1 //===- bolt/RuntimeLibs/InstrumentationRuntimeLibrary.cpp -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the InstrumentationRuntimeLibrary class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/RuntimeLibs/InstrumentationRuntimeLibrary.h" 14 #include "bolt/Core/BinaryFunction.h" 15 #include "bolt/Core/JumpTable.h" 16 #include "bolt/Utils/CommandLineOpts.h" 17 #include "llvm/ExecutionEngine/RuntimeDyld.h" 18 #include "llvm/MC/MCStreamer.h" 19 #include "llvm/Support/Alignment.h" 20 #include "llvm/Support/CommandLine.h" 21 22 using namespace llvm; 23 using namespace bolt; 24 25 namespace opts { 26 27 cl::opt<std::string> RuntimeInstrumentationLib( 28 "runtime-instrumentation-lib", 29 cl::desc("specify file name of the runtime instrumentation library"), 30 cl::init("libbolt_rt_instr.a"), cl::cat(BoltOptCategory)); 31 32 extern cl::opt<bool> InstrumentationFileAppendPID; 33 extern cl::opt<bool> ConservativeInstrumentation; 34 extern cl::opt<std::string> InstrumentationFilename; 35 extern cl::opt<std::string> InstrumentationBinpath; 36 extern cl::opt<uint32_t> InstrumentationSleepTime; 37 extern cl::opt<bool> InstrumentationNoCountersClear; 38 extern cl::opt<bool> InstrumentationWaitForks; 39 extern cl::opt<JumpTableSupportLevel> JumpTables; 40 41 } // namespace opts 42 43 void InstrumentationRuntimeLibrary::adjustCommandLineOptions( 44 const BinaryContext &BC) const { 45 if (!BC.HasRelocations) { 46 errs() << "BOLT-ERROR: instrumentation runtime libraries require " 47 "relocations\n"; 48 exit(1); 49 } 50 if (opts::JumpTables != JTS_MOVE) { 51 opts::JumpTables = JTS_MOVE; 52 outs() << "BOLT-INFO: forcing -jump-tables=move for instrumentation\n"; 53 } 54 if (!BC.StartFunctionAddress) { 55 errs() << "BOLT-ERROR: instrumentation runtime libraries require a known " 56 "entry point of " 57 "the input binary\n"; 58 exit(1); 59 } 60 if (!BC.FiniFunctionAddress && !BC.IsStaticExecutable) { 61 errs() << "BOLT-ERROR: input binary lacks DT_FINI entry in the dynamic " 62 "section but instrumentation currently relies on patching " 63 "DT_FINI to write the profile\n"; 64 exit(1); 65 } 66 } 67 68 void InstrumentationRuntimeLibrary::emitBinary(BinaryContext &BC, 69 MCStreamer &Streamer) { 70 MCSection *Section = BC.isELF() 71 ? static_cast<MCSection *>(BC.Ctx->getELFSection( 72 ".bolt.instr.counters", ELF::SHT_PROGBITS, 73 BinarySection::getFlags(/*IsReadOnly=*/false, 74 /*IsText=*/false, 75 /*IsAllocatable=*/true) 76 77 )) 78 : static_cast<MCSection *>(BC.Ctx->getMachOSection( 79 "__BOLT", "__counters", MachO::S_REGULAR, 80 SectionKind::getData())); 81 82 if (BC.IsStaticExecutable && !opts::InstrumentationSleepTime) { 83 errs() << "BOLT-ERROR: instrumentation of static binary currently does not " 84 "support profile output on binary finalization, so it " 85 "requires -instrumentation-sleep-time=N (N>0) usage\n"; 86 exit(1); 87 } 88 89 Section->setAlignment(llvm::Align(BC.RegularPageSize)); 90 Streamer.switchSection(Section); 91 92 // EmitOffset is used to determine padding size for data alignment 93 uint64_t EmitOffset = 0; 94 95 auto emitLabel = [&Streamer](MCSymbol *Symbol, bool IsGlobal = true) { 96 Streamer.emitLabel(Symbol); 97 if (IsGlobal) 98 Streamer.emitSymbolAttribute(Symbol, MCSymbolAttr::MCSA_Global); 99 }; 100 101 auto emitLabelByName = [&BC, emitLabel](StringRef Name, 102 bool IsGlobal = true) { 103 MCSymbol *Symbol = BC.Ctx->getOrCreateSymbol(Name); 104 emitLabel(Symbol, IsGlobal); 105 }; 106 107 auto emitPadding = [&Streamer, &EmitOffset](unsigned Size) { 108 const uint64_t Padding = alignTo(EmitOffset, Size) - EmitOffset; 109 if (Padding) { 110 Streamer.emitFill(Padding, 0); 111 EmitOffset += Padding; 112 } 113 }; 114 115 auto emitDataSize = [&EmitOffset](unsigned Size) { EmitOffset += Size; }; 116 117 auto emitDataPadding = [emitPadding, emitDataSize](unsigned Size) { 118 emitPadding(Size); 119 emitDataSize(Size); 120 }; 121 122 auto emitFill = [&Streamer, emitDataSize, 123 emitLabel](unsigned Size, MCSymbol *Symbol = nullptr, 124 uint8_t Byte = 0) { 125 emitDataSize(Size); 126 if (Symbol) 127 emitLabel(Symbol, /*IsGlobal*/ false); 128 Streamer.emitFill(Size, Byte); 129 }; 130 131 auto emitValue = [&BC, &Streamer, emitDataPadding, 132 emitLabel](MCSymbol *Symbol, const MCExpr *Value) { 133 const unsigned Psize = BC.AsmInfo->getCodePointerSize(); 134 emitDataPadding(Psize); 135 emitLabel(Symbol); 136 if (Value) 137 Streamer.emitValue(Value, Psize); 138 else 139 Streamer.emitFill(Psize, 0); 140 }; 141 142 auto emitIntValue = [&Streamer, emitDataPadding, emitLabelByName]( 143 StringRef Name, uint64_t Value, unsigned Size = 4) { 144 emitDataPadding(Size); 145 emitLabelByName(Name); 146 Streamer.emitIntValue(Value, Size); 147 }; 148 149 auto emitString = [&Streamer, emitDataSize, emitLabelByName, 150 emitFill](StringRef Name, StringRef Contents) { 151 emitDataSize(Contents.size()); 152 emitLabelByName(Name); 153 Streamer.emitBytes(Contents); 154 emitFill(1); 155 }; 156 157 // All of the following symbols will be exported as globals to be used by the 158 // instrumentation runtime library to dump the instrumentation data to disk. 159 // Label marking start of the memory region containing instrumentation 160 // counters, total vector size is Counters.size() 8-byte counters 161 emitLabelByName("__bolt_instr_locations"); 162 for (MCSymbol *const &Label : Summary->Counters) 163 emitFill(sizeof(uint64_t), Label); 164 165 emitPadding(BC.RegularPageSize); 166 emitIntValue("__bolt_instr_sleep_time", opts::InstrumentationSleepTime); 167 emitIntValue("__bolt_instr_no_counters_clear", 168 !!opts::InstrumentationNoCountersClear, 1); 169 emitIntValue("__bolt_instr_conservative", !!opts::ConservativeInstrumentation, 170 1); 171 emitIntValue("__bolt_instr_wait_forks", !!opts::InstrumentationWaitForks, 1); 172 emitIntValue("__bolt_num_counters", Summary->Counters.size()); 173 emitValue(Summary->IndCallCounterFuncPtr, nullptr); 174 emitValue(Summary->IndTailCallCounterFuncPtr, nullptr); 175 emitIntValue("__bolt_instr_num_ind_calls", 176 Summary->IndCallDescriptions.size()); 177 emitIntValue("__bolt_instr_num_ind_targets", 178 Summary->IndCallTargetDescriptions.size()); 179 emitIntValue("__bolt_instr_num_funcs", Summary->FunctionDescriptions.size()); 180 emitString("__bolt_instr_filename", opts::InstrumentationFilename); 181 emitString("__bolt_instr_binpath", opts::InstrumentationBinpath); 182 emitIntValue("__bolt_instr_use_pid", !!opts::InstrumentationFileAppendPID, 1); 183 184 if (BC.isMachO()) { 185 MCSection *TablesSection = BC.Ctx->getMachOSection( 186 "__BOLT", "__tables", MachO::S_REGULAR, SectionKind::getData()); 187 TablesSection->setAlignment(llvm::Align(BC.RegularPageSize)); 188 Streamer.switchSection(TablesSection); 189 emitString("__bolt_instr_tables", buildTables(BC)); 190 } 191 } 192 193 void InstrumentationRuntimeLibrary::link( 194 BinaryContext &BC, StringRef ToolPath, RuntimeDyld &RTDyld, 195 std::function<void(RuntimeDyld &)> OnLoad) { 196 std::string LibPath = getLibPath(ToolPath, opts::RuntimeInstrumentationLib); 197 loadLibrary(LibPath, RTDyld); 198 OnLoad(RTDyld); 199 RTDyld.finalizeWithMemoryManagerLocking(); 200 if (RTDyld.hasError()) { 201 outs() << "BOLT-ERROR: RTDyld failed: " << RTDyld.getErrorString() << "\n"; 202 exit(1); 203 } 204 205 if (BC.isMachO()) 206 return; 207 208 RuntimeFiniAddress = RTDyld.getSymbol("__bolt_instr_fini").getAddress(); 209 if (!RuntimeFiniAddress) { 210 errs() << "BOLT-ERROR: instrumentation library does not define " 211 "__bolt_instr_fini: " 212 << LibPath << "\n"; 213 exit(1); 214 } 215 RuntimeStartAddress = RTDyld.getSymbol("__bolt_instr_start").getAddress(); 216 if (!RuntimeStartAddress) { 217 errs() << "BOLT-ERROR: instrumentation library does not define " 218 "__bolt_instr_start: " 219 << LibPath << "\n"; 220 exit(1); 221 } 222 outs() << "BOLT-INFO: output linked against instrumentation runtime " 223 "library, lib entry point is 0x" 224 << Twine::utohexstr(RuntimeFiniAddress) << "\n"; 225 outs() << "BOLT-INFO: clear procedure is 0x" 226 << Twine::utohexstr( 227 RTDyld.getSymbol("__bolt_instr_clear_counters").getAddress()) 228 << "\n"; 229 230 emitTablesAsELFNote(BC); 231 } 232 233 std::string InstrumentationRuntimeLibrary::buildTables(BinaryContext &BC) { 234 std::string TablesStr; 235 raw_string_ostream OS(TablesStr); 236 237 // This is sync'ed with runtime/instr.cpp:readDescriptions() 238 auto getOutputAddress = [](const BinaryFunction &Func, 239 uint64_t Offset) -> uint64_t { 240 return Offset == 0 241 ? Func.getOutputAddress() 242 : Func.translateInputToOutputAddress(Func.getAddress() + Offset); 243 }; 244 245 // Indirect targets need to be sorted for fast lookup during runtime 246 llvm::sort(Summary->IndCallTargetDescriptions, 247 [&](const IndCallTargetDescription &A, 248 const IndCallTargetDescription &B) { 249 return getOutputAddress(*A.Target, A.ToLoc.Offset) < 250 getOutputAddress(*B.Target, B.ToLoc.Offset); 251 }); 252 253 // Start of the vector with descriptions (one CounterDescription for each 254 // counter), vector size is Counters.size() CounterDescription-sized elmts 255 const size_t IDSize = 256 Summary->IndCallDescriptions.size() * sizeof(IndCallDescription); 257 OS.write(reinterpret_cast<const char *>(&IDSize), 4); 258 for (const IndCallDescription &Desc : Summary->IndCallDescriptions) { 259 OS.write(reinterpret_cast<const char *>(&Desc.FromLoc.FuncString), 4); 260 OS.write(reinterpret_cast<const char *>(&Desc.FromLoc.Offset), 4); 261 } 262 263 const size_t ITDSize = Summary->IndCallTargetDescriptions.size() * 264 sizeof(IndCallTargetDescription); 265 OS.write(reinterpret_cast<const char *>(&ITDSize), 4); 266 for (const IndCallTargetDescription &Desc : 267 Summary->IndCallTargetDescriptions) { 268 OS.write(reinterpret_cast<const char *>(&Desc.ToLoc.FuncString), 4); 269 OS.write(reinterpret_cast<const char *>(&Desc.ToLoc.Offset), 4); 270 uint64_t TargetFuncAddress = 271 getOutputAddress(*Desc.Target, Desc.ToLoc.Offset); 272 OS.write(reinterpret_cast<const char *>(&TargetFuncAddress), 8); 273 } 274 275 uint32_t FuncDescSize = Summary->getFDSize(); 276 OS.write(reinterpret_cast<const char *>(&FuncDescSize), 4); 277 for (const FunctionDescription &Desc : Summary->FunctionDescriptions) { 278 const size_t LeafNum = Desc.LeafNodes.size(); 279 OS.write(reinterpret_cast<const char *>(&LeafNum), 4); 280 for (const InstrumentedNode &LeafNode : Desc.LeafNodes) { 281 OS.write(reinterpret_cast<const char *>(&LeafNode.Node), 4); 282 OS.write(reinterpret_cast<const char *>(&LeafNode.Counter), 4); 283 } 284 const size_t EdgesNum = Desc.Edges.size(); 285 OS.write(reinterpret_cast<const char *>(&EdgesNum), 4); 286 for (const EdgeDescription &Edge : Desc.Edges) { 287 OS.write(reinterpret_cast<const char *>(&Edge.FromLoc.FuncString), 4); 288 OS.write(reinterpret_cast<const char *>(&Edge.FromLoc.Offset), 4); 289 OS.write(reinterpret_cast<const char *>(&Edge.FromNode), 4); 290 OS.write(reinterpret_cast<const char *>(&Edge.ToLoc.FuncString), 4); 291 OS.write(reinterpret_cast<const char *>(&Edge.ToLoc.Offset), 4); 292 OS.write(reinterpret_cast<const char *>(&Edge.ToNode), 4); 293 OS.write(reinterpret_cast<const char *>(&Edge.Counter), 4); 294 } 295 const size_t CallsNum = Desc.Calls.size(); 296 OS.write(reinterpret_cast<const char *>(&CallsNum), 4); 297 for (const CallDescription &Call : Desc.Calls) { 298 OS.write(reinterpret_cast<const char *>(&Call.FromLoc.FuncString), 4); 299 OS.write(reinterpret_cast<const char *>(&Call.FromLoc.Offset), 4); 300 OS.write(reinterpret_cast<const char *>(&Call.FromNode), 4); 301 OS.write(reinterpret_cast<const char *>(&Call.ToLoc.FuncString), 4); 302 OS.write(reinterpret_cast<const char *>(&Call.ToLoc.Offset), 4); 303 OS.write(reinterpret_cast<const char *>(&Call.Counter), 4); 304 uint64_t TargetFuncAddress = 305 getOutputAddress(*Call.Target, Call.ToLoc.Offset); 306 OS.write(reinterpret_cast<const char *>(&TargetFuncAddress), 8); 307 } 308 const size_t EntryNum = Desc.EntryNodes.size(); 309 OS.write(reinterpret_cast<const char *>(&EntryNum), 4); 310 for (const EntryNode &EntryNode : Desc.EntryNodes) { 311 OS.write(reinterpret_cast<const char *>(&EntryNode.Node), 8); 312 uint64_t TargetFuncAddress = 313 getOutputAddress(*Desc.Function, EntryNode.Address); 314 OS.write(reinterpret_cast<const char *>(&TargetFuncAddress), 8); 315 } 316 } 317 // Our string table lives immediately after descriptions vector 318 OS << Summary->StringTable; 319 OS.flush(); 320 321 return TablesStr; 322 } 323 324 void InstrumentationRuntimeLibrary::emitTablesAsELFNote(BinaryContext &BC) { 325 std::string TablesStr = buildTables(BC); 326 const std::string BoltInfo = BinarySection::encodeELFNote( 327 "BOLT", TablesStr, BinarySection::NT_BOLT_INSTRUMENTATION_TABLES); 328 BC.registerOrUpdateNoteSection(".bolt.instr.tables", copyByteArray(BoltInfo), 329 BoltInfo.size(), 330 /*Alignment=*/1, 331 /*IsReadOnly=*/true, ELF::SHT_NOTE); 332 } 333