1 //===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryFunction class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryFunction.h" 14 #include "bolt/Core/BinaryBasicBlock.h" 15 #include "bolt/Core/BinaryDomTree.h" 16 #include "bolt/Core/DynoStats.h" 17 #include "bolt/Core/MCPlusBuilder.h" 18 #include "bolt/Utils/NameResolver.h" 19 #include "bolt/Utils/NameShortener.h" 20 #include "bolt/Utils/Utils.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/edit_distance.h" 26 #include "llvm/Demangle/Demangle.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCAsmLayout.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 31 #include "llvm/MC/MCExpr.h" 32 #include "llvm/MC/MCInst.h" 33 #include "llvm/MC/MCInstPrinter.h" 34 #include "llvm/MC/MCRegisterInfo.h" 35 #include "llvm/Object/ObjectFile.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/LEB128.h" 40 #include "llvm/Support/Regex.h" 41 #include "llvm/Support/Timer.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <functional> 44 #include <limits> 45 #include <numeric> 46 #include <string> 47 48 #define DEBUG_TYPE "bolt" 49 50 using namespace llvm; 51 using namespace bolt; 52 53 namespace opts { 54 55 extern cl::OptionCategory BoltCategory; 56 extern cl::OptionCategory BoltOptCategory; 57 extern cl::OptionCategory BoltRelocCategory; 58 59 extern cl::opt<bool> EnableBAT; 60 extern cl::opt<bool> Instrument; 61 extern cl::opt<bool> StrictMode; 62 extern cl::opt<bool> UpdateDebugSections; 63 extern cl::opt<unsigned> Verbosity; 64 65 extern bool processAllFunctions(); 66 67 cl::opt<bool> CheckEncoding( 68 "check-encoding", 69 cl::desc("perform verification of LLVM instruction encoding/decoding. " 70 "Every instruction in the input is decoded and re-encoded. " 71 "If the resulting bytes do not match the input, a warning message " 72 "is printed."), 73 cl::Hidden, cl::cat(BoltCategory)); 74 75 static cl::opt<bool> DotToolTipCode( 76 "dot-tooltip-code", 77 cl::desc("add basic block instructions as tool tips on nodes"), cl::Hidden, 78 cl::cat(BoltCategory)); 79 80 cl::opt<JumpTableSupportLevel> 81 JumpTables("jump-tables", 82 cl::desc("jump tables support (default=basic)"), 83 cl::init(JTS_BASIC), 84 cl::values( 85 clEnumValN(JTS_NONE, "none", 86 "do not optimize functions with jump tables"), 87 clEnumValN(JTS_BASIC, "basic", 88 "optimize functions with jump tables"), 89 clEnumValN(JTS_MOVE, "move", 90 "move jump tables to a separate section"), 91 clEnumValN(JTS_SPLIT, "split", 92 "split jump tables section into hot and cold based on " 93 "function execution frequency"), 94 clEnumValN(JTS_AGGRESSIVE, "aggressive", 95 "aggressively split jump tables section based on usage " 96 "of the tables")), 97 cl::ZeroOrMore, 98 cl::cat(BoltOptCategory)); 99 100 static cl::opt<bool> NoScan( 101 "no-scan", 102 cl::desc( 103 "do not scan cold functions for external references (may result in " 104 "slower binary)"), 105 cl::Hidden, cl::cat(BoltOptCategory)); 106 107 cl::opt<bool> 108 PreserveBlocksAlignment("preserve-blocks-alignment", 109 cl::desc("try to preserve basic block alignment"), 110 cl::cat(BoltOptCategory)); 111 112 cl::opt<bool> 113 PrintDynoStats("dyno-stats", 114 cl::desc("print execution info based on profile"), 115 cl::cat(BoltCategory)); 116 117 static cl::opt<bool> 118 PrintDynoStatsOnly("print-dyno-stats-only", 119 cl::desc("while printing functions output dyno-stats and skip instructions"), 120 cl::init(false), 121 cl::Hidden, 122 cl::cat(BoltCategory)); 123 124 static cl::list<std::string> 125 PrintOnly("print-only", 126 cl::CommaSeparated, 127 cl::desc("list of functions to print"), 128 cl::value_desc("func1,func2,func3,..."), 129 cl::Hidden, 130 cl::cat(BoltCategory)); 131 132 cl::opt<bool> 133 TimeBuild("time-build", 134 cl::desc("print time spent constructing binary functions"), 135 cl::Hidden, cl::cat(BoltCategory)); 136 137 cl::opt<bool> 138 TrapOnAVX512("trap-avx512", 139 cl::desc("in relocation mode trap upon entry to any function that uses " 140 "AVX-512 instructions"), 141 cl::init(false), 142 cl::ZeroOrMore, 143 cl::Hidden, 144 cl::cat(BoltCategory)); 145 146 bool shouldPrint(const BinaryFunction &Function) { 147 if (Function.isIgnored()) 148 return false; 149 150 if (PrintOnly.empty()) 151 return true; 152 153 for (std::string &Name : opts::PrintOnly) { 154 if (Function.hasNameRegex(Name)) { 155 return true; 156 } 157 } 158 159 return false; 160 } 161 162 } // namespace opts 163 164 namespace llvm { 165 namespace bolt { 166 167 constexpr unsigned BinaryFunction::MinAlign; 168 169 namespace { 170 171 template <typename R> bool emptyRange(const R &Range) { 172 return Range.begin() == Range.end(); 173 } 174 175 /// Gets debug line information for the instruction located at the given 176 /// address in the original binary. The SMLoc's pointer is used 177 /// to point to this information, which is represented by a 178 /// DebugLineTableRowRef. The returned pointer is null if no debug line 179 /// information for this instruction was found. 180 SMLoc findDebugLineInformationForInstructionAt( 181 uint64_t Address, DWARFUnit *Unit, 182 const DWARFDebugLine::LineTable *LineTable) { 183 // We use the pointer in SMLoc to store an instance of DebugLineTableRowRef, 184 // which occupies 64 bits. Thus, we can only proceed if the struct fits into 185 // the pointer itself. 186 assert(sizeof(decltype(SMLoc().getPointer())) >= 187 sizeof(DebugLineTableRowRef) && 188 "Cannot fit instruction debug line information into SMLoc's pointer"); 189 190 SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc(); 191 uint32_t RowIndex = LineTable->lookupAddress( 192 {Address, object::SectionedAddress::UndefSection}); 193 if (RowIndex == LineTable->UnknownRowIndex) 194 return NullResult; 195 196 assert(RowIndex < LineTable->Rows.size() && 197 "Line Table lookup returned invalid index."); 198 199 decltype(SMLoc().getPointer()) Ptr; 200 DebugLineTableRowRef *InstructionLocation = 201 reinterpret_cast<DebugLineTableRowRef *>(&Ptr); 202 203 InstructionLocation->DwCompileUnitIndex = Unit->getOffset(); 204 InstructionLocation->RowIndex = RowIndex + 1; 205 206 return SMLoc::getFromPointer(Ptr); 207 } 208 209 std::string buildSectionName(StringRef Prefix, StringRef Name, 210 const BinaryContext &BC) { 211 if (BC.isELF()) 212 return (Prefix + Name).str(); 213 static NameShortener NS; 214 return (Prefix + Twine(NS.getID(Name))).str(); 215 } 216 217 raw_ostream &operator<<(raw_ostream &OS, const BinaryFunction::State State) { 218 switch (State) { 219 case BinaryFunction::State::Empty: OS << "empty"; break; 220 case BinaryFunction::State::Disassembled: OS << "disassembled"; break; 221 case BinaryFunction::State::CFG: OS << "CFG constructed"; break; 222 case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break; 223 case BinaryFunction::State::EmittedCFG: OS << "emitted with CFG"; break; 224 case BinaryFunction::State::Emitted: OS << "emitted"; break; 225 } 226 227 return OS; 228 } 229 230 } // namespace 231 232 std::string BinaryFunction::buildCodeSectionName(StringRef Name, 233 const BinaryContext &BC) { 234 return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC); 235 } 236 237 std::string BinaryFunction::buildColdCodeSectionName(StringRef Name, 238 const BinaryContext &BC) { 239 return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name, 240 BC); 241 } 242 243 uint64_t BinaryFunction::Count = 0; 244 245 Optional<StringRef> BinaryFunction::hasNameRegex(const StringRef Name) const { 246 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 247 Regex MatchName(RegexName); 248 Optional<StringRef> Match = forEachName( 249 [&MatchName](StringRef Name) { return MatchName.match(Name); }); 250 251 return Match; 252 } 253 254 Optional<StringRef> 255 BinaryFunction::hasRestoredNameRegex(const StringRef Name) const { 256 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 257 Regex MatchName(RegexName); 258 Optional<StringRef> Match = forEachName([&MatchName](StringRef Name) { 259 return MatchName.match(NameResolver::restore(Name)); 260 }); 261 262 return Match; 263 } 264 265 std::string BinaryFunction::getDemangledName() const { 266 StringRef MangledName = NameResolver::restore(getOneName()); 267 return demangle(MangledName.str()); 268 } 269 270 BinaryBasicBlock * 271 BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) { 272 if (Offset > Size) 273 return nullptr; 274 275 if (BasicBlockOffsets.empty()) 276 return nullptr; 277 278 /* 279 * This is commented out because it makes BOLT too slow. 280 * assert(std::is_sorted(BasicBlockOffsets.begin(), 281 * BasicBlockOffsets.end(), 282 * CompareBasicBlockOffsets()))); 283 */ 284 auto I = 285 llvm::upper_bound(BasicBlockOffsets, BasicBlockOffset(Offset, nullptr), 286 CompareBasicBlockOffsets()); 287 assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0"); 288 --I; 289 BinaryBasicBlock *BB = I->second; 290 return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr; 291 } 292 293 void BinaryFunction::markUnreachableBlocks() { 294 std::stack<BinaryBasicBlock *> Stack; 295 296 for (BinaryBasicBlock &BB : blocks()) 297 BB.markValid(false); 298 299 // Add all entries and landing pads as roots. 300 for (BinaryBasicBlock *BB : BasicBlocks) { 301 if (isEntryPoint(*BB) || BB->isLandingPad()) { 302 Stack.push(BB); 303 BB->markValid(true); 304 continue; 305 } 306 // FIXME: 307 // Also mark BBs with indirect jumps as reachable, since we do not 308 // support removing unused jump tables yet (GH-issue20). 309 for (const MCInst &Inst : *BB) { 310 if (BC.MIB->getJumpTable(Inst)) { 311 Stack.push(BB); 312 BB->markValid(true); 313 break; 314 } 315 } 316 } 317 318 // Determine reachable BBs from the entry point 319 while (!Stack.empty()) { 320 BinaryBasicBlock *BB = Stack.top(); 321 Stack.pop(); 322 for (BinaryBasicBlock *Succ : BB->successors()) { 323 if (Succ->isValid()) 324 continue; 325 Succ->markValid(true); 326 Stack.push(Succ); 327 } 328 } 329 } 330 331 // Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs 332 // will be cleaned up by fixBranches(). 333 std::pair<unsigned, uint64_t> BinaryFunction::eraseInvalidBBs() { 334 BasicBlockOrderType NewLayout; 335 unsigned Count = 0; 336 uint64_t Bytes = 0; 337 for (BinaryBasicBlock *BB : layout()) { 338 if (BB->isValid()) { 339 NewLayout.push_back(BB); 340 } else { 341 assert(!isEntryPoint(*BB) && "all entry blocks must be valid"); 342 ++Count; 343 Bytes += BC.computeCodeSize(BB->begin(), BB->end()); 344 } 345 } 346 BasicBlocksLayout = std::move(NewLayout); 347 348 BasicBlockListType NewBasicBlocks; 349 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 350 BinaryBasicBlock *BB = *I; 351 if (BB->isValid()) { 352 NewBasicBlocks.push_back(BB); 353 } else { 354 // Make sure the block is removed from the list of predecessors. 355 BB->removeAllSuccessors(); 356 DeletedBasicBlocks.push_back(BB); 357 } 358 } 359 BasicBlocks = std::move(NewBasicBlocks); 360 361 assert(BasicBlocks.size() == BasicBlocksLayout.size()); 362 363 // Update CFG state if needed 364 if (Count > 0) 365 recomputeLandingPads(); 366 367 return std::make_pair(Count, Bytes); 368 } 369 370 bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const { 371 // This function should work properly before and after function reordering. 372 // In order to accomplish this, we use the function index (if it is valid). 373 // If the function indices are not valid, we fall back to the original 374 // addresses. This should be ok because the functions without valid indices 375 // should have been ordered with a stable sort. 376 const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol); 377 if (CalleeBF) { 378 if (CalleeBF->isInjected()) 379 return true; 380 381 if (hasValidIndex() && CalleeBF->hasValidIndex()) { 382 return getIndex() < CalleeBF->getIndex(); 383 } else if (hasValidIndex() && !CalleeBF->hasValidIndex()) { 384 return true; 385 } else if (!hasValidIndex() && CalleeBF->hasValidIndex()) { 386 return false; 387 } else { 388 return getAddress() < CalleeBF->getAddress(); 389 } 390 } else { 391 // Absolute symbol. 392 ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol); 393 assert(CalleeAddressOrError && "unregistered symbol found"); 394 return *CalleeAddressOrError > getAddress(); 395 } 396 } 397 398 void BinaryFunction::dump(bool PrintInstructions) const { 399 print(dbgs(), "", PrintInstructions); 400 } 401 402 void BinaryFunction::print(raw_ostream &OS, std::string Annotation, 403 bool PrintInstructions) const { 404 if (!opts::shouldPrint(*this)) 405 return; 406 407 StringRef SectionName = 408 OriginSection ? OriginSection->getName() : "<no origin section>"; 409 OS << "Binary Function \"" << *this << "\" " << Annotation << " {"; 410 std::vector<StringRef> AllNames = getNames(); 411 if (AllNames.size() > 1) { 412 OS << "\n All names : "; 413 const char *Sep = ""; 414 for (const StringRef &Name : AllNames) { 415 OS << Sep << Name; 416 Sep = "\n "; 417 } 418 } 419 OS << "\n Number : " << FunctionNumber 420 << "\n State : " << CurrentState 421 << "\n Address : 0x" << Twine::utohexstr(Address) 422 << "\n Size : 0x" << Twine::utohexstr(Size) 423 << "\n MaxSize : 0x" << Twine::utohexstr(MaxSize) 424 << "\n Offset : 0x" << Twine::utohexstr(FileOffset) 425 << "\n Section : " << SectionName 426 << "\n Orc Section : " << getCodeSectionName() 427 << "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress()) 428 << "\n IsSimple : " << IsSimple 429 << "\n IsMultiEntry: " << isMultiEntry() 430 << "\n IsSplit : " << isSplit() 431 << "\n BB Count : " << size(); 432 433 if (HasFixedIndirectBranch) 434 OS << "\n HasFixedIndirectBranch : true"; 435 if (HasUnknownControlFlow) 436 OS << "\n Unknown CF : true"; 437 if (getPersonalityFunction()) 438 OS << "\n Personality : " << getPersonalityFunction()->getName(); 439 if (IsFragment) 440 OS << "\n IsFragment : true"; 441 if (isFolded()) 442 OS << "\n FoldedInto : " << *getFoldedIntoFunction(); 443 for (BinaryFunction *ParentFragment : ParentFragments) 444 OS << "\n Parent : " << *ParentFragment; 445 if (!Fragments.empty()) { 446 OS << "\n Fragments : "; 447 ListSeparator LS; 448 for (BinaryFunction *Frag : Fragments) 449 OS << LS << *Frag; 450 } 451 if (hasCFG()) 452 OS << "\n Hash : " << Twine::utohexstr(computeHash()); 453 if (isMultiEntry()) { 454 OS << "\n Secondary Entry Points : "; 455 ListSeparator LS; 456 for (const auto &KV : SecondaryEntryPoints) 457 OS << LS << KV.second->getName(); 458 } 459 if (FrameInstructions.size()) 460 OS << "\n CFI Instrs : " << FrameInstructions.size(); 461 if (BasicBlocksLayout.size()) { 462 OS << "\n BB Layout : "; 463 ListSeparator LS; 464 for (BinaryBasicBlock *BB : BasicBlocksLayout) 465 OS << LS << BB->getName(); 466 } 467 if (ImageAddress) 468 OS << "\n Image : 0x" << Twine::utohexstr(ImageAddress); 469 if (ExecutionCount != COUNT_NO_PROFILE) { 470 OS << "\n Exec Count : " << ExecutionCount; 471 OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f); 472 } 473 474 if (opts::PrintDynoStats && !BasicBlocksLayout.empty()) { 475 OS << '\n'; 476 DynoStats dynoStats = getDynoStats(*this); 477 OS << dynoStats; 478 } 479 480 OS << "\n}\n"; 481 482 if (opts::PrintDynoStatsOnly || !PrintInstructions || !BC.InstPrinter) 483 return; 484 485 // Offset of the instruction in function. 486 uint64_t Offset = 0; 487 488 if (BasicBlocks.empty() && !Instructions.empty()) { 489 // Print before CFG was built. 490 for (const std::pair<const uint32_t, MCInst> &II : Instructions) { 491 Offset = II.first; 492 493 // Print label if exists at this offset. 494 auto LI = Labels.find(Offset); 495 if (LI != Labels.end()) { 496 if (const MCSymbol *EntrySymbol = 497 getSecondaryEntryPointSymbol(LI->second)) 498 OS << EntrySymbol->getName() << " (Entry Point):\n"; 499 OS << LI->second->getName() << ":\n"; 500 } 501 502 BC.printInstruction(OS, II.second, Offset, this); 503 } 504 } 505 506 for (uint32_t I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 507 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 508 if (I != 0 && BB->isCold() != BasicBlocksLayout[I - 1]->isCold()) 509 OS << "------- HOT-COLD SPLIT POINT -------\n\n"; 510 511 OS << BB->getName() << " (" << BB->size() 512 << " instructions, align : " << BB->getAlignment() << ")\n"; 513 514 if (isEntryPoint(*BB)) { 515 if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB)) 516 OS << " Secondary Entry Point: " << EntrySymbol->getName() << '\n'; 517 else 518 OS << " Entry Point\n"; 519 } 520 521 if (BB->isLandingPad()) 522 OS << " Landing Pad\n"; 523 524 uint64_t BBExecCount = BB->getExecutionCount(); 525 if (hasValidProfile()) { 526 OS << " Exec Count : "; 527 if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE) 528 OS << BBExecCount << '\n'; 529 else 530 OS << "<unknown>\n"; 531 } 532 if (BB->getCFIState() >= 0) 533 OS << " CFI State : " << BB->getCFIState() << '\n'; 534 if (opts::EnableBAT) { 535 OS << " Input offset: " << Twine::utohexstr(BB->getInputOffset()) 536 << "\n"; 537 } 538 if (!BB->pred_empty()) { 539 OS << " Predecessors: "; 540 ListSeparator LS; 541 for (BinaryBasicBlock *Pred : BB->predecessors()) 542 OS << LS << Pred->getName(); 543 OS << '\n'; 544 } 545 if (!BB->throw_empty()) { 546 OS << " Throwers: "; 547 ListSeparator LS; 548 for (BinaryBasicBlock *Throw : BB->throwers()) 549 OS << LS << Throw->getName(); 550 OS << '\n'; 551 } 552 553 Offset = alignTo(Offset, BB->getAlignment()); 554 555 // Note: offsets are imprecise since this is happening prior to relaxation. 556 Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this); 557 558 if (!BB->succ_empty()) { 559 OS << " Successors: "; 560 // For more than 2 successors, sort them based on frequency. 561 std::vector<uint64_t> Indices(BB->succ_size()); 562 std::iota(Indices.begin(), Indices.end(), 0); 563 if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) { 564 llvm::stable_sort(Indices, [&](const uint64_t A, const uint64_t B) { 565 return BB->BranchInfo[B] < BB->BranchInfo[A]; 566 }); 567 } 568 ListSeparator LS; 569 for (unsigned I = 0; I < Indices.size(); ++I) { 570 BinaryBasicBlock *Succ = BB->Successors[Indices[I]]; 571 BinaryBasicBlock::BinaryBranchInfo &BI = BB->BranchInfo[Indices[I]]; 572 OS << LS << Succ->getName(); 573 if (ExecutionCount != COUNT_NO_PROFILE && 574 BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 575 OS << " (mispreds: " << BI.MispredictedCount 576 << ", count: " << BI.Count << ")"; 577 } else if (ExecutionCount != COUNT_NO_PROFILE && 578 BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 579 OS << " (inferred count: " << BI.Count << ")"; 580 } 581 } 582 OS << '\n'; 583 } 584 585 if (!BB->lp_empty()) { 586 OS << " Landing Pads: "; 587 ListSeparator LS; 588 for (BinaryBasicBlock *LP : BB->landing_pads()) { 589 OS << LS << LP->getName(); 590 if (ExecutionCount != COUNT_NO_PROFILE) { 591 OS << " (count: " << LP->getExecutionCount() << ")"; 592 } 593 } 594 OS << '\n'; 595 } 596 597 // In CFG_Finalized state we can miscalculate CFI state at exit. 598 if (CurrentState == State::CFG) { 599 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 600 if (CFIStateAtExit >= 0) 601 OS << " CFI State: " << CFIStateAtExit << '\n'; 602 } 603 604 OS << '\n'; 605 } 606 607 // Dump new exception ranges for the function. 608 if (!CallSites.empty()) { 609 OS << "EH table:\n"; 610 for (const CallSite &CSI : CallSites) { 611 OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : "; 612 if (CSI.LP) 613 OS << *CSI.LP; 614 else 615 OS << "0"; 616 OS << ", action : " << CSI.Action << '\n'; 617 } 618 OS << '\n'; 619 } 620 621 // Print all jump tables. 622 for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables) 623 JTI.second->print(OS); 624 625 OS << "DWARF CFI Instructions:\n"; 626 if (OffsetToCFI.size()) { 627 // Pre-buildCFG information 628 for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) { 629 OS << format(" %08x:\t", Elmt.first); 630 assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset"); 631 BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]); 632 OS << "\n"; 633 } 634 } else { 635 // Post-buildCFG information 636 for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) { 637 const MCCFIInstruction &CFI = FrameInstructions[I]; 638 OS << format(" %d:\t", I); 639 BinaryContext::printCFI(OS, CFI); 640 OS << "\n"; 641 } 642 } 643 if (FrameInstructions.empty()) 644 OS << " <empty>\n"; 645 646 OS << "End of Function \"" << *this << "\"\n\n"; 647 } 648 649 void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset, 650 uint64_t Size) const { 651 const char *Sep = " # Relocs: "; 652 653 auto RI = Relocations.lower_bound(Offset); 654 while (RI != Relocations.end() && RI->first < Offset + Size) { 655 OS << Sep << "(R: " << RI->second << ")"; 656 Sep = ", "; 657 ++RI; 658 } 659 } 660 661 namespace { 662 std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr, 663 MCPhysReg NewReg) { 664 StringRef ExprBytes = Instr.getValues(); 665 assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short"); 666 uint8_t Opcode = ExprBytes[0]; 667 assert((Opcode == dwarf::DW_CFA_expression || 668 Opcode == dwarf::DW_CFA_val_expression) && 669 "invalid DWARF expression CFI"); 670 (void)Opcode; 671 const uint8_t *const Start = 672 reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data()); 673 const uint8_t *const End = 674 reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1); 675 unsigned Size = 0; 676 decodeULEB128(Start, &Size, End); 677 assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI"); 678 SmallString<8> Tmp; 679 raw_svector_ostream OSE(Tmp); 680 encodeULEB128(NewReg, OSE); 681 return Twine(ExprBytes.slice(0, 1)) 682 .concat(OSE.str()) 683 .concat(ExprBytes.drop_front(1 + Size)) 684 .str(); 685 } 686 } // namespace 687 688 void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr, 689 MCPhysReg NewReg) { 690 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 691 assert(OldCFI && "invalid CFI instr"); 692 switch (OldCFI->getOperation()) { 693 default: 694 llvm_unreachable("Unexpected instruction"); 695 case MCCFIInstruction::OpDefCfa: 696 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg, 697 OldCFI->getOffset())); 698 break; 699 case MCCFIInstruction::OpDefCfaRegister: 700 setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg)); 701 break; 702 case MCCFIInstruction::OpOffset: 703 setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg, 704 OldCFI->getOffset())); 705 break; 706 case MCCFIInstruction::OpRegister: 707 setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg, 708 OldCFI->getRegister2())); 709 break; 710 case MCCFIInstruction::OpSameValue: 711 setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg)); 712 break; 713 case MCCFIInstruction::OpEscape: 714 setCFIFor(Instr, 715 MCCFIInstruction::createEscape( 716 nullptr, 717 StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg)))); 718 break; 719 case MCCFIInstruction::OpRestore: 720 setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg)); 721 break; 722 case MCCFIInstruction::OpUndefined: 723 setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg)); 724 break; 725 } 726 } 727 728 const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr, 729 int64_t NewOffset) { 730 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 731 assert(OldCFI && "invalid CFI instr"); 732 switch (OldCFI->getOperation()) { 733 default: 734 llvm_unreachable("Unexpected instruction"); 735 case MCCFIInstruction::OpDefCfaOffset: 736 setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset)); 737 break; 738 case MCCFIInstruction::OpAdjustCfaOffset: 739 setCFIFor(Instr, 740 MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset)); 741 break; 742 case MCCFIInstruction::OpDefCfa: 743 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(), 744 NewOffset)); 745 break; 746 case MCCFIInstruction::OpOffset: 747 setCFIFor(Instr, MCCFIInstruction::createOffset( 748 nullptr, OldCFI->getRegister(), NewOffset)); 749 break; 750 } 751 return getCFIFor(Instr); 752 } 753 754 IndirectBranchType 755 BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size, 756 uint64_t Offset, 757 uint64_t &TargetAddress) { 758 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 759 760 // The instruction referencing memory used by the branch instruction. 761 // It could be the branch instruction itself or one of the instructions 762 // setting the value of the register used by the branch. 763 MCInst *MemLocInstr; 764 765 // Address of the table referenced by MemLocInstr. Could be either an 766 // array of function pointers, or a jump table. 767 uint64_t ArrayStart = 0; 768 769 unsigned BaseRegNum, IndexRegNum; 770 int64_t DispValue; 771 const MCExpr *DispExpr; 772 773 // In AArch, identify the instruction adding the PC-relative offset to 774 // jump table entries to correctly decode it. 775 MCInst *PCRelBaseInstr; 776 uint64_t PCRelAddr = 0; 777 778 auto Begin = Instructions.begin(); 779 if (BC.isAArch64()) { 780 PreserveNops = BC.HasRelocations; 781 // Start at the last label as an approximation of the current basic block. 782 // This is a heuristic, since the full set of labels have yet to be 783 // determined 784 for (auto LI = Labels.rbegin(); LI != Labels.rend(); ++LI) { 785 auto II = Instructions.find(LI->first); 786 if (II != Instructions.end()) { 787 Begin = II; 788 break; 789 } 790 } 791 } 792 793 IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch( 794 Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum, 795 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 796 797 if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr) 798 return BranchType; 799 800 if (MemLocInstr != &Instruction) 801 IndexRegNum = BC.MIB->getNoRegister(); 802 803 if (BC.isAArch64()) { 804 const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1); 805 assert(Sym && "Symbol extraction failed"); 806 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym); 807 if (SymValueOrError) { 808 PCRelAddr = *SymValueOrError; 809 } else { 810 for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) { 811 if (Elmt.second == Sym) { 812 PCRelAddr = Elmt.first + getAddress(); 813 break; 814 } 815 } 816 } 817 uint64_t InstrAddr = 0; 818 for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) { 819 if (&II->second == PCRelBaseInstr) { 820 InstrAddr = II->first + getAddress(); 821 break; 822 } 823 } 824 assert(InstrAddr != 0 && "instruction not found"); 825 // We do this to avoid spurious references to code locations outside this 826 // function (for example, if the indirect jump lives in the last basic 827 // block of the function, it will create a reference to the next function). 828 // This replaces a symbol reference with an immediate. 829 BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr, 830 MCOperand::createImm(PCRelAddr - InstrAddr)); 831 // FIXME: Disable full jump table processing for AArch64 until we have a 832 // proper way of determining the jump table limits. 833 return IndirectBranchType::UNKNOWN; 834 } 835 836 // RIP-relative addressing should be converted to symbol form by now 837 // in processed instructions (but not in jump). 838 if (DispExpr) { 839 const MCSymbol *TargetSym; 840 uint64_t TargetOffset; 841 std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr); 842 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym); 843 assert(SymValueOrError && "global symbol needs a value"); 844 ArrayStart = *SymValueOrError + TargetOffset; 845 BaseRegNum = BC.MIB->getNoRegister(); 846 if (BC.isAArch64()) { 847 ArrayStart &= ~0xFFFULL; 848 ArrayStart += DispValue & 0xFFFULL; 849 } 850 } else { 851 ArrayStart = static_cast<uint64_t>(DispValue); 852 } 853 854 if (BaseRegNum == BC.MRI->getProgramCounter()) 855 ArrayStart += getAddress() + Offset + Size; 856 857 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x" 858 << Twine::utohexstr(ArrayStart) << '\n'); 859 860 ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart); 861 if (!Section) { 862 // No section - possibly an absolute address. Since we don't allow 863 // internal function addresses to escape the function scope - we 864 // consider it a tail call. 865 if (opts::Verbosity >= 1) { 866 errs() << "BOLT-WARNING: no section for address 0x" 867 << Twine::utohexstr(ArrayStart) << " referenced from function " 868 << *this << '\n'; 869 } 870 return IndirectBranchType::POSSIBLE_TAIL_CALL; 871 } 872 if (Section->isVirtual()) { 873 // The contents are filled at runtime. 874 return IndirectBranchType::POSSIBLE_TAIL_CALL; 875 } 876 877 if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) { 878 ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart); 879 if (!Value) 880 return IndirectBranchType::UNKNOWN; 881 882 if (!BC.getSectionForAddress(ArrayStart)->isReadOnly()) 883 return IndirectBranchType::UNKNOWN; 884 885 outs() << "BOLT-INFO: fixed indirect branch detected in " << *this 886 << " at 0x" << Twine::utohexstr(getAddress() + Offset) 887 << " referencing data at 0x" << Twine::utohexstr(ArrayStart) 888 << " the destination value is 0x" << Twine::utohexstr(*Value) 889 << '\n'; 890 891 TargetAddress = *Value; 892 return BranchType; 893 } 894 895 // Check if there's already a jump table registered at this address. 896 MemoryContentsType MemType; 897 if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) { 898 switch (JT->Type) { 899 case JumpTable::JTT_NORMAL: 900 MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE; 901 break; 902 case JumpTable::JTT_PIC: 903 MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 904 break; 905 } 906 } else { 907 MemType = BC.analyzeMemoryAt(ArrayStart, *this); 908 } 909 910 // Check that jump table type in instruction pattern matches memory contents. 911 JumpTable::JumpTableType JTType; 912 if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) { 913 if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 914 return IndirectBranchType::UNKNOWN; 915 JTType = JumpTable::JTT_PIC; 916 } else { 917 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 918 return IndirectBranchType::UNKNOWN; 919 920 if (MemType == MemoryContentsType::UNKNOWN) 921 return IndirectBranchType::POSSIBLE_TAIL_CALL; 922 923 BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE; 924 JTType = JumpTable::JTT_NORMAL; 925 } 926 927 // Convert the instruction into jump table branch. 928 const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType); 929 BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get()); 930 BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum); 931 932 JTSites.emplace_back(Offset, ArrayStart); 933 934 return BranchType; 935 } 936 937 MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address, 938 bool CreatePastEnd) { 939 const uint64_t Offset = Address - getAddress(); 940 941 if ((Offset == getSize()) && CreatePastEnd) 942 return getFunctionEndLabel(); 943 944 auto LI = Labels.find(Offset); 945 if (LI != Labels.end()) 946 return LI->second; 947 948 // For AArch64, check if this address is part of a constant island. 949 if (BC.isAArch64()) { 950 if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address)) 951 return IslandSym; 952 } 953 954 MCSymbol *Label = BC.Ctx->createNamedTempSymbol(); 955 Labels[Offset] = Label; 956 957 return Label; 958 } 959 960 ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const { 961 BinarySection &Section = *getOriginSection(); 962 assert(Section.containsRange(getAddress(), getMaxSize()) && 963 "wrong section for function"); 964 965 if (!Section.isText() || Section.isVirtual() || !Section.getSize()) 966 return std::make_error_code(std::errc::bad_address); 967 968 StringRef SectionContents = Section.getContents(); 969 970 assert(SectionContents.size() == Section.getSize() && 971 "section size mismatch"); 972 973 // Function offset from the section start. 974 uint64_t Offset = getAddress() - Section.getAddress(); 975 auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data()); 976 return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize()); 977 } 978 979 size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const { 980 if (!Islands) 981 return 0; 982 983 if (Islands->DataOffsets.find(Offset) == Islands->DataOffsets.end()) 984 return 0; 985 986 auto Iter = Islands->CodeOffsets.upper_bound(Offset); 987 if (Iter != Islands->CodeOffsets.end()) 988 return *Iter - Offset; 989 return getSize() - Offset; 990 } 991 992 bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const { 993 ArrayRef<uint8_t> FunctionData = *getData(); 994 uint64_t EndOfCode = getSize(); 995 if (Islands) { 996 auto Iter = Islands->DataOffsets.upper_bound(Offset); 997 if (Iter != Islands->DataOffsets.end()) 998 EndOfCode = *Iter; 999 } 1000 for (uint64_t I = Offset; I < EndOfCode; ++I) 1001 if (FunctionData[I] != 0) 1002 return false; 1003 1004 return true; 1005 } 1006 1007 bool BinaryFunction::disassemble() { 1008 NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs", 1009 "Build Binary Functions", opts::TimeBuild); 1010 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1011 assert(ErrorOrFunctionData && "function data is not available"); 1012 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1013 assert(FunctionData.size() == getMaxSize() && 1014 "function size does not match raw data size"); 1015 1016 auto &Ctx = BC.Ctx; 1017 auto &MIB = BC.MIB; 1018 1019 BC.SymbolicDisAsm->setSymbolizer(MIB->createTargetSymbolizer(*this)); 1020 1021 // Insert a label at the beginning of the function. This will be our first 1022 // basic block. 1023 Labels[0] = Ctx->createNamedTempSymbol("BB0"); 1024 1025 auto handlePCRelOperand = [&](MCInst &Instruction, uint64_t Address, 1026 uint64_t Size) { 1027 uint64_t TargetAddress = 0; 1028 if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address, 1029 Size)) { 1030 errs() << "BOLT-ERROR: PC-relative operand can't be evaluated:\n"; 1031 BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, errs()); 1032 errs() << '\n'; 1033 Instruction.dump_pretty(errs(), BC.InstPrinter.get()); 1034 errs() << '\n'; 1035 errs() << "BOLT-ERROR: cannot handle PC-relative operand at 0x" 1036 << Twine::utohexstr(Address) << ". Skipping function " << *this 1037 << ".\n"; 1038 if (BC.HasRelocations) 1039 exit(1); 1040 IsSimple = false; 1041 return; 1042 } 1043 if (TargetAddress == 0 && opts::Verbosity >= 1) { 1044 outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this 1045 << '\n'; 1046 } 1047 1048 const MCSymbol *TargetSymbol; 1049 uint64_t TargetOffset; 1050 std::tie(TargetSymbol, TargetOffset) = 1051 BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true); 1052 const MCExpr *Expr = MCSymbolRefExpr::create( 1053 TargetSymbol, MCSymbolRefExpr::VK_None, *BC.Ctx); 1054 if (TargetOffset) { 1055 const MCConstantExpr *Offset = 1056 MCConstantExpr::create(TargetOffset, *BC.Ctx); 1057 Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx); 1058 } 1059 MIB->replaceMemOperandDisp(Instruction, 1060 MCOperand::createExpr(BC.MIB->getTargetExprFor( 1061 Instruction, Expr, *BC.Ctx, 0))); 1062 }; 1063 1064 auto handleExternalReference = [&](MCInst &Instruction, uint64_t Size, 1065 uint64_t Offset, uint64_t TargetAddress, 1066 bool &IsCall) -> MCSymbol * { 1067 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1068 MCSymbol *TargetSymbol = nullptr; 1069 BC.addInterproceduralReference(this, TargetAddress); 1070 if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) { 1071 errs() << "BOLT-WARNING: relaxed tail call detected at 0x" 1072 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this 1073 << ". Code size will be increased.\n"; 1074 } 1075 1076 assert(!MIB->isTailCall(Instruction) && 1077 "synthetic tail call instruction found"); 1078 1079 // This is a call regardless of the opcode. 1080 // Assign proper opcode for tail calls, so that they could be 1081 // treated as calls. 1082 if (!IsCall) { 1083 if (!MIB->convertJmpToTailCall(Instruction)) { 1084 assert(MIB->isConditionalBranch(Instruction) && 1085 "unknown tail call instruction"); 1086 if (opts::Verbosity >= 2) { 1087 errs() << "BOLT-WARNING: conditional tail call detected in " 1088 << "function " << *this << " at 0x" 1089 << Twine::utohexstr(AbsoluteInstrAddr) << ".\n"; 1090 } 1091 } 1092 IsCall = true; 1093 } 1094 1095 TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat"); 1096 if (opts::Verbosity >= 2 && TargetAddress == 0) { 1097 // We actually see calls to address 0 in presence of weak 1098 // symbols originating from libraries. This code is never meant 1099 // to be executed. 1100 outs() << "BOLT-INFO: Function " << *this 1101 << " has a call to address zero.\n"; 1102 } 1103 1104 return TargetSymbol; 1105 }; 1106 1107 auto handleIndirectBranch = [&](MCInst &Instruction, uint64_t Size, 1108 uint64_t Offset) { 1109 uint64_t IndirectTarget = 0; 1110 IndirectBranchType Result = 1111 processIndirectBranch(Instruction, Size, Offset, IndirectTarget); 1112 switch (Result) { 1113 default: 1114 llvm_unreachable("unexpected result"); 1115 case IndirectBranchType::POSSIBLE_TAIL_CALL: { 1116 bool Result = MIB->convertJmpToTailCall(Instruction); 1117 (void)Result; 1118 assert(Result); 1119 break; 1120 } 1121 case IndirectBranchType::POSSIBLE_JUMP_TABLE: 1122 case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE: 1123 if (opts::JumpTables == JTS_NONE) 1124 IsSimple = false; 1125 break; 1126 case IndirectBranchType::POSSIBLE_FIXED_BRANCH: { 1127 if (containsAddress(IndirectTarget)) { 1128 const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget); 1129 Instruction.clear(); 1130 MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get()); 1131 TakenBranches.emplace_back(Offset, IndirectTarget - getAddress()); 1132 HasFixedIndirectBranch = true; 1133 } else { 1134 MIB->convertJmpToTailCall(Instruction); 1135 BC.addInterproceduralReference(this, IndirectTarget); 1136 } 1137 break; 1138 } 1139 case IndirectBranchType::UNKNOWN: 1140 // Keep processing. We'll do more checks and fixes in 1141 // postProcessIndirectBranches(). 1142 UnknownIndirectBranchOffsets.emplace(Offset); 1143 break; 1144 } 1145 }; 1146 1147 // Check for linker veneers, which lack relocations and need manual 1148 // adjustments. 1149 auto handleAArch64IndirectCall = [&](MCInst &Instruction, uint64_t Offset) { 1150 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1151 MCInst *TargetHiBits, *TargetLowBits; 1152 uint64_t TargetAddress, Count; 1153 Count = MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(), 1154 AbsoluteInstrAddr, Instruction, TargetHiBits, 1155 TargetLowBits, TargetAddress); 1156 if (Count) { 1157 MIB->addAnnotation(Instruction, "AArch64Veneer", true); 1158 --Count; 1159 for (auto It = std::prev(Instructions.end()); Count != 0; 1160 It = std::prev(It), --Count) { 1161 MIB->addAnnotation(It->second, "AArch64Veneer", true); 1162 } 1163 1164 BC.addAdrpAddRelocAArch64(*this, *TargetLowBits, *TargetHiBits, 1165 TargetAddress); 1166 } 1167 }; 1168 1169 uint64_t Size = 0; // instruction size 1170 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1171 MCInst Instruction; 1172 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1173 1174 // Check for data inside code and ignore it 1175 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1176 Size = DataInCodeSize; 1177 continue; 1178 } 1179 1180 if (!BC.SymbolicDisAsm->getInstruction(Instruction, Size, 1181 FunctionData.slice(Offset), 1182 AbsoluteInstrAddr, nulls())) { 1183 // Functions with "soft" boundaries, e.g. coming from assembly source, 1184 // can have 0-byte padding at the end. 1185 if (isZeroPaddingAt(Offset)) 1186 break; 1187 1188 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1189 << Twine::utohexstr(Offset) << " (address 0x" 1190 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this 1191 << '\n'; 1192 // Some AVX-512 instructions could not be disassembled at all. 1193 if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) { 1194 setTrapOnEntry(); 1195 BC.TrappedFunctions.push_back(this); 1196 } else { 1197 setIgnored(); 1198 } 1199 1200 break; 1201 } 1202 1203 // Check integrity of LLVM assembler/disassembler. 1204 if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) && 1205 !BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) { 1206 if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) { 1207 errs() << "BOLT-WARNING: mismatching LLVM encoding detected in " 1208 << "function " << *this << " for instruction :\n"; 1209 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1210 errs() << '\n'; 1211 } 1212 } 1213 1214 // Special handling for AVX-512 instructions. 1215 if (MIB->hasEVEXEncoding(Instruction)) { 1216 if (BC.HasRelocations && opts::TrapOnAVX512) { 1217 setTrapOnEntry(); 1218 BC.TrappedFunctions.push_back(this); 1219 break; 1220 } 1221 1222 // Disassemble again without the symbolizer and check that the disassembly 1223 // matches the assembler output. 1224 MCInst TempInst; 1225 BC.DisAsm->getInstruction(TempInst, Size, FunctionData.slice(Offset), 1226 AbsoluteInstrAddr, nulls()); 1227 if (!BC.validateEncoding(TempInst, FunctionData.slice(Offset, Size))) { 1228 if (opts::Verbosity >= 0) { 1229 errs() << "BOLT-WARNING: internal assembler/disassembler error " 1230 "detected for AVX512 instruction:\n"; 1231 BC.printInstruction(errs(), TempInst, AbsoluteInstrAddr); 1232 errs() << " in function " << *this << '\n'; 1233 } 1234 1235 setIgnored(); 1236 break; 1237 } 1238 } 1239 1240 if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) { 1241 uint64_t TargetAddress = 0; 1242 if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1243 TargetAddress)) { 1244 // Check if the target is within the same function. Otherwise it's 1245 // a call, possibly a tail call. 1246 // 1247 // If the target *is* the function address it could be either a branch 1248 // or a recursive call. 1249 bool IsCall = MIB->isCall(Instruction); 1250 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1251 MCSymbol *TargetSymbol = nullptr; 1252 1253 if (BC.MIB->isUnsupportedBranch(Instruction.getOpcode())) { 1254 setIgnored(); 1255 if (BinaryFunction *TargetFunc = 1256 BC.getBinaryFunctionContainingAddress(TargetAddress)) 1257 TargetFunc->setIgnored(); 1258 } 1259 1260 if (IsCall && containsAddress(TargetAddress)) { 1261 if (TargetAddress == getAddress()) { 1262 // Recursive call. 1263 TargetSymbol = getSymbol(); 1264 } else { 1265 if (BC.isX86()) { 1266 // Dangerous old-style x86 PIC code. We may need to freeze this 1267 // function, so preserve the function as is for now. 1268 PreserveNops = true; 1269 } else { 1270 errs() << "BOLT-WARNING: internal call detected at 0x" 1271 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " 1272 << *this << ". Skipping.\n"; 1273 IsSimple = false; 1274 } 1275 } 1276 } 1277 1278 if (!TargetSymbol) { 1279 // Create either local label or external symbol. 1280 if (containsAddress(TargetAddress)) { 1281 TargetSymbol = getOrCreateLocalLabel(TargetAddress); 1282 } else { 1283 if (TargetAddress == getAddress() + getSize() && 1284 TargetAddress < getAddress() + getMaxSize() && 1285 !(BC.isAArch64() && 1286 BC.handleAArch64Veneer(TargetAddress, /*MatchOnly*/ true))) { 1287 // Result of __builtin_unreachable(). 1288 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x" 1289 << Twine::utohexstr(AbsoluteInstrAddr) 1290 << " in function " << *this 1291 << " : replacing with nop.\n"); 1292 BC.MIB->createNoop(Instruction); 1293 if (IsCondBranch) { 1294 // Register branch offset for profile validation. 1295 IgnoredBranches.emplace_back(Offset, Offset + Size); 1296 } 1297 goto add_instruction; 1298 } 1299 // May update Instruction and IsCall 1300 TargetSymbol = handleExternalReference(Instruction, Size, Offset, 1301 TargetAddress, IsCall); 1302 } 1303 } 1304 1305 if (!IsCall) { 1306 // Add taken branch info. 1307 TakenBranches.emplace_back(Offset, TargetAddress - getAddress()); 1308 } 1309 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx); 1310 1311 // Mark CTC. 1312 if (IsCondBranch && IsCall) 1313 MIB->setConditionalTailCall(Instruction, TargetAddress); 1314 } else { 1315 // Could not evaluate branch. Should be an indirect call or an 1316 // indirect branch. Bail out on the latter case. 1317 if (MIB->isIndirectBranch(Instruction)) 1318 handleIndirectBranch(Instruction, Size, Offset); 1319 // Indirect call. We only need to fix it if the operand is RIP-relative. 1320 if (IsSimple && MIB->hasPCRelOperand(Instruction)) 1321 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1322 1323 if (BC.isAArch64()) 1324 handleAArch64IndirectCall(Instruction, Offset); 1325 } 1326 } else if (BC.isAArch64()) { 1327 // Check if there's a relocation associated with this instruction. 1328 bool UsedReloc = false; 1329 for (auto Itr = Relocations.lower_bound(Offset), 1330 ItrE = Relocations.lower_bound(Offset + Size); 1331 Itr != ItrE; ++Itr) { 1332 const Relocation &Relocation = Itr->second; 1333 int64_t Value = Relocation.Value; 1334 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1335 Instruction, Relocation.Symbol, Relocation.Addend, Ctx.get(), Value, 1336 Relocation.Type); 1337 (void)Result; 1338 assert(Result && "cannot replace immediate with relocation"); 1339 1340 // For aarch64, if we replaced an immediate with a symbol from a 1341 // relocation, we mark it so we do not try to further process a 1342 // pc-relative operand. All we need is the symbol. 1343 UsedReloc = true; 1344 } 1345 1346 if (MIB->hasPCRelOperand(Instruction) && !UsedReloc) 1347 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1348 } 1349 1350 add_instruction: 1351 if (getDWARFLineTable()) { 1352 Instruction.setLoc(findDebugLineInformationForInstructionAt( 1353 AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable())); 1354 } 1355 1356 // Record offset of the instruction for profile matching. 1357 if (BC.keepOffsetForInstruction(Instruction)) 1358 MIB->setOffset(Instruction, static_cast<uint32_t>(Offset)); 1359 1360 if (BC.MIB->isNoop(Instruction)) { 1361 // NOTE: disassembly loses the correct size information for noops. 1362 // E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only 1363 // 5 bytes. Preserve the size info using annotations. 1364 MIB->addAnnotation(Instruction, "Size", static_cast<uint32_t>(Size)); 1365 } 1366 1367 addInstruction(Offset, std::move(Instruction)); 1368 } 1369 1370 // Reset symbolizer for the disassembler. 1371 BC.SymbolicDisAsm->setSymbolizer(nullptr); 1372 1373 if (uint64_t Offset = getFirstInstructionOffset()) 1374 Labels[Offset] = BC.Ctx->createNamedTempSymbol(); 1375 1376 clearList(Relocations); 1377 1378 if (!IsSimple) { 1379 clearList(Instructions); 1380 return false; 1381 } 1382 1383 updateState(State::Disassembled); 1384 1385 return true; 1386 } 1387 1388 bool BinaryFunction::scanExternalRefs() { 1389 bool Success = true; 1390 bool DisassemblyFailed = false; 1391 1392 // Ignore pseudo functions. 1393 if (isPseudo()) 1394 return Success; 1395 1396 if (opts::NoScan) { 1397 clearList(Relocations); 1398 clearList(ExternallyReferencedOffsets); 1399 1400 return false; 1401 } 1402 1403 // List of external references for this function. 1404 std::vector<Relocation> FunctionRelocations; 1405 1406 static BinaryContext::IndependentCodeEmitter Emitter = 1407 BC.createIndependentMCCodeEmitter(); 1408 1409 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1410 assert(ErrorOrFunctionData && "function data is not available"); 1411 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1412 assert(FunctionData.size() == getMaxSize() && 1413 "function size does not match raw data size"); 1414 1415 uint64_t Size = 0; // instruction size 1416 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1417 // Check for data inside code and ignore it 1418 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1419 Size = DataInCodeSize; 1420 continue; 1421 } 1422 1423 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1424 MCInst Instruction; 1425 if (!BC.DisAsm->getInstruction(Instruction, Size, 1426 FunctionData.slice(Offset), 1427 AbsoluteInstrAddr, nulls())) { 1428 if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) { 1429 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1430 << Twine::utohexstr(Offset) << " (address 0x" 1431 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " 1432 << *this << '\n'; 1433 } 1434 Success = false; 1435 DisassemblyFailed = true; 1436 break; 1437 } 1438 1439 // Return true if we can skip handling the Target function reference. 1440 auto ignoreFunctionRef = [&](const BinaryFunction &Target) { 1441 if (&Target == this) 1442 return true; 1443 1444 // Note that later we may decide not to emit Target function. In that 1445 // case, we conservatively create references that will be ignored or 1446 // resolved to the same function. 1447 if (!BC.shouldEmit(Target)) 1448 return true; 1449 1450 return false; 1451 }; 1452 1453 // Return true if we can ignore reference to the symbol. 1454 auto ignoreReference = [&](const MCSymbol *TargetSymbol) { 1455 if (!TargetSymbol) 1456 return true; 1457 1458 if (BC.forceSymbolRelocations(TargetSymbol->getName())) 1459 return false; 1460 1461 BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol); 1462 if (!TargetFunction) 1463 return true; 1464 1465 return ignoreFunctionRef(*TargetFunction); 1466 }; 1467 1468 // Detect if the instruction references an address. 1469 // Without relocations, we can only trust PC-relative address modes. 1470 uint64_t TargetAddress = 0; 1471 bool IsPCRel = false; 1472 bool IsBranch = false; 1473 if (BC.MIB->hasPCRelOperand(Instruction)) { 1474 if (BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1475 AbsoluteInstrAddr, Size)) { 1476 IsPCRel = true; 1477 } 1478 } else if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) { 1479 if (BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1480 TargetAddress)) { 1481 IsBranch = true; 1482 } 1483 } 1484 1485 MCSymbol *TargetSymbol = nullptr; 1486 1487 // Create an entry point at reference address if needed. 1488 BinaryFunction *TargetFunction = 1489 BC.getBinaryFunctionContainingAddress(TargetAddress); 1490 if (TargetFunction && !ignoreFunctionRef(*TargetFunction)) { 1491 const uint64_t FunctionOffset = 1492 TargetAddress - TargetFunction->getAddress(); 1493 TargetSymbol = FunctionOffset 1494 ? TargetFunction->addEntryPointAtOffset(FunctionOffset) 1495 : TargetFunction->getSymbol(); 1496 } 1497 1498 // Can't find more references and not creating relocations. 1499 if (!BC.HasRelocations) 1500 continue; 1501 1502 // Create a relocation against the TargetSymbol as the symbol might get 1503 // moved. 1504 if (TargetSymbol) { 1505 if (IsBranch) { 1506 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, 1507 Emitter.LocalCtx.get()); 1508 } else if (IsPCRel) { 1509 const MCExpr *Expr = MCSymbolRefExpr::create( 1510 TargetSymbol, MCSymbolRefExpr::VK_None, *Emitter.LocalCtx.get()); 1511 BC.MIB->replaceMemOperandDisp( 1512 Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor( 1513 Instruction, Expr, *Emitter.LocalCtx.get(), 0))); 1514 } 1515 } 1516 1517 // Create more relocations based on input file relocations. 1518 bool HasRel = false; 1519 for (auto Itr = Relocations.lower_bound(Offset), 1520 ItrE = Relocations.lower_bound(Offset + Size); 1521 Itr != ItrE; ++Itr) { 1522 Relocation &Relocation = Itr->second; 1523 if (Relocation.isPCRelative() && BC.isX86()) 1524 continue; 1525 if (ignoreReference(Relocation.Symbol)) 1526 continue; 1527 1528 int64_t Value = Relocation.Value; 1529 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1530 Instruction, Relocation.Symbol, Relocation.Addend, 1531 Emitter.LocalCtx.get(), Value, Relocation.Type); 1532 (void)Result; 1533 assert(Result && "cannot replace immediate with relocation"); 1534 1535 HasRel = true; 1536 } 1537 1538 if (!TargetSymbol && !HasRel) 1539 continue; 1540 1541 // Emit the instruction using temp emitter and generate relocations. 1542 SmallString<256> Code; 1543 SmallVector<MCFixup, 4> Fixups; 1544 raw_svector_ostream VecOS(Code); 1545 Emitter.MCE->encodeInstruction(Instruction, VecOS, Fixups, *BC.STI); 1546 1547 // Create relocation for every fixup. 1548 for (const MCFixup &Fixup : Fixups) { 1549 Optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB); 1550 if (!Rel) { 1551 Success = false; 1552 continue; 1553 } 1554 1555 if (Relocation::getSizeForType(Rel->Type) < 4) { 1556 // If the instruction uses a short form, then we might not be able 1557 // to handle the rewrite without relaxation, and hence cannot reliably 1558 // create an external reference relocation. 1559 Success = false; 1560 continue; 1561 } 1562 Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset; 1563 FunctionRelocations.push_back(*Rel); 1564 } 1565 1566 if (!Success) 1567 break; 1568 } 1569 1570 // Add relocations unless disassembly failed for this function. 1571 if (!DisassemblyFailed) 1572 for (Relocation &Rel : FunctionRelocations) 1573 getOriginSection()->addPendingRelocation(Rel); 1574 1575 // Inform BinaryContext that this function symbols will not be defined and 1576 // relocations should not be created against them. 1577 if (BC.HasRelocations) { 1578 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 1579 BC.UndefinedSymbols.insert(LI.second); 1580 if (FunctionEndLabel) 1581 BC.UndefinedSymbols.insert(FunctionEndLabel); 1582 } 1583 1584 clearList(Relocations); 1585 clearList(ExternallyReferencedOffsets); 1586 1587 if (Success && BC.HasRelocations) 1588 HasExternalRefRelocations = true; 1589 1590 if (opts::Verbosity >= 1 && !Success) 1591 outs() << "BOLT-INFO: failed to scan refs for " << *this << '\n'; 1592 1593 return Success; 1594 } 1595 1596 void BinaryFunction::postProcessEntryPoints() { 1597 if (!isSimple()) 1598 return; 1599 1600 for (auto &KV : Labels) { 1601 MCSymbol *Label = KV.second; 1602 if (!getSecondaryEntryPointSymbol(Label)) 1603 continue; 1604 1605 // In non-relocation mode there's potentially an external undetectable 1606 // reference to the entry point and hence we cannot move this entry 1607 // point. Optimizing without moving could be difficult. 1608 if (!BC.HasRelocations) 1609 setSimple(false); 1610 1611 const uint32_t Offset = KV.first; 1612 1613 // If we are at Offset 0 and there is no instruction associated with it, 1614 // this means this is an empty function. Just ignore. If we find an 1615 // instruction at this offset, this entry point is valid. 1616 if (!Offset || getInstructionAtOffset(Offset)) 1617 continue; 1618 1619 // On AArch64 there are legitimate reasons to have references past the 1620 // end of the function, e.g. jump tables. 1621 if (BC.isAArch64() && Offset == getSize()) 1622 continue; 1623 1624 errs() << "BOLT-WARNING: reference in the middle of instruction " 1625 "detected in function " 1626 << *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n'; 1627 if (BC.HasRelocations) 1628 setIgnored(); 1629 setSimple(false); 1630 return; 1631 } 1632 } 1633 1634 void BinaryFunction::postProcessJumpTables() { 1635 // Create labels for all entries. 1636 for (auto &JTI : JumpTables) { 1637 JumpTable &JT = *JTI.second; 1638 if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) { 1639 opts::JumpTables = JTS_MOVE; 1640 outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was " 1641 "detected in function " 1642 << *this << '\n'; 1643 } 1644 if (JT.Entries.empty()) { 1645 bool HasOneParent = (JT.Parents.size() == 1); 1646 for (unsigned I = 0; I < JT.EntriesAsAddress.size(); ++I) { 1647 uint64_t EntryAddress = JT.EntriesAsAddress[I]; 1648 // builtin_unreachable does not belong to any function 1649 // Need to handle separately 1650 bool IsBuiltIn = false; 1651 for (BinaryFunction *Parent : JT.Parents) { 1652 if (EntryAddress == Parent->getAddress() + Parent->getSize()) { 1653 IsBuiltIn = true; 1654 // Specify second parameter as true to accept builtin_unreachable 1655 MCSymbol *Label = getOrCreateLocalLabel(EntryAddress, true); 1656 JT.Entries.push_back(Label); 1657 break; 1658 } 1659 } 1660 if (IsBuiltIn) 1661 continue; 1662 // Create local label for targets cannot be reached by other fragments 1663 // Otherwise, secondary entry point to target function 1664 BinaryFunction *TargetBF = 1665 BC.getBinaryFunctionContainingAddress(EntryAddress); 1666 if (TargetBF->getAddress() != EntryAddress) { 1667 MCSymbol *Label = 1668 (HasOneParent && TargetBF == this) 1669 ? getOrCreateLocalLabel(JT.EntriesAsAddress[I], true) 1670 : TargetBF->addEntryPointAtOffset(EntryAddress - 1671 TargetBF->getAddress()); 1672 JT.Entries.push_back(Label); 1673 } 1674 } 1675 } 1676 1677 const uint64_t BDSize = 1678 BC.getBinaryDataAtAddress(JT.getAddress())->getSize(); 1679 if (!BDSize) { 1680 BC.setBinaryDataSize(JT.getAddress(), JT.getSize()); 1681 } else { 1682 assert(BDSize >= JT.getSize() && 1683 "jump table cannot be larger than the containing object"); 1684 } 1685 } 1686 1687 // Add TakenBranches from JumpTables. 1688 // 1689 // We want to do it after initial processing since we don't know jump tables' 1690 // boundaries until we process them all. 1691 for (auto &JTSite : JTSites) { 1692 const uint64_t JTSiteOffset = JTSite.first; 1693 const uint64_t JTAddress = JTSite.second; 1694 const JumpTable *JT = getJumpTableContainingAddress(JTAddress); 1695 assert(JT && "cannot find jump table for address"); 1696 1697 uint64_t EntryOffset = JTAddress - JT->getAddress(); 1698 while (EntryOffset < JT->getSize()) { 1699 uint64_t EntryAddress = JT->EntriesAsAddress[EntryOffset / JT->EntrySize]; 1700 uint64_t TargetOffset = EntryAddress - getAddress(); 1701 if (TargetOffset < getSize()) { 1702 TakenBranches.emplace_back(JTSiteOffset, TargetOffset); 1703 1704 if (opts::StrictMode) 1705 registerReferencedOffset(TargetOffset); 1706 } 1707 1708 EntryOffset += JT->EntrySize; 1709 1710 // A label at the next entry means the end of this jump table. 1711 if (JT->Labels.count(EntryOffset)) 1712 break; 1713 } 1714 } 1715 clearList(JTSites); 1716 1717 // Conservatively populate all possible destinations for unknown indirect 1718 // branches. 1719 if (opts::StrictMode && hasInternalReference()) { 1720 for (uint64_t Offset : UnknownIndirectBranchOffsets) { 1721 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) { 1722 // Ignore __builtin_unreachable(). 1723 if (PossibleDestination == getSize()) 1724 continue; 1725 TakenBranches.emplace_back(Offset, PossibleDestination); 1726 } 1727 } 1728 } 1729 1730 // Remove duplicates branches. We can get a bunch of them from jump tables. 1731 // Without doing jump table value profiling we don't have use for extra 1732 // (duplicate) branches. 1733 llvm::sort(TakenBranches); 1734 auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end()); 1735 TakenBranches.erase(NewEnd, TakenBranches.end()); 1736 } 1737 1738 bool BinaryFunction::postProcessIndirectBranches( 1739 MCPlusBuilder::AllocatorIdTy AllocId) { 1740 auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) { 1741 HasUnknownControlFlow = true; 1742 BB.removeAllSuccessors(); 1743 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) 1744 if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination)) 1745 BB.addSuccessor(SuccBB); 1746 }; 1747 1748 uint64_t NumIndirectJumps = 0; 1749 MCInst *LastIndirectJump = nullptr; 1750 BinaryBasicBlock *LastIndirectJumpBB = nullptr; 1751 uint64_t LastJT = 0; 1752 uint16_t LastJTIndexReg = BC.MIB->getNoRegister(); 1753 for (BinaryBasicBlock &BB : blocks()) { 1754 for (MCInst &Instr : BB) { 1755 if (!BC.MIB->isIndirectBranch(Instr)) 1756 continue; 1757 1758 // If there's an indirect branch in a single-block function - 1759 // it must be a tail call. 1760 if (BasicBlocks.size() == 1) { 1761 BC.MIB->convertJmpToTailCall(Instr); 1762 return true; 1763 } 1764 1765 ++NumIndirectJumps; 1766 1767 if (opts::StrictMode && !hasInternalReference()) { 1768 BC.MIB->convertJmpToTailCall(Instr); 1769 break; 1770 } 1771 1772 // Validate the tail call or jump table assumptions now that we know 1773 // basic block boundaries. 1774 if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) { 1775 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 1776 MCInst *MemLocInstr; 1777 unsigned BaseRegNum, IndexRegNum; 1778 int64_t DispValue; 1779 const MCExpr *DispExpr; 1780 MCInst *PCRelBaseInstr; 1781 IndirectBranchType Type = BC.MIB->analyzeIndirectBranch( 1782 Instr, BB.begin(), BB.end(), PtrSize, MemLocInstr, BaseRegNum, 1783 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 1784 if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr) 1785 continue; 1786 1787 if (!opts::StrictMode) 1788 return false; 1789 1790 if (BC.MIB->isTailCall(Instr)) { 1791 BC.MIB->convertTailCallToJmp(Instr); 1792 } else { 1793 LastIndirectJump = &Instr; 1794 LastIndirectJumpBB = &BB; 1795 LastJT = BC.MIB->getJumpTable(Instr); 1796 LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr); 1797 BC.MIB->unsetJumpTable(Instr); 1798 1799 JumpTable *JT = BC.getJumpTableContainingAddress(LastJT); 1800 if (JT->Type == JumpTable::JTT_NORMAL) { 1801 // Invalidating the jump table may also invalidate other jump table 1802 // boundaries. Until we have/need a support for this, mark the 1803 // function as non-simple. 1804 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference" 1805 << JT->getName() << " in " << *this << '\n'); 1806 return false; 1807 } 1808 } 1809 1810 addUnknownControlFlow(BB); 1811 continue; 1812 } 1813 1814 // If this block contains an epilogue code and has an indirect branch, 1815 // then most likely it's a tail call. Otherwise, we cannot tell for sure 1816 // what it is and conservatively reject the function's CFG. 1817 bool IsEpilogue = false; 1818 for (const MCInst &Instr : BB) { 1819 if (BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr)) { 1820 IsEpilogue = true; 1821 break; 1822 } 1823 } 1824 if (IsEpilogue) { 1825 BC.MIB->convertJmpToTailCall(Instr); 1826 BB.removeAllSuccessors(); 1827 continue; 1828 } 1829 1830 if (opts::Verbosity >= 2) { 1831 outs() << "BOLT-INFO: rejected potential indirect tail call in " 1832 << "function " << *this << " in basic block " << BB.getName() 1833 << ".\n"; 1834 LLVM_DEBUG(BC.printInstructions(dbgs(), BB.begin(), BB.end(), 1835 BB.getOffset(), this, true)); 1836 } 1837 1838 if (!opts::StrictMode) 1839 return false; 1840 1841 addUnknownControlFlow(BB); 1842 } 1843 } 1844 1845 if (HasInternalLabelReference) 1846 return false; 1847 1848 // If there's only one jump table, and one indirect jump, and no other 1849 // references, then we should be able to derive the jump table even if we 1850 // fail to match the pattern. 1851 if (HasUnknownControlFlow && NumIndirectJumps == 1 && 1852 JumpTables.size() == 1 && LastIndirectJump) { 1853 BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId); 1854 HasUnknownControlFlow = false; 1855 1856 LastIndirectJumpBB->updateJumpTableSuccessors(); 1857 } 1858 1859 if (HasFixedIndirectBranch) 1860 return false; 1861 1862 if (HasUnknownControlFlow && !BC.HasRelocations) 1863 return false; 1864 1865 return true; 1866 } 1867 1868 void BinaryFunction::recomputeLandingPads() { 1869 updateBBIndices(0); 1870 1871 for (BinaryBasicBlock *BB : BasicBlocks) { 1872 BB->LandingPads.clear(); 1873 BB->Throwers.clear(); 1874 } 1875 1876 for (BinaryBasicBlock *BB : BasicBlocks) { 1877 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 1878 for (MCInst &Instr : *BB) { 1879 if (!BC.MIB->isInvoke(Instr)) 1880 continue; 1881 1882 const Optional<MCPlus::MCLandingPad> EHInfo = BC.MIB->getEHInfo(Instr); 1883 if (!EHInfo || !EHInfo->first) 1884 continue; 1885 1886 BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first); 1887 if (!BBLandingPads.count(LPBlock)) { 1888 BBLandingPads.insert(LPBlock); 1889 BB->LandingPads.emplace_back(LPBlock); 1890 LPBlock->Throwers.emplace_back(BB); 1891 } 1892 } 1893 } 1894 } 1895 1896 bool BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) { 1897 auto &MIB = BC.MIB; 1898 1899 if (!isSimple()) { 1900 assert(!BC.HasRelocations && 1901 "cannot process file with non-simple function in relocs mode"); 1902 return false; 1903 } 1904 1905 if (CurrentState != State::Disassembled) 1906 return false; 1907 1908 assert(BasicBlocks.empty() && "basic block list should be empty"); 1909 assert((Labels.find(getFirstInstructionOffset()) != Labels.end()) && 1910 "first instruction should always have a label"); 1911 1912 // Create basic blocks in the original layout order: 1913 // 1914 // * Every instruction with associated label marks 1915 // the beginning of a basic block. 1916 // * Conditional instruction marks the end of a basic block, 1917 // except when the following instruction is an 1918 // unconditional branch, and the unconditional branch is not 1919 // a destination of another branch. In the latter case, the 1920 // basic block will consist of a single unconditional branch 1921 // (missed "double-jump" optimization). 1922 // 1923 // Created basic blocks are sorted in layout order since they are 1924 // created in the same order as instructions, and instructions are 1925 // sorted by offsets. 1926 BinaryBasicBlock *InsertBB = nullptr; 1927 BinaryBasicBlock *PrevBB = nullptr; 1928 bool IsLastInstrNop = false; 1929 // Offset of the last non-nop instruction. 1930 uint64_t LastInstrOffset = 0; 1931 1932 auto addCFIPlaceholders = [this](uint64_t CFIOffset, 1933 BinaryBasicBlock *InsertBB) { 1934 for (auto FI = OffsetToCFI.lower_bound(CFIOffset), 1935 FE = OffsetToCFI.upper_bound(CFIOffset); 1936 FI != FE; ++FI) { 1937 addCFIPseudo(InsertBB, InsertBB->end(), FI->second); 1938 } 1939 }; 1940 1941 // For profiling purposes we need to save the offset of the last instruction 1942 // in the basic block. 1943 // NOTE: nops always have an Offset annotation. Annotate the last non-nop as 1944 // older profiles ignored nops. 1945 auto updateOffset = [&](uint64_t Offset) { 1946 assert(PrevBB && PrevBB != InsertBB && "invalid previous block"); 1947 MCInst *LastNonNop = nullptr; 1948 for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(), 1949 E = PrevBB->rend(); 1950 RII != E; ++RII) { 1951 if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) { 1952 LastNonNop = &*RII; 1953 break; 1954 } 1955 } 1956 if (LastNonNop && !MIB->getOffset(*LastNonNop)) 1957 MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset), AllocatorId); 1958 }; 1959 1960 for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) { 1961 const uint32_t Offset = I->first; 1962 MCInst &Instr = I->second; 1963 1964 auto LI = Labels.find(Offset); 1965 if (LI != Labels.end()) { 1966 // Always create new BB at branch destination. 1967 PrevBB = InsertBB ? InsertBB : PrevBB; 1968 InsertBB = addBasicBlockAt(LI->first, LI->second); 1969 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 1970 InsertBB->setDerivedAlignment(); 1971 1972 if (PrevBB) 1973 updateOffset(LastInstrOffset); 1974 } 1975 1976 const uint64_t InstrInputAddr = I->first + Address; 1977 bool IsSDTMarker = 1978 MIB->isNoop(Instr) && BC.SDTMarkers.count(InstrInputAddr); 1979 bool IsLKMarker = BC.LKMarkers.count(InstrInputAddr); 1980 // Mark all nops with Offset for profile tracking purposes. 1981 if (MIB->isNoop(Instr) || IsLKMarker) { 1982 if (!MIB->getOffset(Instr)) 1983 MIB->setOffset(Instr, static_cast<uint32_t>(Offset), AllocatorId); 1984 if (IsSDTMarker || IsLKMarker) 1985 HasSDTMarker = true; 1986 else 1987 // Annotate ordinary nops, so we can safely delete them if required. 1988 MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId); 1989 } 1990 1991 if (!InsertBB) { 1992 // It must be a fallthrough or unreachable code. Create a new block unless 1993 // we see an unconditional branch following a conditional one. The latter 1994 // should not be a conditional tail call. 1995 assert(PrevBB && "no previous basic block for a fall through"); 1996 MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr(); 1997 assert(PrevInstr && "no previous instruction for a fall through"); 1998 if (MIB->isUnconditionalBranch(Instr) && 1999 !MIB->isUnconditionalBranch(*PrevInstr) && 2000 !MIB->getConditionalTailCall(*PrevInstr) && 2001 !MIB->isReturn(*PrevInstr)) { 2002 // Temporarily restore inserter basic block. 2003 InsertBB = PrevBB; 2004 } else { 2005 MCSymbol *Label; 2006 { 2007 auto L = BC.scopeLock(); 2008 Label = BC.Ctx->createNamedTempSymbol("FT"); 2009 } 2010 InsertBB = addBasicBlockAt(Offset, Label); 2011 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 2012 InsertBB->setDerivedAlignment(); 2013 updateOffset(LastInstrOffset); 2014 } 2015 } 2016 if (Offset == getFirstInstructionOffset()) { 2017 // Add associated CFI pseudos in the first offset 2018 addCFIPlaceholders(Offset, InsertBB); 2019 } 2020 2021 const bool IsBlockEnd = MIB->isTerminator(Instr); 2022 IsLastInstrNop = MIB->isNoop(Instr); 2023 if (!IsLastInstrNop) 2024 LastInstrOffset = Offset; 2025 InsertBB->addInstruction(std::move(Instr)); 2026 2027 // Add associated CFI instrs. We always add the CFI instruction that is 2028 // located immediately after this instruction, since the next CFI 2029 // instruction reflects the change in state caused by this instruction. 2030 auto NextInstr = std::next(I); 2031 uint64_t CFIOffset; 2032 if (NextInstr != E) 2033 CFIOffset = NextInstr->first; 2034 else 2035 CFIOffset = getSize(); 2036 2037 // Note: this potentially invalidates instruction pointers/iterators. 2038 addCFIPlaceholders(CFIOffset, InsertBB); 2039 2040 if (IsBlockEnd) { 2041 PrevBB = InsertBB; 2042 InsertBB = nullptr; 2043 } 2044 } 2045 2046 if (BasicBlocks.empty()) { 2047 setSimple(false); 2048 return false; 2049 } 2050 2051 // Intermediate dump. 2052 LLVM_DEBUG(print(dbgs(), "after creating basic blocks")); 2053 2054 // TODO: handle properly calls to no-return functions, 2055 // e.g. exit(3), etc. Otherwise we'll see a false fall-through 2056 // blocks. 2057 2058 for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) { 2059 LLVM_DEBUG(dbgs() << "registering branch [0x" 2060 << Twine::utohexstr(Branch.first) << "] -> [0x" 2061 << Twine::utohexstr(Branch.second) << "]\n"); 2062 BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first); 2063 BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second); 2064 if (!FromBB || !ToBB) { 2065 if (!FromBB) 2066 errs() << "BOLT-ERROR: cannot find BB containing the branch.\n"; 2067 if (!ToBB) 2068 errs() << "BOLT-ERROR: cannot find BB containing branch destination.\n"; 2069 BC.exitWithBugReport("disassembly failed - inconsistent branch found.", 2070 *this); 2071 } 2072 2073 FromBB->addSuccessor(ToBB); 2074 } 2075 2076 // Add fall-through branches. 2077 PrevBB = nullptr; 2078 bool IsPrevFT = false; // Is previous block a fall-through. 2079 for (BinaryBasicBlock *BB : BasicBlocks) { 2080 if (IsPrevFT) 2081 PrevBB->addSuccessor(BB); 2082 2083 if (BB->empty()) { 2084 IsPrevFT = true; 2085 PrevBB = BB; 2086 continue; 2087 } 2088 2089 MCInst *LastInstr = BB->getLastNonPseudoInstr(); 2090 assert(LastInstr && 2091 "should have non-pseudo instruction in non-empty block"); 2092 2093 if (BB->succ_size() == 0) { 2094 // Since there's no existing successors, we know the last instruction is 2095 // not a conditional branch. Thus if it's a terminator, it shouldn't be a 2096 // fall-through. 2097 // 2098 // Conditional tail call is a special case since we don't add a taken 2099 // branch successor for it. 2100 IsPrevFT = !MIB->isTerminator(*LastInstr) || 2101 MIB->getConditionalTailCall(*LastInstr); 2102 } else if (BB->succ_size() == 1) { 2103 IsPrevFT = MIB->isConditionalBranch(*LastInstr); 2104 } else { 2105 IsPrevFT = false; 2106 } 2107 2108 PrevBB = BB; 2109 } 2110 2111 // Assign landing pads and throwers info. 2112 recomputeLandingPads(); 2113 2114 // Assign CFI information to each BB entry. 2115 annotateCFIState(); 2116 2117 // Annotate invoke instructions with GNU_args_size data. 2118 propagateGnuArgsSizeInfo(AllocatorId); 2119 2120 // Set the basic block layout to the original order and set end offsets. 2121 PrevBB = nullptr; 2122 for (BinaryBasicBlock *BB : BasicBlocks) { 2123 BasicBlocksLayout.emplace_back(BB); 2124 if (PrevBB) 2125 PrevBB->setEndOffset(BB->getOffset()); 2126 PrevBB = BB; 2127 } 2128 PrevBB->setEndOffset(getSize()); 2129 2130 updateLayoutIndices(); 2131 2132 normalizeCFIState(); 2133 2134 // Clean-up memory taken by intermediate structures. 2135 // 2136 // NB: don't clear Labels list as we may need them if we mark the function 2137 // as non-simple later in the process of discovering extra entry points. 2138 clearList(Instructions); 2139 clearList(OffsetToCFI); 2140 clearList(TakenBranches); 2141 2142 // Update the state. 2143 CurrentState = State::CFG; 2144 2145 // Make any necessary adjustments for indirect branches. 2146 if (!postProcessIndirectBranches(AllocatorId)) { 2147 if (opts::Verbosity) { 2148 errs() << "BOLT-WARNING: failed to post-process indirect branches for " 2149 << *this << '\n'; 2150 } 2151 // In relocation mode we want to keep processing the function but avoid 2152 // optimizing it. 2153 setSimple(false); 2154 } 2155 2156 clearList(ExternallyReferencedOffsets); 2157 clearList(UnknownIndirectBranchOffsets); 2158 2159 return true; 2160 } 2161 2162 void BinaryFunction::postProcessCFG() { 2163 if (isSimple() && !BasicBlocks.empty()) { 2164 // Convert conditional tail call branches to conditional branches that jump 2165 // to a tail call. 2166 removeConditionalTailCalls(); 2167 2168 postProcessProfile(); 2169 2170 // Eliminate inconsistencies between branch instructions and CFG. 2171 postProcessBranches(); 2172 } 2173 2174 calculateMacroOpFusionStats(); 2175 2176 // The final cleanup of intermediate structures. 2177 clearList(IgnoredBranches); 2178 2179 // Remove "Offset" annotations, unless we need an address-translation table 2180 // later. This has no cost, since annotations are allocated by a bumpptr 2181 // allocator and won't be released anyway until late in the pipeline. 2182 if (!requiresAddressTranslation() && !opts::Instrument) { 2183 for (BinaryBasicBlock &BB : blocks()) 2184 for (MCInst &Inst : BB) 2185 BC.MIB->clearOffset(Inst); 2186 } 2187 2188 assert((!isSimple() || validateCFG()) && 2189 "invalid CFG detected after post-processing"); 2190 } 2191 2192 void BinaryFunction::calculateMacroOpFusionStats() { 2193 if (!getBinaryContext().isX86()) 2194 return; 2195 for (const BinaryBasicBlock &BB : blocks()) { 2196 auto II = BB.getMacroOpFusionPair(); 2197 if (II == BB.end()) 2198 continue; 2199 2200 // Check offset of the second instruction. 2201 // FIXME: arch-specific. 2202 const uint32_t Offset = BC.MIB->getOffsetWithDefault(*std::next(II), 0); 2203 if (!Offset || (getAddress() + Offset) % 64) 2204 continue; 2205 2206 LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x" 2207 << Twine::utohexstr(getAddress() + Offset) 2208 << " in function " << *this << "; executed " 2209 << BB.getKnownExecutionCount() << " times.\n"); 2210 ++BC.MissedMacroFusionPairs; 2211 BC.MissedMacroFusionExecCount += BB.getKnownExecutionCount(); 2212 } 2213 } 2214 2215 void BinaryFunction::removeTagsFromProfile() { 2216 for (BinaryBasicBlock *BB : BasicBlocks) { 2217 if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2218 BB->ExecutionCount = 0; 2219 for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) { 2220 if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE && 2221 BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE) 2222 continue; 2223 BI.Count = 0; 2224 BI.MispredictedCount = 0; 2225 } 2226 } 2227 } 2228 2229 void BinaryFunction::removeConditionalTailCalls() { 2230 // Blocks to be appended at the end. 2231 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks; 2232 2233 for (auto BBI = begin(); BBI != end(); ++BBI) { 2234 BinaryBasicBlock &BB = *BBI; 2235 MCInst *CTCInstr = BB.getLastNonPseudoInstr(); 2236 if (!CTCInstr) 2237 continue; 2238 2239 Optional<uint64_t> TargetAddressOrNone = 2240 BC.MIB->getConditionalTailCall(*CTCInstr); 2241 if (!TargetAddressOrNone) 2242 continue; 2243 2244 // Gather all necessary information about CTC instruction before 2245 // annotations are destroyed. 2246 const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr); 2247 uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2248 uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2249 if (hasValidProfile()) { 2250 CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2251 *CTCInstr, "CTCTakenCount"); 2252 CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2253 *CTCInstr, "CTCMispredCount"); 2254 } 2255 2256 // Assert that the tail call does not throw. 2257 assert(!BC.MIB->getEHInfo(*CTCInstr) && 2258 "found tail call with associated landing pad"); 2259 2260 // Create a basic block with an unconditional tail call instruction using 2261 // the same destination. 2262 const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr); 2263 assert(CTCTargetLabel && "symbol expected for conditional tail call"); 2264 MCInst TailCallInstr; 2265 BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get()); 2266 // Link new BBs to the original input offset of the BB where the CTC 2267 // is, so we can map samples recorded in new BBs back to the original BB 2268 // seem in the input binary (if using BAT) 2269 std::unique_ptr<BinaryBasicBlock> TailCallBB = 2270 createBasicBlock(BC.Ctx->createNamedTempSymbol("TC")); 2271 TailCallBB->setOffset(BB.getInputOffset()); 2272 TailCallBB->addInstruction(TailCallInstr); 2273 TailCallBB->setCFIState(CFIStateBeforeCTC); 2274 2275 // Add CFG edge with profile info from BB to TailCallBB. 2276 BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount); 2277 2278 // Add execution count for the block. 2279 TailCallBB->setExecutionCount(CTCTakenCount); 2280 2281 BC.MIB->convertTailCallToJmp(*CTCInstr); 2282 2283 BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(), 2284 BC.Ctx.get()); 2285 2286 // Add basic block to the list that will be added to the end. 2287 NewBlocks.emplace_back(std::move(TailCallBB)); 2288 2289 // Swap edges as the TailCallBB corresponds to the taken branch. 2290 BB.swapConditionalSuccessors(); 2291 2292 // This branch is no longer a conditional tail call. 2293 BC.MIB->unsetConditionalTailCall(*CTCInstr); 2294 } 2295 2296 insertBasicBlocks(std::prev(end()), std::move(NewBlocks), 2297 /* UpdateLayout */ true, 2298 /* UpdateCFIState */ false); 2299 } 2300 2301 uint64_t BinaryFunction::getFunctionScore() const { 2302 if (FunctionScore != -1) 2303 return FunctionScore; 2304 2305 if (!isSimple() || !hasValidProfile()) { 2306 FunctionScore = 0; 2307 return FunctionScore; 2308 } 2309 2310 uint64_t TotalScore = 0ULL; 2311 for (const BinaryBasicBlock &BB : blocks()) { 2312 uint64_t BBExecCount = BB.getExecutionCount(); 2313 if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2314 continue; 2315 TotalScore += BBExecCount * BB.getNumNonPseudos(); 2316 } 2317 FunctionScore = TotalScore; 2318 return FunctionScore; 2319 } 2320 2321 void BinaryFunction::annotateCFIState() { 2322 assert(CurrentState == State::Disassembled && "unexpected function state"); 2323 assert(!BasicBlocks.empty() && "basic block list should not be empty"); 2324 2325 // This is an index of the last processed CFI in FDE CFI program. 2326 uint32_t State = 0; 2327 2328 // This is an index of RememberState CFI reflecting effective state right 2329 // after execution of RestoreState CFI. 2330 // 2331 // It differs from State iff the CFI at (State-1) 2332 // was RestoreState (modulo GNU_args_size CFIs, which are ignored). 2333 // 2334 // This allows us to generate shorter replay sequences when producing new 2335 // CFI programs. 2336 uint32_t EffectiveState = 0; 2337 2338 // For tracking RememberState/RestoreState sequences. 2339 std::stack<uint32_t> StateStack; 2340 2341 for (BinaryBasicBlock *BB : BasicBlocks) { 2342 BB->setCFIState(EffectiveState); 2343 2344 for (const MCInst &Instr : *BB) { 2345 const MCCFIInstruction *CFI = getCFIFor(Instr); 2346 if (!CFI) 2347 continue; 2348 2349 ++State; 2350 2351 switch (CFI->getOperation()) { 2352 case MCCFIInstruction::OpRememberState: 2353 StateStack.push(EffectiveState); 2354 EffectiveState = State; 2355 break; 2356 case MCCFIInstruction::OpRestoreState: 2357 assert(!StateStack.empty() && "corrupt CFI stack"); 2358 EffectiveState = StateStack.top(); 2359 StateStack.pop(); 2360 break; 2361 case MCCFIInstruction::OpGnuArgsSize: 2362 // OpGnuArgsSize CFIs do not affect the CFI state. 2363 break; 2364 default: 2365 // Any other CFI updates the state. 2366 EffectiveState = State; 2367 break; 2368 } 2369 } 2370 } 2371 2372 assert(StateStack.empty() && "corrupt CFI stack"); 2373 } 2374 2375 namespace { 2376 2377 /// Our full interpretation of a DWARF CFI machine state at a given point 2378 struct CFISnapshot { 2379 /// CFA register number and offset defining the canonical frame at this 2380 /// point, or the number of a rule (CFI state) that computes it with a 2381 /// DWARF expression. This number will be negative if it refers to a CFI 2382 /// located in the CIE instead of the FDE. 2383 uint32_t CFAReg; 2384 int32_t CFAOffset; 2385 int32_t CFARule; 2386 /// Mapping of rules (CFI states) that define the location of each 2387 /// register. If absent, no rule defining the location of such register 2388 /// was ever read. This number will be negative if it refers to a CFI 2389 /// located in the CIE instead of the FDE. 2390 DenseMap<int32_t, int32_t> RegRule; 2391 2392 /// References to CIE, FDE and expanded instructions after a restore state 2393 const BinaryFunction::CFIInstrMapType &CIE; 2394 const BinaryFunction::CFIInstrMapType &FDE; 2395 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents; 2396 2397 /// Current FDE CFI number representing the state where the snapshot is at 2398 int32_t CurState; 2399 2400 /// Used when we don't have information about which state/rule to apply 2401 /// to recover the location of either the CFA or a specific register 2402 constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min(); 2403 2404 private: 2405 /// Update our snapshot by executing a single CFI 2406 void update(const MCCFIInstruction &Instr, int32_t RuleNumber) { 2407 switch (Instr.getOperation()) { 2408 case MCCFIInstruction::OpSameValue: 2409 case MCCFIInstruction::OpRelOffset: 2410 case MCCFIInstruction::OpOffset: 2411 case MCCFIInstruction::OpRestore: 2412 case MCCFIInstruction::OpUndefined: 2413 case MCCFIInstruction::OpRegister: 2414 RegRule[Instr.getRegister()] = RuleNumber; 2415 break; 2416 case MCCFIInstruction::OpDefCfaRegister: 2417 CFAReg = Instr.getRegister(); 2418 CFARule = UNKNOWN; 2419 break; 2420 case MCCFIInstruction::OpDefCfaOffset: 2421 CFAOffset = Instr.getOffset(); 2422 CFARule = UNKNOWN; 2423 break; 2424 case MCCFIInstruction::OpDefCfa: 2425 CFAReg = Instr.getRegister(); 2426 CFAOffset = Instr.getOffset(); 2427 CFARule = UNKNOWN; 2428 break; 2429 case MCCFIInstruction::OpEscape: { 2430 Optional<uint8_t> Reg = readDWARFExpressionTargetReg(Instr.getValues()); 2431 // Handle DW_CFA_def_cfa_expression 2432 if (!Reg) { 2433 CFARule = RuleNumber; 2434 break; 2435 } 2436 RegRule[*Reg] = RuleNumber; 2437 break; 2438 } 2439 case MCCFIInstruction::OpAdjustCfaOffset: 2440 case MCCFIInstruction::OpWindowSave: 2441 case MCCFIInstruction::OpNegateRAState: 2442 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2443 llvm_unreachable("unsupported CFI opcode"); 2444 break; 2445 case MCCFIInstruction::OpRememberState: 2446 case MCCFIInstruction::OpRestoreState: 2447 case MCCFIInstruction::OpGnuArgsSize: 2448 // do not affect CFI state 2449 break; 2450 } 2451 } 2452 2453 public: 2454 /// Advance state reading FDE CFI instructions up to State number 2455 void advanceTo(int32_t State) { 2456 for (int32_t I = CurState, E = State; I != E; ++I) { 2457 const MCCFIInstruction &Instr = FDE[I]; 2458 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2459 update(Instr, I); 2460 continue; 2461 } 2462 // If restore state instruction, fetch the equivalent CFIs that have 2463 // the same effect of this restore. This is used to ensure remember- 2464 // restore pairs are completely removed. 2465 auto Iter = FrameRestoreEquivalents.find(I); 2466 if (Iter == FrameRestoreEquivalents.end()) 2467 continue; 2468 for (int32_t RuleNumber : Iter->second) 2469 update(FDE[RuleNumber], RuleNumber); 2470 } 2471 2472 assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) || 2473 CFARule != UNKNOWN) && 2474 "CIE did not define default CFA?"); 2475 2476 CurState = State; 2477 } 2478 2479 /// Interpret all CIE and FDE instructions up until CFI State number and 2480 /// populate this snapshot 2481 CFISnapshot( 2482 const BinaryFunction::CFIInstrMapType &CIE, 2483 const BinaryFunction::CFIInstrMapType &FDE, 2484 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2485 int32_t State) 2486 : CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) { 2487 CFAReg = UNKNOWN; 2488 CFAOffset = UNKNOWN; 2489 CFARule = UNKNOWN; 2490 CurState = 0; 2491 2492 for (int32_t I = 0, E = CIE.size(); I != E; ++I) { 2493 const MCCFIInstruction &Instr = CIE[I]; 2494 update(Instr, -I); 2495 } 2496 2497 advanceTo(State); 2498 } 2499 }; 2500 2501 /// A CFI snapshot with the capability of checking if incremental additions to 2502 /// it are redundant. This is used to ensure we do not emit two CFI instructions 2503 /// back-to-back that are doing the same state change, or to avoid emitting a 2504 /// CFI at all when the state at that point would not be modified after that CFI 2505 struct CFISnapshotDiff : public CFISnapshot { 2506 bool RestoredCFAReg{false}; 2507 bool RestoredCFAOffset{false}; 2508 DenseMap<int32_t, bool> RestoredRegs; 2509 2510 CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {} 2511 2512 CFISnapshotDiff( 2513 const BinaryFunction::CFIInstrMapType &CIE, 2514 const BinaryFunction::CFIInstrMapType &FDE, 2515 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2516 int32_t State) 2517 : CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {} 2518 2519 /// Return true if applying Instr to this state is redundant and can be 2520 /// dismissed. 2521 bool isRedundant(const MCCFIInstruction &Instr) { 2522 switch (Instr.getOperation()) { 2523 case MCCFIInstruction::OpSameValue: 2524 case MCCFIInstruction::OpRelOffset: 2525 case MCCFIInstruction::OpOffset: 2526 case MCCFIInstruction::OpRestore: 2527 case MCCFIInstruction::OpUndefined: 2528 case MCCFIInstruction::OpRegister: 2529 case MCCFIInstruction::OpEscape: { 2530 uint32_t Reg; 2531 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2532 Reg = Instr.getRegister(); 2533 } else { 2534 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2535 // Handle DW_CFA_def_cfa_expression 2536 if (!R) { 2537 if (RestoredCFAReg && RestoredCFAOffset) 2538 return true; 2539 RestoredCFAReg = true; 2540 RestoredCFAOffset = true; 2541 return false; 2542 } 2543 Reg = *R; 2544 } 2545 if (RestoredRegs[Reg]) 2546 return true; 2547 RestoredRegs[Reg] = true; 2548 const int32_t CurRegRule = 2549 RegRule.find(Reg) != RegRule.end() ? RegRule[Reg] : UNKNOWN; 2550 if (CurRegRule == UNKNOWN) { 2551 if (Instr.getOperation() == MCCFIInstruction::OpRestore || 2552 Instr.getOperation() == MCCFIInstruction::OpSameValue) 2553 return true; 2554 return false; 2555 } 2556 const MCCFIInstruction &LastDef = 2557 CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule]; 2558 return LastDef == Instr; 2559 } 2560 case MCCFIInstruction::OpDefCfaRegister: 2561 if (RestoredCFAReg) 2562 return true; 2563 RestoredCFAReg = true; 2564 return CFAReg == Instr.getRegister(); 2565 case MCCFIInstruction::OpDefCfaOffset: 2566 if (RestoredCFAOffset) 2567 return true; 2568 RestoredCFAOffset = true; 2569 return CFAOffset == Instr.getOffset(); 2570 case MCCFIInstruction::OpDefCfa: 2571 if (RestoredCFAReg && RestoredCFAOffset) 2572 return true; 2573 RestoredCFAReg = true; 2574 RestoredCFAOffset = true; 2575 return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset(); 2576 case MCCFIInstruction::OpAdjustCfaOffset: 2577 case MCCFIInstruction::OpWindowSave: 2578 case MCCFIInstruction::OpNegateRAState: 2579 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2580 llvm_unreachable("unsupported CFI opcode"); 2581 return false; 2582 case MCCFIInstruction::OpRememberState: 2583 case MCCFIInstruction::OpRestoreState: 2584 case MCCFIInstruction::OpGnuArgsSize: 2585 // do not affect CFI state 2586 return true; 2587 } 2588 return false; 2589 } 2590 }; 2591 2592 } // end anonymous namespace 2593 2594 bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState, 2595 BinaryBasicBlock *InBB, 2596 BinaryBasicBlock::iterator InsertIt) { 2597 if (FromState == ToState) 2598 return true; 2599 assert(FromState < ToState && "can only replay CFIs forward"); 2600 2601 CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions, 2602 FrameRestoreEquivalents, FromState); 2603 2604 std::vector<uint32_t> NewCFIs; 2605 for (int32_t CurState = FromState; CurState < ToState; ++CurState) { 2606 MCCFIInstruction *Instr = &FrameInstructions[CurState]; 2607 if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) { 2608 auto Iter = FrameRestoreEquivalents.find(CurState); 2609 assert(Iter != FrameRestoreEquivalents.end()); 2610 NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end()); 2611 // RestoreState / Remember will be filtered out later by CFISnapshotDiff, 2612 // so we might as well fall-through here. 2613 } 2614 NewCFIs.push_back(CurState); 2615 continue; 2616 } 2617 2618 // Replay instructions while avoiding duplicates 2619 for (auto I = NewCFIs.rbegin(), E = NewCFIs.rend(); I != E; ++I) { 2620 if (CFIDiff.isRedundant(FrameInstructions[*I])) 2621 continue; 2622 InsertIt = addCFIPseudo(InBB, InsertIt, *I); 2623 } 2624 2625 return true; 2626 } 2627 2628 SmallVector<int32_t, 4> 2629 BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState, 2630 BinaryBasicBlock *InBB, 2631 BinaryBasicBlock::iterator &InsertIt) { 2632 SmallVector<int32_t, 4> NewStates; 2633 2634 CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions, 2635 FrameRestoreEquivalents, ToState); 2636 CFISnapshotDiff FromCFITable(ToCFITable); 2637 FromCFITable.advanceTo(FromState); 2638 2639 auto undoStateDefCfa = [&]() { 2640 if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) { 2641 FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa( 2642 nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset)); 2643 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2644 FrameInstructions.pop_back(); 2645 return; 2646 } 2647 NewStates.push_back(FrameInstructions.size() - 1); 2648 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2649 ++InsertIt; 2650 } else if (ToCFITable.CFARule < 0) { 2651 if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule])) 2652 return; 2653 NewStates.push_back(FrameInstructions.size()); 2654 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2655 ++InsertIt; 2656 FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]); 2657 } else if (!FromCFITable.isRedundant( 2658 FrameInstructions[ToCFITable.CFARule])) { 2659 NewStates.push_back(ToCFITable.CFARule); 2660 InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule); 2661 ++InsertIt; 2662 } 2663 }; 2664 2665 auto undoState = [&](const MCCFIInstruction &Instr) { 2666 switch (Instr.getOperation()) { 2667 case MCCFIInstruction::OpRememberState: 2668 case MCCFIInstruction::OpRestoreState: 2669 break; 2670 case MCCFIInstruction::OpSameValue: 2671 case MCCFIInstruction::OpRelOffset: 2672 case MCCFIInstruction::OpOffset: 2673 case MCCFIInstruction::OpRestore: 2674 case MCCFIInstruction::OpUndefined: 2675 case MCCFIInstruction::OpEscape: 2676 case MCCFIInstruction::OpRegister: { 2677 uint32_t Reg; 2678 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2679 Reg = Instr.getRegister(); 2680 } else { 2681 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2682 // Handle DW_CFA_def_cfa_expression 2683 if (!R) { 2684 undoStateDefCfa(); 2685 return; 2686 } 2687 Reg = *R; 2688 } 2689 2690 if (ToCFITable.RegRule.find(Reg) == ToCFITable.RegRule.end()) { 2691 FrameInstructions.emplace_back( 2692 MCCFIInstruction::createRestore(nullptr, Reg)); 2693 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2694 FrameInstructions.pop_back(); 2695 break; 2696 } 2697 NewStates.push_back(FrameInstructions.size() - 1); 2698 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2699 ++InsertIt; 2700 break; 2701 } 2702 const int32_t Rule = ToCFITable.RegRule[Reg]; 2703 if (Rule < 0) { 2704 if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule])) 2705 break; 2706 NewStates.push_back(FrameInstructions.size()); 2707 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2708 ++InsertIt; 2709 FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]); 2710 break; 2711 } 2712 if (FromCFITable.isRedundant(FrameInstructions[Rule])) 2713 break; 2714 NewStates.push_back(Rule); 2715 InsertIt = addCFIPseudo(InBB, InsertIt, Rule); 2716 ++InsertIt; 2717 break; 2718 } 2719 case MCCFIInstruction::OpDefCfaRegister: 2720 case MCCFIInstruction::OpDefCfaOffset: 2721 case MCCFIInstruction::OpDefCfa: 2722 undoStateDefCfa(); 2723 break; 2724 case MCCFIInstruction::OpAdjustCfaOffset: 2725 case MCCFIInstruction::OpWindowSave: 2726 case MCCFIInstruction::OpNegateRAState: 2727 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2728 llvm_unreachable("unsupported CFI opcode"); 2729 break; 2730 case MCCFIInstruction::OpGnuArgsSize: 2731 // do not affect CFI state 2732 break; 2733 } 2734 }; 2735 2736 // Undo all modifications from ToState to FromState 2737 for (int32_t I = ToState, E = FromState; I != E; ++I) { 2738 const MCCFIInstruction &Instr = FrameInstructions[I]; 2739 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2740 undoState(Instr); 2741 continue; 2742 } 2743 auto Iter = FrameRestoreEquivalents.find(I); 2744 if (Iter == FrameRestoreEquivalents.end()) 2745 continue; 2746 for (int32_t State : Iter->second) 2747 undoState(FrameInstructions[State]); 2748 } 2749 2750 return NewStates; 2751 } 2752 2753 void BinaryFunction::normalizeCFIState() { 2754 // Reordering blocks with remember-restore state instructions can be specially 2755 // tricky. When rewriting the CFI, we omit remember-restore state instructions 2756 // entirely. For restore state, we build a map expanding each restore to the 2757 // equivalent unwindCFIState sequence required at that point to achieve the 2758 // same effect of the restore. All remember state are then just ignored. 2759 std::stack<int32_t> Stack; 2760 for (BinaryBasicBlock *CurBB : BasicBlocksLayout) { 2761 for (auto II = CurBB->begin(); II != CurBB->end(); ++II) { 2762 if (const MCCFIInstruction *CFI = getCFIFor(*II)) { 2763 if (CFI->getOperation() == MCCFIInstruction::OpRememberState) { 2764 Stack.push(II->getOperand(0).getImm()); 2765 continue; 2766 } 2767 if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) { 2768 const int32_t RememberState = Stack.top(); 2769 const int32_t CurState = II->getOperand(0).getImm(); 2770 FrameRestoreEquivalents[CurState] = 2771 unwindCFIState(CurState, RememberState, CurBB, II); 2772 Stack.pop(); 2773 } 2774 } 2775 } 2776 } 2777 } 2778 2779 bool BinaryFunction::finalizeCFIState() { 2780 LLVM_DEBUG( 2781 dbgs() << "Trying to fix CFI states for each BB after reordering.\n"); 2782 LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this 2783 << ": "); 2784 2785 int32_t State = 0; 2786 bool SeenCold = false; 2787 const char *Sep = ""; 2788 (void)Sep; 2789 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 2790 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 2791 2792 // Hot-cold border: check if this is the first BB to be allocated in a cold 2793 // region (with a different FDE). If yes, we need to reset the CFI state. 2794 if (!SeenCold && BB->isCold()) { 2795 State = 0; 2796 SeenCold = true; 2797 } 2798 2799 // We need to recover the correct state if it doesn't match expected 2800 // state at BB entry point. 2801 if (BB->getCFIState() < State) { 2802 // In this case, State is currently higher than what this BB expect it 2803 // to be. To solve this, we need to insert CFI instructions to undo 2804 // the effect of all CFI from BB's state to current State. 2805 auto InsertIt = BB->begin(); 2806 unwindCFIState(State, BB->getCFIState(), BB, InsertIt); 2807 } else if (BB->getCFIState() > State) { 2808 // If BB's CFI state is greater than State, it means we are behind in the 2809 // state. Just emit all instructions to reach this state at the 2810 // beginning of this BB. If this sequence of instructions involve 2811 // remember state or restore state, bail out. 2812 if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin())) 2813 return false; 2814 } 2815 2816 State = CFIStateAtExit; 2817 LLVM_DEBUG(dbgs() << Sep << State; Sep = ", "); 2818 } 2819 LLVM_DEBUG(dbgs() << "\n"); 2820 2821 for (BinaryBasicBlock &BB : blocks()) { 2822 for (auto II = BB.begin(); II != BB.end();) { 2823 const MCCFIInstruction *CFI = getCFIFor(*II); 2824 if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState || 2825 CFI->getOperation() == MCCFIInstruction::OpRestoreState)) { 2826 II = BB.eraseInstruction(II); 2827 } else { 2828 ++II; 2829 } 2830 } 2831 } 2832 2833 return true; 2834 } 2835 2836 bool BinaryFunction::requiresAddressTranslation() const { 2837 return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe(); 2838 } 2839 2840 uint64_t BinaryFunction::getInstructionCount() const { 2841 uint64_t Count = 0; 2842 for (const BinaryBasicBlock &BB : blocks()) 2843 Count += BB.getNumNonPseudos(); 2844 return Count; 2845 } 2846 2847 bool BinaryFunction::hasLayoutChanged() const { return ModifiedLayout; } 2848 2849 uint64_t BinaryFunction::getEditDistance() const { 2850 return ComputeEditDistance<BinaryBasicBlock *>(BasicBlocksPreviousLayout, 2851 BasicBlocksLayout); 2852 } 2853 2854 void BinaryFunction::clearDisasmState() { 2855 clearList(Instructions); 2856 clearList(IgnoredBranches); 2857 clearList(TakenBranches); 2858 2859 if (BC.HasRelocations) { 2860 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 2861 BC.UndefinedSymbols.insert(LI.second); 2862 if (FunctionEndLabel) 2863 BC.UndefinedSymbols.insert(FunctionEndLabel); 2864 } 2865 } 2866 2867 void BinaryFunction::setTrapOnEntry() { 2868 clearDisasmState(); 2869 2870 auto addTrapAtOffset = [&](uint64_t Offset) { 2871 MCInst TrapInstr; 2872 BC.MIB->createTrap(TrapInstr); 2873 addInstruction(Offset, std::move(TrapInstr)); 2874 }; 2875 2876 addTrapAtOffset(0); 2877 for (const std::pair<const uint32_t, MCSymbol *> &KV : getLabels()) 2878 if (getSecondaryEntryPointSymbol(KV.second)) 2879 addTrapAtOffset(KV.first); 2880 2881 TrapsOnEntry = true; 2882 } 2883 2884 void BinaryFunction::setIgnored() { 2885 if (opts::processAllFunctions()) { 2886 // We can accept ignored functions before they've been disassembled. 2887 // In that case, they would still get disassembled and emited, but not 2888 // optimized. 2889 assert(CurrentState == State::Empty && 2890 "cannot ignore non-empty functions in current mode"); 2891 IsIgnored = true; 2892 return; 2893 } 2894 2895 clearDisasmState(); 2896 2897 // Clear CFG state too. 2898 if (hasCFG()) { 2899 releaseCFG(); 2900 2901 for (BinaryBasicBlock *BB : BasicBlocks) 2902 delete BB; 2903 clearList(BasicBlocks); 2904 2905 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 2906 delete BB; 2907 clearList(DeletedBasicBlocks); 2908 2909 clearList(BasicBlocksLayout); 2910 clearList(BasicBlocksPreviousLayout); 2911 } 2912 2913 CurrentState = State::Empty; 2914 2915 IsIgnored = true; 2916 IsSimple = false; 2917 LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n'); 2918 } 2919 2920 void BinaryFunction::duplicateConstantIslands() { 2921 assert(Islands && "function expected to have constant islands"); 2922 2923 for (BinaryBasicBlock *BB : layout()) { 2924 if (!BB->isCold()) 2925 continue; 2926 2927 for (MCInst &Inst : *BB) { 2928 int OpNum = 0; 2929 for (MCOperand &Operand : Inst) { 2930 if (!Operand.isExpr()) { 2931 ++OpNum; 2932 continue; 2933 } 2934 const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum); 2935 // Check if this is an island symbol 2936 if (!Islands->Symbols.count(Symbol) && 2937 !Islands->ProxySymbols.count(Symbol)) 2938 continue; 2939 2940 // Create cold symbol, if missing 2941 auto ISym = Islands->ColdSymbols.find(Symbol); 2942 MCSymbol *ColdSymbol; 2943 if (ISym != Islands->ColdSymbols.end()) { 2944 ColdSymbol = ISym->second; 2945 } else { 2946 ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold"); 2947 Islands->ColdSymbols[Symbol] = ColdSymbol; 2948 // Check if this is a proxy island symbol and update owner proxy map 2949 if (Islands->ProxySymbols.count(Symbol)) { 2950 BinaryFunction *Owner = Islands->ProxySymbols[Symbol]; 2951 auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol); 2952 Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol; 2953 } 2954 } 2955 2956 // Update instruction reference 2957 Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor( 2958 Inst, 2959 MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None, 2960 *BC.Ctx), 2961 *BC.Ctx, 0)); 2962 ++OpNum; 2963 } 2964 } 2965 } 2966 } 2967 2968 namespace { 2969 2970 #ifndef MAX_PATH 2971 #define MAX_PATH 255 2972 #endif 2973 2974 std::string constructFilename(std::string Filename, std::string Annotation, 2975 std::string Suffix) { 2976 std::replace(Filename.begin(), Filename.end(), '/', '-'); 2977 if (!Annotation.empty()) 2978 Annotation.insert(0, "-"); 2979 if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) { 2980 assert(Suffix.size() + Annotation.size() <= MAX_PATH); 2981 if (opts::Verbosity >= 1) { 2982 errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix 2983 << "\" exceeds the " << MAX_PATH << " size limit, truncating.\n"; 2984 } 2985 Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size())); 2986 } 2987 Filename += Annotation; 2988 Filename += Suffix; 2989 return Filename; 2990 } 2991 2992 std::string formatEscapes(const std::string &Str) { 2993 std::string Result; 2994 for (unsigned I = 0; I < Str.size(); ++I) { 2995 char C = Str[I]; 2996 switch (C) { 2997 case '\n': 2998 Result += " "; 2999 break; 3000 case '"': 3001 break; 3002 default: 3003 Result += C; 3004 break; 3005 } 3006 } 3007 return Result; 3008 } 3009 3010 } // namespace 3011 3012 void BinaryFunction::dumpGraph(raw_ostream &OS) const { 3013 OS << "digraph \"" << getPrintName() << "\" {\n" 3014 << "node [fontname=courier, shape=box, style=filled, colorscheme=brbg9]\n"; 3015 uint64_t Offset = Address; 3016 for (BinaryBasicBlock *BB : BasicBlocks) { 3017 auto LayoutPos = llvm::find(BasicBlocksLayout, BB); 3018 unsigned Layout = LayoutPos - BasicBlocksLayout.begin(); 3019 const char *ColdStr = BB->isCold() ? " (cold)" : ""; 3020 std::vector<std::string> Attrs; 3021 // Bold box for entry points 3022 if (isEntryPoint(*BB)) 3023 Attrs.push_back("penwidth=2"); 3024 if (BLI && BLI->getLoopFor(BB)) { 3025 // Distinguish innermost loops 3026 const BinaryLoop *Loop = BLI->getLoopFor(BB); 3027 if (Loop->isInnermost()) 3028 Attrs.push_back("fillcolor=6"); 3029 else // some outer loop 3030 Attrs.push_back("fillcolor=4"); 3031 } else { // non-loopy code 3032 Attrs.push_back("fillcolor=5"); 3033 } 3034 ListSeparator LS; 3035 OS << "\"" << BB->getName() << "\" ["; 3036 for (StringRef Attr : Attrs) 3037 OS << LS << Attr; 3038 OS << "]\n"; 3039 OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u,CFI:%u)\\n", 3040 BB->getName().data(), BB->getName().data(), ColdStr, 3041 BB->getKnownExecutionCount(), BB->getOffset(), getIndex(BB), 3042 Layout, BB->getCFIState()); 3043 3044 if (opts::DotToolTipCode) { 3045 std::string Str; 3046 raw_string_ostream CS(Str); 3047 Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this, 3048 /* PrintMCInst = */ false, 3049 /* PrintMemData = */ false, 3050 /* PrintRelocations = */ false, 3051 /* Endl = */ R"(\\l)"); 3052 OS << formatEscapes(CS.str()) << '\n'; 3053 } 3054 OS << "\"]\n"; 3055 3056 // analyzeBranch is just used to get the names of the branch 3057 // opcodes. 3058 const MCSymbol *TBB = nullptr; 3059 const MCSymbol *FBB = nullptr; 3060 MCInst *CondBranch = nullptr; 3061 MCInst *UncondBranch = nullptr; 3062 const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 3063 3064 const MCInst *LastInstr = BB->getLastNonPseudoInstr(); 3065 const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr); 3066 3067 auto BI = BB->branch_info_begin(); 3068 for (BinaryBasicBlock *Succ : BB->successors()) { 3069 std::string Branch; 3070 if (Success) { 3071 if (Succ == BB->getConditionalSuccessor(true)) { 3072 Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3073 CondBranch->getOpcode())) 3074 : "TB"; 3075 } else if (Succ == BB->getConditionalSuccessor(false)) { 3076 Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3077 UncondBranch->getOpcode())) 3078 : "FB"; 3079 } else { 3080 Branch = "FT"; 3081 } 3082 } 3083 if (IsJumpTable) 3084 Branch = "JT"; 3085 OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(), 3086 Succ->getName().data(), Branch.c_str()); 3087 3088 if (BB->getExecutionCount() != COUNT_NO_PROFILE && 3089 BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 3090 OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")"; 3091 } else if (ExecutionCount != COUNT_NO_PROFILE && 3092 BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 3093 OS << "\\n(IC:" << BI->Count << ")"; 3094 } 3095 OS << "\"]\n"; 3096 3097 ++BI; 3098 } 3099 for (BinaryBasicBlock *LP : BB->landing_pads()) { 3100 OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n", 3101 BB->getName().data(), LP->getName().data()); 3102 } 3103 } 3104 OS << "}\n"; 3105 } 3106 3107 void BinaryFunction::viewGraph() const { 3108 SmallString<MAX_PATH> Filename; 3109 if (std::error_code EC = 3110 sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) { 3111 errs() << "BOLT-ERROR: " << EC.message() << ", unable to create " 3112 << " bolt-cfg-XXXXX.dot temporary file.\n"; 3113 return; 3114 } 3115 dumpGraphToFile(std::string(Filename)); 3116 if (DisplayGraph(Filename)) 3117 errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n"; 3118 if (std::error_code EC = sys::fs::remove(Filename)) { 3119 errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove " 3120 << Filename << "\n"; 3121 } 3122 } 3123 3124 void BinaryFunction::dumpGraphForPass(std::string Annotation) const { 3125 if (!opts::shouldPrint(*this)) 3126 return; 3127 3128 std::string Filename = constructFilename(getPrintName(), Annotation, ".dot"); 3129 if (opts::Verbosity >= 1) 3130 outs() << "BOLT-INFO: dumping CFG to " << Filename << "\n"; 3131 dumpGraphToFile(Filename); 3132 } 3133 3134 void BinaryFunction::dumpGraphToFile(std::string Filename) const { 3135 std::error_code EC; 3136 raw_fd_ostream of(Filename, EC, sys::fs::OF_None); 3137 if (EC) { 3138 if (opts::Verbosity >= 1) { 3139 errs() << "BOLT-WARNING: " << EC.message() << ", unable to open " 3140 << Filename << " for output.\n"; 3141 } 3142 return; 3143 } 3144 dumpGraph(of); 3145 } 3146 3147 bool BinaryFunction::validateCFG() const { 3148 bool Valid = true; 3149 for (BinaryBasicBlock *BB : BasicBlocks) 3150 Valid &= BB->validateSuccessorInvariants(); 3151 3152 if (!Valid) 3153 return Valid; 3154 3155 // Make sure all blocks in CFG are valid. 3156 auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) { 3157 if (!BB->isValid()) { 3158 errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName() 3159 << " detected in:\n"; 3160 this->dump(); 3161 return false; 3162 } 3163 return true; 3164 }; 3165 for (const BinaryBasicBlock *BB : BasicBlocks) { 3166 if (!validateBlock(BB, "block")) 3167 return false; 3168 for (const BinaryBasicBlock *PredBB : BB->predecessors()) 3169 if (!validateBlock(PredBB, "predecessor")) 3170 return false; 3171 for (const BinaryBasicBlock *SuccBB : BB->successors()) 3172 if (!validateBlock(SuccBB, "successor")) 3173 return false; 3174 for (const BinaryBasicBlock *LP : BB->landing_pads()) 3175 if (!validateBlock(LP, "landing pad")) 3176 return false; 3177 for (const BinaryBasicBlock *Thrower : BB->throwers()) 3178 if (!validateBlock(Thrower, "thrower")) 3179 return false; 3180 } 3181 3182 for (const BinaryBasicBlock *BB : BasicBlocks) { 3183 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 3184 for (const BinaryBasicBlock *LP : BB->landing_pads()) { 3185 if (BBLandingPads.count(LP)) { 3186 errs() << "BOLT-ERROR: duplicate landing pad detected in" 3187 << BB->getName() << " in function " << *this << '\n'; 3188 return false; 3189 } 3190 BBLandingPads.insert(LP); 3191 } 3192 3193 std::unordered_set<const BinaryBasicBlock *> BBThrowers; 3194 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3195 if (BBThrowers.count(Thrower)) { 3196 errs() << "BOLT-ERROR: duplicate thrower detected in" << BB->getName() 3197 << " in function " << *this << '\n'; 3198 return false; 3199 } 3200 BBThrowers.insert(Thrower); 3201 } 3202 3203 for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) { 3204 if (!llvm::is_contained(LPBlock->throwers(), BB)) { 3205 errs() << "BOLT-ERROR: inconsistent landing pad detected in " << *this 3206 << ": " << BB->getName() << " is in LandingPads but not in " 3207 << LPBlock->getName() << " Throwers\n"; 3208 return false; 3209 } 3210 } 3211 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3212 if (!llvm::is_contained(Thrower->landing_pads(), BB)) { 3213 errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this 3214 << ": " << BB->getName() << " is in Throwers list but not in " 3215 << Thrower->getName() << " LandingPads\n"; 3216 return false; 3217 } 3218 } 3219 } 3220 3221 return Valid; 3222 } 3223 3224 void BinaryFunction::fixBranches() { 3225 auto &MIB = BC.MIB; 3226 MCContext *Ctx = BC.Ctx.get(); 3227 3228 for (unsigned I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 3229 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 3230 const MCSymbol *TBB = nullptr; 3231 const MCSymbol *FBB = nullptr; 3232 MCInst *CondBranch = nullptr; 3233 MCInst *UncondBranch = nullptr; 3234 if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) 3235 continue; 3236 3237 // We will create unconditional branch with correct destination if needed. 3238 if (UncondBranch) 3239 BB->eraseInstruction(BB->findInstruction(UncondBranch)); 3240 3241 // Basic block that follows the current one in the final layout. 3242 const BinaryBasicBlock *NextBB = nullptr; 3243 if (I + 1 != E && BB->isCold() == BasicBlocksLayout[I + 1]->isCold()) 3244 NextBB = BasicBlocksLayout[I + 1]; 3245 3246 if (BB->succ_size() == 1) { 3247 // __builtin_unreachable() could create a conditional branch that 3248 // falls-through into the next function - hence the block will have only 3249 // one valid successor. Since behaviour is undefined - we replace 3250 // the conditional branch with an unconditional if required. 3251 if (CondBranch) 3252 BB->eraseInstruction(BB->findInstruction(CondBranch)); 3253 if (BB->getSuccessor() == NextBB) 3254 continue; 3255 BB->addBranchInstruction(BB->getSuccessor()); 3256 } else if (BB->succ_size() == 2) { 3257 assert(CondBranch && "conditional branch expected"); 3258 const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true); 3259 const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false); 3260 // Check whether we support reversing this branch direction 3261 const bool IsSupported = 3262 !MIB->isUnsupportedBranch(CondBranch->getOpcode()); 3263 if (NextBB && NextBB == TSuccessor && IsSupported) { 3264 std::swap(TSuccessor, FSuccessor); 3265 { 3266 auto L = BC.scopeLock(); 3267 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx); 3268 } 3269 BB->swapConditionalSuccessors(); 3270 } else { 3271 auto L = BC.scopeLock(); 3272 MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx); 3273 } 3274 if (TSuccessor == FSuccessor) 3275 BB->removeDuplicateConditionalSuccessor(CondBranch); 3276 if (!NextBB || 3277 ((NextBB != TSuccessor || !IsSupported) && NextBB != FSuccessor)) { 3278 // If one of the branches is guaranteed to be "long" while the other 3279 // could be "short", then prioritize short for "taken". This will 3280 // generate a sequence 1 byte shorter on x86. 3281 if (IsSupported && BC.isX86() && 3282 TSuccessor->isCold() != FSuccessor->isCold() && 3283 BB->isCold() != TSuccessor->isCold()) { 3284 std::swap(TSuccessor, FSuccessor); 3285 { 3286 auto L = BC.scopeLock(); 3287 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), 3288 Ctx); 3289 } 3290 BB->swapConditionalSuccessors(); 3291 } 3292 BB->addBranchInstruction(FSuccessor); 3293 } 3294 } 3295 // Cases where the number of successors is 0 (block ends with a 3296 // terminator) or more than 2 (switch table) don't require branch 3297 // instruction adjustments. 3298 } 3299 assert((!isSimple() || validateCFG()) && 3300 "Invalid CFG detected after fixing branches"); 3301 } 3302 3303 void BinaryFunction::propagateGnuArgsSizeInfo( 3304 MCPlusBuilder::AllocatorIdTy AllocId) { 3305 assert(CurrentState == State::Disassembled && "unexpected function state"); 3306 3307 if (!hasEHRanges() || !usesGnuArgsSize()) 3308 return; 3309 3310 // The current value of DW_CFA_GNU_args_size affects all following 3311 // invoke instructions until the next CFI overrides it. 3312 // It is important to iterate basic blocks in the original order when 3313 // assigning the value. 3314 uint64_t CurrentGnuArgsSize = 0; 3315 for (BinaryBasicBlock *BB : BasicBlocks) { 3316 for (auto II = BB->begin(); II != BB->end();) { 3317 MCInst &Instr = *II; 3318 if (BC.MIB->isCFI(Instr)) { 3319 const MCCFIInstruction *CFI = getCFIFor(Instr); 3320 if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) { 3321 CurrentGnuArgsSize = CFI->getOffset(); 3322 // Delete DW_CFA_GNU_args_size instructions and only regenerate 3323 // during the final code emission. The information is embedded 3324 // inside call instructions. 3325 II = BB->erasePseudoInstruction(II); 3326 continue; 3327 } 3328 } else if (BC.MIB->isInvoke(Instr)) { 3329 // Add the value of GNU_args_size as an extra operand to invokes. 3330 BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize, AllocId); 3331 } 3332 ++II; 3333 } 3334 } 3335 } 3336 3337 void BinaryFunction::postProcessBranches() { 3338 if (!isSimple()) 3339 return; 3340 for (BinaryBasicBlock &BB : blocks()) { 3341 auto LastInstrRI = BB.getLastNonPseudo(); 3342 if (BB.succ_size() == 1) { 3343 if (LastInstrRI != BB.rend() && 3344 BC.MIB->isConditionalBranch(*LastInstrRI)) { 3345 // __builtin_unreachable() could create a conditional branch that 3346 // falls-through into the next function - hence the block will have only 3347 // one valid successor. Such behaviour is undefined and thus we remove 3348 // the conditional branch while leaving a valid successor. 3349 BB.eraseInstruction(std::prev(LastInstrRI.base())); 3350 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in " 3351 << BB.getName() << " in function " << *this << '\n'); 3352 } 3353 } else if (BB.succ_size() == 0) { 3354 // Ignore unreachable basic blocks. 3355 if (BB.pred_size() == 0 || BB.isLandingPad()) 3356 continue; 3357 3358 // If it's the basic block that does not end up with a terminator - we 3359 // insert a return instruction unless it's a call instruction. 3360 if (LastInstrRI == BB.rend()) { 3361 LLVM_DEBUG( 3362 dbgs() << "BOLT-DEBUG: at least one instruction expected in BB " 3363 << BB.getName() << " in function " << *this << '\n'); 3364 continue; 3365 } 3366 if (!BC.MIB->isTerminator(*LastInstrRI) && 3367 !BC.MIB->isCall(*LastInstrRI)) { 3368 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block " 3369 << BB.getName() << " in function " << *this << '\n'); 3370 MCInst ReturnInstr; 3371 BC.MIB->createReturn(ReturnInstr); 3372 BB.addInstruction(ReturnInstr); 3373 } 3374 } 3375 } 3376 assert(validateCFG() && "invalid CFG"); 3377 } 3378 3379 MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) { 3380 assert(Offset && "cannot add primary entry point"); 3381 assert(CurrentState == State::Empty || CurrentState == State::Disassembled); 3382 3383 const uint64_t EntryPointAddress = getAddress() + Offset; 3384 MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress); 3385 3386 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol); 3387 if (EntrySymbol) 3388 return EntrySymbol; 3389 3390 if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) { 3391 EntrySymbol = EntryBD->getSymbol(); 3392 } else { 3393 EntrySymbol = BC.getOrCreateGlobalSymbol( 3394 EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@"); 3395 } 3396 SecondaryEntryPoints[LocalSymbol] = EntrySymbol; 3397 3398 BC.setSymbolToFunctionMap(EntrySymbol, this); 3399 3400 return EntrySymbol; 3401 } 3402 3403 MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) { 3404 assert(CurrentState == State::CFG && 3405 "basic block can be added as an entry only in a function with CFG"); 3406 3407 if (&BB == BasicBlocks.front()) 3408 return getSymbol(); 3409 3410 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB); 3411 if (EntrySymbol) 3412 return EntrySymbol; 3413 3414 EntrySymbol = 3415 BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName()); 3416 3417 SecondaryEntryPoints[BB.getLabel()] = EntrySymbol; 3418 3419 BC.setSymbolToFunctionMap(EntrySymbol, this); 3420 3421 return EntrySymbol; 3422 } 3423 3424 MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) { 3425 if (EntryID == 0) 3426 return getSymbol(); 3427 3428 if (!isMultiEntry()) 3429 return nullptr; 3430 3431 uint64_t NumEntries = 0; 3432 if (hasCFG()) { 3433 for (BinaryBasicBlock *BB : BasicBlocks) { 3434 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3435 if (!EntrySymbol) 3436 continue; 3437 if (NumEntries == EntryID) 3438 return EntrySymbol; 3439 ++NumEntries; 3440 } 3441 } else { 3442 for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3443 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3444 if (!EntrySymbol) 3445 continue; 3446 if (NumEntries == EntryID) 3447 return EntrySymbol; 3448 ++NumEntries; 3449 } 3450 } 3451 3452 return nullptr; 3453 } 3454 3455 uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const { 3456 if (!isMultiEntry()) 3457 return 0; 3458 3459 for (const MCSymbol *FunctionSymbol : getSymbols()) 3460 if (FunctionSymbol == Symbol) 3461 return 0; 3462 3463 // Check all secondary entries available as either basic blocks or lables. 3464 uint64_t NumEntries = 0; 3465 for (const BinaryBasicBlock *BB : BasicBlocks) { 3466 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3467 if (!EntrySymbol) 3468 continue; 3469 if (EntrySymbol == Symbol) 3470 return NumEntries; 3471 ++NumEntries; 3472 } 3473 NumEntries = 0; 3474 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3475 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3476 if (!EntrySymbol) 3477 continue; 3478 if (EntrySymbol == Symbol) 3479 return NumEntries; 3480 ++NumEntries; 3481 } 3482 3483 llvm_unreachable("symbol not found"); 3484 } 3485 3486 bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const { 3487 bool Status = Callback(0, getSymbol()); 3488 if (!isMultiEntry()) 3489 return Status; 3490 3491 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3492 if (!Status) 3493 break; 3494 3495 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3496 if (!EntrySymbol) 3497 continue; 3498 3499 Status = Callback(KV.first, EntrySymbol); 3500 } 3501 3502 return Status; 3503 } 3504 3505 BinaryFunction::BasicBlockListType BinaryFunction::dfs() const { 3506 BasicBlockListType DFS; 3507 unsigned Index = 0; 3508 std::stack<BinaryBasicBlock *> Stack; 3509 3510 // Push entry points to the stack in reverse order. 3511 // 3512 // NB: we rely on the original order of entries to match. 3513 SmallVector<BinaryBasicBlock *> EntryPoints; 3514 llvm::copy_if(BasicBlocks, std::back_inserter(EntryPoints), 3515 [&](const BinaryBasicBlock *const BB) { return isEntryPoint(*BB); }); 3516 // Sort entry points by their offset to make sure we got them in the right 3517 // order. 3518 llvm::stable_sort(EntryPoints, [](const BinaryBasicBlock *const A, 3519 const BinaryBasicBlock *const B) { 3520 return A->getOffset() < B->getOffset(); 3521 }); 3522 for (BinaryBasicBlock *const BB : reverse(EntryPoints)) 3523 Stack.push(BB); 3524 3525 for (BinaryBasicBlock &BB : blocks()) 3526 BB.setLayoutIndex(BinaryBasicBlock::InvalidIndex); 3527 3528 while (!Stack.empty()) { 3529 BinaryBasicBlock *BB = Stack.top(); 3530 Stack.pop(); 3531 3532 if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex) 3533 continue; 3534 3535 BB->setLayoutIndex(Index++); 3536 DFS.push_back(BB); 3537 3538 for (BinaryBasicBlock *SuccBB : BB->landing_pads()) { 3539 Stack.push(SuccBB); 3540 } 3541 3542 const MCSymbol *TBB = nullptr; 3543 const MCSymbol *FBB = nullptr; 3544 MCInst *CondBranch = nullptr; 3545 MCInst *UncondBranch = nullptr; 3546 if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch && 3547 BB->succ_size() == 2) { 3548 if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode( 3549 *CondBranch)) == BC.MIB->getCondCode(*CondBranch)) { 3550 Stack.push(BB->getConditionalSuccessor(true)); 3551 Stack.push(BB->getConditionalSuccessor(false)); 3552 } else { 3553 Stack.push(BB->getConditionalSuccessor(false)); 3554 Stack.push(BB->getConditionalSuccessor(true)); 3555 } 3556 } else { 3557 for (BinaryBasicBlock *SuccBB : BB->successors()) { 3558 Stack.push(SuccBB); 3559 } 3560 } 3561 } 3562 3563 return DFS; 3564 } 3565 3566 size_t BinaryFunction::computeHash(bool UseDFS, 3567 OperandHashFuncTy OperandHashFunc) const { 3568 if (size() == 0) 3569 return 0; 3570 3571 assert(hasCFG() && "function is expected to have CFG"); 3572 3573 const BasicBlockOrderType &Order = UseDFS ? dfs() : BasicBlocksLayout; 3574 3575 // The hash is computed by creating a string of all instruction opcodes and 3576 // possibly their operands and then hashing that string with std::hash. 3577 std::string HashString; 3578 for (const BinaryBasicBlock *BB : Order) { 3579 for (const MCInst &Inst : *BB) { 3580 unsigned Opcode = Inst.getOpcode(); 3581 3582 if (BC.MIB->isPseudo(Inst)) 3583 continue; 3584 3585 // Ignore unconditional jumps since we check CFG consistency by processing 3586 // basic blocks in order and do not rely on branches to be in-sync with 3587 // CFG. Note that we still use condition code of conditional jumps. 3588 if (BC.MIB->isUnconditionalBranch(Inst)) 3589 continue; 3590 3591 if (Opcode == 0) 3592 HashString.push_back(0); 3593 3594 while (Opcode) { 3595 uint8_t LSB = Opcode & 0xff; 3596 HashString.push_back(LSB); 3597 Opcode = Opcode >> 8; 3598 } 3599 3600 for (const MCOperand &Op : MCPlus::primeOperands(Inst)) 3601 HashString.append(OperandHashFunc(Op)); 3602 } 3603 } 3604 3605 return Hash = std::hash<std::string>{}(HashString); 3606 } 3607 3608 void BinaryFunction::insertBasicBlocks( 3609 BinaryBasicBlock *Start, 3610 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3611 const bool UpdateLayout, const bool UpdateCFIState, 3612 const bool RecomputeLandingPads) { 3613 const int64_t StartIndex = Start ? getIndex(Start) : -1LL; 3614 const size_t NumNewBlocks = NewBBs.size(); 3615 3616 BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks, 3617 nullptr); 3618 3619 int64_t I = StartIndex + 1; 3620 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3621 assert(!BasicBlocks[I]); 3622 BasicBlocks[I++] = BB.release(); 3623 } 3624 3625 if (RecomputeLandingPads) 3626 recomputeLandingPads(); 3627 else 3628 updateBBIndices(0); 3629 3630 if (UpdateLayout) 3631 updateLayout(Start, NumNewBlocks); 3632 3633 if (UpdateCFIState) 3634 updateCFIState(Start, NumNewBlocks); 3635 } 3636 3637 BinaryFunction::iterator BinaryFunction::insertBasicBlocks( 3638 BinaryFunction::iterator StartBB, 3639 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3640 const bool UpdateLayout, const bool UpdateCFIState, 3641 const bool RecomputeLandingPads) { 3642 const unsigned StartIndex = getIndex(&*StartBB); 3643 const size_t NumNewBlocks = NewBBs.size(); 3644 3645 BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks, 3646 nullptr); 3647 auto RetIter = BasicBlocks.begin() + StartIndex + 1; 3648 3649 unsigned I = StartIndex + 1; 3650 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3651 assert(!BasicBlocks[I]); 3652 BasicBlocks[I++] = BB.release(); 3653 } 3654 3655 if (RecomputeLandingPads) 3656 recomputeLandingPads(); 3657 else 3658 updateBBIndices(0); 3659 3660 if (UpdateLayout) 3661 updateLayout(*std::prev(RetIter), NumNewBlocks); 3662 3663 if (UpdateCFIState) 3664 updateCFIState(*std::prev(RetIter), NumNewBlocks); 3665 3666 return RetIter; 3667 } 3668 3669 void BinaryFunction::updateBBIndices(const unsigned StartIndex) { 3670 for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I) 3671 BasicBlocks[I]->Index = I; 3672 } 3673 3674 void BinaryFunction::updateCFIState(BinaryBasicBlock *Start, 3675 const unsigned NumNewBlocks) { 3676 const int32_t CFIState = Start->getCFIStateAtExit(); 3677 const unsigned StartIndex = getIndex(Start) + 1; 3678 for (unsigned I = 0; I < NumNewBlocks; ++I) 3679 BasicBlocks[StartIndex + I]->setCFIState(CFIState); 3680 } 3681 3682 void BinaryFunction::updateLayout(BinaryBasicBlock *Start, 3683 const unsigned NumNewBlocks) { 3684 // If start not provided insert new blocks at the beginning 3685 if (!Start) { 3686 BasicBlocksLayout.insert(layout_begin(), BasicBlocks.begin(), 3687 BasicBlocks.begin() + NumNewBlocks); 3688 updateLayoutIndices(); 3689 return; 3690 } 3691 3692 // Insert new blocks in the layout immediately after Start. 3693 auto Pos = llvm::find(layout(), Start); 3694 assert(Pos != layout_end()); 3695 BasicBlockListType::iterator Begin = 3696 std::next(BasicBlocks.begin(), getIndex(Start) + 1); 3697 BasicBlockListType::iterator End = 3698 std::next(BasicBlocks.begin(), getIndex(Start) + NumNewBlocks + 1); 3699 BasicBlocksLayout.insert(Pos + 1, Begin, End); 3700 updateLayoutIndices(); 3701 } 3702 3703 bool BinaryFunction::checkForAmbiguousJumpTables() { 3704 SmallSet<uint64_t, 4> JumpTables; 3705 for (BinaryBasicBlock *&BB : BasicBlocks) { 3706 for (MCInst &Inst : *BB) { 3707 if (!BC.MIB->isIndirectBranch(Inst)) 3708 continue; 3709 uint64_t JTAddress = BC.MIB->getJumpTable(Inst); 3710 if (!JTAddress) 3711 continue; 3712 // This address can be inside another jump table, but we only consider 3713 // it ambiguous when the same start address is used, not the same JT 3714 // object. 3715 if (!JumpTables.count(JTAddress)) { 3716 JumpTables.insert(JTAddress); 3717 continue; 3718 } 3719 return true; 3720 } 3721 } 3722 return false; 3723 } 3724 3725 void BinaryFunction::disambiguateJumpTables( 3726 MCPlusBuilder::AllocatorIdTy AllocId) { 3727 assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations); 3728 SmallPtrSet<JumpTable *, 4> JumpTables; 3729 for (BinaryBasicBlock *&BB : BasicBlocks) { 3730 for (MCInst &Inst : *BB) { 3731 if (!BC.MIB->isIndirectBranch(Inst)) 3732 continue; 3733 JumpTable *JT = getJumpTable(Inst); 3734 if (!JT) 3735 continue; 3736 auto Iter = JumpTables.find(JT); 3737 if (Iter == JumpTables.end()) { 3738 JumpTables.insert(JT); 3739 continue; 3740 } 3741 // This instruction is an indirect jump using a jump table, but it is 3742 // using the same jump table of another jump. Try all our tricks to 3743 // extract the jump table symbol and make it point to a new, duplicated JT 3744 MCPhysReg BaseReg1; 3745 uint64_t Scale; 3746 const MCSymbol *Target; 3747 // In case we match if our first matcher, first instruction is the one to 3748 // patch 3749 MCInst *JTLoadInst = &Inst; 3750 // Try a standard indirect jump matcher, scale 8 3751 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher = 3752 BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1), 3753 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3754 /*Offset=*/BC.MIB->matchSymbol(Target)); 3755 if (!IndJmpMatcher->match( 3756 *BC.MRI, *BC.MIB, 3757 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3758 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3759 MCPhysReg BaseReg2; 3760 uint64_t Offset; 3761 // Standard JT matching failed. Trying now: 3762 // movq "jt.2397/1"(,%rax,8), %rax 3763 // jmpq *%rax 3764 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner = 3765 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1), 3766 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3767 /*Offset=*/BC.MIB->matchSymbol(Target)); 3768 MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get(); 3769 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 = 3770 BC.MIB->matchIndJmp(std::move(LoadMatcherOwner)); 3771 if (!IndJmpMatcher2->match( 3772 *BC.MRI, *BC.MIB, 3773 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3774 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3775 // JT matching failed. Trying now: 3776 // PIC-style matcher, scale 4 3777 // addq %rdx, %rsi 3778 // addq %rdx, %rdi 3779 // leaq DATAat0x402450(%rip), %r11 3780 // movslq (%r11,%rdx,4), %rcx 3781 // addq %r11, %rcx 3782 // jmpq *%rcx # JUMPTABLE @0x402450 3783 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher = 3784 BC.MIB->matchIndJmp(BC.MIB->matchAdd( 3785 BC.MIB->matchReg(BaseReg1), 3786 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2), 3787 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3788 BC.MIB->matchImm(Offset)))); 3789 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner = 3790 BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target)); 3791 MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get(); 3792 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher = 3793 BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner), 3794 BC.MIB->matchAnyOperand())); 3795 if (!PICIndJmpMatcher->match( 3796 *BC.MRI, *BC.MIB, 3797 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3798 Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 || 3799 !PICBaseAddrMatcher->match( 3800 *BC.MRI, *BC.MIB, 3801 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) { 3802 llvm_unreachable("Failed to extract jump table base"); 3803 continue; 3804 } 3805 // Matched PIC, identify the instruction with the reference to the JT 3806 JTLoadInst = LEAMatcher->CurInst; 3807 } else { 3808 // Matched non-PIC 3809 JTLoadInst = LoadMatcher->CurInst; 3810 } 3811 } 3812 3813 uint64_t NewJumpTableID = 0; 3814 const MCSymbol *NewJTLabel; 3815 std::tie(NewJumpTableID, NewJTLabel) = 3816 BC.duplicateJumpTable(*this, JT, Target); 3817 { 3818 auto L = BC.scopeLock(); 3819 BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get()); 3820 } 3821 // We use a unique ID with the high bit set as address for this "injected" 3822 // jump table (not originally in the input binary). 3823 BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId); 3824 } 3825 } 3826 } 3827 3828 bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB, 3829 BinaryBasicBlock *OldDest, 3830 BinaryBasicBlock *NewDest) { 3831 MCInst *Instr = BB->getLastNonPseudoInstr(); 3832 if (!Instr || !BC.MIB->isIndirectBranch(*Instr)) 3833 return false; 3834 uint64_t JTAddress = BC.MIB->getJumpTable(*Instr); 3835 assert(JTAddress && "Invalid jump table address"); 3836 JumpTable *JT = getJumpTableContainingAddress(JTAddress); 3837 assert(JT && "No jump table structure for this indirect branch"); 3838 bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(), 3839 NewDest->getLabel()); 3840 (void)Patched; 3841 assert(Patched && "Invalid entry to be replaced in jump table"); 3842 return true; 3843 } 3844 3845 BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From, 3846 BinaryBasicBlock *To) { 3847 // Create intermediate BB 3848 MCSymbol *Tmp; 3849 { 3850 auto L = BC.scopeLock(); 3851 Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge"); 3852 } 3853 // Link new BBs to the original input offset of the From BB, so we can map 3854 // samples recorded in new BBs back to the original BB seem in the input 3855 // binary (if using BAT) 3856 std::unique_ptr<BinaryBasicBlock> NewBB = createBasicBlock(Tmp); 3857 NewBB->setOffset(From->getInputOffset()); 3858 BinaryBasicBlock *NewBBPtr = NewBB.get(); 3859 3860 // Update "From" BB 3861 auto I = From->succ_begin(); 3862 auto BI = From->branch_info_begin(); 3863 for (; I != From->succ_end(); ++I) { 3864 if (*I == To) 3865 break; 3866 ++BI; 3867 } 3868 assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!"); 3869 uint64_t OrigCount = BI->Count; 3870 uint64_t OrigMispreds = BI->MispredictedCount; 3871 replaceJumpTableEntryIn(From, To, NewBBPtr); 3872 From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds); 3873 3874 NewBB->addSuccessor(To, OrigCount, OrigMispreds); 3875 NewBB->setExecutionCount(OrigCount); 3876 NewBB->setIsCold(From->isCold()); 3877 3878 // Update CFI and BB layout with new intermediate BB 3879 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs; 3880 NewBBs.emplace_back(std::move(NewBB)); 3881 insertBasicBlocks(From, std::move(NewBBs), true, true, 3882 /*RecomputeLandingPads=*/false); 3883 return NewBBPtr; 3884 } 3885 3886 void BinaryFunction::deleteConservativeEdges() { 3887 // Our goal is to aggressively remove edges from the CFG that we believe are 3888 // wrong. This is used for instrumentation, where it is safe to remove 3889 // fallthrough edges because we won't reorder blocks. 3890 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 3891 BinaryBasicBlock *BB = *I; 3892 if (BB->succ_size() != 1 || BB->size() == 0) 3893 continue; 3894 3895 auto NextBB = std::next(I); 3896 MCInst *Last = BB->getLastNonPseudoInstr(); 3897 // Fallthrough is a landing pad? Delete this edge (as long as we don't 3898 // have a direct jump to it) 3899 if ((*BB->succ_begin())->isLandingPad() && NextBB != E && 3900 *BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) { 3901 BB->removeAllSuccessors(); 3902 continue; 3903 } 3904 3905 // Look for suspicious calls at the end of BB where gcc may optimize it and 3906 // remove the jump to the epilogue when it knows the call won't return. 3907 if (!Last || !BC.MIB->isCall(*Last)) 3908 continue; 3909 3910 const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last); 3911 if (!CalleeSymbol) 3912 continue; 3913 3914 StringRef CalleeName = CalleeSymbol->getName(); 3915 if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" && 3916 CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" && 3917 CalleeName != "abort@PLT") 3918 continue; 3919 3920 BB->removeAllSuccessors(); 3921 } 3922 } 3923 3924 bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol, 3925 uint64_t SymbolSize) const { 3926 // If this symbol is in a different section from the one where the 3927 // function symbol is, don't consider it as valid. 3928 if (!getOriginSection()->containsAddress( 3929 cantFail(Symbol.getAddress(), "cannot get symbol address"))) 3930 return false; 3931 3932 // Some symbols are tolerated inside function bodies, others are not. 3933 // The real function boundaries may not be known at this point. 3934 if (BC.isMarker(Symbol)) 3935 return true; 3936 3937 // It's okay to have a zero-sized symbol in the middle of non-zero-sized 3938 // function. 3939 if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress()))) 3940 return true; 3941 3942 if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown) 3943 return false; 3944 3945 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) 3946 return false; 3947 3948 return true; 3949 } 3950 3951 void BinaryFunction::adjustExecutionCount(uint64_t Count) { 3952 if (getKnownExecutionCount() == 0 || Count == 0) 3953 return; 3954 3955 if (ExecutionCount < Count) 3956 Count = ExecutionCount; 3957 3958 double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount; 3959 if (AdjustmentRatio < 0.0) 3960 AdjustmentRatio = 0.0; 3961 3962 for (BinaryBasicBlock &BB : blocks()) 3963 BB.adjustExecutionCount(AdjustmentRatio); 3964 3965 ExecutionCount -= Count; 3966 } 3967 3968 BinaryFunction::~BinaryFunction() { 3969 for (BinaryBasicBlock *BB : BasicBlocks) 3970 delete BB; 3971 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 3972 delete BB; 3973 } 3974 3975 void BinaryFunction::calculateLoopInfo() { 3976 // Discover loops. 3977 BinaryDominatorTree DomTree; 3978 DomTree.recalculate(*this); 3979 BLI.reset(new BinaryLoopInfo()); 3980 BLI->analyze(DomTree); 3981 3982 // Traverse discovered loops and add depth and profile information. 3983 std::stack<BinaryLoop *> St; 3984 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) { 3985 St.push(*I); 3986 ++BLI->OuterLoops; 3987 } 3988 3989 while (!St.empty()) { 3990 BinaryLoop *L = St.top(); 3991 St.pop(); 3992 ++BLI->TotalLoops; 3993 BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth); 3994 3995 // Add nested loops in the stack. 3996 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3997 St.push(*I); 3998 3999 // Skip if no valid profile is found. 4000 if (!hasValidProfile()) { 4001 L->EntryCount = COUNT_NO_PROFILE; 4002 L->ExitCount = COUNT_NO_PROFILE; 4003 L->TotalBackEdgeCount = COUNT_NO_PROFILE; 4004 continue; 4005 } 4006 4007 // Compute back edge count. 4008 SmallVector<BinaryBasicBlock *, 1> Latches; 4009 L->getLoopLatches(Latches); 4010 4011 for (BinaryBasicBlock *Latch : Latches) { 4012 auto BI = Latch->branch_info_begin(); 4013 for (BinaryBasicBlock *Succ : Latch->successors()) { 4014 if (Succ == L->getHeader()) { 4015 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4016 "profile data not found"); 4017 L->TotalBackEdgeCount += BI->Count; 4018 } 4019 ++BI; 4020 } 4021 } 4022 4023 // Compute entry count. 4024 L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount; 4025 4026 // Compute exit count. 4027 SmallVector<BinaryLoop::Edge, 1> ExitEdges; 4028 L->getExitEdges(ExitEdges); 4029 for (BinaryLoop::Edge &Exit : ExitEdges) { 4030 const BinaryBasicBlock *Exiting = Exit.first; 4031 const BinaryBasicBlock *ExitTarget = Exit.second; 4032 auto BI = Exiting->branch_info_begin(); 4033 for (BinaryBasicBlock *Succ : Exiting->successors()) { 4034 if (Succ == ExitTarget) { 4035 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4036 "profile data not found"); 4037 L->ExitCount += BI->Count; 4038 } 4039 ++BI; 4040 } 4041 } 4042 } 4043 } 4044 4045 void BinaryFunction::updateOutputValues(const MCAsmLayout &Layout) { 4046 if (!isEmitted()) { 4047 assert(!isInjected() && "injected function should be emitted"); 4048 setOutputAddress(getAddress()); 4049 setOutputSize(getSize()); 4050 return; 4051 } 4052 4053 const uint64_t BaseAddress = getCodeSection()->getOutputAddress(); 4054 ErrorOr<BinarySection &> ColdSection = getColdCodeSection(); 4055 const uint64_t ColdBaseAddress = 4056 isSplit() ? ColdSection->getOutputAddress() : 0; 4057 if (BC.HasRelocations || isInjected()) { 4058 const uint64_t StartOffset = Layout.getSymbolOffset(*getSymbol()); 4059 const uint64_t EndOffset = Layout.getSymbolOffset(*getFunctionEndLabel()); 4060 setOutputAddress(BaseAddress + StartOffset); 4061 setOutputSize(EndOffset - StartOffset); 4062 if (hasConstantIsland()) { 4063 const uint64_t DataOffset = 4064 Layout.getSymbolOffset(*getFunctionConstantIslandLabel()); 4065 setOutputDataAddress(BaseAddress + DataOffset); 4066 } 4067 if (isSplit()) { 4068 const MCSymbol *ColdStartSymbol = getColdSymbol(); 4069 assert(ColdStartSymbol && ColdStartSymbol->isDefined() && 4070 "split function should have defined cold symbol"); 4071 const MCSymbol *ColdEndSymbol = getFunctionColdEndLabel(); 4072 assert(ColdEndSymbol && ColdEndSymbol->isDefined() && 4073 "split function should have defined cold end symbol"); 4074 const uint64_t ColdStartOffset = Layout.getSymbolOffset(*ColdStartSymbol); 4075 const uint64_t ColdEndOffset = Layout.getSymbolOffset(*ColdEndSymbol); 4076 cold().setAddress(ColdBaseAddress + ColdStartOffset); 4077 cold().setImageSize(ColdEndOffset - ColdStartOffset); 4078 if (hasConstantIsland()) { 4079 const uint64_t DataOffset = 4080 Layout.getSymbolOffset(*getFunctionColdConstantIslandLabel()); 4081 setOutputColdDataAddress(ColdBaseAddress + DataOffset); 4082 } 4083 } 4084 } else { 4085 setOutputAddress(getAddress()); 4086 setOutputSize(Layout.getSymbolOffset(*getFunctionEndLabel())); 4087 } 4088 4089 // Update basic block output ranges for the debug info, if we have 4090 // secondary entry points in the symbol table to update or if writing BAT. 4091 if (!opts::UpdateDebugSections && !isMultiEntry() && 4092 !requiresAddressTranslation()) 4093 return; 4094 4095 // Output ranges should match the input if the body hasn't changed. 4096 if (!isSimple() && !BC.HasRelocations) 4097 return; 4098 4099 // AArch64 may have functions that only contains a constant island (no code). 4100 if (layout_begin() == layout_end()) 4101 return; 4102 4103 BinaryBasicBlock *PrevBB = nullptr; 4104 for (auto BBI = layout_begin(), BBE = layout_end(); BBI != BBE; ++BBI) { 4105 BinaryBasicBlock *BB = *BBI; 4106 assert(BB->getLabel()->isDefined() && "symbol should be defined"); 4107 const uint64_t BBBaseAddress = BB->isCold() ? ColdBaseAddress : BaseAddress; 4108 if (!BC.HasRelocations) { 4109 if (BB->isCold()) { 4110 assert(BBBaseAddress == cold().getAddress()); 4111 } else { 4112 assert(BBBaseAddress == getOutputAddress()); 4113 } 4114 } 4115 const uint64_t BBOffset = Layout.getSymbolOffset(*BB->getLabel()); 4116 const uint64_t BBAddress = BBBaseAddress + BBOffset; 4117 BB->setOutputStartAddress(BBAddress); 4118 4119 if (PrevBB) { 4120 uint64_t PrevBBEndAddress = BBAddress; 4121 if (BB->isCold() != PrevBB->isCold()) 4122 PrevBBEndAddress = getOutputAddress() + getOutputSize(); 4123 PrevBB->setOutputEndAddress(PrevBBEndAddress); 4124 } 4125 PrevBB = BB; 4126 4127 BB->updateOutputValues(Layout); 4128 } 4129 PrevBB->setOutputEndAddress(PrevBB->isCold() 4130 ? cold().getAddress() + cold().getImageSize() 4131 : getOutputAddress() + getOutputSize()); 4132 } 4133 4134 DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const { 4135 DebugAddressRangesVector OutputRanges; 4136 4137 if (isFolded()) 4138 return OutputRanges; 4139 4140 if (IsFragment) 4141 return OutputRanges; 4142 4143 OutputRanges.emplace_back(getOutputAddress(), 4144 getOutputAddress() + getOutputSize()); 4145 if (isSplit()) { 4146 assert(isEmitted() && "split function should be emitted"); 4147 OutputRanges.emplace_back(cold().getAddress(), 4148 cold().getAddress() + cold().getImageSize()); 4149 } 4150 4151 if (isSimple()) 4152 return OutputRanges; 4153 4154 for (BinaryFunction *Frag : Fragments) { 4155 assert(!Frag->isSimple() && 4156 "fragment of non-simple function should also be non-simple"); 4157 OutputRanges.emplace_back(Frag->getOutputAddress(), 4158 Frag->getOutputAddress() + Frag->getOutputSize()); 4159 } 4160 4161 return OutputRanges; 4162 } 4163 4164 uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const { 4165 if (isFolded()) 4166 return 0; 4167 4168 // If the function hasn't changed return the same address. 4169 if (!isEmitted()) 4170 return Address; 4171 4172 if (Address < getAddress()) 4173 return 0; 4174 4175 // Check if the address is associated with an instruction that is tracked 4176 // by address translation. 4177 auto KV = InputOffsetToAddressMap.find(Address - getAddress()); 4178 if (KV != InputOffsetToAddressMap.end()) 4179 return KV->second; 4180 4181 // FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay 4182 // intact. Instead we can use pseudo instructions and/or annotations. 4183 const uint64_t Offset = Address - getAddress(); 4184 const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4185 if (!BB) { 4186 // Special case for address immediately past the end of the function. 4187 if (Offset == getSize()) 4188 return getOutputAddress() + getOutputSize(); 4189 4190 return 0; 4191 } 4192 4193 return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(), 4194 BB->getOutputAddressRange().second); 4195 } 4196 4197 DebugAddressRangesVector BinaryFunction::translateInputToOutputRanges( 4198 const DWARFAddressRangesVector &InputRanges) const { 4199 DebugAddressRangesVector OutputRanges; 4200 4201 if (isFolded()) 4202 return OutputRanges; 4203 4204 // If the function hasn't changed return the same ranges. 4205 if (!isEmitted()) { 4206 OutputRanges.resize(InputRanges.size()); 4207 llvm::transform(InputRanges, OutputRanges.begin(), 4208 [](const DWARFAddressRange &Range) { 4209 return DebugAddressRange(Range.LowPC, Range.HighPC); 4210 }); 4211 return OutputRanges; 4212 } 4213 4214 // Even though we will merge ranges in a post-processing pass, we attempt to 4215 // merge them in a main processing loop as it improves the processing time. 4216 uint64_t PrevEndAddress = 0; 4217 for (const DWARFAddressRange &Range : InputRanges) { 4218 if (!containsAddress(Range.LowPC)) { 4219 LLVM_DEBUG( 4220 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4221 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) << ", 0x" 4222 << Twine::utohexstr(Range.HighPC) << "]\n"); 4223 PrevEndAddress = 0; 4224 continue; 4225 } 4226 uint64_t InputOffset = Range.LowPC - getAddress(); 4227 const uint64_t InputEndOffset = 4228 std::min(Range.HighPC - getAddress(), getSize()); 4229 4230 auto BBI = llvm::upper_bound(BasicBlockOffsets, 4231 BasicBlockOffset(InputOffset, nullptr), 4232 CompareBasicBlockOffsets()); 4233 --BBI; 4234 do { 4235 const BinaryBasicBlock *BB = BBI->second; 4236 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4237 LLVM_DEBUG( 4238 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4239 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) 4240 << ", 0x" << Twine::utohexstr(Range.HighPC) << "]\n"); 4241 PrevEndAddress = 0; 4242 break; 4243 } 4244 4245 // Skip the range if the block was deleted. 4246 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4247 const uint64_t StartAddress = 4248 OutputStart + InputOffset - BB->getOffset(); 4249 uint64_t EndAddress = BB->getOutputAddressRange().second; 4250 if (InputEndOffset < BB->getEndOffset()) 4251 EndAddress = StartAddress + InputEndOffset - InputOffset; 4252 4253 if (StartAddress == PrevEndAddress) { 4254 OutputRanges.back().HighPC = 4255 std::max(OutputRanges.back().HighPC, EndAddress); 4256 } else { 4257 OutputRanges.emplace_back(StartAddress, 4258 std::max(StartAddress, EndAddress)); 4259 } 4260 PrevEndAddress = OutputRanges.back().HighPC; 4261 } 4262 4263 InputOffset = BB->getEndOffset(); 4264 ++BBI; 4265 } while (InputOffset < InputEndOffset); 4266 } 4267 4268 // Post-processing pass to sort and merge ranges. 4269 llvm::sort(OutputRanges); 4270 DebugAddressRangesVector MergedRanges; 4271 PrevEndAddress = 0; 4272 for (const DebugAddressRange &Range : OutputRanges) { 4273 if (Range.LowPC <= PrevEndAddress) { 4274 MergedRanges.back().HighPC = 4275 std::max(MergedRanges.back().HighPC, Range.HighPC); 4276 } else { 4277 MergedRanges.emplace_back(Range.LowPC, Range.HighPC); 4278 } 4279 PrevEndAddress = MergedRanges.back().HighPC; 4280 } 4281 4282 return MergedRanges; 4283 } 4284 4285 MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) { 4286 if (CurrentState == State::Disassembled) { 4287 auto II = Instructions.find(Offset); 4288 return (II == Instructions.end()) ? nullptr : &II->second; 4289 } else if (CurrentState == State::CFG) { 4290 BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4291 if (!BB) 4292 return nullptr; 4293 4294 for (MCInst &Inst : *BB) { 4295 constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max(); 4296 if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset)) 4297 return &Inst; 4298 } 4299 4300 if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) { 4301 const uint32_t Size = 4302 BC.MIB->getAnnotationWithDefault<uint32_t>(*LastInstr, "Size"); 4303 if (BB->getEndOffset() - Offset == Size) 4304 return LastInstr; 4305 } 4306 4307 return nullptr; 4308 } else { 4309 llvm_unreachable("invalid CFG state to use getInstructionAtOffset()"); 4310 } 4311 } 4312 4313 DebugLocationsVector BinaryFunction::translateInputToOutputLocationList( 4314 const DebugLocationsVector &InputLL) const { 4315 DebugLocationsVector OutputLL; 4316 4317 if (isFolded()) 4318 return OutputLL; 4319 4320 // If the function hasn't changed - there's nothing to update. 4321 if (!isEmitted()) 4322 return InputLL; 4323 4324 uint64_t PrevEndAddress = 0; 4325 SmallVectorImpl<uint8_t> *PrevExpr = nullptr; 4326 for (const DebugLocationEntry &Entry : InputLL) { 4327 const uint64_t Start = Entry.LowPC; 4328 const uint64_t End = Entry.HighPC; 4329 if (!containsAddress(Start)) { 4330 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4331 "for " 4332 << *this << " : [0x" << Twine::utohexstr(Start) 4333 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4334 continue; 4335 } 4336 uint64_t InputOffset = Start - getAddress(); 4337 const uint64_t InputEndOffset = std::min(End - getAddress(), getSize()); 4338 auto BBI = llvm::upper_bound(BasicBlockOffsets, 4339 BasicBlockOffset(InputOffset, nullptr), 4340 CompareBasicBlockOffsets()); 4341 --BBI; 4342 do { 4343 const BinaryBasicBlock *BB = BBI->second; 4344 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4345 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4346 "for " 4347 << *this << " : [0x" << Twine::utohexstr(Start) 4348 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4349 PrevEndAddress = 0; 4350 break; 4351 } 4352 4353 // Skip the range if the block was deleted. 4354 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4355 const uint64_t StartAddress = 4356 OutputStart + InputOffset - BB->getOffset(); 4357 uint64_t EndAddress = BB->getOutputAddressRange().second; 4358 if (InputEndOffset < BB->getEndOffset()) 4359 EndAddress = StartAddress + InputEndOffset - InputOffset; 4360 4361 if (StartAddress == PrevEndAddress && Entry.Expr == *PrevExpr) { 4362 OutputLL.back().HighPC = std::max(OutputLL.back().HighPC, EndAddress); 4363 } else { 4364 OutputLL.emplace_back(DebugLocationEntry{ 4365 StartAddress, std::max(StartAddress, EndAddress), Entry.Expr}); 4366 } 4367 PrevEndAddress = OutputLL.back().HighPC; 4368 PrevExpr = &OutputLL.back().Expr; 4369 } 4370 4371 ++BBI; 4372 InputOffset = BB->getEndOffset(); 4373 } while (InputOffset < InputEndOffset); 4374 } 4375 4376 // Sort and merge adjacent entries with identical location. 4377 llvm::stable_sort( 4378 OutputLL, [](const DebugLocationEntry &A, const DebugLocationEntry &B) { 4379 return A.LowPC < B.LowPC; 4380 }); 4381 DebugLocationsVector MergedLL; 4382 PrevEndAddress = 0; 4383 PrevExpr = nullptr; 4384 for (const DebugLocationEntry &Entry : OutputLL) { 4385 if (Entry.LowPC <= PrevEndAddress && *PrevExpr == Entry.Expr) { 4386 MergedLL.back().HighPC = std::max(Entry.HighPC, MergedLL.back().HighPC); 4387 } else { 4388 const uint64_t Begin = std::max(Entry.LowPC, PrevEndAddress); 4389 const uint64_t End = std::max(Begin, Entry.HighPC); 4390 MergedLL.emplace_back(DebugLocationEntry{Begin, End, Entry.Expr}); 4391 } 4392 PrevEndAddress = MergedLL.back().HighPC; 4393 PrevExpr = &MergedLL.back().Expr; 4394 } 4395 4396 return MergedLL; 4397 } 4398 4399 void BinaryFunction::printLoopInfo(raw_ostream &OS) const { 4400 if (!opts::shouldPrint(*this)) 4401 return; 4402 4403 OS << "Loop Info for Function \"" << *this << "\""; 4404 if (hasValidProfile()) 4405 OS << " (count: " << getExecutionCount() << ")"; 4406 OS << "\n"; 4407 4408 std::stack<BinaryLoop *> St; 4409 for_each(*BLI, [&](BinaryLoop *L) { St.push(L); }); 4410 while (!St.empty()) { 4411 BinaryLoop *L = St.top(); 4412 St.pop(); 4413 4414 for_each(*L, [&](BinaryLoop *Inner) { St.push(Inner); }); 4415 4416 if (!hasValidProfile()) 4417 continue; 4418 4419 OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer") 4420 << " loop header: " << L->getHeader()->getName(); 4421 OS << "\n"; 4422 OS << "Loop basic blocks: "; 4423 ListSeparator LS; 4424 for (BinaryBasicBlock *BB : L->blocks()) 4425 OS << LS << BB->getName(); 4426 OS << "\n"; 4427 if (hasValidProfile()) { 4428 OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n"; 4429 OS << "Loop entry count: " << L->EntryCount << "\n"; 4430 OS << "Loop exit count: " << L->ExitCount << "\n"; 4431 if (L->EntryCount > 0) { 4432 OS << "Average iters per entry: " 4433 << format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount) 4434 << "\n"; 4435 } 4436 } 4437 OS << "----\n"; 4438 } 4439 4440 OS << "Total number of loops: " << BLI->TotalLoops << "\n"; 4441 OS << "Number of outer loops: " << BLI->OuterLoops << "\n"; 4442 OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n"; 4443 } 4444 4445 bool BinaryFunction::isAArch64Veneer() const { 4446 if (empty()) 4447 return false; 4448 4449 BinaryBasicBlock &BB = **BasicBlocks.begin(); 4450 for (MCInst &Inst : BB) 4451 if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer")) 4452 return false; 4453 4454 for (auto I = BasicBlocks.begin() + 1, E = BasicBlocks.end(); I != E; ++I) { 4455 for (MCInst &Inst : **I) 4456 if (!BC.MIB->isNoop(Inst)) 4457 return false; 4458 } 4459 4460 return true; 4461 } 4462 4463 } // namespace bolt 4464 } // namespace llvm 4465