1 //===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryFunction class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryFunction.h" 14 #include "bolt/Core/BinaryBasicBlock.h" 15 #include "bolt/Core/DynoStats.h" 16 #include "bolt/Core/MCPlusBuilder.h" 17 #include "bolt/Utils/NameResolver.h" 18 #include "bolt/Utils/NameShortener.h" 19 #include "bolt/Utils/Utils.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/edit_distance.h" 23 #include "llvm/Demangle/Demangle.h" 24 #include "llvm/MC/MCAsmInfo.h" 25 #include "llvm/MC/MCAsmLayout.h" 26 #include "llvm/MC/MCContext.h" 27 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/MC/MCInst.h" 30 #include "llvm/MC/MCInstPrinter.h" 31 #include "llvm/MC/MCRegisterInfo.h" 32 #include "llvm/Object/ObjectFile.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/GraphWriter.h" 36 #include "llvm/Support/LEB128.h" 37 #include "llvm/Support/Regex.h" 38 #include "llvm/Support/Timer.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <functional> 41 #include <limits> 42 #include <numeric> 43 #include <string> 44 45 #define DEBUG_TYPE "bolt" 46 47 using namespace llvm; 48 using namespace bolt; 49 50 namespace opts { 51 52 extern cl::OptionCategory BoltCategory; 53 extern cl::OptionCategory BoltOptCategory; 54 extern cl::OptionCategory BoltRelocCategory; 55 56 extern cl::opt<bool> EnableBAT; 57 extern cl::opt<bool> Instrument; 58 extern cl::opt<bool> StrictMode; 59 extern cl::opt<bool> UpdateDebugSections; 60 extern cl::opt<unsigned> Verbosity; 61 62 extern bool processAllFunctions(); 63 64 cl::opt<bool> 65 CheckEncoding("check-encoding", 66 cl::desc("perform verification of LLVM instruction encoding/decoding. " 67 "Every instruction in the input is decoded and re-encoded. " 68 "If the resulting bytes do not match the input, a warning message " 69 "is printed."), 70 cl::init(false), 71 cl::ZeroOrMore, 72 cl::Hidden, 73 cl::cat(BoltCategory)); 74 75 static cl::opt<bool> 76 DotToolTipCode("dot-tooltip-code", 77 cl::desc("add basic block instructions as tool tips on nodes"), 78 cl::ZeroOrMore, 79 cl::Hidden, 80 cl::cat(BoltCategory)); 81 82 cl::opt<JumpTableSupportLevel> 83 JumpTables("jump-tables", 84 cl::desc("jump tables support (default=basic)"), 85 cl::init(JTS_BASIC), 86 cl::values( 87 clEnumValN(JTS_NONE, "none", 88 "do not optimize functions with jump tables"), 89 clEnumValN(JTS_BASIC, "basic", 90 "optimize functions with jump tables"), 91 clEnumValN(JTS_MOVE, "move", 92 "move jump tables to a separate section"), 93 clEnumValN(JTS_SPLIT, "split", 94 "split jump tables section into hot and cold based on " 95 "function execution frequency"), 96 clEnumValN(JTS_AGGRESSIVE, "aggressive", 97 "aggressively split jump tables section based on usage " 98 "of the tables")), 99 cl::ZeroOrMore, 100 cl::cat(BoltOptCategory)); 101 102 static cl::opt<bool> 103 NoScan("no-scan", 104 cl::desc("do not scan cold functions for external references (may result in " 105 "slower binary)"), 106 cl::init(false), 107 cl::ZeroOrMore, 108 cl::Hidden, 109 cl::cat(BoltOptCategory)); 110 111 cl::opt<bool> 112 PreserveBlocksAlignment("preserve-blocks-alignment", 113 cl::desc("try to preserve basic block alignment"), 114 cl::init(false), 115 cl::ZeroOrMore, 116 cl::cat(BoltOptCategory)); 117 118 cl::opt<bool> 119 PrintDynoStats("dyno-stats", 120 cl::desc("print execution info based on profile"), 121 cl::cat(BoltCategory)); 122 123 static cl::opt<bool> 124 PrintDynoStatsOnly("print-dyno-stats-only", 125 cl::desc("while printing functions output dyno-stats and skip instructions"), 126 cl::init(false), 127 cl::Hidden, 128 cl::cat(BoltCategory)); 129 130 static cl::list<std::string> 131 PrintOnly("print-only", 132 cl::CommaSeparated, 133 cl::desc("list of functions to print"), 134 cl::value_desc("func1,func2,func3,..."), 135 cl::Hidden, 136 cl::cat(BoltCategory)); 137 138 cl::opt<bool> 139 TimeBuild("time-build", 140 cl::desc("print time spent constructing binary functions"), 141 cl::ZeroOrMore, 142 cl::Hidden, 143 cl::cat(BoltCategory)); 144 145 cl::opt<bool> 146 TrapOnAVX512("trap-avx512", 147 cl::desc("in relocation mode trap upon entry to any function that uses " 148 "AVX-512 instructions"), 149 cl::init(false), 150 cl::ZeroOrMore, 151 cl::Hidden, 152 cl::cat(BoltCategory)); 153 154 bool shouldPrint(const BinaryFunction &Function) { 155 if (Function.isIgnored()) 156 return false; 157 158 if (PrintOnly.empty()) 159 return true; 160 161 for (std::string &Name : opts::PrintOnly) { 162 if (Function.hasNameRegex(Name)) { 163 return true; 164 } 165 } 166 167 return false; 168 } 169 170 } // namespace opts 171 172 namespace llvm { 173 namespace bolt { 174 175 constexpr unsigned BinaryFunction::MinAlign; 176 177 namespace { 178 179 template <typename R> bool emptyRange(const R &Range) { 180 return Range.begin() == Range.end(); 181 } 182 183 /// Gets debug line information for the instruction located at the given 184 /// address in the original binary. The SMLoc's pointer is used 185 /// to point to this information, which is represented by a 186 /// DebugLineTableRowRef. The returned pointer is null if no debug line 187 /// information for this instruction was found. 188 SMLoc findDebugLineInformationForInstructionAt( 189 uint64_t Address, DWARFUnit *Unit, 190 const DWARFDebugLine::LineTable *LineTable) { 191 // We use the pointer in SMLoc to store an instance of DebugLineTableRowRef, 192 // which occupies 64 bits. Thus, we can only proceed if the struct fits into 193 // the pointer itself. 194 assert(sizeof(decltype(SMLoc().getPointer())) >= 195 sizeof(DebugLineTableRowRef) && 196 "Cannot fit instruction debug line information into SMLoc's pointer"); 197 198 SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc(); 199 uint32_t RowIndex = LineTable->lookupAddress( 200 {Address, object::SectionedAddress::UndefSection}); 201 if (RowIndex == LineTable->UnknownRowIndex) 202 return NullResult; 203 204 assert(RowIndex < LineTable->Rows.size() && 205 "Line Table lookup returned invalid index."); 206 207 decltype(SMLoc().getPointer()) Ptr; 208 DebugLineTableRowRef *InstructionLocation = 209 reinterpret_cast<DebugLineTableRowRef *>(&Ptr); 210 211 InstructionLocation->DwCompileUnitIndex = Unit->getOffset(); 212 InstructionLocation->RowIndex = RowIndex + 1; 213 214 return SMLoc::getFromPointer(Ptr); 215 } 216 217 std::string buildSectionName(StringRef Prefix, StringRef Name, 218 const BinaryContext &BC) { 219 if (BC.isELF()) 220 return (Prefix + Name).str(); 221 static NameShortener NS; 222 return (Prefix + Twine(NS.getID(Name))).str(); 223 } 224 225 raw_ostream &operator<<(raw_ostream &OS, const BinaryFunction::State State) { 226 switch (State) { 227 case BinaryFunction::State::Empty: OS << "empty"; break; 228 case BinaryFunction::State::Disassembled: OS << "disassembled"; break; 229 case BinaryFunction::State::CFG: OS << "CFG constructed"; break; 230 case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break; 231 case BinaryFunction::State::EmittedCFG: OS << "emitted with CFG"; break; 232 case BinaryFunction::State::Emitted: OS << "emitted"; break; 233 } 234 235 return OS; 236 } 237 238 } // namespace 239 240 std::string BinaryFunction::buildCodeSectionName(StringRef Name, 241 const BinaryContext &BC) { 242 return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC); 243 } 244 245 std::string BinaryFunction::buildColdCodeSectionName(StringRef Name, 246 const BinaryContext &BC) { 247 return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name, 248 BC); 249 } 250 251 uint64_t BinaryFunction::Count = 0; 252 253 Optional<StringRef> BinaryFunction::hasNameRegex(const StringRef Name) const { 254 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 255 Regex MatchName(RegexName); 256 Optional<StringRef> Match = forEachName( 257 [&MatchName](StringRef Name) { return MatchName.match(Name); }); 258 259 return Match; 260 } 261 262 Optional<StringRef> 263 BinaryFunction::hasRestoredNameRegex(const StringRef Name) const { 264 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 265 Regex MatchName(RegexName); 266 Optional<StringRef> Match = forEachName([&MatchName](StringRef Name) { 267 return MatchName.match(NameResolver::restore(Name)); 268 }); 269 270 return Match; 271 } 272 273 std::string BinaryFunction::getDemangledName() const { 274 StringRef MangledName = NameResolver::restore(getOneName()); 275 return demangle(MangledName.str()); 276 } 277 278 BinaryBasicBlock * 279 BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) { 280 if (Offset > Size) 281 return nullptr; 282 283 if (BasicBlockOffsets.empty()) 284 return nullptr; 285 286 /* 287 * This is commented out because it makes BOLT too slow. 288 * assert(std::is_sorted(BasicBlockOffsets.begin(), 289 * BasicBlockOffsets.end(), 290 * CompareBasicBlockOffsets()))); 291 */ 292 auto I = std::upper_bound(BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 293 BasicBlockOffset(Offset, nullptr), 294 CompareBasicBlockOffsets()); 295 assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0"); 296 --I; 297 BinaryBasicBlock *BB = I->second; 298 return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr; 299 } 300 301 void BinaryFunction::markUnreachableBlocks() { 302 std::stack<BinaryBasicBlock *> Stack; 303 304 for (BinaryBasicBlock *BB : layout()) 305 BB->markValid(false); 306 307 // Add all entries and landing pads as roots. 308 for (BinaryBasicBlock *BB : BasicBlocks) { 309 if (isEntryPoint(*BB) || BB->isLandingPad()) { 310 Stack.push(BB); 311 BB->markValid(true); 312 continue; 313 } 314 // FIXME: 315 // Also mark BBs with indirect jumps as reachable, since we do not 316 // support removing unused jump tables yet (GH-issue20). 317 for (const MCInst &Inst : *BB) { 318 if (BC.MIB->getJumpTable(Inst)) { 319 Stack.push(BB); 320 BB->markValid(true); 321 break; 322 } 323 } 324 } 325 326 // Determine reachable BBs from the entry point 327 while (!Stack.empty()) { 328 BinaryBasicBlock *BB = Stack.top(); 329 Stack.pop(); 330 for (BinaryBasicBlock *Succ : BB->successors()) { 331 if (Succ->isValid()) 332 continue; 333 Succ->markValid(true); 334 Stack.push(Succ); 335 } 336 } 337 } 338 339 // Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs 340 // will be cleaned up by fixBranches(). 341 std::pair<unsigned, uint64_t> BinaryFunction::eraseInvalidBBs() { 342 BasicBlockOrderType NewLayout; 343 unsigned Count = 0; 344 uint64_t Bytes = 0; 345 for (BinaryBasicBlock *BB : layout()) { 346 if (BB->isValid()) { 347 NewLayout.push_back(BB); 348 } else { 349 assert(!isEntryPoint(*BB) && "all entry blocks must be valid"); 350 ++Count; 351 Bytes += BC.computeCodeSize(BB->begin(), BB->end()); 352 } 353 } 354 BasicBlocksLayout = std::move(NewLayout); 355 356 BasicBlockListType NewBasicBlocks; 357 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 358 BinaryBasicBlock *BB = *I; 359 if (BB->isValid()) { 360 NewBasicBlocks.push_back(BB); 361 } else { 362 // Make sure the block is removed from the list of predecessors. 363 BB->removeAllSuccessors(); 364 DeletedBasicBlocks.push_back(BB); 365 } 366 } 367 BasicBlocks = std::move(NewBasicBlocks); 368 369 assert(BasicBlocks.size() == BasicBlocksLayout.size()); 370 371 // Update CFG state if needed 372 if (Count > 0) 373 recomputeLandingPads(); 374 375 return std::make_pair(Count, Bytes); 376 } 377 378 bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const { 379 // This function should work properly before and after function reordering. 380 // In order to accomplish this, we use the function index (if it is valid). 381 // If the function indices are not valid, we fall back to the original 382 // addresses. This should be ok because the functions without valid indices 383 // should have been ordered with a stable sort. 384 const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol); 385 if (CalleeBF) { 386 if (CalleeBF->isInjected()) 387 return true; 388 389 if (hasValidIndex() && CalleeBF->hasValidIndex()) { 390 return getIndex() < CalleeBF->getIndex(); 391 } else if (hasValidIndex() && !CalleeBF->hasValidIndex()) { 392 return true; 393 } else if (!hasValidIndex() && CalleeBF->hasValidIndex()) { 394 return false; 395 } else { 396 return getAddress() < CalleeBF->getAddress(); 397 } 398 } else { 399 // Absolute symbol. 400 ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol); 401 assert(CalleeAddressOrError && "unregistered symbol found"); 402 return *CalleeAddressOrError > getAddress(); 403 } 404 } 405 406 void BinaryFunction::dump(bool PrintInstructions) const { 407 print(dbgs(), "", PrintInstructions); 408 } 409 410 void BinaryFunction::print(raw_ostream &OS, std::string Annotation, 411 bool PrintInstructions) const { 412 if (!opts::shouldPrint(*this)) 413 return; 414 415 StringRef SectionName = 416 OriginSection ? OriginSection->getName() : "<no origin section>"; 417 OS << "Binary Function \"" << *this << "\" " << Annotation << " {"; 418 std::vector<StringRef> AllNames = getNames(); 419 if (AllNames.size() > 1) { 420 OS << "\n All names : "; 421 const char *Sep = ""; 422 for (const StringRef Name : AllNames) { 423 OS << Sep << Name; 424 Sep = "\n "; 425 } 426 } 427 OS << "\n Number : " << FunctionNumber 428 << "\n State : " << CurrentState 429 << "\n Address : 0x" << Twine::utohexstr(Address) 430 << "\n Size : 0x" << Twine::utohexstr(Size) 431 << "\n MaxSize : 0x" << Twine::utohexstr(MaxSize) 432 << "\n Offset : 0x" << Twine::utohexstr(FileOffset) 433 << "\n Section : " << SectionName 434 << "\n Orc Section : " << getCodeSectionName() 435 << "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress()) 436 << "\n IsSimple : " << IsSimple 437 << "\n IsMultiEntry: " << isMultiEntry() 438 << "\n IsSplit : " << isSplit() 439 << "\n BB Count : " << size(); 440 441 if (HasFixedIndirectBranch) 442 OS << "\n HasFixedIndirectBranch : true"; 443 if (HasUnknownControlFlow) 444 OS << "\n Unknown CF : true"; 445 if (getPersonalityFunction()) 446 OS << "\n Personality : " << getPersonalityFunction()->getName(); 447 if (IsFragment) 448 OS << "\n IsFragment : true"; 449 if (isFolded()) 450 OS << "\n FoldedInto : " << *getFoldedIntoFunction(); 451 for (BinaryFunction *ParentFragment : ParentFragments) 452 OS << "\n Parent : " << *ParentFragment; 453 if (!Fragments.empty()) { 454 OS << "\n Fragments : "; 455 const char *Sep = ""; 456 for (BinaryFunction *Frag : Fragments) { 457 OS << Sep << *Frag; 458 Sep = ", "; 459 } 460 } 461 if (hasCFG()) 462 OS << "\n Hash : " << Twine::utohexstr(computeHash()); 463 if (isMultiEntry()) { 464 OS << "\n Secondary Entry Points : "; 465 const char *Sep = ""; 466 for (const auto &KV : SecondaryEntryPoints) { 467 OS << Sep << KV.second->getName(); 468 Sep = ", "; 469 } 470 } 471 if (FrameInstructions.size()) 472 OS << "\n CFI Instrs : " << FrameInstructions.size(); 473 if (BasicBlocksLayout.size()) { 474 OS << "\n BB Layout : "; 475 const char *Sep = ""; 476 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 477 OS << Sep << BB->getName(); 478 Sep = ", "; 479 } 480 } 481 if (ImageAddress) 482 OS << "\n Image : 0x" << Twine::utohexstr(ImageAddress); 483 if (ExecutionCount != COUNT_NO_PROFILE) { 484 OS << "\n Exec Count : " << ExecutionCount; 485 OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f); 486 } 487 488 if (opts::PrintDynoStats && !BasicBlocksLayout.empty()) { 489 OS << '\n'; 490 DynoStats dynoStats = getDynoStats(*this); 491 OS << dynoStats; 492 } 493 494 OS << "\n}\n"; 495 496 if (opts::PrintDynoStatsOnly || !PrintInstructions || !BC.InstPrinter) 497 return; 498 499 // Offset of the instruction in function. 500 uint64_t Offset = 0; 501 502 if (BasicBlocks.empty() && !Instructions.empty()) { 503 // Print before CFG was built. 504 for (const std::pair<const uint32_t, MCInst> &II : Instructions) { 505 Offset = II.first; 506 507 // Print label if exists at this offset. 508 auto LI = Labels.find(Offset); 509 if (LI != Labels.end()) { 510 if (const MCSymbol *EntrySymbol = 511 getSecondaryEntryPointSymbol(LI->second)) 512 OS << EntrySymbol->getName() << " (Entry Point):\n"; 513 OS << LI->second->getName() << ":\n"; 514 } 515 516 BC.printInstruction(OS, II.second, Offset, this); 517 } 518 } 519 520 for (uint32_t I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 521 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 522 if (I != 0 && BB->isCold() != BasicBlocksLayout[I - 1]->isCold()) 523 OS << "------- HOT-COLD SPLIT POINT -------\n\n"; 524 525 OS << BB->getName() << " (" << BB->size() 526 << " instructions, align : " << BB->getAlignment() << ")\n"; 527 528 if (isEntryPoint(*BB)) { 529 if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB)) 530 OS << " Secondary Entry Point: " << EntrySymbol->getName() << '\n'; 531 else 532 OS << " Entry Point\n"; 533 } 534 535 if (BB->isLandingPad()) 536 OS << " Landing Pad\n"; 537 538 uint64_t BBExecCount = BB->getExecutionCount(); 539 if (hasValidProfile()) { 540 OS << " Exec Count : "; 541 if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE) 542 OS << BBExecCount << '\n'; 543 else 544 OS << "<unknown>\n"; 545 } 546 if (BB->getCFIState() >= 0) 547 OS << " CFI State : " << BB->getCFIState() << '\n'; 548 if (opts::EnableBAT) { 549 OS << " Input offset: " << Twine::utohexstr(BB->getInputOffset()) 550 << "\n"; 551 } 552 if (!BB->pred_empty()) { 553 OS << " Predecessors: "; 554 const char *Sep = ""; 555 for (BinaryBasicBlock *Pred : BB->predecessors()) { 556 OS << Sep << Pred->getName(); 557 Sep = ", "; 558 } 559 OS << '\n'; 560 } 561 if (!BB->throw_empty()) { 562 OS << " Throwers: "; 563 const char *Sep = ""; 564 for (BinaryBasicBlock *Throw : BB->throwers()) { 565 OS << Sep << Throw->getName(); 566 Sep = ", "; 567 } 568 OS << '\n'; 569 } 570 571 Offset = alignTo(Offset, BB->getAlignment()); 572 573 // Note: offsets are imprecise since this is happening prior to relaxation. 574 Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this); 575 576 if (!BB->succ_empty()) { 577 OS << " Successors: "; 578 // For more than 2 successors, sort them based on frequency. 579 std::vector<uint64_t> Indices(BB->succ_size()); 580 std::iota(Indices.begin(), Indices.end(), 0); 581 if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) { 582 std::stable_sort(Indices.begin(), Indices.end(), 583 [&](const uint64_t A, const uint64_t B) { 584 return BB->BranchInfo[B] < BB->BranchInfo[A]; 585 }); 586 } 587 const char *Sep = ""; 588 for (unsigned I = 0; I < Indices.size(); ++I) { 589 BinaryBasicBlock *Succ = BB->Successors[Indices[I]]; 590 BinaryBasicBlock::BinaryBranchInfo &BI = BB->BranchInfo[Indices[I]]; 591 OS << Sep << Succ->getName(); 592 if (ExecutionCount != COUNT_NO_PROFILE && 593 BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 594 OS << " (mispreds: " << BI.MispredictedCount 595 << ", count: " << BI.Count << ")"; 596 } else if (ExecutionCount != COUNT_NO_PROFILE && 597 BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 598 OS << " (inferred count: " << BI.Count << ")"; 599 } 600 Sep = ", "; 601 } 602 OS << '\n'; 603 } 604 605 if (!BB->lp_empty()) { 606 OS << " Landing Pads: "; 607 const char *Sep = ""; 608 for (BinaryBasicBlock *LP : BB->landing_pads()) { 609 OS << Sep << LP->getName(); 610 if (ExecutionCount != COUNT_NO_PROFILE) { 611 OS << " (count: " << LP->getExecutionCount() << ")"; 612 } 613 Sep = ", "; 614 } 615 OS << '\n'; 616 } 617 618 // In CFG_Finalized state we can miscalculate CFI state at exit. 619 if (CurrentState == State::CFG) { 620 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 621 if (CFIStateAtExit >= 0) 622 OS << " CFI State: " << CFIStateAtExit << '\n'; 623 } 624 625 OS << '\n'; 626 } 627 628 // Dump new exception ranges for the function. 629 if (!CallSites.empty()) { 630 OS << "EH table:\n"; 631 for (const CallSite &CSI : CallSites) { 632 OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : "; 633 if (CSI.LP) 634 OS << *CSI.LP; 635 else 636 OS << "0"; 637 OS << ", action : " << CSI.Action << '\n'; 638 } 639 OS << '\n'; 640 } 641 642 // Print all jump tables. 643 for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables) 644 JTI.second->print(OS); 645 646 OS << "DWARF CFI Instructions:\n"; 647 if (OffsetToCFI.size()) { 648 // Pre-buildCFG information 649 for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) { 650 OS << format(" %08x:\t", Elmt.first); 651 assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset"); 652 BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]); 653 OS << "\n"; 654 } 655 } else { 656 // Post-buildCFG information 657 for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) { 658 const MCCFIInstruction &CFI = FrameInstructions[I]; 659 OS << format(" %d:\t", I); 660 BinaryContext::printCFI(OS, CFI); 661 OS << "\n"; 662 } 663 } 664 if (FrameInstructions.empty()) 665 OS << " <empty>\n"; 666 667 OS << "End of Function \"" << *this << "\"\n\n"; 668 } 669 670 void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset, 671 uint64_t Size) const { 672 const char *Sep = " # Relocs: "; 673 674 auto RI = Relocations.lower_bound(Offset); 675 while (RI != Relocations.end() && RI->first < Offset + Size) { 676 OS << Sep << "(R: " << RI->second << ")"; 677 Sep = ", "; 678 ++RI; 679 } 680 } 681 682 namespace { 683 std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr, 684 MCPhysReg NewReg) { 685 StringRef ExprBytes = Instr.getValues(); 686 assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short"); 687 uint8_t Opcode = ExprBytes[0]; 688 assert((Opcode == dwarf::DW_CFA_expression || 689 Opcode == dwarf::DW_CFA_val_expression) && 690 "invalid DWARF expression CFI"); 691 const uint8_t *const Start = 692 reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data()); 693 const uint8_t *const End = 694 reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1); 695 unsigned Size = 0; 696 decodeULEB128(Start, &Size, End); 697 assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI"); 698 SmallString<8> Tmp; 699 raw_svector_ostream OSE(Tmp); 700 encodeULEB128(NewReg, OSE); 701 return Twine(ExprBytes.slice(0, 1)) 702 .concat(OSE.str()) 703 .concat(ExprBytes.drop_front(1 + Size)) 704 .str(); 705 } 706 } // namespace 707 708 void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr, 709 MCPhysReg NewReg) { 710 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 711 assert(OldCFI && "invalid CFI instr"); 712 switch (OldCFI->getOperation()) { 713 default: 714 llvm_unreachable("Unexpected instruction"); 715 case MCCFIInstruction::OpDefCfa: 716 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg, 717 OldCFI->getOffset())); 718 break; 719 case MCCFIInstruction::OpDefCfaRegister: 720 setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg)); 721 break; 722 case MCCFIInstruction::OpOffset: 723 setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg, 724 OldCFI->getOffset())); 725 break; 726 case MCCFIInstruction::OpRegister: 727 setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg, 728 OldCFI->getRegister2())); 729 break; 730 case MCCFIInstruction::OpSameValue: 731 setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg)); 732 break; 733 case MCCFIInstruction::OpEscape: 734 setCFIFor(Instr, 735 MCCFIInstruction::createEscape( 736 nullptr, 737 StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg)))); 738 break; 739 case MCCFIInstruction::OpRestore: 740 setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg)); 741 break; 742 case MCCFIInstruction::OpUndefined: 743 setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg)); 744 break; 745 } 746 } 747 748 const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr, 749 int64_t NewOffset) { 750 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 751 assert(OldCFI && "invalid CFI instr"); 752 switch (OldCFI->getOperation()) { 753 default: 754 llvm_unreachable("Unexpected instruction"); 755 case MCCFIInstruction::OpDefCfaOffset: 756 setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset)); 757 break; 758 case MCCFIInstruction::OpAdjustCfaOffset: 759 setCFIFor(Instr, 760 MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset)); 761 break; 762 case MCCFIInstruction::OpDefCfa: 763 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(), 764 NewOffset)); 765 break; 766 case MCCFIInstruction::OpOffset: 767 setCFIFor(Instr, MCCFIInstruction::createOffset( 768 nullptr, OldCFI->getRegister(), NewOffset)); 769 break; 770 } 771 return getCFIFor(Instr); 772 } 773 774 IndirectBranchType 775 BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size, 776 uint64_t Offset, 777 uint64_t &TargetAddress) { 778 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 779 780 // The instruction referencing memory used by the branch instruction. 781 // It could be the branch instruction itself or one of the instructions 782 // setting the value of the register used by the branch. 783 MCInst *MemLocInstr; 784 785 // Address of the table referenced by MemLocInstr. Could be either an 786 // array of function pointers, or a jump table. 787 uint64_t ArrayStart = 0; 788 789 unsigned BaseRegNum, IndexRegNum; 790 int64_t DispValue; 791 const MCExpr *DispExpr; 792 793 // In AArch, identify the instruction adding the PC-relative offset to 794 // jump table entries to correctly decode it. 795 MCInst *PCRelBaseInstr; 796 uint64_t PCRelAddr = 0; 797 798 auto Begin = Instructions.begin(); 799 if (BC.isAArch64()) { 800 PreserveNops = BC.HasRelocations; 801 // Start at the last label as an approximation of the current basic block. 802 // This is a heuristic, since the full set of labels have yet to be 803 // determined 804 for (auto LI = Labels.rbegin(); LI != Labels.rend(); ++LI) { 805 auto II = Instructions.find(LI->first); 806 if (II != Instructions.end()) { 807 Begin = II; 808 break; 809 } 810 } 811 } 812 813 IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch( 814 Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum, 815 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 816 817 if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr) 818 return BranchType; 819 820 if (MemLocInstr != &Instruction) 821 IndexRegNum = BC.MIB->getNoRegister(); 822 823 if (BC.isAArch64()) { 824 const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1); 825 assert(Sym && "Symbol extraction failed"); 826 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym); 827 if (SymValueOrError) { 828 PCRelAddr = *SymValueOrError; 829 } else { 830 for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) { 831 if (Elmt.second == Sym) { 832 PCRelAddr = Elmt.first + getAddress(); 833 break; 834 } 835 } 836 } 837 uint64_t InstrAddr = 0; 838 for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) { 839 if (&II->second == PCRelBaseInstr) { 840 InstrAddr = II->first + getAddress(); 841 break; 842 } 843 } 844 assert(InstrAddr != 0 && "instruction not found"); 845 // We do this to avoid spurious references to code locations outside this 846 // function (for example, if the indirect jump lives in the last basic 847 // block of the function, it will create a reference to the next function). 848 // This replaces a symbol reference with an immediate. 849 BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr, 850 MCOperand::createImm(PCRelAddr - InstrAddr)); 851 // FIXME: Disable full jump table processing for AArch64 until we have a 852 // proper way of determining the jump table limits. 853 return IndirectBranchType::UNKNOWN; 854 } 855 856 // RIP-relative addressing should be converted to symbol form by now 857 // in processed instructions (but not in jump). 858 if (DispExpr) { 859 const MCSymbol *TargetSym; 860 uint64_t TargetOffset; 861 std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr); 862 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym); 863 assert(SymValueOrError && "global symbol needs a value"); 864 ArrayStart = *SymValueOrError + TargetOffset; 865 BaseRegNum = BC.MIB->getNoRegister(); 866 if (BC.isAArch64()) { 867 ArrayStart &= ~0xFFFULL; 868 ArrayStart += DispValue & 0xFFFULL; 869 } 870 } else { 871 ArrayStart = static_cast<uint64_t>(DispValue); 872 } 873 874 if (BaseRegNum == BC.MRI->getProgramCounter()) 875 ArrayStart += getAddress() + Offset + Size; 876 877 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x" 878 << Twine::utohexstr(ArrayStart) << '\n'); 879 880 ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart); 881 if (!Section) { 882 // No section - possibly an absolute address. Since we don't allow 883 // internal function addresses to escape the function scope - we 884 // consider it a tail call. 885 if (opts::Verbosity >= 1) { 886 errs() << "BOLT-WARNING: no section for address 0x" 887 << Twine::utohexstr(ArrayStart) << " referenced from function " 888 << *this << '\n'; 889 } 890 return IndirectBranchType::POSSIBLE_TAIL_CALL; 891 } 892 if (Section->isVirtual()) { 893 // The contents are filled at runtime. 894 return IndirectBranchType::POSSIBLE_TAIL_CALL; 895 } 896 897 if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) { 898 ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart); 899 if (!Value) 900 return IndirectBranchType::UNKNOWN; 901 902 if (!BC.getSectionForAddress(ArrayStart)->isReadOnly()) 903 return IndirectBranchType::UNKNOWN; 904 905 outs() << "BOLT-INFO: fixed indirect branch detected in " << *this 906 << " at 0x" << Twine::utohexstr(getAddress() + Offset) 907 << " referencing data at 0x" << Twine::utohexstr(ArrayStart) 908 << " the destination value is 0x" << Twine::utohexstr(*Value) 909 << '\n'; 910 911 TargetAddress = *Value; 912 return BranchType; 913 } 914 915 // Check if there's already a jump table registered at this address. 916 MemoryContentsType MemType; 917 if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) { 918 switch (JT->Type) { 919 case JumpTable::JTT_NORMAL: 920 MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE; 921 break; 922 case JumpTable::JTT_PIC: 923 MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 924 break; 925 } 926 } else { 927 MemType = BC.analyzeMemoryAt(ArrayStart, *this); 928 } 929 930 // Check that jump table type in instruction pattern matches memory contents. 931 JumpTable::JumpTableType JTType; 932 if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) { 933 if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 934 return IndirectBranchType::UNKNOWN; 935 JTType = JumpTable::JTT_PIC; 936 } else { 937 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 938 return IndirectBranchType::UNKNOWN; 939 940 if (MemType == MemoryContentsType::UNKNOWN) 941 return IndirectBranchType::POSSIBLE_TAIL_CALL; 942 943 BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE; 944 JTType = JumpTable::JTT_NORMAL; 945 } 946 947 // Convert the instruction into jump table branch. 948 const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType); 949 BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get()); 950 BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum); 951 952 JTSites.emplace_back(Offset, ArrayStart); 953 954 return BranchType; 955 } 956 957 MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address, 958 bool CreatePastEnd) { 959 const uint64_t Offset = Address - getAddress(); 960 961 if ((Offset == getSize()) && CreatePastEnd) 962 return getFunctionEndLabel(); 963 964 auto LI = Labels.find(Offset); 965 if (LI != Labels.end()) 966 return LI->second; 967 968 // For AArch64, check if this address is part of a constant island. 969 if (BC.isAArch64()) { 970 if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address)) 971 return IslandSym; 972 } 973 974 MCSymbol *Label = BC.Ctx->createNamedTempSymbol(); 975 Labels[Offset] = Label; 976 977 return Label; 978 } 979 980 ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const { 981 BinarySection &Section = *getOriginSection(); 982 assert(Section.containsRange(getAddress(), getMaxSize()) && 983 "wrong section for function"); 984 985 if (!Section.isText() || Section.isVirtual() || !Section.getSize()) 986 return std::make_error_code(std::errc::bad_address); 987 988 StringRef SectionContents = Section.getContents(); 989 990 assert(SectionContents.size() == Section.getSize() && 991 "section size mismatch"); 992 993 // Function offset from the section start. 994 uint64_t Offset = getAddress() - Section.getAddress(); 995 auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data()); 996 return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize()); 997 } 998 999 size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const { 1000 if (!Islands) 1001 return 0; 1002 1003 if (Islands->DataOffsets.find(Offset) == Islands->DataOffsets.end()) 1004 return 0; 1005 1006 auto Iter = Islands->CodeOffsets.upper_bound(Offset); 1007 if (Iter != Islands->CodeOffsets.end()) 1008 return *Iter - Offset; 1009 return getSize() - Offset; 1010 } 1011 1012 bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const { 1013 ArrayRef<uint8_t> FunctionData = *getData(); 1014 uint64_t EndOfCode = getSize(); 1015 if (Islands) { 1016 auto Iter = Islands->DataOffsets.upper_bound(Offset); 1017 if (Iter != Islands->DataOffsets.end()) 1018 EndOfCode = *Iter; 1019 } 1020 for (uint64_t I = Offset; I < EndOfCode; ++I) 1021 if (FunctionData[I] != 0) 1022 return false; 1023 1024 return true; 1025 } 1026 1027 bool BinaryFunction::disassemble() { 1028 NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs", 1029 "Build Binary Functions", opts::TimeBuild); 1030 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1031 assert(ErrorOrFunctionData && "function data is not available"); 1032 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1033 assert(FunctionData.size() == getMaxSize() && 1034 "function size does not match raw data size"); 1035 1036 auto &Ctx = BC.Ctx; 1037 auto &MIB = BC.MIB; 1038 1039 // Insert a label at the beginning of the function. This will be our first 1040 // basic block. 1041 Labels[0] = Ctx->createNamedTempSymbol("BB0"); 1042 1043 auto handlePCRelOperand = [&](MCInst &Instruction, uint64_t Address, 1044 uint64_t Size) { 1045 uint64_t TargetAddress = 0; 1046 if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address, 1047 Size)) { 1048 errs() << "BOLT-ERROR: PC-relative operand can't be evaluated:\n"; 1049 BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, errs()); 1050 errs() << '\n'; 1051 Instruction.dump_pretty(errs(), BC.InstPrinter.get()); 1052 errs() << '\n'; 1053 errs() << "BOLT-ERROR: cannot handle PC-relative operand at 0x" 1054 << Twine::utohexstr(Address) << ". Skipping function " << *this 1055 << ".\n"; 1056 if (BC.HasRelocations) 1057 exit(1); 1058 IsSimple = false; 1059 return; 1060 } 1061 if (TargetAddress == 0 && opts::Verbosity >= 1) { 1062 outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this 1063 << '\n'; 1064 } 1065 1066 const MCSymbol *TargetSymbol; 1067 uint64_t TargetOffset; 1068 std::tie(TargetSymbol, TargetOffset) = 1069 BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true); 1070 const MCExpr *Expr = MCSymbolRefExpr::create( 1071 TargetSymbol, MCSymbolRefExpr::VK_None, *BC.Ctx); 1072 if (TargetOffset) { 1073 const MCConstantExpr *Offset = 1074 MCConstantExpr::create(TargetOffset, *BC.Ctx); 1075 Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx); 1076 } 1077 MIB->replaceMemOperandDisp(Instruction, 1078 MCOperand::createExpr(BC.MIB->getTargetExprFor( 1079 Instruction, Expr, *BC.Ctx, 0))); 1080 }; 1081 1082 // Used to fix the target of linker-generated AArch64 stubs with no relocation 1083 // info 1084 auto fixStubTarget = [&](MCInst &LoadLowBits, MCInst &LoadHiBits, 1085 uint64_t Target) { 1086 const MCSymbol *TargetSymbol; 1087 uint64_t Addend = 0; 1088 std::tie(TargetSymbol, Addend) = BC.handleAddressRef(Target, *this, true); 1089 1090 int64_t Val; 1091 MIB->replaceImmWithSymbolRef(LoadHiBits, TargetSymbol, Addend, Ctx.get(), 1092 Val, ELF::R_AARCH64_ADR_PREL_PG_HI21); 1093 MIB->replaceImmWithSymbolRef(LoadLowBits, TargetSymbol, Addend, Ctx.get(), 1094 Val, ELF::R_AARCH64_ADD_ABS_LO12_NC); 1095 }; 1096 1097 auto handleExternalReference = [&](MCInst &Instruction, uint64_t Size, 1098 uint64_t Offset, uint64_t TargetAddress, 1099 bool &IsCall) -> MCSymbol * { 1100 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1101 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1102 MCSymbol *TargetSymbol = nullptr; 1103 InterproceduralReferences.insert(TargetAddress); 1104 if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) { 1105 errs() << "BOLT-WARNING: relaxed tail call detected at 0x" 1106 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this 1107 << ". Code size will be increased.\n"; 1108 } 1109 1110 assert(!MIB->isTailCall(Instruction) && 1111 "synthetic tail call instruction found"); 1112 1113 // This is a call regardless of the opcode. 1114 // Assign proper opcode for tail calls, so that they could be 1115 // treated as calls. 1116 if (!IsCall) { 1117 if (!MIB->convertJmpToTailCall(Instruction)) { 1118 assert(IsCondBranch && "unknown tail call instruction"); 1119 if (opts::Verbosity >= 2) { 1120 errs() << "BOLT-WARNING: conditional tail call detected in " 1121 << "function " << *this << " at 0x" 1122 << Twine::utohexstr(AbsoluteInstrAddr) << ".\n"; 1123 } 1124 } 1125 IsCall = true; 1126 } 1127 1128 TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat"); 1129 if (opts::Verbosity >= 2 && TargetAddress == 0) { 1130 // We actually see calls to address 0 in presence of weak 1131 // symbols originating from libraries. This code is never meant 1132 // to be executed. 1133 outs() << "BOLT-INFO: Function " << *this 1134 << " has a call to address zero.\n"; 1135 } 1136 1137 return TargetSymbol; 1138 }; 1139 1140 auto handleIndirectBranch = [&](MCInst &Instruction, uint64_t Size, 1141 uint64_t Offset) { 1142 uint64_t IndirectTarget = 0; 1143 IndirectBranchType Result = 1144 processIndirectBranch(Instruction, Size, Offset, IndirectTarget); 1145 switch (Result) { 1146 default: 1147 llvm_unreachable("unexpected result"); 1148 case IndirectBranchType::POSSIBLE_TAIL_CALL: { 1149 bool Result = MIB->convertJmpToTailCall(Instruction); 1150 (void)Result; 1151 assert(Result); 1152 break; 1153 } 1154 case IndirectBranchType::POSSIBLE_JUMP_TABLE: 1155 case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE: 1156 if (opts::JumpTables == JTS_NONE) 1157 IsSimple = false; 1158 break; 1159 case IndirectBranchType::POSSIBLE_FIXED_BRANCH: { 1160 if (containsAddress(IndirectTarget)) { 1161 const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget); 1162 Instruction.clear(); 1163 MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get()); 1164 TakenBranches.emplace_back(Offset, IndirectTarget - getAddress()); 1165 HasFixedIndirectBranch = true; 1166 } else { 1167 MIB->convertJmpToTailCall(Instruction); 1168 InterproceduralReferences.insert(IndirectTarget); 1169 } 1170 break; 1171 } 1172 case IndirectBranchType::UNKNOWN: 1173 // Keep processing. We'll do more checks and fixes in 1174 // postProcessIndirectBranches(). 1175 UnknownIndirectBranchOffsets.emplace(Offset); 1176 break; 1177 } 1178 }; 1179 1180 // Check for linker veneers, which lack relocations and need manual 1181 // adjustments. 1182 auto handleAArch64IndirectCall = [&](MCInst &Instruction, uint64_t Offset) { 1183 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1184 MCInst *TargetHiBits, *TargetLowBits; 1185 uint64_t TargetAddress; 1186 if (MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(), 1187 AbsoluteInstrAddr, Instruction, TargetHiBits, 1188 TargetLowBits, TargetAddress)) { 1189 MIB->addAnnotation(Instruction, "AArch64Veneer", true); 1190 1191 uint8_t Counter = 0; 1192 for (auto It = std::prev(Instructions.end()); Counter != 2; 1193 --It, ++Counter) { 1194 MIB->addAnnotation(It->second, "AArch64Veneer", true); 1195 } 1196 1197 fixStubTarget(*TargetLowBits, *TargetHiBits, TargetAddress); 1198 } 1199 }; 1200 1201 uint64_t Size = 0; // instruction size 1202 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1203 MCInst Instruction; 1204 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1205 1206 // Check for data inside code and ignore it 1207 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1208 Size = DataInCodeSize; 1209 continue; 1210 } 1211 1212 if (!BC.DisAsm->getInstruction(Instruction, Size, 1213 FunctionData.slice(Offset), 1214 AbsoluteInstrAddr, nulls())) { 1215 // Functions with "soft" boundaries, e.g. coming from assembly source, 1216 // can have 0-byte padding at the end. 1217 if (isZeroPaddingAt(Offset)) 1218 break; 1219 1220 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1221 << Twine::utohexstr(Offset) << " (address 0x" 1222 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this 1223 << '\n'; 1224 // Some AVX-512 instructions could not be disassembled at all. 1225 if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) { 1226 setTrapOnEntry(); 1227 BC.TrappedFunctions.push_back(this); 1228 } else { 1229 setIgnored(); 1230 } 1231 1232 break; 1233 } 1234 1235 // Check integrity of LLVM assembler/disassembler. 1236 if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) && 1237 !BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) { 1238 if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) { 1239 errs() << "BOLT-WARNING: mismatching LLVM encoding detected in " 1240 << "function " << *this << " for instruction :\n"; 1241 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1242 errs() << '\n'; 1243 } 1244 } 1245 1246 // Special handling for AVX-512 instructions. 1247 if (MIB->hasEVEXEncoding(Instruction)) { 1248 if (BC.HasRelocations && opts::TrapOnAVX512) { 1249 setTrapOnEntry(); 1250 BC.TrappedFunctions.push_back(this); 1251 break; 1252 } 1253 1254 // Check if our disassembly is correct and matches the assembler output. 1255 if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) { 1256 if (opts::Verbosity >= 1) { 1257 errs() << "BOLT-WARNING: internal assembler/disassembler error " 1258 "detected for AVX512 instruction:\n"; 1259 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1260 errs() << " in function " << *this << '\n'; 1261 } 1262 1263 setIgnored(); 1264 break; 1265 } 1266 } 1267 1268 // Check if there's a relocation associated with this instruction. 1269 bool UsedReloc = false; 1270 for (auto Itr = Relocations.lower_bound(Offset), 1271 ItrE = Relocations.lower_bound(Offset + Size); 1272 Itr != ItrE; ++Itr) { 1273 const Relocation &Relocation = Itr->second; 1274 1275 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: replacing immediate 0x" 1276 << Twine::utohexstr(Relocation.Value) 1277 << " with relocation" 1278 " against " 1279 << Relocation.Symbol << "+" << Relocation.Addend 1280 << " in function " << *this 1281 << " for instruction at offset 0x" 1282 << Twine::utohexstr(Offset) << '\n'); 1283 1284 // Process reference to the primary symbol. 1285 if (!Relocation.isPCRelative()) 1286 BC.handleAddressRef(Relocation.Value - Relocation.Addend, *this, 1287 /*IsPCRel*/ false); 1288 1289 int64_t Value = Relocation.Value; 1290 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1291 Instruction, Relocation.Symbol, Relocation.Addend, Ctx.get(), Value, 1292 Relocation.Type); 1293 (void)Result; 1294 assert(Result && "cannot replace immediate with relocation"); 1295 1296 // For aarch, if we replaced an immediate with a symbol from a 1297 // relocation, we mark it so we do not try to further process a 1298 // pc-relative operand. All we need is the symbol. 1299 if (BC.isAArch64()) 1300 UsedReloc = true; 1301 1302 // Make sure we replaced the correct immediate (instruction 1303 // can have multiple immediate operands). 1304 if (BC.isX86()) { 1305 assert(truncateToSize(static_cast<uint64_t>(Value), 1306 Relocation::getSizeForType(Relocation.Type)) == 1307 truncateToSize(Relocation.Value, Relocation::getSizeForType( 1308 Relocation.Type)) && 1309 "immediate value mismatch in function"); 1310 } 1311 } 1312 1313 if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) { 1314 uint64_t TargetAddress = 0; 1315 if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1316 TargetAddress)) { 1317 // Check if the target is within the same function. Otherwise it's 1318 // a call, possibly a tail call. 1319 // 1320 // If the target *is* the function address it could be either a branch 1321 // or a recursive call. 1322 bool IsCall = MIB->isCall(Instruction); 1323 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1324 MCSymbol *TargetSymbol = nullptr; 1325 1326 if (BC.MIB->isUnsupportedBranch(Instruction.getOpcode())) { 1327 setIgnored(); 1328 if (BinaryFunction *TargetFunc = 1329 BC.getBinaryFunctionContainingAddress(TargetAddress)) 1330 TargetFunc->setIgnored(); 1331 } 1332 1333 if (IsCall && containsAddress(TargetAddress)) { 1334 if (TargetAddress == getAddress()) { 1335 // Recursive call. 1336 TargetSymbol = getSymbol(); 1337 } else { 1338 if (BC.isX86()) { 1339 // Dangerous old-style x86 PIC code. We may need to freeze this 1340 // function, so preserve the function as is for now. 1341 PreserveNops = true; 1342 } else { 1343 errs() << "BOLT-WARNING: internal call detected at 0x" 1344 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " 1345 << *this << ". Skipping.\n"; 1346 IsSimple = false; 1347 } 1348 } 1349 } 1350 1351 if (!TargetSymbol) { 1352 // Create either local label or external symbol. 1353 if (containsAddress(TargetAddress)) { 1354 TargetSymbol = getOrCreateLocalLabel(TargetAddress); 1355 } else { 1356 if (TargetAddress == getAddress() + getSize() && 1357 TargetAddress < getAddress() + getMaxSize()) { 1358 // Result of __builtin_unreachable(). 1359 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x" 1360 << Twine::utohexstr(AbsoluteInstrAddr) 1361 << " in function " << *this 1362 << " : replacing with nop.\n"); 1363 BC.MIB->createNoop(Instruction); 1364 if (IsCondBranch) { 1365 // Register branch offset for profile validation. 1366 IgnoredBranches.emplace_back(Offset, Offset + Size); 1367 } 1368 goto add_instruction; 1369 } 1370 // May update Instruction and IsCall 1371 TargetSymbol = handleExternalReference(Instruction, Size, Offset, 1372 TargetAddress, IsCall); 1373 } 1374 } 1375 1376 if (!IsCall) { 1377 // Add taken branch info. 1378 TakenBranches.emplace_back(Offset, TargetAddress - getAddress()); 1379 } 1380 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx); 1381 1382 // Mark CTC. 1383 if (IsCondBranch && IsCall) 1384 MIB->setConditionalTailCall(Instruction, TargetAddress); 1385 } else { 1386 // Could not evaluate branch. Should be an indirect call or an 1387 // indirect branch. Bail out on the latter case. 1388 if (MIB->isIndirectBranch(Instruction)) 1389 handleIndirectBranch(Instruction, Size, Offset); 1390 // Indirect call. We only need to fix it if the operand is RIP-relative. 1391 if (IsSimple && MIB->hasPCRelOperand(Instruction)) 1392 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1393 1394 if (BC.isAArch64()) 1395 handleAArch64IndirectCall(Instruction, Offset); 1396 } 1397 } else if (MIB->hasPCRelOperand(Instruction) && !UsedReloc) { 1398 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1399 } 1400 1401 add_instruction: 1402 if (getDWARFLineTable()) { 1403 Instruction.setLoc(findDebugLineInformationForInstructionAt( 1404 AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable())); 1405 } 1406 1407 // Record offset of the instruction for profile matching. 1408 if (BC.keepOffsetForInstruction(Instruction)) 1409 MIB->setOffset(Instruction, static_cast<uint32_t>(Offset)); 1410 1411 if (BC.MIB->isNoop(Instruction)) { 1412 // NOTE: disassembly loses the correct size information for noops. 1413 // E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only 1414 // 5 bytes. Preserve the size info using annotations. 1415 MIB->addAnnotation(Instruction, "Size", static_cast<uint32_t>(Size)); 1416 } 1417 1418 addInstruction(Offset, std::move(Instruction)); 1419 } 1420 1421 clearList(Relocations); 1422 1423 if (!IsSimple) { 1424 clearList(Instructions); 1425 return false; 1426 } 1427 1428 updateState(State::Disassembled); 1429 1430 return true; 1431 } 1432 1433 bool BinaryFunction::scanExternalRefs() { 1434 bool Success = true; 1435 bool DisassemblyFailed = false; 1436 1437 // Ignore pseudo functions. 1438 if (isPseudo()) 1439 return Success; 1440 1441 if (opts::NoScan) { 1442 clearList(Relocations); 1443 clearList(ExternallyReferencedOffsets); 1444 1445 return false; 1446 } 1447 1448 // List of external references for this function. 1449 std::vector<Relocation> FunctionRelocations; 1450 1451 static BinaryContext::IndependentCodeEmitter Emitter = 1452 BC.createIndependentMCCodeEmitter(); 1453 1454 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1455 assert(ErrorOrFunctionData && "function data is not available"); 1456 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1457 assert(FunctionData.size() == getMaxSize() && 1458 "function size does not match raw data size"); 1459 1460 uint64_t Size = 0; // instruction size 1461 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1462 // Check for data inside code and ignore it 1463 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1464 Size = DataInCodeSize; 1465 continue; 1466 } 1467 1468 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1469 MCInst Instruction; 1470 if (!BC.DisAsm->getInstruction(Instruction, Size, 1471 FunctionData.slice(Offset), 1472 AbsoluteInstrAddr, nulls())) { 1473 if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) { 1474 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1475 << Twine::utohexstr(Offset) << " (address 0x" 1476 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " 1477 << *this << '\n'; 1478 } 1479 Success = false; 1480 DisassemblyFailed = true; 1481 break; 1482 } 1483 1484 // Return true if we can skip handling the Target function reference. 1485 auto ignoreFunctionRef = [&](const BinaryFunction &Target) { 1486 if (&Target == this) 1487 return true; 1488 1489 // Note that later we may decide not to emit Target function. In that 1490 // case, we conservatively create references that will be ignored or 1491 // resolved to the same function. 1492 if (!BC.shouldEmit(Target)) 1493 return true; 1494 1495 return false; 1496 }; 1497 1498 // Return true if we can ignore reference to the symbol. 1499 auto ignoreReference = [&](const MCSymbol *TargetSymbol) { 1500 if (!TargetSymbol) 1501 return true; 1502 1503 if (BC.forceSymbolRelocations(TargetSymbol->getName())) 1504 return false; 1505 1506 BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol); 1507 if (!TargetFunction) 1508 return true; 1509 1510 return ignoreFunctionRef(*TargetFunction); 1511 }; 1512 1513 // Detect if the instruction references an address. 1514 // Without relocations, we can only trust PC-relative address modes. 1515 uint64_t TargetAddress = 0; 1516 bool IsPCRel = false; 1517 bool IsBranch = false; 1518 if (BC.MIB->hasPCRelOperand(Instruction)) { 1519 if (BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1520 AbsoluteInstrAddr, Size)) { 1521 IsPCRel = true; 1522 } 1523 } else if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) { 1524 if (BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1525 TargetAddress)) { 1526 IsBranch = true; 1527 } 1528 } 1529 1530 MCSymbol *TargetSymbol = nullptr; 1531 1532 // Create an entry point at reference address if needed. 1533 BinaryFunction *TargetFunction = 1534 BC.getBinaryFunctionContainingAddress(TargetAddress); 1535 if (TargetFunction && !ignoreFunctionRef(*TargetFunction)) { 1536 const uint64_t FunctionOffset = 1537 TargetAddress - TargetFunction->getAddress(); 1538 TargetSymbol = FunctionOffset 1539 ? TargetFunction->addEntryPointAtOffset(FunctionOffset) 1540 : TargetFunction->getSymbol(); 1541 } 1542 1543 // Can't find more references and not creating relocations. 1544 if (!BC.HasRelocations) 1545 continue; 1546 1547 // Create a relocation against the TargetSymbol as the symbol might get 1548 // moved. 1549 if (TargetSymbol) { 1550 if (IsBranch) { 1551 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, 1552 Emitter.LocalCtx.get()); 1553 } else if (IsPCRel) { 1554 const MCExpr *Expr = MCSymbolRefExpr::create( 1555 TargetSymbol, MCSymbolRefExpr::VK_None, *Emitter.LocalCtx.get()); 1556 BC.MIB->replaceMemOperandDisp( 1557 Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor( 1558 Instruction, Expr, *Emitter.LocalCtx.get(), 0))); 1559 } 1560 } 1561 1562 // Create more relocations based on input file relocations. 1563 bool HasRel = false; 1564 for (auto Itr = Relocations.lower_bound(Offset), 1565 ItrE = Relocations.lower_bound(Offset + Size); 1566 Itr != ItrE; ++Itr) { 1567 Relocation &Relocation = Itr->second; 1568 if (ignoreReference(Relocation.Symbol)) 1569 continue; 1570 1571 int64_t Value = Relocation.Value; 1572 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1573 Instruction, Relocation.Symbol, Relocation.Addend, 1574 Emitter.LocalCtx.get(), Value, Relocation.Type); 1575 (void)Result; 1576 assert(Result && "cannot replace immediate with relocation"); 1577 1578 HasRel = true; 1579 } 1580 1581 if (!TargetSymbol && !HasRel) 1582 continue; 1583 1584 // Emit the instruction using temp emitter and generate relocations. 1585 SmallString<256> Code; 1586 SmallVector<MCFixup, 4> Fixups; 1587 raw_svector_ostream VecOS(Code); 1588 Emitter.MCE->encodeInstruction(Instruction, VecOS, Fixups, *BC.STI); 1589 1590 // Create relocation for every fixup. 1591 for (const MCFixup &Fixup : Fixups) { 1592 Optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB); 1593 if (!Rel) { 1594 Success = false; 1595 continue; 1596 } 1597 1598 if (Relocation::getSizeForType(Rel->Type) < 4) { 1599 // If the instruction uses a short form, then we might not be able 1600 // to handle the rewrite without relaxation, and hence cannot reliably 1601 // create an external reference relocation. 1602 Success = false; 1603 continue; 1604 } 1605 Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset; 1606 FunctionRelocations.push_back(*Rel); 1607 } 1608 1609 if (!Success) 1610 break; 1611 } 1612 1613 // Add relocations unless disassembly failed for this function. 1614 if (!DisassemblyFailed) 1615 for (Relocation &Rel : FunctionRelocations) 1616 getOriginSection()->addPendingRelocation(Rel); 1617 1618 // Inform BinaryContext that this function symbols will not be defined and 1619 // relocations should not be created against them. 1620 if (BC.HasRelocations) { 1621 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 1622 BC.UndefinedSymbols.insert(LI.second); 1623 if (FunctionEndLabel) 1624 BC.UndefinedSymbols.insert(FunctionEndLabel); 1625 } 1626 1627 clearList(Relocations); 1628 clearList(ExternallyReferencedOffsets); 1629 1630 if (Success && BC.HasRelocations) 1631 HasExternalRefRelocations = true; 1632 1633 if (opts::Verbosity >= 1 && !Success) 1634 outs() << "BOLT-INFO: failed to scan refs for " << *this << '\n'; 1635 1636 return Success; 1637 } 1638 1639 void BinaryFunction::postProcessEntryPoints() { 1640 if (!isSimple()) 1641 return; 1642 1643 for (auto &KV : Labels) { 1644 MCSymbol *Label = KV.second; 1645 if (!getSecondaryEntryPointSymbol(Label)) 1646 continue; 1647 1648 // In non-relocation mode there's potentially an external undetectable 1649 // reference to the entry point and hence we cannot move this entry 1650 // point. Optimizing without moving could be difficult. 1651 if (!BC.HasRelocations) 1652 setSimple(false); 1653 1654 const uint32_t Offset = KV.first; 1655 1656 // If we are at Offset 0 and there is no instruction associated with it, 1657 // this means this is an empty function. Just ignore. If we find an 1658 // instruction at this offset, this entry point is valid. 1659 if (!Offset || getInstructionAtOffset(Offset)) 1660 continue; 1661 1662 // On AArch64 there are legitimate reasons to have references past the 1663 // end of the function, e.g. jump tables. 1664 if (BC.isAArch64() && Offset == getSize()) 1665 continue; 1666 1667 errs() << "BOLT-WARNING: reference in the middle of instruction " 1668 "detected in function " 1669 << *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n'; 1670 if (BC.HasRelocations) 1671 setIgnored(); 1672 setSimple(false); 1673 return; 1674 } 1675 } 1676 1677 void BinaryFunction::postProcessJumpTables() { 1678 // Create labels for all entries. 1679 for (auto &JTI : JumpTables) { 1680 JumpTable &JT = *JTI.second; 1681 if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) { 1682 opts::JumpTables = JTS_MOVE; 1683 outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was " 1684 "detected in function " 1685 << *this << '\n'; 1686 } 1687 for (unsigned I = 0; I < JT.OffsetEntries.size(); ++I) { 1688 MCSymbol *Label = 1689 getOrCreateLocalLabel(getAddress() + JT.OffsetEntries[I], 1690 /*CreatePastEnd*/ true); 1691 JT.Entries.push_back(Label); 1692 } 1693 1694 const uint64_t BDSize = 1695 BC.getBinaryDataAtAddress(JT.getAddress())->getSize(); 1696 if (!BDSize) { 1697 BC.setBinaryDataSize(JT.getAddress(), JT.getSize()); 1698 } else { 1699 assert(BDSize >= JT.getSize() && 1700 "jump table cannot be larger than the containing object"); 1701 } 1702 } 1703 1704 // Add TakenBranches from JumpTables. 1705 // 1706 // We want to do it after initial processing since we don't know jump tables' 1707 // boundaries until we process them all. 1708 for (auto &JTSite : JTSites) { 1709 const uint64_t JTSiteOffset = JTSite.first; 1710 const uint64_t JTAddress = JTSite.second; 1711 const JumpTable *JT = getJumpTableContainingAddress(JTAddress); 1712 assert(JT && "cannot find jump table for address"); 1713 1714 uint64_t EntryOffset = JTAddress - JT->getAddress(); 1715 while (EntryOffset < JT->getSize()) { 1716 uint64_t TargetOffset = JT->OffsetEntries[EntryOffset / JT->EntrySize]; 1717 if (TargetOffset < getSize()) { 1718 TakenBranches.emplace_back(JTSiteOffset, TargetOffset); 1719 1720 if (opts::StrictMode) 1721 registerReferencedOffset(TargetOffset); 1722 } 1723 1724 EntryOffset += JT->EntrySize; 1725 1726 // A label at the next entry means the end of this jump table. 1727 if (JT->Labels.count(EntryOffset)) 1728 break; 1729 } 1730 } 1731 clearList(JTSites); 1732 1733 // Free memory used by jump table offsets. 1734 for (auto &JTI : JumpTables) { 1735 JumpTable &JT = *JTI.second; 1736 clearList(JT.OffsetEntries); 1737 } 1738 1739 // Conservatively populate all possible destinations for unknown indirect 1740 // branches. 1741 if (opts::StrictMode && hasInternalReference()) { 1742 for (uint64_t Offset : UnknownIndirectBranchOffsets) { 1743 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) { 1744 // Ignore __builtin_unreachable(). 1745 if (PossibleDestination == getSize()) 1746 continue; 1747 TakenBranches.emplace_back(Offset, PossibleDestination); 1748 } 1749 } 1750 } 1751 1752 // Remove duplicates branches. We can get a bunch of them from jump tables. 1753 // Without doing jump table value profiling we don't have use for extra 1754 // (duplicate) branches. 1755 std::sort(TakenBranches.begin(), TakenBranches.end()); 1756 auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end()); 1757 TakenBranches.erase(NewEnd, TakenBranches.end()); 1758 } 1759 1760 bool BinaryFunction::postProcessIndirectBranches( 1761 MCPlusBuilder::AllocatorIdTy AllocId) { 1762 auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) { 1763 HasUnknownControlFlow = true; 1764 BB.removeAllSuccessors(); 1765 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) 1766 if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination)) 1767 BB.addSuccessor(SuccBB); 1768 }; 1769 1770 uint64_t NumIndirectJumps = 0; 1771 MCInst *LastIndirectJump = nullptr; 1772 BinaryBasicBlock *LastIndirectJumpBB = nullptr; 1773 uint64_t LastJT = 0; 1774 uint16_t LastJTIndexReg = BC.MIB->getNoRegister(); 1775 for (BinaryBasicBlock *BB : layout()) { 1776 for (MCInst &Instr : *BB) { 1777 if (!BC.MIB->isIndirectBranch(Instr)) 1778 continue; 1779 1780 // If there's an indirect branch in a single-block function - 1781 // it must be a tail call. 1782 if (layout_size() == 1) { 1783 BC.MIB->convertJmpToTailCall(Instr); 1784 return true; 1785 } 1786 1787 ++NumIndirectJumps; 1788 1789 if (opts::StrictMode && !hasInternalReference()) { 1790 BC.MIB->convertJmpToTailCall(Instr); 1791 break; 1792 } 1793 1794 // Validate the tail call or jump table assumptions now that we know 1795 // basic block boundaries. 1796 if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) { 1797 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 1798 MCInst *MemLocInstr; 1799 unsigned BaseRegNum, IndexRegNum; 1800 int64_t DispValue; 1801 const MCExpr *DispExpr; 1802 MCInst *PCRelBaseInstr; 1803 IndirectBranchType Type = BC.MIB->analyzeIndirectBranch( 1804 Instr, BB->begin(), BB->end(), PtrSize, MemLocInstr, BaseRegNum, 1805 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 1806 if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr) 1807 continue; 1808 1809 if (!opts::StrictMode) 1810 return false; 1811 1812 if (BC.MIB->isTailCall(Instr)) { 1813 BC.MIB->convertTailCallToJmp(Instr); 1814 } else { 1815 LastIndirectJump = &Instr; 1816 LastIndirectJumpBB = BB; 1817 LastJT = BC.MIB->getJumpTable(Instr); 1818 LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr); 1819 BC.MIB->unsetJumpTable(Instr); 1820 1821 JumpTable *JT = BC.getJumpTableContainingAddress(LastJT); 1822 if (JT->Type == JumpTable::JTT_NORMAL) { 1823 // Invalidating the jump table may also invalidate other jump table 1824 // boundaries. Until we have/need a support for this, mark the 1825 // function as non-simple. 1826 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference" 1827 << JT->getName() << " in " << *this << '\n'); 1828 return false; 1829 } 1830 } 1831 1832 addUnknownControlFlow(*BB); 1833 continue; 1834 } 1835 1836 // If this block contains an epilogue code and has an indirect branch, 1837 // then most likely it's a tail call. Otherwise, we cannot tell for sure 1838 // what it is and conservatively reject the function's CFG. 1839 bool IsEpilogue = false; 1840 for (const MCInst &Instr : *BB) { 1841 if (BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr)) { 1842 IsEpilogue = true; 1843 break; 1844 } 1845 } 1846 if (IsEpilogue) { 1847 BC.MIB->convertJmpToTailCall(Instr); 1848 BB->removeAllSuccessors(); 1849 continue; 1850 } 1851 1852 if (opts::Verbosity >= 2) { 1853 outs() << "BOLT-INFO: rejected potential indirect tail call in " 1854 << "function " << *this << " in basic block " << BB->getName() 1855 << ".\n"; 1856 LLVM_DEBUG(BC.printInstructions(dbgs(), BB->begin(), BB->end(), 1857 BB->getOffset(), this, true)); 1858 } 1859 1860 if (!opts::StrictMode) 1861 return false; 1862 1863 addUnknownControlFlow(*BB); 1864 } 1865 } 1866 1867 if (HasInternalLabelReference) 1868 return false; 1869 1870 // If there's only one jump table, and one indirect jump, and no other 1871 // references, then we should be able to derive the jump table even if we 1872 // fail to match the pattern. 1873 if (HasUnknownControlFlow && NumIndirectJumps == 1 && 1874 JumpTables.size() == 1 && LastIndirectJump) { 1875 BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId); 1876 HasUnknownControlFlow = false; 1877 1878 LastIndirectJumpBB->updateJumpTableSuccessors(); 1879 } 1880 1881 if (HasFixedIndirectBranch) 1882 return false; 1883 1884 if (HasUnknownControlFlow && !BC.HasRelocations) 1885 return false; 1886 1887 return true; 1888 } 1889 1890 void BinaryFunction::recomputeLandingPads() { 1891 updateBBIndices(0); 1892 1893 for (BinaryBasicBlock *BB : BasicBlocks) { 1894 BB->LandingPads.clear(); 1895 BB->Throwers.clear(); 1896 } 1897 1898 for (BinaryBasicBlock *BB : BasicBlocks) { 1899 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 1900 for (MCInst &Instr : *BB) { 1901 if (!BC.MIB->isInvoke(Instr)) 1902 continue; 1903 1904 const Optional<MCPlus::MCLandingPad> EHInfo = BC.MIB->getEHInfo(Instr); 1905 if (!EHInfo || !EHInfo->first) 1906 continue; 1907 1908 BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first); 1909 if (!BBLandingPads.count(LPBlock)) { 1910 BBLandingPads.insert(LPBlock); 1911 BB->LandingPads.emplace_back(LPBlock); 1912 LPBlock->Throwers.emplace_back(BB); 1913 } 1914 } 1915 } 1916 } 1917 1918 bool BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) { 1919 auto &MIB = BC.MIB; 1920 1921 if (!isSimple()) { 1922 assert(!BC.HasRelocations && 1923 "cannot process file with non-simple function in relocs mode"); 1924 return false; 1925 } 1926 1927 if (CurrentState != State::Disassembled) 1928 return false; 1929 1930 assert(BasicBlocks.empty() && "basic block list should be empty"); 1931 assert((Labels.find(0) != Labels.end()) && 1932 "first instruction should always have a label"); 1933 1934 // Create basic blocks in the original layout order: 1935 // 1936 // * Every instruction with associated label marks 1937 // the beginning of a basic block. 1938 // * Conditional instruction marks the end of a basic block, 1939 // except when the following instruction is an 1940 // unconditional branch, and the unconditional branch is not 1941 // a destination of another branch. In the latter case, the 1942 // basic block will consist of a single unconditional branch 1943 // (missed "double-jump" optimization). 1944 // 1945 // Created basic blocks are sorted in layout order since they are 1946 // created in the same order as instructions, and instructions are 1947 // sorted by offsets. 1948 BinaryBasicBlock *InsertBB = nullptr; 1949 BinaryBasicBlock *PrevBB = nullptr; 1950 bool IsLastInstrNop = false; 1951 // Offset of the last non-nop instruction. 1952 uint64_t LastInstrOffset = 0; 1953 1954 auto addCFIPlaceholders = [this](uint64_t CFIOffset, 1955 BinaryBasicBlock *InsertBB) { 1956 for (auto FI = OffsetToCFI.lower_bound(CFIOffset), 1957 FE = OffsetToCFI.upper_bound(CFIOffset); 1958 FI != FE; ++FI) { 1959 addCFIPseudo(InsertBB, InsertBB->end(), FI->second); 1960 } 1961 }; 1962 1963 // For profiling purposes we need to save the offset of the last instruction 1964 // in the basic block. 1965 // NOTE: nops always have an Offset annotation. Annotate the last non-nop as 1966 // older profiles ignored nops. 1967 auto updateOffset = [&](uint64_t Offset) { 1968 assert(PrevBB && PrevBB != InsertBB && "invalid previous block"); 1969 MCInst *LastNonNop = nullptr; 1970 for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(), 1971 E = PrevBB->rend(); 1972 RII != E; ++RII) { 1973 if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) { 1974 LastNonNop = &*RII; 1975 break; 1976 } 1977 } 1978 if (LastNonNop && !MIB->getOffset(*LastNonNop)) 1979 MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset), AllocatorId); 1980 }; 1981 1982 for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) { 1983 const uint32_t Offset = I->first; 1984 MCInst &Instr = I->second; 1985 1986 auto LI = Labels.find(Offset); 1987 if (LI != Labels.end()) { 1988 // Always create new BB at branch destination. 1989 PrevBB = InsertBB ? InsertBB : PrevBB; 1990 InsertBB = addBasicBlock(LI->first, LI->second, 1991 opts::PreserveBlocksAlignment && IsLastInstrNop); 1992 if (PrevBB) 1993 updateOffset(LastInstrOffset); 1994 } 1995 1996 const uint64_t InstrInputAddr = I->first + Address; 1997 bool IsSDTMarker = 1998 MIB->isNoop(Instr) && BC.SDTMarkers.count(InstrInputAddr); 1999 bool IsLKMarker = BC.LKMarkers.count(InstrInputAddr); 2000 // Mark all nops with Offset for profile tracking purposes. 2001 if (MIB->isNoop(Instr) || IsLKMarker) { 2002 if (!MIB->getOffset(Instr)) 2003 MIB->setOffset(Instr, static_cast<uint32_t>(Offset), AllocatorId); 2004 if (IsSDTMarker || IsLKMarker) 2005 HasSDTMarker = true; 2006 else 2007 // Annotate ordinary nops, so we can safely delete them if required. 2008 MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId); 2009 } 2010 2011 if (!InsertBB) { 2012 // It must be a fallthrough or unreachable code. Create a new block unless 2013 // we see an unconditional branch following a conditional one. The latter 2014 // should not be a conditional tail call. 2015 assert(PrevBB && "no previous basic block for a fall through"); 2016 MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr(); 2017 assert(PrevInstr && "no previous instruction for a fall through"); 2018 if (MIB->isUnconditionalBranch(Instr) && 2019 !MIB->isUnconditionalBranch(*PrevInstr) && 2020 !MIB->getConditionalTailCall(*PrevInstr) && 2021 !MIB->isReturn(*PrevInstr)) { 2022 // Temporarily restore inserter basic block. 2023 InsertBB = PrevBB; 2024 } else { 2025 MCSymbol *Label; 2026 { 2027 auto L = BC.scopeLock(); 2028 Label = BC.Ctx->createNamedTempSymbol("FT"); 2029 } 2030 InsertBB = addBasicBlock( 2031 Offset, Label, opts::PreserveBlocksAlignment && IsLastInstrNop); 2032 updateOffset(LastInstrOffset); 2033 } 2034 } 2035 if (Offset == 0) { 2036 // Add associated CFI pseudos in the first offset (0) 2037 addCFIPlaceholders(0, InsertBB); 2038 } 2039 2040 const bool IsBlockEnd = MIB->isTerminator(Instr); 2041 IsLastInstrNop = MIB->isNoop(Instr); 2042 if (!IsLastInstrNop) 2043 LastInstrOffset = Offset; 2044 InsertBB->addInstruction(std::move(Instr)); 2045 2046 // Add associated CFI instrs. We always add the CFI instruction that is 2047 // located immediately after this instruction, since the next CFI 2048 // instruction reflects the change in state caused by this instruction. 2049 auto NextInstr = std::next(I); 2050 uint64_t CFIOffset; 2051 if (NextInstr != E) 2052 CFIOffset = NextInstr->first; 2053 else 2054 CFIOffset = getSize(); 2055 2056 // Note: this potentially invalidates instruction pointers/iterators. 2057 addCFIPlaceholders(CFIOffset, InsertBB); 2058 2059 if (IsBlockEnd) { 2060 PrevBB = InsertBB; 2061 InsertBB = nullptr; 2062 } 2063 } 2064 2065 if (BasicBlocks.empty()) { 2066 setSimple(false); 2067 return false; 2068 } 2069 2070 // Intermediate dump. 2071 LLVM_DEBUG(print(dbgs(), "after creating basic blocks")); 2072 2073 // TODO: handle properly calls to no-return functions, 2074 // e.g. exit(3), etc. Otherwise we'll see a false fall-through 2075 // blocks. 2076 2077 for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) { 2078 LLVM_DEBUG(dbgs() << "registering branch [0x" 2079 << Twine::utohexstr(Branch.first) << "] -> [0x" 2080 << Twine::utohexstr(Branch.second) << "]\n"); 2081 BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first); 2082 BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second); 2083 if (!FromBB || !ToBB) { 2084 if (!FromBB) 2085 errs() << "BOLT-ERROR: cannot find BB containing the branch.\n"; 2086 if (!ToBB) 2087 errs() << "BOLT-ERROR: cannot find BB containing branch destination.\n"; 2088 BC.exitWithBugReport("disassembly failed - inconsistent branch found.", 2089 *this); 2090 } 2091 2092 FromBB->addSuccessor(ToBB); 2093 } 2094 2095 // Add fall-through branches. 2096 PrevBB = nullptr; 2097 bool IsPrevFT = false; // Is previous block a fall-through. 2098 for (BinaryBasicBlock *BB : BasicBlocks) { 2099 if (IsPrevFT) 2100 PrevBB->addSuccessor(BB); 2101 2102 if (BB->empty()) { 2103 IsPrevFT = true; 2104 PrevBB = BB; 2105 continue; 2106 } 2107 2108 MCInst *LastInstr = BB->getLastNonPseudoInstr(); 2109 assert(LastInstr && 2110 "should have non-pseudo instruction in non-empty block"); 2111 2112 if (BB->succ_size() == 0) { 2113 // Since there's no existing successors, we know the last instruction is 2114 // not a conditional branch. Thus if it's a terminator, it shouldn't be a 2115 // fall-through. 2116 // 2117 // Conditional tail call is a special case since we don't add a taken 2118 // branch successor for it. 2119 IsPrevFT = !MIB->isTerminator(*LastInstr) || 2120 MIB->getConditionalTailCall(*LastInstr); 2121 } else if (BB->succ_size() == 1) { 2122 IsPrevFT = MIB->isConditionalBranch(*LastInstr); 2123 } else { 2124 IsPrevFT = false; 2125 } 2126 2127 PrevBB = BB; 2128 } 2129 2130 // Assign landing pads and throwers info. 2131 recomputeLandingPads(); 2132 2133 // Assign CFI information to each BB entry. 2134 annotateCFIState(); 2135 2136 // Annotate invoke instructions with GNU_args_size data. 2137 propagateGnuArgsSizeInfo(AllocatorId); 2138 2139 // Set the basic block layout to the original order and set end offsets. 2140 PrevBB = nullptr; 2141 for (BinaryBasicBlock *BB : BasicBlocks) { 2142 BasicBlocksLayout.emplace_back(BB); 2143 if (PrevBB) 2144 PrevBB->setEndOffset(BB->getOffset()); 2145 PrevBB = BB; 2146 } 2147 PrevBB->setEndOffset(getSize()); 2148 2149 updateLayoutIndices(); 2150 2151 normalizeCFIState(); 2152 2153 // Clean-up memory taken by intermediate structures. 2154 // 2155 // NB: don't clear Labels list as we may need them if we mark the function 2156 // as non-simple later in the process of discovering extra entry points. 2157 clearList(Instructions); 2158 clearList(OffsetToCFI); 2159 clearList(TakenBranches); 2160 2161 // Update the state. 2162 CurrentState = State::CFG; 2163 2164 // Make any necessary adjustments for indirect branches. 2165 if (!postProcessIndirectBranches(AllocatorId)) { 2166 if (opts::Verbosity) { 2167 errs() << "BOLT-WARNING: failed to post-process indirect branches for " 2168 << *this << '\n'; 2169 } 2170 // In relocation mode we want to keep processing the function but avoid 2171 // optimizing it. 2172 setSimple(false); 2173 } 2174 2175 clearList(ExternallyReferencedOffsets); 2176 clearList(UnknownIndirectBranchOffsets); 2177 2178 return true; 2179 } 2180 2181 void BinaryFunction::postProcessCFG() { 2182 if (isSimple() && !BasicBlocks.empty()) { 2183 // Convert conditional tail call branches to conditional branches that jump 2184 // to a tail call. 2185 removeConditionalTailCalls(); 2186 2187 postProcessProfile(); 2188 2189 // Eliminate inconsistencies between branch instructions and CFG. 2190 postProcessBranches(); 2191 } 2192 2193 calculateMacroOpFusionStats(); 2194 2195 // The final cleanup of intermediate structures. 2196 clearList(IgnoredBranches); 2197 2198 // Remove "Offset" annotations, unless we need an address-translation table 2199 // later. This has no cost, since annotations are allocated by a bumpptr 2200 // allocator and won't be released anyway until late in the pipeline. 2201 if (!requiresAddressTranslation() && !opts::Instrument) { 2202 for (BinaryBasicBlock *BB : layout()) 2203 for (MCInst &Inst : *BB) 2204 BC.MIB->clearOffset(Inst); 2205 } 2206 2207 assert((!isSimple() || validateCFG()) && 2208 "invalid CFG detected after post-processing"); 2209 } 2210 2211 void BinaryFunction::calculateMacroOpFusionStats() { 2212 if (!getBinaryContext().isX86()) 2213 return; 2214 for (BinaryBasicBlock *BB : layout()) { 2215 auto II = BB->getMacroOpFusionPair(); 2216 if (II == BB->end()) 2217 continue; 2218 2219 // Check offset of the second instruction. 2220 // FIXME: arch-specific. 2221 const uint32_t Offset = BC.MIB->getOffsetWithDefault(*std::next(II), 0); 2222 if (!Offset || (getAddress() + Offset) % 64) 2223 continue; 2224 2225 LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x" 2226 << Twine::utohexstr(getAddress() + Offset) 2227 << " in function " << *this << "; executed " 2228 << BB->getKnownExecutionCount() << " times.\n"); 2229 ++BC.MissedMacroFusionPairs; 2230 BC.MissedMacroFusionExecCount += BB->getKnownExecutionCount(); 2231 } 2232 } 2233 2234 void BinaryFunction::removeTagsFromProfile() { 2235 for (BinaryBasicBlock *BB : BasicBlocks) { 2236 if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2237 BB->ExecutionCount = 0; 2238 for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) { 2239 if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE && 2240 BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE) 2241 continue; 2242 BI.Count = 0; 2243 BI.MispredictedCount = 0; 2244 } 2245 } 2246 } 2247 2248 void BinaryFunction::removeConditionalTailCalls() { 2249 // Blocks to be appended at the end. 2250 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks; 2251 2252 for (auto BBI = begin(); BBI != end(); ++BBI) { 2253 BinaryBasicBlock &BB = *BBI; 2254 MCInst *CTCInstr = BB.getLastNonPseudoInstr(); 2255 if (!CTCInstr) 2256 continue; 2257 2258 Optional<uint64_t> TargetAddressOrNone = 2259 BC.MIB->getConditionalTailCall(*CTCInstr); 2260 if (!TargetAddressOrNone) 2261 continue; 2262 2263 // Gather all necessary information about CTC instruction before 2264 // annotations are destroyed. 2265 const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr); 2266 uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2267 uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2268 if (hasValidProfile()) { 2269 CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2270 *CTCInstr, "CTCTakenCount"); 2271 CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2272 *CTCInstr, "CTCMispredCount"); 2273 } 2274 2275 // Assert that the tail call does not throw. 2276 assert(!BC.MIB->getEHInfo(*CTCInstr) && 2277 "found tail call with associated landing pad"); 2278 2279 // Create a basic block with an unconditional tail call instruction using 2280 // the same destination. 2281 const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr); 2282 assert(CTCTargetLabel && "symbol expected for conditional tail call"); 2283 MCInst TailCallInstr; 2284 BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get()); 2285 // Link new BBs to the original input offset of the BB where the CTC 2286 // is, so we can map samples recorded in new BBs back to the original BB 2287 // seem in the input binary (if using BAT) 2288 std::unique_ptr<BinaryBasicBlock> TailCallBB = createBasicBlock( 2289 BB.getInputOffset(), BC.Ctx->createNamedTempSymbol("TC")); 2290 TailCallBB->addInstruction(TailCallInstr); 2291 TailCallBB->setCFIState(CFIStateBeforeCTC); 2292 2293 // Add CFG edge with profile info from BB to TailCallBB. 2294 BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount); 2295 2296 // Add execution count for the block. 2297 TailCallBB->setExecutionCount(CTCTakenCount); 2298 2299 BC.MIB->convertTailCallToJmp(*CTCInstr); 2300 2301 BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(), 2302 BC.Ctx.get()); 2303 2304 // Add basic block to the list that will be added to the end. 2305 NewBlocks.emplace_back(std::move(TailCallBB)); 2306 2307 // Swap edges as the TailCallBB corresponds to the taken branch. 2308 BB.swapConditionalSuccessors(); 2309 2310 // This branch is no longer a conditional tail call. 2311 BC.MIB->unsetConditionalTailCall(*CTCInstr); 2312 } 2313 2314 insertBasicBlocks(std::prev(end()), std::move(NewBlocks), 2315 /* UpdateLayout */ true, 2316 /* UpdateCFIState */ false); 2317 } 2318 2319 uint64_t BinaryFunction::getFunctionScore() const { 2320 if (FunctionScore != -1) 2321 return FunctionScore; 2322 2323 if (!isSimple() || !hasValidProfile()) { 2324 FunctionScore = 0; 2325 return FunctionScore; 2326 } 2327 2328 uint64_t TotalScore = 0ULL; 2329 for (BinaryBasicBlock *BB : layout()) { 2330 uint64_t BBExecCount = BB->getExecutionCount(); 2331 if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2332 continue; 2333 TotalScore += BBExecCount; 2334 } 2335 FunctionScore = TotalScore; 2336 return FunctionScore; 2337 } 2338 2339 void BinaryFunction::annotateCFIState() { 2340 assert(CurrentState == State::Disassembled && "unexpected function state"); 2341 assert(!BasicBlocks.empty() && "basic block list should not be empty"); 2342 2343 // This is an index of the last processed CFI in FDE CFI program. 2344 uint32_t State = 0; 2345 2346 // This is an index of RememberState CFI reflecting effective state right 2347 // after execution of RestoreState CFI. 2348 // 2349 // It differs from State iff the CFI at (State-1) 2350 // was RestoreState (modulo GNU_args_size CFIs, which are ignored). 2351 // 2352 // This allows us to generate shorter replay sequences when producing new 2353 // CFI programs. 2354 uint32_t EffectiveState = 0; 2355 2356 // For tracking RememberState/RestoreState sequences. 2357 std::stack<uint32_t> StateStack; 2358 2359 for (BinaryBasicBlock *BB : BasicBlocks) { 2360 BB->setCFIState(EffectiveState); 2361 2362 for (const MCInst &Instr : *BB) { 2363 const MCCFIInstruction *CFI = getCFIFor(Instr); 2364 if (!CFI) 2365 continue; 2366 2367 ++State; 2368 2369 switch (CFI->getOperation()) { 2370 case MCCFIInstruction::OpRememberState: 2371 StateStack.push(EffectiveState); 2372 EffectiveState = State; 2373 break; 2374 case MCCFIInstruction::OpRestoreState: 2375 assert(!StateStack.empty() && "corrupt CFI stack"); 2376 EffectiveState = StateStack.top(); 2377 StateStack.pop(); 2378 break; 2379 case MCCFIInstruction::OpGnuArgsSize: 2380 // OpGnuArgsSize CFIs do not affect the CFI state. 2381 break; 2382 default: 2383 // Any other CFI updates the state. 2384 EffectiveState = State; 2385 break; 2386 } 2387 } 2388 } 2389 2390 assert(StateStack.empty() && "corrupt CFI stack"); 2391 } 2392 2393 namespace { 2394 2395 /// Our full interpretation of a DWARF CFI machine state at a given point 2396 struct CFISnapshot { 2397 /// CFA register number and offset defining the canonical frame at this 2398 /// point, or the number of a rule (CFI state) that computes it with a 2399 /// DWARF expression. This number will be negative if it refers to a CFI 2400 /// located in the CIE instead of the FDE. 2401 uint32_t CFAReg; 2402 int32_t CFAOffset; 2403 int32_t CFARule; 2404 /// Mapping of rules (CFI states) that define the location of each 2405 /// register. If absent, no rule defining the location of such register 2406 /// was ever read. This number will be negative if it refers to a CFI 2407 /// located in the CIE instead of the FDE. 2408 DenseMap<int32_t, int32_t> RegRule; 2409 2410 /// References to CIE, FDE and expanded instructions after a restore state 2411 const BinaryFunction::CFIInstrMapType &CIE; 2412 const BinaryFunction::CFIInstrMapType &FDE; 2413 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents; 2414 2415 /// Current FDE CFI number representing the state where the snapshot is at 2416 int32_t CurState; 2417 2418 /// Used when we don't have information about which state/rule to apply 2419 /// to recover the location of either the CFA or a specific register 2420 constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min(); 2421 2422 private: 2423 /// Update our snapshot by executing a single CFI 2424 void update(const MCCFIInstruction &Instr, int32_t RuleNumber) { 2425 switch (Instr.getOperation()) { 2426 case MCCFIInstruction::OpSameValue: 2427 case MCCFIInstruction::OpRelOffset: 2428 case MCCFIInstruction::OpOffset: 2429 case MCCFIInstruction::OpRestore: 2430 case MCCFIInstruction::OpUndefined: 2431 case MCCFIInstruction::OpRegister: 2432 RegRule[Instr.getRegister()] = RuleNumber; 2433 break; 2434 case MCCFIInstruction::OpDefCfaRegister: 2435 CFAReg = Instr.getRegister(); 2436 CFARule = UNKNOWN; 2437 break; 2438 case MCCFIInstruction::OpDefCfaOffset: 2439 CFAOffset = Instr.getOffset(); 2440 CFARule = UNKNOWN; 2441 break; 2442 case MCCFIInstruction::OpDefCfa: 2443 CFAReg = Instr.getRegister(); 2444 CFAOffset = Instr.getOffset(); 2445 CFARule = UNKNOWN; 2446 break; 2447 case MCCFIInstruction::OpEscape: { 2448 Optional<uint8_t> Reg = readDWARFExpressionTargetReg(Instr.getValues()); 2449 // Handle DW_CFA_def_cfa_expression 2450 if (!Reg) { 2451 CFARule = RuleNumber; 2452 break; 2453 } 2454 RegRule[*Reg] = RuleNumber; 2455 break; 2456 } 2457 case MCCFIInstruction::OpAdjustCfaOffset: 2458 case MCCFIInstruction::OpWindowSave: 2459 case MCCFIInstruction::OpNegateRAState: 2460 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2461 llvm_unreachable("unsupported CFI opcode"); 2462 break; 2463 case MCCFIInstruction::OpRememberState: 2464 case MCCFIInstruction::OpRestoreState: 2465 case MCCFIInstruction::OpGnuArgsSize: 2466 // do not affect CFI state 2467 break; 2468 } 2469 } 2470 2471 public: 2472 /// Advance state reading FDE CFI instructions up to State number 2473 void advanceTo(int32_t State) { 2474 for (int32_t I = CurState, E = State; I != E; ++I) { 2475 const MCCFIInstruction &Instr = FDE[I]; 2476 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2477 update(Instr, I); 2478 continue; 2479 } 2480 // If restore state instruction, fetch the equivalent CFIs that have 2481 // the same effect of this restore. This is used to ensure remember- 2482 // restore pairs are completely removed. 2483 auto Iter = FrameRestoreEquivalents.find(I); 2484 if (Iter == FrameRestoreEquivalents.end()) 2485 continue; 2486 for (int32_t RuleNumber : Iter->second) 2487 update(FDE[RuleNumber], RuleNumber); 2488 } 2489 2490 assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) || 2491 CFARule != UNKNOWN) && 2492 "CIE did not define default CFA?"); 2493 2494 CurState = State; 2495 } 2496 2497 /// Interpret all CIE and FDE instructions up until CFI State number and 2498 /// populate this snapshot 2499 CFISnapshot( 2500 const BinaryFunction::CFIInstrMapType &CIE, 2501 const BinaryFunction::CFIInstrMapType &FDE, 2502 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2503 int32_t State) 2504 : CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) { 2505 CFAReg = UNKNOWN; 2506 CFAOffset = UNKNOWN; 2507 CFARule = UNKNOWN; 2508 CurState = 0; 2509 2510 for (int32_t I = 0, E = CIE.size(); I != E; ++I) { 2511 const MCCFIInstruction &Instr = CIE[I]; 2512 update(Instr, -I); 2513 } 2514 2515 advanceTo(State); 2516 } 2517 }; 2518 2519 /// A CFI snapshot with the capability of checking if incremental additions to 2520 /// it are redundant. This is used to ensure we do not emit two CFI instructions 2521 /// back-to-back that are doing the same state change, or to avoid emitting a 2522 /// CFI at all when the state at that point would not be modified after that CFI 2523 struct CFISnapshotDiff : public CFISnapshot { 2524 bool RestoredCFAReg{false}; 2525 bool RestoredCFAOffset{false}; 2526 DenseMap<int32_t, bool> RestoredRegs; 2527 2528 CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {} 2529 2530 CFISnapshotDiff( 2531 const BinaryFunction::CFIInstrMapType &CIE, 2532 const BinaryFunction::CFIInstrMapType &FDE, 2533 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2534 int32_t State) 2535 : CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {} 2536 2537 /// Return true if applying Instr to this state is redundant and can be 2538 /// dismissed. 2539 bool isRedundant(const MCCFIInstruction &Instr) { 2540 switch (Instr.getOperation()) { 2541 case MCCFIInstruction::OpSameValue: 2542 case MCCFIInstruction::OpRelOffset: 2543 case MCCFIInstruction::OpOffset: 2544 case MCCFIInstruction::OpRestore: 2545 case MCCFIInstruction::OpUndefined: 2546 case MCCFIInstruction::OpRegister: 2547 case MCCFIInstruction::OpEscape: { 2548 uint32_t Reg; 2549 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2550 Reg = Instr.getRegister(); 2551 } else { 2552 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2553 // Handle DW_CFA_def_cfa_expression 2554 if (!R) { 2555 if (RestoredCFAReg && RestoredCFAOffset) 2556 return true; 2557 RestoredCFAReg = true; 2558 RestoredCFAOffset = true; 2559 return false; 2560 } 2561 Reg = *R; 2562 } 2563 if (RestoredRegs[Reg]) 2564 return true; 2565 RestoredRegs[Reg] = true; 2566 const int32_t CurRegRule = 2567 RegRule.find(Reg) != RegRule.end() ? RegRule[Reg] : UNKNOWN; 2568 if (CurRegRule == UNKNOWN) { 2569 if (Instr.getOperation() == MCCFIInstruction::OpRestore || 2570 Instr.getOperation() == MCCFIInstruction::OpSameValue) 2571 return true; 2572 return false; 2573 } 2574 const MCCFIInstruction &LastDef = 2575 CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule]; 2576 return LastDef == Instr; 2577 } 2578 case MCCFIInstruction::OpDefCfaRegister: 2579 if (RestoredCFAReg) 2580 return true; 2581 RestoredCFAReg = true; 2582 return CFAReg == Instr.getRegister(); 2583 case MCCFIInstruction::OpDefCfaOffset: 2584 if (RestoredCFAOffset) 2585 return true; 2586 RestoredCFAOffset = true; 2587 return CFAOffset == Instr.getOffset(); 2588 case MCCFIInstruction::OpDefCfa: 2589 if (RestoredCFAReg && RestoredCFAOffset) 2590 return true; 2591 RestoredCFAReg = true; 2592 RestoredCFAOffset = true; 2593 return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset(); 2594 case MCCFIInstruction::OpAdjustCfaOffset: 2595 case MCCFIInstruction::OpWindowSave: 2596 case MCCFIInstruction::OpNegateRAState: 2597 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2598 llvm_unreachable("unsupported CFI opcode"); 2599 return false; 2600 case MCCFIInstruction::OpRememberState: 2601 case MCCFIInstruction::OpRestoreState: 2602 case MCCFIInstruction::OpGnuArgsSize: 2603 // do not affect CFI state 2604 return true; 2605 } 2606 return false; 2607 } 2608 }; 2609 2610 } // end anonymous namespace 2611 2612 bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState, 2613 BinaryBasicBlock *InBB, 2614 BinaryBasicBlock::iterator InsertIt) { 2615 if (FromState == ToState) 2616 return true; 2617 assert(FromState < ToState && "can only replay CFIs forward"); 2618 2619 CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions, 2620 FrameRestoreEquivalents, FromState); 2621 2622 std::vector<uint32_t> NewCFIs; 2623 for (int32_t CurState = FromState; CurState < ToState; ++CurState) { 2624 MCCFIInstruction *Instr = &FrameInstructions[CurState]; 2625 if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) { 2626 auto Iter = FrameRestoreEquivalents.find(CurState); 2627 assert(Iter != FrameRestoreEquivalents.end()); 2628 NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end()); 2629 // RestoreState / Remember will be filtered out later by CFISnapshotDiff, 2630 // so we might as well fall-through here. 2631 } 2632 NewCFIs.push_back(CurState); 2633 continue; 2634 } 2635 2636 // Replay instructions while avoiding duplicates 2637 for (auto I = NewCFIs.rbegin(), E = NewCFIs.rend(); I != E; ++I) { 2638 if (CFIDiff.isRedundant(FrameInstructions[*I])) 2639 continue; 2640 InsertIt = addCFIPseudo(InBB, InsertIt, *I); 2641 } 2642 2643 return true; 2644 } 2645 2646 SmallVector<int32_t, 4> 2647 BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState, 2648 BinaryBasicBlock *InBB, 2649 BinaryBasicBlock::iterator &InsertIt) { 2650 SmallVector<int32_t, 4> NewStates; 2651 2652 CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions, 2653 FrameRestoreEquivalents, ToState); 2654 CFISnapshotDiff FromCFITable(ToCFITable); 2655 FromCFITable.advanceTo(FromState); 2656 2657 auto undoStateDefCfa = [&]() { 2658 if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) { 2659 FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa( 2660 nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset)); 2661 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2662 FrameInstructions.pop_back(); 2663 return; 2664 } 2665 NewStates.push_back(FrameInstructions.size() - 1); 2666 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2667 ++InsertIt; 2668 } else if (ToCFITable.CFARule < 0) { 2669 if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule])) 2670 return; 2671 NewStates.push_back(FrameInstructions.size()); 2672 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2673 ++InsertIt; 2674 FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]); 2675 } else if (!FromCFITable.isRedundant( 2676 FrameInstructions[ToCFITable.CFARule])) { 2677 NewStates.push_back(ToCFITable.CFARule); 2678 InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule); 2679 ++InsertIt; 2680 } 2681 }; 2682 2683 auto undoState = [&](const MCCFIInstruction &Instr) { 2684 switch (Instr.getOperation()) { 2685 case MCCFIInstruction::OpRememberState: 2686 case MCCFIInstruction::OpRestoreState: 2687 break; 2688 case MCCFIInstruction::OpSameValue: 2689 case MCCFIInstruction::OpRelOffset: 2690 case MCCFIInstruction::OpOffset: 2691 case MCCFIInstruction::OpRestore: 2692 case MCCFIInstruction::OpUndefined: 2693 case MCCFIInstruction::OpEscape: 2694 case MCCFIInstruction::OpRegister: { 2695 uint32_t Reg; 2696 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2697 Reg = Instr.getRegister(); 2698 } else { 2699 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2700 // Handle DW_CFA_def_cfa_expression 2701 if (!R) { 2702 undoStateDefCfa(); 2703 return; 2704 } 2705 Reg = *R; 2706 } 2707 2708 if (ToCFITable.RegRule.find(Reg) == ToCFITable.RegRule.end()) { 2709 FrameInstructions.emplace_back( 2710 MCCFIInstruction::createRestore(nullptr, Reg)); 2711 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2712 FrameInstructions.pop_back(); 2713 break; 2714 } 2715 NewStates.push_back(FrameInstructions.size() - 1); 2716 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2717 ++InsertIt; 2718 break; 2719 } 2720 const int32_t Rule = ToCFITable.RegRule[Reg]; 2721 if (Rule < 0) { 2722 if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule])) 2723 break; 2724 NewStates.push_back(FrameInstructions.size()); 2725 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2726 ++InsertIt; 2727 FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]); 2728 break; 2729 } 2730 if (FromCFITable.isRedundant(FrameInstructions[Rule])) 2731 break; 2732 NewStates.push_back(Rule); 2733 InsertIt = addCFIPseudo(InBB, InsertIt, Rule); 2734 ++InsertIt; 2735 break; 2736 } 2737 case MCCFIInstruction::OpDefCfaRegister: 2738 case MCCFIInstruction::OpDefCfaOffset: 2739 case MCCFIInstruction::OpDefCfa: 2740 undoStateDefCfa(); 2741 break; 2742 case MCCFIInstruction::OpAdjustCfaOffset: 2743 case MCCFIInstruction::OpWindowSave: 2744 case MCCFIInstruction::OpNegateRAState: 2745 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2746 llvm_unreachable("unsupported CFI opcode"); 2747 break; 2748 case MCCFIInstruction::OpGnuArgsSize: 2749 // do not affect CFI state 2750 break; 2751 } 2752 }; 2753 2754 // Undo all modifications from ToState to FromState 2755 for (int32_t I = ToState, E = FromState; I != E; ++I) { 2756 const MCCFIInstruction &Instr = FrameInstructions[I]; 2757 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2758 undoState(Instr); 2759 continue; 2760 } 2761 auto Iter = FrameRestoreEquivalents.find(I); 2762 if (Iter == FrameRestoreEquivalents.end()) 2763 continue; 2764 for (int32_t State : Iter->second) 2765 undoState(FrameInstructions[State]); 2766 } 2767 2768 return NewStates; 2769 } 2770 2771 void BinaryFunction::normalizeCFIState() { 2772 // Reordering blocks with remember-restore state instructions can be specially 2773 // tricky. When rewriting the CFI, we omit remember-restore state instructions 2774 // entirely. For restore state, we build a map expanding each restore to the 2775 // equivalent unwindCFIState sequence required at that point to achieve the 2776 // same effect of the restore. All remember state are then just ignored. 2777 std::stack<int32_t> Stack; 2778 for (BinaryBasicBlock *CurBB : BasicBlocksLayout) { 2779 for (auto II = CurBB->begin(); II != CurBB->end(); ++II) { 2780 if (const MCCFIInstruction *CFI = getCFIFor(*II)) { 2781 if (CFI->getOperation() == MCCFIInstruction::OpRememberState) { 2782 Stack.push(II->getOperand(0).getImm()); 2783 continue; 2784 } 2785 if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) { 2786 const int32_t RememberState = Stack.top(); 2787 const int32_t CurState = II->getOperand(0).getImm(); 2788 FrameRestoreEquivalents[CurState] = 2789 unwindCFIState(CurState, RememberState, CurBB, II); 2790 Stack.pop(); 2791 } 2792 } 2793 } 2794 } 2795 } 2796 2797 bool BinaryFunction::finalizeCFIState() { 2798 LLVM_DEBUG( 2799 dbgs() << "Trying to fix CFI states for each BB after reordering.\n"); 2800 LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this 2801 << ": "); 2802 2803 int32_t State = 0; 2804 bool SeenCold = false; 2805 const char *Sep = ""; 2806 (void)Sep; 2807 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 2808 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 2809 2810 // Hot-cold border: check if this is the first BB to be allocated in a cold 2811 // region (with a different FDE). If yes, we need to reset the CFI state. 2812 if (!SeenCold && BB->isCold()) { 2813 State = 0; 2814 SeenCold = true; 2815 } 2816 2817 // We need to recover the correct state if it doesn't match expected 2818 // state at BB entry point. 2819 if (BB->getCFIState() < State) { 2820 // In this case, State is currently higher than what this BB expect it 2821 // to be. To solve this, we need to insert CFI instructions to undo 2822 // the effect of all CFI from BB's state to current State. 2823 auto InsertIt = BB->begin(); 2824 unwindCFIState(State, BB->getCFIState(), BB, InsertIt); 2825 } else if (BB->getCFIState() > State) { 2826 // If BB's CFI state is greater than State, it means we are behind in the 2827 // state. Just emit all instructions to reach this state at the 2828 // beginning of this BB. If this sequence of instructions involve 2829 // remember state or restore state, bail out. 2830 if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin())) 2831 return false; 2832 } 2833 2834 State = CFIStateAtExit; 2835 LLVM_DEBUG(dbgs() << Sep << State; Sep = ", "); 2836 } 2837 LLVM_DEBUG(dbgs() << "\n"); 2838 2839 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 2840 for (auto II = BB->begin(); II != BB->end();) { 2841 const MCCFIInstruction *CFI = getCFIFor(*II); 2842 if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState || 2843 CFI->getOperation() == MCCFIInstruction::OpRestoreState)) { 2844 II = BB->eraseInstruction(II); 2845 } else { 2846 ++II; 2847 } 2848 } 2849 } 2850 2851 return true; 2852 } 2853 2854 bool BinaryFunction::requiresAddressTranslation() const { 2855 return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe(); 2856 } 2857 2858 uint64_t BinaryFunction::getInstructionCount() const { 2859 uint64_t Count = 0; 2860 for (BinaryBasicBlock *const &Block : BasicBlocksLayout) 2861 Count += Block->getNumNonPseudos(); 2862 return Count; 2863 } 2864 2865 bool BinaryFunction::hasLayoutChanged() const { return ModifiedLayout; } 2866 2867 uint64_t BinaryFunction::getEditDistance() const { 2868 return ComputeEditDistance<BinaryBasicBlock *>(BasicBlocksPreviousLayout, 2869 BasicBlocksLayout); 2870 } 2871 2872 void BinaryFunction::clearDisasmState() { 2873 clearList(Instructions); 2874 clearList(IgnoredBranches); 2875 clearList(TakenBranches); 2876 clearList(InterproceduralReferences); 2877 2878 if (BC.HasRelocations) { 2879 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 2880 BC.UndefinedSymbols.insert(LI.second); 2881 if (FunctionEndLabel) 2882 BC.UndefinedSymbols.insert(FunctionEndLabel); 2883 } 2884 } 2885 2886 void BinaryFunction::setTrapOnEntry() { 2887 clearDisasmState(); 2888 2889 auto addTrapAtOffset = [&](uint64_t Offset) { 2890 MCInst TrapInstr; 2891 BC.MIB->createTrap(TrapInstr); 2892 addInstruction(Offset, std::move(TrapInstr)); 2893 }; 2894 2895 addTrapAtOffset(0); 2896 for (const std::pair<const uint32_t, MCSymbol *> &KV : getLabels()) 2897 if (getSecondaryEntryPointSymbol(KV.second)) 2898 addTrapAtOffset(KV.first); 2899 2900 TrapsOnEntry = true; 2901 } 2902 2903 void BinaryFunction::setIgnored() { 2904 if (opts::processAllFunctions()) { 2905 // We can accept ignored functions before they've been disassembled. 2906 // In that case, they would still get disassembled and emited, but not 2907 // optimized. 2908 assert(CurrentState == State::Empty && 2909 "cannot ignore non-empty functions in current mode"); 2910 IsIgnored = true; 2911 return; 2912 } 2913 2914 clearDisasmState(); 2915 2916 // Clear CFG state too. 2917 if (hasCFG()) { 2918 releaseCFG(); 2919 2920 for (BinaryBasicBlock *BB : BasicBlocks) 2921 delete BB; 2922 clearList(BasicBlocks); 2923 2924 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 2925 delete BB; 2926 clearList(DeletedBasicBlocks); 2927 2928 clearList(BasicBlocksLayout); 2929 clearList(BasicBlocksPreviousLayout); 2930 } 2931 2932 CurrentState = State::Empty; 2933 2934 IsIgnored = true; 2935 IsSimple = false; 2936 LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n'); 2937 } 2938 2939 void BinaryFunction::duplicateConstantIslands() { 2940 assert(Islands && "function expected to have constant islands"); 2941 2942 for (BinaryBasicBlock *BB : layout()) { 2943 if (!BB->isCold()) 2944 continue; 2945 2946 for (MCInst &Inst : *BB) { 2947 int OpNum = 0; 2948 for (MCOperand &Operand : Inst) { 2949 if (!Operand.isExpr()) { 2950 ++OpNum; 2951 continue; 2952 } 2953 const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum); 2954 // Check if this is an island symbol 2955 if (!Islands->Symbols.count(Symbol) && 2956 !Islands->ProxySymbols.count(Symbol)) 2957 continue; 2958 2959 // Create cold symbol, if missing 2960 auto ISym = Islands->ColdSymbols.find(Symbol); 2961 MCSymbol *ColdSymbol; 2962 if (ISym != Islands->ColdSymbols.end()) { 2963 ColdSymbol = ISym->second; 2964 } else { 2965 ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold"); 2966 Islands->ColdSymbols[Symbol] = ColdSymbol; 2967 // Check if this is a proxy island symbol and update owner proxy map 2968 if (Islands->ProxySymbols.count(Symbol)) { 2969 BinaryFunction *Owner = Islands->ProxySymbols[Symbol]; 2970 auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol); 2971 Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol; 2972 } 2973 } 2974 2975 // Update instruction reference 2976 Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor( 2977 Inst, 2978 MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None, 2979 *BC.Ctx), 2980 *BC.Ctx, 0)); 2981 ++OpNum; 2982 } 2983 } 2984 } 2985 } 2986 2987 namespace { 2988 2989 #ifndef MAX_PATH 2990 #define MAX_PATH 255 2991 #endif 2992 2993 std::string constructFilename(std::string Filename, std::string Annotation, 2994 std::string Suffix) { 2995 std::replace(Filename.begin(), Filename.end(), '/', '-'); 2996 if (!Annotation.empty()) 2997 Annotation.insert(0, "-"); 2998 if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) { 2999 assert(Suffix.size() + Annotation.size() <= MAX_PATH); 3000 if (opts::Verbosity >= 1) { 3001 errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix 3002 << "\" exceeds the " << MAX_PATH << " size limit, truncating.\n"; 3003 } 3004 Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size())); 3005 } 3006 Filename += Annotation; 3007 Filename += Suffix; 3008 return Filename; 3009 } 3010 3011 std::string formatEscapes(const std::string &Str) { 3012 std::string Result; 3013 for (unsigned I = 0; I < Str.size(); ++I) { 3014 char C = Str[I]; 3015 switch (C) { 3016 case '\n': 3017 Result += " "; 3018 break; 3019 case '"': 3020 break; 3021 default: 3022 Result += C; 3023 break; 3024 } 3025 } 3026 return Result; 3027 } 3028 3029 } // namespace 3030 3031 void BinaryFunction::dumpGraph(raw_ostream &OS) const { 3032 OS << "strict digraph \"" << getPrintName() << "\" {\n"; 3033 uint64_t Offset = Address; 3034 for (BinaryBasicBlock *BB : BasicBlocks) { 3035 auto LayoutPos = 3036 std::find(BasicBlocksLayout.begin(), BasicBlocksLayout.end(), BB); 3037 unsigned Layout = LayoutPos - BasicBlocksLayout.begin(); 3038 const char *ColdStr = BB->isCold() ? " (cold)" : ""; 3039 OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u:CFI:%u)\"]\n", 3040 BB->getName().data(), BB->getName().data(), ColdStr, 3041 (BB->ExecutionCount != BinaryBasicBlock::COUNT_NO_PROFILE 3042 ? BB->ExecutionCount 3043 : 0), 3044 BB->getOffset(), getIndex(BB), Layout, BB->getCFIState()); 3045 OS << format("\"%s\" [shape=box]\n", BB->getName().data()); 3046 if (opts::DotToolTipCode) { 3047 std::string Str; 3048 raw_string_ostream CS(Str); 3049 Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this); 3050 const std::string Code = formatEscapes(CS.str()); 3051 OS << format("\"%s\" [tooltip=\"%s\"]\n", BB->getName().data(), 3052 Code.c_str()); 3053 } 3054 3055 // analyzeBranch is just used to get the names of the branch 3056 // opcodes. 3057 const MCSymbol *TBB = nullptr; 3058 const MCSymbol *FBB = nullptr; 3059 MCInst *CondBranch = nullptr; 3060 MCInst *UncondBranch = nullptr; 3061 const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 3062 3063 const MCInst *LastInstr = BB->getLastNonPseudoInstr(); 3064 const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr); 3065 3066 auto BI = BB->branch_info_begin(); 3067 for (BinaryBasicBlock *Succ : BB->successors()) { 3068 std::string Branch; 3069 if (Success) { 3070 if (Succ == BB->getConditionalSuccessor(true)) { 3071 Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3072 CondBranch->getOpcode())) 3073 : "TB"; 3074 } else if (Succ == BB->getConditionalSuccessor(false)) { 3075 Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3076 UncondBranch->getOpcode())) 3077 : "FB"; 3078 } else { 3079 Branch = "FT"; 3080 } 3081 } 3082 if (IsJumpTable) 3083 Branch = "JT"; 3084 OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(), 3085 Succ->getName().data(), Branch.c_str()); 3086 3087 if (BB->getExecutionCount() != COUNT_NO_PROFILE && 3088 BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 3089 OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")"; 3090 } else if (ExecutionCount != COUNT_NO_PROFILE && 3091 BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 3092 OS << "\\n(IC:" << BI->Count << ")"; 3093 } 3094 OS << "\"]\n"; 3095 3096 ++BI; 3097 } 3098 for (BinaryBasicBlock *LP : BB->landing_pads()) { 3099 OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n", 3100 BB->getName().data(), LP->getName().data()); 3101 } 3102 } 3103 OS << "}\n"; 3104 } 3105 3106 void BinaryFunction::viewGraph() const { 3107 SmallString<MAX_PATH> Filename; 3108 if (std::error_code EC = 3109 sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) { 3110 errs() << "BOLT-ERROR: " << EC.message() << ", unable to create " 3111 << " bolt-cfg-XXXXX.dot temporary file.\n"; 3112 return; 3113 } 3114 dumpGraphToFile(std::string(Filename)); 3115 if (DisplayGraph(Filename)) 3116 errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n"; 3117 if (std::error_code EC = sys::fs::remove(Filename)) { 3118 errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove " 3119 << Filename << "\n"; 3120 } 3121 } 3122 3123 void BinaryFunction::dumpGraphForPass(std::string Annotation) const { 3124 std::string Filename = constructFilename(getPrintName(), Annotation, ".dot"); 3125 outs() << "BOLT-DEBUG: Dumping CFG to " << Filename << "\n"; 3126 dumpGraphToFile(Filename); 3127 } 3128 3129 void BinaryFunction::dumpGraphToFile(std::string Filename) const { 3130 std::error_code EC; 3131 raw_fd_ostream of(Filename, EC, sys::fs::OF_None); 3132 if (EC) { 3133 if (opts::Verbosity >= 1) { 3134 errs() << "BOLT-WARNING: " << EC.message() << ", unable to open " 3135 << Filename << " for output.\n"; 3136 } 3137 return; 3138 } 3139 dumpGraph(of); 3140 } 3141 3142 bool BinaryFunction::validateCFG() const { 3143 bool Valid = true; 3144 for (BinaryBasicBlock *BB : BasicBlocks) 3145 Valid &= BB->validateSuccessorInvariants(); 3146 3147 if (!Valid) 3148 return Valid; 3149 3150 // Make sure all blocks in CFG are valid. 3151 auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) { 3152 if (!BB->isValid()) { 3153 errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName() 3154 << " detected in:\n"; 3155 this->dump(); 3156 return false; 3157 } 3158 return true; 3159 }; 3160 for (const BinaryBasicBlock *BB : BasicBlocks) { 3161 if (!validateBlock(BB, "block")) 3162 return false; 3163 for (const BinaryBasicBlock *PredBB : BB->predecessors()) 3164 if (!validateBlock(PredBB, "predecessor")) 3165 return false; 3166 for (const BinaryBasicBlock *SuccBB : BB->successors()) 3167 if (!validateBlock(SuccBB, "successor")) 3168 return false; 3169 for (const BinaryBasicBlock *LP : BB->landing_pads()) 3170 if (!validateBlock(LP, "landing pad")) 3171 return false; 3172 for (const BinaryBasicBlock *Thrower : BB->throwers()) 3173 if (!validateBlock(Thrower, "thrower")) 3174 return false; 3175 } 3176 3177 for (const BinaryBasicBlock *BB : BasicBlocks) { 3178 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 3179 for (const BinaryBasicBlock *LP : BB->landing_pads()) { 3180 if (BBLandingPads.count(LP)) { 3181 errs() << "BOLT-ERROR: duplicate landing pad detected in" 3182 << BB->getName() << " in function " << *this << '\n'; 3183 return false; 3184 } 3185 BBLandingPads.insert(LP); 3186 } 3187 3188 std::unordered_set<const BinaryBasicBlock *> BBThrowers; 3189 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3190 if (BBThrowers.count(Thrower)) { 3191 errs() << "BOLT-ERROR: duplicate thrower detected in" << BB->getName() 3192 << " in function " << *this << '\n'; 3193 return false; 3194 } 3195 BBThrowers.insert(Thrower); 3196 } 3197 3198 for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) { 3199 if (std::find(LPBlock->throw_begin(), LPBlock->throw_end(), BB) == 3200 LPBlock->throw_end()) { 3201 errs() << "BOLT-ERROR: inconsistent landing pad detected in " << *this 3202 << ": " << BB->getName() << " is in LandingPads but not in " 3203 << LPBlock->getName() << " Throwers\n"; 3204 return false; 3205 } 3206 } 3207 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3208 if (std::find(Thrower->lp_begin(), Thrower->lp_end(), BB) == 3209 Thrower->lp_end()) { 3210 errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this 3211 << ": " << BB->getName() << " is in Throwers list but not in " 3212 << Thrower->getName() << " LandingPads\n"; 3213 return false; 3214 } 3215 } 3216 } 3217 3218 return Valid; 3219 } 3220 3221 void BinaryFunction::fixBranches() { 3222 auto &MIB = BC.MIB; 3223 MCContext *Ctx = BC.Ctx.get(); 3224 3225 for (unsigned I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 3226 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 3227 const MCSymbol *TBB = nullptr; 3228 const MCSymbol *FBB = nullptr; 3229 MCInst *CondBranch = nullptr; 3230 MCInst *UncondBranch = nullptr; 3231 if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) 3232 continue; 3233 3234 // We will create unconditional branch with correct destination if needed. 3235 if (UncondBranch) 3236 BB->eraseInstruction(BB->findInstruction(UncondBranch)); 3237 3238 // Basic block that follows the current one in the final layout. 3239 const BinaryBasicBlock *NextBB = nullptr; 3240 if (I + 1 != E && BB->isCold() == BasicBlocksLayout[I + 1]->isCold()) 3241 NextBB = BasicBlocksLayout[I + 1]; 3242 3243 if (BB->succ_size() == 1) { 3244 // __builtin_unreachable() could create a conditional branch that 3245 // falls-through into the next function - hence the block will have only 3246 // one valid successor. Since behaviour is undefined - we replace 3247 // the conditional branch with an unconditional if required. 3248 if (CondBranch) 3249 BB->eraseInstruction(BB->findInstruction(CondBranch)); 3250 if (BB->getSuccessor() == NextBB) 3251 continue; 3252 BB->addBranchInstruction(BB->getSuccessor()); 3253 } else if (BB->succ_size() == 2) { 3254 assert(CondBranch && "conditional branch expected"); 3255 const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true); 3256 const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false); 3257 // Check whether we support reversing this branch direction 3258 const bool IsSupported = 3259 !MIB->isUnsupportedBranch(CondBranch->getOpcode()); 3260 if (NextBB && NextBB == TSuccessor && IsSupported) { 3261 std::swap(TSuccessor, FSuccessor); 3262 { 3263 auto L = BC.scopeLock(); 3264 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx); 3265 } 3266 BB->swapConditionalSuccessors(); 3267 } else { 3268 auto L = BC.scopeLock(); 3269 MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx); 3270 } 3271 if (TSuccessor == FSuccessor) 3272 BB->removeDuplicateConditionalSuccessor(CondBranch); 3273 if (!NextBB || 3274 ((NextBB != TSuccessor || !IsSupported) && NextBB != FSuccessor)) { 3275 // If one of the branches is guaranteed to be "long" while the other 3276 // could be "short", then prioritize short for "taken". This will 3277 // generate a sequence 1 byte shorter on x86. 3278 if (IsSupported && BC.isX86() && 3279 TSuccessor->isCold() != FSuccessor->isCold() && 3280 BB->isCold() != TSuccessor->isCold()) { 3281 std::swap(TSuccessor, FSuccessor); 3282 { 3283 auto L = BC.scopeLock(); 3284 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), 3285 Ctx); 3286 } 3287 BB->swapConditionalSuccessors(); 3288 } 3289 BB->addBranchInstruction(FSuccessor); 3290 } 3291 } 3292 // Cases where the number of successors is 0 (block ends with a 3293 // terminator) or more than 2 (switch table) don't require branch 3294 // instruction adjustments. 3295 } 3296 assert((!isSimple() || validateCFG()) && 3297 "Invalid CFG detected after fixing branches"); 3298 } 3299 3300 void BinaryFunction::propagateGnuArgsSizeInfo( 3301 MCPlusBuilder::AllocatorIdTy AllocId) { 3302 assert(CurrentState == State::Disassembled && "unexpected function state"); 3303 3304 if (!hasEHRanges() || !usesGnuArgsSize()) 3305 return; 3306 3307 // The current value of DW_CFA_GNU_args_size affects all following 3308 // invoke instructions until the next CFI overrides it. 3309 // It is important to iterate basic blocks in the original order when 3310 // assigning the value. 3311 uint64_t CurrentGnuArgsSize = 0; 3312 for (BinaryBasicBlock *BB : BasicBlocks) { 3313 for (auto II = BB->begin(); II != BB->end();) { 3314 MCInst &Instr = *II; 3315 if (BC.MIB->isCFI(Instr)) { 3316 const MCCFIInstruction *CFI = getCFIFor(Instr); 3317 if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) { 3318 CurrentGnuArgsSize = CFI->getOffset(); 3319 // Delete DW_CFA_GNU_args_size instructions and only regenerate 3320 // during the final code emission. The information is embedded 3321 // inside call instructions. 3322 II = BB->erasePseudoInstruction(II); 3323 continue; 3324 } 3325 } else if (BC.MIB->isInvoke(Instr)) { 3326 // Add the value of GNU_args_size as an extra operand to invokes. 3327 BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize, AllocId); 3328 } 3329 ++II; 3330 } 3331 } 3332 } 3333 3334 void BinaryFunction::postProcessBranches() { 3335 if (!isSimple()) 3336 return; 3337 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 3338 auto LastInstrRI = BB->getLastNonPseudo(); 3339 if (BB->succ_size() == 1) { 3340 if (LastInstrRI != BB->rend() && 3341 BC.MIB->isConditionalBranch(*LastInstrRI)) { 3342 // __builtin_unreachable() could create a conditional branch that 3343 // falls-through into the next function - hence the block will have only 3344 // one valid successor. Such behaviour is undefined and thus we remove 3345 // the conditional branch while leaving a valid successor. 3346 BB->eraseInstruction(std::prev(LastInstrRI.base())); 3347 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in " 3348 << BB->getName() << " in function " << *this << '\n'); 3349 } 3350 } else if (BB->succ_size() == 0) { 3351 // Ignore unreachable basic blocks. 3352 if (BB->pred_size() == 0 || BB->isLandingPad()) 3353 continue; 3354 3355 // If it's the basic block that does not end up with a terminator - we 3356 // insert a return instruction unless it's a call instruction. 3357 if (LastInstrRI == BB->rend()) { 3358 LLVM_DEBUG( 3359 dbgs() << "BOLT-DEBUG: at least one instruction expected in BB " 3360 << BB->getName() << " in function " << *this << '\n'); 3361 continue; 3362 } 3363 if (!BC.MIB->isTerminator(*LastInstrRI) && 3364 !BC.MIB->isCall(*LastInstrRI)) { 3365 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block " 3366 << BB->getName() << " in function " << *this << '\n'); 3367 MCInst ReturnInstr; 3368 BC.MIB->createReturn(ReturnInstr); 3369 BB->addInstruction(ReturnInstr); 3370 } 3371 } 3372 } 3373 assert(validateCFG() && "invalid CFG"); 3374 } 3375 3376 MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) { 3377 assert(Offset && "cannot add primary entry point"); 3378 assert(CurrentState == State::Empty || CurrentState == State::Disassembled); 3379 3380 const uint64_t EntryPointAddress = getAddress() + Offset; 3381 MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress); 3382 3383 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol); 3384 if (EntrySymbol) 3385 return EntrySymbol; 3386 3387 if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) { 3388 EntrySymbol = EntryBD->getSymbol(); 3389 } else { 3390 EntrySymbol = BC.getOrCreateGlobalSymbol( 3391 EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@"); 3392 } 3393 SecondaryEntryPoints[LocalSymbol] = EntrySymbol; 3394 3395 BC.setSymbolToFunctionMap(EntrySymbol, this); 3396 3397 return EntrySymbol; 3398 } 3399 3400 MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) { 3401 assert(CurrentState == State::CFG && 3402 "basic block can be added as an entry only in a function with CFG"); 3403 3404 if (&BB == BasicBlocks.front()) 3405 return getSymbol(); 3406 3407 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB); 3408 if (EntrySymbol) 3409 return EntrySymbol; 3410 3411 EntrySymbol = 3412 BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName()); 3413 3414 SecondaryEntryPoints[BB.getLabel()] = EntrySymbol; 3415 3416 BC.setSymbolToFunctionMap(EntrySymbol, this); 3417 3418 return EntrySymbol; 3419 } 3420 3421 MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) { 3422 if (EntryID == 0) 3423 return getSymbol(); 3424 3425 if (!isMultiEntry()) 3426 return nullptr; 3427 3428 uint64_t NumEntries = 0; 3429 if (hasCFG()) { 3430 for (BinaryBasicBlock *BB : BasicBlocks) { 3431 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3432 if (!EntrySymbol) 3433 continue; 3434 if (NumEntries == EntryID) 3435 return EntrySymbol; 3436 ++NumEntries; 3437 } 3438 } else { 3439 for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3440 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3441 if (!EntrySymbol) 3442 continue; 3443 if (NumEntries == EntryID) 3444 return EntrySymbol; 3445 ++NumEntries; 3446 } 3447 } 3448 3449 return nullptr; 3450 } 3451 3452 uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const { 3453 if (!isMultiEntry()) 3454 return 0; 3455 3456 for (const MCSymbol *FunctionSymbol : getSymbols()) 3457 if (FunctionSymbol == Symbol) 3458 return 0; 3459 3460 // Check all secondary entries available as either basic blocks or lables. 3461 uint64_t NumEntries = 0; 3462 for (const BinaryBasicBlock *BB : BasicBlocks) { 3463 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3464 if (!EntrySymbol) 3465 continue; 3466 if (EntrySymbol == Symbol) 3467 return NumEntries; 3468 ++NumEntries; 3469 } 3470 NumEntries = 0; 3471 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3472 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3473 if (!EntrySymbol) 3474 continue; 3475 if (EntrySymbol == Symbol) 3476 return NumEntries; 3477 ++NumEntries; 3478 } 3479 3480 llvm_unreachable("symbol not found"); 3481 } 3482 3483 bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const { 3484 bool Status = Callback(0, getSymbol()); 3485 if (!isMultiEntry()) 3486 return Status; 3487 3488 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3489 if (!Status) 3490 break; 3491 3492 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3493 if (!EntrySymbol) 3494 continue; 3495 3496 Status = Callback(KV.first, EntrySymbol); 3497 } 3498 3499 return Status; 3500 } 3501 3502 BinaryFunction::BasicBlockOrderType BinaryFunction::dfs() const { 3503 BasicBlockOrderType DFS; 3504 unsigned Index = 0; 3505 std::stack<BinaryBasicBlock *> Stack; 3506 3507 // Push entry points to the stack in reverse order. 3508 // 3509 // NB: we rely on the original order of entries to match. 3510 for (auto BBI = layout_rbegin(); BBI != layout_rend(); ++BBI) { 3511 BinaryBasicBlock *BB = *BBI; 3512 if (isEntryPoint(*BB)) 3513 Stack.push(BB); 3514 BB->setLayoutIndex(BinaryBasicBlock::InvalidIndex); 3515 } 3516 3517 while (!Stack.empty()) { 3518 BinaryBasicBlock *BB = Stack.top(); 3519 Stack.pop(); 3520 3521 if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex) 3522 continue; 3523 3524 BB->setLayoutIndex(Index++); 3525 DFS.push_back(BB); 3526 3527 for (BinaryBasicBlock *SuccBB : BB->landing_pads()) { 3528 Stack.push(SuccBB); 3529 } 3530 3531 const MCSymbol *TBB = nullptr; 3532 const MCSymbol *FBB = nullptr; 3533 MCInst *CondBranch = nullptr; 3534 MCInst *UncondBranch = nullptr; 3535 if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch && 3536 BB->succ_size() == 2) { 3537 if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode( 3538 *CondBranch)) == BC.MIB->getCondCode(*CondBranch)) { 3539 Stack.push(BB->getConditionalSuccessor(true)); 3540 Stack.push(BB->getConditionalSuccessor(false)); 3541 } else { 3542 Stack.push(BB->getConditionalSuccessor(false)); 3543 Stack.push(BB->getConditionalSuccessor(true)); 3544 } 3545 } else { 3546 for (BinaryBasicBlock *SuccBB : BB->successors()) { 3547 Stack.push(SuccBB); 3548 } 3549 } 3550 } 3551 3552 return DFS; 3553 } 3554 3555 size_t BinaryFunction::computeHash(bool UseDFS, 3556 OperandHashFuncTy OperandHashFunc) const { 3557 if (size() == 0) 3558 return 0; 3559 3560 assert(hasCFG() && "function is expected to have CFG"); 3561 3562 const BasicBlockOrderType &Order = UseDFS ? dfs() : BasicBlocksLayout; 3563 3564 // The hash is computed by creating a string of all instruction opcodes and 3565 // possibly their operands and then hashing that string with std::hash. 3566 std::string HashString; 3567 for (const BinaryBasicBlock *BB : Order) { 3568 for (const MCInst &Inst : *BB) { 3569 unsigned Opcode = Inst.getOpcode(); 3570 3571 if (BC.MIB->isPseudo(Inst)) 3572 continue; 3573 3574 // Ignore unconditional jumps since we check CFG consistency by processing 3575 // basic blocks in order and do not rely on branches to be in-sync with 3576 // CFG. Note that we still use condition code of conditional jumps. 3577 if (BC.MIB->isUnconditionalBranch(Inst)) 3578 continue; 3579 3580 if (Opcode == 0) 3581 HashString.push_back(0); 3582 3583 while (Opcode) { 3584 uint8_t LSB = Opcode & 0xff; 3585 HashString.push_back(LSB); 3586 Opcode = Opcode >> 8; 3587 } 3588 3589 for (unsigned I = 0, E = MCPlus::getNumPrimeOperands(Inst); I != E; ++I) 3590 HashString.append(OperandHashFunc(Inst.getOperand(I))); 3591 } 3592 } 3593 3594 return Hash = std::hash<std::string>{}(HashString); 3595 } 3596 3597 void BinaryFunction::insertBasicBlocks( 3598 BinaryBasicBlock *Start, 3599 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3600 const bool UpdateLayout, const bool UpdateCFIState, 3601 const bool RecomputeLandingPads) { 3602 const int64_t StartIndex = Start ? getIndex(Start) : -1LL; 3603 const size_t NumNewBlocks = NewBBs.size(); 3604 3605 BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks, 3606 nullptr); 3607 3608 int64_t I = StartIndex + 1; 3609 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3610 assert(!BasicBlocks[I]); 3611 BasicBlocks[I++] = BB.release(); 3612 } 3613 3614 if (RecomputeLandingPads) 3615 recomputeLandingPads(); 3616 else 3617 updateBBIndices(0); 3618 3619 if (UpdateLayout) 3620 updateLayout(Start, NumNewBlocks); 3621 3622 if (UpdateCFIState) 3623 updateCFIState(Start, NumNewBlocks); 3624 } 3625 3626 BinaryFunction::iterator BinaryFunction::insertBasicBlocks( 3627 BinaryFunction::iterator StartBB, 3628 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3629 const bool UpdateLayout, const bool UpdateCFIState, 3630 const bool RecomputeLandingPads) { 3631 const unsigned StartIndex = getIndex(&*StartBB); 3632 const size_t NumNewBlocks = NewBBs.size(); 3633 3634 BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks, 3635 nullptr); 3636 auto RetIter = BasicBlocks.begin() + StartIndex + 1; 3637 3638 unsigned I = StartIndex + 1; 3639 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3640 assert(!BasicBlocks[I]); 3641 BasicBlocks[I++] = BB.release(); 3642 } 3643 3644 if (RecomputeLandingPads) 3645 recomputeLandingPads(); 3646 else 3647 updateBBIndices(0); 3648 3649 if (UpdateLayout) 3650 updateLayout(*std::prev(RetIter), NumNewBlocks); 3651 3652 if (UpdateCFIState) 3653 updateCFIState(*std::prev(RetIter), NumNewBlocks); 3654 3655 return RetIter; 3656 } 3657 3658 void BinaryFunction::updateBBIndices(const unsigned StartIndex) { 3659 for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I) 3660 BasicBlocks[I]->Index = I; 3661 } 3662 3663 void BinaryFunction::updateCFIState(BinaryBasicBlock *Start, 3664 const unsigned NumNewBlocks) { 3665 const int32_t CFIState = Start->getCFIStateAtExit(); 3666 const unsigned StartIndex = getIndex(Start) + 1; 3667 for (unsigned I = 0; I < NumNewBlocks; ++I) 3668 BasicBlocks[StartIndex + I]->setCFIState(CFIState); 3669 } 3670 3671 void BinaryFunction::updateLayout(BinaryBasicBlock *Start, 3672 const unsigned NumNewBlocks) { 3673 // If start not provided insert new blocks at the beginning 3674 if (!Start) { 3675 BasicBlocksLayout.insert(layout_begin(), BasicBlocks.begin(), 3676 BasicBlocks.begin() + NumNewBlocks); 3677 updateLayoutIndices(); 3678 return; 3679 } 3680 3681 // Insert new blocks in the layout immediately after Start. 3682 auto Pos = std::find(layout_begin(), layout_end(), Start); 3683 assert(Pos != layout_end()); 3684 BasicBlockListType::iterator Begin = 3685 std::next(BasicBlocks.begin(), getIndex(Start) + 1); 3686 BasicBlockListType::iterator End = 3687 std::next(BasicBlocks.begin(), getIndex(Start) + NumNewBlocks + 1); 3688 BasicBlocksLayout.insert(Pos + 1, Begin, End); 3689 updateLayoutIndices(); 3690 } 3691 3692 bool BinaryFunction::checkForAmbiguousJumpTables() { 3693 SmallSet<uint64_t, 4> JumpTables; 3694 for (BinaryBasicBlock *&BB : BasicBlocks) { 3695 for (MCInst &Inst : *BB) { 3696 if (!BC.MIB->isIndirectBranch(Inst)) 3697 continue; 3698 uint64_t JTAddress = BC.MIB->getJumpTable(Inst); 3699 if (!JTAddress) 3700 continue; 3701 // This address can be inside another jump table, but we only consider 3702 // it ambiguous when the same start address is used, not the same JT 3703 // object. 3704 if (!JumpTables.count(JTAddress)) { 3705 JumpTables.insert(JTAddress); 3706 continue; 3707 } 3708 return true; 3709 } 3710 } 3711 return false; 3712 } 3713 3714 void BinaryFunction::disambiguateJumpTables( 3715 MCPlusBuilder::AllocatorIdTy AllocId) { 3716 assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations); 3717 SmallPtrSet<JumpTable *, 4> JumpTables; 3718 for (BinaryBasicBlock *&BB : BasicBlocks) { 3719 for (MCInst &Inst : *BB) { 3720 if (!BC.MIB->isIndirectBranch(Inst)) 3721 continue; 3722 JumpTable *JT = getJumpTable(Inst); 3723 if (!JT) 3724 continue; 3725 auto Iter = JumpTables.find(JT); 3726 if (Iter == JumpTables.end()) { 3727 JumpTables.insert(JT); 3728 continue; 3729 } 3730 // This instruction is an indirect jump using a jump table, but it is 3731 // using the same jump table of another jump. Try all our tricks to 3732 // extract the jump table symbol and make it point to a new, duplicated JT 3733 MCPhysReg BaseReg1; 3734 uint64_t Scale; 3735 const MCSymbol *Target; 3736 // In case we match if our first matcher, first instruction is the one to 3737 // patch 3738 MCInst *JTLoadInst = &Inst; 3739 // Try a standard indirect jump matcher, scale 8 3740 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher = 3741 BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1), 3742 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3743 /*Offset=*/BC.MIB->matchSymbol(Target)); 3744 if (!IndJmpMatcher->match( 3745 *BC.MRI, *BC.MIB, 3746 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3747 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3748 MCPhysReg BaseReg2; 3749 uint64_t Offset; 3750 // Standard JT matching failed. Trying now: 3751 // movq "jt.2397/1"(,%rax,8), %rax 3752 // jmpq *%rax 3753 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner = 3754 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1), 3755 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3756 /*Offset=*/BC.MIB->matchSymbol(Target)); 3757 MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get(); 3758 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 = 3759 BC.MIB->matchIndJmp(std::move(LoadMatcherOwner)); 3760 if (!IndJmpMatcher2->match( 3761 *BC.MRI, *BC.MIB, 3762 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3763 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3764 // JT matching failed. Trying now: 3765 // PIC-style matcher, scale 4 3766 // addq %rdx, %rsi 3767 // addq %rdx, %rdi 3768 // leaq DATAat0x402450(%rip), %r11 3769 // movslq (%r11,%rdx,4), %rcx 3770 // addq %r11, %rcx 3771 // jmpq *%rcx # JUMPTABLE @0x402450 3772 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher = 3773 BC.MIB->matchIndJmp(BC.MIB->matchAdd( 3774 BC.MIB->matchReg(BaseReg1), 3775 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2), 3776 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3777 BC.MIB->matchImm(Offset)))); 3778 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner = 3779 BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target)); 3780 MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get(); 3781 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher = 3782 BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner), 3783 BC.MIB->matchAnyOperand())); 3784 if (!PICIndJmpMatcher->match( 3785 *BC.MRI, *BC.MIB, 3786 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3787 Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 || 3788 !PICBaseAddrMatcher->match( 3789 *BC.MRI, *BC.MIB, 3790 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) { 3791 llvm_unreachable("Failed to extract jump table base"); 3792 continue; 3793 } 3794 // Matched PIC, identify the instruction with the reference to the JT 3795 JTLoadInst = LEAMatcher->CurInst; 3796 } else { 3797 // Matched non-PIC 3798 JTLoadInst = LoadMatcher->CurInst; 3799 } 3800 } 3801 3802 uint64_t NewJumpTableID = 0; 3803 const MCSymbol *NewJTLabel; 3804 std::tie(NewJumpTableID, NewJTLabel) = 3805 BC.duplicateJumpTable(*this, JT, Target); 3806 { 3807 auto L = BC.scopeLock(); 3808 BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get()); 3809 } 3810 // We use a unique ID with the high bit set as address for this "injected" 3811 // jump table (not originally in the input binary). 3812 BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId); 3813 } 3814 } 3815 } 3816 3817 bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB, 3818 BinaryBasicBlock *OldDest, 3819 BinaryBasicBlock *NewDest) { 3820 MCInst *Instr = BB->getLastNonPseudoInstr(); 3821 if (!Instr || !BC.MIB->isIndirectBranch(*Instr)) 3822 return false; 3823 uint64_t JTAddress = BC.MIB->getJumpTable(*Instr); 3824 assert(JTAddress && "Invalid jump table address"); 3825 JumpTable *JT = getJumpTableContainingAddress(JTAddress); 3826 assert(JT && "No jump table structure for this indirect branch"); 3827 bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(), 3828 NewDest->getLabel()); 3829 (void)Patched; 3830 assert(Patched && "Invalid entry to be replaced in jump table"); 3831 return true; 3832 } 3833 3834 BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From, 3835 BinaryBasicBlock *To) { 3836 // Create intermediate BB 3837 MCSymbol *Tmp; 3838 { 3839 auto L = BC.scopeLock(); 3840 Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge"); 3841 } 3842 // Link new BBs to the original input offset of the From BB, so we can map 3843 // samples recorded in new BBs back to the original BB seem in the input 3844 // binary (if using BAT) 3845 std::unique_ptr<BinaryBasicBlock> NewBB = 3846 createBasicBlock(From->getInputOffset(), Tmp); 3847 BinaryBasicBlock *NewBBPtr = NewBB.get(); 3848 3849 // Update "From" BB 3850 auto I = From->succ_begin(); 3851 auto BI = From->branch_info_begin(); 3852 for (; I != From->succ_end(); ++I) { 3853 if (*I == To) 3854 break; 3855 ++BI; 3856 } 3857 assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!"); 3858 uint64_t OrigCount = BI->Count; 3859 uint64_t OrigMispreds = BI->MispredictedCount; 3860 replaceJumpTableEntryIn(From, To, NewBBPtr); 3861 From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds); 3862 3863 NewBB->addSuccessor(To, OrigCount, OrigMispreds); 3864 NewBB->setExecutionCount(OrigCount); 3865 NewBB->setIsCold(From->isCold()); 3866 3867 // Update CFI and BB layout with new intermediate BB 3868 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs; 3869 NewBBs.emplace_back(std::move(NewBB)); 3870 insertBasicBlocks(From, std::move(NewBBs), true, true, 3871 /*RecomputeLandingPads=*/false); 3872 return NewBBPtr; 3873 } 3874 3875 void BinaryFunction::deleteConservativeEdges() { 3876 // Our goal is to aggressively remove edges from the CFG that we believe are 3877 // wrong. This is used for instrumentation, where it is safe to remove 3878 // fallthrough edges because we won't reorder blocks. 3879 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 3880 BinaryBasicBlock *BB = *I; 3881 if (BB->succ_size() != 1 || BB->size() == 0) 3882 continue; 3883 3884 auto NextBB = std::next(I); 3885 MCInst *Last = BB->getLastNonPseudoInstr(); 3886 // Fallthrough is a landing pad? Delete this edge (as long as we don't 3887 // have a direct jump to it) 3888 if ((*BB->succ_begin())->isLandingPad() && NextBB != E && 3889 *BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) { 3890 BB->removeAllSuccessors(); 3891 continue; 3892 } 3893 3894 // Look for suspicious calls at the end of BB where gcc may optimize it and 3895 // remove the jump to the epilogue when it knows the call won't return. 3896 if (!Last || !BC.MIB->isCall(*Last)) 3897 continue; 3898 3899 const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last); 3900 if (!CalleeSymbol) 3901 continue; 3902 3903 StringRef CalleeName = CalleeSymbol->getName(); 3904 if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" && 3905 CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" && 3906 CalleeName != "abort@PLT") 3907 continue; 3908 3909 BB->removeAllSuccessors(); 3910 } 3911 } 3912 3913 bool BinaryFunction::isDataMarker(const SymbolRef &Symbol, 3914 uint64_t SymbolSize) const { 3915 // For aarch64, the ABI defines mapping symbols so we identify data in the 3916 // code section (see IHI0056B). $d identifies a symbol starting data contents. 3917 if (BC.isAArch64() && Symbol.getType() && 3918 cantFail(Symbol.getType()) == SymbolRef::ST_Unknown && SymbolSize == 0 && 3919 Symbol.getName() && 3920 (cantFail(Symbol.getName()) == "$d" || 3921 cantFail(Symbol.getName()).startswith("$d."))) 3922 return true; 3923 return false; 3924 } 3925 3926 bool BinaryFunction::isCodeMarker(const SymbolRef &Symbol, 3927 uint64_t SymbolSize) const { 3928 // For aarch64, the ABI defines mapping symbols so we identify data in the 3929 // code section (see IHI0056B). $x identifies a symbol starting code or the 3930 // end of a data chunk inside code. 3931 if (BC.isAArch64() && Symbol.getType() && 3932 cantFail(Symbol.getType()) == SymbolRef::ST_Unknown && SymbolSize == 0 && 3933 Symbol.getName() && 3934 (cantFail(Symbol.getName()) == "$x" || 3935 cantFail(Symbol.getName()).startswith("$x."))) 3936 return true; 3937 return false; 3938 } 3939 3940 bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol, 3941 uint64_t SymbolSize) const { 3942 // If this symbol is in a different section from the one where the 3943 // function symbol is, don't consider it as valid. 3944 if (!getOriginSection()->containsAddress( 3945 cantFail(Symbol.getAddress(), "cannot get symbol address"))) 3946 return false; 3947 3948 // Some symbols are tolerated inside function bodies, others are not. 3949 // The real function boundaries may not be known at this point. 3950 if (isDataMarker(Symbol, SymbolSize) || isCodeMarker(Symbol, SymbolSize)) 3951 return true; 3952 3953 // It's okay to have a zero-sized symbol in the middle of non-zero-sized 3954 // function. 3955 if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress()))) 3956 return true; 3957 3958 if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown) 3959 return false; 3960 3961 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) 3962 return false; 3963 3964 return true; 3965 } 3966 3967 void BinaryFunction::adjustExecutionCount(uint64_t Count) { 3968 if (getKnownExecutionCount() == 0 || Count == 0) 3969 return; 3970 3971 if (ExecutionCount < Count) 3972 Count = ExecutionCount; 3973 3974 double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount; 3975 if (AdjustmentRatio < 0.0) 3976 AdjustmentRatio = 0.0; 3977 3978 for (BinaryBasicBlock *&BB : layout()) 3979 BB->adjustExecutionCount(AdjustmentRatio); 3980 3981 ExecutionCount -= Count; 3982 } 3983 3984 BinaryFunction::~BinaryFunction() { 3985 for (BinaryBasicBlock *BB : BasicBlocks) 3986 delete BB; 3987 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 3988 delete BB; 3989 } 3990 3991 void BinaryFunction::calculateLoopInfo() { 3992 // Discover loops. 3993 BinaryDominatorTree DomTree; 3994 DomTree.recalculate(*this); 3995 BLI.reset(new BinaryLoopInfo()); 3996 BLI->analyze(DomTree); 3997 3998 // Traverse discovered loops and add depth and profile information. 3999 std::stack<BinaryLoop *> St; 4000 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) { 4001 St.push(*I); 4002 ++BLI->OuterLoops; 4003 } 4004 4005 while (!St.empty()) { 4006 BinaryLoop *L = St.top(); 4007 St.pop(); 4008 ++BLI->TotalLoops; 4009 BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth); 4010 4011 // Add nested loops in the stack. 4012 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4013 St.push(*I); 4014 4015 // Skip if no valid profile is found. 4016 if (!hasValidProfile()) { 4017 L->EntryCount = COUNT_NO_PROFILE; 4018 L->ExitCount = COUNT_NO_PROFILE; 4019 L->TotalBackEdgeCount = COUNT_NO_PROFILE; 4020 continue; 4021 } 4022 4023 // Compute back edge count. 4024 SmallVector<BinaryBasicBlock *, 1> Latches; 4025 L->getLoopLatches(Latches); 4026 4027 for (BinaryBasicBlock *Latch : Latches) { 4028 auto BI = Latch->branch_info_begin(); 4029 for (BinaryBasicBlock *Succ : Latch->successors()) { 4030 if (Succ == L->getHeader()) { 4031 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4032 "profile data not found"); 4033 L->TotalBackEdgeCount += BI->Count; 4034 } 4035 ++BI; 4036 } 4037 } 4038 4039 // Compute entry count. 4040 L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount; 4041 4042 // Compute exit count. 4043 SmallVector<BinaryLoop::Edge, 1> ExitEdges; 4044 L->getExitEdges(ExitEdges); 4045 for (BinaryLoop::Edge &Exit : ExitEdges) { 4046 const BinaryBasicBlock *Exiting = Exit.first; 4047 const BinaryBasicBlock *ExitTarget = Exit.second; 4048 auto BI = Exiting->branch_info_begin(); 4049 for (BinaryBasicBlock *Succ : Exiting->successors()) { 4050 if (Succ == ExitTarget) { 4051 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4052 "profile data not found"); 4053 L->ExitCount += BI->Count; 4054 } 4055 ++BI; 4056 } 4057 } 4058 } 4059 } 4060 4061 void BinaryFunction::updateOutputValues(const MCAsmLayout &Layout) { 4062 if (!isEmitted()) { 4063 assert(!isInjected() && "injected function should be emitted"); 4064 setOutputAddress(getAddress()); 4065 setOutputSize(getSize()); 4066 return; 4067 } 4068 4069 const uint64_t BaseAddress = getCodeSection()->getOutputAddress(); 4070 ErrorOr<BinarySection &> ColdSection = getColdCodeSection(); 4071 const uint64_t ColdBaseAddress = 4072 isSplit() ? ColdSection->getOutputAddress() : 0; 4073 if (BC.HasRelocations || isInjected()) { 4074 const uint64_t StartOffset = Layout.getSymbolOffset(*getSymbol()); 4075 const uint64_t EndOffset = Layout.getSymbolOffset(*getFunctionEndLabel()); 4076 setOutputAddress(BaseAddress + StartOffset); 4077 setOutputSize(EndOffset - StartOffset); 4078 if (hasConstantIsland()) { 4079 const uint64_t DataOffset = 4080 Layout.getSymbolOffset(*getFunctionConstantIslandLabel()); 4081 setOutputDataAddress(BaseAddress + DataOffset); 4082 } 4083 if (isSplit()) { 4084 const MCSymbol *ColdStartSymbol = getColdSymbol(); 4085 assert(ColdStartSymbol && ColdStartSymbol->isDefined() && 4086 "split function should have defined cold symbol"); 4087 const MCSymbol *ColdEndSymbol = getFunctionColdEndLabel(); 4088 assert(ColdEndSymbol && ColdEndSymbol->isDefined() && 4089 "split function should have defined cold end symbol"); 4090 const uint64_t ColdStartOffset = Layout.getSymbolOffset(*ColdStartSymbol); 4091 const uint64_t ColdEndOffset = Layout.getSymbolOffset(*ColdEndSymbol); 4092 cold().setAddress(ColdBaseAddress + ColdStartOffset); 4093 cold().setImageSize(ColdEndOffset - ColdStartOffset); 4094 if (hasConstantIsland()) { 4095 const uint64_t DataOffset = 4096 Layout.getSymbolOffset(*getFunctionColdConstantIslandLabel()); 4097 setOutputColdDataAddress(ColdBaseAddress + DataOffset); 4098 } 4099 } 4100 } else { 4101 setOutputAddress(getAddress()); 4102 setOutputSize(Layout.getSymbolOffset(*getFunctionEndLabel())); 4103 } 4104 4105 // Update basic block output ranges for the debug info, if we have 4106 // secondary entry points in the symbol table to update or if writing BAT. 4107 if (!opts::UpdateDebugSections && !isMultiEntry() && 4108 !requiresAddressTranslation()) 4109 return; 4110 4111 // Output ranges should match the input if the body hasn't changed. 4112 if (!isSimple() && !BC.HasRelocations) 4113 return; 4114 4115 // AArch64 may have functions that only contains a constant island (no code). 4116 if (layout_begin() == layout_end()) 4117 return; 4118 4119 BinaryBasicBlock *PrevBB = nullptr; 4120 for (auto BBI = layout_begin(), BBE = layout_end(); BBI != BBE; ++BBI) { 4121 BinaryBasicBlock *BB = *BBI; 4122 assert(BB->getLabel()->isDefined() && "symbol should be defined"); 4123 const uint64_t BBBaseAddress = BB->isCold() ? ColdBaseAddress : BaseAddress; 4124 if (!BC.HasRelocations) { 4125 if (BB->isCold()) { 4126 assert(BBBaseAddress == cold().getAddress()); 4127 } else { 4128 assert(BBBaseAddress == getOutputAddress()); 4129 } 4130 } 4131 const uint64_t BBOffset = Layout.getSymbolOffset(*BB->getLabel()); 4132 const uint64_t BBAddress = BBBaseAddress + BBOffset; 4133 BB->setOutputStartAddress(BBAddress); 4134 4135 if (PrevBB) { 4136 uint64_t PrevBBEndAddress = BBAddress; 4137 if (BB->isCold() != PrevBB->isCold()) 4138 PrevBBEndAddress = getOutputAddress() + getOutputSize(); 4139 PrevBB->setOutputEndAddress(PrevBBEndAddress); 4140 } 4141 PrevBB = BB; 4142 4143 BB->updateOutputValues(Layout); 4144 } 4145 PrevBB->setOutputEndAddress(PrevBB->isCold() 4146 ? cold().getAddress() + cold().getImageSize() 4147 : getOutputAddress() + getOutputSize()); 4148 } 4149 4150 DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const { 4151 DebugAddressRangesVector OutputRanges; 4152 4153 if (isFolded()) 4154 return OutputRanges; 4155 4156 if (IsFragment) 4157 return OutputRanges; 4158 4159 OutputRanges.emplace_back(getOutputAddress(), 4160 getOutputAddress() + getOutputSize()); 4161 if (isSplit()) { 4162 assert(isEmitted() && "split function should be emitted"); 4163 OutputRanges.emplace_back(cold().getAddress(), 4164 cold().getAddress() + cold().getImageSize()); 4165 } 4166 4167 if (isSimple()) 4168 return OutputRanges; 4169 4170 for (BinaryFunction *Frag : Fragments) { 4171 assert(!Frag->isSimple() && 4172 "fragment of non-simple function should also be non-simple"); 4173 OutputRanges.emplace_back(Frag->getOutputAddress(), 4174 Frag->getOutputAddress() + Frag->getOutputSize()); 4175 } 4176 4177 return OutputRanges; 4178 } 4179 4180 uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const { 4181 if (isFolded()) 4182 return 0; 4183 4184 // If the function hasn't changed return the same address. 4185 if (!isEmitted()) 4186 return Address; 4187 4188 if (Address < getAddress()) 4189 return 0; 4190 4191 // Check if the address is associated with an instruction that is tracked 4192 // by address translation. 4193 auto KV = InputOffsetToAddressMap.find(Address - getAddress()); 4194 if (KV != InputOffsetToAddressMap.end()) 4195 return KV->second; 4196 4197 // FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay 4198 // intact. Instead we can use pseudo instructions and/or annotations. 4199 const uint64_t Offset = Address - getAddress(); 4200 const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4201 if (!BB) { 4202 // Special case for address immediately past the end of the function. 4203 if (Offset == getSize()) 4204 return getOutputAddress() + getOutputSize(); 4205 4206 return 0; 4207 } 4208 4209 return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(), 4210 BB->getOutputAddressRange().second); 4211 } 4212 4213 DebugAddressRangesVector BinaryFunction::translateInputToOutputRanges( 4214 const DWARFAddressRangesVector &InputRanges) const { 4215 DebugAddressRangesVector OutputRanges; 4216 4217 if (isFolded()) 4218 return OutputRanges; 4219 4220 // If the function hasn't changed return the same ranges. 4221 if (!isEmitted()) { 4222 OutputRanges.resize(InputRanges.size()); 4223 std::transform(InputRanges.begin(), InputRanges.end(), OutputRanges.begin(), 4224 [](const DWARFAddressRange &Range) { 4225 return DebugAddressRange(Range.LowPC, Range.HighPC); 4226 }); 4227 return OutputRanges; 4228 } 4229 4230 // Even though we will merge ranges in a post-processing pass, we attempt to 4231 // merge them in a main processing loop as it improves the processing time. 4232 uint64_t PrevEndAddress = 0; 4233 for (const DWARFAddressRange &Range : InputRanges) { 4234 if (!containsAddress(Range.LowPC)) { 4235 LLVM_DEBUG( 4236 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4237 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) << ", 0x" 4238 << Twine::utohexstr(Range.HighPC) << "]\n"); 4239 PrevEndAddress = 0; 4240 continue; 4241 } 4242 uint64_t InputOffset = Range.LowPC - getAddress(); 4243 const uint64_t InputEndOffset = 4244 std::min(Range.HighPC - getAddress(), getSize()); 4245 4246 auto BBI = std::upper_bound( 4247 BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 4248 BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets()); 4249 --BBI; 4250 do { 4251 const BinaryBasicBlock *BB = BBI->second; 4252 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4253 LLVM_DEBUG( 4254 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4255 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) 4256 << ", 0x" << Twine::utohexstr(Range.HighPC) << "]\n"); 4257 PrevEndAddress = 0; 4258 break; 4259 } 4260 4261 // Skip the range if the block was deleted. 4262 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4263 const uint64_t StartAddress = 4264 OutputStart + InputOffset - BB->getOffset(); 4265 uint64_t EndAddress = BB->getOutputAddressRange().second; 4266 if (InputEndOffset < BB->getEndOffset()) 4267 EndAddress = StartAddress + InputEndOffset - InputOffset; 4268 4269 if (StartAddress == PrevEndAddress) { 4270 OutputRanges.back().HighPC = 4271 std::max(OutputRanges.back().HighPC, EndAddress); 4272 } else { 4273 OutputRanges.emplace_back(StartAddress, 4274 std::max(StartAddress, EndAddress)); 4275 } 4276 PrevEndAddress = OutputRanges.back().HighPC; 4277 } 4278 4279 InputOffset = BB->getEndOffset(); 4280 ++BBI; 4281 } while (InputOffset < InputEndOffset); 4282 } 4283 4284 // Post-processing pass to sort and merge ranges. 4285 std::sort(OutputRanges.begin(), OutputRanges.end()); 4286 DebugAddressRangesVector MergedRanges; 4287 PrevEndAddress = 0; 4288 for (const DebugAddressRange &Range : OutputRanges) { 4289 if (Range.LowPC <= PrevEndAddress) { 4290 MergedRanges.back().HighPC = 4291 std::max(MergedRanges.back().HighPC, Range.HighPC); 4292 } else { 4293 MergedRanges.emplace_back(Range.LowPC, Range.HighPC); 4294 } 4295 PrevEndAddress = MergedRanges.back().HighPC; 4296 } 4297 4298 return MergedRanges; 4299 } 4300 4301 MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) { 4302 if (CurrentState == State::Disassembled) { 4303 auto II = Instructions.find(Offset); 4304 return (II == Instructions.end()) ? nullptr : &II->second; 4305 } else if (CurrentState == State::CFG) { 4306 BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4307 if (!BB) 4308 return nullptr; 4309 4310 for (MCInst &Inst : *BB) { 4311 constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max(); 4312 if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset)) 4313 return &Inst; 4314 } 4315 4316 if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) { 4317 const uint32_t Size = 4318 BC.MIB->getAnnotationWithDefault<uint32_t>(*LastInstr, "Size"); 4319 if (BB->getEndOffset() - Offset == Size) 4320 return LastInstr; 4321 } 4322 4323 return nullptr; 4324 } else { 4325 llvm_unreachable("invalid CFG state to use getInstructionAtOffset()"); 4326 } 4327 } 4328 4329 DebugLocationsVector BinaryFunction::translateInputToOutputLocationList( 4330 const DebugLocationsVector &InputLL) const { 4331 DebugLocationsVector OutputLL; 4332 4333 if (isFolded()) 4334 return OutputLL; 4335 4336 // If the function hasn't changed - there's nothing to update. 4337 if (!isEmitted()) 4338 return InputLL; 4339 4340 uint64_t PrevEndAddress = 0; 4341 SmallVectorImpl<uint8_t> *PrevExpr = nullptr; 4342 for (const DebugLocationEntry &Entry : InputLL) { 4343 const uint64_t Start = Entry.LowPC; 4344 const uint64_t End = Entry.HighPC; 4345 if (!containsAddress(Start)) { 4346 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4347 "for " 4348 << *this << " : [0x" << Twine::utohexstr(Start) 4349 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4350 continue; 4351 } 4352 uint64_t InputOffset = Start - getAddress(); 4353 const uint64_t InputEndOffset = std::min(End - getAddress(), getSize()); 4354 auto BBI = std::upper_bound( 4355 BasicBlockOffsets.begin(), BasicBlockOffsets.end(), 4356 BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets()); 4357 --BBI; 4358 do { 4359 const BinaryBasicBlock *BB = BBI->second; 4360 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4361 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4362 "for " 4363 << *this << " : [0x" << Twine::utohexstr(Start) 4364 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4365 PrevEndAddress = 0; 4366 break; 4367 } 4368 4369 // Skip the range if the block was deleted. 4370 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4371 const uint64_t StartAddress = 4372 OutputStart + InputOffset - BB->getOffset(); 4373 uint64_t EndAddress = BB->getOutputAddressRange().second; 4374 if (InputEndOffset < BB->getEndOffset()) 4375 EndAddress = StartAddress + InputEndOffset - InputOffset; 4376 4377 if (StartAddress == PrevEndAddress && Entry.Expr == *PrevExpr) { 4378 OutputLL.back().HighPC = std::max(OutputLL.back().HighPC, EndAddress); 4379 } else { 4380 OutputLL.emplace_back(DebugLocationEntry{ 4381 StartAddress, std::max(StartAddress, EndAddress), Entry.Expr}); 4382 } 4383 PrevEndAddress = OutputLL.back().HighPC; 4384 PrevExpr = &OutputLL.back().Expr; 4385 } 4386 4387 ++BBI; 4388 InputOffset = BB->getEndOffset(); 4389 } while (InputOffset < InputEndOffset); 4390 } 4391 4392 // Sort and merge adjacent entries with identical location. 4393 std::stable_sort( 4394 OutputLL.begin(), OutputLL.end(), 4395 [](const DebugLocationEntry &A, const DebugLocationEntry &B) { 4396 return A.LowPC < B.LowPC; 4397 }); 4398 DebugLocationsVector MergedLL; 4399 PrevEndAddress = 0; 4400 PrevExpr = nullptr; 4401 for (const DebugLocationEntry &Entry : OutputLL) { 4402 if (Entry.LowPC <= PrevEndAddress && *PrevExpr == Entry.Expr) { 4403 MergedLL.back().HighPC = std::max(Entry.HighPC, MergedLL.back().HighPC); 4404 } else { 4405 const uint64_t Begin = std::max(Entry.LowPC, PrevEndAddress); 4406 const uint64_t End = std::max(Begin, Entry.HighPC); 4407 MergedLL.emplace_back(DebugLocationEntry{Begin, End, Entry.Expr}); 4408 } 4409 PrevEndAddress = MergedLL.back().HighPC; 4410 PrevExpr = &MergedLL.back().Expr; 4411 } 4412 4413 return MergedLL; 4414 } 4415 4416 void BinaryFunction::printLoopInfo(raw_ostream &OS) const { 4417 OS << "Loop Info for Function \"" << *this << "\""; 4418 if (hasValidProfile()) 4419 OS << " (count: " << getExecutionCount() << ")"; 4420 OS << "\n"; 4421 4422 std::stack<BinaryLoop *> St; 4423 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) 4424 St.push(*I); 4425 while (!St.empty()) { 4426 BinaryLoop *L = St.top(); 4427 St.pop(); 4428 4429 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4430 St.push(*I); 4431 4432 if (!hasValidProfile()) 4433 continue; 4434 4435 OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer") 4436 << " loop header: " << L->getHeader()->getName(); 4437 OS << "\n"; 4438 OS << "Loop basic blocks: "; 4439 const char *Sep = ""; 4440 for (auto BI = L->block_begin(), BE = L->block_end(); BI != BE; ++BI) { 4441 OS << Sep << (*BI)->getName(); 4442 Sep = ", "; 4443 } 4444 OS << "\n"; 4445 if (hasValidProfile()) { 4446 OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n"; 4447 OS << "Loop entry count: " << L->EntryCount << "\n"; 4448 OS << "Loop exit count: " << L->ExitCount << "\n"; 4449 if (L->EntryCount > 0) { 4450 OS << "Average iters per entry: " 4451 << format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount) 4452 << "\n"; 4453 } 4454 } 4455 OS << "----\n"; 4456 } 4457 4458 OS << "Total number of loops: " << BLI->TotalLoops << "\n"; 4459 OS << "Number of outer loops: " << BLI->OuterLoops << "\n"; 4460 OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n"; 4461 } 4462 4463 bool BinaryFunction::isAArch64Veneer() const { 4464 if (BasicBlocks.size() != 1) 4465 return false; 4466 4467 BinaryBasicBlock &BB = **BasicBlocks.begin(); 4468 if (BB.size() != 3) 4469 return false; 4470 4471 for (MCInst &Inst : BB) 4472 if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer")) 4473 return false; 4474 4475 return true; 4476 } 4477 4478 } // namespace bolt 4479 } // namespace llvm 4480