1 //===- bolt/Core/Exceptions.cpp - Helpers for C++ exceptions --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements functions for handling C++ exception meta data. 10 // 11 // Some of the code is taken from examples/ExceptionDemo 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "bolt/Core/Exceptions.h" 16 #include "bolt/Core/BinaryFunction.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/BinaryFormat/Dwarf.h" 20 #include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h" 21 #include "llvm/Support/Casting.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/LEB128.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <map> 28 29 #undef DEBUG_TYPE 30 #define DEBUG_TYPE "bolt-exceptions" 31 32 using namespace llvm::dwarf; 33 34 namespace opts { 35 36 extern llvm::cl::OptionCategory BoltCategory; 37 38 extern llvm::cl::opt<unsigned> Verbosity; 39 40 static llvm::cl::opt<bool> 41 PrintExceptions("print-exceptions", 42 llvm::cl::desc("print exception handling data"), 43 llvm::cl::ZeroOrMore, 44 llvm::cl::Hidden, 45 llvm::cl::cat(BoltCategory)); 46 47 } // namespace opts 48 49 namespace llvm { 50 namespace bolt { 51 52 // Read and dump the .gcc_exception_table section entry. 53 // 54 // .gcc_except_table section contains a set of Language-Specific Data Areas - 55 // a fancy name for exception handling tables. There's one LSDA entry per 56 // function. However, we can't actually tell which function LSDA refers to 57 // unless we parse .eh_frame entry that refers to the LSDA. 58 // Then inside LSDA most addresses are encoded relative to the function start, 59 // so we need the function context in order to get to real addresses. 60 // 61 // The best visual representation of the tables comprising LSDA and 62 // relationships between them is illustrated at: 63 // https://github.com/itanium-cxx-abi/cxx-abi/blob/master/exceptions.pdf 64 // Keep in mind that GCC implementation deviates slightly from that document. 65 // 66 // To summarize, there are 4 tables in LSDA: call site table, actions table, 67 // types table, and types index table (for indirection). The main table contains 68 // call site entries. Each call site includes a PC range that can throw an 69 // exception, a handler (landing pad), and a reference to an entry in the action 70 // table. The handler and/or action could be 0. The action entry is a head 71 // of a list of actions associated with a call site. The action table contains 72 // all such lists (it could be optimized to share list tails). Each action could 73 // be either to catch an exception of a given type, to perform a cleanup, or to 74 // propagate the exception after filtering it out (e.g. to make sure function 75 // exception specification is not violated). Catch action contains a reference 76 // to an entry in the type table, and filter action refers to an entry in the 77 // type index table to encode a set of types to filter. 78 // 79 // Call site table follows LSDA header. Action table immediately follows the 80 // call site table. 81 // 82 // Both types table and type index table start at the same location, but they 83 // grow in opposite directions (types go up, indices go down). The beginning of 84 // these tables is encoded in LSDA header. Sizes for both of the tables are not 85 // included anywhere. 86 // 87 // We have to parse all of the tables to determine their sizes. Then we have 88 // to parse the call site table and associate discovered information with 89 // actual call instructions and landing pad blocks. 90 // 91 // For the purpose of rewriting exception handling tables, we can reuse action, 92 // and type index tables in their original binary format. 93 // 94 // Type table could be encoded using position-independent references, and thus 95 // may require relocation. 96 // 97 // Ideally we should be able to re-write LSDA in-place, without the need to 98 // allocate a new space for it. Sadly there's no guarantee that the new call 99 // site table will be the same size as GCC uses uleb encodings for PC offsets. 100 // 101 // Note: some functions have LSDA entries with 0 call site entries. 102 void BinaryFunction::parseLSDA(ArrayRef<uint8_t> LSDASectionData, 103 uint64_t LSDASectionAddress) { 104 assert(CurrentState == State::Disassembled && "unexpected function state"); 105 106 if (!getLSDAAddress()) 107 return; 108 109 DWARFDataExtractor Data( 110 StringRef(reinterpret_cast<const char *>(LSDASectionData.data()), 111 LSDASectionData.size()), 112 BC.DwCtx->getDWARFObj().isLittleEndian(), 8); 113 uint64_t Offset = getLSDAAddress() - LSDASectionAddress; 114 assert(Data.isValidOffset(Offset) && "wrong LSDA address"); 115 116 uint8_t LPStartEncoding = Data.getU8(&Offset); 117 uint64_t LPStart = 0; 118 if (Optional<uint64_t> MaybeLPStart = Data.getEncodedPointer( 119 &Offset, LPStartEncoding, Offset + LSDASectionAddress)) 120 LPStart = *MaybeLPStart; 121 122 assert(LPStart == 0 && "support for split functions not implemented"); 123 124 const uint8_t TTypeEncoding = Data.getU8(&Offset); 125 size_t TTypeEncodingSize = 0; 126 uintptr_t TTypeEnd = 0; 127 if (TTypeEncoding != DW_EH_PE_omit) { 128 TTypeEnd = Data.getULEB128(&Offset); 129 TTypeEncodingSize = BC.getDWARFEncodingSize(TTypeEncoding); 130 } 131 132 if (opts::PrintExceptions) { 133 outs() << "[LSDA at 0x" << Twine::utohexstr(getLSDAAddress()) 134 << " for function " << *this << "]:\n"; 135 outs() << "LPStart Encoding = 0x" << Twine::utohexstr(LPStartEncoding) 136 << '\n'; 137 outs() << "LPStart = 0x" << Twine::utohexstr(LPStart) << '\n'; 138 outs() << "TType Encoding = 0x" << Twine::utohexstr(TTypeEncoding) << '\n'; 139 outs() << "TType End = " << TTypeEnd << '\n'; 140 } 141 142 // Table to store list of indices in type table. Entries are uleb128 values. 143 const uint64_t TypeIndexTableStart = Offset + TTypeEnd; 144 145 // Offset past the last decoded index. 146 uint64_t MaxTypeIndexTableOffset = 0; 147 148 // Max positive index used in type table. 149 unsigned MaxTypeIndex = 0; 150 151 // The actual type info table starts at the same location, but grows in 152 // opposite direction. TTypeEncoding is used to encode stored values. 153 const uint64_t TypeTableStart = Offset + TTypeEnd; 154 155 uint8_t CallSiteEncoding = Data.getU8(&Offset); 156 uint32_t CallSiteTableLength = Data.getULEB128(&Offset); 157 uint64_t CallSiteTableStart = Offset; 158 uint64_t CallSiteTableEnd = CallSiteTableStart + CallSiteTableLength; 159 uint64_t CallSitePtr = CallSiteTableStart; 160 uint64_t ActionTableStart = CallSiteTableEnd; 161 162 if (opts::PrintExceptions) { 163 outs() << "CallSite Encoding = " << (unsigned)CallSiteEncoding << '\n'; 164 outs() << "CallSite table length = " << CallSiteTableLength << '\n'; 165 outs() << '\n'; 166 } 167 168 this->HasEHRanges = CallSitePtr < CallSiteTableEnd; 169 const uint64_t RangeBase = getAddress(); 170 while (CallSitePtr < CallSiteTableEnd) { 171 uint64_t Start = *Data.getEncodedPointer(&CallSitePtr, CallSiteEncoding, 172 CallSitePtr + LSDASectionAddress); 173 uint64_t Length = *Data.getEncodedPointer(&CallSitePtr, CallSiteEncoding, 174 CallSitePtr + LSDASectionAddress); 175 uint64_t LandingPad = *Data.getEncodedPointer( 176 &CallSitePtr, CallSiteEncoding, CallSitePtr + LSDASectionAddress); 177 uint64_t ActionEntry = Data.getULEB128(&CallSitePtr); 178 179 if (opts::PrintExceptions) { 180 outs() << "Call Site: [0x" << Twine::utohexstr(RangeBase + Start) 181 << ", 0x" << Twine::utohexstr(RangeBase + Start + Length) 182 << "); landing pad: 0x" << Twine::utohexstr(LPStart + LandingPad) 183 << "; action entry: 0x" << Twine::utohexstr(ActionEntry) << "\n"; 184 outs() << " current offset is " << (CallSitePtr - CallSiteTableStart) 185 << '\n'; 186 } 187 188 // Create a handler entry if necessary. 189 MCSymbol *LPSymbol = nullptr; 190 if (LandingPad) { 191 if (!getInstructionAtOffset(LandingPad)) { 192 if (opts::Verbosity >= 1) 193 errs() << "BOLT-WARNING: landing pad " << Twine::utohexstr(LandingPad) 194 << " not pointing to an instruction in function " << *this 195 << " - ignoring.\n"; 196 } else { 197 auto Label = Labels.find(LandingPad); 198 if (Label != Labels.end()) { 199 LPSymbol = Label->second; 200 } else { 201 LPSymbol = BC.Ctx->createNamedTempSymbol("LP"); 202 Labels[LandingPad] = LPSymbol; 203 } 204 } 205 } 206 207 // Mark all call instructions in the range. 208 auto II = Instructions.find(Start); 209 auto IE = Instructions.end(); 210 assert(II != IE && "exception range not pointing to an instruction"); 211 do { 212 MCInst &Instruction = II->second; 213 if (BC.MIB->isCall(Instruction) && 214 !BC.MIB->getConditionalTailCall(Instruction)) { 215 assert(!BC.MIB->isInvoke(Instruction) && 216 "overlapping exception ranges detected"); 217 // Add extra operands to a call instruction making it an invoke from 218 // now on. 219 BC.MIB->addEHInfo(Instruction, 220 MCPlus::MCLandingPad(LPSymbol, ActionEntry)); 221 } 222 ++II; 223 } while (II != IE && II->first < Start + Length); 224 225 if (ActionEntry != 0) { 226 auto printType = [&](int Index, raw_ostream &OS) { 227 assert(Index > 0 && "only positive indices are valid"); 228 uint64_t TTEntry = TypeTableStart - Index * TTypeEncodingSize; 229 const uint64_t TTEntryAddress = TTEntry + LSDASectionAddress; 230 uint64_t TypeAddress = 231 *Data.getEncodedPointer(&TTEntry, TTypeEncoding, TTEntryAddress); 232 if ((TTypeEncoding & DW_EH_PE_pcrel) && TypeAddress == TTEntryAddress) 233 TypeAddress = 0; 234 if (TypeAddress == 0) { 235 OS << "<all>"; 236 return; 237 } 238 if (TTypeEncoding & DW_EH_PE_indirect) { 239 ErrorOr<uint64_t> PointerOrErr = BC.getPointerAtAddress(TypeAddress); 240 assert(PointerOrErr && "failed to decode indirect address"); 241 TypeAddress = *PointerOrErr; 242 } 243 if (BinaryData *TypeSymBD = BC.getBinaryDataAtAddress(TypeAddress)) 244 OS << TypeSymBD->getName(); 245 else 246 OS << "0x" << Twine::utohexstr(TypeAddress); 247 }; 248 if (opts::PrintExceptions) 249 outs() << " actions: "; 250 uint64_t ActionPtr = ActionTableStart + ActionEntry - 1; 251 int64_t ActionType; 252 int64_t ActionNext; 253 const char *Sep = ""; 254 do { 255 ActionType = Data.getSLEB128(&ActionPtr); 256 const uint32_t Self = ActionPtr; 257 ActionNext = Data.getSLEB128(&ActionPtr); 258 if (opts::PrintExceptions) 259 outs() << Sep << "(" << ActionType << ", " << ActionNext << ") "; 260 if (ActionType == 0) { 261 if (opts::PrintExceptions) 262 outs() << "cleanup"; 263 } else if (ActionType > 0) { 264 // It's an index into a type table. 265 MaxTypeIndex = 266 std::max(MaxTypeIndex, static_cast<unsigned>(ActionType)); 267 if (opts::PrintExceptions) { 268 outs() << "catch type "; 269 printType(ActionType, outs()); 270 } 271 } else { // ActionType < 0 272 if (opts::PrintExceptions) 273 outs() << "filter exception types "; 274 const char *TSep = ""; 275 // ActionType is a negative *byte* offset into *uleb128-encoded* table 276 // of indices with base 1. 277 // E.g. -1 means offset 0, -2 is offset 1, etc. The indices are 278 // encoded using uleb128 thus we cannot directly dereference them. 279 uint64_t TypeIndexTablePtr = TypeIndexTableStart - ActionType - 1; 280 while (uint64_t Index = Data.getULEB128(&TypeIndexTablePtr)) { 281 MaxTypeIndex = std::max(MaxTypeIndex, static_cast<unsigned>(Index)); 282 if (opts::PrintExceptions) { 283 outs() << TSep; 284 printType(Index, outs()); 285 TSep = ", "; 286 } 287 } 288 MaxTypeIndexTableOffset = std::max( 289 MaxTypeIndexTableOffset, TypeIndexTablePtr - TypeIndexTableStart); 290 } 291 292 Sep = "; "; 293 294 ActionPtr = Self + ActionNext; 295 } while (ActionNext); 296 if (opts::PrintExceptions) 297 outs() << '\n'; 298 } 299 } 300 if (opts::PrintExceptions) 301 outs() << '\n'; 302 303 assert(TypeIndexTableStart + MaxTypeIndexTableOffset <= 304 Data.getData().size() && 305 "LSDA entry has crossed section boundary"); 306 307 if (TTypeEnd) { 308 LSDAActionTable = LSDASectionData.slice( 309 ActionTableStart, TypeIndexTableStart - 310 MaxTypeIndex * TTypeEncodingSize - 311 ActionTableStart); 312 for (unsigned Index = 1; Index <= MaxTypeIndex; ++Index) { 313 uint64_t TTEntry = TypeTableStart - Index * TTypeEncodingSize; 314 const uint64_t TTEntryAddress = TTEntry + LSDASectionAddress; 315 uint64_t TypeAddress = 316 *Data.getEncodedPointer(&TTEntry, TTypeEncoding, TTEntryAddress); 317 if ((TTypeEncoding & DW_EH_PE_pcrel) && (TypeAddress == TTEntryAddress)) 318 TypeAddress = 0; 319 if (TTypeEncoding & DW_EH_PE_indirect) { 320 LSDATypeAddressTable.emplace_back(TypeAddress); 321 if (TypeAddress) { 322 ErrorOr<uint64_t> PointerOrErr = BC.getPointerAtAddress(TypeAddress); 323 assert(PointerOrErr && "failed to decode indirect address"); 324 TypeAddress = *PointerOrErr; 325 } 326 } 327 LSDATypeTable.emplace_back(TypeAddress); 328 } 329 LSDATypeIndexTable = 330 LSDASectionData.slice(TypeIndexTableStart, MaxTypeIndexTableOffset); 331 } 332 } 333 334 void BinaryFunction::updateEHRanges() { 335 if (getSize() == 0) 336 return; 337 338 assert(CurrentState == State::CFG_Finalized && "unexpected state"); 339 340 // Build call sites table. 341 struct EHInfo { 342 const MCSymbol *LP; // landing pad 343 uint64_t Action; 344 }; 345 346 // If previous call can throw, this is its exception handler. 347 EHInfo PreviousEH = {nullptr, 0}; 348 349 // Marker for the beginning of exceptions range. 350 const MCSymbol *StartRange = nullptr; 351 352 // Indicates whether the start range is located in a cold part. 353 bool IsStartInCold = false; 354 355 // Have we crossed hot/cold border for split functions? 356 bool SeenCold = false; 357 358 // Sites to update - either regular or cold. 359 CallSitesType *Sites = &CallSites; 360 361 for (BinaryBasicBlock *&BB : BasicBlocksLayout) { 362 363 if (BB->isCold() && !SeenCold) { 364 SeenCold = true; 365 366 // Close the range (if any) and change the target call sites. 367 if (StartRange) { 368 Sites->emplace_back(CallSite{StartRange, getFunctionEndLabel(), 369 PreviousEH.LP, PreviousEH.Action}); 370 } 371 Sites = &ColdCallSites; 372 373 // Reset the range. 374 StartRange = nullptr; 375 PreviousEH = {nullptr, 0}; 376 } 377 378 for (auto II = BB->begin(); II != BB->end(); ++II) { 379 if (!BC.MIB->isCall(*II)) 380 continue; 381 382 // Instruction can throw an exception that should be handled. 383 const bool Throws = BC.MIB->isInvoke(*II); 384 385 // Ignore the call if it's a continuation of a no-throw gap. 386 if (!Throws && !StartRange) 387 continue; 388 389 // Extract exception handling information from the instruction. 390 const MCSymbol *LP = nullptr; 391 uint64_t Action = 0; 392 if (const Optional<MCPlus::MCLandingPad> EHInfo = BC.MIB->getEHInfo(*II)) 393 std::tie(LP, Action) = *EHInfo; 394 395 // No action if the exception handler has not changed. 396 if (Throws && StartRange && PreviousEH.LP == LP && 397 PreviousEH.Action == Action) 398 continue; 399 400 // Same symbol is used for the beginning and the end of the range. 401 const MCSymbol *EHSymbol; 402 MCInst EHLabel; 403 { 404 std::unique_lock<std::shared_timed_mutex> Lock(BC.CtxMutex); 405 EHSymbol = BC.Ctx->createNamedTempSymbol("EH"); 406 BC.MIB->createEHLabel(EHLabel, EHSymbol, BC.Ctx.get()); 407 } 408 409 II = std::next(BB->insertPseudoInstr(II, EHLabel)); 410 411 // At this point we could be in one of the following states: 412 // 413 // I. Exception handler has changed and we need to close previous range 414 // and start a new one. 415 // 416 // II. Start a new exception range after the gap. 417 // 418 // III. Close current exception range and start a new gap. 419 const MCSymbol *EndRange; 420 if (StartRange) { 421 // I, III: 422 EndRange = EHSymbol; 423 } else { 424 // II: 425 StartRange = EHSymbol; 426 IsStartInCold = SeenCold; 427 EndRange = nullptr; 428 } 429 430 // Close the previous range. 431 if (EndRange) { 432 Sites->emplace_back( 433 CallSite{StartRange, EndRange, PreviousEH.LP, PreviousEH.Action}); 434 } 435 436 if (Throws) { 437 // I, II: 438 StartRange = EHSymbol; 439 IsStartInCold = SeenCold; 440 PreviousEH = EHInfo{LP, Action}; 441 } else { 442 StartRange = nullptr; 443 } 444 } 445 } 446 447 // Check if we need to close the range. 448 if (StartRange) { 449 assert((!isSplit() || Sites == &ColdCallSites) && "sites mismatch"); 450 const MCSymbol *EndRange = 451 IsStartInCold ? getFunctionColdEndLabel() : getFunctionEndLabel(); 452 Sites->emplace_back( 453 CallSite{StartRange, EndRange, PreviousEH.LP, PreviousEH.Action}); 454 } 455 } 456 457 const uint8_t DWARF_CFI_PRIMARY_OPCODE_MASK = 0xc0; 458 459 CFIReaderWriter::CFIReaderWriter(const DWARFDebugFrame &EHFrame) { 460 // Prepare FDEs for fast lookup 461 for (const dwarf::FrameEntry &Entry : EHFrame.entries()) { 462 const auto *CurFDE = dyn_cast<dwarf::FDE>(&Entry); 463 // Skip CIEs. 464 if (!CurFDE) 465 continue; 466 // There could me multiple FDEs with the same initial address, and perhaps 467 // different sizes (address ranges). Use the first entry with non-zero size. 468 auto FDEI = FDEs.lower_bound(CurFDE->getInitialLocation()); 469 if (FDEI != FDEs.end() && FDEI->first == CurFDE->getInitialLocation()) { 470 if (CurFDE->getAddressRange()) { 471 if (FDEI->second->getAddressRange() == 0) { 472 FDEI->second = CurFDE; 473 } else if (opts::Verbosity > 0) { 474 errs() << "BOLT-WARNING: different FDEs for function at 0x" 475 << Twine::utohexstr(FDEI->first) 476 << " detected; sizes: " << FDEI->second->getAddressRange() 477 << " and " << CurFDE->getAddressRange() << '\n'; 478 } 479 } 480 } else { 481 FDEs.emplace_hint(FDEI, CurFDE->getInitialLocation(), CurFDE); 482 } 483 } 484 } 485 486 bool CFIReaderWriter::fillCFIInfoFor(BinaryFunction &Function) const { 487 uint64_t Address = Function.getAddress(); 488 auto I = FDEs.find(Address); 489 // Ignore zero-length FDE ranges. 490 if (I == FDEs.end() || !I->second->getAddressRange()) 491 return true; 492 493 const FDE &CurFDE = *I->second; 494 Optional<uint64_t> LSDA = CurFDE.getLSDAAddress(); 495 Function.setLSDAAddress(LSDA ? *LSDA : 0); 496 497 uint64_t Offset = 0; 498 uint64_t CodeAlignment = CurFDE.getLinkedCIE()->getCodeAlignmentFactor(); 499 uint64_t DataAlignment = CurFDE.getLinkedCIE()->getDataAlignmentFactor(); 500 if (CurFDE.getLinkedCIE()->getPersonalityAddress()) { 501 Function.setPersonalityFunction( 502 *CurFDE.getLinkedCIE()->getPersonalityAddress()); 503 Function.setPersonalityEncoding( 504 *CurFDE.getLinkedCIE()->getPersonalityEncoding()); 505 } 506 507 auto decodeFrameInstruction = [&Function, &Offset, Address, CodeAlignment, 508 DataAlignment]( 509 const CFIProgram::Instruction &Instr) { 510 uint8_t Opcode = Instr.Opcode; 511 if (Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK) 512 Opcode &= DWARF_CFI_PRIMARY_OPCODE_MASK; 513 switch (Instr.Opcode) { 514 case DW_CFA_nop: 515 break; 516 case DW_CFA_advance_loc4: 517 case DW_CFA_advance_loc2: 518 case DW_CFA_advance_loc1: 519 case DW_CFA_advance_loc: 520 // Advance our current address 521 Offset += CodeAlignment * int64_t(Instr.Ops[0]); 522 break; 523 case DW_CFA_offset_extended_sf: 524 Function.addCFIInstruction( 525 Offset, 526 MCCFIInstruction::createOffset( 527 nullptr, Instr.Ops[0], DataAlignment * int64_t(Instr.Ops[1]))); 528 break; 529 case DW_CFA_offset_extended: 530 case DW_CFA_offset: 531 Function.addCFIInstruction( 532 Offset, MCCFIInstruction::createOffset(nullptr, Instr.Ops[0], 533 DataAlignment * Instr.Ops[1])); 534 break; 535 case DW_CFA_restore_extended: 536 case DW_CFA_restore: 537 Function.addCFIInstruction( 538 Offset, MCCFIInstruction::createRestore(nullptr, Instr.Ops[0])); 539 break; 540 case DW_CFA_set_loc: 541 assert(Instr.Ops[0] >= Address && "set_loc out of function bounds"); 542 assert(Instr.Ops[0] <= Address + Function.getSize() && 543 "set_loc out of function bounds"); 544 Offset = Instr.Ops[0] - Address; 545 break; 546 547 case DW_CFA_undefined: 548 Function.addCFIInstruction( 549 Offset, MCCFIInstruction::createUndefined(nullptr, Instr.Ops[0])); 550 break; 551 case DW_CFA_same_value: 552 Function.addCFIInstruction( 553 Offset, MCCFIInstruction::createSameValue(nullptr, Instr.Ops[0])); 554 break; 555 case DW_CFA_register: 556 Function.addCFIInstruction( 557 Offset, MCCFIInstruction::createRegister(nullptr, Instr.Ops[0], 558 Instr.Ops[1])); 559 break; 560 case DW_CFA_remember_state: 561 Function.addCFIInstruction( 562 Offset, MCCFIInstruction::createRememberState(nullptr)); 563 break; 564 case DW_CFA_restore_state: 565 Function.addCFIInstruction(Offset, 566 MCCFIInstruction::createRestoreState(nullptr)); 567 break; 568 case DW_CFA_def_cfa: 569 Function.addCFIInstruction( 570 Offset, 571 MCCFIInstruction::cfiDefCfa(nullptr, Instr.Ops[0], Instr.Ops[1])); 572 break; 573 case DW_CFA_def_cfa_sf: 574 Function.addCFIInstruction( 575 Offset, 576 MCCFIInstruction::cfiDefCfa(nullptr, Instr.Ops[0], 577 DataAlignment * int64_t(Instr.Ops[1]))); 578 break; 579 case DW_CFA_def_cfa_register: 580 Function.addCFIInstruction(Offset, MCCFIInstruction::createDefCfaRegister( 581 nullptr, Instr.Ops[0])); 582 break; 583 case DW_CFA_def_cfa_offset: 584 Function.addCFIInstruction( 585 Offset, MCCFIInstruction::cfiDefCfaOffset(nullptr, Instr.Ops[0])); 586 break; 587 case DW_CFA_def_cfa_offset_sf: 588 Function.addCFIInstruction( 589 Offset, MCCFIInstruction::cfiDefCfaOffset( 590 nullptr, DataAlignment * int64_t(Instr.Ops[0]))); 591 break; 592 case DW_CFA_GNU_args_size: 593 Function.addCFIInstruction( 594 Offset, MCCFIInstruction::createGnuArgsSize(nullptr, Instr.Ops[0])); 595 Function.setUsesGnuArgsSize(); 596 break; 597 case DW_CFA_val_offset_sf: 598 case DW_CFA_val_offset: 599 if (opts::Verbosity >= 1) { 600 errs() << "BOLT-WARNING: DWARF val_offset() unimplemented\n"; 601 } 602 return false; 603 case DW_CFA_def_cfa_expression: 604 case DW_CFA_val_expression: 605 case DW_CFA_expression: { 606 StringRef ExprBytes = Instr.Expression->getData(); 607 std::string Str; 608 raw_string_ostream OS(Str); 609 // Manually encode this instruction using CFI escape 610 OS << Opcode; 611 if (Opcode != DW_CFA_def_cfa_expression) 612 encodeULEB128(Instr.Ops[0], OS); 613 encodeULEB128(ExprBytes.size(), OS); 614 OS << ExprBytes; 615 Function.addCFIInstruction( 616 Offset, MCCFIInstruction::createEscape(nullptr, OS.str())); 617 break; 618 } 619 case DW_CFA_MIPS_advance_loc8: 620 if (opts::Verbosity >= 1) 621 errs() << "BOLT-WARNING: DW_CFA_MIPS_advance_loc unimplemented\n"; 622 return false; 623 case DW_CFA_GNU_window_save: 624 case DW_CFA_lo_user: 625 case DW_CFA_hi_user: 626 if (opts::Verbosity >= 1) { 627 errs() << "BOLT-WARNING: DW_CFA_GNU_* and DW_CFA_*_user " 628 "unimplemented\n"; 629 } 630 return false; 631 default: 632 if (opts::Verbosity >= 1) { 633 errs() << "BOLT-WARNING: Unrecognized CFI instruction: " << Instr.Opcode 634 << '\n'; 635 } 636 return false; 637 } 638 639 return true; 640 }; 641 642 for (const CFIProgram::Instruction &Instr : CurFDE.getLinkedCIE()->cfis()) 643 if (!decodeFrameInstruction(Instr)) 644 return false; 645 646 for (const CFIProgram::Instruction &Instr : CurFDE.cfis()) 647 if (!decodeFrameInstruction(Instr)) 648 return false; 649 650 return true; 651 } 652 653 std::vector<char> CFIReaderWriter::generateEHFrameHeader( 654 const DWARFDebugFrame &OldEHFrame, const DWARFDebugFrame &NewEHFrame, 655 uint64_t EHFrameHeaderAddress, 656 std::vector<uint64_t> &FailedAddresses) const { 657 // Common PC -> FDE map to be written into .eh_frame_hdr. 658 std::map<uint64_t, uint64_t> PCToFDE; 659 660 // Presort array for binary search. 661 std::sort(FailedAddresses.begin(), FailedAddresses.end()); 662 663 // Initialize PCToFDE using NewEHFrame. 664 for (dwarf::FrameEntry &Entry : NewEHFrame.entries()) { 665 const dwarf::FDE *FDE = dyn_cast<dwarf::FDE>(&Entry); 666 if (FDE == nullptr) 667 continue; 668 const uint64_t FuncAddress = FDE->getInitialLocation(); 669 const uint64_t FDEAddress = 670 NewEHFrame.getEHFrameAddress() + FDE->getOffset(); 671 672 // Ignore unused FDEs. 673 if (FuncAddress == 0) 674 continue; 675 676 // Add the address to the map unless we failed to write it. 677 if (!std::binary_search(FailedAddresses.begin(), FailedAddresses.end(), 678 FuncAddress)) { 679 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: FDE for function at 0x" 680 << Twine::utohexstr(FuncAddress) << " is at 0x" 681 << Twine::utohexstr(FDEAddress) << '\n'); 682 PCToFDE[FuncAddress] = FDEAddress; 683 } 684 }; 685 686 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: new .eh_frame contains " 687 << std::distance(NewEHFrame.entries().begin(), 688 NewEHFrame.entries().end()) 689 << " entries\n"); 690 691 // Add entries from the original .eh_frame corresponding to the functions 692 // that we did not update. 693 for (const dwarf::FrameEntry &Entry : OldEHFrame) { 694 const dwarf::FDE *FDE = dyn_cast<dwarf::FDE>(&Entry); 695 if (FDE == nullptr) 696 continue; 697 const uint64_t FuncAddress = FDE->getInitialLocation(); 698 const uint64_t FDEAddress = 699 OldEHFrame.getEHFrameAddress() + FDE->getOffset(); 700 701 // Add the address if we failed to write it. 702 if (PCToFDE.count(FuncAddress) == 0) { 703 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: old FDE for function at 0x" 704 << Twine::utohexstr(FuncAddress) << " is at 0x" 705 << Twine::utohexstr(FDEAddress) << '\n'); 706 PCToFDE[FuncAddress] = FDEAddress; 707 } 708 }; 709 710 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: old .eh_frame contains " 711 << std::distance(OldEHFrame.entries().begin(), 712 OldEHFrame.entries().end()) 713 << " entries\n"); 714 715 // Generate a new .eh_frame_hdr based on the new map. 716 717 // Header plus table of entries of size 8 bytes. 718 std::vector<char> EHFrameHeader(12 + PCToFDE.size() * 8); 719 720 // Version is 1. 721 EHFrameHeader[0] = 1; 722 // Encoding of the eh_frame pointer. 723 EHFrameHeader[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; 724 // Encoding of the count field to follow. 725 EHFrameHeader[2] = DW_EH_PE_udata4; 726 // Encoding of the table entries - 4-byte offset from the start of the header. 727 EHFrameHeader[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; 728 729 // Address of eh_frame. Use the new one. 730 support::ulittle32_t::ref(EHFrameHeader.data() + 4) = 731 NewEHFrame.getEHFrameAddress() - (EHFrameHeaderAddress + 4); 732 733 // Number of entries in the table (FDE count). 734 support::ulittle32_t::ref(EHFrameHeader.data() + 8) = PCToFDE.size(); 735 736 // Write the table at offset 12. 737 char *Ptr = EHFrameHeader.data(); 738 uint32_t Offset = 12; 739 for (const auto &PCI : PCToFDE) { 740 int64_t InitialPCOffset = PCI.first - EHFrameHeaderAddress; 741 assert(isInt<32>(InitialPCOffset) && "PC offset out of bounds"); 742 support::ulittle32_t::ref(Ptr + Offset) = InitialPCOffset; 743 Offset += 4; 744 int64_t FDEOffset = PCI.second - EHFrameHeaderAddress; 745 assert(isInt<32>(FDEOffset) && "FDE offset out of bounds"); 746 support::ulittle32_t::ref(Ptr + Offset) = FDEOffset; 747 Offset += 4; 748 } 749 750 return EHFrameHeader; 751 } 752 753 Error EHFrameParser::parseCIE(uint64_t StartOffset) { 754 uint8_t Version = Data.getU8(&Offset); 755 const char *Augmentation = Data.getCStr(&Offset); 756 StringRef AugmentationString(Augmentation ? Augmentation : ""); 757 uint8_t AddressSize = 758 Version < 4 ? Data.getAddressSize() : Data.getU8(&Offset); 759 Data.setAddressSize(AddressSize); 760 // Skip segment descriptor size 761 if (Version >= 4) 762 Offset += 1; 763 // Skip code alignment factor 764 Data.getULEB128(&Offset); 765 // Skip data alignment 766 Data.getSLEB128(&Offset); 767 // Skip return address register 768 if (Version == 1) 769 Offset += 1; 770 else 771 Data.getULEB128(&Offset); 772 773 uint32_t FDEPointerEncoding = DW_EH_PE_absptr; 774 uint32_t LSDAPointerEncoding = DW_EH_PE_omit; 775 // Walk the augmentation string to get all the augmentation data. 776 for (unsigned i = 0, e = AugmentationString.size(); i != e; ++i) { 777 switch (AugmentationString[i]) { 778 default: 779 return createStringError( 780 errc::invalid_argument, 781 "unknown augmentation character in entry at 0x%" PRIx64, StartOffset); 782 case 'L': 783 LSDAPointerEncoding = Data.getU8(&Offset); 784 break; 785 case 'P': { 786 uint32_t PersonalityEncoding = Data.getU8(&Offset); 787 Optional<uint64_t> Personality = 788 Data.getEncodedPointer(&Offset, PersonalityEncoding, 789 EHFrameAddress ? EHFrameAddress + Offset : 0); 790 // Patch personality address 791 if (Personality) 792 PatcherCallback(*Personality, Offset, PersonalityEncoding); 793 break; 794 } 795 case 'R': 796 FDEPointerEncoding = Data.getU8(&Offset); 797 break; 798 case 'z': 799 if (i) 800 return createStringError( 801 errc::invalid_argument, 802 "'z' must be the first character at 0x%" PRIx64, StartOffset); 803 // Skip augmentation length 804 Data.getULEB128(&Offset); 805 break; 806 case 'S': 807 case 'B': 808 break; 809 } 810 } 811 Entries.emplace_back(std::make_unique<CIEInfo>( 812 FDEPointerEncoding, LSDAPointerEncoding, AugmentationString)); 813 CIEs[StartOffset] = &*Entries.back(); 814 return Error::success(); 815 } 816 817 Error EHFrameParser::parseFDE(uint64_t CIEPointer, 818 uint64_t StartStructureOffset) { 819 Optional<uint64_t> LSDAAddress; 820 CIEInfo *Cie = CIEs[StartStructureOffset - CIEPointer]; 821 822 // The address size is encoded in the CIE we reference. 823 if (!Cie) 824 return createStringError(errc::invalid_argument, 825 "parsing FDE data at 0x%" PRIx64 826 " failed due to missing CIE", 827 StartStructureOffset); 828 // Patch initial location 829 if (auto Val = Data.getEncodedPointer(&Offset, Cie->FDEPtrEncoding, 830 EHFrameAddress + Offset)) { 831 PatcherCallback(*Val, Offset, Cie->FDEPtrEncoding); 832 } 833 // Skip address range 834 Data.getEncodedPointer(&Offset, Cie->FDEPtrEncoding, 0); 835 836 // Process augmentation data for this FDE. 837 StringRef AugmentationString = Cie->AugmentationString; 838 if (!AugmentationString.empty() && Cie->LSDAPtrEncoding != DW_EH_PE_omit) { 839 // Skip augmentation length 840 Data.getULEB128(&Offset); 841 LSDAAddress = 842 Data.getEncodedPointer(&Offset, Cie->LSDAPtrEncoding, 843 EHFrameAddress ? Offset + EHFrameAddress : 0); 844 // Patch LSDA address 845 PatcherCallback(*LSDAAddress, Offset, Cie->LSDAPtrEncoding); 846 } 847 return Error::success(); 848 } 849 850 Error EHFrameParser::parse() { 851 while (Data.isValidOffset(Offset)) { 852 const uint64_t StartOffset = Offset; 853 854 uint64_t Length; 855 DwarfFormat Format; 856 std::tie(Length, Format) = Data.getInitialLength(&Offset); 857 858 // If the Length is 0, then this CIE is a terminator 859 if (Length == 0) 860 break; 861 862 const uint64_t StartStructureOffset = Offset; 863 const uint64_t EndStructureOffset = Offset + Length; 864 865 Error Err = Error::success(); 866 const uint64_t Id = Data.getRelocatedValue(4, &Offset, 867 /*SectionIndex=*/nullptr, &Err); 868 if (Err) 869 return Err; 870 871 if (!Id) { 872 if (Error Err = parseCIE(StartOffset)) 873 return Err; 874 } else { 875 if (Error Err = parseFDE(Id, StartStructureOffset)) 876 return Err; 877 } 878 Offset = EndStructureOffset; 879 } 880 881 return Error::success(); 882 } 883 884 Error EHFrameParser::parse(DWARFDataExtractor Data, uint64_t EHFrameAddress, 885 PatcherCallbackTy PatcherCallback) { 886 EHFrameParser Parser(Data, EHFrameAddress, PatcherCallback); 887 return Parser.parse(); 888 } 889 890 } // namespace bolt 891 } // namespace llvm 892