1 //===- bolt/Core/DebugData.cpp - Debugging information handling -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements functions and classes for handling debug info.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "bolt/Core/DebugData.h"
14 #include "bolt/Core/BinaryBasicBlock.h"
15 #include "bolt/Core/BinaryFunction.h"
16 #include "bolt/Utils/Utils.h"
17 #include "llvm/MC/MCObjectStreamer.h"
18 #include "llvm/MC/MCSymbol.h"
19 #include "llvm/Support/CommandLine.h"
20 #include "llvm/Support/EndianStream.h"
21 #include "llvm/Support/LEB128.h"
22 #include <algorithm>
23 #include <cassert>
24 #include <cstdint>
25 #include <limits>
26 #include <unordered_map>
27 
28 #define DEBUG_TYPE "bolt-debug-info"
29 
30 namespace opts {
31 extern llvm::cl::opt<unsigned> Verbosity;
32 } // namespace opts
33 
34 namespace llvm {
35 namespace bolt {
36 
37 const DebugLineTableRowRef DebugLineTableRowRef::NULL_ROW{0, 0};
38 
39 namespace {
40 
41 LLVM_ATTRIBUTE_UNUSED
42 static void printLE64(const std::string &S) {
43   for (uint32_t I = 0, Size = S.size(); I < Size; ++I) {
44     errs() << Twine::utohexstr(S[I]);
45     errs() << Twine::utohexstr((int8_t)S[I]);
46   }
47   errs() << "\n";
48 }
49 
50 // Writes address ranges to Writer as pairs of 64-bit (address, size).
51 // If RelativeRange is true, assumes the address range to be written must be of
52 // the form (begin address, range size), otherwise (begin address, end address).
53 // Terminates the list by writing a pair of two zeroes.
54 // Returns the number of written bytes.
55 uint64_t writeAddressRanges(raw_svector_ostream &Stream,
56                             const DebugAddressRangesVector &AddressRanges,
57                             const bool WriteRelativeRanges = false) {
58   for (const DebugAddressRange &Range : AddressRanges) {
59     support::endian::write(Stream, Range.LowPC, support::little);
60     support::endian::write(
61         Stream, WriteRelativeRanges ? Range.HighPC - Range.LowPC : Range.HighPC,
62         support::little);
63   }
64   // Finish with 0 entries.
65   support::endian::write(Stream, 0ULL, support::little);
66   support::endian::write(Stream, 0ULL, support::little);
67   return AddressRanges.size() * 16 + 16;
68 }
69 
70 } // namespace
71 
72 DebugRangesSectionWriter::DebugRangesSectionWriter() {
73   RangesBuffer = std::make_unique<DebugBufferVector>();
74   RangesStream = std::make_unique<raw_svector_ostream>(*RangesBuffer);
75 
76   // Add an empty range as the first entry;
77   SectionOffset +=
78       writeAddressRanges(*RangesStream.get(), DebugAddressRangesVector{});
79 }
80 
81 uint64_t DebugRangesSectionWriter::addRanges(
82     DebugAddressRangesVector &&Ranges,
83     std::map<DebugAddressRangesVector, uint64_t> &CachedRanges) {
84   if (Ranges.empty())
85     return getEmptyRangesOffset();
86 
87   const auto RI = CachedRanges.find(Ranges);
88   if (RI != CachedRanges.end())
89     return RI->second;
90 
91   const uint64_t EntryOffset = addRanges(Ranges);
92   CachedRanges.emplace(std::move(Ranges), EntryOffset);
93 
94   return EntryOffset;
95 }
96 
97 uint64_t
98 DebugRangesSectionWriter::addRanges(const DebugAddressRangesVector &Ranges) {
99   if (Ranges.empty())
100     return getEmptyRangesOffset();
101 
102   // Reading the SectionOffset and updating it should be atomic to guarantee
103   // unique and correct offsets in patches.
104   std::lock_guard<std::mutex> Lock(WriterMutex);
105   const uint32_t EntryOffset = SectionOffset;
106   SectionOffset += writeAddressRanges(*RangesStream.get(), Ranges);
107 
108   return EntryOffset;
109 }
110 
111 uint64_t DebugRangesSectionWriter::getSectionOffset() {
112   std::lock_guard<std::mutex> Lock(WriterMutex);
113   return SectionOffset;
114 }
115 
116 void DebugARangesSectionWriter::addCURanges(uint64_t CUOffset,
117                                             DebugAddressRangesVector &&Ranges) {
118   std::lock_guard<std::mutex> Lock(CUAddressRangesMutex);
119   CUAddressRanges.emplace(CUOffset, std::move(Ranges));
120 }
121 
122 void DebugARangesSectionWriter::writeARangesSection(
123     raw_svector_ostream &RangesStream,
124     const std::unordered_map<uint32_t, uint32_t> CUMap) const {
125   // For reference on the format of the .debug_aranges section, see the DWARF4
126   // specification, section 6.1.4 Lookup by Address
127   // http://www.dwarfstd.org/doc/DWARF4.pdf
128   for (const auto &CUOffsetAddressRangesPair : CUAddressRanges) {
129     const uint64_t Offset = CUOffsetAddressRangesPair.first;
130     const DebugAddressRangesVector &AddressRanges =
131         CUOffsetAddressRangesPair.second;
132 
133     // Emit header.
134 
135     // Size of this set: 8 (size of the header) + 4 (padding after header)
136     // + 2*sizeof(uint64_t) bytes for each of the ranges, plus an extra
137     // pair of uint64_t's for the terminating, zero-length range.
138     // Does not include size field itself.
139     uint32_t Size = 8 + 4 + 2 * sizeof(uint64_t) * (AddressRanges.size() + 1);
140 
141     // Header field #1: set size.
142     support::endian::write(RangesStream, Size, support::little);
143 
144     // Header field #2: version number, 2 as per the specification.
145     support::endian::write(RangesStream, static_cast<uint16_t>(2),
146                            support::little);
147 
148     assert(CUMap.count(Offset) && "Original CU offset is not found in CU Map");
149     // Header field #3: debug info offset of the correspondent compile unit.
150     support::endian::write(RangesStream,
151                            static_cast<uint32_t>(CUMap.find(Offset)->second),
152                            support::little);
153 
154     // Header field #4: address size.
155     // 8 since we only write ELF64 binaries for now.
156     RangesStream << char(8);
157 
158     // Header field #5: segment size of target architecture.
159     RangesStream << char(0);
160 
161     // Padding before address table - 4 bytes in the 64-bit-pointer case.
162     support::endian::write(RangesStream, static_cast<uint32_t>(0),
163                            support::little);
164 
165     writeAddressRanges(RangesStream, AddressRanges, true);
166   }
167 }
168 
169 DebugAddrWriter::DebugAddrWriter(BinaryContext *Bc) { BC = Bc; }
170 
171 void DebugAddrWriter::AddressForDWOCU::dump() {
172   std::vector<IndexAddressPair> SortedMap(indexToAddressBegin(),
173                                           indexToAdddessEnd());
174   // Sorting address in increasing order of indices.
175   std::sort(SortedMap.begin(), SortedMap.end(),
176             [](const IndexAddressPair &A, const IndexAddressPair &B) {
177               return A.first < B.first;
178             });
179   for (auto &Pair : SortedMap)
180     dbgs() << Twine::utohexstr(Pair.second) << "\t" << Pair.first << "\n";
181 }
182 uint32_t DebugAddrWriter::getIndexFromAddress(uint64_t Address,
183                                               uint64_t DWOId) {
184   std::lock_guard<std::mutex> Lock(WriterMutex);
185   if (!AddressMaps.count(DWOId))
186     AddressMaps[DWOId] = AddressForDWOCU();
187 
188   AddressForDWOCU &Map = AddressMaps[DWOId];
189   auto Entry = Map.find(Address);
190   if (Entry == Map.end()) {
191     auto Index = Map.getNextIndex();
192     Entry = Map.insert(Address, Index).first;
193   }
194   return Entry->second;
195 }
196 
197 // Case1) Address is not in map insert in to AddresToIndex and IndexToAddres
198 // Case2) Address is in the map but Index is higher or equal. Need to update
199 // IndexToAddrss. Case3) Address is in the map but Index is lower. Need to
200 // update AddressToIndex and IndexToAddress
201 void DebugAddrWriter::addIndexAddress(uint64_t Address, uint32_t Index,
202                                       uint64_t DWOId) {
203   std::lock_guard<std::mutex> Lock(WriterMutex);
204   AddressForDWOCU &Map = AddressMaps[DWOId];
205   auto Entry = Map.find(Address);
206   if (Entry != Map.end()) {
207     if (Entry->second > Index)
208       Map.updateAddressToIndex(Address, Index);
209     Map.updateIndexToAddrss(Address, Index);
210   } else {
211     Map.insert(Address, Index);
212   }
213 }
214 
215 AddressSectionBuffer DebugAddrWriter::finalize() {
216   // Need to layout all sections within .debug_addr
217   // Within each section sort Address by index.
218   AddressSectionBuffer Buffer;
219   raw_svector_ostream AddressStream(Buffer);
220   for (std::unique_ptr<DWARFUnit> &CU : BC->DwCtx->compile_units()) {
221     Optional<uint64_t> DWOId = CU->getDWOId();
222     // Handling the case wehre debug information is a mix of Debug fission and
223     // monolitic.
224     if (!DWOId)
225       continue;
226     auto AM = AddressMaps.find(*DWOId);
227     // Adding to map even if it did not contribute to .debug_addr.
228     // The Skeleton CU will still have DW_AT_GNU_addr_base.
229     DWOIdToOffsetMap[*DWOId] = Buffer.size();
230     // If does not exist this CUs DWO section didn't contribute to .debug_addr.
231     if (AM == AddressMaps.end())
232       continue;
233     std::vector<IndexAddressPair> SortedMap(AM->second.indexToAddressBegin(),
234                                             AM->second.indexToAdddessEnd());
235     // Sorting address in increasing order of indices.
236     std::sort(SortedMap.begin(), SortedMap.end(),
237               [](const IndexAddressPair &A, const IndexAddressPair &B) {
238                 return A.first < B.first;
239               });
240 
241     uint8_t AddrSize = CU->getAddressByteSize();
242     uint32_t Counter = 0;
243     auto WriteAddress = [&](uint64_t Address) -> void {
244       ++Counter;
245       switch (AddrSize) {
246       default:
247         assert(false && "Address Size is invalid.");
248         break;
249       case 4:
250         support::endian::write(AddressStream, static_cast<uint32_t>(Address),
251                                support::little);
252         break;
253       case 8:
254         support::endian::write(AddressStream, Address, support::little);
255         break;
256       }
257     };
258 
259     for (const IndexAddressPair &Val : SortedMap) {
260       while (Val.first > Counter)
261         WriteAddress(0);
262       WriteAddress(Val.second);
263     }
264   }
265 
266   return Buffer;
267 }
268 
269 uint64_t DebugAddrWriter::getOffset(uint64_t DWOId) {
270   auto Iter = DWOIdToOffsetMap.find(DWOId);
271   assert(Iter != DWOIdToOffsetMap.end() &&
272          "Offset in to.debug_addr was not found for DWO ID.");
273   return Iter->second;
274 }
275 
276 DebugLocWriter::DebugLocWriter(BinaryContext *BC) {
277   LocBuffer = std::make_unique<DebugBufferVector>();
278   LocStream = std::make_unique<raw_svector_ostream>(*LocBuffer);
279 }
280 
281 void DebugLocWriter::addList(uint64_t AttrOffset,
282                              DebugLocationsVector &&LocList) {
283   if (LocList.empty()) {
284     EmptyAttrLists.push_back(AttrOffset);
285     return;
286   }
287   // Since there is a separate DebugLocWriter for each thread,
288   // we don't need a lock to read the SectionOffset and update it.
289   const uint32_t EntryOffset = SectionOffset;
290 
291   for (const DebugLocationEntry &Entry : LocList) {
292     support::endian::write(*LocStream, static_cast<uint64_t>(Entry.LowPC),
293                            support::little);
294     support::endian::write(*LocStream, static_cast<uint64_t>(Entry.HighPC),
295                            support::little);
296     support::endian::write(*LocStream, static_cast<uint16_t>(Entry.Expr.size()),
297                            support::little);
298     *LocStream << StringRef(reinterpret_cast<const char *>(Entry.Expr.data()),
299                             Entry.Expr.size());
300     SectionOffset += 2 * 8 + 2 + Entry.Expr.size();
301   }
302   LocStream->write_zeros(16);
303   SectionOffset += 16;
304   LocListDebugInfoPatches.push_back({AttrOffset, EntryOffset});
305 }
306 
307 void DebugLoclistWriter::addList(uint64_t AttrOffset,
308                                  DebugLocationsVector &&LocList) {
309   Patches.push_back({AttrOffset, std::move(LocList)});
310 }
311 
312 std::unique_ptr<DebugBufferVector> DebugLocWriter::getBuffer() {
313   return std::move(LocBuffer);
314 }
315 
316 // DWARF 4: 2.6.2
317 void DebugLocWriter::finalize(uint64_t SectionOffset,
318                               SimpleBinaryPatcher &DebugInfoPatcher) {
319   for (const auto LocListDebugInfoPatchType : LocListDebugInfoPatches) {
320     uint64_t Offset = SectionOffset + LocListDebugInfoPatchType.LocListOffset;
321     DebugInfoPatcher.addLE32Patch(LocListDebugInfoPatchType.DebugInfoAttrOffset,
322                                   Offset);
323   }
324 
325   for (uint64_t DebugInfoAttrOffset : EmptyAttrLists)
326     DebugInfoPatcher.addLE32Patch(DebugInfoAttrOffset,
327                                   DebugLocWriter::EmptyListOffset);
328 }
329 
330 void DebugLoclistWriter::finalize(uint64_t SectionOffset,
331                                   SimpleBinaryPatcher &DebugInfoPatcher) {
332   for (LocPatch &Patch : Patches) {
333     if (Patch.LocList.empty()) {
334       DebugInfoPatcher.addLE32Patch(Patch.AttrOffset,
335                                     DebugLocWriter::EmptyListOffset);
336       continue;
337     }
338     const uint32_t EntryOffset = LocBuffer->size();
339     for (const DebugLocationEntry &Entry : Patch.LocList) {
340       support::endian::write(*LocStream,
341                              static_cast<uint8_t>(dwarf::DW_LLE_startx_length),
342                              support::little);
343       uint32_t Index = AddrWriter->getIndexFromAddress(Entry.LowPC, DWOId);
344       encodeULEB128(Index, *LocStream);
345 
346       // TODO: Support DWARF5
347       support::endian::write(*LocStream,
348                              static_cast<uint32_t>(Entry.HighPC - Entry.LowPC),
349                              support::little);
350       support::endian::write(*LocStream,
351                              static_cast<uint16_t>(Entry.Expr.size()),
352                              support::little);
353       *LocStream << StringRef(reinterpret_cast<const char *>(Entry.Expr.data()),
354                               Entry.Expr.size());
355     }
356     support::endian::write(*LocStream,
357                            static_cast<uint8_t>(dwarf::DW_LLE_end_of_list),
358                            support::little);
359     DebugInfoPatcher.addLE32Patch(Patch.AttrOffset, EntryOffset);
360     clearList(Patch.LocList);
361   }
362   clearList(Patches);
363 }
364 
365 DebugAddrWriter *DebugLoclistWriter::AddrWriter = nullptr;
366 
367 void DebugInfoBinaryPatcher::addUnitBaseOffsetLabel(uint64_t Offset) {
368   Offset -= DWPUnitOffset;
369   std::lock_guard<std::mutex> Lock(WriterMutex);
370   DebugPatches.emplace_back(std::make_unique<DWARFUnitOffsetBaseLabel>(Offset));
371 }
372 
373 void DebugInfoBinaryPatcher::addDestinationReferenceLabel(uint64_t Offset) {
374   Offset -= DWPUnitOffset;
375   std::lock_guard<std::mutex> Lock(WriterMutex);
376   auto RetVal = DestinationLabels.insert(Offset);
377   if (!RetVal.second)
378     return;
379 
380   DebugPatches.emplace_back(
381       std::make_unique<DestinationReferenceLabel>(Offset));
382 }
383 
384 void DebugInfoBinaryPatcher::addReferenceToPatch(uint64_t Offset,
385                                                  uint32_t DestinationOffset,
386                                                  uint32_t OldValueSize,
387                                                  dwarf::Form Form) {
388   Offset -= DWPUnitOffset;
389   DestinationOffset -= DWPUnitOffset;
390   std::lock_guard<std::mutex> Lock(WriterMutex);
391   DebugPatches.emplace_back(std::make_unique<DebugPatchReference>(
392       Offset, OldValueSize, DestinationOffset, Form));
393 }
394 
395 void DebugInfoBinaryPatcher::addUDataPatch(uint64_t Offset, uint64_t NewValue,
396                                            uint32_t OldValueSize) {
397   Offset -= DWPUnitOffset;
398   std::lock_guard<std::mutex> Lock(WriterMutex);
399   DebugPatches.emplace_back(
400       std::make_unique<DebugPatchVariableSize>(Offset, OldValueSize, NewValue));
401 }
402 
403 void DebugInfoBinaryPatcher::addLE64Patch(uint64_t Offset, uint64_t NewValue) {
404   Offset -= DWPUnitOffset;
405   std::lock_guard<std::mutex> Lock(WriterMutex);
406   DebugPatches.emplace_back(std::make_unique<DebugPatch64>(Offset, NewValue));
407 }
408 
409 void DebugInfoBinaryPatcher::addLE32Patch(uint64_t Offset, uint32_t NewValue,
410                                           uint32_t OldValueSize) {
411   Offset -= DWPUnitOffset;
412   std::lock_guard<std::mutex> Lock(WriterMutex);
413   if (OldValueSize == 4)
414     DebugPatches.emplace_back(std::make_unique<DebugPatch32>(Offset, NewValue));
415   else
416     DebugPatches.emplace_back(
417         std::make_unique<DebugPatch64to32>(Offset, NewValue));
418 }
419 
420 void SimpleBinaryPatcher::addBinaryPatch(uint64_t Offset,
421                                          std::string &&NewValue,
422                                          uint32_t OldValueSize) {
423   Patches.emplace_back(Offset, std::move(NewValue));
424 }
425 
426 void SimpleBinaryPatcher::addBytePatch(uint64_t Offset, uint8_t Value) {
427   auto Str = std::string(1, Value);
428   Patches.emplace_back(Offset, std::move(Str));
429 }
430 
431 static std::string encodeLE(size_t ByteSize, uint64_t NewValue) {
432   std::string LE64(ByteSize, 0);
433   for (size_t I = 0; I < ByteSize; ++I) {
434     LE64[I] = NewValue & 0xff;
435     NewValue >>= 8;
436   }
437   return LE64;
438 }
439 
440 void SimpleBinaryPatcher::addLEPatch(uint64_t Offset, uint64_t NewValue,
441                                      size_t ByteSize) {
442   Patches.emplace_back(Offset, encodeLE(ByteSize, NewValue));
443 }
444 
445 void SimpleBinaryPatcher::addUDataPatch(uint64_t Offset, uint64_t Value,
446                                         uint32_t OldValueSize) {
447   std::string Buff;
448   raw_string_ostream OS(Buff);
449   encodeULEB128(Value, OS, OldValueSize);
450 
451   Patches.emplace_back(Offset, std::move(Buff));
452 }
453 
454 void SimpleBinaryPatcher::addLE64Patch(uint64_t Offset, uint64_t NewValue) {
455   addLEPatch(Offset, NewValue, 8);
456 }
457 
458 void SimpleBinaryPatcher::addLE32Patch(uint64_t Offset, uint32_t NewValue,
459                                        uint32_t OldValueSize) {
460   addLEPatch(Offset, NewValue, 4);
461 }
462 
463 std::string SimpleBinaryPatcher::patchBinary(StringRef BinaryContents) {
464   std::string BinaryContentsStr = std::string(BinaryContents);
465   for (const auto &Patch : Patches) {
466     uint32_t Offset = Patch.first;
467     const std::string &ByteSequence = Patch.second;
468     assert(Offset + ByteSequence.size() <= BinaryContents.size() &&
469            "Applied patch runs over binary size.");
470     for (uint64_t I = 0, Size = ByteSequence.size(); I < Size; ++I) {
471       BinaryContentsStr[Offset + I] = ByteSequence[I];
472     }
473   }
474   return BinaryContentsStr;
475 }
476 
477 std::unordered_map<uint32_t, uint32_t>
478 DebugInfoBinaryPatcher::computeNewOffsets() {
479   std::unordered_map<uint32_t, uint32_t> CUMap;
480   std::sort(
481       DebugPatches.begin(), DebugPatches.end(),
482       [](const std::unique_ptr<Patch> &V1, const std::unique_ptr<Patch> &V2) {
483         return V1.get()->Offset < V2.get()->Offset;
484       });
485 
486   // Calculating changes in .debug_info size from Patches to build a map of old
487   // to updated reference destination offsets.
488   for (std::unique_ptr<Patch> &PatchBase : DebugPatches) {
489     Patch *P = PatchBase.get();
490     switch (P->Kind) {
491     default:
492       continue;
493     case DebugPatchKind::PatchValue64to32: {
494       ChangeInSize -= 4;
495       break;
496     }
497     case DebugPatchKind::PatchValueVariable: {
498       DebugPatchVariableSize *DPV =
499           reinterpret_cast<DebugPatchVariableSize *>(P);
500       std::string Temp;
501       raw_string_ostream OS(Temp);
502       encodeULEB128(DPV->Value, OS);
503       ChangeInSize += Temp.size() - DPV->OldValueSize;
504       break;
505     }
506     case DebugPatchKind::DestinationReferenceLabel: {
507       DestinationReferenceLabel *DRL =
508           reinterpret_cast<DestinationReferenceLabel *>(P);
509       OldToNewOffset[DRL->Offset] = DRL->Offset + ChangeInSize;
510       break;
511     }
512     case DebugPatchKind::ReferencePatchValue: {
513       // This doesn't look to be a common case, so will always encode as 4 bytes
514       // to reduce algorithmic complexity.
515       DebugPatchReference *RDP = reinterpret_cast<DebugPatchReference *>(P);
516       if (RDP->PatchInfo.IndirectRelative) {
517         ChangeInSize += 4 - RDP->PatchInfo.OldValueSize;
518         assert(RDP->PatchInfo.OldValueSize <= 4 &&
519                "Variable encoding reference greater than 4 bytes.");
520       }
521       break;
522     }
523     case DebugPatchKind::DWARFUnitOffsetBaseLabel: {
524       DWARFUnitOffsetBaseLabel *BaseLabel =
525           reinterpret_cast<DWARFUnitOffsetBaseLabel *>(P);
526       uint32_t CUOffset = BaseLabel->Offset;
527       uint32_t CUOffsetUpdate = CUOffset + ChangeInSize;
528       CUMap[CUOffset] = CUOffsetUpdate;
529     }
530     }
531   }
532   return CUMap;
533 }
534 
535 std::string DebugInfoBinaryPatcher::patchBinary(StringRef BinaryContents) {
536   std::string NewBinaryContents;
537   NewBinaryContents.reserve(BinaryContents.size() + ChangeInSize);
538   uint32_t StartOffset = 0;
539   uint32_t DwarfUnitBaseOffset = 0;
540   uint32_t OldValueSize = 0;
541   uint32_t Offset = 0;
542   std::string ByteSequence;
543   std::vector<std::pair<uint32_t, uint32_t>> LengthPatches;
544   // Wasting one entry to avoid checks for first.
545   LengthPatches.push_back({0, 0});
546 
547   // Applying all the patches replacing current entry.
548   // This might change the size of .debug_info section.
549   for (const std::unique_ptr<Patch> &PatchBase : DebugPatches) {
550     Patch *P = PatchBase.get();
551     switch (P->Kind) {
552     default:
553       continue;
554     case DebugPatchKind::ReferencePatchValue: {
555       DebugPatchReference *RDP = reinterpret_cast<DebugPatchReference *>(P);
556       uint32_t DestinationOffset = RDP->DestinationOffset;
557       assert(OldToNewOffset.count(DestinationOffset) &&
558              "Destination Offset for reference not updated.");
559       uint32_t UpdatedOffset = OldToNewOffset[DestinationOffset];
560       Offset = RDP->Offset;
561       OldValueSize = RDP->PatchInfo.OldValueSize;
562       if (RDP->PatchInfo.DirectRelative) {
563         UpdatedOffset -= DwarfUnitBaseOffset;
564         ByteSequence = encodeLE(OldValueSize, UpdatedOffset);
565         // In theory reference for DW_FORM_ref{1,2,4,8} can be right on the edge
566         // and overflow if later debug information grows.
567         if (ByteSequence.size() > OldValueSize)
568           errs() << "BOLT-ERROR: Relative reference of size "
569                  << Twine::utohexstr(OldValueSize)
570                  << " overflows with the new encoding.\n";
571       } else if (RDP->PatchInfo.DirectAbsolute) {
572         ByteSequence = encodeLE(OldValueSize, UpdatedOffset);
573       } else if (RDP->PatchInfo.IndirectRelative) {
574         UpdatedOffset -= DwarfUnitBaseOffset;
575         ByteSequence.clear();
576         raw_string_ostream OS(ByteSequence);
577         encodeULEB128(UpdatedOffset, OS, 4);
578       } else {
579         llvm_unreachable("Invalid Reference form.");
580       }
581       break;
582     }
583     case DebugPatchKind::PatchValue32: {
584       DebugPatch32 *P32 = reinterpret_cast<DebugPatch32 *>(P);
585       Offset = P32->Offset;
586       OldValueSize = 4;
587       ByteSequence = encodeLE(4, P32->Value);
588       break;
589     }
590     case DebugPatchKind::PatchValue64to32: {
591       DebugPatch64to32 *P64to32 = reinterpret_cast<DebugPatch64to32 *>(P);
592       Offset = P64to32->Offset;
593       OldValueSize = 8;
594       ByteSequence = encodeLE(4, P64to32->Value);
595       break;
596     }
597     case DebugPatchKind::PatchValueVariable: {
598       DebugPatchVariableSize *PV =
599           reinterpret_cast<DebugPatchVariableSize *>(P);
600       Offset = PV->Offset;
601       OldValueSize = PV->OldValueSize;
602       ByteSequence.clear();
603       raw_string_ostream OS(ByteSequence);
604       encodeULEB128(PV->Value, OS);
605       break;
606     }
607     case DebugPatchKind::PatchValue64: {
608       DebugPatch64 *P64 = reinterpret_cast<DebugPatch64 *>(P);
609       Offset = P64->Offset;
610       OldValueSize = 8;
611       ByteSequence = encodeLE(8, P64->Value);
612       break;
613     }
614     case DebugPatchKind::DWARFUnitOffsetBaseLabel: {
615       DWARFUnitOffsetBaseLabel *BaseLabel =
616           reinterpret_cast<DWARFUnitOffsetBaseLabel *>(P);
617       Offset = BaseLabel->Offset;
618       OldValueSize = 0;
619       ByteSequence.clear();
620       auto &Patch = LengthPatches.back();
621       // Length to copy between last patch entry and next compile unit.
622       uint32_t RemainingLength = Offset - StartOffset;
623       uint32_t NewCUOffset = NewBinaryContents.size() + RemainingLength;
624       DwarfUnitBaseOffset = NewCUOffset;
625       // Length of previous CU = This CU Offset - sizeof(length) - last CU
626       // Offset.
627       Patch.second = NewCUOffset - 4 - Patch.first;
628       LengthPatches.push_back({NewCUOffset, 0});
629       break;
630     }
631     }
632 
633     assert(Offset + ByteSequence.size() <= BinaryContents.size() &&
634            "Applied patch runs over binary size.");
635     uint32_t Length = Offset - StartOffset;
636     NewBinaryContents.append(BinaryContents.substr(StartOffset, Length).data(),
637                              Length);
638     NewBinaryContents.append(ByteSequence.data(), ByteSequence.size());
639     StartOffset = Offset + OldValueSize;
640   }
641   uint32_t Length = BinaryContents.size() - StartOffset;
642   NewBinaryContents.append(BinaryContents.substr(StartOffset, Length).data(),
643                            Length);
644   DebugPatches.clear();
645 
646   // Patching lengths of CUs
647   auto &Patch = LengthPatches.back();
648   Patch.second = NewBinaryContents.size() - 4 - Patch.first;
649   for (uint32_t J = 1, Size = LengthPatches.size(); J < Size; ++J) {
650     const auto &Patch = LengthPatches[J];
651     ByteSequence = encodeLE(4, Patch.second);
652     Offset = Patch.first;
653     for (uint64_t I = 0, Size = ByteSequence.size(); I < Size; ++I)
654       NewBinaryContents[Offset + I] = ByteSequence[I];
655   }
656 
657   return NewBinaryContents;
658 }
659 
660 void DebugStrWriter::create() {
661   StrBuffer = std::make_unique<DebugStrBufferVector>();
662   StrStream = std::make_unique<raw_svector_ostream>(*StrBuffer);
663 }
664 
665 void DebugStrWriter::initialize() {
666   auto StrSection = BC->DwCtx->getDWARFObj().getStrSection();
667   (*StrStream) << StrSection;
668 }
669 
670 uint32_t DebugStrWriter::addString(StringRef Str) {
671   std::lock_guard<std::mutex> Lock(WriterMutex);
672   if (StrBuffer->empty())
673     initialize();
674   auto Offset = StrBuffer->size();
675   (*StrStream) << Str;
676   StrStream->write_zeros(1);
677   return Offset;
678 }
679 
680 void DebugAbbrevWriter::addUnitAbbreviations(DWARFUnit &Unit) {
681   const DWARFAbbreviationDeclarationSet *Abbrevs = Unit.getAbbreviations();
682   if (!Abbrevs)
683     return;
684 
685   // Multiple units may share the same abbreviations. Only add abbreviations
686   // for the first unit and reuse them.
687   const uint64_t AbbrevOffset = Unit.getAbbreviationsOffset();
688   if (UnitsAbbrevData.find(AbbrevOffset) != UnitsAbbrevData.end())
689     return;
690 
691   AbbrevData &UnitData = UnitsAbbrevData[AbbrevOffset];
692   UnitData.Buffer = std::make_unique<DebugBufferVector>();
693   UnitData.Stream = std::make_unique<raw_svector_ostream>(*UnitData.Buffer);
694 
695   const PatchesTy &UnitPatches = Patches[&Unit];
696 
697   raw_svector_ostream &OS = *UnitData.Stream.get();
698 
699   // Take a fast path if there are no patches to apply. Simply copy the original
700   // contents.
701   if (UnitPatches.empty()) {
702     StringRef AbbrevSectionContents =
703         Unit.isDWOUnit() ? Unit.getContext().getDWARFObj().getAbbrevDWOSection()
704                          : Unit.getContext().getDWARFObj().getAbbrevSection();
705     StringRef AbbrevContents;
706 
707     const DWARFUnitIndex &CUIndex = Unit.getContext().getCUIndex();
708     if (!CUIndex.getRows().empty()) {
709       // Handle DWP section contribution.
710       const DWARFUnitIndex::Entry *DWOEntry =
711           CUIndex.getFromHash(*Unit.getDWOId());
712       if (!DWOEntry)
713         return;
714 
715       const DWARFUnitIndex::Entry::SectionContribution *DWOContrubution =
716           DWOEntry->getContribution(DWARFSectionKind::DW_SECT_ABBREV);
717       AbbrevContents = AbbrevSectionContents.substr(DWOContrubution->Offset,
718                                                     DWOContrubution->Length);
719     } else if (!Unit.isDWOUnit()) {
720       const uint64_t StartOffset = Unit.getAbbreviationsOffset();
721 
722       // We know where the unit's abbreviation set starts, but not where it ends
723       // as such data is not readily available. Hence, we have to build a sorted
724       // list of start addresses and find the next starting address to determine
725       // the set boundaries.
726       //
727       // FIXME: if we had a full access to DWARFDebugAbbrev::AbbrDeclSets
728       // we wouldn't have to build our own sorted list for the quick lookup.
729       if (AbbrevSetOffsets.empty()) {
730         for_each(
731             *Unit.getContext().getDebugAbbrev(),
732             [&](const std::pair<uint64_t, DWARFAbbreviationDeclarationSet> &P) {
733               AbbrevSetOffsets.push_back(P.first);
734             });
735         sort(AbbrevSetOffsets);
736       }
737       auto It = upper_bound(AbbrevSetOffsets, StartOffset);
738       const uint64_t EndOffset =
739           It == AbbrevSetOffsets.end() ? AbbrevSectionContents.size() : *It;
740       AbbrevContents = AbbrevSectionContents.slice(StartOffset, EndOffset);
741     } else {
742       // For DWO unit outside of DWP, we expect the entire section to hold
743       // abbreviations for this unit only.
744       AbbrevContents = AbbrevSectionContents;
745     }
746 
747     OS.reserveExtraSpace(AbbrevContents.size());
748     OS << AbbrevContents;
749 
750     return;
751   }
752 
753   for (auto I = Abbrevs->begin(), E = Abbrevs->end(); I != E; ++I) {
754     const DWARFAbbreviationDeclaration &Abbrev = *I;
755     auto Patch = UnitPatches.find(&Abbrev);
756 
757     encodeULEB128(Abbrev.getCode(), OS);
758     encodeULEB128(Abbrev.getTag(), OS);
759     encodeULEB128(Abbrev.hasChildren(), OS);
760     for (const DWARFAbbreviationDeclaration::AttributeSpec &AttrSpec :
761          Abbrev.attributes()) {
762       if (Patch != UnitPatches.end()) {
763         bool Patched = false;
764         // Patches added later take a precedence over earlier ones.
765         for (auto I = Patch->second.rbegin(), E = Patch->second.rend(); I != E;
766              ++I) {
767           if (I->OldAttr != AttrSpec.Attr)
768             continue;
769 
770           encodeULEB128(I->NewAttr, OS);
771           encodeULEB128(I->NewAttrForm, OS);
772           Patched = true;
773           break;
774         }
775         if (Patched)
776           continue;
777       }
778 
779       encodeULEB128(AttrSpec.Attr, OS);
780       encodeULEB128(AttrSpec.Form, OS);
781       if (AttrSpec.isImplicitConst())
782         encodeSLEB128(AttrSpec.getImplicitConstValue(), OS);
783     }
784 
785     encodeULEB128(0, OS);
786     encodeULEB128(0, OS);
787   }
788   encodeULEB128(0, OS);
789 }
790 
791 std::unique_ptr<DebugBufferVector> DebugAbbrevWriter::finalize() {
792   if (DWOId) {
793     // We expect abbrev_offset to always be zero for DWO units as there
794     // should be one CU per DWO, and TUs should share the same abbreviation
795     // set with the CU.
796     // For DWP AbbreviationsOffset is an Abbrev contribution in the DWP file, so
797     // can be none zero. Thus we are skipping the check for DWP.
798     bool IsDWP = !Context.getCUIndex().getRows().empty();
799     if (!IsDWP) {
800       for (const std::unique_ptr<DWARFUnit> &Unit : Context.dwo_units()) {
801         if (Unit->getAbbreviationsOffset() != 0) {
802           errs() << "BOLT-ERROR: detected DWO unit with non-zero abbr_offset. "
803                     "Unable to update debug info.\n";
804           exit(1);
805         }
806       }
807     }
808 
809     // Issue abbreviations for the DWO CU only.
810     addUnitAbbreviations(*Context.getDWOCompileUnitForHash(*DWOId));
811   } else {
812     // Add abbreviations from compile and type non-DWO units.
813     for (const std::unique_ptr<DWARFUnit> &Unit : Context.normal_units())
814       addUnitAbbreviations(*Unit);
815   }
816 
817   DebugBufferVector ReturnBuffer;
818 
819   // Pre-calculate the total size of abbrev section.
820   uint64_t Size = 0;
821   for (const auto &KV : UnitsAbbrevData) {
822     const AbbrevData &UnitData = KV.second;
823     Size += UnitData.Buffer->size();
824   }
825   ReturnBuffer.reserve(Size);
826 
827   uint64_t Pos = 0;
828   for (auto &KV : UnitsAbbrevData) {
829     AbbrevData &UnitData = KV.second;
830     ReturnBuffer.append(*UnitData.Buffer);
831     UnitData.Offset = Pos;
832     Pos += UnitData.Buffer->size();
833 
834     UnitData.Buffer.reset();
835     UnitData.Stream.reset();
836   }
837 
838   return std::make_unique<DebugBufferVector>(ReturnBuffer);
839 }
840 
841 static void emitDwarfSetLineAddrAbs(MCStreamer &OS,
842                                     MCDwarfLineTableParams Params,
843                                     int64_t LineDelta, uint64_t Address,
844                                     int PointerSize) {
845   // emit the sequence to set the address
846   OS.emitIntValue(dwarf::DW_LNS_extended_op, 1);
847   OS.emitULEB128IntValue(PointerSize + 1);
848   OS.emitIntValue(dwarf::DW_LNE_set_address, 1);
849   OS.emitIntValue(Address, PointerSize);
850 
851   // emit the sequence for the LineDelta (from 1) and a zero address delta.
852   MCDwarfLineAddr::Emit(&OS, Params, LineDelta, 0);
853 }
854 
855 static inline void emitBinaryDwarfLineTable(
856     MCStreamer *MCOS, MCDwarfLineTableParams Params,
857     const DWARFDebugLine::LineTable *Table,
858     const std::vector<DwarfLineTable::RowSequence> &InputSequences) {
859   if (InputSequences.empty())
860     return;
861 
862   constexpr uint64_t InvalidAddress = UINT64_MAX;
863   unsigned FileNum = 1;
864   unsigned LastLine = 1;
865   unsigned Column = 0;
866   unsigned Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
867   unsigned Isa = 0;
868   unsigned Discriminator = 0;
869   uint64_t LastAddress = InvalidAddress;
870   uint64_t PrevEndOfSequence = InvalidAddress;
871   const MCAsmInfo *AsmInfo = MCOS->getContext().getAsmInfo();
872 
873   auto emitEndOfSequence = [&](uint64_t Address) {
874     MCDwarfLineAddr::Emit(MCOS, Params, INT64_MAX, Address - LastAddress);
875     FileNum = 1;
876     LastLine = 1;
877     Column = 0;
878     Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
879     Isa = 0;
880     Discriminator = 0;
881     LastAddress = InvalidAddress;
882   };
883 
884   for (const DwarfLineTable::RowSequence &Sequence : InputSequences) {
885     const uint64_t SequenceStart =
886         Table->Rows[Sequence.FirstIndex].Address.Address;
887 
888     // Check if we need to mark the end of the sequence.
889     if (PrevEndOfSequence != InvalidAddress && LastAddress != InvalidAddress &&
890         PrevEndOfSequence != SequenceStart) {
891       emitEndOfSequence(PrevEndOfSequence);
892     }
893 
894     for (uint32_t RowIndex = Sequence.FirstIndex;
895          RowIndex <= Sequence.LastIndex; ++RowIndex) {
896       const DWARFDebugLine::Row &Row = Table->Rows[RowIndex];
897       int64_t LineDelta = static_cast<int64_t>(Row.Line) - LastLine;
898       const uint64_t Address = Row.Address.Address;
899 
900       if (FileNum != Row.File) {
901         FileNum = Row.File;
902         MCOS->emitInt8(dwarf::DW_LNS_set_file);
903         MCOS->emitULEB128IntValue(FileNum);
904       }
905       if (Column != Row.Column) {
906         Column = Row.Column;
907         MCOS->emitInt8(dwarf::DW_LNS_set_column);
908         MCOS->emitULEB128IntValue(Column);
909       }
910       if (Discriminator != Row.Discriminator &&
911           MCOS->getContext().getDwarfVersion() >= 4) {
912         Discriminator = Row.Discriminator;
913         unsigned Size = getULEB128Size(Discriminator);
914         MCOS->emitInt8(dwarf::DW_LNS_extended_op);
915         MCOS->emitULEB128IntValue(Size + 1);
916         MCOS->emitInt8(dwarf::DW_LNE_set_discriminator);
917         MCOS->emitULEB128IntValue(Discriminator);
918       }
919       if (Isa != Row.Isa) {
920         Isa = Row.Isa;
921         MCOS->emitInt8(dwarf::DW_LNS_set_isa);
922         MCOS->emitULEB128IntValue(Isa);
923       }
924       if (Row.IsStmt != Flags) {
925         Flags = Row.IsStmt;
926         MCOS->emitInt8(dwarf::DW_LNS_negate_stmt);
927       }
928       if (Row.BasicBlock)
929         MCOS->emitInt8(dwarf::DW_LNS_set_basic_block);
930       if (Row.PrologueEnd)
931         MCOS->emitInt8(dwarf::DW_LNS_set_prologue_end);
932       if (Row.EpilogueBegin)
933         MCOS->emitInt8(dwarf::DW_LNS_set_epilogue_begin);
934 
935       // The end of the sequence is not normal in the middle of the input
936       // sequence, but could happen, e.g. for assembly code.
937       if (Row.EndSequence) {
938         emitEndOfSequence(Address);
939       } else {
940         if (LastAddress == InvalidAddress)
941           emitDwarfSetLineAddrAbs(*MCOS, Params, LineDelta, Address,
942                                   AsmInfo->getCodePointerSize());
943         else
944           MCDwarfLineAddr::Emit(MCOS, Params, LineDelta, Address - LastAddress);
945 
946         LastAddress = Address;
947         LastLine = Row.Line;
948       }
949 
950       Discriminator = 0;
951     }
952     PrevEndOfSequence = Sequence.EndAddress;
953   }
954 
955   // Finish with the end of the sequence.
956   if (LastAddress != InvalidAddress)
957     emitEndOfSequence(PrevEndOfSequence);
958 }
959 
960 // This function is similar to the one from MCDwarfLineTable, except it handles
961 // end-of-sequence entries differently by utilizing line entries with
962 // DWARF2_FLAG_END_SEQUENCE flag.
963 static inline void emitDwarfLineTable(
964     MCStreamer *MCOS, MCSection *Section,
965     const MCLineSection::MCDwarfLineEntryCollection &LineEntries) {
966   unsigned FileNum = 1;
967   unsigned LastLine = 1;
968   unsigned Column = 0;
969   unsigned Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
970   unsigned Isa = 0;
971   unsigned Discriminator = 0;
972   MCSymbol *LastLabel = nullptr;
973   const MCAsmInfo *AsmInfo = MCOS->getContext().getAsmInfo();
974 
975   // Loop through each MCDwarfLineEntry and encode the dwarf line number table.
976   for (const MCDwarfLineEntry &LineEntry : LineEntries) {
977     if (LineEntry.getFlags() & DWARF2_FLAG_END_SEQUENCE) {
978       MCOS->emitDwarfAdvanceLineAddr(INT64_MAX, LastLabel, LineEntry.getLabel(),
979                                      AsmInfo->getCodePointerSize());
980       FileNum = 1;
981       LastLine = 1;
982       Column = 0;
983       Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
984       Isa = 0;
985       Discriminator = 0;
986       LastLabel = nullptr;
987       continue;
988     }
989 
990     int64_t LineDelta = static_cast<int64_t>(LineEntry.getLine()) - LastLine;
991 
992     if (FileNum != LineEntry.getFileNum()) {
993       FileNum = LineEntry.getFileNum();
994       MCOS->emitInt8(dwarf::DW_LNS_set_file);
995       MCOS->emitULEB128IntValue(FileNum);
996     }
997     if (Column != LineEntry.getColumn()) {
998       Column = LineEntry.getColumn();
999       MCOS->emitInt8(dwarf::DW_LNS_set_column);
1000       MCOS->emitULEB128IntValue(Column);
1001     }
1002     if (Discriminator != LineEntry.getDiscriminator() &&
1003         MCOS->getContext().getDwarfVersion() >= 4) {
1004       Discriminator = LineEntry.getDiscriminator();
1005       unsigned Size = getULEB128Size(Discriminator);
1006       MCOS->emitInt8(dwarf::DW_LNS_extended_op);
1007       MCOS->emitULEB128IntValue(Size + 1);
1008       MCOS->emitInt8(dwarf::DW_LNE_set_discriminator);
1009       MCOS->emitULEB128IntValue(Discriminator);
1010     }
1011     if (Isa != LineEntry.getIsa()) {
1012       Isa = LineEntry.getIsa();
1013       MCOS->emitInt8(dwarf::DW_LNS_set_isa);
1014       MCOS->emitULEB128IntValue(Isa);
1015     }
1016     if ((LineEntry.getFlags() ^ Flags) & DWARF2_FLAG_IS_STMT) {
1017       Flags = LineEntry.getFlags();
1018       MCOS->emitInt8(dwarf::DW_LNS_negate_stmt);
1019     }
1020     if (LineEntry.getFlags() & DWARF2_FLAG_BASIC_BLOCK)
1021       MCOS->emitInt8(dwarf::DW_LNS_set_basic_block);
1022     if (LineEntry.getFlags() & DWARF2_FLAG_PROLOGUE_END)
1023       MCOS->emitInt8(dwarf::DW_LNS_set_prologue_end);
1024     if (LineEntry.getFlags() & DWARF2_FLAG_EPILOGUE_BEGIN)
1025       MCOS->emitInt8(dwarf::DW_LNS_set_epilogue_begin);
1026 
1027     MCSymbol *Label = LineEntry.getLabel();
1028 
1029     // At this point we want to emit/create the sequence to encode the delta
1030     // in line numbers and the increment of the address from the previous
1031     // Label and the current Label.
1032     MCOS->emitDwarfAdvanceLineAddr(LineDelta, LastLabel, Label,
1033                                    AsmInfo->getCodePointerSize());
1034     Discriminator = 0;
1035     LastLine = LineEntry.getLine();
1036     LastLabel = Label;
1037   }
1038 
1039   assert(LastLabel == nullptr && "end of sequence expected");
1040 }
1041 
1042 void DwarfLineTable::emitCU(MCStreamer *MCOS, MCDwarfLineTableParams Params,
1043                             Optional<MCDwarfLineStr> &LineStr,
1044                             BinaryContext &BC) const {
1045   if (!RawData.empty()) {
1046     assert(MCLineSections.getMCLineEntries().empty() &&
1047            InputSequences.empty() &&
1048            "cannot combine raw data with new line entries");
1049     MCOS->emitLabel(getLabel());
1050     MCOS->emitBytes(RawData);
1051 
1052     // Emit fake relocation for RuntimeDyld to always allocate the section.
1053     //
1054     // FIXME: remove this once RuntimeDyld stops skipping allocatable sections
1055     //        without relocations.
1056     MCOS->emitRelocDirective(
1057         *MCConstantExpr::create(0, *BC.Ctx), "BFD_RELOC_NONE",
1058         MCSymbolRefExpr::create(getLabel(), *BC.Ctx), SMLoc(), *BC.STI);
1059 
1060     return;
1061   }
1062 
1063   MCSymbol *LineEndSym = Header.Emit(MCOS, Params, LineStr).second;
1064 
1065   // Put out the line tables.
1066   for (const auto &LineSec : MCLineSections.getMCLineEntries())
1067     emitDwarfLineTable(MCOS, LineSec.first, LineSec.second);
1068 
1069   // Emit line tables for the original code.
1070   emitBinaryDwarfLineTable(MCOS, Params, InputTable, InputSequences);
1071 
1072   // This is the end of the section, so set the value of the symbol at the end
1073   // of this section (that was used in a previous expression).
1074   MCOS->emitLabel(LineEndSym);
1075 }
1076 
1077 void DwarfLineTable::emit(BinaryContext &BC, MCStreamer &Streamer) {
1078   MCAssembler &Assembler =
1079       static_cast<MCObjectStreamer *>(&Streamer)->getAssembler();
1080 
1081   MCDwarfLineTableParams Params = Assembler.getDWARFLinetableParams();
1082 
1083   auto &LineTables = BC.getDwarfLineTables();
1084 
1085   // Bail out early so we don't switch to the debug_line section needlessly and
1086   // in doing so create an unnecessary (if empty) section.
1087   if (LineTables.empty())
1088     return;
1089 
1090   // In a v5 non-split line table, put the strings in a separate section.
1091   Optional<MCDwarfLineStr> LineStr(None);
1092   if (BC.Ctx->getDwarfVersion() >= 5)
1093     LineStr = MCDwarfLineStr(*BC.Ctx);
1094 
1095   // Switch to the section where the table will be emitted into.
1096   Streamer.SwitchSection(BC.MOFI->getDwarfLineSection());
1097 
1098   // Handle the rest of the Compile Units.
1099   for (auto &CUIDTablePair : LineTables) {
1100     CUIDTablePair.second.emitCU(&Streamer, Params, LineStr, BC);
1101   }
1102 }
1103 
1104 } // namespace bolt
1105 } // namespace llvm
1106