9177 #ifndef NDEBUG
9178     QualType CT = Ty->getCanonicalTypeInternal();
9179     while (const auto *AT = dyn_cast<ArrayType>(CT))
9180       CT = AT->getElementType();
9181     assert(CT->isAnyPointerType() || CT->isBlockPointerType());
9182 #endif
9183   }
9184   return GCAttrs;
9185 }
9186 
9187 //===----------------------------------------------------------------------===//
9188 //                        Type Compatibility Testing
9189 //===----------------------------------------------------------------------===//
9190 
9191 /// areCompatVectorTypes - Return true if the two specified vector types are
9192 /// compatible.
9193 static bool areCompatVectorTypes(const VectorType *LHS,
9194                                  const VectorType *RHS) {
9195   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
9196   return LHS->getElementType() == RHS->getElementType() &&
9197          LHS->getNumElements() == RHS->getNumElements();
9198 }
9199 
9200 /// areCompatMatrixTypes - Return true if the two specified matrix types are
9201 /// compatible.
9202 static bool areCompatMatrixTypes(const ConstantMatrixType *LHS,
9203                                  const ConstantMatrixType *RHS) {
9204   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
9205   return LHS->getElementType() == RHS->getElementType() &&
9206          LHS->getNumRows() == RHS->getNumRows() &&
9207          LHS->getNumColumns() == RHS->getNumColumns();
9208 }
9209 
9210 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
9211                                           QualType SecondVec) {
9212   assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
9213   assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
9214 
9215   if (hasSameUnqualifiedType(FirstVec, SecondVec))
9216     return true;
9217 
9218   // Treat Neon vector types and most AltiVec vector types as if they are the
9219   // equivalent GCC vector types.
9220   const auto *First = FirstVec->castAs<VectorType>();
9221   const auto *Second = SecondVec->castAs<VectorType>();
9222   if (First->getNumElements() == Second->getNumElements() &&
9223       hasSameType(First->getElementType(), Second->getElementType()) &&
9224       First->getVectorKind() != VectorType::AltiVecPixel &&
9225       First->getVectorKind() != VectorType::AltiVecBool &&
9226       Second->getVectorKind() != VectorType::AltiVecPixel &&
9227       Second->getVectorKind() != VectorType::AltiVecBool &&
9228       First->getVectorKind() != VectorType::SveFixedLengthDataVector &&
9229       First->getVectorKind() != VectorType::SveFixedLengthPredicateVector &&
9230       Second->getVectorKind() != VectorType::SveFixedLengthDataVector &&
9231       Second->getVectorKind() != VectorType::SveFixedLengthPredicateVector)
9232     return true;
9233 
9234   return false;
9235 }
9236 
9237 /// getSVETypeSize - Return SVE vector or predicate register size.
9238 static uint64_t getSVETypeSize(ASTContext &Context, const BuiltinType *Ty) {
9239   assert(Ty->isVLSTBuiltinType() && "Invalid SVE Type");
9240   return Ty->getKind() == BuiltinType::SveBool
9241              ? (Context.getLangOpts().VScaleMin * 128) / Context.getCharWidth()
9242              : Context.getLangOpts().VScaleMin * 128;
9243 }
9244 
9245 bool ASTContext::areCompatibleSveTypes(QualType FirstType,
9246                                        QualType SecondType) {
9247   assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||
9248           (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&
9249          "Expected SVE builtin type and vector type!");
9250 
9251   auto IsValidCast = [this](QualType FirstType, QualType SecondType) {
9252     if (const auto *BT = FirstType->getAs<BuiltinType>()) {
9253       if (const auto *VT = SecondType->getAs<VectorType>()) {
9254         // Predicates have the same representation as uint8 so we also have to
9255         // check the kind to make these types incompatible.
9256         if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
9257           return BT->getKind() == BuiltinType::SveBool;
9258         else if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
9259           return VT->getElementType().getCanonicalType() ==
9260                  FirstType->getSveEltType(*this);
9261         else if (VT->getVectorKind() == VectorType::GenericVector)
9262           return getTypeSize(SecondType) == getSVETypeSize(*this, BT) &&
9263                  hasSameType(VT->getElementType(),
9264                              getBuiltinVectorTypeInfo(BT).ElementType);
9265       }
9266     }
9267     return false;
9268   };
9269 
9270   return IsValidCast(FirstType, SecondType) ||
9271          IsValidCast(SecondType, FirstType);
9272 }
9273 
9274 bool ASTContext::areLaxCompatibleSveTypes(QualType FirstType,
9275                                           QualType SecondType) {
9276   assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||
9277           (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&
9278          "Expected SVE builtin type and vector type!");
9279 
9280   auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) {
9281     const auto *BT = FirstType->getAs<BuiltinType>();
9282     if (!BT)
9283       return false;
9284 
9285     const auto *VecTy = SecondType->getAs<VectorType>();
9286     if (VecTy &&
9287         (VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector ||
9288          VecTy->getVectorKind() == VectorType::GenericVector)) {
9289       const LangOptions::LaxVectorConversionKind LVCKind =
9290           getLangOpts().getLaxVectorConversions();
9291 
9292       // Can not convert between sve predicates and sve vectors because of
9293       // different size.
9294       if (BT->getKind() == BuiltinType::SveBool &&
9295           VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector)
9296         return false;
9297 
9298       // If __ARM_FEATURE_SVE_BITS != N do not allow GNU vector lax conversion.
9299       // "Whenever __ARM_FEATURE_SVE_BITS==N, GNUT implicitly
9300       // converts to VLAT and VLAT implicitly converts to GNUT."
9301       // ACLE Spec Version 00bet6, 3.7.3.2. Behavior common to vectors and
9302       // predicates.
9303       if (VecTy->getVectorKind() == VectorType::GenericVector &&
9304           getTypeSize(SecondType) != getSVETypeSize(*this, BT))
9305         return false;
9306 
9307       // If -flax-vector-conversions=all is specified, the types are
9308       // certainly compatible.
9309       if (LVCKind == LangOptions::LaxVectorConversionKind::All)
9310         return true;
9311 
9312       // If -flax-vector-conversions=integer is specified, the types are
9313       // compatible if the elements are integer types.
9314       if (LVCKind == LangOptions::LaxVectorConversionKind::Integer)
9315         return VecTy->getElementType().getCanonicalType()->isIntegerType() &&
9316                FirstType->getSveEltType(*this)->isIntegerType();
9317     }
9318 
9319     return false;
9320   };
9321 
9322   return IsLaxCompatible(FirstType, SecondType) ||
9323          IsLaxCompatible(SecondType, FirstType);
9324 }
9325 
9326 bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const {
9327   while (true) {
9328     // __strong id
9329     if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) {
9330       if (Attr->getAttrKind() == attr::ObjCOwnership)
9331         return true;
9332 
9333       Ty = Attr->getModifiedType();
9334 
9335     // X *__strong (...)
9336     } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) {
9337       Ty = Paren->getInnerType();
9338 
9339     // We do not want to look through typedefs, typeof(expr),
9340     // typeof(type), or any other way that the type is somehow
9341     // abstracted.
9342     } else {
9343       return false;
9344     }
9345   }
9346 }
9347 
9348 //===----------------------------------------------------------------------===//
9349 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
9350 //===----------------------------------------------------------------------===//
9351 
9352 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
9353 /// inheritance hierarchy of 'rProto'.
9354 bool
9355 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
9356                                            ObjCProtocolDecl *rProto) const {
9357   if (declaresSameEntity(lProto, rProto))
9358     return true;
9359   for (auto *PI : rProto->protocols())
9360     if (ProtocolCompatibleWithProtocol(lProto, PI))
9361       return true;
9362   return false;
9363 }
9364 
9365 /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
9366 /// Class<pr1, ...>.
9367 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(
9368     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) {
9369   for (auto *lhsProto : lhs->quals()) {
9370     bool match = false;
9371     for (auto *rhsProto : rhs->quals()) {
9372       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
9373         match = true;
9374         break;
9375       }
9376     }
9377     if (!match)
9378       return false;
9379   }
9380   return true;
9381 }
9382 
9383 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
9384 /// ObjCQualifiedIDType.
9385 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(
9386     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs,
9387     bool compare) {
9388   // Allow id<P..> and an 'id' in all cases.
9389   if (lhs->isObjCIdType() || rhs->isObjCIdType())
9390     return true;
9391 
9392   // Don't allow id<P..> to convert to Class or Class<P..> in either direction.
9393   if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() ||
9394       rhs->isObjCClassType() || rhs->isObjCQualifiedClassType())
9395     return false;
9396 
9397   if (lhs->isObjCQualifiedIdType()) {
9398     if (rhs->qual_empty()) {
9399       // If the RHS is a unqualified interface pointer "NSString*",
9400       // make sure we check the class hierarchy.
9401       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
9402         for (auto *I : lhs->quals()) {
9403           // when comparing an id<P> on lhs with a static type on rhs,
9404           // see if static class implements all of id's protocols, directly or
9405           // through its super class and categories.
9406           if (!rhsID->ClassImplementsProtocol(I, true))
9407             return false;
9408         }
9409       }
9410       // If there are no qualifiers and no interface, we have an 'id'.
9411       return true;
9412     }
9413     // Both the right and left sides have qualifiers.
9414     for (auto *lhsProto : lhs->quals()) {
9415       bool match = false;
9416 
9417       // when comparing an id<P> on lhs with a static type on rhs,
9418       // see if static class implements all of id's protocols, directly or
9419       // through its super class and categories.
9420       for (auto *rhsProto : rhs->quals()) {
9421         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9422             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9423           match = true;
9424           break;
9425         }
9426       }
9427       // If the RHS is a qualified interface pointer "NSString<P>*",
9428       // make sure we check the class hierarchy.
9429       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
9430         for (auto *I : lhs->quals()) {
9431           // when comparing an id<P> on lhs with a static type on rhs,
9432           // see if static class implements all of id's protocols, directly or
9433           // through its super class and categories.
9434           if (rhsID->ClassImplementsProtocol(I, true)) {
9435             match = true;
9436             break;
9437           }
9438         }
9439       }
9440       if (!match)
9441         return false;
9442     }
9443 
9444     return true;
9445   }
9446 
9447   assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>");
9448 
9449   if (lhs->getInterfaceType()) {
9450     // If both the right and left sides have qualifiers.
9451     for (auto *lhsProto : lhs->quals()) {
9452       bool match = false;
9453 
9454       // when comparing an id<P> on rhs with a static type on lhs,
9455       // see if static class implements all of id's protocols, directly or
9456       // through its super class and categories.
9457       // First, lhs protocols in the qualifier list must be found, direct
9458       // or indirect in rhs's qualifier list or it is a mismatch.
9459       for (auto *rhsProto : rhs->quals()) {
9460         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9461             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9462           match = true;
9463           break;
9464         }
9465       }
9466       if (!match)
9467         return false;
9468     }
9469 
9470     // Static class's protocols, or its super class or category protocols
9471     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
9472     if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) {
9473       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
9474       CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
9475       // This is rather dubious but matches gcc's behavior. If lhs has
9476       // no type qualifier and its class has no static protocol(s)
9477       // assume that it is mismatch.
9478       if (LHSInheritedProtocols.empty() && lhs->qual_empty())
9479         return false;
9480       for (auto *lhsProto : LHSInheritedProtocols) {
9481         bool match = false;
9482         for (auto *rhsProto : rhs->quals()) {
9483           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9484               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9485             match = true;
9486             break;
9487           }
9488         }
9489         if (!match)
9490           return false;
9491       }
9492     }
9493     return true;
9494   }
9495   return false;
9496 }
9497 
9498 /// canAssignObjCInterfaces - Return true if the two interface types are
9499 /// compatible for assignment from RHS to LHS.  This handles validation of any
9500 /// protocol qualifiers on the LHS or RHS.
9501 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
9502                                          const ObjCObjectPointerType *RHSOPT) {
9503   const ObjCObjectType* LHS = LHSOPT->getObjectType();
9504   const ObjCObjectType* RHS = RHSOPT->getObjectType();
9505 
9506   // If either type represents the built-in 'id' type, return true.
9507   if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId())
9508     return true;
9509 
9510   // Function object that propagates a successful result or handles
9511   // __kindof types.
9512   auto finish = [&](bool succeeded) -> bool {
9513     if (succeeded)
9514       return true;
9515 
9516     if (!RHS->isKindOfType())
9517       return false;
9518 
9519     // Strip off __kindof and protocol qualifiers, then check whether
9520     // we can assign the other way.
9521     return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
9522                                    LHSOPT->stripObjCKindOfTypeAndQuals(*this));
9523   };
9524 
9525   // Casts from or to id<P> are allowed when the other side has compatible
9526   // protocols.
9527   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
9528     return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false));
9529   }
9530 
9531   // Verify protocol compatibility for casts from Class<P1> to Class<P2>.
9532   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
9533     return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT));
9534   }
9535 
9536   // Casts from Class to Class<Foo>, or vice-versa, are allowed.
9537   if (LHS->isObjCClass() && RHS->isObjCClass()) {
9538     return true;
9539   }
9540 
9541   // If we have 2 user-defined types, fall into that path.
9542   if (LHS->getInterface() && RHS->getInterface()) {
9543     return finish(canAssignObjCInterfaces(LHS, RHS));
9544   }
9545 
9546   return false;
9547 }
9548 
9549 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
9550 /// for providing type-safety for objective-c pointers used to pass/return
9551 /// arguments in block literals. When passed as arguments, passing 'A*' where
9552 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
9553 /// not OK. For the return type, the opposite is not OK.
9554 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
9555                                          const ObjCObjectPointerType *LHSOPT,
9556                                          const ObjCObjectPointerType *RHSOPT,
9557                                          bool BlockReturnType) {
9558 
9559   // Function object that propagates a successful result or handles
9560   // __kindof types.
9561   auto finish = [&](bool succeeded) -> bool {
9562     if (succeeded)
9563       return true;
9564 
9565     const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
9566     if (!Expected->isKindOfType())
9567       return false;
9568 
9569     // Strip off __kindof and protocol qualifiers, then check whether
9570     // we can assign the other way.
9571     return canAssignObjCInterfacesInBlockPointer(
9572              RHSOPT->stripObjCKindOfTypeAndQuals(*this),
9573              LHSOPT->stripObjCKindOfTypeAndQuals(*this),
9574              BlockReturnType);
9575   };
9576 
9577   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
9578     return true;
9579 
9580   if (LHSOPT->isObjCBuiltinType()) {
9581     return finish(RHSOPT->isObjCBuiltinType() ||
9582                   RHSOPT->isObjCQualifiedIdType());
9583   }
9584 
9585   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) {
9586     if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking)
9587       // Use for block parameters previous type checking for compatibility.
9588       return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) ||
9589                     // Or corrected type checking as in non-compat mode.
9590                     (!BlockReturnType &&
9591                      ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false)));
9592     else
9593       return finish(ObjCQualifiedIdTypesAreCompatible(
9594           (BlockReturnType ? LHSOPT : RHSOPT),
9595           (BlockReturnType ? RHSOPT : LHSOPT), false));
9596   }
9597 
9598   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
9599   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
9600   if (LHS && RHS)  { // We have 2 user-defined types.
9601     if (LHS != RHS) {
9602       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
9603         return finish(BlockReturnType);
9604       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
9605         return finish(!BlockReturnType);
9606     }
9607     else
9608       return true;
9609   }
9610   return false;
9611 }
9612 
9613 /// Comparison routine for Objective-C protocols to be used with
9614 /// llvm::array_pod_sort.
9615 static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
9616                                       ObjCProtocolDecl * const *rhs) {
9617   return (*lhs)->getName().compare((*rhs)->getName());
9618 }
9619 
9620 /// getIntersectionOfProtocols - This routine finds the intersection of set
9621 /// of protocols inherited from two distinct objective-c pointer objects with
9622 /// the given common base.
9623 /// It is used to build composite qualifier list of the composite type of
9624 /// the conditional expression involving two objective-c pointer objects.
9625 static
9626 void getIntersectionOfProtocols(ASTContext &Context,
9627                                 const ObjCInterfaceDecl *CommonBase,
9628                                 const ObjCObjectPointerType *LHSOPT,
9629                                 const ObjCObjectPointerType *RHSOPT,
9630       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
9631 
9632   const ObjCObjectType* LHS = LHSOPT->getObjectType();
9633   const ObjCObjectType* RHS = RHSOPT->getObjectType();
9634   assert(LHS->getInterface() && "LHS must have an interface base");
9635   assert(RHS->getInterface() && "RHS must have an interface base");
9636 
9637   // Add all of the protocols for the LHS.
9638   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
9639 
9640   // Start with the protocol qualifiers.
9641   for (auto proto : LHS->quals()) {
9642     Context.CollectInheritedProtocols(proto, LHSProtocolSet);
9643   }
9644 
9645   // Also add the protocols associated with the LHS interface.
9646   Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
9647 
9648   // Add all of the protocols for the RHS.
9649   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
9650 
9651   // Start with the protocol qualifiers.
9652   for (auto proto : RHS->quals()) {
9653     Context.CollectInheritedProtocols(proto, RHSProtocolSet);
9654   }
9655 
9656   // Also add the protocols associated with the RHS interface.
9657   Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
9658 
9659   // Compute the intersection of the collected protocol sets.
9660   for (auto proto : LHSProtocolSet) {
9661     if (RHSProtocolSet.count(proto))
9662       IntersectionSet.push_back(proto);
9663   }
9664 
9665   // Compute the set of protocols that is implied by either the common type or
9666   // the protocols within the intersection.
9667   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
9668   Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
9669 
9670   // Remove any implied protocols from the list of inherited protocols.
9671   if (!ImpliedProtocols.empty()) {
9672     llvm::erase_if(IntersectionSet, [&](ObjCProtocolDecl *proto) -> bool {
9673       return ImpliedProtocols.contains(proto);
9674     });
9675   }
9676 
9677   // Sort the remaining protocols by name.
9678   llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
9679                        compareObjCProtocolsByName);
9680 }
9681 
9682 /// Determine whether the first type is a subtype of the second.
9683 static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
9684                                      QualType rhs) {
9685   // Common case: two object pointers.
9686   const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
9687   const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
9688   if (lhsOPT && rhsOPT)
9689     return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
9690 
9691   // Two block pointers.
9692   const auto *lhsBlock = lhs->getAs<BlockPointerType>();
9693   const auto *rhsBlock = rhs->getAs<BlockPointerType>();
9694   if (lhsBlock && rhsBlock)
9695     return ctx.typesAreBlockPointerCompatible(lhs, rhs);
9696 
9697   // If either is an unqualified 'id' and the other is a block, it's
9698   // acceptable.
9699   if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
9700       (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
9701     return true;
9702 
9703   return false;
9704 }
9705 
9706 // Check that the given Objective-C type argument lists are equivalent.
9707 static bool sameObjCTypeArgs(ASTContext &ctx,
9708                              const ObjCInterfaceDecl *iface,
9709                              ArrayRef<QualType> lhsArgs,
9710                              ArrayRef<QualType> rhsArgs,
9711                              bool stripKindOf) {
9712   if (lhsArgs.size() != rhsArgs.size())
9713     return false;
9714 
9715   ObjCTypeParamList *typeParams = iface->getTypeParamList();
9716   for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
9717     if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
9718       continue;
9719 
9720     switch (typeParams->begin()[i]->getVariance()) {
9721     case ObjCTypeParamVariance::Invariant:
9722       if (!stripKindOf ||
9723           !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
9724                            rhsArgs[i].stripObjCKindOfType(ctx))) {
9725         return false;
9726       }
9727       break;
9728 
9729     case ObjCTypeParamVariance::Covariant:
9730       if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
9731         return false;
9732       break;
9733 
9734     case ObjCTypeParamVariance::Contravariant:
9735       if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
9736         return false;
9737       break;
9738     }
9739   }
9740 
9741   return true;
9742 }
9743 
9744 QualType ASTContext::areCommonBaseCompatible(
9745            const ObjCObjectPointerType *Lptr,
9746            const ObjCObjectPointerType *Rptr) {
9747   const ObjCObjectType *LHS = Lptr->getObjectType();
9748   const ObjCObjectType *RHS = Rptr->getObjectType();
9749   const ObjCInterfaceDecl* LDecl = LHS->getInterface();
9750   const ObjCInterfaceDecl* RDecl = RHS->getInterface();
9751 
9752   if (!LDecl || !RDecl)
9753     return {};
9754 
9755   // When either LHS or RHS is a kindof type, we should return a kindof type.
9756   // For example, for common base of kindof(ASub1) and kindof(ASub2), we return
9757   // kindof(A).
9758   bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
9759 
9760   // Follow the left-hand side up the class hierarchy until we either hit a
9761   // root or find the RHS. Record the ancestors in case we don't find it.
9762   llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
9763     LHSAncestors;
9764   while (true) {
9765     // Record this ancestor. We'll need this if the common type isn't in the
9766     // path from the LHS to the root.
9767     LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
9768 
9769     if (declaresSameEntity(LHS->getInterface(), RDecl)) {
9770       // Get the type arguments.
9771       ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
9772       bool anyChanges = false;
9773       if (LHS->isSpecialized() && RHS->isSpecialized()) {
9774         // Both have type arguments, compare them.
9775         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
9776                               LHS->getTypeArgs(), RHS->getTypeArgs(),
9777                               /*stripKindOf=*/true))
9778           return {};
9779       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
9780         // If only one has type arguments, the result will not have type
9781         // arguments.
9782         LHSTypeArgs = {};
9783         anyChanges = true;
9784       }
9785 
9786       // Compute the intersection of protocols.
9787       SmallVector<ObjCProtocolDecl *, 8> Protocols;
9788       getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
9789                                  Protocols);
9790       if (!Protocols.empty())
9791         anyChanges = true;
9792 
9793       // If anything in the LHS will have changed, build a new result type.
9794       // If we need to return a kindof type but LHS is not a kindof type, we
9795       // build a new result type.
9796       if (anyChanges || LHS->isKindOfType() != anyKindOf) {
9797         QualType Result = getObjCInterfaceType(LHS->getInterface());
9798         Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
9799                                    anyKindOf || LHS->isKindOfType());
9800         return getObjCObjectPointerType(Result);
9801       }
9802 
9803       return getObjCObjectPointerType(QualType(LHS, 0));
9804     }
9805 
9806     // Find the superclass.
9807     QualType LHSSuperType = LHS->getSuperClassType();
9808     if (LHSSuperType.isNull())
9809       break;
9810 
9811     LHS = LHSSuperType->castAs<ObjCObjectType>();
9812   }
9813 
9814   // We didn't find anything by following the LHS to its root; now check
9815   // the RHS against the cached set of ancestors.
9816   while (true) {
9817     auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
9818     if (KnownLHS != LHSAncestors.end()) {
9819       LHS = KnownLHS->second;
9820 
9821       // Get the type arguments.
9822       ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
9823       bool anyChanges = false;
9824       if (LHS->isSpecialized() && RHS->isSpecialized()) {
9825         // Both have type arguments, compare them.
9826         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
9827                               LHS->getTypeArgs(), RHS->getTypeArgs(),
9828                               /*stripKindOf=*/true))
9829           return {};
9830       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
9831         // If only one has type arguments, the result will not have type
9832         // arguments.
9833         RHSTypeArgs = {};
9834         anyChanges = true;
9835       }
9836 
9837       // Compute the intersection of protocols.
9838       SmallVector<ObjCProtocolDecl *, 8> Protocols;
9839       getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
9840                                  Protocols);
9841       if (!Protocols.empty())
9842         anyChanges = true;
9843 
9844       // If we need to return a kindof type but RHS is not a kindof type, we
9845       // build a new result type.
9846       if (anyChanges || RHS->isKindOfType() != anyKindOf) {
9847         QualType Result = getObjCInterfaceType(RHS->getInterface());
9848         Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
9849                                    anyKindOf || RHS->isKindOfType());
9850         return getObjCObjectPointerType(Result);
9851       }
9852 
9853       return getObjCObjectPointerType(QualType(RHS, 0));
9854     }
9855 
9856     // Find the superclass of the RHS.
9857     QualType RHSSuperType = RHS->getSuperClassType();
9858     if (RHSSuperType.isNull())
9859       break;
9860 
9861     RHS = RHSSuperType->castAs<ObjCObjectType>();
9862   }
9863 
9864   return {};
9865 }
9866 
9867 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
9868                                          const ObjCObjectType *RHS) {
9869   assert(LHS->getInterface() && "LHS is not an interface type");
9870   assert(RHS->getInterface() && "RHS is not an interface type");
9871 
9872   // Verify that the base decls are compatible: the RHS must be a subclass of
9873   // the LHS.
9874   ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
9875   bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
9876   if (!IsSuperClass)
9877     return false;
9878 
9879   // If the LHS has protocol qualifiers, determine whether all of them are
9880   // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
9881   // LHS).
9882   if (LHS->getNumProtocols() > 0) {
9883     // OK if conversion of LHS to SuperClass results in narrowing of types
9884     // ; i.e., SuperClass may implement at least one of the protocols
9885     // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
9886     // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
9887     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
9888     CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
9889     // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
9890     // qualifiers.
9891     for (auto *RHSPI : RHS->quals())
9892       CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
9893     // If there is no protocols associated with RHS, it is not a match.
9894     if (SuperClassInheritedProtocols.empty())
9895       return false;
9896 
9897     for (const auto *LHSProto : LHS->quals()) {
9898       bool SuperImplementsProtocol = false;
9899       for (auto *SuperClassProto : SuperClassInheritedProtocols)
9900         if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
9901           SuperImplementsProtocol = true;
9902           break;
9903         }
9904       if (!SuperImplementsProtocol)
9905         return false;
9906     }
9907   }
9908 
9909   // If the LHS is specialized, we may need to check type arguments.
9910   if (LHS->isSpecialized()) {
9911     // Follow the superclass chain until we've matched the LHS class in the
9912     // hierarchy. This substitutes type arguments through.
9913     const ObjCObjectType *RHSSuper = RHS;
9914     while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
9915       RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
9916 
9917     // If the RHS is specializd, compare type arguments.
9918     if (RHSSuper->isSpecialized() &&
9919         !sameObjCTypeArgs(*this, LHS->getInterface(),
9920                           LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
9921                           /*stripKindOf=*/true)) {
9922       return false;
9923     }
9924   }
9925 
9926   return true;
9927 }
9928 
9929 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
9930   // get the "pointed to" types
9931   const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
9932   const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
9933 
9934   if (!LHSOPT || !RHSOPT)
9935     return false;
9936 
9937   return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
9938          canAssignObjCInterfaces(RHSOPT, LHSOPT);
9939 }
9940 
9941 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
9942   return canAssignObjCInterfaces(
9943       getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(),
9944       getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>());
9945 }
9946 
9947 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
9948 /// both shall have the identically qualified version of a compatible type.
9949 /// C99 6.2.7p1: Two types have compatible types if their types are the
9950 /// same. See 6.7.[2,3,5] for additional rules.
9951 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
9952                                     bool CompareUnqualified) {
9953   if (getLangOpts().CPlusPlus)
9954     return hasSameType(LHS, RHS);
9955 
9956   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
9957 }
9958 
9959 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
9960   return typesAreCompatible(LHS, RHS);
9961 }
9962 
9963 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
9964   return !mergeTypes(LHS, RHS, true).isNull();
9965 }
9966 
9967 /// mergeTransparentUnionType - if T is a transparent union type and a member
9968 /// of T is compatible with SubType, return the merged type, else return
9969 /// QualType()
9970 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
9971                                                bool OfBlockPointer,
9972                                                bool Unqualified) {
9973   if (const RecordType *UT = T->getAsUnionType()) {
9974     RecordDecl *UD = UT->getDecl();
9975     if (UD->hasAttr<TransparentUnionAttr>()) {
9976       for (const auto *I : UD->fields()) {
9977         QualType ET = I->getType().getUnqualifiedType();
9978         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
9979         if (!MT.isNull())
9980           return MT;
9981       }
9982     }
9983   }
9984 
9985   return {};
9986 }
9987 
9988 /// mergeFunctionParameterTypes - merge two types which appear as function
9989 /// parameter types
9990 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
9991                                                  bool OfBlockPointer,
9992                                                  bool Unqualified) {
9993   // GNU extension: two types are compatible if they appear as a function
9994   // argument, one of the types is a transparent union type and the other
9995   // type is compatible with a union member
9996   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
9997                                               Unqualified);
9998   if (!lmerge.isNull())
9999     return lmerge;
10000 
10001   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
10002                                               Unqualified);
10003   if (!rmerge.isNull())
10004     return rmerge;
10005 
10006   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
10007 }
10008 
10009 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
10010                                         bool OfBlockPointer, bool Unqualified,
10011                                         bool AllowCXX) {
10012   const auto *lbase = lhs->castAs<FunctionType>();
10013   const auto *rbase = rhs->castAs<FunctionType>();
10014   const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
10015   const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
10016   bool allLTypes = true;
10017   bool allRTypes = true;
10018 
10019   // Check return type
10020   QualType retType;
10021   if (OfBlockPointer) {
10022     QualType RHS = rbase->getReturnType();
10023     QualType LHS = lbase->getReturnType();
10024     bool UnqualifiedResult = Unqualified;
10025     if (!UnqualifiedResult)
10026       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
10027     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
10028   }
10029   else
10030     retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
10031                          Unqualified);
10032   if (retType.isNull())
10033     return {};
10034 
10035   if (Unqualified)
10036     retType = retType.getUnqualifiedType();
10037 
10038   CanQualType LRetType = getCanonicalType(lbase->getReturnType());
10039   CanQualType RRetType = getCanonicalType(rbase->getReturnType());
10040   if (Unqualified) {
10041     LRetType = LRetType.getUnqualifiedType();
10042     RRetType = RRetType.getUnqualifiedType();
10043   }
10044 
10045   if (getCanonicalType(retType) != LRetType)
10046     allLTypes = false;
10047   if (getCanonicalType(retType) != RRetType)
10048     allRTypes = false;
10049 
10050   // FIXME: double check this
10051   // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
10052   //                           rbase->getRegParmAttr() != 0 &&
10053   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
10054   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
10055   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
10056 
10057   // Compatible functions must have compatible calling conventions
10058   if (lbaseInfo.getCC() != rbaseInfo.getCC())
10059     return {};
10060 
10061   // Regparm is part of the calling convention.
10062   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
10063     return {};
10064   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
10065     return {};
10066 
10067   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
10068     return {};
10069   if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
10070     return {};
10071   if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
10072     return {};
10073 
10074   // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
10075   bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
10076 
10077   if (lbaseInfo.getNoReturn() != NoReturn)
10078     allLTypes = false;
10079   if (rbaseInfo.getNoReturn() != NoReturn)
10080     allRTypes = false;
10081 
10082   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
10083 
10084   if (lproto && rproto) { // two C99 style function prototypes
10085     assert((AllowCXX ||
10086             (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) &&
10087            "C++ shouldn't be here");
10088     // Compatible functions must have the same number of parameters
10089     if (lproto->getNumParams() != rproto->getNumParams())
10090       return {};
10091 
10092     // Variadic and non-variadic functions aren't compatible
10093     if (lproto->isVariadic() != rproto->isVariadic())
10094       return {};
10095 
10096     if (lproto->getMethodQuals() != rproto->getMethodQuals())
10097       return {};
10098 
10099     SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
10100     bool canUseLeft, canUseRight;
10101     if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
10102                                newParamInfos))
10103       return {};
10104 
10105     if (!canUseLeft)
10106       allLTypes = false;
10107     if (!canUseRight)
10108       allRTypes = false;
10109 
10110     // Check parameter type compatibility
10111     SmallVector<QualType, 10> types;
10112     for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
10113       QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
10114       QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
10115       QualType paramType = mergeFunctionParameterTypes(
10116           lParamType, rParamType, OfBlockPointer, Unqualified);
10117       if (paramType.isNull())
10118         return {};
10119 
10120       if (Unqualified)
10121         paramType = paramType.getUnqualifiedType();
10122 
10123       types.push_back(paramType);
10124       if (Unqualified) {
10125         lParamType = lParamType.getUnqualifiedType();
10126         rParamType = rParamType.getUnqualifiedType();
10127       }
10128 
10129       if (getCanonicalType(paramType) != getCanonicalType(lParamType))
10130         allLTypes = false;
10131       if (getCanonicalType(paramType) != getCanonicalType(rParamType))
10132         allRTypes = false;
10133     }
10134 
10135     if (allLTypes) return lhs;
10136     if (allRTypes) return rhs;
10137 
10138     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
10139     EPI.ExtInfo = einfo;
10140     EPI.ExtParameterInfos =
10141         newParamInfos.empty() ? nullptr : newParamInfos.data();
10142     return getFunctionType(retType, types, EPI);
10143   }
10144 
10145   if (lproto) allRTypes = false;
10146   if (rproto) allLTypes = false;
10147 
10148   const FunctionProtoType *proto = lproto ? lproto : rproto;
10149   if (proto) {
10150     assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here");
10151     if (proto->isVariadic())
10152       return {};
10153     // Check that the types are compatible with the types that
10154     // would result from default argument promotions (C99 6.7.5.3p15).
10155     // The only types actually affected are promotable integer
10156     // types and floats, which would be passed as a different
10157     // type depending on whether the prototype is visible.
10158     for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
10159       QualType paramTy = proto->getParamType(i);
10160 
10161       // Look at the converted type of enum types, since that is the type used
10162       // to pass enum values.
10163       if (const auto *Enum = paramTy->getAs<EnumType>()) {
10164         paramTy = Enum->getDecl()->getIntegerType();
10165         if (paramTy.isNull())
10166           return {};
10167       }
10168 
10169       if (paramTy->isPromotableIntegerType() ||
10170           getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
10171         return {};
10172     }
10173 
10174     if (allLTypes) return lhs;
10175     if (allRTypes) return rhs;
10176 
10177     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
10178     EPI.ExtInfo = einfo;
10179     return getFunctionType(retType, proto->getParamTypes(), EPI);
10180   }
10181 
10182   if (allLTypes) return lhs;
10183   if (allRTypes) return rhs;
10184   return getFunctionNoProtoType(retType, einfo);
10185 }
10186 
10187 /// Given that we have an enum type and a non-enum type, try to merge them.
10188 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
10189                                      QualType other, bool isBlockReturnType) {
10190   // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
10191   // a signed integer type, or an unsigned integer type.
10192   // Compatibility is based on the underlying type, not the promotion
10193   // type.
10194   QualType underlyingType = ET->getDecl()->getIntegerType();
10195   if (underlyingType.isNull())
10196     return {};
10197   if (Context.hasSameType(underlyingType, other))
10198     return other;
10199 
10200   // In block return types, we're more permissive and accept any
10201   // integral type of the same size.
10202   if (isBlockReturnType && other->isIntegerType() &&
10203       Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
10204     return other;
10205 
10206   return {};
10207 }
10208 
10209 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
10210                                 bool OfBlockPointer,
10211                                 bool Unqualified, bool BlockReturnType) {
10212   // For C++ we will not reach this code with reference types (see below),
10213   // for OpenMP variant call overloading we might.
10214   //
10215   // C++ [expr]: If an expression initially has the type "reference to T", the
10216   // type is adjusted to "T" prior to any further analysis, the expression
10217   // designates the object or function denoted by the reference, and the
10218   // expression is an lvalue unless the reference is an rvalue reference and
10219   // the expression is a function call (possibly inside parentheses).
10220   auto *LHSRefTy = LHS->getAs<ReferenceType>();
10221   auto *RHSRefTy = RHS->getAs<ReferenceType>();
10222   if (LangOpts.OpenMP && LHSRefTy && RHSRefTy &&
10223       LHS->getTypeClass() == RHS->getTypeClass())
10224     return mergeTypes(LHSRefTy->getPointeeType(), RHSRefTy->getPointeeType(),
10225                       OfBlockPointer, Unqualified, BlockReturnType);
10226   if (LHSRefTy || RHSRefTy)
10227     return {};
10228 
10229   if (Unqualified) {
10230     LHS = LHS.getUnqualifiedType();
10231     RHS = RHS.getUnqualifiedType();
10232   }
10233 
10234   QualType LHSCan = getCanonicalType(LHS),
10235            RHSCan = getCanonicalType(RHS);
10236 
10237   // If two types are identical, they are compatible.
10238   if (LHSCan == RHSCan)
10239     return LHS;
10240 
10241   // If the qualifiers are different, the types aren't compatible... mostly.
10242   Qualifiers LQuals = LHSCan.getLocalQualifiers();
10243   Qualifiers RQuals = RHSCan.getLocalQualifiers();
10244   if (LQuals != RQuals) {
10245     // If any of these qualifiers are different, we have a type
10246     // mismatch.
10247     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
10248         LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
10249         LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
10250         LQuals.hasUnaligned() != RQuals.hasUnaligned())
10251       return {};
10252 
10253     // Exactly one GC qualifier difference is allowed: __strong is
10254     // okay if the other type has no GC qualifier but is an Objective
10255     // C object pointer (i.e. implicitly strong by default).  We fix
10256     // this by pretending that the unqualified type was actually
10257     // qualified __strong.
10258     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
10259     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
10260     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
10261 
10262     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
10263       return {};
10264 
10265     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
10266       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
10267     }
10268     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
10269       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
10270     }
10271     return {};
10272   }
10273 
10274   // Okay, qualifiers are equal.
10275 
10276   Type::TypeClass LHSClass = LHSCan->getTypeClass();
10277   Type::TypeClass RHSClass = RHSCan->getTypeClass();
10278 
10279   // We want to consider the two function types to be the same for these
10280   // comparisons, just force one to the other.
10281   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
10282   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
10283 
10284   // Same as above for arrays
10285   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
10286     LHSClass = Type::ConstantArray;
10287   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
10288     RHSClass = Type::ConstantArray;
10289 
10290   // ObjCInterfaces are just specialized ObjCObjects.
10291   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
10292   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
10293 
10294   // Canonicalize ExtVector -> Vector.
10295   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
10296   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
10297 
10298   // If the canonical type classes don't match.
10299   if (LHSClass != RHSClass) {
10300     // Note that we only have special rules for turning block enum
10301     // returns into block int returns, not vice-versa.
10302     if (const auto *ETy = LHS->getAs<EnumType>()) {
10303       return mergeEnumWithInteger(*this, ETy, RHS, false);
10304     }
10305     if (const EnumType* ETy = RHS->getAs<EnumType>()) {
10306       return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
10307     }
10308     // allow block pointer type to match an 'id' type.
10309     if (OfBlockPointer && !BlockReturnType) {
10310        if (LHS->isObjCIdType() && RHS->isBlockPointerType())
10311          return LHS;
10312       if (RHS->isObjCIdType() && LHS->isBlockPointerType())
10313         return RHS;
10314     }
10315     // Allow __auto_type to match anything; it merges to the type with more
10316     // information.
10317     if (const auto *AT = LHS->getAs<AutoType>()) {
10318       if (AT->isGNUAutoType())
10319         return RHS;
10320     }
10321     if (const auto *AT = RHS->getAs<AutoType>()) {
10322       if (AT->isGNUAutoType())
10323         return LHS;
10324     }
10325     return {};
10326   }
10327 
10328   // The canonical type classes match.
10329   switch (LHSClass) {
10330 #define TYPE(Class, Base)
10331 #define ABSTRACT_TYPE(Class, Base)
10332 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
10333 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
10334 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
10335 #include "clang/AST/TypeNodes.inc"
10336     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
10337 
10338   case Type::Auto:
10339   case Type::DeducedTemplateSpecialization:
10340   case Type::LValueReference:
10341   case Type::RValueReference:
10342   case Type::MemberPointer:
10343     llvm_unreachable("C++ should never be in mergeTypes");
10344 
10345   case Type::ObjCInterface:
10346   case Type::IncompleteArray:
10347   case Type::VariableArray:
10348   case Type::FunctionProto:
10349   case Type::ExtVector:
10350     llvm_unreachable("Types are eliminated above");
10351 
10352   case Type::Pointer:
10353   {
10354     // Merge two pointer types, while trying to preserve typedef info
10355     QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType();
10356     QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType();
10357     if (Unqualified) {
10358       LHSPointee = LHSPointee.getUnqualifiedType();
10359       RHSPointee = RHSPointee.getUnqualifiedType();
10360     }
10361     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
10362                                      Unqualified);
10363     if (ResultType.isNull())
10364       return {};
10365     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
10366       return LHS;
10367     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
10368       return RHS;
10369     return getPointerType(ResultType);
10370   }
10371   case Type::BlockPointer:
10372   {
10373     // Merge two block pointer types, while trying to preserve typedef info
10374     QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType();
10375     QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType();
10376     if (Unqualified) {
10377       LHSPointee = LHSPointee.getUnqualifiedType();
10378       RHSPointee = RHSPointee.getUnqualifiedType();
10379     }
10380     if (getLangOpts().OpenCL) {
10381       Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
10382       Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
10383       // Blocks can't be an expression in a ternary operator (OpenCL v2.0
10384       // 6.12.5) thus the following check is asymmetric.
10385       if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
10386         return {};
10387       LHSPteeQual.removeAddressSpace();
10388       RHSPteeQual.removeAddressSpace();
10389       LHSPointee =
10390           QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
10391       RHSPointee =
10392           QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
10393     }
10394     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
10395                                      Unqualified);
10396     if (ResultType.isNull())
10397       return {};
10398     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
10399       return LHS;
10400     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
10401       return RHS;
10402     return getBlockPointerType(ResultType);
10403   }
10404   case Type::Atomic:
10405   {
10406     // Merge two pointer types, while trying to preserve typedef info
10407     QualType LHSValue = LHS->castAs<AtomicType>()->getValueType();
10408     QualType RHSValue = RHS->castAs<AtomicType>()->getValueType();
10409     if (Unqualified) {
10410       LHSValue = LHSValue.getUnqualifiedType();
10411       RHSValue = RHSValue.getUnqualifiedType();
10412     }
10413     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
10414                                      Unqualified);
10415     if (ResultType.isNull())
10416       return {};
10417     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
10418       return LHS;
10419     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
10420       return RHS;
10421     return getAtomicType(ResultType);
10422   }
10423   case Type::ConstantArray:
10424   {
10425     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
10426     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
10427     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
10428       return {};
10429 
10430     QualType LHSElem = getAsArrayType(LHS)->getElementType();
10431     QualType RHSElem = getAsArrayType(RHS)->getElementType();
10432     if (Unqualified) {
10433       LHSElem = LHSElem.getUnqualifiedType();
10434       RHSElem = RHSElem.getUnqualifiedType();
10435     }
10436 
10437     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
10438     if (ResultType.isNull())
10439       return {};
10440 
10441     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
10442     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
10443 
10444     // If either side is a variable array, and both are complete, check whether
10445     // the current dimension is definite.
10446     if (LVAT || RVAT) {
10447       auto SizeFetch = [this](const VariableArrayType* VAT,
10448           const ConstantArrayType* CAT)
10449           -> std::pair<bool,llvm::APInt> {
10450         if (VAT) {
10451           Optional<llvm::APSInt> TheInt;
10452           Expr *E = VAT->getSizeExpr();
10453           if (E && (TheInt = E->getIntegerConstantExpr(*this)))
10454             return std::make_pair(true, *TheInt);
10455           return std::make_pair(false, llvm::APSInt());
10456         }
10457         if (CAT)
10458           return std::make_pair(true, CAT->getSize());
10459         return std::make_pair(false, llvm::APInt());
10460       };
10461 
10462       bool HaveLSize, HaveRSize;
10463       llvm::APInt LSize, RSize;
10464       std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
10465       std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
10466       if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
10467         return {}; // Definite, but unequal, array dimension
10468     }
10469 
10470     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
10471       return LHS;
10472     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
10473       return RHS;
10474     if (LCAT)
10475       return getConstantArrayType(ResultType, LCAT->getSize(),
10476                                   LCAT->getSizeExpr(),
10477                                   ArrayType::ArraySizeModifier(), 0);
10478     if (RCAT)
10479       return getConstantArrayType(ResultType, RCAT->getSize(),
10480                                   RCAT->getSizeExpr(),
10481                                   ArrayType::ArraySizeModifier(), 0);
10482     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
10483       return LHS;
10484     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
10485       return RHS;
10486     if (LVAT) {
10487       // FIXME: This isn't correct! But tricky to implement because
10488       // the array's size has to be the size of LHS, but the type
10489       // has to be different.
10490       return LHS;
10491     }
10492     if (RVAT) {
10493       // FIXME: This isn't correct! But tricky to implement because
10494       // the array's size has to be the size of RHS, but the type
10495       // has to be different.
10496       return RHS;
10497     }
10498     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
10499     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
10500     return getIncompleteArrayType(ResultType,
10501                                   ArrayType::ArraySizeModifier(), 0);
10502   }
10503   case Type::FunctionNoProto:
10504     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
10505   case Type::Record:
10506   case Type::Enum:
10507     return {};
10508   case Type::Builtin:
10509     // Only exactly equal builtin types are compatible, which is tested above.
10510     return {};
10511   case Type::Complex:
10512     // Distinct complex types are incompatible.
10513     return {};
10514   case Type::Vector:
10515     // FIXME: The merged type should be an ExtVector!
10516     if (areCompatVectorTypes(LHSCan->castAs<VectorType>(),
10517                              RHSCan->castAs<VectorType>()))
10518       return LHS;
10519     return {};
10520   case Type::ConstantMatrix:
10521     if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(),
10522                              RHSCan->castAs<ConstantMatrixType>()))
10523       return LHS;
10524     return {};
10525   case Type::ObjCObject: {
10526     // Check if the types are assignment compatible.
10527     // FIXME: This should be type compatibility, e.g. whether
10528     // "LHS x; RHS x;" at global scope is legal.
10529     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(),
10530                                 RHS->castAs<ObjCObjectType>()))
10531       return LHS;
10532     return {};
10533   }
10534   case Type::ObjCObjectPointer:
10535     if (OfBlockPointer) {
10536       if (canAssignObjCInterfacesInBlockPointer(
10537               LHS->castAs<ObjCObjectPointerType>(),
10538               RHS->castAs<ObjCObjectPointerType>(), BlockReturnType))
10539         return LHS;
10540       return {};
10541     }
10542     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(),
10543                                 RHS->castAs<ObjCObjectPointerType>()))
10544       return LHS;
10545     return {};
10546   case Type::Pipe:
10547     assert(LHS != RHS &&
10548            "Equivalent pipe types should have already been handled!");
10549     return {};
10550   case Type::BitInt: {
10551     // Merge two bit-precise int types, while trying to preserve typedef info.
10552     bool LHSUnsigned = LHS->castAs<BitIntType>()->isUnsigned();
10553     bool RHSUnsigned = RHS->castAs<BitIntType>()->isUnsigned();
10554     unsigned LHSBits = LHS->castAs<BitIntType>()->getNumBits();
10555     unsigned RHSBits = RHS->castAs<BitIntType>()->getNumBits();
10556 
10557     // Like unsigned/int, shouldn't have a type if they don't match.
10558     if (LHSUnsigned != RHSUnsigned)
10559       return {};
10560 
10561     if (LHSBits != RHSBits)
10562       return {};
10563     return LHS;
10564   }
10565   }
10566 
10567   llvm_unreachable("Invalid Type::Class!");
10568 }
10569 
10570 bool ASTContext::mergeExtParameterInfo(
10571     const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
10572     bool &CanUseFirst, bool &CanUseSecond,
10573     SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
10574   assert(NewParamInfos.empty() && "param info list not empty");
10575   CanUseFirst = CanUseSecond = true;
10576   bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
10577   bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
10578 
10579   // Fast path: if the first type doesn't have ext parameter infos,
10580   // we match if and only if the second type also doesn't have them.
10581   if (!FirstHasInfo && !SecondHasInfo)
10582     return true;
10583 
10584   bool NeedParamInfo = false;
10585   size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
10586                           : SecondFnType->getExtParameterInfos().size();
10587 
10588   for (size_t I = 0; I < E; ++I) {
10589     FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
10590     if (FirstHasInfo)
10591       FirstParam = FirstFnType->getExtParameterInfo(I);
10592     if (SecondHasInfo)
10593       SecondParam = SecondFnType->getExtParameterInfo(I);
10594 
10595     // Cannot merge unless everything except the noescape flag matches.
10596     if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
10597       return false;
10598 
10599     bool FirstNoEscape = FirstParam.isNoEscape();
10600     bool SecondNoEscape = SecondParam.isNoEscape();
10601     bool IsNoEscape = FirstNoEscape && SecondNoEscape;
10602     NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
10603     if (NewParamInfos.back().getOpaqueValue())
10604       NeedParamInfo = true;
10605     if (FirstNoEscape != IsNoEscape)
10606       CanUseFirst = false;
10607     if (SecondNoEscape != IsNoEscape)
10608       CanUseSecond = false;
10609   }
10610 
10611   if (!NeedParamInfo)
10612     NewParamInfos.clear();
10613 
10614   return true;
10615 }
10616 
10617 void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
10618   ObjCLayouts[CD] = nullptr;
10619 }
10620 
10621 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
10622 /// 'RHS' attributes and returns the merged version; including for function
10623 /// return types.
10624 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
10625   QualType LHSCan = getCanonicalType(LHS),
10626   RHSCan = getCanonicalType(RHS);
10627   // If two types are identical, they are compatible.
10628   if (LHSCan == RHSCan)
10629     return LHS;
10630   if (RHSCan->isFunctionType()) {
10631     if (!LHSCan->isFunctionType())
10632       return {};
10633     QualType OldReturnType =
10634         cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
10635     QualType NewReturnType =
10636         cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
10637     QualType ResReturnType =
10638       mergeObjCGCQualifiers(NewReturnType, OldReturnType);
10639     if (ResReturnType.isNull())
10640       return {};
10641     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
10642       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
10643       // In either case, use OldReturnType to build the new function type.
10644       const auto *F = LHS->castAs<FunctionType>();
10645       if (const auto *FPT = cast<FunctionProtoType>(F)) {
10646         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10647         EPI.ExtInfo = getFunctionExtInfo(LHS);
10648         QualType ResultType =
10649             getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
10650         return ResultType;
10651       }
10652     }
10653     return {};
10654   }
10655 
10656   // If the qualifiers are different, the types can still be merged.
10657   Qualifiers LQuals = LHSCan.getLocalQualifiers();
10658   Qualifiers RQuals = RHSCan.getLocalQualifiers();
10659   if (LQuals != RQuals) {
10660     // If any of these qualifiers are different, we have a type mismatch.
10661     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
10662         LQuals.getAddressSpace() != RQuals.getAddressSpace())
10663       return {};
10664 
10665     // Exactly one GC qualifier difference is allowed: __strong is
10666     // okay if the other type has no GC qualifier but is an Objective
10667     // C object pointer (i.e. implicitly strong by default).  We fix
10668     // this by pretending that the unqualified type was actually
10669     // qualified __strong.
10670     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
10671     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
10672     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
10673 
10674     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
10675       return {};
10676 
10677     if (GC_L == Qualifiers::Strong)
10678       return LHS;
10679     if (GC_R == Qualifiers::Strong)
10680       return RHS;
10681     return {};
10682   }
10683 
10684   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
10685     QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType();
10686     QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType();
10687     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
10688     if (ResQT == LHSBaseQT)
10689       return LHS;
10690     if (ResQT == RHSBaseQT)
10691       return RHS;
10692   }
10693   return {};
10694 }
10695 
10696 //===----------------------------------------------------------------------===//
10697 //                         Integer Predicates
10698 //===----------------------------------------------------------------------===//
10699 
10700 unsigned ASTContext::getIntWidth(QualType T) const {
10701   if (const auto *ET = T->getAs<EnumType>())
10702     T = ET->getDecl()->getIntegerType();
10703   if (T->isBooleanType())
10704     return 1;
10705   if (const auto *EIT = T->getAs<BitIntType>())
10706     return EIT->getNumBits();
10707   // For builtin types, just use the standard type sizing method
10708   return (unsigned)getTypeSize(T);
10709 }
10710 
10711 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
10712   assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
10713          "Unexpected type");
10714 
10715   // Turn <4 x signed int> -> <4 x unsigned int>
10716   if (const auto *VTy = T->getAs<VectorType>())
10717     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
10718                          VTy->getNumElements(), VTy->getVectorKind());
10719 
10720   // For _BitInt, return an unsigned _BitInt with same width.
10721   if (const auto *EITy = T->getAs<BitIntType>())
10722     return getBitIntType(/*Unsigned=*/true, EITy->getNumBits());
10723 
10724   // For enums, get the underlying integer type of the enum, and let the general
10725   // integer type signchanging code handle it.
10726   if (const auto *ETy = T->getAs<EnumType>())
10727     T = ETy->getDecl()->getIntegerType();
10728 
10729   switch (T->castAs<BuiltinType>()->getKind()) {
10730   case BuiltinType::Char_S:
10731   case BuiltinType::SChar:
10732     return UnsignedCharTy;
10733   case BuiltinType::Short:
10734     return UnsignedShortTy;
10735   case BuiltinType::Int:
10736     return UnsignedIntTy;
10737   case BuiltinType::Long:
10738     return UnsignedLongTy;
10739   case BuiltinType::LongLong:
10740     return UnsignedLongLongTy;
10741   case BuiltinType::Int128:
10742     return UnsignedInt128Ty;
10743   // wchar_t is special. It is either signed or not, but when it's signed,
10744   // there's no matching "unsigned wchar_t". Therefore we return the unsigned
10745   // version of it's underlying type instead.
10746   case BuiltinType::WChar_S:
10747     return getUnsignedWCharType();
10748 
10749   case BuiltinType::ShortAccum:
10750     return UnsignedShortAccumTy;
10751   case BuiltinType::Accum:
10752     return UnsignedAccumTy;
10753   case BuiltinType::LongAccum:
10754     return UnsignedLongAccumTy;
10755   case BuiltinType::SatShortAccum:
10756     return SatUnsignedShortAccumTy;
10757   case BuiltinType::SatAccum:
10758     return SatUnsignedAccumTy;
10759   case BuiltinType::SatLongAccum:
10760     return SatUnsignedLongAccumTy;
10761   case BuiltinType::ShortFract:
10762     return UnsignedShortFractTy;
10763   case BuiltinType::Fract:
10764     return UnsignedFractTy;
10765   case BuiltinType::LongFract:
10766     return UnsignedLongFractTy;
10767   case BuiltinType::SatShortFract:
10768     return SatUnsignedShortFractTy;
10769   case BuiltinType::SatFract:
10770     return SatUnsignedFractTy;
10771   case BuiltinType::SatLongFract:
10772     return SatUnsignedLongFractTy;
10773   default:
10774     llvm_unreachable("Unexpected signed integer or fixed point type");
10775   }
10776 }
10777 
10778 QualType ASTContext::getCorrespondingSignedType(QualType T) const {
10779   assert((T->hasUnsignedIntegerRepresentation() ||
10780           T->isUnsignedFixedPointType()) &&
10781          "Unexpected type");
10782 
10783   // Turn <4 x unsigned int> -> <4 x signed int>
10784   if (const auto *VTy = T->getAs<VectorType>())
10785     return getVectorType(getCorrespondingSignedType(VTy->getElementType()),
10786                          VTy->getNumElements(), VTy->getVectorKind());
10787 
10788   // For _BitInt, return a signed _BitInt with same width.
10789   if (const auto *EITy = T->getAs<BitIntType>())
10790     return getBitIntType(/*Unsigned=*/false, EITy->getNumBits());
10791 
10792   // For enums, get the underlying integer type of the enum, and let the general
10793   // integer type signchanging code handle it.
10794   if (const auto *ETy = T->getAs<EnumType>())
10795     T = ETy->getDecl()->getIntegerType();
10796 
10797   switch (T->castAs<BuiltinType>()->getKind()) {
10798   case BuiltinType::Char_U:
10799   case BuiltinType::UChar:
10800     return SignedCharTy;
10801   case BuiltinType::UShort:
10802     return ShortTy;
10803   case BuiltinType::UInt:
10804     return IntTy;
10805   case BuiltinType::ULong:
10806     return LongTy;
10807   case BuiltinType::ULongLong:
10808     return LongLongTy;
10809   case BuiltinType::UInt128:
10810     return Int128Ty;
10811   // wchar_t is special. It is either unsigned or not, but when it's unsigned,
10812   // there's no matching "signed wchar_t". Therefore we return the signed
10813   // version of it's underlying type instead.
10814   case BuiltinType::WChar_U:
10815     return getSignedWCharType();
10816 
10817   case BuiltinType::UShortAccum:
10818     return ShortAccumTy;
10819   case BuiltinType::UAccum:
10820     return AccumTy;
10821   case BuiltinType::ULongAccum:
10822     return LongAccumTy;
10823   case BuiltinType::SatUShortAccum:
10824     return SatShortAccumTy;
10825   case BuiltinType::SatUAccum:
10826     return SatAccumTy;
10827   case BuiltinType::SatULongAccum:
10828     return SatLongAccumTy;
10829   case BuiltinType::UShortFract:
10830     return ShortFractTy;
10831   case BuiltinType::UFract:
10832     return FractTy;
10833   case BuiltinType::ULongFract:
10834     return LongFractTy;
10835   case BuiltinType::SatUShortFract:
10836     return SatShortFractTy;
10837   case BuiltinType::SatUFract:
10838     return SatFractTy;
10839   case BuiltinType::SatULongFract:
10840     return SatLongFractTy;
10841   default:
10842     llvm_unreachable("Unexpected unsigned integer or fixed point type");
10843   }
10844 }
10845 
10846 ASTMutationListener::~ASTMutationListener() = default;
10847 
10848 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
10849                                             QualType ReturnType) {}
10850 
10851 //===----------------------------------------------------------------------===//
10852 //                          Builtin Type Computation
10853 //===----------------------------------------------------------------------===//
10854 
10855 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
10856 /// pointer over the consumed characters.  This returns the resultant type.  If
10857 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
10858 /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
10859 /// a vector of "i*".
10860 ///
10861 /// RequiresICE is filled in on return to indicate whether the value is required
10862 /// to be an Integer Constant Expression.
10863 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
10864                                   ASTContext::GetBuiltinTypeError &Error,
10865                                   bool &RequiresICE,
10866                                   bool AllowTypeModifiers) {
10867   // Modifiers.
10868   int HowLong = 0;
10869   bool Signed = false, Unsigned = false;
10870   RequiresICE = false;
10871 
10872   // Read the prefixed modifiers first.
10873   bool Done = false;
10874   #ifndef NDEBUG
10875   bool IsSpecial = false;
10876   #endif
10877   while (!Done) {
10878     switch (*Str++) {
10879     default: Done = true; --Str; break;
10880     case 'I':
10881       RequiresICE = true;
10882       break;
10883     case 'S':
10884       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
10885       assert(!Signed && "Can't use 'S' modifier multiple times!");
10886       Signed = true;
10887       break;
10888     case 'U':
10889       assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
10890       assert(!Unsigned && "Can't use 'U' modifier multiple times!");
10891       Unsigned = true;
10892       break;
10893     case 'L':
10894       assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers");
10895       assert(HowLong <= 2 && "Can't have LLLL modifier");
10896       ++HowLong;
10897       break;
10898     case 'N':
10899       // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
10900       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10901       assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
10902       #ifndef NDEBUG
10903       IsSpecial = true;
10904       #endif
10905       if (Context.getTargetInfo().getLongWidth() == 32)
10906         ++HowLong;
10907       break;
10908     case 'W':
10909       // This modifier represents int64 type.
10910       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10911       assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
10912       #ifndef NDEBUG
10913       IsSpecial = true;
10914       #endif
10915       switch (Context.getTargetInfo().getInt64Type()) {
10916       default:
10917         llvm_unreachable("Unexpected integer type");
10918       case TargetInfo::SignedLong:
10919         HowLong = 1;
10920         break;
10921       case TargetInfo::SignedLongLong:
10922         HowLong = 2;
10923         break;
10924       }
10925       break;
10926     case 'Z':
10927       // This modifier represents int32 type.
10928       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10929       assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!");
10930       #ifndef NDEBUG
10931       IsSpecial = true;
10932       #endif
10933       switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) {
10934       default:
10935         llvm_unreachable("Unexpected integer type");
10936       case TargetInfo::SignedInt:
10937         HowLong = 0;
10938         break;
10939       case TargetInfo::SignedLong:
10940         HowLong = 1;
10941         break;
10942       case TargetInfo::SignedLongLong:
10943         HowLong = 2;
10944         break;
10945       }
10946       break;
10947     case 'O':
10948       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10949       assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!");
10950       #ifndef NDEBUG
10951       IsSpecial = true;
10952       #endif
10953       if (Context.getLangOpts().OpenCL)
10954         HowLong = 1;
10955       else
10956         HowLong = 2;
10957       break;
10958     }
10959   }
10960 
10961   QualType Type;
10962 
10963   // Read the base type.
10964   switch (*Str++) {
10965   default: llvm_unreachable("Unknown builtin type letter!");
10966   case 'x':
10967     assert(HowLong == 0 && !Signed && !Unsigned &&
10968            "Bad modifiers used with 'x'!");
10969     Type = Context.Float16Ty;
10970     break;
10971   case 'y':
10972     assert(HowLong == 0 && !Signed && !Unsigned &&
10973            "Bad modifiers used with 'y'!");
10974     Type = Context.BFloat16Ty;
10975     break;
10976   case 'v':
10977     assert(HowLong == 0 && !Signed && !Unsigned &&
10978            "Bad modifiers used with 'v'!");
10979     Type = Context.VoidTy;
10980     break;
10981   case 'h':
10982     assert(HowLong == 0 && !Signed && !Unsigned &&
10983            "Bad modifiers used with 'h'!");
10984     Type = Context.HalfTy;
10985     break;
10986   case 'f':
10987     assert(HowLong == 0 && !Signed && !Unsigned &&
10988            "Bad modifiers used with 'f'!");
10989     Type = Context.FloatTy;
10990     break;
10991   case 'd':
10992     assert(HowLong < 3 && !Signed && !Unsigned &&
10993            "Bad modifiers used with 'd'!");
10994     if (HowLong == 1)
10995       Type = Context.LongDoubleTy;
10996     else if (HowLong == 2)
10997       Type = Context.Float128Ty;
10998     else
10999       Type = Context.DoubleTy;
11000     break;
11001   case 's':
11002     assert(HowLong == 0 && "Bad modifiers used with 's'!");
11003     if (Unsigned)
11004       Type = Context.UnsignedShortTy;
11005     else
11006       Type = Context.ShortTy;
11007     break;
11008   case 'i':
11009     if (HowLong == 3)
11010       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
11011     else if (HowLong == 2)
11012       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
11013     else if (HowLong == 1)
11014       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
11015     else
11016       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
11017     break;
11018   case 'c':
11019     assert(HowLong == 0 && "Bad modifiers used with 'c'!");
11020     if (Signed)
11021       Type = Context.SignedCharTy;
11022     else if (Unsigned)
11023       Type = Context.UnsignedCharTy;
11024     else
11025       Type = Context.CharTy;
11026     break;
11027   case 'b': // boolean
11028     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
11029     Type = Context.BoolTy;
11030     break;
11031   case 'z':  // size_t.
11032     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
11033     Type = Context.getSizeType();
11034     break;
11035   case 'w':  // wchar_t.
11036     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
11037     Type = Context.getWideCharType();
11038     break;
11039   case 'F':
11040     Type = Context.getCFConstantStringType();
11041     break;
11042   case 'G':
11043     Type = Context.getObjCIdType();
11044     break;
11045   case 'H':
11046     Type = Context.getObjCSelType();
11047     break;
11048   case 'M':
11049     Type = Context.getObjCSuperType();
11050     break;
11051   case 'a':
11052     Type = Context.getBuiltinVaListType();
11053     assert(!Type.isNull() && "builtin va list type not initialized!");
11054     break;
11055   case 'A':
11056     // This is a "reference" to a va_list; however, what exactly
11057     // this means depends on how va_list is defined. There are two
11058     // different kinds of va_list: ones passed by value, and ones
11059     // passed by reference.  An example of a by-value va_list is
11060     // x86, where va_list is a char*. An example of by-ref va_list
11061     // is x86-64, where va_list is a __va_list_tag[1]. For x86,
11062     // we want this argument to be a char*&; for x86-64, we want
11063     // it to be a __va_list_tag*.
11064     Type = Context.getBuiltinVaListType();
11065     assert(!Type.isNull() && "builtin va list type not initialized!");
11066     if (Type->isArrayType())
11067       Type = Context.getArrayDecayedType(Type);
11068     else
11069       Type = Context.getLValueReferenceType(Type);
11070     break;
11071   case 'q': {
11072     char *End;
11073     unsigned NumElements = strtoul(Str, &End, 10);
11074     assert(End != Str && "Missing vector size");
11075     Str = End;
11076 
11077     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
11078                                              RequiresICE, false);
11079     assert(!RequiresICE && "Can't require vector ICE");
11080 
11081     Type = Context.getScalableVectorType(ElementType, NumElements);
11082     break;
11083   }
11084   case 'V': {
11085     char *End;
11086     unsigned NumElements = strtoul(Str, &End, 10);
11087     assert(End != Str && "Missing vector size");
11088     Str = End;
11089 
11090     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
11091                                              RequiresICE, false);
11092     assert(!RequiresICE && "Can't require vector ICE");
11093 
11094     // TODO: No way to make AltiVec vectors in builtins yet.
11095     Type = Context.getVectorType(ElementType, NumElements,
11096                                  VectorType::GenericVector);
11097     break;
11098   }
11099   case 'E': {
11100     char *End;
11101 
11102     unsigned NumElements = strtoul(Str, &End, 10);
11103     assert(End != Str && "Missing vector size");
11104 
11105     Str = End;
11106 
11107     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
11108                                              false);
11109     Type = Context.getExtVectorType(ElementType, NumElements);
11110     break;
11111   }
11112   case 'X': {
11113     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
11114                                              false);
11115     assert(!RequiresICE && "Can't require complex ICE");
11116     Type = Context.getComplexType(ElementType);
11117     break;
11118   }
11119   case 'Y':
11120     Type = Context.getPointerDiffType();
11121     break;
11122   case 'P':
11123     Type = Context.getFILEType();
11124     if (Type.isNull()) {
11125       Error = ASTContext::GE_Missing_stdio;
11126       return {};
11127     }
11128     break;
11129   case 'J':
11130     if (Signed)
11131       Type = Context.getsigjmp_bufType();
11132     else
11133       Type = Context.getjmp_bufType();
11134 
11135     if (Type.isNull()) {
11136       Error = ASTContext::GE_Missing_setjmp;
11137       return {};
11138     }
11139     break;
11140   case 'K':
11141     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
11142     Type = Context.getucontext_tType();
11143 
11144     if (Type.isNull()) {
11145       Error = ASTContext::GE_Missing_ucontext;
11146       return {};
11147     }
11148     break;
11149   case 'p':
11150     Type = Context.getProcessIDType();
11151     break;
11152   }
11153 
11154   // If there are modifiers and if we're allowed to parse them, go for it.
11155   Done = !AllowTypeModifiers;
11156   while (!Done) {
11157     switch (char c = *Str++) {
11158     default: Done = true; --Str; break;
11159     case '*':
11160     case '&': {
11161       // Both pointers and references can have their pointee types
11162       // qualified with an address space.
11163       char *End;
11164       unsigned AddrSpace = strtoul(Str, &End, 10);
11165       if (End != Str) {
11166         // Note AddrSpace == 0 is not the same as an unspecified address space.
11167         Type = Context.getAddrSpaceQualType(
11168           Type,
11169           Context.getLangASForBuiltinAddressSpace(AddrSpace));
11170         Str = End;
11171       }
11172       if (c == '*')
11173         Type = Context.getPointerType(Type);
11174       else
11175         Type = Context.getLValueReferenceType(Type);
11176       break;
11177     }
11178     // FIXME: There's no way to have a built-in with an rvalue ref arg.
11179     case 'C':
11180       Type = Type.withConst();
11181       break;
11182     case 'D':
11183       Type = Context.getVolatileType(Type);
11184       break;
11185     case 'R':
11186       Type = Type.withRestrict();
11187       break;
11188     }
11189   }
11190 
11191   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
11192          "Integer constant 'I' type must be an integer");
11193 
11194   return Type;
11195 }
11196 
11197 // On some targets such as PowerPC, some of the builtins are defined with custom
11198 // type descriptors for target-dependent types. These descriptors are decoded in
11199 // other functions, but it may be useful to be able to fall back to default
11200 // descriptor decoding to define builtins mixing target-dependent and target-
11201 // independent types. This function allows decoding one type descriptor with
11202 // default decoding.
11203 QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context,
11204                                    GetBuiltinTypeError &Error, bool &RequireICE,
11205                                    bool AllowTypeModifiers) const {
11206   return DecodeTypeFromStr(Str, Context, Error, RequireICE, AllowTypeModifiers);
11207 }
11208 
11209 /// GetBuiltinType - Return the type for the specified builtin.
11210 QualType ASTContext::GetBuiltinType(unsigned Id,
11211                                     GetBuiltinTypeError &Error,
11212                                     unsigned *IntegerConstantArgs) const {
11213   const char *TypeStr = BuiltinInfo.getTypeString(Id);
11214   if (TypeStr[0] == '\0') {
11215     Error = GE_Missing_type;
11216     return {};
11217   }
11218 
11219   SmallVector<QualType, 8> ArgTypes;
11220 
11221   bool RequiresICE = false;
11222   Error = GE_None;
11223   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
11224                                        RequiresICE, true);
11225   if (Error != GE_None)
11226     return {};
11227 
11228   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
11229 
11230   while (TypeStr[0] && TypeStr[0] != '.') {
11231     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
11232     if (Error != GE_None)
11233       return {};
11234 
11235     // If this argument is required to be an IntegerConstantExpression and the
11236     // caller cares, fill in the bitmask we return.
11237     if (RequiresICE && IntegerConstantArgs)
11238       *IntegerConstantArgs |= 1 << ArgTypes.size();
11239 
11240     // Do array -> pointer decay.  The builtin should use the decayed type.
11241     if (Ty->isArrayType())
11242       Ty = getArrayDecayedType(Ty);
11243 
11244     ArgTypes.push_back(Ty);
11245   }
11246 
11247   if (Id == Builtin::BI__GetExceptionInfo)
11248     return {};
11249 
11250   assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
11251          "'.' should only occur at end of builtin type list!");
11252 
11253   bool Variadic = (TypeStr[0] == '.');
11254 
11255   FunctionType::ExtInfo EI(getDefaultCallingConvention(
11256       Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
11257   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
11258 
11259 
11260   // We really shouldn't be making a no-proto type here.
11261   if (ArgTypes.empty() && Variadic && !getLangOpts().requiresStrictPrototypes())
11262     return getFunctionNoProtoType(ResType, EI);
11263 
11264   FunctionProtoType::ExtProtoInfo EPI;
11265   EPI.ExtInfo = EI;
11266   EPI.Variadic = Variadic;
11267   if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
11268     EPI.ExceptionSpec.Type =
11269         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
11270 
11271   return getFunctionType(ResType, ArgTypes, EPI);
11272 }
11273 
11274 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
11275                                              const FunctionDecl *FD) {
11276   if (!FD->isExternallyVisible())
11277     return GVA_Internal;
11278 
11279   // Non-user-provided functions get emitted as weak definitions with every
11280   // use, no matter whether they've been explicitly instantiated etc.
11281   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
11282     if (!MD->isUserProvided())
11283       return GVA_DiscardableODR;
11284 
11285   GVALinkage External;
11286   switch (FD->getTemplateSpecializationKind()) {
11287   case TSK_Undeclared:
11288   case TSK_ExplicitSpecialization:
11289     External = GVA_StrongExternal;
11290     break;
11291 
11292   case TSK_ExplicitInstantiationDefinition:
11293     return GVA_StrongODR;
11294 
11295   // C++11 [temp.explicit]p10:
11296   //   [ Note: The intent is that an inline function that is the subject of
11297   //   an explicit instantiation declaration will still be implicitly
11298   //   instantiated when used so that the body can be considered for
11299   //   inlining, but that no out-of-line copy of the inline function would be
11300   //   generated in the translation unit. -- end note ]
11301   case TSK_ExplicitInstantiationDeclaration:
11302     return GVA_AvailableExternally;
11303 
11304   case TSK_ImplicitInstantiation:
11305     External = GVA_DiscardableODR;
11306     break;
11307   }
11308 
11309   if (!FD->isInlined())
11310     return External;
11311 
11312   if ((!Context.getLangOpts().CPlusPlus &&
11313        !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11314        !FD->hasAttr<DLLExportAttr>()) ||
11315       FD->hasAttr<GNUInlineAttr>()) {
11316     // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
11317 
11318     // GNU or C99 inline semantics. Determine whether this symbol should be
11319     // externally visible.
11320     if (FD->isInlineDefinitionExternallyVisible())
11321       return External;
11322 
11323     // C99 inline semantics, where the symbol is not externally visible.
11324     return GVA_AvailableExternally;
11325   }
11326 
11327   // Functions specified with extern and inline in -fms-compatibility mode
11328   // forcibly get emitted.  While the body of the function cannot be later
11329   // replaced, the function definition cannot be discarded.
11330   if (FD->isMSExternInline())
11331     return GVA_StrongODR;
11332 
11333   return GVA_DiscardableODR;
11334 }
11335 
11336 static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
11337                                                 const Decl *D, GVALinkage L) {
11338   // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
11339   // dllexport/dllimport on inline functions.
11340   if (D->hasAttr<DLLImportAttr>()) {
11341     if (L == GVA_DiscardableODR || L == GVA_StrongODR)
11342       return GVA_AvailableExternally;
11343   } else if (D->hasAttr<DLLExportAttr>()) {
11344     if (L == GVA_DiscardableODR)
11345       return GVA_StrongODR;
11346   } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) {
11347     // Device-side functions with __global__ attribute must always be
11348     // visible externally so they can be launched from host.
11349     if (D->hasAttr<CUDAGlobalAttr>() &&
11350         (L == GVA_DiscardableODR || L == GVA_Internal))
11351       return GVA_StrongODR;
11352     // Single source offloading languages like CUDA/HIP need to be able to
11353     // access static device variables from host code of the same compilation
11354     // unit. This is done by externalizing the static variable with a shared
11355     // name between the host and device compilation which is the same for the
11356     // same compilation unit whereas different among different compilation
11357     // units.
11358     if (Context.shouldExternalize(D))
11359       return GVA_StrongExternal;
11360   }
11361   return L;
11362 }
11363 
11364 /// Adjust the GVALinkage for a declaration based on what an external AST source
11365 /// knows about whether there can be other definitions of this declaration.
11366 static GVALinkage
11367 adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
11368                                           GVALinkage L) {
11369   ExternalASTSource *Source = Ctx.getExternalSource();
11370   if (!Source)
11371     return L;
11372 
11373   switch (Source->hasExternalDefinitions(D)) {
11374   case ExternalASTSource::EK_Never:
11375     // Other translation units rely on us to provide the definition.
11376     if (L == GVA_DiscardableODR)
11377       return GVA_StrongODR;
11378     break;
11379 
11380   case ExternalASTSource::EK_Always:
11381     return GVA_AvailableExternally;
11382 
11383   case ExternalASTSource::EK_ReplyHazy:
11384     break;
11385   }
11386   return L;
11387 }
11388 
11389 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
11390   return adjustGVALinkageForExternalDefinitionKind(*this, FD,
11391            adjustGVALinkageForAttributes(*this, FD,
11392              basicGVALinkageForFunction(*this, FD)));
11393 }
11394 
11395 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
11396                                              const VarDecl *VD) {
11397   if (!VD->isExternallyVisible())
11398     return GVA_Internal;
11399 
11400   if (VD->isStaticLocal()) {
11401     const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
11402     while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
11403       LexicalContext = LexicalContext->getLexicalParent();
11404 
11405     // ObjC Blocks can create local variables that don't have a FunctionDecl
11406     // LexicalContext.
11407     if (!LexicalContext)
11408       return GVA_DiscardableODR;
11409 
11410     // Otherwise, let the static local variable inherit its linkage from the
11411     // nearest enclosing function.
11412     auto StaticLocalLinkage =
11413         Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
11414 
11415     // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
11416     // be emitted in any object with references to the symbol for the object it
11417     // contains, whether inline or out-of-line."
11418     // Similar behavior is observed with MSVC. An alternative ABI could use
11419     // StrongODR/AvailableExternally to match the function, but none are
11420     // known/supported currently.
11421     if (StaticLocalLinkage == GVA_StrongODR ||
11422         StaticLocalLinkage == GVA_AvailableExternally)
11423       return GVA_DiscardableODR;
11424     return StaticLocalLinkage;
11425   }
11426 
11427   // MSVC treats in-class initialized static data members as definitions.
11428   // By giving them non-strong linkage, out-of-line definitions won't
11429   // cause link errors.
11430   if (Context.isMSStaticDataMemberInlineDefinition(VD))
11431     return GVA_DiscardableODR;
11432 
11433   // Most non-template variables have strong linkage; inline variables are
11434   // linkonce_odr or (occasionally, for compatibility) weak_odr.
11435   GVALinkage StrongLinkage;
11436   switch (Context.getInlineVariableDefinitionKind(VD)) {
11437   case ASTContext::InlineVariableDefinitionKind::None:
11438     StrongLinkage = GVA_StrongExternal;
11439     break;
11440   case ASTContext::InlineVariableDefinitionKind::Weak:
11441   case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
11442     StrongLinkage = GVA_DiscardableODR;
11443     break;
11444   case ASTContext::InlineVariableDefinitionKind::Strong:
11445     StrongLinkage = GVA_StrongODR;
11446     break;
11447   }
11448 
11449   switch (VD->getTemplateSpecializationKind()) {
11450   case TSK_Undeclared:
11451     return StrongLinkage;
11452 
11453   case TSK_ExplicitSpecialization:
11454     return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11455                    VD->isStaticDataMember()
11456                ? GVA_StrongODR
11457                : StrongLinkage;
11458 
11459   case TSK_ExplicitInstantiationDefinition:
11460     return GVA_StrongODR;
11461 
11462   case TSK_ExplicitInstantiationDeclaration:
11463     return GVA_AvailableExternally;
11464 
11465   case TSK_ImplicitInstantiation:
11466     return GVA_DiscardableODR;
11467   }
11468 
11469   llvm_unreachable("Invalid Linkage!");
11470 }
11471 
11472 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
11473   return adjustGVALinkageForExternalDefinitionKind(*this, VD,
11474            adjustGVALinkageForAttributes(*this, VD,
11475              basicGVALinkageForVariable(*this, VD)));
11476 }
11477 
11478 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
11479   if (const auto *VD = dyn_cast<VarDecl>(D)) {
11480     if (!VD->isFileVarDecl())
11481       return false;
11482     // Global named register variables (GNU extension) are never emitted.
11483     if (VD->getStorageClass() == SC_Register)
11484       return false;
11485     if (VD->getDescribedVarTemplate() ||
11486         isa<VarTemplatePartialSpecializationDecl>(VD))
11487       return false;
11488   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
11489     // We never need to emit an uninstantiated function template.
11490     if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
11491       return false;
11492   } else if (isa<PragmaCommentDecl>(D))
11493     return true;
11494   else if (isa<PragmaDetectMismatchDecl>(D))
11495     return true;
11496   else if (isa<OMPRequiresDecl>(D))
11497     return true;
11498   else if (isa<OMPThreadPrivateDecl>(D))
11499     return !D->getDeclContext()->isDependentContext();
11500   else if (isa<OMPAllocateDecl>(D))
11501     return !D->getDeclContext()->isDependentContext();
11502   else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D))
11503     return !D->getDeclContext()->isDependentContext();
11504   else if (isa<ImportDecl>(D))
11505     return true;
11506   else
11507     return false;
11508 
11509   // If this is a member of a class template, we do not need to emit it.
11510   if (D->getDeclContext()->isDependentContext())
11511     return false;
11512 
11513   // Weak references don't produce any output by themselves.
11514   if (D->hasAttr<WeakRefAttr>())
11515     return false;
11516 
11517   // Aliases and used decls are required.
11518   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
11519     return true;
11520 
11521   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
11522     // Forward declarations aren't required.
11523     if (!FD->doesThisDeclarationHaveABody())
11524       return FD->doesDeclarationForceExternallyVisibleDefinition();
11525 
11526     // Constructors and destructors are required.
11527     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
11528       return true;
11529 
11530     // The key function for a class is required.  This rule only comes
11531     // into play when inline functions can be key functions, though.
11532     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
11533       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
11534         const CXXRecordDecl *RD = MD->getParent();
11535         if (MD->isOutOfLine() && RD->isDynamicClass()) {
11536           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
11537           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
11538             return true;
11539         }
11540       }
11541     }
11542 
11543     GVALinkage Linkage = GetGVALinkageForFunction(FD);
11544 
11545     // static, static inline, always_inline, and extern inline functions can
11546     // always be deferred.  Normal inline functions can be deferred in C99/C++.
11547     // Implicit template instantiations can also be deferred in C++.
11548     return !isDiscardableGVALinkage(Linkage);
11549   }
11550 
11551   const auto *VD = cast<VarDecl>(D);
11552   assert(VD->isFileVarDecl() && "Expected file scoped var");
11553 
11554   // If the decl is marked as `declare target to`, it should be emitted for the
11555   // host and for the device.
11556   if (LangOpts.OpenMP &&
11557       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
11558     return true;
11559 
11560   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
11561       !isMSStaticDataMemberInlineDefinition(VD))
11562     return false;
11563 
11564   // Variables that can be needed in other TUs are required.
11565   auto Linkage = GetGVALinkageForVariable(VD);
11566   if (!isDiscardableGVALinkage(Linkage))
11567     return true;
11568 
11569   // We never need to emit a variable that is available in another TU.
11570   if (Linkage == GVA_AvailableExternally)
11571     return false;
11572 
11573   // Variables that have destruction with side-effects are required.
11574   if (VD->needsDestruction(*this))
11575     return true;
11576 
11577   // Variables that have initialization with side-effects are required.
11578   if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
11579       // We can get a value-dependent initializer during error recovery.
11580       (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
11581     return true;
11582 
11583   // Likewise, variables with tuple-like bindings are required if their
11584   // bindings have side-effects.
11585   if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
11586     for (const auto *BD : DD->bindings())
11587       if (const auto *BindingVD = BD->getHoldingVar())
11588         if (DeclMustBeEmitted(BindingVD))
11589           return true;
11590 
11591   return false;
11592 }
11593 
11594 void ASTContext::forEachMultiversionedFunctionVersion(
11595     const FunctionDecl *FD,
11596     llvm::function_ref<void(FunctionDecl *)> Pred) const {
11597   assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
11598   llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
11599   FD = FD->getMostRecentDecl();
11600   // FIXME: The order of traversal here matters and depends on the order of
11601   // lookup results, which happens to be (mostly) oldest-to-newest, but we
11602   // shouldn't rely on that.
11603   for (auto *CurDecl :
11604        FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
11605     FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
11606     if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
11607         std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) {
11608       SeenDecls.insert(CurFD);
11609       Pred(CurFD);
11610     }
11611   }
11612 }
11613 
11614 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
11615                                                     bool IsCXXMethod,
11616                                                     bool IsBuiltin) const {
11617   // Pass through to the C++ ABI object
11618   if (IsCXXMethod)
11619     return ABI->getDefaultMethodCallConv(IsVariadic);
11620 
11621   // Builtins ignore user-specified default calling convention and remain the
11622   // Target's default calling convention.
11623   if (!IsBuiltin) {
11624     switch (LangOpts.getDefaultCallingConv()) {
11625     case LangOptions::DCC_None:
11626       break;
11627     case LangOptions::DCC_CDecl:
11628       return CC_C;
11629     case LangOptions::DCC_FastCall:
11630       if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
11631         return CC_X86FastCall;
11632       break;
11633     case LangOptions::DCC_StdCall:
11634       if (!IsVariadic)
11635         return CC_X86StdCall;
11636       break;
11637     case LangOptions::DCC_VectorCall:
11638       // __vectorcall cannot be applied to variadic functions.
11639       if (!IsVariadic)
11640         return CC_X86VectorCall;
11641       break;
11642     case LangOptions::DCC_RegCall:
11643       // __regcall cannot be applied to variadic functions.
11644       if (!IsVariadic)
11645         return CC_X86RegCall;
11646       break;
11647     }
11648   }
11649   return Target->getDefaultCallingConv();
11650 }
11651 
11652 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
11653   // Pass through to the C++ ABI object
11654   return ABI->isNearlyEmpty(RD);
11655 }
11656 
11657 VTableContextBase *ASTContext::getVTableContext() {
11658   if (!VTContext.get()) {
11659     auto ABI = Target->getCXXABI();
11660     if (ABI.isMicrosoft())
11661       VTContext.reset(new MicrosoftVTableContext(*this));
11662     else {
11663       auto ComponentLayout = getLangOpts().RelativeCXXABIVTables
11664                                  ? ItaniumVTableContext::Relative
11665                                  : ItaniumVTableContext::Pointer;
11666       VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout));
11667     }
11668   }
11669   return VTContext.get();
11670 }
11671 
11672 MangleContext *ASTContext::createMangleContext(const TargetInfo *T) {
11673   if (!T)
11674     T = Target;
11675   switch (T->getCXXABI().getKind()) {
11676   case TargetCXXABI::AppleARM64:
11677   case TargetCXXABI::Fuchsia:
11678   case TargetCXXABI::GenericAArch64:
11679   case TargetCXXABI::GenericItanium:
11680   case TargetCXXABI::GenericARM:
11681   case TargetCXXABI::GenericMIPS:
11682   case TargetCXXABI::iOS:
11683   case TargetCXXABI::WebAssembly:
11684   case TargetCXXABI::WatchOS:
11685   case TargetCXXABI::XL:
11686     return ItaniumMangleContext::create(*this, getDiagnostics());
11687   case TargetCXXABI::Microsoft:
11688     return MicrosoftMangleContext::create(*this, getDiagnostics());
11689   }
11690   llvm_unreachable("Unsupported ABI");
11691 }
11692 
11693 MangleContext *ASTContext::createDeviceMangleContext(const TargetInfo &T) {
11694   assert(T.getCXXABI().getKind() != TargetCXXABI::Microsoft &&
11695          "Device mangle context does not support Microsoft mangling.");
11696   switch (T.getCXXABI().getKind()) {
11697   case TargetCXXABI::AppleARM64:
11698   case TargetCXXABI::Fuchsia:
11699   case TargetCXXABI::GenericAArch64:
11700   case TargetCXXABI::GenericItanium:
11701   case TargetCXXABI::GenericARM:
11702   case TargetCXXABI::GenericMIPS:
11703   case TargetCXXABI::iOS:
11704   case TargetCXXABI::WebAssembly:
11705   case TargetCXXABI::WatchOS:
11706   case TargetCXXABI::XL:
11707     return ItaniumMangleContext::create(
11708         *this, getDiagnostics(),
11709         [](ASTContext &, const NamedDecl *ND) -> llvm::Optional<unsigned> {
11710           if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
11711             return RD->getDeviceLambdaManglingNumber();
11712           return llvm::None;
11713         },
11714         /*IsAux=*/true);
11715   case TargetCXXABI::Microsoft:
11716     return MicrosoftMangleContext::create(*this, getDiagnostics(),
11717                                           /*IsAux=*/true);
11718   }
11719   llvm_unreachable("Unsupported ABI");
11720 }
11721 
11722 CXXABI::~CXXABI() = default;
11723 
11724 size_t ASTContext::getSideTableAllocatedMemory() const {
11725   return ASTRecordLayouts.getMemorySize() +
11726          llvm::capacity_in_bytes(ObjCLayouts) +
11727          llvm::capacity_in_bytes(KeyFunctions) +
11728          llvm::capacity_in_bytes(ObjCImpls) +
11729          llvm::capacity_in_bytes(BlockVarCopyInits) +
11730          llvm::capacity_in_bytes(DeclAttrs) +
11731          llvm::capacity_in_bytes(TemplateOrInstantiation) +
11732          llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
11733          llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
11734          llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
11735          llvm::capacity_in_bytes(OverriddenMethods) +
11736          llvm::capacity_in_bytes(Types) +
11737          llvm::capacity_in_bytes(VariableArrayTypes);
11738 }
11739 
11740 /// getIntTypeForBitwidth -
11741 /// sets integer QualTy according to specified details:
11742 /// bitwidth, signed/unsigned.
11743 /// Returns empty type if there is no appropriate target types.
11744 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
11745                                            unsigned Signed) const {
11746   TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
11747   CanQualType QualTy = getFromTargetType(Ty);
11748   if (!QualTy && DestWidth == 128)
11749     return Signed ? Int128Ty : UnsignedInt128Ty;
11750   return QualTy;
11751 }
11752 
11753 /// getRealTypeForBitwidth -
11754 /// sets floating point QualTy according to specified bitwidth.
11755 /// Returns empty type if there is no appropriate target types.
11756 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth,
11757                                             FloatModeKind ExplicitType) const {
11758   FloatModeKind Ty =
11759       getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitType);
11760   switch (Ty) {
11761   case FloatModeKind::Float:
11762     return FloatTy;
11763   case FloatModeKind::Double:
11764     return DoubleTy;
11765   case FloatModeKind::LongDouble:
11766     return LongDoubleTy;
11767   case FloatModeKind::Float128:
11768     return Float128Ty;
11769   case FloatModeKind::Ibm128:
11770     return Ibm128Ty;
11771   case FloatModeKind::NoFloat:
11772     return {};
11773   }
11774 
11775   llvm_unreachable("Unhandled TargetInfo::RealType value");
11776 }
11777 
11778 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
11779   if (Number > 1)
11780     MangleNumbers[ND] = Number;
11781 }
11782 
11783 unsigned ASTContext::getManglingNumber(const NamedDecl *ND,
11784                                        bool ForAuxTarget) const {
11785   auto I = MangleNumbers.find(ND);
11786   unsigned Res = I != MangleNumbers.end() ? I->second : 1;
11787   // CUDA/HIP host compilation encodes host and device mangling numbers
11788   // as lower and upper half of 32 bit integer.
11789   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice) {
11790     Res = ForAuxTarget ? Res >> 16 : Res & 0xFFFF;
11791   } else {
11792     assert(!ForAuxTarget && "Only CUDA/HIP host compilation supports mangling "
11793                             "number for aux target");
11794   }
11795   return Res > 1 ? Res : 1;
11796 }
11797 
11798 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
11799   if (Number > 1)
11800     StaticLocalNumbers[VD] = Number;
11801 }
11802 
11803 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
11804   auto I = StaticLocalNumbers.find(VD);
11805   return I != StaticLocalNumbers.end() ? I->second : 1;
11806 }
11807 
11808 MangleNumberingContext &
11809 ASTContext::getManglingNumberContext(const DeclContext *DC) {
11810   assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
11811   std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
11812   if (!MCtx)
11813     MCtx = createMangleNumberingContext();
11814   return *MCtx;
11815 }
11816 
11817 MangleNumberingContext &
11818 ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) {
11819   assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
11820   std::unique_ptr<MangleNumberingContext> &MCtx =
11821       ExtraMangleNumberingContexts[D];
11822   if (!MCtx)
11823     MCtx = createMangleNumberingContext();
11824   return *MCtx;
11825 }
11826 
11827 std::unique_ptr<MangleNumberingContext>
11828 ASTContext::createMangleNumberingContext() const {
11829   return ABI->createMangleNumberingContext();
11830 }
11831 
11832 const CXXConstructorDecl *
11833 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
11834   return ABI->getCopyConstructorForExceptionObject(
11835       cast<CXXRecordDecl>(RD->getFirstDecl()));
11836 }
11837 
11838 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
11839                                                       CXXConstructorDecl *CD) {
11840   return ABI->addCopyConstructorForExceptionObject(
11841       cast<CXXRecordDecl>(RD->getFirstDecl()),
11842       cast<CXXConstructorDecl>(CD->getFirstDecl()));
11843 }
11844 
11845 void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
11846                                                  TypedefNameDecl *DD) {
11847   return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
11848 }
11849 
11850 TypedefNameDecl *
11851 ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
11852   return ABI->getTypedefNameForUnnamedTagDecl(TD);
11853 }
11854 
11855 void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
11856                                                 DeclaratorDecl *DD) {
11857   return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
11858 }
11859 
11860 DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
11861   return ABI->getDeclaratorForUnnamedTagDecl(TD);
11862 }
11863 
11864 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
11865   ParamIndices[D] = index;
11866 }
11867 
11868 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
11869   ParameterIndexTable::const_iterator I = ParamIndices.find(D);
11870   assert(I != ParamIndices.end() &&
11871          "ParmIndices lacks entry set by ParmVarDecl");
11872   return I->second;
11873 }
11874 
11875 QualType ASTContext::getStringLiteralArrayType(QualType EltTy,
11876                                                unsigned Length) const {
11877   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
11878   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
11879     EltTy = EltTy.withConst();
11880 
11881   EltTy = adjustStringLiteralBaseType(EltTy);
11882 
11883   // Get an array type for the string, according to C99 6.4.5. This includes
11884   // the null terminator character.
11885   return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr,
11886                               ArrayType::Normal, /*IndexTypeQuals*/ 0);
11887 }
11888 
11889 StringLiteral *
11890 ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const {
11891   StringLiteral *&Result = StringLiteralCache[Key];
11892   if (!Result)
11893     Result = StringLiteral::Create(
11894         *this, Key, StringLiteral::Ascii,
11895         /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()),
11896         SourceLocation());
11897   return Result;
11898 }
11899 
11900 MSGuidDecl *
11901 ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const {
11902   assert(MSGuidTagDecl && "building MS GUID without MS extensions?");
11903 
11904   llvm::FoldingSetNodeID ID;
11905   MSGuidDecl::Profile(ID, Parts);
11906 
11907   void *InsertPos;
11908   if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos))
11909     return Existing;
11910 
11911   QualType GUIDType = getMSGuidType().withConst();
11912   MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts);
11913   MSGuidDecls.InsertNode(New, InsertPos);
11914   return New;
11915 }
11916 
11917 UnnamedGlobalConstantDecl *
11918 ASTContext::getUnnamedGlobalConstantDecl(QualType Ty,
11919                                          const APValue &APVal) const {
11920   llvm::FoldingSetNodeID ID;
11921   UnnamedGlobalConstantDecl::Profile(ID, Ty, APVal);
11922 
11923   void *InsertPos;
11924   if (UnnamedGlobalConstantDecl *Existing =
11925           UnnamedGlobalConstantDecls.FindNodeOrInsertPos(ID, InsertPos))
11926     return Existing;
11927 
11928   UnnamedGlobalConstantDecl *New =
11929       UnnamedGlobalConstantDecl::Create(*this, Ty, APVal);
11930   UnnamedGlobalConstantDecls.InsertNode(New, InsertPos);
11931   return New;
11932 }
11933 
11934 TemplateParamObjectDecl *
11935 ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const {
11936   assert(T->isRecordType() && "template param object of unexpected type");
11937 
11938   // C++ [temp.param]p8:
11939   //   [...] a static storage duration object of type 'const T' [...]
11940   T.addConst();
11941 
11942   llvm::FoldingSetNodeID ID;
11943   TemplateParamObjectDecl::Profile(ID, T, V);
11944 
11945   void *InsertPos;
11946   if (TemplateParamObjectDecl *Existing =
11947           TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos))
11948     return Existing;
11949 
11950   TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(*this, T, V);
11951   TemplateParamObjectDecls.InsertNode(New, InsertPos);
11952   return New;
11953 }
11954 
11955 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
11956   const llvm::Triple &T = getTargetInfo().getTriple();
11957   if (!T.isOSDarwin())
11958     return false;
11959 
11960   if (!(T.isiOS() && T.isOSVersionLT(7)) &&
11961       !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
11962     return false;
11963 
11964   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
11965   CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
11966   uint64_t Size = sizeChars.getQuantity();
11967   CharUnits alignChars = getTypeAlignInChars(AtomicTy);
11968   unsigned Align = alignChars.getQuantity();
11969   unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
11970   return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
11971 }
11972 
11973 bool
11974 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
11975                                 const ObjCMethodDecl *MethodImpl) {
11976   // No point trying to match an unavailable/deprecated mothod.
11977   if (MethodDecl->hasAttr<UnavailableAttr>()
11978       || MethodDecl->hasAttr<DeprecatedAttr>())
11979     return false;
11980   if (MethodDecl->getObjCDeclQualifier() !=
11981       MethodImpl->getObjCDeclQualifier())
11982     return false;
11983   if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
11984     return false;
11985 
11986   if (MethodDecl->param_size() != MethodImpl->param_size())
11987     return false;
11988 
11989   for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
11990        IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
11991        EF = MethodDecl->param_end();
11992        IM != EM && IF != EF; ++IM, ++IF) {
11993     const ParmVarDecl *DeclVar = (*IF);
11994     const ParmVarDecl *ImplVar = (*IM);
11995     if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
11996       return false;
11997     if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
11998       return false;
11999   }
12000 
12001   return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
12002 }
12003 
12004 uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
12005   LangAS AS;
12006   if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
12007     AS = LangAS::Default;
12008   else
12009     AS = QT->getPointeeType().getAddressSpace();
12010 
12011   return getTargetInfo().getNullPointerValue(AS);
12012 }
12013 
12014 unsigned ASTContext::getTargetAddressSpace(QualType T) const {
12015   // Return the address space for the type. If the type is a
12016   // function type without an address space qualifier, the
12017   // program address space is used. Otherwise, the target picks
12018   // the best address space based on the type information
12019   return T->isFunctionType() && !T.hasAddressSpace()
12020              ? getTargetInfo().getProgramAddressSpace()
12021              : getTargetAddressSpace(T.getQualifiers());
12022 }
12023 
12024 unsigned ASTContext::getTargetAddressSpace(Qualifiers Q) const {
12025   return getTargetAddressSpace(Q.getAddressSpace());
12026 }
12027 
12028 unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
12029   if (isTargetAddressSpace(AS))
12030     return toTargetAddressSpace(AS);
12031   else
12032     return (*AddrSpaceMap)[(unsigned)AS];
12033 }
12034 
12035 QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
12036   assert(Ty->isFixedPointType());
12037 
12038   if (Ty->isSaturatedFixedPointType()) return Ty;
12039 
12040   switch (Ty->castAs<BuiltinType>()->getKind()) {
12041     default:
12042       llvm_unreachable("Not a fixed point type!");
12043     case BuiltinType::ShortAccum:
12044       return SatShortAccumTy;
12045     case BuiltinType::Accum:
12046       return SatAccumTy;
12047     case BuiltinType::LongAccum:
12048       return SatLongAccumTy;
12049     case BuiltinType::UShortAccum:
12050       return SatUnsignedShortAccumTy;
12051     case BuiltinType::UAccum:
12052       return SatUnsignedAccumTy;
12053     case BuiltinType::ULongAccum:
12054       return SatUnsignedLongAccumTy;
12055     case BuiltinType::ShortFract:
12056       return SatShortFractTy;
12057     case BuiltinType::Fract:
12058       return SatFractTy;
12059     case BuiltinType::LongFract:
12060       return SatLongFractTy;
12061     case BuiltinType::UShortFract:
12062       return SatUnsignedShortFractTy;
12063     case BuiltinType::UFract:
12064       return SatUnsignedFractTy;
12065     case BuiltinType::ULongFract:
12066       return SatUnsignedLongFractTy;
12067   }
12068 }
12069 
12070 LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
12071   if (LangOpts.OpenCL)
12072     return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
12073 
12074   if (LangOpts.CUDA)
12075     return getTargetInfo().getCUDABuiltinAddressSpace(AS);
12076 
12077   return getLangASFromTargetAS(AS);
12078 }
12079 
12080 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
12081 // doesn't include ASTContext.h
12082 template
12083 clang::LazyGenerationalUpdatePtr<
12084     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
12085 clang::LazyGenerationalUpdatePtr<
12086     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
12087         const clang::ASTContext &Ctx, Decl *Value);
12088 
12089 unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
12090   assert(Ty->isFixedPointType());
12091 
12092   const TargetInfo &Target = getTargetInfo();
12093   switch (Ty->castAs<BuiltinType>()->getKind()) {
12094     default:
12095       llvm_unreachable("Not a fixed point type!");
12096     case BuiltinType::ShortAccum:
12097     case BuiltinType::SatShortAccum:
12098       return Target.getShortAccumScale();
12099     case BuiltinType::Accum:
12100     case BuiltinType::SatAccum:
12101       return Target.getAccumScale();
12102     case BuiltinType::LongAccum:
12103     case BuiltinType::SatLongAccum:
12104       return Target.getLongAccumScale();
12105     case BuiltinType::UShortAccum:
12106     case BuiltinType::SatUShortAccum:
12107       return Target.getUnsignedShortAccumScale();
12108     case BuiltinType::UAccum:
12109     case BuiltinType::SatUAccum:
12110       return Target.getUnsignedAccumScale();
12111     case BuiltinType::ULongAccum:
12112     case BuiltinType::SatULongAccum:
12113       return Target.getUnsignedLongAccumScale();
12114     case BuiltinType::ShortFract:
12115     case BuiltinType::SatShortFract:
12116       return Target.getShortFractScale();
12117     case BuiltinType::Fract:
12118     case BuiltinType::SatFract:
12119       return Target.getFractScale();
12120     case BuiltinType::LongFract:
12121     case BuiltinType::SatLongFract:
12122       return Target.getLongFractScale();
12123     case BuiltinType::UShortFract:
12124     case BuiltinType::SatUShortFract:
12125       return Target.getUnsignedShortFractScale();
12126     case BuiltinType::UFract:
12127     case BuiltinType::SatUFract:
12128       return Target.getUnsignedFractScale();
12129     case BuiltinType::ULongFract:
12130     case BuiltinType::SatULongFract:
12131       return Target.getUnsignedLongFractScale();
12132   }
12133 }
12134 
12135 unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
12136   assert(Ty->isFixedPointType());
12137 
12138   const TargetInfo &Target = getTargetInfo();
12139   switch (Ty->castAs<BuiltinType>()->getKind()) {
12140     default:
12141       llvm_unreachable("Not a fixed point type!");
12142     case BuiltinType::ShortAccum:
12143     case BuiltinType::SatShortAccum:
12144       return Target.getShortAccumIBits();
12145     case BuiltinType::Accum:
12146     case BuiltinType::SatAccum:
12147       return Target.getAccumIBits();
12148     case BuiltinType::LongAccum:
12149     case BuiltinType::SatLongAccum:
12150       return Target.getLongAccumIBits();
12151     case BuiltinType::UShortAccum:
12152     case BuiltinType::SatUShortAccum:
12153       return Target.getUnsignedShortAccumIBits();
12154     case BuiltinType::UAccum:
12155     case BuiltinType::SatUAccum:
12156       return Target.getUnsignedAccumIBits();
12157     case BuiltinType::ULongAccum:
12158     case BuiltinType::SatULongAccum:
12159       return Target.getUnsignedLongAccumIBits();
12160     case BuiltinType::ShortFract:
12161     case BuiltinType::SatShortFract:
12162     case BuiltinType::Fract:
12163     case BuiltinType::SatFract:
12164     case BuiltinType::LongFract:
12165     case BuiltinType::SatLongFract:
12166     case BuiltinType::UShortFract:
12167     case BuiltinType::SatUShortFract:
12168     case BuiltinType::UFract:
12169     case BuiltinType::SatUFract:
12170     case BuiltinType::ULongFract:
12171     case BuiltinType::SatULongFract:
12172       return 0;
12173   }
12174 }
12175 
12176 llvm::FixedPointSemantics
12177 ASTContext::getFixedPointSemantics(QualType Ty) const {
12178   assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&
12179          "Can only get the fixed point semantics for a "
12180          "fixed point or integer type.");
12181   if (Ty->isIntegerType())
12182     return llvm::FixedPointSemantics::GetIntegerSemantics(
12183         getIntWidth(Ty), Ty->isSignedIntegerType());
12184 
12185   bool isSigned = Ty->isSignedFixedPointType();
12186   return llvm::FixedPointSemantics(
12187       static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
12188       Ty->isSaturatedFixedPointType(),
12189       !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
12190 }
12191 
12192 llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
12193   assert(Ty->isFixedPointType());
12194   return llvm::APFixedPoint::getMax(getFixedPointSemantics(Ty));
12195 }
12196 
12197 llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
12198   assert(Ty->isFixedPointType());
12199   return llvm::APFixedPoint::getMin(getFixedPointSemantics(Ty));
12200 }
12201 
12202 QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
12203   assert(Ty->isUnsignedFixedPointType() &&
12204          "Expected unsigned fixed point type");
12205 
12206   switch (Ty->castAs<BuiltinType>()->getKind()) {
12207   case BuiltinType::UShortAccum:
12208     return ShortAccumTy;
12209   case BuiltinType::UAccum:
12210     return AccumTy;
12211   case BuiltinType::ULongAccum:
12212     return LongAccumTy;
12213   case BuiltinType::SatUShortAccum:
12214     return SatShortAccumTy;
12215   case BuiltinType::SatUAccum:
12216     return SatAccumTy;
12217   case BuiltinType::SatULongAccum:
12218     return SatLongAccumTy;
12219   case BuiltinType::UShortFract:
12220     return ShortFractTy;
12221   case BuiltinType::UFract:
12222     return FractTy;
12223   case BuiltinType::ULongFract:
12224     return LongFractTy;
12225   case BuiltinType::SatUShortFract:
12226     return SatShortFractTy;
12227   case BuiltinType::SatUFract:
12228     return SatFractTy;
12229   case BuiltinType::SatULongFract:
12230     return SatLongFractTy;
12231   default:
12232     llvm_unreachable("Unexpected unsigned fixed point type");
12233   }
12234 }
12235 
12236 ParsedTargetAttr
12237 ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const {
12238   assert(TD != nullptr);
12239   ParsedTargetAttr ParsedAttr = TD->parse();
12240 
12241   llvm::erase_if(ParsedAttr.Features, [&](const std::string &Feat) {
12242     return !Target->isValidFeatureName(StringRef{Feat}.substr(1));
12243   });
12244   return ParsedAttr;
12245 }
12246 
12247 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
12248                                        const FunctionDecl *FD) const {
12249   if (FD)
12250     getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD));
12251   else
12252     Target->initFeatureMap(FeatureMap, getDiagnostics(),
12253                            Target->getTargetOpts().CPU,
12254                            Target->getTargetOpts().Features);
12255 }
12256 
12257 // Fills in the supplied string map with the set of target features for the
12258 // passed in function.
12259 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
12260                                        GlobalDecl GD) const {
12261   StringRef TargetCPU = Target->getTargetOpts().CPU;
12262   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
12263   if (const auto *TD = FD->getAttr<TargetAttr>()) {
12264     ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
12265 
12266     // Make a copy of the features as passed on the command line into the
12267     // beginning of the additional features from the function to override.
12268     ParsedAttr.Features.insert(
12269         ParsedAttr.Features.begin(),
12270         Target->getTargetOpts().FeaturesAsWritten.begin(),
12271         Target->getTargetOpts().FeaturesAsWritten.end());
12272 
12273     if (ParsedAttr.Architecture != "" &&
12274         Target->isValidCPUName(ParsedAttr.Architecture))
12275       TargetCPU = ParsedAttr.Architecture;
12276 
12277     // Now populate the feature map, first with the TargetCPU which is either
12278     // the default or a new one from the target attribute string. Then we'll use
12279     // the passed in features (FeaturesAsWritten) along with the new ones from
12280     // the attribute.
12281     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
12282                            ParsedAttr.Features);
12283   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
12284     llvm::SmallVector<StringRef, 32> FeaturesTmp;
12285     Target->getCPUSpecificCPUDispatchFeatures(
12286         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
12287     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
12288     Features.insert(Features.begin(),
12289                     Target->getTargetOpts().FeaturesAsWritten.begin(),
12290                     Target->getTargetOpts().FeaturesAsWritten.end());
12291     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
12292   } else if (const auto *TC = FD->getAttr<TargetClonesAttr>()) {
12293     std::vector<std::string> Features;
12294     StringRef VersionStr = TC->getFeatureStr(GD.getMultiVersionIndex());
12295     if (VersionStr.startswith("arch="))
12296       TargetCPU = VersionStr.drop_front(sizeof("arch=") - 1);
12297     else if (VersionStr != "default")
12298       Features.push_back((StringRef{"+"} + VersionStr).str());
12299 
12300     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
12301   } else {
12302     FeatureMap = Target->getTargetOpts().FeatureMap;
12303   }
12304 }
12305 
12306 OMPTraitInfo &ASTContext::getNewOMPTraitInfo() {
12307   OMPTraitInfoVector.emplace_back(new OMPTraitInfo());
12308   return *OMPTraitInfoVector.back();
12309 }
12310 
12311 const StreamingDiagnostic &clang::
12312 operator<<(const StreamingDiagnostic &DB,
12313            const ASTContext::SectionInfo &Section) {
12314   if (Section.Decl)
12315     return DB << Section.Decl;
12316   return DB << "a prior #pragma section";
12317 }
12318 
12319 bool ASTContext::mayExternalize(const Decl *D) const {
12320   bool IsStaticVar =
12321       isa<VarDecl>(D) && cast<VarDecl>(D)->getStorageClass() == SC_Static;
12322   bool IsExplicitDeviceVar = (D->hasAttr<CUDADeviceAttr>() &&
12323                               !D->getAttr<CUDADeviceAttr>()->isImplicit()) ||
12324                              (D->hasAttr<CUDAConstantAttr>() &&
12325                               !D->getAttr<CUDAConstantAttr>()->isImplicit());
12326   // CUDA/HIP: static managed variables need to be externalized since it is
12327   // a declaration in IR, therefore cannot have internal linkage. Kernels in
12328   // anonymous name space needs to be externalized to avoid duplicate symbols.
12329   return (IsStaticVar &&
12330           (D->hasAttr<HIPManagedAttr>() || IsExplicitDeviceVar)) ||
12331          (D->hasAttr<CUDAGlobalAttr>() &&
12332           basicGVALinkageForFunction(*this, cast<FunctionDecl>(D)) ==
12333               GVA_Internal);
12334 }
12335 
12336 bool ASTContext::shouldExternalize(const Decl *D) const {
12337   return mayExternalize(D) &&
12338          (D->hasAttr<HIPManagedAttr>() || D->hasAttr<CUDAGlobalAttr>() ||
12339           CUDADeviceVarODRUsedByHost.count(cast<VarDecl>(D)));
12340 }
12341 
12342 StringRef ASTContext::getCUIDHash() const {
12343   if (!CUIDHash.empty())
12344     return CUIDHash;
12345   if (LangOpts.CUID.empty())
12346     return StringRef();
12347   CUIDHash = llvm::utohexstr(llvm::MD5Hash(LangOpts.CUID), /*LowerCase=*/true);
12348   return CUIDHash;
12349 }
12350