1 //===- bolt/Passes/CacheMetrics.cpp - Metrics for instruction cache -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CacheMetrics class and functions for showing metrics
10 // of cache lines.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "bolt/Passes/CacheMetrics.h"
15 #include "bolt/Core/BinaryBasicBlock.h"
16 #include "bolt/Core/BinaryFunction.h"
17 #include "llvm/Support/CommandLine.h"
18 #include <unordered_map>
19 
20 using namespace llvm;
21 using namespace bolt;
22 
23 namespace opts {
24 
25 extern cl::OptionCategory BoltOptCategory;
26 
27 extern cl::opt<double> ForwardWeight;
28 extern cl::opt<double> BackwardWeight;
29 extern cl::opt<unsigned> ForwardDistance;
30 extern cl::opt<unsigned> BackwardDistance;
31 extern cl::opt<unsigned> ITLBPageSize;
32 extern cl::opt<unsigned> ITLBEntries;
33 
34 } // namespace opts
35 
36 namespace {
37 
38 /// Initialize and return a position map for binary basic blocks
39 void extractBasicBlockInfo(
40     const std::vector<BinaryFunction *> &BinaryFunctions,
41     std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
42     std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
43 
44   for (BinaryFunction *BF : BinaryFunctions) {
45     const BinaryContext &BC = BF->getBinaryContext();
46     for (BinaryBasicBlock *BB : BF->layout()) {
47       if (BF->isSimple() || BC.HasRelocations) {
48         // Use addresses/sizes as in the output binary
49         BBAddr[BB] = BB->getOutputAddressRange().first;
50         BBSize[BB] = BB->getOutputSize();
51       } else {
52         // Output ranges should match the input if the body hasn't changed
53         BBAddr[BB] = BB->getInputAddressRange().first + BF->getAddress();
54         BBSize[BB] = BB->getOriginalSize();
55       }
56     }
57   }
58 }
59 
60 /// Calculate TSP metric, which quantifies the number of fallthrough jumps in
61 /// the ordering of basic blocks
62 double
63 calcTSPScore(const std::vector<BinaryFunction *> &BinaryFunctions,
64              const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
65              const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
66 
67   double Score = 0;
68   for (BinaryFunction *BF : BinaryFunctions) {
69     if (!BF->hasProfile())
70       continue;
71     for (BinaryBasicBlock *SrcBB : BF->layout()) {
72       auto BI = SrcBB->branch_info_begin();
73       for (BinaryBasicBlock *DstBB : SrcBB->successors()) {
74         if (SrcBB != DstBB && BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
75             BBAddr.at(SrcBB) + BBSize.at(SrcBB) == BBAddr.at(DstBB))
76           Score += BI->Count;
77         ++BI;
78       }
79     }
80   }
81   return Score;
82 }
83 
84 /// Calculate Ext-TSP metric, which quantifies the expected number of i-cache
85 /// misses for a given ordering of basic blocks
86 double calcExtTSPScore(
87     const std::vector<BinaryFunction *> &BinaryFunctions,
88     const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
89     const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
90 
91   double Score = 0.0;
92   for (BinaryFunction *BF : BinaryFunctions) {
93     if (!BF->hasProfile())
94       continue;
95     for (BinaryBasicBlock *SrcBB : BF->layout()) {
96       auto BI = SrcBB->branch_info_begin();
97       for (BinaryBasicBlock *DstBB : SrcBB->successors()) {
98         if (DstBB != SrcBB)
99           Score += CacheMetrics::extTSPScore(BBAddr.at(SrcBB), BBSize.at(SrcBB),
100                                              BBAddr.at(DstBB), BI->Count);
101         ++BI;
102       }
103     }
104   }
105   return Score;
106 }
107 
108 using Predecessors = std::vector<std::pair<BinaryFunction *, uint64_t>>;
109 
110 /// Build a simplified version of the call graph: For every function, keep
111 /// its callers and the frequencies of the calls
112 std::unordered_map<const BinaryFunction *, Predecessors>
113 extractFunctionCalls(const std::vector<BinaryFunction *> &BinaryFunctions) {
114   std::unordered_map<const BinaryFunction *, Predecessors> Calls;
115 
116   for (BinaryFunction *SrcFunction : BinaryFunctions) {
117     const BinaryContext &BC = SrcFunction->getBinaryContext();
118     for (BinaryBasicBlock *BB : SrcFunction->layout()) {
119       // Find call instructions and extract target symbols from each one
120       for (MCInst &Inst : *BB) {
121         if (!BC.MIB->isCall(Inst))
122           continue;
123 
124         // Call info
125         const MCSymbol *DstSym = BC.MIB->getTargetSymbol(Inst);
126         uint64_t Count = BB->getKnownExecutionCount();
127         // Ignore calls w/o information
128         if (DstSym == nullptr || Count == 0)
129           continue;
130 
131         const BinaryFunction *DstFunction = BC.getFunctionForSymbol(DstSym);
132         // Ignore recursive calls
133         if (DstFunction == nullptr || DstFunction->layout_empty() ||
134             DstFunction == SrcFunction)
135           continue;
136 
137         // Record the call
138         Calls[DstFunction].emplace_back(SrcFunction, Count);
139       }
140     }
141   }
142   return Calls;
143 }
144 
145 /// Compute expected hit ratio of the i-TLB cache (optimized by HFSortPlus alg).
146 /// Given an assignment of functions to the i-TLB pages), we divide all
147 /// functions calls into two categories:
148 /// - 'short' ones that have a caller-callee distance less than a page;
149 /// - 'long' ones where the distance exceeds a page.
150 /// The short calls are likely to result in a i-TLB cache hit. For the long
151 /// ones, the hit/miss result depends on the 'hotness' of the page (i.e., how
152 /// often the page is accessed). Assuming that functions are sent to the i-TLB
153 /// cache in a random order, the probability that a page is present in the cache
154 /// is proportional to the number of samples corresponding to the functions on
155 /// the page. The following procedure detects short and long calls, and
156 /// estimates the expected number of cache misses for the long ones.
157 double expectedCacheHitRatio(
158     const std::vector<BinaryFunction *> &BinaryFunctions,
159     const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
160     const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
161 
162   const double PageSize = opts::ITLBPageSize;
163   const uint64_t CacheEntries = opts::ITLBEntries;
164   std::unordered_map<const BinaryFunction *, Predecessors> Calls =
165       extractFunctionCalls(BinaryFunctions);
166   // Compute 'hotness' of the functions
167   double TotalSamples = 0;
168   std::unordered_map<BinaryFunction *, double> FunctionSamples;
169   for (BinaryFunction *BF : BinaryFunctions) {
170     double Samples = 0;
171     for (std::pair<BinaryFunction *, uint64_t> Pair : Calls[BF])
172       Samples += Pair.second;
173     Samples = std::max(Samples, (double)BF->getKnownExecutionCount());
174     FunctionSamples[BF] = Samples;
175     TotalSamples += Samples;
176   }
177 
178   // Compute 'hotness' of the pages
179   std::unordered_map<uint64_t, double> PageSamples;
180   for (BinaryFunction *BF : BinaryFunctions) {
181     if (BF->layout_empty())
182       continue;
183     double Page = BBAddr.at(BF->layout_front()) / PageSize;
184     PageSamples[Page] += FunctionSamples.at(BF);
185   }
186 
187   // Computing the expected number of misses for every function
188   double Misses = 0;
189   for (BinaryFunction *BF : BinaryFunctions) {
190     // Skip the function if it has no samples
191     if (BF->layout_empty() || FunctionSamples.at(BF) == 0.0)
192       continue;
193     double Samples = FunctionSamples.at(BF);
194     double Page = BBAddr.at(BF->layout_front()) / PageSize;
195     // The probability that the page is not present in the cache
196     double MissProb = pow(1.0 - PageSamples[Page] / TotalSamples, CacheEntries);
197 
198     // Processing all callers of the function
199     for (std::pair<BinaryFunction *, uint64_t> Pair : Calls[BF]) {
200       BinaryFunction *SrcFunction = Pair.first;
201       double SrcPage = BBAddr.at(SrcFunction->layout_front()) / PageSize;
202       // Is this a 'long' or a 'short' call?
203       if (Page != SrcPage) {
204         // This is a miss
205         Misses += MissProb * Pair.second;
206       }
207       Samples -= Pair.second;
208     }
209     assert(Samples >= 0.0 && "Function samples computed incorrectly");
210     // The remaining samples likely come from the jitted code
211     Misses += Samples * MissProb;
212   }
213 
214   return 100.0 * (1.0 - Misses / TotalSamples);
215 }
216 
217 } // namespace
218 
219 double CacheMetrics::extTSPScore(uint64_t SrcAddr, uint64_t SrcSize,
220                                  uint64_t DstAddr, uint64_t Count) {
221   assert(Count != BinaryBasicBlock::COUNT_NO_PROFILE);
222 
223   // Fallthrough
224   if (SrcAddr + SrcSize == DstAddr) {
225     // Assume that FallthroughWeight = 1.0 after normalization
226     return static_cast<double>(Count);
227   }
228   // Forward
229   if (SrcAddr + SrcSize < DstAddr) {
230     const uint64_t Dist = DstAddr - (SrcAddr + SrcSize);
231     if (Dist <= opts::ForwardDistance) {
232       double Prob = 1.0 - static_cast<double>(Dist) / opts::ForwardDistance;
233       return opts::ForwardWeight * Prob * Count;
234     }
235     return 0;
236   }
237   // Backward
238   const uint64_t Dist = SrcAddr + SrcSize - DstAddr;
239   if (Dist <= opts::BackwardDistance) {
240     double Prob = 1.0 - static_cast<double>(Dist) / opts::BackwardDistance;
241     return opts::BackwardWeight * Prob * Count;
242   }
243   return 0;
244 }
245 
246 void CacheMetrics::printAll(const std::vector<BinaryFunction *> &BFs) {
247   // Stats related to hot-cold code splitting
248   size_t NumFunctions = 0;
249   size_t NumProfiledFunctions = 0;
250   size_t NumHotFunctions = 0;
251   size_t NumBlocks = 0;
252   size_t NumHotBlocks = 0;
253 
254   size_t TotalCodeMinAddr = std::numeric_limits<size_t>::max();
255   size_t TotalCodeMaxAddr = 0;
256   size_t HotCodeMinAddr = std::numeric_limits<size_t>::max();
257   size_t HotCodeMaxAddr = 0;
258 
259   for (BinaryFunction *BF : BFs) {
260     NumFunctions++;
261     if (BF->hasProfile())
262       NumProfiledFunctions++;
263     if (BF->hasValidIndex())
264       NumHotFunctions++;
265     for (BinaryBasicBlock *BB : BF->layout()) {
266       NumBlocks++;
267       size_t BBAddrMin = BB->getOutputAddressRange().first;
268       size_t BBAddrMax = BB->getOutputAddressRange().second;
269       TotalCodeMinAddr = std::min(TotalCodeMinAddr, BBAddrMin);
270       TotalCodeMaxAddr = std::max(TotalCodeMaxAddr, BBAddrMax);
271       if (BF->hasValidIndex() && !BB->isCold()) {
272         NumHotBlocks++;
273         HotCodeMinAddr = std::min(HotCodeMinAddr, BBAddrMin);
274         HotCodeMaxAddr = std::max(HotCodeMaxAddr, BBAddrMax);
275       }
276     }
277   }
278 
279   outs() << format("  There are %zu functions;", NumFunctions)
280          << format(" %zu (%.2lf%%) are in the hot section,", NumHotFunctions,
281                    100.0 * NumHotFunctions / NumFunctions)
282          << format(" %zu (%.2lf%%) have profile\n", NumProfiledFunctions,
283                    100.0 * NumProfiledFunctions / NumFunctions);
284   outs() << format("  There are %zu basic blocks;", NumBlocks)
285          << format(" %zu (%.2lf%%) are in the hot section\n", NumHotBlocks,
286                    100.0 * NumHotBlocks / NumBlocks);
287 
288   assert(TotalCodeMinAddr <= TotalCodeMaxAddr && "incorrect output addresses");
289   size_t HotCodeSize = HotCodeMaxAddr - HotCodeMinAddr;
290   size_t TotalCodeSize = TotalCodeMaxAddr - TotalCodeMinAddr;
291 
292   size_t HugePage2MB = 2 << 20;
293   outs() << format("  Hot code takes %.2lf%% of binary (%zu bytes out of %zu, "
294                    "%.2lf huge pages)\n",
295                    100.0 * HotCodeSize / TotalCodeSize, HotCodeSize,
296                    TotalCodeSize, double(HotCodeSize) / HugePage2MB);
297 
298   // Stats related to expected cache performance
299   std::unordered_map<BinaryBasicBlock *, uint64_t> BBAddr;
300   std::unordered_map<BinaryBasicBlock *, uint64_t> BBSize;
301   extractBasicBlockInfo(BFs, BBAddr, BBSize);
302 
303   outs() << "  Expected i-TLB cache hit ratio: "
304          << format("%.2lf%%\n", expectedCacheHitRatio(BFs, BBAddr, BBSize));
305 
306   outs() << "  TSP score: "
307          << format("%.0lf\n", calcTSPScore(BFs, BBAddr, BBSize));
308 
309   outs() << "  ExtTSP score: "
310          << format("%.0lf\n", calcExtTSPScore(BFs, BBAddr, BBSize));
311 }
312