1 //===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryFunction class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryFunction.h" 14 #include "bolt/Core/BinaryBasicBlock.h" 15 #include "bolt/Core/DynoStats.h" 16 #include "bolt/Core/MCPlusBuilder.h" 17 #include "bolt/Utils/NameResolver.h" 18 #include "bolt/Utils/NameShortener.h" 19 #include "bolt/Utils/Utils.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/edit_distance.h" 23 #include "llvm/Demangle/Demangle.h" 24 #include "llvm/MC/MCAsmInfo.h" 25 #include "llvm/MC/MCAsmLayout.h" 26 #include "llvm/MC/MCContext.h" 27 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/MC/MCInst.h" 30 #include "llvm/MC/MCInstPrinter.h" 31 #include "llvm/MC/MCRegisterInfo.h" 32 #include "llvm/Object/ObjectFile.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/GraphWriter.h" 36 #include "llvm/Support/LEB128.h" 37 #include "llvm/Support/Regex.h" 38 #include "llvm/Support/Timer.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <functional> 41 #include <limits> 42 #include <numeric> 43 #include <string> 44 45 #define DEBUG_TYPE "bolt" 46 47 using namespace llvm; 48 using namespace bolt; 49 50 namespace opts { 51 52 extern cl::OptionCategory BoltCategory; 53 extern cl::OptionCategory BoltOptCategory; 54 extern cl::OptionCategory BoltRelocCategory; 55 56 extern cl::opt<bool> EnableBAT; 57 extern cl::opt<bool> Instrument; 58 extern cl::opt<bool> StrictMode; 59 extern cl::opt<bool> UpdateDebugSections; 60 extern cl::opt<unsigned> Verbosity; 61 62 extern bool processAllFunctions(); 63 64 cl::opt<bool> 65 CheckEncoding("check-encoding", 66 cl::desc("perform verification of LLVM instruction encoding/decoding. " 67 "Every instruction in the input is decoded and re-encoded. " 68 "If the resulting bytes do not match the input, a warning message " 69 "is printed."), 70 cl::init(false), 71 cl::ZeroOrMore, 72 cl::Hidden, 73 cl::cat(BoltCategory)); 74 75 static cl::opt<bool> 76 DotToolTipCode("dot-tooltip-code", 77 cl::desc("add basic block instructions as tool tips on nodes"), 78 cl::ZeroOrMore, 79 cl::Hidden, 80 cl::cat(BoltCategory)); 81 82 cl::opt<JumpTableSupportLevel> 83 JumpTables("jump-tables", 84 cl::desc("jump tables support (default=basic)"), 85 cl::init(JTS_BASIC), 86 cl::values( 87 clEnumValN(JTS_NONE, "none", 88 "do not optimize functions with jump tables"), 89 clEnumValN(JTS_BASIC, "basic", 90 "optimize functions with jump tables"), 91 clEnumValN(JTS_MOVE, "move", 92 "move jump tables to a separate section"), 93 clEnumValN(JTS_SPLIT, "split", 94 "split jump tables section into hot and cold based on " 95 "function execution frequency"), 96 clEnumValN(JTS_AGGRESSIVE, "aggressive", 97 "aggressively split jump tables section based on usage " 98 "of the tables")), 99 cl::ZeroOrMore, 100 cl::cat(BoltOptCategory)); 101 102 static cl::opt<bool> 103 NoScan("no-scan", 104 cl::desc("do not scan cold functions for external references (may result in " 105 "slower binary)"), 106 cl::init(false), 107 cl::ZeroOrMore, 108 cl::Hidden, 109 cl::cat(BoltOptCategory)); 110 111 cl::opt<bool> 112 PreserveBlocksAlignment("preserve-blocks-alignment", 113 cl::desc("try to preserve basic block alignment"), 114 cl::init(false), 115 cl::ZeroOrMore, 116 cl::cat(BoltOptCategory)); 117 118 cl::opt<bool> 119 PrintDynoStats("dyno-stats", 120 cl::desc("print execution info based on profile"), 121 cl::cat(BoltCategory)); 122 123 static cl::opt<bool> 124 PrintDynoStatsOnly("print-dyno-stats-only", 125 cl::desc("while printing functions output dyno-stats and skip instructions"), 126 cl::init(false), 127 cl::Hidden, 128 cl::cat(BoltCategory)); 129 130 static cl::list<std::string> 131 PrintOnly("print-only", 132 cl::CommaSeparated, 133 cl::desc("list of functions to print"), 134 cl::value_desc("func1,func2,func3,..."), 135 cl::Hidden, 136 cl::cat(BoltCategory)); 137 138 cl::opt<bool> 139 TimeBuild("time-build", 140 cl::desc("print time spent constructing binary functions"), 141 cl::ZeroOrMore, 142 cl::Hidden, 143 cl::cat(BoltCategory)); 144 145 cl::opt<bool> 146 TrapOnAVX512("trap-avx512", 147 cl::desc("in relocation mode trap upon entry to any function that uses " 148 "AVX-512 instructions"), 149 cl::init(false), 150 cl::ZeroOrMore, 151 cl::Hidden, 152 cl::cat(BoltCategory)); 153 154 bool shouldPrint(const BinaryFunction &Function) { 155 if (Function.isIgnored()) 156 return false; 157 158 if (PrintOnly.empty()) 159 return true; 160 161 for (std::string &Name : opts::PrintOnly) { 162 if (Function.hasNameRegex(Name)) { 163 return true; 164 } 165 } 166 167 return false; 168 } 169 170 } // namespace opts 171 172 namespace llvm { 173 namespace bolt { 174 175 constexpr unsigned BinaryFunction::MinAlign; 176 177 namespace { 178 179 template <typename R> bool emptyRange(const R &Range) { 180 return Range.begin() == Range.end(); 181 } 182 183 /// Gets debug line information for the instruction located at the given 184 /// address in the original binary. The SMLoc's pointer is used 185 /// to point to this information, which is represented by a 186 /// DebugLineTableRowRef. The returned pointer is null if no debug line 187 /// information for this instruction was found. 188 SMLoc findDebugLineInformationForInstructionAt( 189 uint64_t Address, DWARFUnit *Unit, 190 const DWARFDebugLine::LineTable *LineTable) { 191 // We use the pointer in SMLoc to store an instance of DebugLineTableRowRef, 192 // which occupies 64 bits. Thus, we can only proceed if the struct fits into 193 // the pointer itself. 194 assert(sizeof(decltype(SMLoc().getPointer())) >= 195 sizeof(DebugLineTableRowRef) && 196 "Cannot fit instruction debug line information into SMLoc's pointer"); 197 198 SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc(); 199 uint32_t RowIndex = LineTable->lookupAddress( 200 {Address, object::SectionedAddress::UndefSection}); 201 if (RowIndex == LineTable->UnknownRowIndex) 202 return NullResult; 203 204 assert(RowIndex < LineTable->Rows.size() && 205 "Line Table lookup returned invalid index."); 206 207 decltype(SMLoc().getPointer()) Ptr; 208 DebugLineTableRowRef *InstructionLocation = 209 reinterpret_cast<DebugLineTableRowRef *>(&Ptr); 210 211 InstructionLocation->DwCompileUnitIndex = Unit->getOffset(); 212 InstructionLocation->RowIndex = RowIndex + 1; 213 214 return SMLoc::getFromPointer(Ptr); 215 } 216 217 std::string buildSectionName(StringRef Prefix, StringRef Name, 218 const BinaryContext &BC) { 219 if (BC.isELF()) 220 return (Prefix + Name).str(); 221 static NameShortener NS; 222 return (Prefix + Twine(NS.getID(Name))).str(); 223 } 224 225 raw_ostream &operator<<(raw_ostream &OS, const BinaryFunction::State State) { 226 switch (State) { 227 case BinaryFunction::State::Empty: OS << "empty"; break; 228 case BinaryFunction::State::Disassembled: OS << "disassembled"; break; 229 case BinaryFunction::State::CFG: OS << "CFG constructed"; break; 230 case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break; 231 case BinaryFunction::State::EmittedCFG: OS << "emitted with CFG"; break; 232 case BinaryFunction::State::Emitted: OS << "emitted"; break; 233 } 234 235 return OS; 236 } 237 238 } // namespace 239 240 std::string BinaryFunction::buildCodeSectionName(StringRef Name, 241 const BinaryContext &BC) { 242 return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC); 243 } 244 245 std::string BinaryFunction::buildColdCodeSectionName(StringRef Name, 246 const BinaryContext &BC) { 247 return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name, 248 BC); 249 } 250 251 uint64_t BinaryFunction::Count = 0; 252 253 Optional<StringRef> BinaryFunction::hasNameRegex(const StringRef Name) const { 254 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 255 Regex MatchName(RegexName); 256 Optional<StringRef> Match = forEachName( 257 [&MatchName](StringRef Name) { return MatchName.match(Name); }); 258 259 return Match; 260 } 261 262 Optional<StringRef> 263 BinaryFunction::hasRestoredNameRegex(const StringRef Name) const { 264 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 265 Regex MatchName(RegexName); 266 Optional<StringRef> Match = forEachName([&MatchName](StringRef Name) { 267 return MatchName.match(NameResolver::restore(Name)); 268 }); 269 270 return Match; 271 } 272 273 std::string BinaryFunction::getDemangledName() const { 274 StringRef MangledName = NameResolver::restore(getOneName()); 275 return demangle(MangledName.str()); 276 } 277 278 BinaryBasicBlock * 279 BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) { 280 if (Offset > Size) 281 return nullptr; 282 283 if (BasicBlockOffsets.empty()) 284 return nullptr; 285 286 /* 287 * This is commented out because it makes BOLT too slow. 288 * assert(std::is_sorted(BasicBlockOffsets.begin(), 289 * BasicBlockOffsets.end(), 290 * CompareBasicBlockOffsets()))); 291 */ 292 auto I = std::upper_bound(BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 293 BasicBlockOffset(Offset, nullptr), 294 CompareBasicBlockOffsets()); 295 assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0"); 296 --I; 297 BinaryBasicBlock *BB = I->second; 298 return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr; 299 } 300 301 void BinaryFunction::markUnreachableBlocks() { 302 std::stack<BinaryBasicBlock *> Stack; 303 304 for (BinaryBasicBlock *BB : layout()) 305 BB->markValid(false); 306 307 // Add all entries and landing pads as roots. 308 for (BinaryBasicBlock *BB : BasicBlocks) { 309 if (isEntryPoint(*BB) || BB->isLandingPad()) { 310 Stack.push(BB); 311 BB->markValid(true); 312 continue; 313 } 314 // FIXME: 315 // Also mark BBs with indirect jumps as reachable, since we do not 316 // support removing unused jump tables yet (GH-issue20). 317 for (const MCInst &Inst : *BB) { 318 if (BC.MIB->getJumpTable(Inst)) { 319 Stack.push(BB); 320 BB->markValid(true); 321 break; 322 } 323 } 324 } 325 326 // Determine reachable BBs from the entry point 327 while (!Stack.empty()) { 328 BinaryBasicBlock *BB = Stack.top(); 329 Stack.pop(); 330 for (BinaryBasicBlock *Succ : BB->successors()) { 331 if (Succ->isValid()) 332 continue; 333 Succ->markValid(true); 334 Stack.push(Succ); 335 } 336 } 337 } 338 339 // Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs 340 // will be cleaned up by fixBranches(). 341 std::pair<unsigned, uint64_t> BinaryFunction::eraseInvalidBBs() { 342 BasicBlockOrderType NewLayout; 343 unsigned Count = 0; 344 uint64_t Bytes = 0; 345 for (BinaryBasicBlock *BB : layout()) { 346 if (BB->isValid()) { 347 NewLayout.push_back(BB); 348 } else { 349 assert(!isEntryPoint(*BB) && "all entry blocks must be valid"); 350 ++Count; 351 Bytes += BC.computeCodeSize(BB->begin(), BB->end()); 352 } 353 } 354 BasicBlocksLayout = std::move(NewLayout); 355 356 BasicBlockListType NewBasicBlocks; 357 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 358 BinaryBasicBlock *BB = *I; 359 if (BB->isValid()) { 360 NewBasicBlocks.push_back(BB); 361 } else { 362 // Make sure the block is removed from the list of predecessors. 363 BB->removeAllSuccessors(); 364 DeletedBasicBlocks.push_back(BB); 365 } 366 } 367 BasicBlocks = std::move(NewBasicBlocks); 368 369 assert(BasicBlocks.size() == BasicBlocksLayout.size()); 370 371 // Update CFG state if needed 372 if (Count > 0) 373 recomputeLandingPads(); 374 375 return std::make_pair(Count, Bytes); 376 } 377 378 bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const { 379 // This function should work properly before and after function reordering. 380 // In order to accomplish this, we use the function index (if it is valid). 381 // If the function indices are not valid, we fall back to the original 382 // addresses. This should be ok because the functions without valid indices 383 // should have been ordered with a stable sort. 384 const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol); 385 if (CalleeBF) { 386 if (CalleeBF->isInjected()) 387 return true; 388 389 if (hasValidIndex() && CalleeBF->hasValidIndex()) { 390 return getIndex() < CalleeBF->getIndex(); 391 } else if (hasValidIndex() && !CalleeBF->hasValidIndex()) { 392 return true; 393 } else if (!hasValidIndex() && CalleeBF->hasValidIndex()) { 394 return false; 395 } else { 396 return getAddress() < CalleeBF->getAddress(); 397 } 398 } else { 399 // Absolute symbol. 400 ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol); 401 assert(CalleeAddressOrError && "unregistered symbol found"); 402 return *CalleeAddressOrError > getAddress(); 403 } 404 } 405 406 void BinaryFunction::dump(bool PrintInstructions) const { 407 print(dbgs(), "", PrintInstructions); 408 } 409 410 void BinaryFunction::print(raw_ostream &OS, std::string Annotation, 411 bool PrintInstructions) const { 412 if (!opts::shouldPrint(*this)) 413 return; 414 415 StringRef SectionName = 416 OriginSection ? OriginSection->getName() : "<no origin section>"; 417 OS << "Binary Function \"" << *this << "\" " << Annotation << " {"; 418 std::vector<StringRef> AllNames = getNames(); 419 if (AllNames.size() > 1) { 420 OS << "\n All names : "; 421 const char *Sep = ""; 422 for (const StringRef &Name : AllNames) { 423 OS << Sep << Name; 424 Sep = "\n "; 425 } 426 } 427 OS << "\n Number : " << FunctionNumber 428 << "\n State : " << CurrentState 429 << "\n Address : 0x" << Twine::utohexstr(Address) 430 << "\n Size : 0x" << Twine::utohexstr(Size) 431 << "\n MaxSize : 0x" << Twine::utohexstr(MaxSize) 432 << "\n Offset : 0x" << Twine::utohexstr(FileOffset) 433 << "\n Section : " << SectionName 434 << "\n Orc Section : " << getCodeSectionName() 435 << "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress()) 436 << "\n IsSimple : " << IsSimple 437 << "\n IsMultiEntry: " << isMultiEntry() 438 << "\n IsSplit : " << isSplit() 439 << "\n BB Count : " << size(); 440 441 if (HasFixedIndirectBranch) 442 OS << "\n HasFixedIndirectBranch : true"; 443 if (HasUnknownControlFlow) 444 OS << "\n Unknown CF : true"; 445 if (getPersonalityFunction()) 446 OS << "\n Personality : " << getPersonalityFunction()->getName(); 447 if (IsFragment) 448 OS << "\n IsFragment : true"; 449 if (isFolded()) 450 OS << "\n FoldedInto : " << *getFoldedIntoFunction(); 451 for (BinaryFunction *ParentFragment : ParentFragments) 452 OS << "\n Parent : " << *ParentFragment; 453 if (!Fragments.empty()) { 454 OS << "\n Fragments : "; 455 const char *Sep = ""; 456 for (BinaryFunction *Frag : Fragments) { 457 OS << Sep << *Frag; 458 Sep = ", "; 459 } 460 } 461 if (hasCFG()) 462 OS << "\n Hash : " << Twine::utohexstr(computeHash()); 463 if (isMultiEntry()) { 464 OS << "\n Secondary Entry Points : "; 465 const char *Sep = ""; 466 for (const auto &KV : SecondaryEntryPoints) { 467 OS << Sep << KV.second->getName(); 468 Sep = ", "; 469 } 470 } 471 if (FrameInstructions.size()) 472 OS << "\n CFI Instrs : " << FrameInstructions.size(); 473 if (BasicBlocksLayout.size()) { 474 OS << "\n BB Layout : "; 475 const char *Sep = ""; 476 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 477 OS << Sep << BB->getName(); 478 Sep = ", "; 479 } 480 } 481 if (ImageAddress) 482 OS << "\n Image : 0x" << Twine::utohexstr(ImageAddress); 483 if (ExecutionCount != COUNT_NO_PROFILE) { 484 OS << "\n Exec Count : " << ExecutionCount; 485 OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f); 486 } 487 488 if (opts::PrintDynoStats && !BasicBlocksLayout.empty()) { 489 OS << '\n'; 490 DynoStats dynoStats = getDynoStats(*this); 491 OS << dynoStats; 492 } 493 494 OS << "\n}\n"; 495 496 if (opts::PrintDynoStatsOnly || !PrintInstructions || !BC.InstPrinter) 497 return; 498 499 // Offset of the instruction in function. 500 uint64_t Offset = 0; 501 502 if (BasicBlocks.empty() && !Instructions.empty()) { 503 // Print before CFG was built. 504 for (const std::pair<const uint32_t, MCInst> &II : Instructions) { 505 Offset = II.first; 506 507 // Print label if exists at this offset. 508 auto LI = Labels.find(Offset); 509 if (LI != Labels.end()) { 510 if (const MCSymbol *EntrySymbol = 511 getSecondaryEntryPointSymbol(LI->second)) 512 OS << EntrySymbol->getName() << " (Entry Point):\n"; 513 OS << LI->second->getName() << ":\n"; 514 } 515 516 BC.printInstruction(OS, II.second, Offset, this); 517 } 518 } 519 520 for (uint32_t I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 521 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 522 if (I != 0 && BB->isCold() != BasicBlocksLayout[I - 1]->isCold()) 523 OS << "------- HOT-COLD SPLIT POINT -------\n\n"; 524 525 OS << BB->getName() << " (" << BB->size() 526 << " instructions, align : " << BB->getAlignment() << ")\n"; 527 528 if (isEntryPoint(*BB)) { 529 if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB)) 530 OS << " Secondary Entry Point: " << EntrySymbol->getName() << '\n'; 531 else 532 OS << " Entry Point\n"; 533 } 534 535 if (BB->isLandingPad()) 536 OS << " Landing Pad\n"; 537 538 uint64_t BBExecCount = BB->getExecutionCount(); 539 if (hasValidProfile()) { 540 OS << " Exec Count : "; 541 if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE) 542 OS << BBExecCount << '\n'; 543 else 544 OS << "<unknown>\n"; 545 } 546 if (BB->getCFIState() >= 0) 547 OS << " CFI State : " << BB->getCFIState() << '\n'; 548 if (opts::EnableBAT) { 549 OS << " Input offset: " << Twine::utohexstr(BB->getInputOffset()) 550 << "\n"; 551 } 552 if (!BB->pred_empty()) { 553 OS << " Predecessors: "; 554 const char *Sep = ""; 555 for (BinaryBasicBlock *Pred : BB->predecessors()) { 556 OS << Sep << Pred->getName(); 557 Sep = ", "; 558 } 559 OS << '\n'; 560 } 561 if (!BB->throw_empty()) { 562 OS << " Throwers: "; 563 const char *Sep = ""; 564 for (BinaryBasicBlock *Throw : BB->throwers()) { 565 OS << Sep << Throw->getName(); 566 Sep = ", "; 567 } 568 OS << '\n'; 569 } 570 571 Offset = alignTo(Offset, BB->getAlignment()); 572 573 // Note: offsets are imprecise since this is happening prior to relaxation. 574 Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this); 575 576 if (!BB->succ_empty()) { 577 OS << " Successors: "; 578 // For more than 2 successors, sort them based on frequency. 579 std::vector<uint64_t> Indices(BB->succ_size()); 580 std::iota(Indices.begin(), Indices.end(), 0); 581 if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) { 582 std::stable_sort(Indices.begin(), Indices.end(), 583 [&](const uint64_t A, const uint64_t B) { 584 return BB->BranchInfo[B] < BB->BranchInfo[A]; 585 }); 586 } 587 const char *Sep = ""; 588 for (unsigned I = 0; I < Indices.size(); ++I) { 589 BinaryBasicBlock *Succ = BB->Successors[Indices[I]]; 590 BinaryBasicBlock::BinaryBranchInfo &BI = BB->BranchInfo[Indices[I]]; 591 OS << Sep << Succ->getName(); 592 if (ExecutionCount != COUNT_NO_PROFILE && 593 BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 594 OS << " (mispreds: " << BI.MispredictedCount 595 << ", count: " << BI.Count << ")"; 596 } else if (ExecutionCount != COUNT_NO_PROFILE && 597 BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 598 OS << " (inferred count: " << BI.Count << ")"; 599 } 600 Sep = ", "; 601 } 602 OS << '\n'; 603 } 604 605 if (!BB->lp_empty()) { 606 OS << " Landing Pads: "; 607 const char *Sep = ""; 608 for (BinaryBasicBlock *LP : BB->landing_pads()) { 609 OS << Sep << LP->getName(); 610 if (ExecutionCount != COUNT_NO_PROFILE) { 611 OS << " (count: " << LP->getExecutionCount() << ")"; 612 } 613 Sep = ", "; 614 } 615 OS << '\n'; 616 } 617 618 // In CFG_Finalized state we can miscalculate CFI state at exit. 619 if (CurrentState == State::CFG) { 620 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 621 if (CFIStateAtExit >= 0) 622 OS << " CFI State: " << CFIStateAtExit << '\n'; 623 } 624 625 OS << '\n'; 626 } 627 628 // Dump new exception ranges for the function. 629 if (!CallSites.empty()) { 630 OS << "EH table:\n"; 631 for (const CallSite &CSI : CallSites) { 632 OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : "; 633 if (CSI.LP) 634 OS << *CSI.LP; 635 else 636 OS << "0"; 637 OS << ", action : " << CSI.Action << '\n'; 638 } 639 OS << '\n'; 640 } 641 642 // Print all jump tables. 643 for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables) 644 JTI.second->print(OS); 645 646 OS << "DWARF CFI Instructions:\n"; 647 if (OffsetToCFI.size()) { 648 // Pre-buildCFG information 649 for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) { 650 OS << format(" %08x:\t", Elmt.first); 651 assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset"); 652 BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]); 653 OS << "\n"; 654 } 655 } else { 656 // Post-buildCFG information 657 for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) { 658 const MCCFIInstruction &CFI = FrameInstructions[I]; 659 OS << format(" %d:\t", I); 660 BinaryContext::printCFI(OS, CFI); 661 OS << "\n"; 662 } 663 } 664 if (FrameInstructions.empty()) 665 OS << " <empty>\n"; 666 667 OS << "End of Function \"" << *this << "\"\n\n"; 668 } 669 670 void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset, 671 uint64_t Size) const { 672 const char *Sep = " # Relocs: "; 673 674 auto RI = Relocations.lower_bound(Offset); 675 while (RI != Relocations.end() && RI->first < Offset + Size) { 676 OS << Sep << "(R: " << RI->second << ")"; 677 Sep = ", "; 678 ++RI; 679 } 680 } 681 682 namespace { 683 std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr, 684 MCPhysReg NewReg) { 685 StringRef ExprBytes = Instr.getValues(); 686 assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short"); 687 uint8_t Opcode = ExprBytes[0]; 688 assert((Opcode == dwarf::DW_CFA_expression || 689 Opcode == dwarf::DW_CFA_val_expression) && 690 "invalid DWARF expression CFI"); 691 (void)Opcode; 692 const uint8_t *const Start = 693 reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data()); 694 const uint8_t *const End = 695 reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1); 696 unsigned Size = 0; 697 decodeULEB128(Start, &Size, End); 698 assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI"); 699 SmallString<8> Tmp; 700 raw_svector_ostream OSE(Tmp); 701 encodeULEB128(NewReg, OSE); 702 return Twine(ExprBytes.slice(0, 1)) 703 .concat(OSE.str()) 704 .concat(ExprBytes.drop_front(1 + Size)) 705 .str(); 706 } 707 } // namespace 708 709 void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr, 710 MCPhysReg NewReg) { 711 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 712 assert(OldCFI && "invalid CFI instr"); 713 switch (OldCFI->getOperation()) { 714 default: 715 llvm_unreachable("Unexpected instruction"); 716 case MCCFIInstruction::OpDefCfa: 717 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg, 718 OldCFI->getOffset())); 719 break; 720 case MCCFIInstruction::OpDefCfaRegister: 721 setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg)); 722 break; 723 case MCCFIInstruction::OpOffset: 724 setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg, 725 OldCFI->getOffset())); 726 break; 727 case MCCFIInstruction::OpRegister: 728 setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg, 729 OldCFI->getRegister2())); 730 break; 731 case MCCFIInstruction::OpSameValue: 732 setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg)); 733 break; 734 case MCCFIInstruction::OpEscape: 735 setCFIFor(Instr, 736 MCCFIInstruction::createEscape( 737 nullptr, 738 StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg)))); 739 break; 740 case MCCFIInstruction::OpRestore: 741 setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg)); 742 break; 743 case MCCFIInstruction::OpUndefined: 744 setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg)); 745 break; 746 } 747 } 748 749 const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr, 750 int64_t NewOffset) { 751 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 752 assert(OldCFI && "invalid CFI instr"); 753 switch (OldCFI->getOperation()) { 754 default: 755 llvm_unreachable("Unexpected instruction"); 756 case MCCFIInstruction::OpDefCfaOffset: 757 setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset)); 758 break; 759 case MCCFIInstruction::OpAdjustCfaOffset: 760 setCFIFor(Instr, 761 MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset)); 762 break; 763 case MCCFIInstruction::OpDefCfa: 764 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(), 765 NewOffset)); 766 break; 767 case MCCFIInstruction::OpOffset: 768 setCFIFor(Instr, MCCFIInstruction::createOffset( 769 nullptr, OldCFI->getRegister(), NewOffset)); 770 break; 771 } 772 return getCFIFor(Instr); 773 } 774 775 IndirectBranchType 776 BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size, 777 uint64_t Offset, 778 uint64_t &TargetAddress) { 779 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 780 781 // The instruction referencing memory used by the branch instruction. 782 // It could be the branch instruction itself or one of the instructions 783 // setting the value of the register used by the branch. 784 MCInst *MemLocInstr; 785 786 // Address of the table referenced by MemLocInstr. Could be either an 787 // array of function pointers, or a jump table. 788 uint64_t ArrayStart = 0; 789 790 unsigned BaseRegNum, IndexRegNum; 791 int64_t DispValue; 792 const MCExpr *DispExpr; 793 794 // In AArch, identify the instruction adding the PC-relative offset to 795 // jump table entries to correctly decode it. 796 MCInst *PCRelBaseInstr; 797 uint64_t PCRelAddr = 0; 798 799 auto Begin = Instructions.begin(); 800 if (BC.isAArch64()) { 801 PreserveNops = BC.HasRelocations; 802 // Start at the last label as an approximation of the current basic block. 803 // This is a heuristic, since the full set of labels have yet to be 804 // determined 805 for (auto LI = Labels.rbegin(); LI != Labels.rend(); ++LI) { 806 auto II = Instructions.find(LI->first); 807 if (II != Instructions.end()) { 808 Begin = II; 809 break; 810 } 811 } 812 } 813 814 IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch( 815 Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum, 816 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 817 818 if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr) 819 return BranchType; 820 821 if (MemLocInstr != &Instruction) 822 IndexRegNum = BC.MIB->getNoRegister(); 823 824 if (BC.isAArch64()) { 825 const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1); 826 assert(Sym && "Symbol extraction failed"); 827 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym); 828 if (SymValueOrError) { 829 PCRelAddr = *SymValueOrError; 830 } else { 831 for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) { 832 if (Elmt.second == Sym) { 833 PCRelAddr = Elmt.first + getAddress(); 834 break; 835 } 836 } 837 } 838 uint64_t InstrAddr = 0; 839 for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) { 840 if (&II->second == PCRelBaseInstr) { 841 InstrAddr = II->first + getAddress(); 842 break; 843 } 844 } 845 assert(InstrAddr != 0 && "instruction not found"); 846 // We do this to avoid spurious references to code locations outside this 847 // function (for example, if the indirect jump lives in the last basic 848 // block of the function, it will create a reference to the next function). 849 // This replaces a symbol reference with an immediate. 850 BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr, 851 MCOperand::createImm(PCRelAddr - InstrAddr)); 852 // FIXME: Disable full jump table processing for AArch64 until we have a 853 // proper way of determining the jump table limits. 854 return IndirectBranchType::UNKNOWN; 855 } 856 857 // RIP-relative addressing should be converted to symbol form by now 858 // in processed instructions (but not in jump). 859 if (DispExpr) { 860 const MCSymbol *TargetSym; 861 uint64_t TargetOffset; 862 std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr); 863 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym); 864 assert(SymValueOrError && "global symbol needs a value"); 865 ArrayStart = *SymValueOrError + TargetOffset; 866 BaseRegNum = BC.MIB->getNoRegister(); 867 if (BC.isAArch64()) { 868 ArrayStart &= ~0xFFFULL; 869 ArrayStart += DispValue & 0xFFFULL; 870 } 871 } else { 872 ArrayStart = static_cast<uint64_t>(DispValue); 873 } 874 875 if (BaseRegNum == BC.MRI->getProgramCounter()) 876 ArrayStart += getAddress() + Offset + Size; 877 878 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x" 879 << Twine::utohexstr(ArrayStart) << '\n'); 880 881 ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart); 882 if (!Section) { 883 // No section - possibly an absolute address. Since we don't allow 884 // internal function addresses to escape the function scope - we 885 // consider it a tail call. 886 if (opts::Verbosity >= 1) { 887 errs() << "BOLT-WARNING: no section for address 0x" 888 << Twine::utohexstr(ArrayStart) << " referenced from function " 889 << *this << '\n'; 890 } 891 return IndirectBranchType::POSSIBLE_TAIL_CALL; 892 } 893 if (Section->isVirtual()) { 894 // The contents are filled at runtime. 895 return IndirectBranchType::POSSIBLE_TAIL_CALL; 896 } 897 898 if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) { 899 ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart); 900 if (!Value) 901 return IndirectBranchType::UNKNOWN; 902 903 if (!BC.getSectionForAddress(ArrayStart)->isReadOnly()) 904 return IndirectBranchType::UNKNOWN; 905 906 outs() << "BOLT-INFO: fixed indirect branch detected in " << *this 907 << " at 0x" << Twine::utohexstr(getAddress() + Offset) 908 << " referencing data at 0x" << Twine::utohexstr(ArrayStart) 909 << " the destination value is 0x" << Twine::utohexstr(*Value) 910 << '\n'; 911 912 TargetAddress = *Value; 913 return BranchType; 914 } 915 916 // Check if there's already a jump table registered at this address. 917 MemoryContentsType MemType; 918 if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) { 919 switch (JT->Type) { 920 case JumpTable::JTT_NORMAL: 921 MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE; 922 break; 923 case JumpTable::JTT_PIC: 924 MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 925 break; 926 } 927 } else { 928 MemType = BC.analyzeMemoryAt(ArrayStart, *this); 929 } 930 931 // Check that jump table type in instruction pattern matches memory contents. 932 JumpTable::JumpTableType JTType; 933 if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) { 934 if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 935 return IndirectBranchType::UNKNOWN; 936 JTType = JumpTable::JTT_PIC; 937 } else { 938 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 939 return IndirectBranchType::UNKNOWN; 940 941 if (MemType == MemoryContentsType::UNKNOWN) 942 return IndirectBranchType::POSSIBLE_TAIL_CALL; 943 944 BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE; 945 JTType = JumpTable::JTT_NORMAL; 946 } 947 948 // Convert the instruction into jump table branch. 949 const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType); 950 BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get()); 951 BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum); 952 953 JTSites.emplace_back(Offset, ArrayStart); 954 955 return BranchType; 956 } 957 958 MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address, 959 bool CreatePastEnd) { 960 const uint64_t Offset = Address - getAddress(); 961 962 if ((Offset == getSize()) && CreatePastEnd) 963 return getFunctionEndLabel(); 964 965 auto LI = Labels.find(Offset); 966 if (LI != Labels.end()) 967 return LI->second; 968 969 // For AArch64, check if this address is part of a constant island. 970 if (BC.isAArch64()) { 971 if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address)) 972 return IslandSym; 973 } 974 975 MCSymbol *Label = BC.Ctx->createNamedTempSymbol(); 976 Labels[Offset] = Label; 977 978 return Label; 979 } 980 981 ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const { 982 BinarySection &Section = *getOriginSection(); 983 assert(Section.containsRange(getAddress(), getMaxSize()) && 984 "wrong section for function"); 985 986 if (!Section.isText() || Section.isVirtual() || !Section.getSize()) 987 return std::make_error_code(std::errc::bad_address); 988 989 StringRef SectionContents = Section.getContents(); 990 991 assert(SectionContents.size() == Section.getSize() && 992 "section size mismatch"); 993 994 // Function offset from the section start. 995 uint64_t Offset = getAddress() - Section.getAddress(); 996 auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data()); 997 return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize()); 998 } 999 1000 size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const { 1001 if (!Islands) 1002 return 0; 1003 1004 if (Islands->DataOffsets.find(Offset) == Islands->DataOffsets.end()) 1005 return 0; 1006 1007 auto Iter = Islands->CodeOffsets.upper_bound(Offset); 1008 if (Iter != Islands->CodeOffsets.end()) 1009 return *Iter - Offset; 1010 return getSize() - Offset; 1011 } 1012 1013 bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const { 1014 ArrayRef<uint8_t> FunctionData = *getData(); 1015 uint64_t EndOfCode = getSize(); 1016 if (Islands) { 1017 auto Iter = Islands->DataOffsets.upper_bound(Offset); 1018 if (Iter != Islands->DataOffsets.end()) 1019 EndOfCode = *Iter; 1020 } 1021 for (uint64_t I = Offset; I < EndOfCode; ++I) 1022 if (FunctionData[I] != 0) 1023 return false; 1024 1025 return true; 1026 } 1027 1028 bool BinaryFunction::disassemble() { 1029 NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs", 1030 "Build Binary Functions", opts::TimeBuild); 1031 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1032 assert(ErrorOrFunctionData && "function data is not available"); 1033 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1034 assert(FunctionData.size() == getMaxSize() && 1035 "function size does not match raw data size"); 1036 1037 auto &Ctx = BC.Ctx; 1038 auto &MIB = BC.MIB; 1039 1040 // Insert a label at the beginning of the function. This will be our first 1041 // basic block. 1042 Labels[0] = Ctx->createNamedTempSymbol("BB0"); 1043 1044 auto handlePCRelOperand = [&](MCInst &Instruction, uint64_t Address, 1045 uint64_t Size) { 1046 uint64_t TargetAddress = 0; 1047 if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address, 1048 Size)) { 1049 errs() << "BOLT-ERROR: PC-relative operand can't be evaluated:\n"; 1050 BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, errs()); 1051 errs() << '\n'; 1052 Instruction.dump_pretty(errs(), BC.InstPrinter.get()); 1053 errs() << '\n'; 1054 errs() << "BOLT-ERROR: cannot handle PC-relative operand at 0x" 1055 << Twine::utohexstr(Address) << ". Skipping function " << *this 1056 << ".\n"; 1057 if (BC.HasRelocations) 1058 exit(1); 1059 IsSimple = false; 1060 return; 1061 } 1062 if (TargetAddress == 0 && opts::Verbosity >= 1) { 1063 outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this 1064 << '\n'; 1065 } 1066 1067 const MCSymbol *TargetSymbol; 1068 uint64_t TargetOffset; 1069 std::tie(TargetSymbol, TargetOffset) = 1070 BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true); 1071 const MCExpr *Expr = MCSymbolRefExpr::create( 1072 TargetSymbol, MCSymbolRefExpr::VK_None, *BC.Ctx); 1073 if (TargetOffset) { 1074 const MCConstantExpr *Offset = 1075 MCConstantExpr::create(TargetOffset, *BC.Ctx); 1076 Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx); 1077 } 1078 MIB->replaceMemOperandDisp(Instruction, 1079 MCOperand::createExpr(BC.MIB->getTargetExprFor( 1080 Instruction, Expr, *BC.Ctx, 0))); 1081 }; 1082 1083 // Used to fix the target of linker-generated AArch64 stubs with no relocation 1084 // info 1085 auto fixStubTarget = [&](MCInst &LoadLowBits, MCInst &LoadHiBits, 1086 uint64_t Target) { 1087 const MCSymbol *TargetSymbol; 1088 uint64_t Addend = 0; 1089 std::tie(TargetSymbol, Addend) = BC.handleAddressRef(Target, *this, true); 1090 1091 int64_t Val; 1092 MIB->replaceImmWithSymbolRef(LoadHiBits, TargetSymbol, Addend, Ctx.get(), 1093 Val, ELF::R_AARCH64_ADR_PREL_PG_HI21); 1094 MIB->replaceImmWithSymbolRef(LoadLowBits, TargetSymbol, Addend, Ctx.get(), 1095 Val, ELF::R_AARCH64_ADD_ABS_LO12_NC); 1096 }; 1097 1098 auto handleExternalReference = [&](MCInst &Instruction, uint64_t Size, 1099 uint64_t Offset, uint64_t TargetAddress, 1100 bool &IsCall) -> MCSymbol * { 1101 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1102 MCSymbol *TargetSymbol = nullptr; 1103 InterproceduralReferences.insert(TargetAddress); 1104 if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) { 1105 errs() << "BOLT-WARNING: relaxed tail call detected at 0x" 1106 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this 1107 << ". Code size will be increased.\n"; 1108 } 1109 1110 assert(!MIB->isTailCall(Instruction) && 1111 "synthetic tail call instruction found"); 1112 1113 // This is a call regardless of the opcode. 1114 // Assign proper opcode for tail calls, so that they could be 1115 // treated as calls. 1116 if (!IsCall) { 1117 if (!MIB->convertJmpToTailCall(Instruction)) { 1118 assert(MIB->isConditionalBranch(Instruction) && 1119 "unknown tail call instruction"); 1120 if (opts::Verbosity >= 2) { 1121 errs() << "BOLT-WARNING: conditional tail call detected in " 1122 << "function " << *this << " at 0x" 1123 << Twine::utohexstr(AbsoluteInstrAddr) << ".\n"; 1124 } 1125 } 1126 IsCall = true; 1127 } 1128 1129 TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat"); 1130 if (opts::Verbosity >= 2 && TargetAddress == 0) { 1131 // We actually see calls to address 0 in presence of weak 1132 // symbols originating from libraries. This code is never meant 1133 // to be executed. 1134 outs() << "BOLT-INFO: Function " << *this 1135 << " has a call to address zero.\n"; 1136 } 1137 1138 return TargetSymbol; 1139 }; 1140 1141 auto handleIndirectBranch = [&](MCInst &Instruction, uint64_t Size, 1142 uint64_t Offset) { 1143 uint64_t IndirectTarget = 0; 1144 IndirectBranchType Result = 1145 processIndirectBranch(Instruction, Size, Offset, IndirectTarget); 1146 switch (Result) { 1147 default: 1148 llvm_unreachable("unexpected result"); 1149 case IndirectBranchType::POSSIBLE_TAIL_CALL: { 1150 bool Result = MIB->convertJmpToTailCall(Instruction); 1151 (void)Result; 1152 assert(Result); 1153 break; 1154 } 1155 case IndirectBranchType::POSSIBLE_JUMP_TABLE: 1156 case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE: 1157 if (opts::JumpTables == JTS_NONE) 1158 IsSimple = false; 1159 break; 1160 case IndirectBranchType::POSSIBLE_FIXED_BRANCH: { 1161 if (containsAddress(IndirectTarget)) { 1162 const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget); 1163 Instruction.clear(); 1164 MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get()); 1165 TakenBranches.emplace_back(Offset, IndirectTarget - getAddress()); 1166 HasFixedIndirectBranch = true; 1167 } else { 1168 MIB->convertJmpToTailCall(Instruction); 1169 InterproceduralReferences.insert(IndirectTarget); 1170 } 1171 break; 1172 } 1173 case IndirectBranchType::UNKNOWN: 1174 // Keep processing. We'll do more checks and fixes in 1175 // postProcessIndirectBranches(). 1176 UnknownIndirectBranchOffsets.emplace(Offset); 1177 break; 1178 } 1179 }; 1180 1181 // Check for linker veneers, which lack relocations and need manual 1182 // adjustments. 1183 auto handleAArch64IndirectCall = [&](MCInst &Instruction, uint64_t Offset) { 1184 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1185 MCInst *TargetHiBits, *TargetLowBits; 1186 uint64_t TargetAddress; 1187 if (MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(), 1188 AbsoluteInstrAddr, Instruction, TargetHiBits, 1189 TargetLowBits, TargetAddress)) { 1190 MIB->addAnnotation(Instruction, "AArch64Veneer", true); 1191 1192 uint8_t Counter = 0; 1193 for (auto It = std::prev(Instructions.end()); Counter != 2; 1194 --It, ++Counter) { 1195 MIB->addAnnotation(It->second, "AArch64Veneer", true); 1196 } 1197 1198 fixStubTarget(*TargetLowBits, *TargetHiBits, TargetAddress); 1199 } 1200 }; 1201 1202 uint64_t Size = 0; // instruction size 1203 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1204 MCInst Instruction; 1205 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1206 1207 // Check for data inside code and ignore it 1208 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1209 Size = DataInCodeSize; 1210 continue; 1211 } 1212 1213 if (!BC.DisAsm->getInstruction(Instruction, Size, 1214 FunctionData.slice(Offset), 1215 AbsoluteInstrAddr, nulls())) { 1216 // Functions with "soft" boundaries, e.g. coming from assembly source, 1217 // can have 0-byte padding at the end. 1218 if (isZeroPaddingAt(Offset)) 1219 break; 1220 1221 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1222 << Twine::utohexstr(Offset) << " (address 0x" 1223 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this 1224 << '\n'; 1225 // Some AVX-512 instructions could not be disassembled at all. 1226 if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) { 1227 setTrapOnEntry(); 1228 BC.TrappedFunctions.push_back(this); 1229 } else { 1230 setIgnored(); 1231 } 1232 1233 break; 1234 } 1235 1236 // Check integrity of LLVM assembler/disassembler. 1237 if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) && 1238 !BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) { 1239 if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) { 1240 errs() << "BOLT-WARNING: mismatching LLVM encoding detected in " 1241 << "function " << *this << " for instruction :\n"; 1242 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1243 errs() << '\n'; 1244 } 1245 } 1246 1247 // Special handling for AVX-512 instructions. 1248 if (MIB->hasEVEXEncoding(Instruction)) { 1249 if (BC.HasRelocations && opts::TrapOnAVX512) { 1250 setTrapOnEntry(); 1251 BC.TrappedFunctions.push_back(this); 1252 break; 1253 } 1254 1255 // Check if our disassembly is correct and matches the assembler output. 1256 if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) { 1257 if (opts::Verbosity >= 1) { 1258 errs() << "BOLT-WARNING: internal assembler/disassembler error " 1259 "detected for AVX512 instruction:\n"; 1260 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1261 errs() << " in function " << *this << '\n'; 1262 } 1263 1264 setIgnored(); 1265 break; 1266 } 1267 } 1268 1269 if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) { 1270 uint64_t TargetAddress = 0; 1271 if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1272 TargetAddress)) { 1273 // Check if the target is within the same function. Otherwise it's 1274 // a call, possibly a tail call. 1275 // 1276 // If the target *is* the function address it could be either a branch 1277 // or a recursive call. 1278 bool IsCall = MIB->isCall(Instruction); 1279 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1280 MCSymbol *TargetSymbol = nullptr; 1281 1282 if (BC.MIB->isUnsupportedBranch(Instruction.getOpcode())) { 1283 setIgnored(); 1284 if (BinaryFunction *TargetFunc = 1285 BC.getBinaryFunctionContainingAddress(TargetAddress)) 1286 TargetFunc->setIgnored(); 1287 } 1288 1289 if (IsCall && containsAddress(TargetAddress)) { 1290 if (TargetAddress == getAddress()) { 1291 // Recursive call. 1292 TargetSymbol = getSymbol(); 1293 } else { 1294 if (BC.isX86()) { 1295 // Dangerous old-style x86 PIC code. We may need to freeze this 1296 // function, so preserve the function as is for now. 1297 PreserveNops = true; 1298 } else { 1299 errs() << "BOLT-WARNING: internal call detected at 0x" 1300 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " 1301 << *this << ". Skipping.\n"; 1302 IsSimple = false; 1303 } 1304 } 1305 } 1306 1307 if (!TargetSymbol) { 1308 // Create either local label or external symbol. 1309 if (containsAddress(TargetAddress)) { 1310 TargetSymbol = getOrCreateLocalLabel(TargetAddress); 1311 } else { 1312 if (TargetAddress == getAddress() + getSize() && 1313 TargetAddress < getAddress() + getMaxSize()) { 1314 // Result of __builtin_unreachable(). 1315 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x" 1316 << Twine::utohexstr(AbsoluteInstrAddr) 1317 << " in function " << *this 1318 << " : replacing with nop.\n"); 1319 BC.MIB->createNoop(Instruction); 1320 if (IsCondBranch) { 1321 // Register branch offset for profile validation. 1322 IgnoredBranches.emplace_back(Offset, Offset + Size); 1323 } 1324 goto add_instruction; 1325 } 1326 // May update Instruction and IsCall 1327 TargetSymbol = handleExternalReference(Instruction, Size, Offset, 1328 TargetAddress, IsCall); 1329 } 1330 } 1331 1332 if (!IsCall) { 1333 // Add taken branch info. 1334 TakenBranches.emplace_back(Offset, TargetAddress - getAddress()); 1335 } 1336 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx); 1337 1338 // Mark CTC. 1339 if (IsCondBranch && IsCall) 1340 MIB->setConditionalTailCall(Instruction, TargetAddress); 1341 } else { 1342 // Could not evaluate branch. Should be an indirect call or an 1343 // indirect branch. Bail out on the latter case. 1344 if (MIB->isIndirectBranch(Instruction)) 1345 handleIndirectBranch(Instruction, Size, Offset); 1346 // Indirect call. We only need to fix it if the operand is RIP-relative. 1347 if (IsSimple && MIB->hasPCRelOperand(Instruction)) 1348 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1349 1350 if (BC.isAArch64()) 1351 handleAArch64IndirectCall(Instruction, Offset); 1352 } 1353 } else { 1354 // Check if there's a relocation associated with this instruction. 1355 bool UsedReloc = false; 1356 for (auto Itr = Relocations.lower_bound(Offset), 1357 ItrE = Relocations.lower_bound(Offset + Size); 1358 Itr != ItrE; ++Itr) { 1359 const Relocation &Relocation = Itr->second; 1360 uint64_t SymbolValue = Relocation.Value - Relocation.Addend; 1361 if (Relocation.isPCRelative()) 1362 SymbolValue += getAddress() + Relocation.Offset; 1363 1364 // Process reference to the symbol. 1365 if (BC.isX86()) 1366 BC.handleAddressRef(SymbolValue, *this, Relocation.isPCRelative()); 1367 1368 if (BC.isAArch64() || !Relocation.isPCRelative()) { 1369 int64_t Value = Relocation.Value; 1370 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1371 Instruction, Relocation.Symbol, Relocation.Addend, Ctx.get(), 1372 Value, Relocation.Type); 1373 (void)Result; 1374 assert(Result && "cannot replace immediate with relocation"); 1375 1376 if (BC.isX86()) { 1377 // Make sure we replaced the correct immediate (instruction 1378 // can have multiple immediate operands). 1379 assert( 1380 truncateToSize(static_cast<uint64_t>(Value), 1381 Relocation::getSizeForType(Relocation.Type)) == 1382 truncateToSize(Relocation.Value, Relocation::getSizeForType( 1383 Relocation.Type)) && 1384 "immediate value mismatch in function"); 1385 } else if (BC.isAArch64()) { 1386 // For aarch, if we replaced an immediate with a symbol from a 1387 // relocation, we mark it so we do not try to further process a 1388 // pc-relative operand. All we need is the symbol. 1389 UsedReloc = true; 1390 } 1391 } else { 1392 // Check if the relocation matches memop's Disp. 1393 uint64_t TargetAddress; 1394 if (!BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1395 AbsoluteInstrAddr, Size)) { 1396 errs() << "BOLT-ERROR: PC-relative operand can't be evaluated\n"; 1397 exit(1); 1398 } 1399 assert(TargetAddress == Relocation.Value + AbsoluteInstrAddr + Size && 1400 "Immediate value mismatch detected."); 1401 1402 const MCExpr *Expr = MCSymbolRefExpr::create( 1403 Relocation.Symbol, MCSymbolRefExpr::VK_None, *BC.Ctx); 1404 // Real addend for pc-relative targets is adjusted with a delta 1405 // from relocation placement to the next instruction. 1406 const uint64_t TargetAddend = 1407 Relocation.Addend + Offset + Size - Relocation.Offset; 1408 if (TargetAddend) { 1409 const MCConstantExpr *Offset = 1410 MCConstantExpr::create(TargetAddend, *BC.Ctx); 1411 Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx); 1412 } 1413 BC.MIB->replaceMemOperandDisp( 1414 Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor( 1415 Instruction, Expr, *BC.Ctx, 0))); 1416 UsedReloc = true; 1417 } 1418 } 1419 1420 if (MIB->hasPCRelOperand(Instruction) && !UsedReloc) 1421 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1422 } 1423 1424 add_instruction: 1425 if (getDWARFLineTable()) { 1426 Instruction.setLoc(findDebugLineInformationForInstructionAt( 1427 AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable())); 1428 } 1429 1430 // Record offset of the instruction for profile matching. 1431 if (BC.keepOffsetForInstruction(Instruction)) 1432 MIB->setOffset(Instruction, static_cast<uint32_t>(Offset)); 1433 1434 if (BC.MIB->isNoop(Instruction)) { 1435 // NOTE: disassembly loses the correct size information for noops. 1436 // E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only 1437 // 5 bytes. Preserve the size info using annotations. 1438 MIB->addAnnotation(Instruction, "Size", static_cast<uint32_t>(Size)); 1439 } 1440 1441 addInstruction(Offset, std::move(Instruction)); 1442 } 1443 1444 clearList(Relocations); 1445 1446 if (!IsSimple) { 1447 clearList(Instructions); 1448 return false; 1449 } 1450 1451 updateState(State::Disassembled); 1452 1453 return true; 1454 } 1455 1456 bool BinaryFunction::scanExternalRefs() { 1457 bool Success = true; 1458 bool DisassemblyFailed = false; 1459 1460 // Ignore pseudo functions. 1461 if (isPseudo()) 1462 return Success; 1463 1464 if (opts::NoScan) { 1465 clearList(Relocations); 1466 clearList(ExternallyReferencedOffsets); 1467 1468 return false; 1469 } 1470 1471 // List of external references for this function. 1472 std::vector<Relocation> FunctionRelocations; 1473 1474 static BinaryContext::IndependentCodeEmitter Emitter = 1475 BC.createIndependentMCCodeEmitter(); 1476 1477 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1478 assert(ErrorOrFunctionData && "function data is not available"); 1479 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1480 assert(FunctionData.size() == getMaxSize() && 1481 "function size does not match raw data size"); 1482 1483 uint64_t Size = 0; // instruction size 1484 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1485 // Check for data inside code and ignore it 1486 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1487 Size = DataInCodeSize; 1488 continue; 1489 } 1490 1491 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1492 MCInst Instruction; 1493 if (!BC.DisAsm->getInstruction(Instruction, Size, 1494 FunctionData.slice(Offset), 1495 AbsoluteInstrAddr, nulls())) { 1496 if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) { 1497 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1498 << Twine::utohexstr(Offset) << " (address 0x" 1499 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " 1500 << *this << '\n'; 1501 } 1502 Success = false; 1503 DisassemblyFailed = true; 1504 break; 1505 } 1506 1507 // Return true if we can skip handling the Target function reference. 1508 auto ignoreFunctionRef = [&](const BinaryFunction &Target) { 1509 if (&Target == this) 1510 return true; 1511 1512 // Note that later we may decide not to emit Target function. In that 1513 // case, we conservatively create references that will be ignored or 1514 // resolved to the same function. 1515 if (!BC.shouldEmit(Target)) 1516 return true; 1517 1518 return false; 1519 }; 1520 1521 // Return true if we can ignore reference to the symbol. 1522 auto ignoreReference = [&](const MCSymbol *TargetSymbol) { 1523 if (!TargetSymbol) 1524 return true; 1525 1526 if (BC.forceSymbolRelocations(TargetSymbol->getName())) 1527 return false; 1528 1529 BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol); 1530 if (!TargetFunction) 1531 return true; 1532 1533 return ignoreFunctionRef(*TargetFunction); 1534 }; 1535 1536 // Detect if the instruction references an address. 1537 // Without relocations, we can only trust PC-relative address modes. 1538 uint64_t TargetAddress = 0; 1539 bool IsPCRel = false; 1540 bool IsBranch = false; 1541 if (BC.MIB->hasPCRelOperand(Instruction)) { 1542 if (BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1543 AbsoluteInstrAddr, Size)) { 1544 IsPCRel = true; 1545 } 1546 } else if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) { 1547 if (BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1548 TargetAddress)) { 1549 IsBranch = true; 1550 } 1551 } 1552 1553 MCSymbol *TargetSymbol = nullptr; 1554 1555 // Create an entry point at reference address if needed. 1556 BinaryFunction *TargetFunction = 1557 BC.getBinaryFunctionContainingAddress(TargetAddress); 1558 if (TargetFunction && !ignoreFunctionRef(*TargetFunction)) { 1559 const uint64_t FunctionOffset = 1560 TargetAddress - TargetFunction->getAddress(); 1561 TargetSymbol = FunctionOffset 1562 ? TargetFunction->addEntryPointAtOffset(FunctionOffset) 1563 : TargetFunction->getSymbol(); 1564 } 1565 1566 // Can't find more references and not creating relocations. 1567 if (!BC.HasRelocations) 1568 continue; 1569 1570 // Create a relocation against the TargetSymbol as the symbol might get 1571 // moved. 1572 if (TargetSymbol) { 1573 if (IsBranch) { 1574 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, 1575 Emitter.LocalCtx.get()); 1576 } else if (IsPCRel) { 1577 const MCExpr *Expr = MCSymbolRefExpr::create( 1578 TargetSymbol, MCSymbolRefExpr::VK_None, *Emitter.LocalCtx.get()); 1579 BC.MIB->replaceMemOperandDisp( 1580 Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor( 1581 Instruction, Expr, *Emitter.LocalCtx.get(), 0))); 1582 } 1583 } 1584 1585 // Create more relocations based on input file relocations. 1586 bool HasRel = false; 1587 for (auto Itr = Relocations.lower_bound(Offset), 1588 ItrE = Relocations.lower_bound(Offset + Size); 1589 Itr != ItrE; ++Itr) { 1590 Relocation &Relocation = Itr->second; 1591 if (Relocation.isPCRelative() && BC.isX86()) 1592 continue; 1593 if (ignoreReference(Relocation.Symbol)) 1594 continue; 1595 1596 int64_t Value = Relocation.Value; 1597 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1598 Instruction, Relocation.Symbol, Relocation.Addend, 1599 Emitter.LocalCtx.get(), Value, Relocation.Type); 1600 (void)Result; 1601 assert(Result && "cannot replace immediate with relocation"); 1602 1603 HasRel = true; 1604 } 1605 1606 if (!TargetSymbol && !HasRel) 1607 continue; 1608 1609 // Emit the instruction using temp emitter and generate relocations. 1610 SmallString<256> Code; 1611 SmallVector<MCFixup, 4> Fixups; 1612 raw_svector_ostream VecOS(Code); 1613 Emitter.MCE->encodeInstruction(Instruction, VecOS, Fixups, *BC.STI); 1614 1615 // Create relocation for every fixup. 1616 for (const MCFixup &Fixup : Fixups) { 1617 Optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB); 1618 if (!Rel) { 1619 Success = false; 1620 continue; 1621 } 1622 1623 if (Relocation::getSizeForType(Rel->Type) < 4) { 1624 // If the instruction uses a short form, then we might not be able 1625 // to handle the rewrite without relaxation, and hence cannot reliably 1626 // create an external reference relocation. 1627 Success = false; 1628 continue; 1629 } 1630 Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset; 1631 FunctionRelocations.push_back(*Rel); 1632 } 1633 1634 if (!Success) 1635 break; 1636 } 1637 1638 // Add relocations unless disassembly failed for this function. 1639 if (!DisassemblyFailed) 1640 for (Relocation &Rel : FunctionRelocations) 1641 getOriginSection()->addPendingRelocation(Rel); 1642 1643 // Inform BinaryContext that this function symbols will not be defined and 1644 // relocations should not be created against them. 1645 if (BC.HasRelocations) { 1646 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 1647 BC.UndefinedSymbols.insert(LI.second); 1648 if (FunctionEndLabel) 1649 BC.UndefinedSymbols.insert(FunctionEndLabel); 1650 } 1651 1652 clearList(Relocations); 1653 clearList(ExternallyReferencedOffsets); 1654 1655 if (Success && BC.HasRelocations) 1656 HasExternalRefRelocations = true; 1657 1658 if (opts::Verbosity >= 1 && !Success) 1659 outs() << "BOLT-INFO: failed to scan refs for " << *this << '\n'; 1660 1661 return Success; 1662 } 1663 1664 void BinaryFunction::postProcessEntryPoints() { 1665 if (!isSimple()) 1666 return; 1667 1668 for (auto &KV : Labels) { 1669 MCSymbol *Label = KV.second; 1670 if (!getSecondaryEntryPointSymbol(Label)) 1671 continue; 1672 1673 // In non-relocation mode there's potentially an external undetectable 1674 // reference to the entry point and hence we cannot move this entry 1675 // point. Optimizing without moving could be difficult. 1676 if (!BC.HasRelocations) 1677 setSimple(false); 1678 1679 const uint32_t Offset = KV.first; 1680 1681 // If we are at Offset 0 and there is no instruction associated with it, 1682 // this means this is an empty function. Just ignore. If we find an 1683 // instruction at this offset, this entry point is valid. 1684 if (!Offset || getInstructionAtOffset(Offset)) 1685 continue; 1686 1687 // On AArch64 there are legitimate reasons to have references past the 1688 // end of the function, e.g. jump tables. 1689 if (BC.isAArch64() && Offset == getSize()) 1690 continue; 1691 1692 errs() << "BOLT-WARNING: reference in the middle of instruction " 1693 "detected in function " 1694 << *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n'; 1695 if (BC.HasRelocations) 1696 setIgnored(); 1697 setSimple(false); 1698 return; 1699 } 1700 } 1701 1702 void BinaryFunction::postProcessJumpTables() { 1703 // Create labels for all entries. 1704 for (auto &JTI : JumpTables) { 1705 JumpTable &JT = *JTI.second; 1706 if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) { 1707 opts::JumpTables = JTS_MOVE; 1708 outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was " 1709 "detected in function " 1710 << *this << '\n'; 1711 } 1712 for (unsigned I = 0; I < JT.OffsetEntries.size(); ++I) { 1713 MCSymbol *Label = 1714 getOrCreateLocalLabel(getAddress() + JT.OffsetEntries[I], 1715 /*CreatePastEnd*/ true); 1716 JT.Entries.push_back(Label); 1717 } 1718 1719 const uint64_t BDSize = 1720 BC.getBinaryDataAtAddress(JT.getAddress())->getSize(); 1721 if (!BDSize) { 1722 BC.setBinaryDataSize(JT.getAddress(), JT.getSize()); 1723 } else { 1724 assert(BDSize >= JT.getSize() && 1725 "jump table cannot be larger than the containing object"); 1726 } 1727 } 1728 1729 // Add TakenBranches from JumpTables. 1730 // 1731 // We want to do it after initial processing since we don't know jump tables' 1732 // boundaries until we process them all. 1733 for (auto &JTSite : JTSites) { 1734 const uint64_t JTSiteOffset = JTSite.first; 1735 const uint64_t JTAddress = JTSite.second; 1736 const JumpTable *JT = getJumpTableContainingAddress(JTAddress); 1737 assert(JT && "cannot find jump table for address"); 1738 1739 uint64_t EntryOffset = JTAddress - JT->getAddress(); 1740 while (EntryOffset < JT->getSize()) { 1741 uint64_t TargetOffset = JT->OffsetEntries[EntryOffset / JT->EntrySize]; 1742 if (TargetOffset < getSize()) { 1743 TakenBranches.emplace_back(JTSiteOffset, TargetOffset); 1744 1745 if (opts::StrictMode) 1746 registerReferencedOffset(TargetOffset); 1747 } 1748 1749 EntryOffset += JT->EntrySize; 1750 1751 // A label at the next entry means the end of this jump table. 1752 if (JT->Labels.count(EntryOffset)) 1753 break; 1754 } 1755 } 1756 clearList(JTSites); 1757 1758 // Free memory used by jump table offsets. 1759 for (auto &JTI : JumpTables) { 1760 JumpTable &JT = *JTI.second; 1761 clearList(JT.OffsetEntries); 1762 } 1763 1764 // Conservatively populate all possible destinations for unknown indirect 1765 // branches. 1766 if (opts::StrictMode && hasInternalReference()) { 1767 for (uint64_t Offset : UnknownIndirectBranchOffsets) { 1768 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) { 1769 // Ignore __builtin_unreachable(). 1770 if (PossibleDestination == getSize()) 1771 continue; 1772 TakenBranches.emplace_back(Offset, PossibleDestination); 1773 } 1774 } 1775 } 1776 1777 // Remove duplicates branches. We can get a bunch of them from jump tables. 1778 // Without doing jump table value profiling we don't have use for extra 1779 // (duplicate) branches. 1780 std::sort(TakenBranches.begin(), TakenBranches.end()); 1781 auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end()); 1782 TakenBranches.erase(NewEnd, TakenBranches.end()); 1783 } 1784 1785 bool BinaryFunction::postProcessIndirectBranches( 1786 MCPlusBuilder::AllocatorIdTy AllocId) { 1787 auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) { 1788 HasUnknownControlFlow = true; 1789 BB.removeAllSuccessors(); 1790 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) 1791 if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination)) 1792 BB.addSuccessor(SuccBB); 1793 }; 1794 1795 uint64_t NumIndirectJumps = 0; 1796 MCInst *LastIndirectJump = nullptr; 1797 BinaryBasicBlock *LastIndirectJumpBB = nullptr; 1798 uint64_t LastJT = 0; 1799 uint16_t LastJTIndexReg = BC.MIB->getNoRegister(); 1800 for (BinaryBasicBlock *BB : layout()) { 1801 for (MCInst &Instr : *BB) { 1802 if (!BC.MIB->isIndirectBranch(Instr)) 1803 continue; 1804 1805 // If there's an indirect branch in a single-block function - 1806 // it must be a tail call. 1807 if (layout_size() == 1) { 1808 BC.MIB->convertJmpToTailCall(Instr); 1809 return true; 1810 } 1811 1812 ++NumIndirectJumps; 1813 1814 if (opts::StrictMode && !hasInternalReference()) { 1815 BC.MIB->convertJmpToTailCall(Instr); 1816 break; 1817 } 1818 1819 // Validate the tail call or jump table assumptions now that we know 1820 // basic block boundaries. 1821 if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) { 1822 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 1823 MCInst *MemLocInstr; 1824 unsigned BaseRegNum, IndexRegNum; 1825 int64_t DispValue; 1826 const MCExpr *DispExpr; 1827 MCInst *PCRelBaseInstr; 1828 IndirectBranchType Type = BC.MIB->analyzeIndirectBranch( 1829 Instr, BB->begin(), BB->end(), PtrSize, MemLocInstr, BaseRegNum, 1830 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 1831 if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr) 1832 continue; 1833 1834 if (!opts::StrictMode) 1835 return false; 1836 1837 if (BC.MIB->isTailCall(Instr)) { 1838 BC.MIB->convertTailCallToJmp(Instr); 1839 } else { 1840 LastIndirectJump = &Instr; 1841 LastIndirectJumpBB = BB; 1842 LastJT = BC.MIB->getJumpTable(Instr); 1843 LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr); 1844 BC.MIB->unsetJumpTable(Instr); 1845 1846 JumpTable *JT = BC.getJumpTableContainingAddress(LastJT); 1847 if (JT->Type == JumpTable::JTT_NORMAL) { 1848 // Invalidating the jump table may also invalidate other jump table 1849 // boundaries. Until we have/need a support for this, mark the 1850 // function as non-simple. 1851 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference" 1852 << JT->getName() << " in " << *this << '\n'); 1853 return false; 1854 } 1855 } 1856 1857 addUnknownControlFlow(*BB); 1858 continue; 1859 } 1860 1861 // If this block contains an epilogue code and has an indirect branch, 1862 // then most likely it's a tail call. Otherwise, we cannot tell for sure 1863 // what it is and conservatively reject the function's CFG. 1864 bool IsEpilogue = false; 1865 for (const MCInst &Instr : *BB) { 1866 if (BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr)) { 1867 IsEpilogue = true; 1868 break; 1869 } 1870 } 1871 if (IsEpilogue) { 1872 BC.MIB->convertJmpToTailCall(Instr); 1873 BB->removeAllSuccessors(); 1874 continue; 1875 } 1876 1877 if (opts::Verbosity >= 2) { 1878 outs() << "BOLT-INFO: rejected potential indirect tail call in " 1879 << "function " << *this << " in basic block " << BB->getName() 1880 << ".\n"; 1881 LLVM_DEBUG(BC.printInstructions(dbgs(), BB->begin(), BB->end(), 1882 BB->getOffset(), this, true)); 1883 } 1884 1885 if (!opts::StrictMode) 1886 return false; 1887 1888 addUnknownControlFlow(*BB); 1889 } 1890 } 1891 1892 if (HasInternalLabelReference) 1893 return false; 1894 1895 // If there's only one jump table, and one indirect jump, and no other 1896 // references, then we should be able to derive the jump table even if we 1897 // fail to match the pattern. 1898 if (HasUnknownControlFlow && NumIndirectJumps == 1 && 1899 JumpTables.size() == 1 && LastIndirectJump) { 1900 BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId); 1901 HasUnknownControlFlow = false; 1902 1903 LastIndirectJumpBB->updateJumpTableSuccessors(); 1904 } 1905 1906 if (HasFixedIndirectBranch) 1907 return false; 1908 1909 if (HasUnknownControlFlow && !BC.HasRelocations) 1910 return false; 1911 1912 return true; 1913 } 1914 1915 void BinaryFunction::recomputeLandingPads() { 1916 updateBBIndices(0); 1917 1918 for (BinaryBasicBlock *BB : BasicBlocks) { 1919 BB->LandingPads.clear(); 1920 BB->Throwers.clear(); 1921 } 1922 1923 for (BinaryBasicBlock *BB : BasicBlocks) { 1924 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 1925 for (MCInst &Instr : *BB) { 1926 if (!BC.MIB->isInvoke(Instr)) 1927 continue; 1928 1929 const Optional<MCPlus::MCLandingPad> EHInfo = BC.MIB->getEHInfo(Instr); 1930 if (!EHInfo || !EHInfo->first) 1931 continue; 1932 1933 BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first); 1934 if (!BBLandingPads.count(LPBlock)) { 1935 BBLandingPads.insert(LPBlock); 1936 BB->LandingPads.emplace_back(LPBlock); 1937 LPBlock->Throwers.emplace_back(BB); 1938 } 1939 } 1940 } 1941 } 1942 1943 bool BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) { 1944 auto &MIB = BC.MIB; 1945 1946 if (!isSimple()) { 1947 assert(!BC.HasRelocations && 1948 "cannot process file with non-simple function in relocs mode"); 1949 return false; 1950 } 1951 1952 if (CurrentState != State::Disassembled) 1953 return false; 1954 1955 assert(BasicBlocks.empty() && "basic block list should be empty"); 1956 assert((Labels.find(0) != Labels.end()) && 1957 "first instruction should always have a label"); 1958 1959 // Create basic blocks in the original layout order: 1960 // 1961 // * Every instruction with associated label marks 1962 // the beginning of a basic block. 1963 // * Conditional instruction marks the end of a basic block, 1964 // except when the following instruction is an 1965 // unconditional branch, and the unconditional branch is not 1966 // a destination of another branch. In the latter case, the 1967 // basic block will consist of a single unconditional branch 1968 // (missed "double-jump" optimization). 1969 // 1970 // Created basic blocks are sorted in layout order since they are 1971 // created in the same order as instructions, and instructions are 1972 // sorted by offsets. 1973 BinaryBasicBlock *InsertBB = nullptr; 1974 BinaryBasicBlock *PrevBB = nullptr; 1975 bool IsLastInstrNop = false; 1976 // Offset of the last non-nop instruction. 1977 uint64_t LastInstrOffset = 0; 1978 1979 auto addCFIPlaceholders = [this](uint64_t CFIOffset, 1980 BinaryBasicBlock *InsertBB) { 1981 for (auto FI = OffsetToCFI.lower_bound(CFIOffset), 1982 FE = OffsetToCFI.upper_bound(CFIOffset); 1983 FI != FE; ++FI) { 1984 addCFIPseudo(InsertBB, InsertBB->end(), FI->second); 1985 } 1986 }; 1987 1988 // For profiling purposes we need to save the offset of the last instruction 1989 // in the basic block. 1990 // NOTE: nops always have an Offset annotation. Annotate the last non-nop as 1991 // older profiles ignored nops. 1992 auto updateOffset = [&](uint64_t Offset) { 1993 assert(PrevBB && PrevBB != InsertBB && "invalid previous block"); 1994 MCInst *LastNonNop = nullptr; 1995 for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(), 1996 E = PrevBB->rend(); 1997 RII != E; ++RII) { 1998 if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) { 1999 LastNonNop = &*RII; 2000 break; 2001 } 2002 } 2003 if (LastNonNop && !MIB->getOffset(*LastNonNop)) 2004 MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset), AllocatorId); 2005 }; 2006 2007 for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) { 2008 const uint32_t Offset = I->first; 2009 MCInst &Instr = I->second; 2010 2011 auto LI = Labels.find(Offset); 2012 if (LI != Labels.end()) { 2013 // Always create new BB at branch destination. 2014 PrevBB = InsertBB ? InsertBB : PrevBB; 2015 InsertBB = addBasicBlock(LI->first, LI->second, 2016 opts::PreserveBlocksAlignment && IsLastInstrNop); 2017 if (PrevBB) 2018 updateOffset(LastInstrOffset); 2019 } 2020 2021 const uint64_t InstrInputAddr = I->first + Address; 2022 bool IsSDTMarker = 2023 MIB->isNoop(Instr) && BC.SDTMarkers.count(InstrInputAddr); 2024 bool IsLKMarker = BC.LKMarkers.count(InstrInputAddr); 2025 // Mark all nops with Offset for profile tracking purposes. 2026 if (MIB->isNoop(Instr) || IsLKMarker) { 2027 if (!MIB->getOffset(Instr)) 2028 MIB->setOffset(Instr, static_cast<uint32_t>(Offset), AllocatorId); 2029 if (IsSDTMarker || IsLKMarker) 2030 HasSDTMarker = true; 2031 else 2032 // Annotate ordinary nops, so we can safely delete them if required. 2033 MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId); 2034 } 2035 2036 if (!InsertBB) { 2037 // It must be a fallthrough or unreachable code. Create a new block unless 2038 // we see an unconditional branch following a conditional one. The latter 2039 // should not be a conditional tail call. 2040 assert(PrevBB && "no previous basic block for a fall through"); 2041 MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr(); 2042 assert(PrevInstr && "no previous instruction for a fall through"); 2043 if (MIB->isUnconditionalBranch(Instr) && 2044 !MIB->isUnconditionalBranch(*PrevInstr) && 2045 !MIB->getConditionalTailCall(*PrevInstr) && 2046 !MIB->isReturn(*PrevInstr)) { 2047 // Temporarily restore inserter basic block. 2048 InsertBB = PrevBB; 2049 } else { 2050 MCSymbol *Label; 2051 { 2052 auto L = BC.scopeLock(); 2053 Label = BC.Ctx->createNamedTempSymbol("FT"); 2054 } 2055 InsertBB = addBasicBlock( 2056 Offset, Label, opts::PreserveBlocksAlignment && IsLastInstrNop); 2057 updateOffset(LastInstrOffset); 2058 } 2059 } 2060 if (Offset == 0) { 2061 // Add associated CFI pseudos in the first offset (0) 2062 addCFIPlaceholders(0, InsertBB); 2063 } 2064 2065 const bool IsBlockEnd = MIB->isTerminator(Instr); 2066 IsLastInstrNop = MIB->isNoop(Instr); 2067 if (!IsLastInstrNop) 2068 LastInstrOffset = Offset; 2069 InsertBB->addInstruction(std::move(Instr)); 2070 2071 // Add associated CFI instrs. We always add the CFI instruction that is 2072 // located immediately after this instruction, since the next CFI 2073 // instruction reflects the change in state caused by this instruction. 2074 auto NextInstr = std::next(I); 2075 uint64_t CFIOffset; 2076 if (NextInstr != E) 2077 CFIOffset = NextInstr->first; 2078 else 2079 CFIOffset = getSize(); 2080 2081 // Note: this potentially invalidates instruction pointers/iterators. 2082 addCFIPlaceholders(CFIOffset, InsertBB); 2083 2084 if (IsBlockEnd) { 2085 PrevBB = InsertBB; 2086 InsertBB = nullptr; 2087 } 2088 } 2089 2090 if (BasicBlocks.empty()) { 2091 setSimple(false); 2092 return false; 2093 } 2094 2095 // Intermediate dump. 2096 LLVM_DEBUG(print(dbgs(), "after creating basic blocks")); 2097 2098 // TODO: handle properly calls to no-return functions, 2099 // e.g. exit(3), etc. Otherwise we'll see a false fall-through 2100 // blocks. 2101 2102 for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) { 2103 LLVM_DEBUG(dbgs() << "registering branch [0x" 2104 << Twine::utohexstr(Branch.first) << "] -> [0x" 2105 << Twine::utohexstr(Branch.second) << "]\n"); 2106 BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first); 2107 BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second); 2108 if (!FromBB || !ToBB) { 2109 if (!FromBB) 2110 errs() << "BOLT-ERROR: cannot find BB containing the branch.\n"; 2111 if (!ToBB) 2112 errs() << "BOLT-ERROR: cannot find BB containing branch destination.\n"; 2113 BC.exitWithBugReport("disassembly failed - inconsistent branch found.", 2114 *this); 2115 } 2116 2117 FromBB->addSuccessor(ToBB); 2118 } 2119 2120 // Add fall-through branches. 2121 PrevBB = nullptr; 2122 bool IsPrevFT = false; // Is previous block a fall-through. 2123 for (BinaryBasicBlock *BB : BasicBlocks) { 2124 if (IsPrevFT) 2125 PrevBB->addSuccessor(BB); 2126 2127 if (BB->empty()) { 2128 IsPrevFT = true; 2129 PrevBB = BB; 2130 continue; 2131 } 2132 2133 MCInst *LastInstr = BB->getLastNonPseudoInstr(); 2134 assert(LastInstr && 2135 "should have non-pseudo instruction in non-empty block"); 2136 2137 if (BB->succ_size() == 0) { 2138 // Since there's no existing successors, we know the last instruction is 2139 // not a conditional branch. Thus if it's a terminator, it shouldn't be a 2140 // fall-through. 2141 // 2142 // Conditional tail call is a special case since we don't add a taken 2143 // branch successor for it. 2144 IsPrevFT = !MIB->isTerminator(*LastInstr) || 2145 MIB->getConditionalTailCall(*LastInstr); 2146 } else if (BB->succ_size() == 1) { 2147 IsPrevFT = MIB->isConditionalBranch(*LastInstr); 2148 } else { 2149 IsPrevFT = false; 2150 } 2151 2152 PrevBB = BB; 2153 } 2154 2155 // Assign landing pads and throwers info. 2156 recomputeLandingPads(); 2157 2158 // Assign CFI information to each BB entry. 2159 annotateCFIState(); 2160 2161 // Annotate invoke instructions with GNU_args_size data. 2162 propagateGnuArgsSizeInfo(AllocatorId); 2163 2164 // Set the basic block layout to the original order and set end offsets. 2165 PrevBB = nullptr; 2166 for (BinaryBasicBlock *BB : BasicBlocks) { 2167 BasicBlocksLayout.emplace_back(BB); 2168 if (PrevBB) 2169 PrevBB->setEndOffset(BB->getOffset()); 2170 PrevBB = BB; 2171 } 2172 PrevBB->setEndOffset(getSize()); 2173 2174 updateLayoutIndices(); 2175 2176 normalizeCFIState(); 2177 2178 // Clean-up memory taken by intermediate structures. 2179 // 2180 // NB: don't clear Labels list as we may need them if we mark the function 2181 // as non-simple later in the process of discovering extra entry points. 2182 clearList(Instructions); 2183 clearList(OffsetToCFI); 2184 clearList(TakenBranches); 2185 2186 // Update the state. 2187 CurrentState = State::CFG; 2188 2189 // Make any necessary adjustments for indirect branches. 2190 if (!postProcessIndirectBranches(AllocatorId)) { 2191 if (opts::Verbosity) { 2192 errs() << "BOLT-WARNING: failed to post-process indirect branches for " 2193 << *this << '\n'; 2194 } 2195 // In relocation mode we want to keep processing the function but avoid 2196 // optimizing it. 2197 setSimple(false); 2198 } 2199 2200 clearList(ExternallyReferencedOffsets); 2201 clearList(UnknownIndirectBranchOffsets); 2202 2203 return true; 2204 } 2205 2206 void BinaryFunction::postProcessCFG() { 2207 if (isSimple() && !BasicBlocks.empty()) { 2208 // Convert conditional tail call branches to conditional branches that jump 2209 // to a tail call. 2210 removeConditionalTailCalls(); 2211 2212 postProcessProfile(); 2213 2214 // Eliminate inconsistencies between branch instructions and CFG. 2215 postProcessBranches(); 2216 } 2217 2218 calculateMacroOpFusionStats(); 2219 2220 // The final cleanup of intermediate structures. 2221 clearList(IgnoredBranches); 2222 2223 // Remove "Offset" annotations, unless we need an address-translation table 2224 // later. This has no cost, since annotations are allocated by a bumpptr 2225 // allocator and won't be released anyway until late in the pipeline. 2226 if (!requiresAddressTranslation() && !opts::Instrument) { 2227 for (BinaryBasicBlock *BB : layout()) 2228 for (MCInst &Inst : *BB) 2229 BC.MIB->clearOffset(Inst); 2230 } 2231 2232 assert((!isSimple() || validateCFG()) && 2233 "invalid CFG detected after post-processing"); 2234 } 2235 2236 void BinaryFunction::calculateMacroOpFusionStats() { 2237 if (!getBinaryContext().isX86()) 2238 return; 2239 for (BinaryBasicBlock *BB : layout()) { 2240 auto II = BB->getMacroOpFusionPair(); 2241 if (II == BB->end()) 2242 continue; 2243 2244 // Check offset of the second instruction. 2245 // FIXME: arch-specific. 2246 const uint32_t Offset = BC.MIB->getOffsetWithDefault(*std::next(II), 0); 2247 if (!Offset || (getAddress() + Offset) % 64) 2248 continue; 2249 2250 LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x" 2251 << Twine::utohexstr(getAddress() + Offset) 2252 << " in function " << *this << "; executed " 2253 << BB->getKnownExecutionCount() << " times.\n"); 2254 ++BC.MissedMacroFusionPairs; 2255 BC.MissedMacroFusionExecCount += BB->getKnownExecutionCount(); 2256 } 2257 } 2258 2259 void BinaryFunction::removeTagsFromProfile() { 2260 for (BinaryBasicBlock *BB : BasicBlocks) { 2261 if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2262 BB->ExecutionCount = 0; 2263 for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) { 2264 if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE && 2265 BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE) 2266 continue; 2267 BI.Count = 0; 2268 BI.MispredictedCount = 0; 2269 } 2270 } 2271 } 2272 2273 void BinaryFunction::removeConditionalTailCalls() { 2274 // Blocks to be appended at the end. 2275 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks; 2276 2277 for (auto BBI = begin(); BBI != end(); ++BBI) { 2278 BinaryBasicBlock &BB = *BBI; 2279 MCInst *CTCInstr = BB.getLastNonPseudoInstr(); 2280 if (!CTCInstr) 2281 continue; 2282 2283 Optional<uint64_t> TargetAddressOrNone = 2284 BC.MIB->getConditionalTailCall(*CTCInstr); 2285 if (!TargetAddressOrNone) 2286 continue; 2287 2288 // Gather all necessary information about CTC instruction before 2289 // annotations are destroyed. 2290 const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr); 2291 uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2292 uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2293 if (hasValidProfile()) { 2294 CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2295 *CTCInstr, "CTCTakenCount"); 2296 CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2297 *CTCInstr, "CTCMispredCount"); 2298 } 2299 2300 // Assert that the tail call does not throw. 2301 assert(!BC.MIB->getEHInfo(*CTCInstr) && 2302 "found tail call with associated landing pad"); 2303 2304 // Create a basic block with an unconditional tail call instruction using 2305 // the same destination. 2306 const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr); 2307 assert(CTCTargetLabel && "symbol expected for conditional tail call"); 2308 MCInst TailCallInstr; 2309 BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get()); 2310 // Link new BBs to the original input offset of the BB where the CTC 2311 // is, so we can map samples recorded in new BBs back to the original BB 2312 // seem in the input binary (if using BAT) 2313 std::unique_ptr<BinaryBasicBlock> TailCallBB = createBasicBlock( 2314 BB.getInputOffset(), BC.Ctx->createNamedTempSymbol("TC")); 2315 TailCallBB->addInstruction(TailCallInstr); 2316 TailCallBB->setCFIState(CFIStateBeforeCTC); 2317 2318 // Add CFG edge with profile info from BB to TailCallBB. 2319 BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount); 2320 2321 // Add execution count for the block. 2322 TailCallBB->setExecutionCount(CTCTakenCount); 2323 2324 BC.MIB->convertTailCallToJmp(*CTCInstr); 2325 2326 BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(), 2327 BC.Ctx.get()); 2328 2329 // Add basic block to the list that will be added to the end. 2330 NewBlocks.emplace_back(std::move(TailCallBB)); 2331 2332 // Swap edges as the TailCallBB corresponds to the taken branch. 2333 BB.swapConditionalSuccessors(); 2334 2335 // This branch is no longer a conditional tail call. 2336 BC.MIB->unsetConditionalTailCall(*CTCInstr); 2337 } 2338 2339 insertBasicBlocks(std::prev(end()), std::move(NewBlocks), 2340 /* UpdateLayout */ true, 2341 /* UpdateCFIState */ false); 2342 } 2343 2344 uint64_t BinaryFunction::getFunctionScore() const { 2345 if (FunctionScore != -1) 2346 return FunctionScore; 2347 2348 if (!isSimple() || !hasValidProfile()) { 2349 FunctionScore = 0; 2350 return FunctionScore; 2351 } 2352 2353 uint64_t TotalScore = 0ULL; 2354 for (BinaryBasicBlock *BB : layout()) { 2355 uint64_t BBExecCount = BB->getExecutionCount(); 2356 if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2357 continue; 2358 TotalScore += BBExecCount; 2359 } 2360 FunctionScore = TotalScore; 2361 return FunctionScore; 2362 } 2363 2364 void BinaryFunction::annotateCFIState() { 2365 assert(CurrentState == State::Disassembled && "unexpected function state"); 2366 assert(!BasicBlocks.empty() && "basic block list should not be empty"); 2367 2368 // This is an index of the last processed CFI in FDE CFI program. 2369 uint32_t State = 0; 2370 2371 // This is an index of RememberState CFI reflecting effective state right 2372 // after execution of RestoreState CFI. 2373 // 2374 // It differs from State iff the CFI at (State-1) 2375 // was RestoreState (modulo GNU_args_size CFIs, which are ignored). 2376 // 2377 // This allows us to generate shorter replay sequences when producing new 2378 // CFI programs. 2379 uint32_t EffectiveState = 0; 2380 2381 // For tracking RememberState/RestoreState sequences. 2382 std::stack<uint32_t> StateStack; 2383 2384 for (BinaryBasicBlock *BB : BasicBlocks) { 2385 BB->setCFIState(EffectiveState); 2386 2387 for (const MCInst &Instr : *BB) { 2388 const MCCFIInstruction *CFI = getCFIFor(Instr); 2389 if (!CFI) 2390 continue; 2391 2392 ++State; 2393 2394 switch (CFI->getOperation()) { 2395 case MCCFIInstruction::OpRememberState: 2396 StateStack.push(EffectiveState); 2397 EffectiveState = State; 2398 break; 2399 case MCCFIInstruction::OpRestoreState: 2400 assert(!StateStack.empty() && "corrupt CFI stack"); 2401 EffectiveState = StateStack.top(); 2402 StateStack.pop(); 2403 break; 2404 case MCCFIInstruction::OpGnuArgsSize: 2405 // OpGnuArgsSize CFIs do not affect the CFI state. 2406 break; 2407 default: 2408 // Any other CFI updates the state. 2409 EffectiveState = State; 2410 break; 2411 } 2412 } 2413 } 2414 2415 assert(StateStack.empty() && "corrupt CFI stack"); 2416 } 2417 2418 namespace { 2419 2420 /// Our full interpretation of a DWARF CFI machine state at a given point 2421 struct CFISnapshot { 2422 /// CFA register number and offset defining the canonical frame at this 2423 /// point, or the number of a rule (CFI state) that computes it with a 2424 /// DWARF expression. This number will be negative if it refers to a CFI 2425 /// located in the CIE instead of the FDE. 2426 uint32_t CFAReg; 2427 int32_t CFAOffset; 2428 int32_t CFARule; 2429 /// Mapping of rules (CFI states) that define the location of each 2430 /// register. If absent, no rule defining the location of such register 2431 /// was ever read. This number will be negative if it refers to a CFI 2432 /// located in the CIE instead of the FDE. 2433 DenseMap<int32_t, int32_t> RegRule; 2434 2435 /// References to CIE, FDE and expanded instructions after a restore state 2436 const BinaryFunction::CFIInstrMapType &CIE; 2437 const BinaryFunction::CFIInstrMapType &FDE; 2438 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents; 2439 2440 /// Current FDE CFI number representing the state where the snapshot is at 2441 int32_t CurState; 2442 2443 /// Used when we don't have information about which state/rule to apply 2444 /// to recover the location of either the CFA or a specific register 2445 constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min(); 2446 2447 private: 2448 /// Update our snapshot by executing a single CFI 2449 void update(const MCCFIInstruction &Instr, int32_t RuleNumber) { 2450 switch (Instr.getOperation()) { 2451 case MCCFIInstruction::OpSameValue: 2452 case MCCFIInstruction::OpRelOffset: 2453 case MCCFIInstruction::OpOffset: 2454 case MCCFIInstruction::OpRestore: 2455 case MCCFIInstruction::OpUndefined: 2456 case MCCFIInstruction::OpRegister: 2457 RegRule[Instr.getRegister()] = RuleNumber; 2458 break; 2459 case MCCFIInstruction::OpDefCfaRegister: 2460 CFAReg = Instr.getRegister(); 2461 CFARule = UNKNOWN; 2462 break; 2463 case MCCFIInstruction::OpDefCfaOffset: 2464 CFAOffset = Instr.getOffset(); 2465 CFARule = UNKNOWN; 2466 break; 2467 case MCCFIInstruction::OpDefCfa: 2468 CFAReg = Instr.getRegister(); 2469 CFAOffset = Instr.getOffset(); 2470 CFARule = UNKNOWN; 2471 break; 2472 case MCCFIInstruction::OpEscape: { 2473 Optional<uint8_t> Reg = readDWARFExpressionTargetReg(Instr.getValues()); 2474 // Handle DW_CFA_def_cfa_expression 2475 if (!Reg) { 2476 CFARule = RuleNumber; 2477 break; 2478 } 2479 RegRule[*Reg] = RuleNumber; 2480 break; 2481 } 2482 case MCCFIInstruction::OpAdjustCfaOffset: 2483 case MCCFIInstruction::OpWindowSave: 2484 case MCCFIInstruction::OpNegateRAState: 2485 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2486 llvm_unreachable("unsupported CFI opcode"); 2487 break; 2488 case MCCFIInstruction::OpRememberState: 2489 case MCCFIInstruction::OpRestoreState: 2490 case MCCFIInstruction::OpGnuArgsSize: 2491 // do not affect CFI state 2492 break; 2493 } 2494 } 2495 2496 public: 2497 /// Advance state reading FDE CFI instructions up to State number 2498 void advanceTo(int32_t State) { 2499 for (int32_t I = CurState, E = State; I != E; ++I) { 2500 const MCCFIInstruction &Instr = FDE[I]; 2501 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2502 update(Instr, I); 2503 continue; 2504 } 2505 // If restore state instruction, fetch the equivalent CFIs that have 2506 // the same effect of this restore. This is used to ensure remember- 2507 // restore pairs are completely removed. 2508 auto Iter = FrameRestoreEquivalents.find(I); 2509 if (Iter == FrameRestoreEquivalents.end()) 2510 continue; 2511 for (int32_t RuleNumber : Iter->second) 2512 update(FDE[RuleNumber], RuleNumber); 2513 } 2514 2515 assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) || 2516 CFARule != UNKNOWN) && 2517 "CIE did not define default CFA?"); 2518 2519 CurState = State; 2520 } 2521 2522 /// Interpret all CIE and FDE instructions up until CFI State number and 2523 /// populate this snapshot 2524 CFISnapshot( 2525 const BinaryFunction::CFIInstrMapType &CIE, 2526 const BinaryFunction::CFIInstrMapType &FDE, 2527 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2528 int32_t State) 2529 : CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) { 2530 CFAReg = UNKNOWN; 2531 CFAOffset = UNKNOWN; 2532 CFARule = UNKNOWN; 2533 CurState = 0; 2534 2535 for (int32_t I = 0, E = CIE.size(); I != E; ++I) { 2536 const MCCFIInstruction &Instr = CIE[I]; 2537 update(Instr, -I); 2538 } 2539 2540 advanceTo(State); 2541 } 2542 }; 2543 2544 /// A CFI snapshot with the capability of checking if incremental additions to 2545 /// it are redundant. This is used to ensure we do not emit two CFI instructions 2546 /// back-to-back that are doing the same state change, or to avoid emitting a 2547 /// CFI at all when the state at that point would not be modified after that CFI 2548 struct CFISnapshotDiff : public CFISnapshot { 2549 bool RestoredCFAReg{false}; 2550 bool RestoredCFAOffset{false}; 2551 DenseMap<int32_t, bool> RestoredRegs; 2552 2553 CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {} 2554 2555 CFISnapshotDiff( 2556 const BinaryFunction::CFIInstrMapType &CIE, 2557 const BinaryFunction::CFIInstrMapType &FDE, 2558 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2559 int32_t State) 2560 : CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {} 2561 2562 /// Return true if applying Instr to this state is redundant and can be 2563 /// dismissed. 2564 bool isRedundant(const MCCFIInstruction &Instr) { 2565 switch (Instr.getOperation()) { 2566 case MCCFIInstruction::OpSameValue: 2567 case MCCFIInstruction::OpRelOffset: 2568 case MCCFIInstruction::OpOffset: 2569 case MCCFIInstruction::OpRestore: 2570 case MCCFIInstruction::OpUndefined: 2571 case MCCFIInstruction::OpRegister: 2572 case MCCFIInstruction::OpEscape: { 2573 uint32_t Reg; 2574 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2575 Reg = Instr.getRegister(); 2576 } else { 2577 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2578 // Handle DW_CFA_def_cfa_expression 2579 if (!R) { 2580 if (RestoredCFAReg && RestoredCFAOffset) 2581 return true; 2582 RestoredCFAReg = true; 2583 RestoredCFAOffset = true; 2584 return false; 2585 } 2586 Reg = *R; 2587 } 2588 if (RestoredRegs[Reg]) 2589 return true; 2590 RestoredRegs[Reg] = true; 2591 const int32_t CurRegRule = 2592 RegRule.find(Reg) != RegRule.end() ? RegRule[Reg] : UNKNOWN; 2593 if (CurRegRule == UNKNOWN) { 2594 if (Instr.getOperation() == MCCFIInstruction::OpRestore || 2595 Instr.getOperation() == MCCFIInstruction::OpSameValue) 2596 return true; 2597 return false; 2598 } 2599 const MCCFIInstruction &LastDef = 2600 CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule]; 2601 return LastDef == Instr; 2602 } 2603 case MCCFIInstruction::OpDefCfaRegister: 2604 if (RestoredCFAReg) 2605 return true; 2606 RestoredCFAReg = true; 2607 return CFAReg == Instr.getRegister(); 2608 case MCCFIInstruction::OpDefCfaOffset: 2609 if (RestoredCFAOffset) 2610 return true; 2611 RestoredCFAOffset = true; 2612 return CFAOffset == Instr.getOffset(); 2613 case MCCFIInstruction::OpDefCfa: 2614 if (RestoredCFAReg && RestoredCFAOffset) 2615 return true; 2616 RestoredCFAReg = true; 2617 RestoredCFAOffset = true; 2618 return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset(); 2619 case MCCFIInstruction::OpAdjustCfaOffset: 2620 case MCCFIInstruction::OpWindowSave: 2621 case MCCFIInstruction::OpNegateRAState: 2622 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2623 llvm_unreachable("unsupported CFI opcode"); 2624 return false; 2625 case MCCFIInstruction::OpRememberState: 2626 case MCCFIInstruction::OpRestoreState: 2627 case MCCFIInstruction::OpGnuArgsSize: 2628 // do not affect CFI state 2629 return true; 2630 } 2631 return false; 2632 } 2633 }; 2634 2635 } // end anonymous namespace 2636 2637 bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState, 2638 BinaryBasicBlock *InBB, 2639 BinaryBasicBlock::iterator InsertIt) { 2640 if (FromState == ToState) 2641 return true; 2642 assert(FromState < ToState && "can only replay CFIs forward"); 2643 2644 CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions, 2645 FrameRestoreEquivalents, FromState); 2646 2647 std::vector<uint32_t> NewCFIs; 2648 for (int32_t CurState = FromState; CurState < ToState; ++CurState) { 2649 MCCFIInstruction *Instr = &FrameInstructions[CurState]; 2650 if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) { 2651 auto Iter = FrameRestoreEquivalents.find(CurState); 2652 assert(Iter != FrameRestoreEquivalents.end()); 2653 NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end()); 2654 // RestoreState / Remember will be filtered out later by CFISnapshotDiff, 2655 // so we might as well fall-through here. 2656 } 2657 NewCFIs.push_back(CurState); 2658 continue; 2659 } 2660 2661 // Replay instructions while avoiding duplicates 2662 for (auto I = NewCFIs.rbegin(), E = NewCFIs.rend(); I != E; ++I) { 2663 if (CFIDiff.isRedundant(FrameInstructions[*I])) 2664 continue; 2665 InsertIt = addCFIPseudo(InBB, InsertIt, *I); 2666 } 2667 2668 return true; 2669 } 2670 2671 SmallVector<int32_t, 4> 2672 BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState, 2673 BinaryBasicBlock *InBB, 2674 BinaryBasicBlock::iterator &InsertIt) { 2675 SmallVector<int32_t, 4> NewStates; 2676 2677 CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions, 2678 FrameRestoreEquivalents, ToState); 2679 CFISnapshotDiff FromCFITable(ToCFITable); 2680 FromCFITable.advanceTo(FromState); 2681 2682 auto undoStateDefCfa = [&]() { 2683 if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) { 2684 FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa( 2685 nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset)); 2686 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2687 FrameInstructions.pop_back(); 2688 return; 2689 } 2690 NewStates.push_back(FrameInstructions.size() - 1); 2691 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2692 ++InsertIt; 2693 } else if (ToCFITable.CFARule < 0) { 2694 if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule])) 2695 return; 2696 NewStates.push_back(FrameInstructions.size()); 2697 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2698 ++InsertIt; 2699 FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]); 2700 } else if (!FromCFITable.isRedundant( 2701 FrameInstructions[ToCFITable.CFARule])) { 2702 NewStates.push_back(ToCFITable.CFARule); 2703 InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule); 2704 ++InsertIt; 2705 } 2706 }; 2707 2708 auto undoState = [&](const MCCFIInstruction &Instr) { 2709 switch (Instr.getOperation()) { 2710 case MCCFIInstruction::OpRememberState: 2711 case MCCFIInstruction::OpRestoreState: 2712 break; 2713 case MCCFIInstruction::OpSameValue: 2714 case MCCFIInstruction::OpRelOffset: 2715 case MCCFIInstruction::OpOffset: 2716 case MCCFIInstruction::OpRestore: 2717 case MCCFIInstruction::OpUndefined: 2718 case MCCFIInstruction::OpEscape: 2719 case MCCFIInstruction::OpRegister: { 2720 uint32_t Reg; 2721 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2722 Reg = Instr.getRegister(); 2723 } else { 2724 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2725 // Handle DW_CFA_def_cfa_expression 2726 if (!R) { 2727 undoStateDefCfa(); 2728 return; 2729 } 2730 Reg = *R; 2731 } 2732 2733 if (ToCFITable.RegRule.find(Reg) == ToCFITable.RegRule.end()) { 2734 FrameInstructions.emplace_back( 2735 MCCFIInstruction::createRestore(nullptr, Reg)); 2736 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2737 FrameInstructions.pop_back(); 2738 break; 2739 } 2740 NewStates.push_back(FrameInstructions.size() - 1); 2741 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2742 ++InsertIt; 2743 break; 2744 } 2745 const int32_t Rule = ToCFITable.RegRule[Reg]; 2746 if (Rule < 0) { 2747 if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule])) 2748 break; 2749 NewStates.push_back(FrameInstructions.size()); 2750 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2751 ++InsertIt; 2752 FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]); 2753 break; 2754 } 2755 if (FromCFITable.isRedundant(FrameInstructions[Rule])) 2756 break; 2757 NewStates.push_back(Rule); 2758 InsertIt = addCFIPseudo(InBB, InsertIt, Rule); 2759 ++InsertIt; 2760 break; 2761 } 2762 case MCCFIInstruction::OpDefCfaRegister: 2763 case MCCFIInstruction::OpDefCfaOffset: 2764 case MCCFIInstruction::OpDefCfa: 2765 undoStateDefCfa(); 2766 break; 2767 case MCCFIInstruction::OpAdjustCfaOffset: 2768 case MCCFIInstruction::OpWindowSave: 2769 case MCCFIInstruction::OpNegateRAState: 2770 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2771 llvm_unreachable("unsupported CFI opcode"); 2772 break; 2773 case MCCFIInstruction::OpGnuArgsSize: 2774 // do not affect CFI state 2775 break; 2776 } 2777 }; 2778 2779 // Undo all modifications from ToState to FromState 2780 for (int32_t I = ToState, E = FromState; I != E; ++I) { 2781 const MCCFIInstruction &Instr = FrameInstructions[I]; 2782 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2783 undoState(Instr); 2784 continue; 2785 } 2786 auto Iter = FrameRestoreEquivalents.find(I); 2787 if (Iter == FrameRestoreEquivalents.end()) 2788 continue; 2789 for (int32_t State : Iter->second) 2790 undoState(FrameInstructions[State]); 2791 } 2792 2793 return NewStates; 2794 } 2795 2796 void BinaryFunction::normalizeCFIState() { 2797 // Reordering blocks with remember-restore state instructions can be specially 2798 // tricky. When rewriting the CFI, we omit remember-restore state instructions 2799 // entirely. For restore state, we build a map expanding each restore to the 2800 // equivalent unwindCFIState sequence required at that point to achieve the 2801 // same effect of the restore. All remember state are then just ignored. 2802 std::stack<int32_t> Stack; 2803 for (BinaryBasicBlock *CurBB : BasicBlocksLayout) { 2804 for (auto II = CurBB->begin(); II != CurBB->end(); ++II) { 2805 if (const MCCFIInstruction *CFI = getCFIFor(*II)) { 2806 if (CFI->getOperation() == MCCFIInstruction::OpRememberState) { 2807 Stack.push(II->getOperand(0).getImm()); 2808 continue; 2809 } 2810 if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) { 2811 const int32_t RememberState = Stack.top(); 2812 const int32_t CurState = II->getOperand(0).getImm(); 2813 FrameRestoreEquivalents[CurState] = 2814 unwindCFIState(CurState, RememberState, CurBB, II); 2815 Stack.pop(); 2816 } 2817 } 2818 } 2819 } 2820 } 2821 2822 bool BinaryFunction::finalizeCFIState() { 2823 LLVM_DEBUG( 2824 dbgs() << "Trying to fix CFI states for each BB after reordering.\n"); 2825 LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this 2826 << ": "); 2827 2828 int32_t State = 0; 2829 bool SeenCold = false; 2830 const char *Sep = ""; 2831 (void)Sep; 2832 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 2833 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 2834 2835 // Hot-cold border: check if this is the first BB to be allocated in a cold 2836 // region (with a different FDE). If yes, we need to reset the CFI state. 2837 if (!SeenCold && BB->isCold()) { 2838 State = 0; 2839 SeenCold = true; 2840 } 2841 2842 // We need to recover the correct state if it doesn't match expected 2843 // state at BB entry point. 2844 if (BB->getCFIState() < State) { 2845 // In this case, State is currently higher than what this BB expect it 2846 // to be. To solve this, we need to insert CFI instructions to undo 2847 // the effect of all CFI from BB's state to current State. 2848 auto InsertIt = BB->begin(); 2849 unwindCFIState(State, BB->getCFIState(), BB, InsertIt); 2850 } else if (BB->getCFIState() > State) { 2851 // If BB's CFI state is greater than State, it means we are behind in the 2852 // state. Just emit all instructions to reach this state at the 2853 // beginning of this BB. If this sequence of instructions involve 2854 // remember state or restore state, bail out. 2855 if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin())) 2856 return false; 2857 } 2858 2859 State = CFIStateAtExit; 2860 LLVM_DEBUG(dbgs() << Sep << State; Sep = ", "); 2861 } 2862 LLVM_DEBUG(dbgs() << "\n"); 2863 2864 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 2865 for (auto II = BB->begin(); II != BB->end();) { 2866 const MCCFIInstruction *CFI = getCFIFor(*II); 2867 if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState || 2868 CFI->getOperation() == MCCFIInstruction::OpRestoreState)) { 2869 II = BB->eraseInstruction(II); 2870 } else { 2871 ++II; 2872 } 2873 } 2874 } 2875 2876 return true; 2877 } 2878 2879 bool BinaryFunction::requiresAddressTranslation() const { 2880 return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe(); 2881 } 2882 2883 uint64_t BinaryFunction::getInstructionCount() const { 2884 uint64_t Count = 0; 2885 for (BinaryBasicBlock *const &Block : BasicBlocksLayout) 2886 Count += Block->getNumNonPseudos(); 2887 return Count; 2888 } 2889 2890 bool BinaryFunction::hasLayoutChanged() const { return ModifiedLayout; } 2891 2892 uint64_t BinaryFunction::getEditDistance() const { 2893 return ComputeEditDistance<BinaryBasicBlock *>(BasicBlocksPreviousLayout, 2894 BasicBlocksLayout); 2895 } 2896 2897 void BinaryFunction::clearDisasmState() { 2898 clearList(Instructions); 2899 clearList(IgnoredBranches); 2900 clearList(TakenBranches); 2901 clearList(InterproceduralReferences); 2902 2903 if (BC.HasRelocations) { 2904 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 2905 BC.UndefinedSymbols.insert(LI.second); 2906 if (FunctionEndLabel) 2907 BC.UndefinedSymbols.insert(FunctionEndLabel); 2908 } 2909 } 2910 2911 void BinaryFunction::setTrapOnEntry() { 2912 clearDisasmState(); 2913 2914 auto addTrapAtOffset = [&](uint64_t Offset) { 2915 MCInst TrapInstr; 2916 BC.MIB->createTrap(TrapInstr); 2917 addInstruction(Offset, std::move(TrapInstr)); 2918 }; 2919 2920 addTrapAtOffset(0); 2921 for (const std::pair<const uint32_t, MCSymbol *> &KV : getLabels()) 2922 if (getSecondaryEntryPointSymbol(KV.second)) 2923 addTrapAtOffset(KV.first); 2924 2925 TrapsOnEntry = true; 2926 } 2927 2928 void BinaryFunction::setIgnored() { 2929 if (opts::processAllFunctions()) { 2930 // We can accept ignored functions before they've been disassembled. 2931 // In that case, they would still get disassembled and emited, but not 2932 // optimized. 2933 assert(CurrentState == State::Empty && 2934 "cannot ignore non-empty functions in current mode"); 2935 IsIgnored = true; 2936 return; 2937 } 2938 2939 clearDisasmState(); 2940 2941 // Clear CFG state too. 2942 if (hasCFG()) { 2943 releaseCFG(); 2944 2945 for (BinaryBasicBlock *BB : BasicBlocks) 2946 delete BB; 2947 clearList(BasicBlocks); 2948 2949 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 2950 delete BB; 2951 clearList(DeletedBasicBlocks); 2952 2953 clearList(BasicBlocksLayout); 2954 clearList(BasicBlocksPreviousLayout); 2955 } 2956 2957 CurrentState = State::Empty; 2958 2959 IsIgnored = true; 2960 IsSimple = false; 2961 LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n'); 2962 } 2963 2964 void BinaryFunction::duplicateConstantIslands() { 2965 assert(Islands && "function expected to have constant islands"); 2966 2967 for (BinaryBasicBlock *BB : layout()) { 2968 if (!BB->isCold()) 2969 continue; 2970 2971 for (MCInst &Inst : *BB) { 2972 int OpNum = 0; 2973 for (MCOperand &Operand : Inst) { 2974 if (!Operand.isExpr()) { 2975 ++OpNum; 2976 continue; 2977 } 2978 const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum); 2979 // Check if this is an island symbol 2980 if (!Islands->Symbols.count(Symbol) && 2981 !Islands->ProxySymbols.count(Symbol)) 2982 continue; 2983 2984 // Create cold symbol, if missing 2985 auto ISym = Islands->ColdSymbols.find(Symbol); 2986 MCSymbol *ColdSymbol; 2987 if (ISym != Islands->ColdSymbols.end()) { 2988 ColdSymbol = ISym->second; 2989 } else { 2990 ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold"); 2991 Islands->ColdSymbols[Symbol] = ColdSymbol; 2992 // Check if this is a proxy island symbol and update owner proxy map 2993 if (Islands->ProxySymbols.count(Symbol)) { 2994 BinaryFunction *Owner = Islands->ProxySymbols[Symbol]; 2995 auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol); 2996 Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol; 2997 } 2998 } 2999 3000 // Update instruction reference 3001 Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor( 3002 Inst, 3003 MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None, 3004 *BC.Ctx), 3005 *BC.Ctx, 0)); 3006 ++OpNum; 3007 } 3008 } 3009 } 3010 } 3011 3012 namespace { 3013 3014 #ifndef MAX_PATH 3015 #define MAX_PATH 255 3016 #endif 3017 3018 std::string constructFilename(std::string Filename, std::string Annotation, 3019 std::string Suffix) { 3020 std::replace(Filename.begin(), Filename.end(), '/', '-'); 3021 if (!Annotation.empty()) 3022 Annotation.insert(0, "-"); 3023 if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) { 3024 assert(Suffix.size() + Annotation.size() <= MAX_PATH); 3025 if (opts::Verbosity >= 1) { 3026 errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix 3027 << "\" exceeds the " << MAX_PATH << " size limit, truncating.\n"; 3028 } 3029 Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size())); 3030 } 3031 Filename += Annotation; 3032 Filename += Suffix; 3033 return Filename; 3034 } 3035 3036 std::string formatEscapes(const std::string &Str) { 3037 std::string Result; 3038 for (unsigned I = 0; I < Str.size(); ++I) { 3039 char C = Str[I]; 3040 switch (C) { 3041 case '\n': 3042 Result += " "; 3043 break; 3044 case '"': 3045 break; 3046 default: 3047 Result += C; 3048 break; 3049 } 3050 } 3051 return Result; 3052 } 3053 3054 } // namespace 3055 3056 void BinaryFunction::dumpGraph(raw_ostream &OS) const { 3057 OS << "strict digraph \"" << getPrintName() << "\" {\n"; 3058 uint64_t Offset = Address; 3059 for (BinaryBasicBlock *BB : BasicBlocks) { 3060 auto LayoutPos = 3061 std::find(BasicBlocksLayout.begin(), BasicBlocksLayout.end(), BB); 3062 unsigned Layout = LayoutPos - BasicBlocksLayout.begin(); 3063 const char *ColdStr = BB->isCold() ? " (cold)" : ""; 3064 OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u:CFI:%u)\"]\n", 3065 BB->getName().data(), BB->getName().data(), ColdStr, 3066 (BB->ExecutionCount != BinaryBasicBlock::COUNT_NO_PROFILE 3067 ? BB->ExecutionCount 3068 : 0), 3069 BB->getOffset(), getIndex(BB), Layout, BB->getCFIState()); 3070 OS << format("\"%s\" [shape=box]\n", BB->getName().data()); 3071 if (opts::DotToolTipCode) { 3072 std::string Str; 3073 raw_string_ostream CS(Str); 3074 Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this); 3075 const std::string Code = formatEscapes(CS.str()); 3076 OS << format("\"%s\" [tooltip=\"%s\"]\n", BB->getName().data(), 3077 Code.c_str()); 3078 } 3079 3080 // analyzeBranch is just used to get the names of the branch 3081 // opcodes. 3082 const MCSymbol *TBB = nullptr; 3083 const MCSymbol *FBB = nullptr; 3084 MCInst *CondBranch = nullptr; 3085 MCInst *UncondBranch = nullptr; 3086 const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 3087 3088 const MCInst *LastInstr = BB->getLastNonPseudoInstr(); 3089 const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr); 3090 3091 auto BI = BB->branch_info_begin(); 3092 for (BinaryBasicBlock *Succ : BB->successors()) { 3093 std::string Branch; 3094 if (Success) { 3095 if (Succ == BB->getConditionalSuccessor(true)) { 3096 Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3097 CondBranch->getOpcode())) 3098 : "TB"; 3099 } else if (Succ == BB->getConditionalSuccessor(false)) { 3100 Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3101 UncondBranch->getOpcode())) 3102 : "FB"; 3103 } else { 3104 Branch = "FT"; 3105 } 3106 } 3107 if (IsJumpTable) 3108 Branch = "JT"; 3109 OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(), 3110 Succ->getName().data(), Branch.c_str()); 3111 3112 if (BB->getExecutionCount() != COUNT_NO_PROFILE && 3113 BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 3114 OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")"; 3115 } else if (ExecutionCount != COUNT_NO_PROFILE && 3116 BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 3117 OS << "\\n(IC:" << BI->Count << ")"; 3118 } 3119 OS << "\"]\n"; 3120 3121 ++BI; 3122 } 3123 for (BinaryBasicBlock *LP : BB->landing_pads()) { 3124 OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n", 3125 BB->getName().data(), LP->getName().data()); 3126 } 3127 } 3128 OS << "}\n"; 3129 } 3130 3131 void BinaryFunction::viewGraph() const { 3132 SmallString<MAX_PATH> Filename; 3133 if (std::error_code EC = 3134 sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) { 3135 errs() << "BOLT-ERROR: " << EC.message() << ", unable to create " 3136 << " bolt-cfg-XXXXX.dot temporary file.\n"; 3137 return; 3138 } 3139 dumpGraphToFile(std::string(Filename)); 3140 if (DisplayGraph(Filename)) 3141 errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n"; 3142 if (std::error_code EC = sys::fs::remove(Filename)) { 3143 errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove " 3144 << Filename << "\n"; 3145 } 3146 } 3147 3148 void BinaryFunction::dumpGraphForPass(std::string Annotation) const { 3149 std::string Filename = constructFilename(getPrintName(), Annotation, ".dot"); 3150 outs() << "BOLT-DEBUG: Dumping CFG to " << Filename << "\n"; 3151 dumpGraphToFile(Filename); 3152 } 3153 3154 void BinaryFunction::dumpGraphToFile(std::string Filename) const { 3155 std::error_code EC; 3156 raw_fd_ostream of(Filename, EC, sys::fs::OF_None); 3157 if (EC) { 3158 if (opts::Verbosity >= 1) { 3159 errs() << "BOLT-WARNING: " << EC.message() << ", unable to open " 3160 << Filename << " for output.\n"; 3161 } 3162 return; 3163 } 3164 dumpGraph(of); 3165 } 3166 3167 bool BinaryFunction::validateCFG() const { 3168 bool Valid = true; 3169 for (BinaryBasicBlock *BB : BasicBlocks) 3170 Valid &= BB->validateSuccessorInvariants(); 3171 3172 if (!Valid) 3173 return Valid; 3174 3175 // Make sure all blocks in CFG are valid. 3176 auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) { 3177 if (!BB->isValid()) { 3178 errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName() 3179 << " detected in:\n"; 3180 this->dump(); 3181 return false; 3182 } 3183 return true; 3184 }; 3185 for (const BinaryBasicBlock *BB : BasicBlocks) { 3186 if (!validateBlock(BB, "block")) 3187 return false; 3188 for (const BinaryBasicBlock *PredBB : BB->predecessors()) 3189 if (!validateBlock(PredBB, "predecessor")) 3190 return false; 3191 for (const BinaryBasicBlock *SuccBB : BB->successors()) 3192 if (!validateBlock(SuccBB, "successor")) 3193 return false; 3194 for (const BinaryBasicBlock *LP : BB->landing_pads()) 3195 if (!validateBlock(LP, "landing pad")) 3196 return false; 3197 for (const BinaryBasicBlock *Thrower : BB->throwers()) 3198 if (!validateBlock(Thrower, "thrower")) 3199 return false; 3200 } 3201 3202 for (const BinaryBasicBlock *BB : BasicBlocks) { 3203 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 3204 for (const BinaryBasicBlock *LP : BB->landing_pads()) { 3205 if (BBLandingPads.count(LP)) { 3206 errs() << "BOLT-ERROR: duplicate landing pad detected in" 3207 << BB->getName() << " in function " << *this << '\n'; 3208 return false; 3209 } 3210 BBLandingPads.insert(LP); 3211 } 3212 3213 std::unordered_set<const BinaryBasicBlock *> BBThrowers; 3214 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3215 if (BBThrowers.count(Thrower)) { 3216 errs() << "BOLT-ERROR: duplicate thrower detected in" << BB->getName() 3217 << " in function " << *this << '\n'; 3218 return false; 3219 } 3220 BBThrowers.insert(Thrower); 3221 } 3222 3223 for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) { 3224 if (std::find(LPBlock->throw_begin(), LPBlock->throw_end(), BB) == 3225 LPBlock->throw_end()) { 3226 errs() << "BOLT-ERROR: inconsistent landing pad detected in " << *this 3227 << ": " << BB->getName() << " is in LandingPads but not in " 3228 << LPBlock->getName() << " Throwers\n"; 3229 return false; 3230 } 3231 } 3232 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3233 if (std::find(Thrower->lp_begin(), Thrower->lp_end(), BB) == 3234 Thrower->lp_end()) { 3235 errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this 3236 << ": " << BB->getName() << " is in Throwers list but not in " 3237 << Thrower->getName() << " LandingPads\n"; 3238 return false; 3239 } 3240 } 3241 } 3242 3243 return Valid; 3244 } 3245 3246 void BinaryFunction::fixBranches() { 3247 auto &MIB = BC.MIB; 3248 MCContext *Ctx = BC.Ctx.get(); 3249 3250 for (unsigned I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 3251 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 3252 const MCSymbol *TBB = nullptr; 3253 const MCSymbol *FBB = nullptr; 3254 MCInst *CondBranch = nullptr; 3255 MCInst *UncondBranch = nullptr; 3256 if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) 3257 continue; 3258 3259 // We will create unconditional branch with correct destination if needed. 3260 if (UncondBranch) 3261 BB->eraseInstruction(BB->findInstruction(UncondBranch)); 3262 3263 // Basic block that follows the current one in the final layout. 3264 const BinaryBasicBlock *NextBB = nullptr; 3265 if (I + 1 != E && BB->isCold() == BasicBlocksLayout[I + 1]->isCold()) 3266 NextBB = BasicBlocksLayout[I + 1]; 3267 3268 if (BB->succ_size() == 1) { 3269 // __builtin_unreachable() could create a conditional branch that 3270 // falls-through into the next function - hence the block will have only 3271 // one valid successor. Since behaviour is undefined - we replace 3272 // the conditional branch with an unconditional if required. 3273 if (CondBranch) 3274 BB->eraseInstruction(BB->findInstruction(CondBranch)); 3275 if (BB->getSuccessor() == NextBB) 3276 continue; 3277 BB->addBranchInstruction(BB->getSuccessor()); 3278 } else if (BB->succ_size() == 2) { 3279 assert(CondBranch && "conditional branch expected"); 3280 const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true); 3281 const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false); 3282 // Check whether we support reversing this branch direction 3283 const bool IsSupported = 3284 !MIB->isUnsupportedBranch(CondBranch->getOpcode()); 3285 if (NextBB && NextBB == TSuccessor && IsSupported) { 3286 std::swap(TSuccessor, FSuccessor); 3287 { 3288 auto L = BC.scopeLock(); 3289 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx); 3290 } 3291 BB->swapConditionalSuccessors(); 3292 } else { 3293 auto L = BC.scopeLock(); 3294 MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx); 3295 } 3296 if (TSuccessor == FSuccessor) 3297 BB->removeDuplicateConditionalSuccessor(CondBranch); 3298 if (!NextBB || 3299 ((NextBB != TSuccessor || !IsSupported) && NextBB != FSuccessor)) { 3300 // If one of the branches is guaranteed to be "long" while the other 3301 // could be "short", then prioritize short for "taken". This will 3302 // generate a sequence 1 byte shorter on x86. 3303 if (IsSupported && BC.isX86() && 3304 TSuccessor->isCold() != FSuccessor->isCold() && 3305 BB->isCold() != TSuccessor->isCold()) { 3306 std::swap(TSuccessor, FSuccessor); 3307 { 3308 auto L = BC.scopeLock(); 3309 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), 3310 Ctx); 3311 } 3312 BB->swapConditionalSuccessors(); 3313 } 3314 BB->addBranchInstruction(FSuccessor); 3315 } 3316 } 3317 // Cases where the number of successors is 0 (block ends with a 3318 // terminator) or more than 2 (switch table) don't require branch 3319 // instruction adjustments. 3320 } 3321 assert((!isSimple() || validateCFG()) && 3322 "Invalid CFG detected after fixing branches"); 3323 } 3324 3325 void BinaryFunction::propagateGnuArgsSizeInfo( 3326 MCPlusBuilder::AllocatorIdTy AllocId) { 3327 assert(CurrentState == State::Disassembled && "unexpected function state"); 3328 3329 if (!hasEHRanges() || !usesGnuArgsSize()) 3330 return; 3331 3332 // The current value of DW_CFA_GNU_args_size affects all following 3333 // invoke instructions until the next CFI overrides it. 3334 // It is important to iterate basic blocks in the original order when 3335 // assigning the value. 3336 uint64_t CurrentGnuArgsSize = 0; 3337 for (BinaryBasicBlock *BB : BasicBlocks) { 3338 for (auto II = BB->begin(); II != BB->end();) { 3339 MCInst &Instr = *II; 3340 if (BC.MIB->isCFI(Instr)) { 3341 const MCCFIInstruction *CFI = getCFIFor(Instr); 3342 if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) { 3343 CurrentGnuArgsSize = CFI->getOffset(); 3344 // Delete DW_CFA_GNU_args_size instructions and only regenerate 3345 // during the final code emission. The information is embedded 3346 // inside call instructions. 3347 II = BB->erasePseudoInstruction(II); 3348 continue; 3349 } 3350 } else if (BC.MIB->isInvoke(Instr)) { 3351 // Add the value of GNU_args_size as an extra operand to invokes. 3352 BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize, AllocId); 3353 } 3354 ++II; 3355 } 3356 } 3357 } 3358 3359 void BinaryFunction::postProcessBranches() { 3360 if (!isSimple()) 3361 return; 3362 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 3363 auto LastInstrRI = BB->getLastNonPseudo(); 3364 if (BB->succ_size() == 1) { 3365 if (LastInstrRI != BB->rend() && 3366 BC.MIB->isConditionalBranch(*LastInstrRI)) { 3367 // __builtin_unreachable() could create a conditional branch that 3368 // falls-through into the next function - hence the block will have only 3369 // one valid successor. Such behaviour is undefined and thus we remove 3370 // the conditional branch while leaving a valid successor. 3371 BB->eraseInstruction(std::prev(LastInstrRI.base())); 3372 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in " 3373 << BB->getName() << " in function " << *this << '\n'); 3374 } 3375 } else if (BB->succ_size() == 0) { 3376 // Ignore unreachable basic blocks. 3377 if (BB->pred_size() == 0 || BB->isLandingPad()) 3378 continue; 3379 3380 // If it's the basic block that does not end up with a terminator - we 3381 // insert a return instruction unless it's a call instruction. 3382 if (LastInstrRI == BB->rend()) { 3383 LLVM_DEBUG( 3384 dbgs() << "BOLT-DEBUG: at least one instruction expected in BB " 3385 << BB->getName() << " in function " << *this << '\n'); 3386 continue; 3387 } 3388 if (!BC.MIB->isTerminator(*LastInstrRI) && 3389 !BC.MIB->isCall(*LastInstrRI)) { 3390 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block " 3391 << BB->getName() << " in function " << *this << '\n'); 3392 MCInst ReturnInstr; 3393 BC.MIB->createReturn(ReturnInstr); 3394 BB->addInstruction(ReturnInstr); 3395 } 3396 } 3397 } 3398 assert(validateCFG() && "invalid CFG"); 3399 } 3400 3401 MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) { 3402 assert(Offset && "cannot add primary entry point"); 3403 assert(CurrentState == State::Empty || CurrentState == State::Disassembled); 3404 3405 const uint64_t EntryPointAddress = getAddress() + Offset; 3406 MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress); 3407 3408 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol); 3409 if (EntrySymbol) 3410 return EntrySymbol; 3411 3412 if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) { 3413 EntrySymbol = EntryBD->getSymbol(); 3414 } else { 3415 EntrySymbol = BC.getOrCreateGlobalSymbol( 3416 EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@"); 3417 } 3418 SecondaryEntryPoints[LocalSymbol] = EntrySymbol; 3419 3420 BC.setSymbolToFunctionMap(EntrySymbol, this); 3421 3422 return EntrySymbol; 3423 } 3424 3425 MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) { 3426 assert(CurrentState == State::CFG && 3427 "basic block can be added as an entry only in a function with CFG"); 3428 3429 if (&BB == BasicBlocks.front()) 3430 return getSymbol(); 3431 3432 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB); 3433 if (EntrySymbol) 3434 return EntrySymbol; 3435 3436 EntrySymbol = 3437 BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName()); 3438 3439 SecondaryEntryPoints[BB.getLabel()] = EntrySymbol; 3440 3441 BC.setSymbolToFunctionMap(EntrySymbol, this); 3442 3443 return EntrySymbol; 3444 } 3445 3446 MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) { 3447 if (EntryID == 0) 3448 return getSymbol(); 3449 3450 if (!isMultiEntry()) 3451 return nullptr; 3452 3453 uint64_t NumEntries = 0; 3454 if (hasCFG()) { 3455 for (BinaryBasicBlock *BB : BasicBlocks) { 3456 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3457 if (!EntrySymbol) 3458 continue; 3459 if (NumEntries == EntryID) 3460 return EntrySymbol; 3461 ++NumEntries; 3462 } 3463 } else { 3464 for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3465 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3466 if (!EntrySymbol) 3467 continue; 3468 if (NumEntries == EntryID) 3469 return EntrySymbol; 3470 ++NumEntries; 3471 } 3472 } 3473 3474 return nullptr; 3475 } 3476 3477 uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const { 3478 if (!isMultiEntry()) 3479 return 0; 3480 3481 for (const MCSymbol *FunctionSymbol : getSymbols()) 3482 if (FunctionSymbol == Symbol) 3483 return 0; 3484 3485 // Check all secondary entries available as either basic blocks or lables. 3486 uint64_t NumEntries = 0; 3487 for (const BinaryBasicBlock *BB : BasicBlocks) { 3488 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3489 if (!EntrySymbol) 3490 continue; 3491 if (EntrySymbol == Symbol) 3492 return NumEntries; 3493 ++NumEntries; 3494 } 3495 NumEntries = 0; 3496 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3497 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3498 if (!EntrySymbol) 3499 continue; 3500 if (EntrySymbol == Symbol) 3501 return NumEntries; 3502 ++NumEntries; 3503 } 3504 3505 llvm_unreachable("symbol not found"); 3506 } 3507 3508 bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const { 3509 bool Status = Callback(0, getSymbol()); 3510 if (!isMultiEntry()) 3511 return Status; 3512 3513 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3514 if (!Status) 3515 break; 3516 3517 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3518 if (!EntrySymbol) 3519 continue; 3520 3521 Status = Callback(KV.first, EntrySymbol); 3522 } 3523 3524 return Status; 3525 } 3526 3527 BinaryFunction::BasicBlockOrderType BinaryFunction::dfs() const { 3528 BasicBlockOrderType DFS; 3529 unsigned Index = 0; 3530 std::stack<BinaryBasicBlock *> Stack; 3531 3532 // Push entry points to the stack in reverse order. 3533 // 3534 // NB: we rely on the original order of entries to match. 3535 for (auto BBI = layout_rbegin(); BBI != layout_rend(); ++BBI) { 3536 BinaryBasicBlock *BB = *BBI; 3537 if (isEntryPoint(*BB)) 3538 Stack.push(BB); 3539 BB->setLayoutIndex(BinaryBasicBlock::InvalidIndex); 3540 } 3541 3542 while (!Stack.empty()) { 3543 BinaryBasicBlock *BB = Stack.top(); 3544 Stack.pop(); 3545 3546 if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex) 3547 continue; 3548 3549 BB->setLayoutIndex(Index++); 3550 DFS.push_back(BB); 3551 3552 for (BinaryBasicBlock *SuccBB : BB->landing_pads()) { 3553 Stack.push(SuccBB); 3554 } 3555 3556 const MCSymbol *TBB = nullptr; 3557 const MCSymbol *FBB = nullptr; 3558 MCInst *CondBranch = nullptr; 3559 MCInst *UncondBranch = nullptr; 3560 if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch && 3561 BB->succ_size() == 2) { 3562 if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode( 3563 *CondBranch)) == BC.MIB->getCondCode(*CondBranch)) { 3564 Stack.push(BB->getConditionalSuccessor(true)); 3565 Stack.push(BB->getConditionalSuccessor(false)); 3566 } else { 3567 Stack.push(BB->getConditionalSuccessor(false)); 3568 Stack.push(BB->getConditionalSuccessor(true)); 3569 } 3570 } else { 3571 for (BinaryBasicBlock *SuccBB : BB->successors()) { 3572 Stack.push(SuccBB); 3573 } 3574 } 3575 } 3576 3577 return DFS; 3578 } 3579 3580 size_t BinaryFunction::computeHash(bool UseDFS, 3581 OperandHashFuncTy OperandHashFunc) const { 3582 if (size() == 0) 3583 return 0; 3584 3585 assert(hasCFG() && "function is expected to have CFG"); 3586 3587 const BasicBlockOrderType &Order = UseDFS ? dfs() : BasicBlocksLayout; 3588 3589 // The hash is computed by creating a string of all instruction opcodes and 3590 // possibly their operands and then hashing that string with std::hash. 3591 std::string HashString; 3592 for (const BinaryBasicBlock *BB : Order) { 3593 for (const MCInst &Inst : *BB) { 3594 unsigned Opcode = Inst.getOpcode(); 3595 3596 if (BC.MIB->isPseudo(Inst)) 3597 continue; 3598 3599 // Ignore unconditional jumps since we check CFG consistency by processing 3600 // basic blocks in order and do not rely on branches to be in-sync with 3601 // CFG. Note that we still use condition code of conditional jumps. 3602 if (BC.MIB->isUnconditionalBranch(Inst)) 3603 continue; 3604 3605 if (Opcode == 0) 3606 HashString.push_back(0); 3607 3608 while (Opcode) { 3609 uint8_t LSB = Opcode & 0xff; 3610 HashString.push_back(LSB); 3611 Opcode = Opcode >> 8; 3612 } 3613 3614 for (const MCOperand &Op : MCPlus::primeOperands(Inst)) 3615 HashString.append(OperandHashFunc(Op)); 3616 } 3617 } 3618 3619 return Hash = std::hash<std::string>{}(HashString); 3620 } 3621 3622 void BinaryFunction::insertBasicBlocks( 3623 BinaryBasicBlock *Start, 3624 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3625 const bool UpdateLayout, const bool UpdateCFIState, 3626 const bool RecomputeLandingPads) { 3627 const int64_t StartIndex = Start ? getIndex(Start) : -1LL; 3628 const size_t NumNewBlocks = NewBBs.size(); 3629 3630 BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks, 3631 nullptr); 3632 3633 int64_t I = StartIndex + 1; 3634 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3635 assert(!BasicBlocks[I]); 3636 BasicBlocks[I++] = BB.release(); 3637 } 3638 3639 if (RecomputeLandingPads) 3640 recomputeLandingPads(); 3641 else 3642 updateBBIndices(0); 3643 3644 if (UpdateLayout) 3645 updateLayout(Start, NumNewBlocks); 3646 3647 if (UpdateCFIState) 3648 updateCFIState(Start, NumNewBlocks); 3649 } 3650 3651 BinaryFunction::iterator BinaryFunction::insertBasicBlocks( 3652 BinaryFunction::iterator StartBB, 3653 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3654 const bool UpdateLayout, const bool UpdateCFIState, 3655 const bool RecomputeLandingPads) { 3656 const unsigned StartIndex = getIndex(&*StartBB); 3657 const size_t NumNewBlocks = NewBBs.size(); 3658 3659 BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks, 3660 nullptr); 3661 auto RetIter = BasicBlocks.begin() + StartIndex + 1; 3662 3663 unsigned I = StartIndex + 1; 3664 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3665 assert(!BasicBlocks[I]); 3666 BasicBlocks[I++] = BB.release(); 3667 } 3668 3669 if (RecomputeLandingPads) 3670 recomputeLandingPads(); 3671 else 3672 updateBBIndices(0); 3673 3674 if (UpdateLayout) 3675 updateLayout(*std::prev(RetIter), NumNewBlocks); 3676 3677 if (UpdateCFIState) 3678 updateCFIState(*std::prev(RetIter), NumNewBlocks); 3679 3680 return RetIter; 3681 } 3682 3683 void BinaryFunction::updateBBIndices(const unsigned StartIndex) { 3684 for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I) 3685 BasicBlocks[I]->Index = I; 3686 } 3687 3688 void BinaryFunction::updateCFIState(BinaryBasicBlock *Start, 3689 const unsigned NumNewBlocks) { 3690 const int32_t CFIState = Start->getCFIStateAtExit(); 3691 const unsigned StartIndex = getIndex(Start) + 1; 3692 for (unsigned I = 0; I < NumNewBlocks; ++I) 3693 BasicBlocks[StartIndex + I]->setCFIState(CFIState); 3694 } 3695 3696 void BinaryFunction::updateLayout(BinaryBasicBlock *Start, 3697 const unsigned NumNewBlocks) { 3698 // If start not provided insert new blocks at the beginning 3699 if (!Start) { 3700 BasicBlocksLayout.insert(layout_begin(), BasicBlocks.begin(), 3701 BasicBlocks.begin() + NumNewBlocks); 3702 updateLayoutIndices(); 3703 return; 3704 } 3705 3706 // Insert new blocks in the layout immediately after Start. 3707 auto Pos = std::find(layout_begin(), layout_end(), Start); 3708 assert(Pos != layout_end()); 3709 BasicBlockListType::iterator Begin = 3710 std::next(BasicBlocks.begin(), getIndex(Start) + 1); 3711 BasicBlockListType::iterator End = 3712 std::next(BasicBlocks.begin(), getIndex(Start) + NumNewBlocks + 1); 3713 BasicBlocksLayout.insert(Pos + 1, Begin, End); 3714 updateLayoutIndices(); 3715 } 3716 3717 bool BinaryFunction::checkForAmbiguousJumpTables() { 3718 SmallSet<uint64_t, 4> JumpTables; 3719 for (BinaryBasicBlock *&BB : BasicBlocks) { 3720 for (MCInst &Inst : *BB) { 3721 if (!BC.MIB->isIndirectBranch(Inst)) 3722 continue; 3723 uint64_t JTAddress = BC.MIB->getJumpTable(Inst); 3724 if (!JTAddress) 3725 continue; 3726 // This address can be inside another jump table, but we only consider 3727 // it ambiguous when the same start address is used, not the same JT 3728 // object. 3729 if (!JumpTables.count(JTAddress)) { 3730 JumpTables.insert(JTAddress); 3731 continue; 3732 } 3733 return true; 3734 } 3735 } 3736 return false; 3737 } 3738 3739 void BinaryFunction::disambiguateJumpTables( 3740 MCPlusBuilder::AllocatorIdTy AllocId) { 3741 assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations); 3742 SmallPtrSet<JumpTable *, 4> JumpTables; 3743 for (BinaryBasicBlock *&BB : BasicBlocks) { 3744 for (MCInst &Inst : *BB) { 3745 if (!BC.MIB->isIndirectBranch(Inst)) 3746 continue; 3747 JumpTable *JT = getJumpTable(Inst); 3748 if (!JT) 3749 continue; 3750 auto Iter = JumpTables.find(JT); 3751 if (Iter == JumpTables.end()) { 3752 JumpTables.insert(JT); 3753 continue; 3754 } 3755 // This instruction is an indirect jump using a jump table, but it is 3756 // using the same jump table of another jump. Try all our tricks to 3757 // extract the jump table symbol and make it point to a new, duplicated JT 3758 MCPhysReg BaseReg1; 3759 uint64_t Scale; 3760 const MCSymbol *Target; 3761 // In case we match if our first matcher, first instruction is the one to 3762 // patch 3763 MCInst *JTLoadInst = &Inst; 3764 // Try a standard indirect jump matcher, scale 8 3765 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher = 3766 BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1), 3767 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3768 /*Offset=*/BC.MIB->matchSymbol(Target)); 3769 if (!IndJmpMatcher->match( 3770 *BC.MRI, *BC.MIB, 3771 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3772 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3773 MCPhysReg BaseReg2; 3774 uint64_t Offset; 3775 // Standard JT matching failed. Trying now: 3776 // movq "jt.2397/1"(,%rax,8), %rax 3777 // jmpq *%rax 3778 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner = 3779 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1), 3780 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3781 /*Offset=*/BC.MIB->matchSymbol(Target)); 3782 MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get(); 3783 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 = 3784 BC.MIB->matchIndJmp(std::move(LoadMatcherOwner)); 3785 if (!IndJmpMatcher2->match( 3786 *BC.MRI, *BC.MIB, 3787 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3788 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3789 // JT matching failed. Trying now: 3790 // PIC-style matcher, scale 4 3791 // addq %rdx, %rsi 3792 // addq %rdx, %rdi 3793 // leaq DATAat0x402450(%rip), %r11 3794 // movslq (%r11,%rdx,4), %rcx 3795 // addq %r11, %rcx 3796 // jmpq *%rcx # JUMPTABLE @0x402450 3797 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher = 3798 BC.MIB->matchIndJmp(BC.MIB->matchAdd( 3799 BC.MIB->matchReg(BaseReg1), 3800 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2), 3801 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3802 BC.MIB->matchImm(Offset)))); 3803 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner = 3804 BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target)); 3805 MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get(); 3806 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher = 3807 BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner), 3808 BC.MIB->matchAnyOperand())); 3809 if (!PICIndJmpMatcher->match( 3810 *BC.MRI, *BC.MIB, 3811 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3812 Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 || 3813 !PICBaseAddrMatcher->match( 3814 *BC.MRI, *BC.MIB, 3815 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) { 3816 llvm_unreachable("Failed to extract jump table base"); 3817 continue; 3818 } 3819 // Matched PIC, identify the instruction with the reference to the JT 3820 JTLoadInst = LEAMatcher->CurInst; 3821 } else { 3822 // Matched non-PIC 3823 JTLoadInst = LoadMatcher->CurInst; 3824 } 3825 } 3826 3827 uint64_t NewJumpTableID = 0; 3828 const MCSymbol *NewJTLabel; 3829 std::tie(NewJumpTableID, NewJTLabel) = 3830 BC.duplicateJumpTable(*this, JT, Target); 3831 { 3832 auto L = BC.scopeLock(); 3833 BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get()); 3834 } 3835 // We use a unique ID with the high bit set as address for this "injected" 3836 // jump table (not originally in the input binary). 3837 BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId); 3838 } 3839 } 3840 } 3841 3842 bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB, 3843 BinaryBasicBlock *OldDest, 3844 BinaryBasicBlock *NewDest) { 3845 MCInst *Instr = BB->getLastNonPseudoInstr(); 3846 if (!Instr || !BC.MIB->isIndirectBranch(*Instr)) 3847 return false; 3848 uint64_t JTAddress = BC.MIB->getJumpTable(*Instr); 3849 assert(JTAddress && "Invalid jump table address"); 3850 JumpTable *JT = getJumpTableContainingAddress(JTAddress); 3851 assert(JT && "No jump table structure for this indirect branch"); 3852 bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(), 3853 NewDest->getLabel()); 3854 (void)Patched; 3855 assert(Patched && "Invalid entry to be replaced in jump table"); 3856 return true; 3857 } 3858 3859 BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From, 3860 BinaryBasicBlock *To) { 3861 // Create intermediate BB 3862 MCSymbol *Tmp; 3863 { 3864 auto L = BC.scopeLock(); 3865 Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge"); 3866 } 3867 // Link new BBs to the original input offset of the From BB, so we can map 3868 // samples recorded in new BBs back to the original BB seem in the input 3869 // binary (if using BAT) 3870 std::unique_ptr<BinaryBasicBlock> NewBB = 3871 createBasicBlock(From->getInputOffset(), Tmp); 3872 BinaryBasicBlock *NewBBPtr = NewBB.get(); 3873 3874 // Update "From" BB 3875 auto I = From->succ_begin(); 3876 auto BI = From->branch_info_begin(); 3877 for (; I != From->succ_end(); ++I) { 3878 if (*I == To) 3879 break; 3880 ++BI; 3881 } 3882 assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!"); 3883 uint64_t OrigCount = BI->Count; 3884 uint64_t OrigMispreds = BI->MispredictedCount; 3885 replaceJumpTableEntryIn(From, To, NewBBPtr); 3886 From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds); 3887 3888 NewBB->addSuccessor(To, OrigCount, OrigMispreds); 3889 NewBB->setExecutionCount(OrigCount); 3890 NewBB->setIsCold(From->isCold()); 3891 3892 // Update CFI and BB layout with new intermediate BB 3893 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs; 3894 NewBBs.emplace_back(std::move(NewBB)); 3895 insertBasicBlocks(From, std::move(NewBBs), true, true, 3896 /*RecomputeLandingPads=*/false); 3897 return NewBBPtr; 3898 } 3899 3900 void BinaryFunction::deleteConservativeEdges() { 3901 // Our goal is to aggressively remove edges from the CFG that we believe are 3902 // wrong. This is used for instrumentation, where it is safe to remove 3903 // fallthrough edges because we won't reorder blocks. 3904 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 3905 BinaryBasicBlock *BB = *I; 3906 if (BB->succ_size() != 1 || BB->size() == 0) 3907 continue; 3908 3909 auto NextBB = std::next(I); 3910 MCInst *Last = BB->getLastNonPseudoInstr(); 3911 // Fallthrough is a landing pad? Delete this edge (as long as we don't 3912 // have a direct jump to it) 3913 if ((*BB->succ_begin())->isLandingPad() && NextBB != E && 3914 *BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) { 3915 BB->removeAllSuccessors(); 3916 continue; 3917 } 3918 3919 // Look for suspicious calls at the end of BB where gcc may optimize it and 3920 // remove the jump to the epilogue when it knows the call won't return. 3921 if (!Last || !BC.MIB->isCall(*Last)) 3922 continue; 3923 3924 const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last); 3925 if (!CalleeSymbol) 3926 continue; 3927 3928 StringRef CalleeName = CalleeSymbol->getName(); 3929 if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" && 3930 CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" && 3931 CalleeName != "abort@PLT") 3932 continue; 3933 3934 BB->removeAllSuccessors(); 3935 } 3936 } 3937 3938 bool BinaryFunction::isDataMarker(const SymbolRef &Symbol, 3939 uint64_t SymbolSize) const { 3940 // For aarch64, the ABI defines mapping symbols so we identify data in the 3941 // code section (see IHI0056B). $d identifies a symbol starting data contents. 3942 if (BC.isAArch64() && Symbol.getType() && 3943 cantFail(Symbol.getType()) == SymbolRef::ST_Unknown && SymbolSize == 0 && 3944 Symbol.getName() && 3945 (cantFail(Symbol.getName()) == "$d" || 3946 cantFail(Symbol.getName()).startswith("$d."))) 3947 return true; 3948 return false; 3949 } 3950 3951 bool BinaryFunction::isCodeMarker(const SymbolRef &Symbol, 3952 uint64_t SymbolSize) const { 3953 // For aarch64, the ABI defines mapping symbols so we identify data in the 3954 // code section (see IHI0056B). $x identifies a symbol starting code or the 3955 // end of a data chunk inside code. 3956 if (BC.isAArch64() && Symbol.getType() && 3957 cantFail(Symbol.getType()) == SymbolRef::ST_Unknown && SymbolSize == 0 && 3958 Symbol.getName() && 3959 (cantFail(Symbol.getName()) == "$x" || 3960 cantFail(Symbol.getName()).startswith("$x."))) 3961 return true; 3962 return false; 3963 } 3964 3965 bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol, 3966 uint64_t SymbolSize) const { 3967 // If this symbol is in a different section from the one where the 3968 // function symbol is, don't consider it as valid. 3969 if (!getOriginSection()->containsAddress( 3970 cantFail(Symbol.getAddress(), "cannot get symbol address"))) 3971 return false; 3972 3973 // Some symbols are tolerated inside function bodies, others are not. 3974 // The real function boundaries may not be known at this point. 3975 if (isDataMarker(Symbol, SymbolSize) || isCodeMarker(Symbol, SymbolSize)) 3976 return true; 3977 3978 // It's okay to have a zero-sized symbol in the middle of non-zero-sized 3979 // function. 3980 if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress()))) 3981 return true; 3982 3983 if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown) 3984 return false; 3985 3986 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) 3987 return false; 3988 3989 return true; 3990 } 3991 3992 void BinaryFunction::adjustExecutionCount(uint64_t Count) { 3993 if (getKnownExecutionCount() == 0 || Count == 0) 3994 return; 3995 3996 if (ExecutionCount < Count) 3997 Count = ExecutionCount; 3998 3999 double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount; 4000 if (AdjustmentRatio < 0.0) 4001 AdjustmentRatio = 0.0; 4002 4003 for (BinaryBasicBlock *&BB : layout()) 4004 BB->adjustExecutionCount(AdjustmentRatio); 4005 4006 ExecutionCount -= Count; 4007 } 4008 4009 BinaryFunction::~BinaryFunction() { 4010 for (BinaryBasicBlock *BB : BasicBlocks) 4011 delete BB; 4012 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 4013 delete BB; 4014 } 4015 4016 void BinaryFunction::calculateLoopInfo() { 4017 // Discover loops. 4018 BinaryDominatorTree DomTree; 4019 DomTree.recalculate(*this); 4020 BLI.reset(new BinaryLoopInfo()); 4021 BLI->analyze(DomTree); 4022 4023 // Traverse discovered loops and add depth and profile information. 4024 std::stack<BinaryLoop *> St; 4025 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) { 4026 St.push(*I); 4027 ++BLI->OuterLoops; 4028 } 4029 4030 while (!St.empty()) { 4031 BinaryLoop *L = St.top(); 4032 St.pop(); 4033 ++BLI->TotalLoops; 4034 BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth); 4035 4036 // Add nested loops in the stack. 4037 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4038 St.push(*I); 4039 4040 // Skip if no valid profile is found. 4041 if (!hasValidProfile()) { 4042 L->EntryCount = COUNT_NO_PROFILE; 4043 L->ExitCount = COUNT_NO_PROFILE; 4044 L->TotalBackEdgeCount = COUNT_NO_PROFILE; 4045 continue; 4046 } 4047 4048 // Compute back edge count. 4049 SmallVector<BinaryBasicBlock *, 1> Latches; 4050 L->getLoopLatches(Latches); 4051 4052 for (BinaryBasicBlock *Latch : Latches) { 4053 auto BI = Latch->branch_info_begin(); 4054 for (BinaryBasicBlock *Succ : Latch->successors()) { 4055 if (Succ == L->getHeader()) { 4056 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4057 "profile data not found"); 4058 L->TotalBackEdgeCount += BI->Count; 4059 } 4060 ++BI; 4061 } 4062 } 4063 4064 // Compute entry count. 4065 L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount; 4066 4067 // Compute exit count. 4068 SmallVector<BinaryLoop::Edge, 1> ExitEdges; 4069 L->getExitEdges(ExitEdges); 4070 for (BinaryLoop::Edge &Exit : ExitEdges) { 4071 const BinaryBasicBlock *Exiting = Exit.first; 4072 const BinaryBasicBlock *ExitTarget = Exit.second; 4073 auto BI = Exiting->branch_info_begin(); 4074 for (BinaryBasicBlock *Succ : Exiting->successors()) { 4075 if (Succ == ExitTarget) { 4076 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4077 "profile data not found"); 4078 L->ExitCount += BI->Count; 4079 } 4080 ++BI; 4081 } 4082 } 4083 } 4084 } 4085 4086 void BinaryFunction::updateOutputValues(const MCAsmLayout &Layout) { 4087 if (!isEmitted()) { 4088 assert(!isInjected() && "injected function should be emitted"); 4089 setOutputAddress(getAddress()); 4090 setOutputSize(getSize()); 4091 return; 4092 } 4093 4094 const uint64_t BaseAddress = getCodeSection()->getOutputAddress(); 4095 ErrorOr<BinarySection &> ColdSection = getColdCodeSection(); 4096 const uint64_t ColdBaseAddress = 4097 isSplit() ? ColdSection->getOutputAddress() : 0; 4098 if (BC.HasRelocations || isInjected()) { 4099 const uint64_t StartOffset = Layout.getSymbolOffset(*getSymbol()); 4100 const uint64_t EndOffset = Layout.getSymbolOffset(*getFunctionEndLabel()); 4101 setOutputAddress(BaseAddress + StartOffset); 4102 setOutputSize(EndOffset - StartOffset); 4103 if (hasConstantIsland()) { 4104 const uint64_t DataOffset = 4105 Layout.getSymbolOffset(*getFunctionConstantIslandLabel()); 4106 setOutputDataAddress(BaseAddress + DataOffset); 4107 } 4108 if (isSplit()) { 4109 const MCSymbol *ColdStartSymbol = getColdSymbol(); 4110 assert(ColdStartSymbol && ColdStartSymbol->isDefined() && 4111 "split function should have defined cold symbol"); 4112 const MCSymbol *ColdEndSymbol = getFunctionColdEndLabel(); 4113 assert(ColdEndSymbol && ColdEndSymbol->isDefined() && 4114 "split function should have defined cold end symbol"); 4115 const uint64_t ColdStartOffset = Layout.getSymbolOffset(*ColdStartSymbol); 4116 const uint64_t ColdEndOffset = Layout.getSymbolOffset(*ColdEndSymbol); 4117 cold().setAddress(ColdBaseAddress + ColdStartOffset); 4118 cold().setImageSize(ColdEndOffset - ColdStartOffset); 4119 if (hasConstantIsland()) { 4120 const uint64_t DataOffset = 4121 Layout.getSymbolOffset(*getFunctionColdConstantIslandLabel()); 4122 setOutputColdDataAddress(ColdBaseAddress + DataOffset); 4123 } 4124 } 4125 } else { 4126 setOutputAddress(getAddress()); 4127 setOutputSize(Layout.getSymbolOffset(*getFunctionEndLabel())); 4128 } 4129 4130 // Update basic block output ranges for the debug info, if we have 4131 // secondary entry points in the symbol table to update or if writing BAT. 4132 if (!opts::UpdateDebugSections && !isMultiEntry() && 4133 !requiresAddressTranslation()) 4134 return; 4135 4136 // Output ranges should match the input if the body hasn't changed. 4137 if (!isSimple() && !BC.HasRelocations) 4138 return; 4139 4140 // AArch64 may have functions that only contains a constant island (no code). 4141 if (layout_begin() == layout_end()) 4142 return; 4143 4144 BinaryBasicBlock *PrevBB = nullptr; 4145 for (auto BBI = layout_begin(), BBE = layout_end(); BBI != BBE; ++BBI) { 4146 BinaryBasicBlock *BB = *BBI; 4147 assert(BB->getLabel()->isDefined() && "symbol should be defined"); 4148 const uint64_t BBBaseAddress = BB->isCold() ? ColdBaseAddress : BaseAddress; 4149 if (!BC.HasRelocations) { 4150 if (BB->isCold()) { 4151 assert(BBBaseAddress == cold().getAddress()); 4152 } else { 4153 assert(BBBaseAddress == getOutputAddress()); 4154 } 4155 } 4156 const uint64_t BBOffset = Layout.getSymbolOffset(*BB->getLabel()); 4157 const uint64_t BBAddress = BBBaseAddress + BBOffset; 4158 BB->setOutputStartAddress(BBAddress); 4159 4160 if (PrevBB) { 4161 uint64_t PrevBBEndAddress = BBAddress; 4162 if (BB->isCold() != PrevBB->isCold()) 4163 PrevBBEndAddress = getOutputAddress() + getOutputSize(); 4164 PrevBB->setOutputEndAddress(PrevBBEndAddress); 4165 } 4166 PrevBB = BB; 4167 4168 BB->updateOutputValues(Layout); 4169 } 4170 PrevBB->setOutputEndAddress(PrevBB->isCold() 4171 ? cold().getAddress() + cold().getImageSize() 4172 : getOutputAddress() + getOutputSize()); 4173 } 4174 4175 DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const { 4176 DebugAddressRangesVector OutputRanges; 4177 4178 if (isFolded()) 4179 return OutputRanges; 4180 4181 if (IsFragment) 4182 return OutputRanges; 4183 4184 OutputRanges.emplace_back(getOutputAddress(), 4185 getOutputAddress() + getOutputSize()); 4186 if (isSplit()) { 4187 assert(isEmitted() && "split function should be emitted"); 4188 OutputRanges.emplace_back(cold().getAddress(), 4189 cold().getAddress() + cold().getImageSize()); 4190 } 4191 4192 if (isSimple()) 4193 return OutputRanges; 4194 4195 for (BinaryFunction *Frag : Fragments) { 4196 assert(!Frag->isSimple() && 4197 "fragment of non-simple function should also be non-simple"); 4198 OutputRanges.emplace_back(Frag->getOutputAddress(), 4199 Frag->getOutputAddress() + Frag->getOutputSize()); 4200 } 4201 4202 return OutputRanges; 4203 } 4204 4205 uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const { 4206 if (isFolded()) 4207 return 0; 4208 4209 // If the function hasn't changed return the same address. 4210 if (!isEmitted()) 4211 return Address; 4212 4213 if (Address < getAddress()) 4214 return 0; 4215 4216 // Check if the address is associated with an instruction that is tracked 4217 // by address translation. 4218 auto KV = InputOffsetToAddressMap.find(Address - getAddress()); 4219 if (KV != InputOffsetToAddressMap.end()) 4220 return KV->second; 4221 4222 // FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay 4223 // intact. Instead we can use pseudo instructions and/or annotations. 4224 const uint64_t Offset = Address - getAddress(); 4225 const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4226 if (!BB) { 4227 // Special case for address immediately past the end of the function. 4228 if (Offset == getSize()) 4229 return getOutputAddress() + getOutputSize(); 4230 4231 return 0; 4232 } 4233 4234 return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(), 4235 BB->getOutputAddressRange().second); 4236 } 4237 4238 DebugAddressRangesVector BinaryFunction::translateInputToOutputRanges( 4239 const DWARFAddressRangesVector &InputRanges) const { 4240 DebugAddressRangesVector OutputRanges; 4241 4242 if (isFolded()) 4243 return OutputRanges; 4244 4245 // If the function hasn't changed return the same ranges. 4246 if (!isEmitted()) { 4247 OutputRanges.resize(InputRanges.size()); 4248 std::transform(InputRanges.begin(), InputRanges.end(), OutputRanges.begin(), 4249 [](const DWARFAddressRange &Range) { 4250 return DebugAddressRange(Range.LowPC, Range.HighPC); 4251 }); 4252 return OutputRanges; 4253 } 4254 4255 // Even though we will merge ranges in a post-processing pass, we attempt to 4256 // merge them in a main processing loop as it improves the processing time. 4257 uint64_t PrevEndAddress = 0; 4258 for (const DWARFAddressRange &Range : InputRanges) { 4259 if (!containsAddress(Range.LowPC)) { 4260 LLVM_DEBUG( 4261 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4262 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) << ", 0x" 4263 << Twine::utohexstr(Range.HighPC) << "]\n"); 4264 PrevEndAddress = 0; 4265 continue; 4266 } 4267 uint64_t InputOffset = Range.LowPC - getAddress(); 4268 const uint64_t InputEndOffset = 4269 std::min(Range.HighPC - getAddress(), getSize()); 4270 4271 auto BBI = std::upper_bound( 4272 BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 4273 BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets()); 4274 --BBI; 4275 do { 4276 const BinaryBasicBlock *BB = BBI->second; 4277 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4278 LLVM_DEBUG( 4279 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4280 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) 4281 << ", 0x" << Twine::utohexstr(Range.HighPC) << "]\n"); 4282 PrevEndAddress = 0; 4283 break; 4284 } 4285 4286 // Skip the range if the block was deleted. 4287 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4288 const uint64_t StartAddress = 4289 OutputStart + InputOffset - BB->getOffset(); 4290 uint64_t EndAddress = BB->getOutputAddressRange().second; 4291 if (InputEndOffset < BB->getEndOffset()) 4292 EndAddress = StartAddress + InputEndOffset - InputOffset; 4293 4294 if (StartAddress == PrevEndAddress) { 4295 OutputRanges.back().HighPC = 4296 std::max(OutputRanges.back().HighPC, EndAddress); 4297 } else { 4298 OutputRanges.emplace_back(StartAddress, 4299 std::max(StartAddress, EndAddress)); 4300 } 4301 PrevEndAddress = OutputRanges.back().HighPC; 4302 } 4303 4304 InputOffset = BB->getEndOffset(); 4305 ++BBI; 4306 } while (InputOffset < InputEndOffset); 4307 } 4308 4309 // Post-processing pass to sort and merge ranges. 4310 std::sort(OutputRanges.begin(), OutputRanges.end()); 4311 DebugAddressRangesVector MergedRanges; 4312 PrevEndAddress = 0; 4313 for (const DebugAddressRange &Range : OutputRanges) { 4314 if (Range.LowPC <= PrevEndAddress) { 4315 MergedRanges.back().HighPC = 4316 std::max(MergedRanges.back().HighPC, Range.HighPC); 4317 } else { 4318 MergedRanges.emplace_back(Range.LowPC, Range.HighPC); 4319 } 4320 PrevEndAddress = MergedRanges.back().HighPC; 4321 } 4322 4323 return MergedRanges; 4324 } 4325 4326 MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) { 4327 if (CurrentState == State::Disassembled) { 4328 auto II = Instructions.find(Offset); 4329 return (II == Instructions.end()) ? nullptr : &II->second; 4330 } else if (CurrentState == State::CFG) { 4331 BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4332 if (!BB) 4333 return nullptr; 4334 4335 for (MCInst &Inst : *BB) { 4336 constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max(); 4337 if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset)) 4338 return &Inst; 4339 } 4340 4341 if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) { 4342 const uint32_t Size = 4343 BC.MIB->getAnnotationWithDefault<uint32_t>(*LastInstr, "Size"); 4344 if (BB->getEndOffset() - Offset == Size) 4345 return LastInstr; 4346 } 4347 4348 return nullptr; 4349 } else { 4350 llvm_unreachable("invalid CFG state to use getInstructionAtOffset()"); 4351 } 4352 } 4353 4354 DebugLocationsVector BinaryFunction::translateInputToOutputLocationList( 4355 const DebugLocationsVector &InputLL) const { 4356 DebugLocationsVector OutputLL; 4357 4358 if (isFolded()) 4359 return OutputLL; 4360 4361 // If the function hasn't changed - there's nothing to update. 4362 if (!isEmitted()) 4363 return InputLL; 4364 4365 uint64_t PrevEndAddress = 0; 4366 SmallVectorImpl<uint8_t> *PrevExpr = nullptr; 4367 for (const DebugLocationEntry &Entry : InputLL) { 4368 const uint64_t Start = Entry.LowPC; 4369 const uint64_t End = Entry.HighPC; 4370 if (!containsAddress(Start)) { 4371 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4372 "for " 4373 << *this << " : [0x" << Twine::utohexstr(Start) 4374 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4375 continue; 4376 } 4377 uint64_t InputOffset = Start - getAddress(); 4378 const uint64_t InputEndOffset = std::min(End - getAddress(), getSize()); 4379 auto BBI = std::upper_bound( 4380 BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 4381 BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets()); 4382 --BBI; 4383 do { 4384 const BinaryBasicBlock *BB = BBI->second; 4385 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4386 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4387 "for " 4388 << *this << " : [0x" << Twine::utohexstr(Start) 4389 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4390 PrevEndAddress = 0; 4391 break; 4392 } 4393 4394 // Skip the range if the block was deleted. 4395 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4396 const uint64_t StartAddress = 4397 OutputStart + InputOffset - BB->getOffset(); 4398 uint64_t EndAddress = BB->getOutputAddressRange().second; 4399 if (InputEndOffset < BB->getEndOffset()) 4400 EndAddress = StartAddress + InputEndOffset - InputOffset; 4401 4402 if (StartAddress == PrevEndAddress && Entry.Expr == *PrevExpr) { 4403 OutputLL.back().HighPC = std::max(OutputLL.back().HighPC, EndAddress); 4404 } else { 4405 OutputLL.emplace_back(DebugLocationEntry{ 4406 StartAddress, std::max(StartAddress, EndAddress), Entry.Expr}); 4407 } 4408 PrevEndAddress = OutputLL.back().HighPC; 4409 PrevExpr = &OutputLL.back().Expr; 4410 } 4411 4412 ++BBI; 4413 InputOffset = BB->getEndOffset(); 4414 } while (InputOffset < InputEndOffset); 4415 } 4416 4417 // Sort and merge adjacent entries with identical location. 4418 std::stable_sort( 4419 OutputLL.begin(), OutputLL.end(), 4420 [](const DebugLocationEntry &A, const DebugLocationEntry &B) { 4421 return A.LowPC < B.LowPC; 4422 }); 4423 DebugLocationsVector MergedLL; 4424 PrevEndAddress = 0; 4425 PrevExpr = nullptr; 4426 for (const DebugLocationEntry &Entry : OutputLL) { 4427 if (Entry.LowPC <= PrevEndAddress && *PrevExpr == Entry.Expr) { 4428 MergedLL.back().HighPC = std::max(Entry.HighPC, MergedLL.back().HighPC); 4429 } else { 4430 const uint64_t Begin = std::max(Entry.LowPC, PrevEndAddress); 4431 const uint64_t End = std::max(Begin, Entry.HighPC); 4432 MergedLL.emplace_back(DebugLocationEntry{Begin, End, Entry.Expr}); 4433 } 4434 PrevEndAddress = MergedLL.back().HighPC; 4435 PrevExpr = &MergedLL.back().Expr; 4436 } 4437 4438 return MergedLL; 4439 } 4440 4441 void BinaryFunction::printLoopInfo(raw_ostream &OS) const { 4442 OS << "Loop Info for Function \"" << *this << "\""; 4443 if (hasValidProfile()) 4444 OS << " (count: " << getExecutionCount() << ")"; 4445 OS << "\n"; 4446 4447 std::stack<BinaryLoop *> St; 4448 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) 4449 St.push(*I); 4450 while (!St.empty()) { 4451 BinaryLoop *L = St.top(); 4452 St.pop(); 4453 4454 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4455 St.push(*I); 4456 4457 if (!hasValidProfile()) 4458 continue; 4459 4460 OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer") 4461 << " loop header: " << L->getHeader()->getName(); 4462 OS << "\n"; 4463 OS << "Loop basic blocks: "; 4464 const char *Sep = ""; 4465 for (auto BI = L->block_begin(), BE = L->block_end(); BI != BE; ++BI) { 4466 OS << Sep << (*BI)->getName(); 4467 Sep = ", "; 4468 } 4469 OS << "\n"; 4470 if (hasValidProfile()) { 4471 OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n"; 4472 OS << "Loop entry count: " << L->EntryCount << "\n"; 4473 OS << "Loop exit count: " << L->ExitCount << "\n"; 4474 if (L->EntryCount > 0) { 4475 OS << "Average iters per entry: " 4476 << format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount) 4477 << "\n"; 4478 } 4479 } 4480 OS << "----\n"; 4481 } 4482 4483 OS << "Total number of loops: " << BLI->TotalLoops << "\n"; 4484 OS << "Number of outer loops: " << BLI->OuterLoops << "\n"; 4485 OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n"; 4486 } 4487 4488 bool BinaryFunction::isAArch64Veneer() const { 4489 if (BasicBlocks.size() != 1) 4490 return false; 4491 4492 BinaryBasicBlock &BB = **BasicBlocks.begin(); 4493 if (BB.size() != 3) 4494 return false; 4495 4496 for (MCInst &Inst : BB) 4497 if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer")) 4498 return false; 4499 4500 return true; 4501 } 4502 4503 } // namespace bolt 4504 } // namespace llvm 4505