1 //===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryFunction class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryFunction.h" 14 #include "bolt/Core/BinaryBasicBlock.h" 15 #include "bolt/Core/BinaryDomTree.h" 16 #include "bolt/Core/DynoStats.h" 17 #include "bolt/Core/MCPlusBuilder.h" 18 #include "bolt/Utils/NameResolver.h" 19 #include "bolt/Utils/NameShortener.h" 20 #include "bolt/Utils/Utils.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/edit_distance.h" 26 #include "llvm/Demangle/Demangle.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCAsmLayout.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 31 #include "llvm/MC/MCExpr.h" 32 #include "llvm/MC/MCInst.h" 33 #include "llvm/MC/MCInstPrinter.h" 34 #include "llvm/MC/MCRegisterInfo.h" 35 #include "llvm/Object/ObjectFile.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/LEB128.h" 40 #include "llvm/Support/Regex.h" 41 #include "llvm/Support/Timer.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <functional> 44 #include <limits> 45 #include <numeric> 46 #include <string> 47 48 #define DEBUG_TYPE "bolt" 49 50 using namespace llvm; 51 using namespace bolt; 52 53 namespace opts { 54 55 extern cl::OptionCategory BoltCategory; 56 extern cl::OptionCategory BoltOptCategory; 57 extern cl::OptionCategory BoltRelocCategory; 58 59 extern cl::opt<bool> EnableBAT; 60 extern cl::opt<bool> Instrument; 61 extern cl::opt<bool> StrictMode; 62 extern cl::opt<bool> UpdateDebugSections; 63 extern cl::opt<unsigned> Verbosity; 64 65 extern bool processAllFunctions(); 66 67 cl::opt<bool> CheckEncoding( 68 "check-encoding", 69 cl::desc("perform verification of LLVM instruction encoding/decoding. " 70 "Every instruction in the input is decoded and re-encoded. " 71 "If the resulting bytes do not match the input, a warning message " 72 "is printed."), 73 cl::Hidden, cl::cat(BoltCategory)); 74 75 static cl::opt<bool> DotToolTipCode( 76 "dot-tooltip-code", 77 cl::desc("add basic block instructions as tool tips on nodes"), cl::Hidden, 78 cl::cat(BoltCategory)); 79 80 cl::opt<JumpTableSupportLevel> 81 JumpTables("jump-tables", 82 cl::desc("jump tables support (default=basic)"), 83 cl::init(JTS_BASIC), 84 cl::values( 85 clEnumValN(JTS_NONE, "none", 86 "do not optimize functions with jump tables"), 87 clEnumValN(JTS_BASIC, "basic", 88 "optimize functions with jump tables"), 89 clEnumValN(JTS_MOVE, "move", 90 "move jump tables to a separate section"), 91 clEnumValN(JTS_SPLIT, "split", 92 "split jump tables section into hot and cold based on " 93 "function execution frequency"), 94 clEnumValN(JTS_AGGRESSIVE, "aggressive", 95 "aggressively split jump tables section based on usage " 96 "of the tables")), 97 cl::ZeroOrMore, 98 cl::cat(BoltOptCategory)); 99 100 static cl::opt<bool> NoScan( 101 "no-scan", 102 cl::desc( 103 "do not scan cold functions for external references (may result in " 104 "slower binary)"), 105 cl::Hidden, cl::cat(BoltOptCategory)); 106 107 cl::opt<bool> 108 PreserveBlocksAlignment("preserve-blocks-alignment", 109 cl::desc("try to preserve basic block alignment"), 110 cl::cat(BoltOptCategory)); 111 112 cl::opt<bool> 113 PrintDynoStats("dyno-stats", 114 cl::desc("print execution info based on profile"), 115 cl::cat(BoltCategory)); 116 117 static cl::opt<bool> 118 PrintDynoStatsOnly("print-dyno-stats-only", 119 cl::desc("while printing functions output dyno-stats and skip instructions"), 120 cl::init(false), 121 cl::Hidden, 122 cl::cat(BoltCategory)); 123 124 static cl::list<std::string> 125 PrintOnly("print-only", 126 cl::CommaSeparated, 127 cl::desc("list of functions to print"), 128 cl::value_desc("func1,func2,func3,..."), 129 cl::Hidden, 130 cl::cat(BoltCategory)); 131 132 cl::opt<bool> 133 TimeBuild("time-build", 134 cl::desc("print time spent constructing binary functions"), 135 cl::Hidden, cl::cat(BoltCategory)); 136 137 cl::opt<bool> 138 TrapOnAVX512("trap-avx512", 139 cl::desc("in relocation mode trap upon entry to any function that uses " 140 "AVX-512 instructions"), 141 cl::init(false), 142 cl::ZeroOrMore, 143 cl::Hidden, 144 cl::cat(BoltCategory)); 145 146 bool shouldPrint(const BinaryFunction &Function) { 147 if (Function.isIgnored()) 148 return false; 149 150 if (PrintOnly.empty()) 151 return true; 152 153 for (std::string &Name : opts::PrintOnly) { 154 if (Function.hasNameRegex(Name)) { 155 return true; 156 } 157 } 158 159 return false; 160 } 161 162 } // namespace opts 163 164 namespace llvm { 165 namespace bolt { 166 167 constexpr unsigned BinaryFunction::MinAlign; 168 169 namespace { 170 171 template <typename R> bool emptyRange(const R &Range) { 172 return Range.begin() == Range.end(); 173 } 174 175 /// Gets debug line information for the instruction located at the given 176 /// address in the original binary. The SMLoc's pointer is used 177 /// to point to this information, which is represented by a 178 /// DebugLineTableRowRef. The returned pointer is null if no debug line 179 /// information for this instruction was found. 180 SMLoc findDebugLineInformationForInstructionAt( 181 uint64_t Address, DWARFUnit *Unit, 182 const DWARFDebugLine::LineTable *LineTable) { 183 // We use the pointer in SMLoc to store an instance of DebugLineTableRowRef, 184 // which occupies 64 bits. Thus, we can only proceed if the struct fits into 185 // the pointer itself. 186 assert(sizeof(decltype(SMLoc().getPointer())) >= 187 sizeof(DebugLineTableRowRef) && 188 "Cannot fit instruction debug line information into SMLoc's pointer"); 189 190 SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc(); 191 uint32_t RowIndex = LineTable->lookupAddress( 192 {Address, object::SectionedAddress::UndefSection}); 193 if (RowIndex == LineTable->UnknownRowIndex) 194 return NullResult; 195 196 assert(RowIndex < LineTable->Rows.size() && 197 "Line Table lookup returned invalid index."); 198 199 decltype(SMLoc().getPointer()) Ptr; 200 DebugLineTableRowRef *InstructionLocation = 201 reinterpret_cast<DebugLineTableRowRef *>(&Ptr); 202 203 InstructionLocation->DwCompileUnitIndex = Unit->getOffset(); 204 InstructionLocation->RowIndex = RowIndex + 1; 205 206 return SMLoc::getFromPointer(Ptr); 207 } 208 209 std::string buildSectionName(StringRef Prefix, StringRef Name, 210 const BinaryContext &BC) { 211 if (BC.isELF()) 212 return (Prefix + Name).str(); 213 static NameShortener NS; 214 return (Prefix + Twine(NS.getID(Name))).str(); 215 } 216 217 raw_ostream &operator<<(raw_ostream &OS, const BinaryFunction::State State) { 218 switch (State) { 219 case BinaryFunction::State::Empty: OS << "empty"; break; 220 case BinaryFunction::State::Disassembled: OS << "disassembled"; break; 221 case BinaryFunction::State::CFG: OS << "CFG constructed"; break; 222 case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break; 223 case BinaryFunction::State::EmittedCFG: OS << "emitted with CFG"; break; 224 case BinaryFunction::State::Emitted: OS << "emitted"; break; 225 } 226 227 return OS; 228 } 229 230 } // namespace 231 232 std::string BinaryFunction::buildCodeSectionName(StringRef Name, 233 const BinaryContext &BC) { 234 return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC); 235 } 236 237 std::string BinaryFunction::buildColdCodeSectionName(StringRef Name, 238 const BinaryContext &BC) { 239 return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name, 240 BC); 241 } 242 243 uint64_t BinaryFunction::Count = 0; 244 245 Optional<StringRef> BinaryFunction::hasNameRegex(const StringRef Name) const { 246 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 247 Regex MatchName(RegexName); 248 Optional<StringRef> Match = forEachName( 249 [&MatchName](StringRef Name) { return MatchName.match(Name); }); 250 251 return Match; 252 } 253 254 Optional<StringRef> 255 BinaryFunction::hasRestoredNameRegex(const StringRef Name) const { 256 const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str(); 257 Regex MatchName(RegexName); 258 Optional<StringRef> Match = forEachName([&MatchName](StringRef Name) { 259 return MatchName.match(NameResolver::restore(Name)); 260 }); 261 262 return Match; 263 } 264 265 std::string BinaryFunction::getDemangledName() const { 266 StringRef MangledName = NameResolver::restore(getOneName()); 267 return demangle(MangledName.str()); 268 } 269 270 BinaryBasicBlock * 271 BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) { 272 if (Offset > Size) 273 return nullptr; 274 275 if (BasicBlockOffsets.empty()) 276 return nullptr; 277 278 /* 279 * This is commented out because it makes BOLT too slow. 280 * assert(std::is_sorted(BasicBlockOffsets.begin(), 281 * BasicBlockOffsets.end(), 282 * CompareBasicBlockOffsets()))); 283 */ 284 auto I = 285 llvm::upper_bound(BasicBlockOffsets, BasicBlockOffset(Offset, nullptr), 286 CompareBasicBlockOffsets()); 287 assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0"); 288 --I; 289 BinaryBasicBlock *BB = I->second; 290 return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr; 291 } 292 293 void BinaryFunction::markUnreachableBlocks() { 294 std::stack<BinaryBasicBlock *> Stack; 295 296 for (BinaryBasicBlock *BB : layout()) 297 BB->markValid(false); 298 299 // Add all entries and landing pads as roots. 300 for (BinaryBasicBlock *BB : BasicBlocks) { 301 if (isEntryPoint(*BB) || BB->isLandingPad()) { 302 Stack.push(BB); 303 BB->markValid(true); 304 continue; 305 } 306 // FIXME: 307 // Also mark BBs with indirect jumps as reachable, since we do not 308 // support removing unused jump tables yet (GH-issue20). 309 for (const MCInst &Inst : *BB) { 310 if (BC.MIB->getJumpTable(Inst)) { 311 Stack.push(BB); 312 BB->markValid(true); 313 break; 314 } 315 } 316 } 317 318 // Determine reachable BBs from the entry point 319 while (!Stack.empty()) { 320 BinaryBasicBlock *BB = Stack.top(); 321 Stack.pop(); 322 for (BinaryBasicBlock *Succ : BB->successors()) { 323 if (Succ->isValid()) 324 continue; 325 Succ->markValid(true); 326 Stack.push(Succ); 327 } 328 } 329 } 330 331 // Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs 332 // will be cleaned up by fixBranches(). 333 std::pair<unsigned, uint64_t> BinaryFunction::eraseInvalidBBs() { 334 BasicBlockOrderType NewLayout; 335 unsigned Count = 0; 336 uint64_t Bytes = 0; 337 for (BinaryBasicBlock *BB : layout()) { 338 if (BB->isValid()) { 339 NewLayout.push_back(BB); 340 } else { 341 assert(!isEntryPoint(*BB) && "all entry blocks must be valid"); 342 ++Count; 343 Bytes += BC.computeCodeSize(BB->begin(), BB->end()); 344 } 345 } 346 BasicBlocksLayout = std::move(NewLayout); 347 348 BasicBlockListType NewBasicBlocks; 349 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 350 BinaryBasicBlock *BB = *I; 351 if (BB->isValid()) { 352 NewBasicBlocks.push_back(BB); 353 } else { 354 // Make sure the block is removed from the list of predecessors. 355 BB->removeAllSuccessors(); 356 DeletedBasicBlocks.push_back(BB); 357 } 358 } 359 BasicBlocks = std::move(NewBasicBlocks); 360 361 assert(BasicBlocks.size() == BasicBlocksLayout.size()); 362 363 // Update CFG state if needed 364 if (Count > 0) 365 recomputeLandingPads(); 366 367 return std::make_pair(Count, Bytes); 368 } 369 370 bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const { 371 // This function should work properly before and after function reordering. 372 // In order to accomplish this, we use the function index (if it is valid). 373 // If the function indices are not valid, we fall back to the original 374 // addresses. This should be ok because the functions without valid indices 375 // should have been ordered with a stable sort. 376 const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol); 377 if (CalleeBF) { 378 if (CalleeBF->isInjected()) 379 return true; 380 381 if (hasValidIndex() && CalleeBF->hasValidIndex()) { 382 return getIndex() < CalleeBF->getIndex(); 383 } else if (hasValidIndex() && !CalleeBF->hasValidIndex()) { 384 return true; 385 } else if (!hasValidIndex() && CalleeBF->hasValidIndex()) { 386 return false; 387 } else { 388 return getAddress() < CalleeBF->getAddress(); 389 } 390 } else { 391 // Absolute symbol. 392 ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol); 393 assert(CalleeAddressOrError && "unregistered symbol found"); 394 return *CalleeAddressOrError > getAddress(); 395 } 396 } 397 398 void BinaryFunction::dump(bool PrintInstructions) const { 399 print(dbgs(), "", PrintInstructions); 400 } 401 402 void BinaryFunction::print(raw_ostream &OS, std::string Annotation, 403 bool PrintInstructions) const { 404 if (!opts::shouldPrint(*this)) 405 return; 406 407 StringRef SectionName = 408 OriginSection ? OriginSection->getName() : "<no origin section>"; 409 OS << "Binary Function \"" << *this << "\" " << Annotation << " {"; 410 std::vector<StringRef> AllNames = getNames(); 411 if (AllNames.size() > 1) { 412 OS << "\n All names : "; 413 const char *Sep = ""; 414 for (const StringRef &Name : AllNames) { 415 OS << Sep << Name; 416 Sep = "\n "; 417 } 418 } 419 OS << "\n Number : " << FunctionNumber 420 << "\n State : " << CurrentState 421 << "\n Address : 0x" << Twine::utohexstr(Address) 422 << "\n Size : 0x" << Twine::utohexstr(Size) 423 << "\n MaxSize : 0x" << Twine::utohexstr(MaxSize) 424 << "\n Offset : 0x" << Twine::utohexstr(FileOffset) 425 << "\n Section : " << SectionName 426 << "\n Orc Section : " << getCodeSectionName() 427 << "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress()) 428 << "\n IsSimple : " << IsSimple 429 << "\n IsMultiEntry: " << isMultiEntry() 430 << "\n IsSplit : " << isSplit() 431 << "\n BB Count : " << size(); 432 433 if (HasFixedIndirectBranch) 434 OS << "\n HasFixedIndirectBranch : true"; 435 if (HasUnknownControlFlow) 436 OS << "\n Unknown CF : true"; 437 if (getPersonalityFunction()) 438 OS << "\n Personality : " << getPersonalityFunction()->getName(); 439 if (IsFragment) 440 OS << "\n IsFragment : true"; 441 if (isFolded()) 442 OS << "\n FoldedInto : " << *getFoldedIntoFunction(); 443 for (BinaryFunction *ParentFragment : ParentFragments) 444 OS << "\n Parent : " << *ParentFragment; 445 if (!Fragments.empty()) { 446 OS << "\n Fragments : "; 447 ListSeparator LS; 448 for (BinaryFunction *Frag : Fragments) 449 OS << LS << *Frag; 450 } 451 if (hasCFG()) 452 OS << "\n Hash : " << Twine::utohexstr(computeHash()); 453 if (isMultiEntry()) { 454 OS << "\n Secondary Entry Points : "; 455 ListSeparator LS; 456 for (const auto &KV : SecondaryEntryPoints) 457 OS << LS << KV.second->getName(); 458 } 459 if (FrameInstructions.size()) 460 OS << "\n CFI Instrs : " << FrameInstructions.size(); 461 if (BasicBlocksLayout.size()) { 462 OS << "\n BB Layout : "; 463 ListSeparator LS; 464 for (BinaryBasicBlock *BB : BasicBlocksLayout) 465 OS << LS << BB->getName(); 466 } 467 if (ImageAddress) 468 OS << "\n Image : 0x" << Twine::utohexstr(ImageAddress); 469 if (ExecutionCount != COUNT_NO_PROFILE) { 470 OS << "\n Exec Count : " << ExecutionCount; 471 OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f); 472 } 473 474 if (opts::PrintDynoStats && !BasicBlocksLayout.empty()) { 475 OS << '\n'; 476 DynoStats dynoStats = getDynoStats(*this); 477 OS << dynoStats; 478 } 479 480 OS << "\n}\n"; 481 482 if (opts::PrintDynoStatsOnly || !PrintInstructions || !BC.InstPrinter) 483 return; 484 485 // Offset of the instruction in function. 486 uint64_t Offset = 0; 487 488 if (BasicBlocks.empty() && !Instructions.empty()) { 489 // Print before CFG was built. 490 for (const std::pair<const uint32_t, MCInst> &II : Instructions) { 491 Offset = II.first; 492 493 // Print label if exists at this offset. 494 auto LI = Labels.find(Offset); 495 if (LI != Labels.end()) { 496 if (const MCSymbol *EntrySymbol = 497 getSecondaryEntryPointSymbol(LI->second)) 498 OS << EntrySymbol->getName() << " (Entry Point):\n"; 499 OS << LI->second->getName() << ":\n"; 500 } 501 502 BC.printInstruction(OS, II.second, Offset, this); 503 } 504 } 505 506 for (uint32_t I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 507 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 508 if (I != 0 && BB->isCold() != BasicBlocksLayout[I - 1]->isCold()) 509 OS << "------- HOT-COLD SPLIT POINT -------\n\n"; 510 511 OS << BB->getName() << " (" << BB->size() 512 << " instructions, align : " << BB->getAlignment() << ")\n"; 513 514 if (isEntryPoint(*BB)) { 515 if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB)) 516 OS << " Secondary Entry Point: " << EntrySymbol->getName() << '\n'; 517 else 518 OS << " Entry Point\n"; 519 } 520 521 if (BB->isLandingPad()) 522 OS << " Landing Pad\n"; 523 524 uint64_t BBExecCount = BB->getExecutionCount(); 525 if (hasValidProfile()) { 526 OS << " Exec Count : "; 527 if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE) 528 OS << BBExecCount << '\n'; 529 else 530 OS << "<unknown>\n"; 531 } 532 if (BB->getCFIState() >= 0) 533 OS << " CFI State : " << BB->getCFIState() << '\n'; 534 if (opts::EnableBAT) { 535 OS << " Input offset: " << Twine::utohexstr(BB->getInputOffset()) 536 << "\n"; 537 } 538 if (!BB->pred_empty()) { 539 OS << " Predecessors: "; 540 ListSeparator LS; 541 for (BinaryBasicBlock *Pred : BB->predecessors()) 542 OS << LS << Pred->getName(); 543 OS << '\n'; 544 } 545 if (!BB->throw_empty()) { 546 OS << " Throwers: "; 547 ListSeparator LS; 548 for (BinaryBasicBlock *Throw : BB->throwers()) 549 OS << LS << Throw->getName(); 550 OS << '\n'; 551 } 552 553 Offset = alignTo(Offset, BB->getAlignment()); 554 555 // Note: offsets are imprecise since this is happening prior to relaxation. 556 Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this); 557 558 if (!BB->succ_empty()) { 559 OS << " Successors: "; 560 // For more than 2 successors, sort them based on frequency. 561 std::vector<uint64_t> Indices(BB->succ_size()); 562 std::iota(Indices.begin(), Indices.end(), 0); 563 if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) { 564 llvm::stable_sort(Indices, [&](const uint64_t A, const uint64_t B) { 565 return BB->BranchInfo[B] < BB->BranchInfo[A]; 566 }); 567 } 568 ListSeparator LS; 569 for (unsigned I = 0; I < Indices.size(); ++I) { 570 BinaryBasicBlock *Succ = BB->Successors[Indices[I]]; 571 BinaryBasicBlock::BinaryBranchInfo &BI = BB->BranchInfo[Indices[I]]; 572 OS << LS << Succ->getName(); 573 if (ExecutionCount != COUNT_NO_PROFILE && 574 BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 575 OS << " (mispreds: " << BI.MispredictedCount 576 << ", count: " << BI.Count << ")"; 577 } else if (ExecutionCount != COUNT_NO_PROFILE && 578 BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 579 OS << " (inferred count: " << BI.Count << ")"; 580 } 581 } 582 OS << '\n'; 583 } 584 585 if (!BB->lp_empty()) { 586 OS << " Landing Pads: "; 587 ListSeparator LS; 588 for (BinaryBasicBlock *LP : BB->landing_pads()) { 589 OS << LS << LP->getName(); 590 if (ExecutionCount != COUNT_NO_PROFILE) { 591 OS << " (count: " << LP->getExecutionCount() << ")"; 592 } 593 } 594 OS << '\n'; 595 } 596 597 // In CFG_Finalized state we can miscalculate CFI state at exit. 598 if (CurrentState == State::CFG) { 599 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 600 if (CFIStateAtExit >= 0) 601 OS << " CFI State: " << CFIStateAtExit << '\n'; 602 } 603 604 OS << '\n'; 605 } 606 607 // Dump new exception ranges for the function. 608 if (!CallSites.empty()) { 609 OS << "EH table:\n"; 610 for (const CallSite &CSI : CallSites) { 611 OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : "; 612 if (CSI.LP) 613 OS << *CSI.LP; 614 else 615 OS << "0"; 616 OS << ", action : " << CSI.Action << '\n'; 617 } 618 OS << '\n'; 619 } 620 621 // Print all jump tables. 622 for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables) 623 JTI.second->print(OS); 624 625 OS << "DWARF CFI Instructions:\n"; 626 if (OffsetToCFI.size()) { 627 // Pre-buildCFG information 628 for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) { 629 OS << format(" %08x:\t", Elmt.first); 630 assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset"); 631 BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]); 632 OS << "\n"; 633 } 634 } else { 635 // Post-buildCFG information 636 for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) { 637 const MCCFIInstruction &CFI = FrameInstructions[I]; 638 OS << format(" %d:\t", I); 639 BinaryContext::printCFI(OS, CFI); 640 OS << "\n"; 641 } 642 } 643 if (FrameInstructions.empty()) 644 OS << " <empty>\n"; 645 646 OS << "End of Function \"" << *this << "\"\n\n"; 647 } 648 649 void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset, 650 uint64_t Size) const { 651 const char *Sep = " # Relocs: "; 652 653 auto RI = Relocations.lower_bound(Offset); 654 while (RI != Relocations.end() && RI->first < Offset + Size) { 655 OS << Sep << "(R: " << RI->second << ")"; 656 Sep = ", "; 657 ++RI; 658 } 659 } 660 661 namespace { 662 std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr, 663 MCPhysReg NewReg) { 664 StringRef ExprBytes = Instr.getValues(); 665 assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short"); 666 uint8_t Opcode = ExprBytes[0]; 667 assert((Opcode == dwarf::DW_CFA_expression || 668 Opcode == dwarf::DW_CFA_val_expression) && 669 "invalid DWARF expression CFI"); 670 (void)Opcode; 671 const uint8_t *const Start = 672 reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data()); 673 const uint8_t *const End = 674 reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1); 675 unsigned Size = 0; 676 decodeULEB128(Start, &Size, End); 677 assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI"); 678 SmallString<8> Tmp; 679 raw_svector_ostream OSE(Tmp); 680 encodeULEB128(NewReg, OSE); 681 return Twine(ExprBytes.slice(0, 1)) 682 .concat(OSE.str()) 683 .concat(ExprBytes.drop_front(1 + Size)) 684 .str(); 685 } 686 } // namespace 687 688 void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr, 689 MCPhysReg NewReg) { 690 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 691 assert(OldCFI && "invalid CFI instr"); 692 switch (OldCFI->getOperation()) { 693 default: 694 llvm_unreachable("Unexpected instruction"); 695 case MCCFIInstruction::OpDefCfa: 696 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg, 697 OldCFI->getOffset())); 698 break; 699 case MCCFIInstruction::OpDefCfaRegister: 700 setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg)); 701 break; 702 case MCCFIInstruction::OpOffset: 703 setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg, 704 OldCFI->getOffset())); 705 break; 706 case MCCFIInstruction::OpRegister: 707 setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg, 708 OldCFI->getRegister2())); 709 break; 710 case MCCFIInstruction::OpSameValue: 711 setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg)); 712 break; 713 case MCCFIInstruction::OpEscape: 714 setCFIFor(Instr, 715 MCCFIInstruction::createEscape( 716 nullptr, 717 StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg)))); 718 break; 719 case MCCFIInstruction::OpRestore: 720 setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg)); 721 break; 722 case MCCFIInstruction::OpUndefined: 723 setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg)); 724 break; 725 } 726 } 727 728 const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr, 729 int64_t NewOffset) { 730 const MCCFIInstruction *OldCFI = getCFIFor(Instr); 731 assert(OldCFI && "invalid CFI instr"); 732 switch (OldCFI->getOperation()) { 733 default: 734 llvm_unreachable("Unexpected instruction"); 735 case MCCFIInstruction::OpDefCfaOffset: 736 setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset)); 737 break; 738 case MCCFIInstruction::OpAdjustCfaOffset: 739 setCFIFor(Instr, 740 MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset)); 741 break; 742 case MCCFIInstruction::OpDefCfa: 743 setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(), 744 NewOffset)); 745 break; 746 case MCCFIInstruction::OpOffset: 747 setCFIFor(Instr, MCCFIInstruction::createOffset( 748 nullptr, OldCFI->getRegister(), NewOffset)); 749 break; 750 } 751 return getCFIFor(Instr); 752 } 753 754 IndirectBranchType 755 BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size, 756 uint64_t Offset, 757 uint64_t &TargetAddress) { 758 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 759 760 // The instruction referencing memory used by the branch instruction. 761 // It could be the branch instruction itself or one of the instructions 762 // setting the value of the register used by the branch. 763 MCInst *MemLocInstr; 764 765 // Address of the table referenced by MemLocInstr. Could be either an 766 // array of function pointers, or a jump table. 767 uint64_t ArrayStart = 0; 768 769 unsigned BaseRegNum, IndexRegNum; 770 int64_t DispValue; 771 const MCExpr *DispExpr; 772 773 // In AArch, identify the instruction adding the PC-relative offset to 774 // jump table entries to correctly decode it. 775 MCInst *PCRelBaseInstr; 776 uint64_t PCRelAddr = 0; 777 778 auto Begin = Instructions.begin(); 779 if (BC.isAArch64()) { 780 PreserveNops = BC.HasRelocations; 781 // Start at the last label as an approximation of the current basic block. 782 // This is a heuristic, since the full set of labels have yet to be 783 // determined 784 for (auto LI = Labels.rbegin(); LI != Labels.rend(); ++LI) { 785 auto II = Instructions.find(LI->first); 786 if (II != Instructions.end()) { 787 Begin = II; 788 break; 789 } 790 } 791 } 792 793 IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch( 794 Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum, 795 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 796 797 if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr) 798 return BranchType; 799 800 if (MemLocInstr != &Instruction) 801 IndexRegNum = BC.MIB->getNoRegister(); 802 803 if (BC.isAArch64()) { 804 const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1); 805 assert(Sym && "Symbol extraction failed"); 806 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym); 807 if (SymValueOrError) { 808 PCRelAddr = *SymValueOrError; 809 } else { 810 for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) { 811 if (Elmt.second == Sym) { 812 PCRelAddr = Elmt.first + getAddress(); 813 break; 814 } 815 } 816 } 817 uint64_t InstrAddr = 0; 818 for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) { 819 if (&II->second == PCRelBaseInstr) { 820 InstrAddr = II->first + getAddress(); 821 break; 822 } 823 } 824 assert(InstrAddr != 0 && "instruction not found"); 825 // We do this to avoid spurious references to code locations outside this 826 // function (for example, if the indirect jump lives in the last basic 827 // block of the function, it will create a reference to the next function). 828 // This replaces a symbol reference with an immediate. 829 BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr, 830 MCOperand::createImm(PCRelAddr - InstrAddr)); 831 // FIXME: Disable full jump table processing for AArch64 until we have a 832 // proper way of determining the jump table limits. 833 return IndirectBranchType::UNKNOWN; 834 } 835 836 // RIP-relative addressing should be converted to symbol form by now 837 // in processed instructions (but not in jump). 838 if (DispExpr) { 839 const MCSymbol *TargetSym; 840 uint64_t TargetOffset; 841 std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr); 842 ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym); 843 assert(SymValueOrError && "global symbol needs a value"); 844 ArrayStart = *SymValueOrError + TargetOffset; 845 BaseRegNum = BC.MIB->getNoRegister(); 846 if (BC.isAArch64()) { 847 ArrayStart &= ~0xFFFULL; 848 ArrayStart += DispValue & 0xFFFULL; 849 } 850 } else { 851 ArrayStart = static_cast<uint64_t>(DispValue); 852 } 853 854 if (BaseRegNum == BC.MRI->getProgramCounter()) 855 ArrayStart += getAddress() + Offset + Size; 856 857 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x" 858 << Twine::utohexstr(ArrayStart) << '\n'); 859 860 ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart); 861 if (!Section) { 862 // No section - possibly an absolute address. Since we don't allow 863 // internal function addresses to escape the function scope - we 864 // consider it a tail call. 865 if (opts::Verbosity >= 1) { 866 errs() << "BOLT-WARNING: no section for address 0x" 867 << Twine::utohexstr(ArrayStart) << " referenced from function " 868 << *this << '\n'; 869 } 870 return IndirectBranchType::POSSIBLE_TAIL_CALL; 871 } 872 if (Section->isVirtual()) { 873 // The contents are filled at runtime. 874 return IndirectBranchType::POSSIBLE_TAIL_CALL; 875 } 876 877 if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) { 878 ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart); 879 if (!Value) 880 return IndirectBranchType::UNKNOWN; 881 882 if (!BC.getSectionForAddress(ArrayStart)->isReadOnly()) 883 return IndirectBranchType::UNKNOWN; 884 885 outs() << "BOLT-INFO: fixed indirect branch detected in " << *this 886 << " at 0x" << Twine::utohexstr(getAddress() + Offset) 887 << " referencing data at 0x" << Twine::utohexstr(ArrayStart) 888 << " the destination value is 0x" << Twine::utohexstr(*Value) 889 << '\n'; 890 891 TargetAddress = *Value; 892 return BranchType; 893 } 894 895 // Check if there's already a jump table registered at this address. 896 MemoryContentsType MemType; 897 if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) { 898 switch (JT->Type) { 899 case JumpTable::JTT_NORMAL: 900 MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE; 901 break; 902 case JumpTable::JTT_PIC: 903 MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 904 break; 905 } 906 } else { 907 MemType = BC.analyzeMemoryAt(ArrayStart, *this); 908 } 909 910 // Check that jump table type in instruction pattern matches memory contents. 911 JumpTable::JumpTableType JTType; 912 if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) { 913 if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 914 return IndirectBranchType::UNKNOWN; 915 JTType = JumpTable::JTT_PIC; 916 } else { 917 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE) 918 return IndirectBranchType::UNKNOWN; 919 920 if (MemType == MemoryContentsType::UNKNOWN) 921 return IndirectBranchType::POSSIBLE_TAIL_CALL; 922 923 BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE; 924 JTType = JumpTable::JTT_NORMAL; 925 } 926 927 // Convert the instruction into jump table branch. 928 const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType); 929 BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get()); 930 BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum); 931 932 JTSites.emplace_back(Offset, ArrayStart); 933 934 return BranchType; 935 } 936 937 MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address, 938 bool CreatePastEnd) { 939 const uint64_t Offset = Address - getAddress(); 940 941 if ((Offset == getSize()) && CreatePastEnd) 942 return getFunctionEndLabel(); 943 944 auto LI = Labels.find(Offset); 945 if (LI != Labels.end()) 946 return LI->second; 947 948 // For AArch64, check if this address is part of a constant island. 949 if (BC.isAArch64()) { 950 if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address)) 951 return IslandSym; 952 } 953 954 MCSymbol *Label = BC.Ctx->createNamedTempSymbol(); 955 Labels[Offset] = Label; 956 957 return Label; 958 } 959 960 ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const { 961 BinarySection &Section = *getOriginSection(); 962 assert(Section.containsRange(getAddress(), getMaxSize()) && 963 "wrong section for function"); 964 965 if (!Section.isText() || Section.isVirtual() || !Section.getSize()) 966 return std::make_error_code(std::errc::bad_address); 967 968 StringRef SectionContents = Section.getContents(); 969 970 assert(SectionContents.size() == Section.getSize() && 971 "section size mismatch"); 972 973 // Function offset from the section start. 974 uint64_t Offset = getAddress() - Section.getAddress(); 975 auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data()); 976 return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize()); 977 } 978 979 size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const { 980 if (!Islands) 981 return 0; 982 983 if (Islands->DataOffsets.find(Offset) == Islands->DataOffsets.end()) 984 return 0; 985 986 auto Iter = Islands->CodeOffsets.upper_bound(Offset); 987 if (Iter != Islands->CodeOffsets.end()) 988 return *Iter - Offset; 989 return getSize() - Offset; 990 } 991 992 bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const { 993 ArrayRef<uint8_t> FunctionData = *getData(); 994 uint64_t EndOfCode = getSize(); 995 if (Islands) { 996 auto Iter = Islands->DataOffsets.upper_bound(Offset); 997 if (Iter != Islands->DataOffsets.end()) 998 EndOfCode = *Iter; 999 } 1000 for (uint64_t I = Offset; I < EndOfCode; ++I) 1001 if (FunctionData[I] != 0) 1002 return false; 1003 1004 return true; 1005 } 1006 1007 bool BinaryFunction::disassemble() { 1008 NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs", 1009 "Build Binary Functions", opts::TimeBuild); 1010 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1011 assert(ErrorOrFunctionData && "function data is not available"); 1012 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1013 assert(FunctionData.size() == getMaxSize() && 1014 "function size does not match raw data size"); 1015 1016 auto &Ctx = BC.Ctx; 1017 auto &MIB = BC.MIB; 1018 1019 BC.SymbolicDisAsm->setSymbolizer(MIB->createTargetSymbolizer(*this)); 1020 1021 // Insert a label at the beginning of the function. This will be our first 1022 // basic block. 1023 Labels[0] = Ctx->createNamedTempSymbol("BB0"); 1024 1025 auto handlePCRelOperand = [&](MCInst &Instruction, uint64_t Address, 1026 uint64_t Size) { 1027 uint64_t TargetAddress = 0; 1028 if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address, 1029 Size)) { 1030 errs() << "BOLT-ERROR: PC-relative operand can't be evaluated:\n"; 1031 BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, errs()); 1032 errs() << '\n'; 1033 Instruction.dump_pretty(errs(), BC.InstPrinter.get()); 1034 errs() << '\n'; 1035 errs() << "BOLT-ERROR: cannot handle PC-relative operand at 0x" 1036 << Twine::utohexstr(Address) << ". Skipping function " << *this 1037 << ".\n"; 1038 if (BC.HasRelocations) 1039 exit(1); 1040 IsSimple = false; 1041 return; 1042 } 1043 if (TargetAddress == 0 && opts::Verbosity >= 1) { 1044 outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this 1045 << '\n'; 1046 } 1047 1048 const MCSymbol *TargetSymbol; 1049 uint64_t TargetOffset; 1050 std::tie(TargetSymbol, TargetOffset) = 1051 BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true); 1052 const MCExpr *Expr = MCSymbolRefExpr::create( 1053 TargetSymbol, MCSymbolRefExpr::VK_None, *BC.Ctx); 1054 if (TargetOffset) { 1055 const MCConstantExpr *Offset = 1056 MCConstantExpr::create(TargetOffset, *BC.Ctx); 1057 Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx); 1058 } 1059 MIB->replaceMemOperandDisp(Instruction, 1060 MCOperand::createExpr(BC.MIB->getTargetExprFor( 1061 Instruction, Expr, *BC.Ctx, 0))); 1062 }; 1063 1064 // Used to fix the target of linker-generated AArch64 stubs with no relocation 1065 // info 1066 auto fixStubTarget = [&](MCInst &LoadLowBits, MCInst &LoadHiBits, 1067 uint64_t Target) { 1068 const MCSymbol *TargetSymbol; 1069 uint64_t Addend = 0; 1070 std::tie(TargetSymbol, Addend) = BC.handleAddressRef(Target, *this, true); 1071 1072 int64_t Val; 1073 MIB->replaceImmWithSymbolRef(LoadHiBits, TargetSymbol, Addend, Ctx.get(), 1074 Val, ELF::R_AARCH64_ADR_PREL_PG_HI21); 1075 MIB->replaceImmWithSymbolRef(LoadLowBits, TargetSymbol, Addend, Ctx.get(), 1076 Val, ELF::R_AARCH64_ADD_ABS_LO12_NC); 1077 }; 1078 1079 auto handleExternalReference = [&](MCInst &Instruction, uint64_t Size, 1080 uint64_t Offset, uint64_t TargetAddress, 1081 bool &IsCall) -> MCSymbol * { 1082 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1083 MCSymbol *TargetSymbol = nullptr; 1084 InterproceduralReferences.insert(TargetAddress); 1085 if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) { 1086 errs() << "BOLT-WARNING: relaxed tail call detected at 0x" 1087 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this 1088 << ". Code size will be increased.\n"; 1089 } 1090 1091 assert(!MIB->isTailCall(Instruction) && 1092 "synthetic tail call instruction found"); 1093 1094 // This is a call regardless of the opcode. 1095 // Assign proper opcode for tail calls, so that they could be 1096 // treated as calls. 1097 if (!IsCall) { 1098 if (!MIB->convertJmpToTailCall(Instruction)) { 1099 assert(MIB->isConditionalBranch(Instruction) && 1100 "unknown tail call instruction"); 1101 if (opts::Verbosity >= 2) { 1102 errs() << "BOLT-WARNING: conditional tail call detected in " 1103 << "function " << *this << " at 0x" 1104 << Twine::utohexstr(AbsoluteInstrAddr) << ".\n"; 1105 } 1106 } 1107 IsCall = true; 1108 } 1109 1110 TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat"); 1111 if (opts::Verbosity >= 2 && TargetAddress == 0) { 1112 // We actually see calls to address 0 in presence of weak 1113 // symbols originating from libraries. This code is never meant 1114 // to be executed. 1115 outs() << "BOLT-INFO: Function " << *this 1116 << " has a call to address zero.\n"; 1117 } 1118 1119 return TargetSymbol; 1120 }; 1121 1122 auto handleIndirectBranch = [&](MCInst &Instruction, uint64_t Size, 1123 uint64_t Offset) { 1124 uint64_t IndirectTarget = 0; 1125 IndirectBranchType Result = 1126 processIndirectBranch(Instruction, Size, Offset, IndirectTarget); 1127 switch (Result) { 1128 default: 1129 llvm_unreachable("unexpected result"); 1130 case IndirectBranchType::POSSIBLE_TAIL_CALL: { 1131 bool Result = MIB->convertJmpToTailCall(Instruction); 1132 (void)Result; 1133 assert(Result); 1134 break; 1135 } 1136 case IndirectBranchType::POSSIBLE_JUMP_TABLE: 1137 case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE: 1138 if (opts::JumpTables == JTS_NONE) 1139 IsSimple = false; 1140 break; 1141 case IndirectBranchType::POSSIBLE_FIXED_BRANCH: { 1142 if (containsAddress(IndirectTarget)) { 1143 const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget); 1144 Instruction.clear(); 1145 MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get()); 1146 TakenBranches.emplace_back(Offset, IndirectTarget - getAddress()); 1147 HasFixedIndirectBranch = true; 1148 } else { 1149 MIB->convertJmpToTailCall(Instruction); 1150 InterproceduralReferences.insert(IndirectTarget); 1151 } 1152 break; 1153 } 1154 case IndirectBranchType::UNKNOWN: 1155 // Keep processing. We'll do more checks and fixes in 1156 // postProcessIndirectBranches(). 1157 UnknownIndirectBranchOffsets.emplace(Offset); 1158 break; 1159 } 1160 }; 1161 1162 // Check for linker veneers, which lack relocations and need manual 1163 // adjustments. 1164 auto handleAArch64IndirectCall = [&](MCInst &Instruction, uint64_t Offset) { 1165 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1166 MCInst *TargetHiBits, *TargetLowBits; 1167 uint64_t TargetAddress; 1168 if (MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(), 1169 AbsoluteInstrAddr, Instruction, TargetHiBits, 1170 TargetLowBits, TargetAddress)) { 1171 MIB->addAnnotation(Instruction, "AArch64Veneer", true); 1172 1173 uint8_t Counter = 0; 1174 for (auto It = std::prev(Instructions.end()); Counter != 2; 1175 --It, ++Counter) { 1176 MIB->addAnnotation(It->second, "AArch64Veneer", true); 1177 } 1178 1179 fixStubTarget(*TargetLowBits, *TargetHiBits, TargetAddress); 1180 } 1181 }; 1182 1183 uint64_t Size = 0; // instruction size 1184 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1185 MCInst Instruction; 1186 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1187 1188 // Check for data inside code and ignore it 1189 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1190 Size = DataInCodeSize; 1191 continue; 1192 } 1193 1194 if (!BC.SymbolicDisAsm->getInstruction(Instruction, Size, 1195 FunctionData.slice(Offset), 1196 AbsoluteInstrAddr, nulls())) { 1197 // Functions with "soft" boundaries, e.g. coming from assembly source, 1198 // can have 0-byte padding at the end. 1199 if (isZeroPaddingAt(Offset)) 1200 break; 1201 1202 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1203 << Twine::utohexstr(Offset) << " (address 0x" 1204 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this 1205 << '\n'; 1206 // Some AVX-512 instructions could not be disassembled at all. 1207 if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) { 1208 setTrapOnEntry(); 1209 BC.TrappedFunctions.push_back(this); 1210 } else { 1211 setIgnored(); 1212 } 1213 1214 break; 1215 } 1216 1217 // Check integrity of LLVM assembler/disassembler. 1218 if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) && 1219 !BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) { 1220 if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) { 1221 errs() << "BOLT-WARNING: mismatching LLVM encoding detected in " 1222 << "function " << *this << " for instruction :\n"; 1223 BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr); 1224 errs() << '\n'; 1225 } 1226 } 1227 1228 // Special handling for AVX-512 instructions. 1229 if (MIB->hasEVEXEncoding(Instruction)) { 1230 if (BC.HasRelocations && opts::TrapOnAVX512) { 1231 setTrapOnEntry(); 1232 BC.TrappedFunctions.push_back(this); 1233 break; 1234 } 1235 1236 // Disassemble again without the symbolizer and check that the disassembly 1237 // matches the assembler output. 1238 MCInst TempInst; 1239 BC.DisAsm->getInstruction(TempInst, Size, FunctionData.slice(Offset), 1240 AbsoluteInstrAddr, nulls()); 1241 if (!BC.validateEncoding(TempInst, FunctionData.slice(Offset, Size))) { 1242 if (opts::Verbosity >= 0) { 1243 errs() << "BOLT-WARNING: internal assembler/disassembler error " 1244 "detected for AVX512 instruction:\n"; 1245 BC.printInstruction(errs(), TempInst, AbsoluteInstrAddr); 1246 errs() << " in function " << *this << '\n'; 1247 } 1248 1249 setIgnored(); 1250 break; 1251 } 1252 } 1253 1254 if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) { 1255 uint64_t TargetAddress = 0; 1256 if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1257 TargetAddress)) { 1258 // Check if the target is within the same function. Otherwise it's 1259 // a call, possibly a tail call. 1260 // 1261 // If the target *is* the function address it could be either a branch 1262 // or a recursive call. 1263 bool IsCall = MIB->isCall(Instruction); 1264 const bool IsCondBranch = MIB->isConditionalBranch(Instruction); 1265 MCSymbol *TargetSymbol = nullptr; 1266 1267 if (BC.MIB->isUnsupportedBranch(Instruction.getOpcode())) { 1268 setIgnored(); 1269 if (BinaryFunction *TargetFunc = 1270 BC.getBinaryFunctionContainingAddress(TargetAddress)) 1271 TargetFunc->setIgnored(); 1272 } 1273 1274 if (IsCall && containsAddress(TargetAddress)) { 1275 if (TargetAddress == getAddress()) { 1276 // Recursive call. 1277 TargetSymbol = getSymbol(); 1278 } else { 1279 if (BC.isX86()) { 1280 // Dangerous old-style x86 PIC code. We may need to freeze this 1281 // function, so preserve the function as is for now. 1282 PreserveNops = true; 1283 } else { 1284 errs() << "BOLT-WARNING: internal call detected at 0x" 1285 << Twine::utohexstr(AbsoluteInstrAddr) << " in function " 1286 << *this << ". Skipping.\n"; 1287 IsSimple = false; 1288 } 1289 } 1290 } 1291 1292 if (!TargetSymbol) { 1293 // Create either local label or external symbol. 1294 if (containsAddress(TargetAddress)) { 1295 TargetSymbol = getOrCreateLocalLabel(TargetAddress); 1296 } else { 1297 if (TargetAddress == getAddress() + getSize() && 1298 TargetAddress < getAddress() + getMaxSize()) { 1299 // Result of __builtin_unreachable(). 1300 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x" 1301 << Twine::utohexstr(AbsoluteInstrAddr) 1302 << " in function " << *this 1303 << " : replacing with nop.\n"); 1304 BC.MIB->createNoop(Instruction); 1305 if (IsCondBranch) { 1306 // Register branch offset for profile validation. 1307 IgnoredBranches.emplace_back(Offset, Offset + Size); 1308 } 1309 goto add_instruction; 1310 } 1311 // May update Instruction and IsCall 1312 TargetSymbol = handleExternalReference(Instruction, Size, Offset, 1313 TargetAddress, IsCall); 1314 } 1315 } 1316 1317 if (!IsCall) { 1318 // Add taken branch info. 1319 TakenBranches.emplace_back(Offset, TargetAddress - getAddress()); 1320 } 1321 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx); 1322 1323 // Mark CTC. 1324 if (IsCondBranch && IsCall) 1325 MIB->setConditionalTailCall(Instruction, TargetAddress); 1326 } else { 1327 // Could not evaluate branch. Should be an indirect call or an 1328 // indirect branch. Bail out on the latter case. 1329 if (MIB->isIndirectBranch(Instruction)) 1330 handleIndirectBranch(Instruction, Size, Offset); 1331 // Indirect call. We only need to fix it if the operand is RIP-relative. 1332 if (IsSimple && MIB->hasPCRelOperand(Instruction)) 1333 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1334 1335 if (BC.isAArch64()) 1336 handleAArch64IndirectCall(Instruction, Offset); 1337 } 1338 } else if (BC.isAArch64()) { 1339 // Check if there's a relocation associated with this instruction. 1340 bool UsedReloc = false; 1341 for (auto Itr = Relocations.lower_bound(Offset), 1342 ItrE = Relocations.lower_bound(Offset + Size); 1343 Itr != ItrE; ++Itr) { 1344 const Relocation &Relocation = Itr->second; 1345 int64_t Value = Relocation.Value; 1346 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1347 Instruction, Relocation.Symbol, Relocation.Addend, Ctx.get(), Value, 1348 Relocation.Type); 1349 (void)Result; 1350 assert(Result && "cannot replace immediate with relocation"); 1351 1352 // For aarch64, if we replaced an immediate with a symbol from a 1353 // relocation, we mark it so we do not try to further process a 1354 // pc-relative operand. All we need is the symbol. 1355 UsedReloc = true; 1356 } 1357 1358 if (MIB->hasPCRelOperand(Instruction) && !UsedReloc) 1359 handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size); 1360 } 1361 1362 add_instruction: 1363 if (getDWARFLineTable()) { 1364 Instruction.setLoc(findDebugLineInformationForInstructionAt( 1365 AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable())); 1366 } 1367 1368 // Record offset of the instruction for profile matching. 1369 if (BC.keepOffsetForInstruction(Instruction)) 1370 MIB->setOffset(Instruction, static_cast<uint32_t>(Offset)); 1371 1372 if (BC.MIB->isNoop(Instruction)) { 1373 // NOTE: disassembly loses the correct size information for noops. 1374 // E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only 1375 // 5 bytes. Preserve the size info using annotations. 1376 MIB->addAnnotation(Instruction, "Size", static_cast<uint32_t>(Size)); 1377 } 1378 1379 addInstruction(Offset, std::move(Instruction)); 1380 } 1381 1382 // Reset symbolizer for the disassembler. 1383 BC.SymbolicDisAsm->setSymbolizer(nullptr); 1384 1385 if (uint64_t Offset = getFirstInstructionOffset()) 1386 Labels[Offset] = BC.Ctx->createNamedTempSymbol(); 1387 1388 clearList(Relocations); 1389 1390 if (!IsSimple) { 1391 clearList(Instructions); 1392 return false; 1393 } 1394 1395 updateState(State::Disassembled); 1396 1397 return true; 1398 } 1399 1400 bool BinaryFunction::scanExternalRefs() { 1401 bool Success = true; 1402 bool DisassemblyFailed = false; 1403 1404 // Ignore pseudo functions. 1405 if (isPseudo()) 1406 return Success; 1407 1408 if (opts::NoScan) { 1409 clearList(Relocations); 1410 clearList(ExternallyReferencedOffsets); 1411 1412 return false; 1413 } 1414 1415 // List of external references for this function. 1416 std::vector<Relocation> FunctionRelocations; 1417 1418 static BinaryContext::IndependentCodeEmitter Emitter = 1419 BC.createIndependentMCCodeEmitter(); 1420 1421 ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData(); 1422 assert(ErrorOrFunctionData && "function data is not available"); 1423 ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData; 1424 assert(FunctionData.size() == getMaxSize() && 1425 "function size does not match raw data size"); 1426 1427 uint64_t Size = 0; // instruction size 1428 for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) { 1429 // Check for data inside code and ignore it 1430 if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) { 1431 Size = DataInCodeSize; 1432 continue; 1433 } 1434 1435 const uint64_t AbsoluteInstrAddr = getAddress() + Offset; 1436 MCInst Instruction; 1437 if (!BC.DisAsm->getInstruction(Instruction, Size, 1438 FunctionData.slice(Offset), 1439 AbsoluteInstrAddr, nulls())) { 1440 if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) { 1441 errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x" 1442 << Twine::utohexstr(Offset) << " (address 0x" 1443 << Twine::utohexstr(AbsoluteInstrAddr) << ") in function " 1444 << *this << '\n'; 1445 } 1446 Success = false; 1447 DisassemblyFailed = true; 1448 break; 1449 } 1450 1451 // Return true if we can skip handling the Target function reference. 1452 auto ignoreFunctionRef = [&](const BinaryFunction &Target) { 1453 if (&Target == this) 1454 return true; 1455 1456 // Note that later we may decide not to emit Target function. In that 1457 // case, we conservatively create references that will be ignored or 1458 // resolved to the same function. 1459 if (!BC.shouldEmit(Target)) 1460 return true; 1461 1462 return false; 1463 }; 1464 1465 // Return true if we can ignore reference to the symbol. 1466 auto ignoreReference = [&](const MCSymbol *TargetSymbol) { 1467 if (!TargetSymbol) 1468 return true; 1469 1470 if (BC.forceSymbolRelocations(TargetSymbol->getName())) 1471 return false; 1472 1473 BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol); 1474 if (!TargetFunction) 1475 return true; 1476 1477 return ignoreFunctionRef(*TargetFunction); 1478 }; 1479 1480 // Detect if the instruction references an address. 1481 // Without relocations, we can only trust PC-relative address modes. 1482 uint64_t TargetAddress = 0; 1483 bool IsPCRel = false; 1484 bool IsBranch = false; 1485 if (BC.MIB->hasPCRelOperand(Instruction)) { 1486 if (BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress, 1487 AbsoluteInstrAddr, Size)) { 1488 IsPCRel = true; 1489 } 1490 } else if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) { 1491 if (BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size, 1492 TargetAddress)) { 1493 IsBranch = true; 1494 } 1495 } 1496 1497 MCSymbol *TargetSymbol = nullptr; 1498 1499 // Create an entry point at reference address if needed. 1500 BinaryFunction *TargetFunction = 1501 BC.getBinaryFunctionContainingAddress(TargetAddress); 1502 if (TargetFunction && !ignoreFunctionRef(*TargetFunction)) { 1503 const uint64_t FunctionOffset = 1504 TargetAddress - TargetFunction->getAddress(); 1505 TargetSymbol = FunctionOffset 1506 ? TargetFunction->addEntryPointAtOffset(FunctionOffset) 1507 : TargetFunction->getSymbol(); 1508 } 1509 1510 // Can't find more references and not creating relocations. 1511 if (!BC.HasRelocations) 1512 continue; 1513 1514 // Create a relocation against the TargetSymbol as the symbol might get 1515 // moved. 1516 if (TargetSymbol) { 1517 if (IsBranch) { 1518 BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, 1519 Emitter.LocalCtx.get()); 1520 } else if (IsPCRel) { 1521 const MCExpr *Expr = MCSymbolRefExpr::create( 1522 TargetSymbol, MCSymbolRefExpr::VK_None, *Emitter.LocalCtx.get()); 1523 BC.MIB->replaceMemOperandDisp( 1524 Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor( 1525 Instruction, Expr, *Emitter.LocalCtx.get(), 0))); 1526 } 1527 } 1528 1529 // Create more relocations based on input file relocations. 1530 bool HasRel = false; 1531 for (auto Itr = Relocations.lower_bound(Offset), 1532 ItrE = Relocations.lower_bound(Offset + Size); 1533 Itr != ItrE; ++Itr) { 1534 Relocation &Relocation = Itr->second; 1535 if (Relocation.isPCRelative() && BC.isX86()) 1536 continue; 1537 if (ignoreReference(Relocation.Symbol)) 1538 continue; 1539 1540 int64_t Value = Relocation.Value; 1541 const bool Result = BC.MIB->replaceImmWithSymbolRef( 1542 Instruction, Relocation.Symbol, Relocation.Addend, 1543 Emitter.LocalCtx.get(), Value, Relocation.Type); 1544 (void)Result; 1545 assert(Result && "cannot replace immediate with relocation"); 1546 1547 HasRel = true; 1548 } 1549 1550 if (!TargetSymbol && !HasRel) 1551 continue; 1552 1553 // Emit the instruction using temp emitter and generate relocations. 1554 SmallString<256> Code; 1555 SmallVector<MCFixup, 4> Fixups; 1556 raw_svector_ostream VecOS(Code); 1557 Emitter.MCE->encodeInstruction(Instruction, VecOS, Fixups, *BC.STI); 1558 1559 // Create relocation for every fixup. 1560 for (const MCFixup &Fixup : Fixups) { 1561 Optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB); 1562 if (!Rel) { 1563 Success = false; 1564 continue; 1565 } 1566 1567 if (Relocation::getSizeForType(Rel->Type) < 4) { 1568 // If the instruction uses a short form, then we might not be able 1569 // to handle the rewrite without relaxation, and hence cannot reliably 1570 // create an external reference relocation. 1571 Success = false; 1572 continue; 1573 } 1574 Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset; 1575 FunctionRelocations.push_back(*Rel); 1576 } 1577 1578 if (!Success) 1579 break; 1580 } 1581 1582 // Add relocations unless disassembly failed for this function. 1583 if (!DisassemblyFailed) 1584 for (Relocation &Rel : FunctionRelocations) 1585 getOriginSection()->addPendingRelocation(Rel); 1586 1587 // Inform BinaryContext that this function symbols will not be defined and 1588 // relocations should not be created against them. 1589 if (BC.HasRelocations) { 1590 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 1591 BC.UndefinedSymbols.insert(LI.second); 1592 if (FunctionEndLabel) 1593 BC.UndefinedSymbols.insert(FunctionEndLabel); 1594 } 1595 1596 clearList(Relocations); 1597 clearList(ExternallyReferencedOffsets); 1598 1599 if (Success && BC.HasRelocations) 1600 HasExternalRefRelocations = true; 1601 1602 if (opts::Verbosity >= 1 && !Success) 1603 outs() << "BOLT-INFO: failed to scan refs for " << *this << '\n'; 1604 1605 return Success; 1606 } 1607 1608 void BinaryFunction::postProcessEntryPoints() { 1609 if (!isSimple()) 1610 return; 1611 1612 for (auto &KV : Labels) { 1613 MCSymbol *Label = KV.second; 1614 if (!getSecondaryEntryPointSymbol(Label)) 1615 continue; 1616 1617 // In non-relocation mode there's potentially an external undetectable 1618 // reference to the entry point and hence we cannot move this entry 1619 // point. Optimizing without moving could be difficult. 1620 if (!BC.HasRelocations) 1621 setSimple(false); 1622 1623 const uint32_t Offset = KV.first; 1624 1625 // If we are at Offset 0 and there is no instruction associated with it, 1626 // this means this is an empty function. Just ignore. If we find an 1627 // instruction at this offset, this entry point is valid. 1628 if (!Offset || getInstructionAtOffset(Offset)) 1629 continue; 1630 1631 // On AArch64 there are legitimate reasons to have references past the 1632 // end of the function, e.g. jump tables. 1633 if (BC.isAArch64() && Offset == getSize()) 1634 continue; 1635 1636 errs() << "BOLT-WARNING: reference in the middle of instruction " 1637 "detected in function " 1638 << *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n'; 1639 if (BC.HasRelocations) 1640 setIgnored(); 1641 setSimple(false); 1642 return; 1643 } 1644 } 1645 1646 void BinaryFunction::postProcessJumpTables() { 1647 // Create labels for all entries. 1648 for (auto &JTI : JumpTables) { 1649 JumpTable &JT = *JTI.second; 1650 if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) { 1651 opts::JumpTables = JTS_MOVE; 1652 outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was " 1653 "detected in function " 1654 << *this << '\n'; 1655 } 1656 if (JT.Entries.empty()) { 1657 for (unsigned I = 0; I < JT.OffsetEntries.size(); ++I) { 1658 MCSymbol *Label = 1659 getOrCreateLocalLabel(getAddress() + JT.OffsetEntries[I], 1660 /*CreatePastEnd*/ true); 1661 JT.Entries.push_back(Label); 1662 } 1663 } 1664 1665 const uint64_t BDSize = 1666 BC.getBinaryDataAtAddress(JT.getAddress())->getSize(); 1667 if (!BDSize) { 1668 BC.setBinaryDataSize(JT.getAddress(), JT.getSize()); 1669 } else { 1670 assert(BDSize >= JT.getSize() && 1671 "jump table cannot be larger than the containing object"); 1672 } 1673 } 1674 1675 // Add TakenBranches from JumpTables. 1676 // 1677 // We want to do it after initial processing since we don't know jump tables' 1678 // boundaries until we process them all. 1679 for (auto &JTSite : JTSites) { 1680 const uint64_t JTSiteOffset = JTSite.first; 1681 const uint64_t JTAddress = JTSite.second; 1682 const JumpTable *JT = getJumpTableContainingAddress(JTAddress); 1683 assert(JT && "cannot find jump table for address"); 1684 1685 uint64_t EntryOffset = JTAddress - JT->getAddress(); 1686 while (EntryOffset < JT->getSize()) { 1687 uint64_t TargetOffset = JT->OffsetEntries[EntryOffset / JT->EntrySize]; 1688 if (TargetOffset < getSize()) { 1689 TakenBranches.emplace_back(JTSiteOffset, TargetOffset); 1690 1691 if (opts::StrictMode) 1692 registerReferencedOffset(TargetOffset); 1693 } 1694 1695 EntryOffset += JT->EntrySize; 1696 1697 // A label at the next entry means the end of this jump table. 1698 if (JT->Labels.count(EntryOffset)) 1699 break; 1700 } 1701 } 1702 clearList(JTSites); 1703 1704 // Conservatively populate all possible destinations for unknown indirect 1705 // branches. 1706 if (opts::StrictMode && hasInternalReference()) { 1707 for (uint64_t Offset : UnknownIndirectBranchOffsets) { 1708 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) { 1709 // Ignore __builtin_unreachable(). 1710 if (PossibleDestination == getSize()) 1711 continue; 1712 TakenBranches.emplace_back(Offset, PossibleDestination); 1713 } 1714 } 1715 } 1716 1717 // Remove duplicates branches. We can get a bunch of them from jump tables. 1718 // Without doing jump table value profiling we don't have use for extra 1719 // (duplicate) branches. 1720 llvm::sort(TakenBranches); 1721 auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end()); 1722 TakenBranches.erase(NewEnd, TakenBranches.end()); 1723 } 1724 1725 bool BinaryFunction::postProcessIndirectBranches( 1726 MCPlusBuilder::AllocatorIdTy AllocId) { 1727 auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) { 1728 HasUnknownControlFlow = true; 1729 BB.removeAllSuccessors(); 1730 for (uint64_t PossibleDestination : ExternallyReferencedOffsets) 1731 if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination)) 1732 BB.addSuccessor(SuccBB); 1733 }; 1734 1735 uint64_t NumIndirectJumps = 0; 1736 MCInst *LastIndirectJump = nullptr; 1737 BinaryBasicBlock *LastIndirectJumpBB = nullptr; 1738 uint64_t LastJT = 0; 1739 uint16_t LastJTIndexReg = BC.MIB->getNoRegister(); 1740 for (BinaryBasicBlock *BB : layout()) { 1741 for (MCInst &Instr : *BB) { 1742 if (!BC.MIB->isIndirectBranch(Instr)) 1743 continue; 1744 1745 // If there's an indirect branch in a single-block function - 1746 // it must be a tail call. 1747 if (layout_size() == 1) { 1748 BC.MIB->convertJmpToTailCall(Instr); 1749 return true; 1750 } 1751 1752 ++NumIndirectJumps; 1753 1754 if (opts::StrictMode && !hasInternalReference()) { 1755 BC.MIB->convertJmpToTailCall(Instr); 1756 break; 1757 } 1758 1759 // Validate the tail call or jump table assumptions now that we know 1760 // basic block boundaries. 1761 if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) { 1762 const unsigned PtrSize = BC.AsmInfo->getCodePointerSize(); 1763 MCInst *MemLocInstr; 1764 unsigned BaseRegNum, IndexRegNum; 1765 int64_t DispValue; 1766 const MCExpr *DispExpr; 1767 MCInst *PCRelBaseInstr; 1768 IndirectBranchType Type = BC.MIB->analyzeIndirectBranch( 1769 Instr, BB->begin(), BB->end(), PtrSize, MemLocInstr, BaseRegNum, 1770 IndexRegNum, DispValue, DispExpr, PCRelBaseInstr); 1771 if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr) 1772 continue; 1773 1774 if (!opts::StrictMode) 1775 return false; 1776 1777 if (BC.MIB->isTailCall(Instr)) { 1778 BC.MIB->convertTailCallToJmp(Instr); 1779 } else { 1780 LastIndirectJump = &Instr; 1781 LastIndirectJumpBB = BB; 1782 LastJT = BC.MIB->getJumpTable(Instr); 1783 LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr); 1784 BC.MIB->unsetJumpTable(Instr); 1785 1786 JumpTable *JT = BC.getJumpTableContainingAddress(LastJT); 1787 if (JT->Type == JumpTable::JTT_NORMAL) { 1788 // Invalidating the jump table may also invalidate other jump table 1789 // boundaries. Until we have/need a support for this, mark the 1790 // function as non-simple. 1791 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference" 1792 << JT->getName() << " in " << *this << '\n'); 1793 return false; 1794 } 1795 } 1796 1797 addUnknownControlFlow(*BB); 1798 continue; 1799 } 1800 1801 // If this block contains an epilogue code and has an indirect branch, 1802 // then most likely it's a tail call. Otherwise, we cannot tell for sure 1803 // what it is and conservatively reject the function's CFG. 1804 bool IsEpilogue = false; 1805 for (const MCInst &Instr : *BB) { 1806 if (BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr)) { 1807 IsEpilogue = true; 1808 break; 1809 } 1810 } 1811 if (IsEpilogue) { 1812 BC.MIB->convertJmpToTailCall(Instr); 1813 BB->removeAllSuccessors(); 1814 continue; 1815 } 1816 1817 if (opts::Verbosity >= 2) { 1818 outs() << "BOLT-INFO: rejected potential indirect tail call in " 1819 << "function " << *this << " in basic block " << BB->getName() 1820 << ".\n"; 1821 LLVM_DEBUG(BC.printInstructions(dbgs(), BB->begin(), BB->end(), 1822 BB->getOffset(), this, true)); 1823 } 1824 1825 if (!opts::StrictMode) 1826 return false; 1827 1828 addUnknownControlFlow(*BB); 1829 } 1830 } 1831 1832 if (HasInternalLabelReference) 1833 return false; 1834 1835 // If there's only one jump table, and one indirect jump, and no other 1836 // references, then we should be able to derive the jump table even if we 1837 // fail to match the pattern. 1838 if (HasUnknownControlFlow && NumIndirectJumps == 1 && 1839 JumpTables.size() == 1 && LastIndirectJump) { 1840 BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId); 1841 HasUnknownControlFlow = false; 1842 1843 LastIndirectJumpBB->updateJumpTableSuccessors(); 1844 } 1845 1846 if (HasFixedIndirectBranch) 1847 return false; 1848 1849 if (HasUnknownControlFlow && !BC.HasRelocations) 1850 return false; 1851 1852 return true; 1853 } 1854 1855 void BinaryFunction::recomputeLandingPads() { 1856 updateBBIndices(0); 1857 1858 for (BinaryBasicBlock *BB : BasicBlocks) { 1859 BB->LandingPads.clear(); 1860 BB->Throwers.clear(); 1861 } 1862 1863 for (BinaryBasicBlock *BB : BasicBlocks) { 1864 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 1865 for (MCInst &Instr : *BB) { 1866 if (!BC.MIB->isInvoke(Instr)) 1867 continue; 1868 1869 const Optional<MCPlus::MCLandingPad> EHInfo = BC.MIB->getEHInfo(Instr); 1870 if (!EHInfo || !EHInfo->first) 1871 continue; 1872 1873 BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first); 1874 if (!BBLandingPads.count(LPBlock)) { 1875 BBLandingPads.insert(LPBlock); 1876 BB->LandingPads.emplace_back(LPBlock); 1877 LPBlock->Throwers.emplace_back(BB); 1878 } 1879 } 1880 } 1881 } 1882 1883 bool BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) { 1884 auto &MIB = BC.MIB; 1885 1886 if (!isSimple()) { 1887 assert(!BC.HasRelocations && 1888 "cannot process file with non-simple function in relocs mode"); 1889 return false; 1890 } 1891 1892 if (CurrentState != State::Disassembled) 1893 return false; 1894 1895 assert(BasicBlocks.empty() && "basic block list should be empty"); 1896 assert((Labels.find(getFirstInstructionOffset()) != Labels.end()) && 1897 "first instruction should always have a label"); 1898 1899 // Create basic blocks in the original layout order: 1900 // 1901 // * Every instruction with associated label marks 1902 // the beginning of a basic block. 1903 // * Conditional instruction marks the end of a basic block, 1904 // except when the following instruction is an 1905 // unconditional branch, and the unconditional branch is not 1906 // a destination of another branch. In the latter case, the 1907 // basic block will consist of a single unconditional branch 1908 // (missed "double-jump" optimization). 1909 // 1910 // Created basic blocks are sorted in layout order since they are 1911 // created in the same order as instructions, and instructions are 1912 // sorted by offsets. 1913 BinaryBasicBlock *InsertBB = nullptr; 1914 BinaryBasicBlock *PrevBB = nullptr; 1915 bool IsLastInstrNop = false; 1916 // Offset of the last non-nop instruction. 1917 uint64_t LastInstrOffset = 0; 1918 1919 auto addCFIPlaceholders = [this](uint64_t CFIOffset, 1920 BinaryBasicBlock *InsertBB) { 1921 for (auto FI = OffsetToCFI.lower_bound(CFIOffset), 1922 FE = OffsetToCFI.upper_bound(CFIOffset); 1923 FI != FE; ++FI) { 1924 addCFIPseudo(InsertBB, InsertBB->end(), FI->second); 1925 } 1926 }; 1927 1928 // For profiling purposes we need to save the offset of the last instruction 1929 // in the basic block. 1930 // NOTE: nops always have an Offset annotation. Annotate the last non-nop as 1931 // older profiles ignored nops. 1932 auto updateOffset = [&](uint64_t Offset) { 1933 assert(PrevBB && PrevBB != InsertBB && "invalid previous block"); 1934 MCInst *LastNonNop = nullptr; 1935 for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(), 1936 E = PrevBB->rend(); 1937 RII != E; ++RII) { 1938 if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) { 1939 LastNonNop = &*RII; 1940 break; 1941 } 1942 } 1943 if (LastNonNop && !MIB->getOffset(*LastNonNop)) 1944 MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset), AllocatorId); 1945 }; 1946 1947 for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) { 1948 const uint32_t Offset = I->first; 1949 MCInst &Instr = I->second; 1950 1951 auto LI = Labels.find(Offset); 1952 if (LI != Labels.end()) { 1953 // Always create new BB at branch destination. 1954 PrevBB = InsertBB ? InsertBB : PrevBB; 1955 InsertBB = addBasicBlockAt(LI->first, LI->second); 1956 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 1957 InsertBB->setDerivedAlignment(); 1958 1959 if (PrevBB) 1960 updateOffset(LastInstrOffset); 1961 } 1962 1963 const uint64_t InstrInputAddr = I->first + Address; 1964 bool IsSDTMarker = 1965 MIB->isNoop(Instr) && BC.SDTMarkers.count(InstrInputAddr); 1966 bool IsLKMarker = BC.LKMarkers.count(InstrInputAddr); 1967 // Mark all nops with Offset for profile tracking purposes. 1968 if (MIB->isNoop(Instr) || IsLKMarker) { 1969 if (!MIB->getOffset(Instr)) 1970 MIB->setOffset(Instr, static_cast<uint32_t>(Offset), AllocatorId); 1971 if (IsSDTMarker || IsLKMarker) 1972 HasSDTMarker = true; 1973 else 1974 // Annotate ordinary nops, so we can safely delete them if required. 1975 MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId); 1976 } 1977 1978 if (!InsertBB) { 1979 // It must be a fallthrough or unreachable code. Create a new block unless 1980 // we see an unconditional branch following a conditional one. The latter 1981 // should not be a conditional tail call. 1982 assert(PrevBB && "no previous basic block for a fall through"); 1983 MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr(); 1984 assert(PrevInstr && "no previous instruction for a fall through"); 1985 if (MIB->isUnconditionalBranch(Instr) && 1986 !MIB->isUnconditionalBranch(*PrevInstr) && 1987 !MIB->getConditionalTailCall(*PrevInstr) && 1988 !MIB->isReturn(*PrevInstr)) { 1989 // Temporarily restore inserter basic block. 1990 InsertBB = PrevBB; 1991 } else { 1992 MCSymbol *Label; 1993 { 1994 auto L = BC.scopeLock(); 1995 Label = BC.Ctx->createNamedTempSymbol("FT"); 1996 } 1997 InsertBB = addBasicBlockAt(Offset, Label); 1998 if (opts::PreserveBlocksAlignment && IsLastInstrNop) 1999 InsertBB->setDerivedAlignment(); 2000 updateOffset(LastInstrOffset); 2001 } 2002 } 2003 if (Offset == getFirstInstructionOffset()) { 2004 // Add associated CFI pseudos in the first offset 2005 addCFIPlaceholders(Offset, InsertBB); 2006 } 2007 2008 const bool IsBlockEnd = MIB->isTerminator(Instr); 2009 IsLastInstrNop = MIB->isNoop(Instr); 2010 if (!IsLastInstrNop) 2011 LastInstrOffset = Offset; 2012 InsertBB->addInstruction(std::move(Instr)); 2013 2014 // Add associated CFI instrs. We always add the CFI instruction that is 2015 // located immediately after this instruction, since the next CFI 2016 // instruction reflects the change in state caused by this instruction. 2017 auto NextInstr = std::next(I); 2018 uint64_t CFIOffset; 2019 if (NextInstr != E) 2020 CFIOffset = NextInstr->first; 2021 else 2022 CFIOffset = getSize(); 2023 2024 // Note: this potentially invalidates instruction pointers/iterators. 2025 addCFIPlaceholders(CFIOffset, InsertBB); 2026 2027 if (IsBlockEnd) { 2028 PrevBB = InsertBB; 2029 InsertBB = nullptr; 2030 } 2031 } 2032 2033 if (BasicBlocks.empty()) { 2034 setSimple(false); 2035 return false; 2036 } 2037 2038 // Intermediate dump. 2039 LLVM_DEBUG(print(dbgs(), "after creating basic blocks")); 2040 2041 // TODO: handle properly calls to no-return functions, 2042 // e.g. exit(3), etc. Otherwise we'll see a false fall-through 2043 // blocks. 2044 2045 for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) { 2046 LLVM_DEBUG(dbgs() << "registering branch [0x" 2047 << Twine::utohexstr(Branch.first) << "] -> [0x" 2048 << Twine::utohexstr(Branch.second) << "]\n"); 2049 BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first); 2050 BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second); 2051 if (!FromBB || !ToBB) { 2052 if (!FromBB) 2053 errs() << "BOLT-ERROR: cannot find BB containing the branch.\n"; 2054 if (!ToBB) 2055 errs() << "BOLT-ERROR: cannot find BB containing branch destination.\n"; 2056 BC.exitWithBugReport("disassembly failed - inconsistent branch found.", 2057 *this); 2058 } 2059 2060 FromBB->addSuccessor(ToBB); 2061 } 2062 2063 // Add fall-through branches. 2064 PrevBB = nullptr; 2065 bool IsPrevFT = false; // Is previous block a fall-through. 2066 for (BinaryBasicBlock *BB : BasicBlocks) { 2067 if (IsPrevFT) 2068 PrevBB->addSuccessor(BB); 2069 2070 if (BB->empty()) { 2071 IsPrevFT = true; 2072 PrevBB = BB; 2073 continue; 2074 } 2075 2076 MCInst *LastInstr = BB->getLastNonPseudoInstr(); 2077 assert(LastInstr && 2078 "should have non-pseudo instruction in non-empty block"); 2079 2080 if (BB->succ_size() == 0) { 2081 // Since there's no existing successors, we know the last instruction is 2082 // not a conditional branch. Thus if it's a terminator, it shouldn't be a 2083 // fall-through. 2084 // 2085 // Conditional tail call is a special case since we don't add a taken 2086 // branch successor for it. 2087 IsPrevFT = !MIB->isTerminator(*LastInstr) || 2088 MIB->getConditionalTailCall(*LastInstr); 2089 } else if (BB->succ_size() == 1) { 2090 IsPrevFT = MIB->isConditionalBranch(*LastInstr); 2091 } else { 2092 IsPrevFT = false; 2093 } 2094 2095 PrevBB = BB; 2096 } 2097 2098 // Assign landing pads and throwers info. 2099 recomputeLandingPads(); 2100 2101 // Assign CFI information to each BB entry. 2102 annotateCFIState(); 2103 2104 // Annotate invoke instructions with GNU_args_size data. 2105 propagateGnuArgsSizeInfo(AllocatorId); 2106 2107 // Set the basic block layout to the original order and set end offsets. 2108 PrevBB = nullptr; 2109 for (BinaryBasicBlock *BB : BasicBlocks) { 2110 BasicBlocksLayout.emplace_back(BB); 2111 if (PrevBB) 2112 PrevBB->setEndOffset(BB->getOffset()); 2113 PrevBB = BB; 2114 } 2115 PrevBB->setEndOffset(getSize()); 2116 2117 updateLayoutIndices(); 2118 2119 normalizeCFIState(); 2120 2121 // Clean-up memory taken by intermediate structures. 2122 // 2123 // NB: don't clear Labels list as we may need them if we mark the function 2124 // as non-simple later in the process of discovering extra entry points. 2125 clearList(Instructions); 2126 clearList(OffsetToCFI); 2127 clearList(TakenBranches); 2128 2129 // Update the state. 2130 CurrentState = State::CFG; 2131 2132 // Make any necessary adjustments for indirect branches. 2133 if (!postProcessIndirectBranches(AllocatorId)) { 2134 if (opts::Verbosity) { 2135 errs() << "BOLT-WARNING: failed to post-process indirect branches for " 2136 << *this << '\n'; 2137 } 2138 // In relocation mode we want to keep processing the function but avoid 2139 // optimizing it. 2140 setSimple(false); 2141 } 2142 2143 clearList(ExternallyReferencedOffsets); 2144 clearList(UnknownIndirectBranchOffsets); 2145 2146 return true; 2147 } 2148 2149 void BinaryFunction::postProcessCFG() { 2150 if (isSimple() && !BasicBlocks.empty()) { 2151 // Convert conditional tail call branches to conditional branches that jump 2152 // to a tail call. 2153 removeConditionalTailCalls(); 2154 2155 postProcessProfile(); 2156 2157 // Eliminate inconsistencies between branch instructions and CFG. 2158 postProcessBranches(); 2159 } 2160 2161 calculateMacroOpFusionStats(); 2162 2163 // The final cleanup of intermediate structures. 2164 clearList(IgnoredBranches); 2165 2166 // Remove "Offset" annotations, unless we need an address-translation table 2167 // later. This has no cost, since annotations are allocated by a bumpptr 2168 // allocator and won't be released anyway until late in the pipeline. 2169 if (!requiresAddressTranslation() && !opts::Instrument) { 2170 for (BinaryBasicBlock *BB : layout()) 2171 for (MCInst &Inst : *BB) 2172 BC.MIB->clearOffset(Inst); 2173 } 2174 2175 assert((!isSimple() || validateCFG()) && 2176 "invalid CFG detected after post-processing"); 2177 } 2178 2179 void BinaryFunction::calculateMacroOpFusionStats() { 2180 if (!getBinaryContext().isX86()) 2181 return; 2182 for (BinaryBasicBlock *BB : layout()) { 2183 auto II = BB->getMacroOpFusionPair(); 2184 if (II == BB->end()) 2185 continue; 2186 2187 // Check offset of the second instruction. 2188 // FIXME: arch-specific. 2189 const uint32_t Offset = BC.MIB->getOffsetWithDefault(*std::next(II), 0); 2190 if (!Offset || (getAddress() + Offset) % 64) 2191 continue; 2192 2193 LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x" 2194 << Twine::utohexstr(getAddress() + Offset) 2195 << " in function " << *this << "; executed " 2196 << BB->getKnownExecutionCount() << " times.\n"); 2197 ++BC.MissedMacroFusionPairs; 2198 BC.MissedMacroFusionExecCount += BB->getKnownExecutionCount(); 2199 } 2200 } 2201 2202 void BinaryFunction::removeTagsFromProfile() { 2203 for (BinaryBasicBlock *BB : BasicBlocks) { 2204 if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2205 BB->ExecutionCount = 0; 2206 for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) { 2207 if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE && 2208 BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE) 2209 continue; 2210 BI.Count = 0; 2211 BI.MispredictedCount = 0; 2212 } 2213 } 2214 } 2215 2216 void BinaryFunction::removeConditionalTailCalls() { 2217 // Blocks to be appended at the end. 2218 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks; 2219 2220 for (auto BBI = begin(); BBI != end(); ++BBI) { 2221 BinaryBasicBlock &BB = *BBI; 2222 MCInst *CTCInstr = BB.getLastNonPseudoInstr(); 2223 if (!CTCInstr) 2224 continue; 2225 2226 Optional<uint64_t> TargetAddressOrNone = 2227 BC.MIB->getConditionalTailCall(*CTCInstr); 2228 if (!TargetAddressOrNone) 2229 continue; 2230 2231 // Gather all necessary information about CTC instruction before 2232 // annotations are destroyed. 2233 const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr); 2234 uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2235 uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE; 2236 if (hasValidProfile()) { 2237 CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2238 *CTCInstr, "CTCTakenCount"); 2239 CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>( 2240 *CTCInstr, "CTCMispredCount"); 2241 } 2242 2243 // Assert that the tail call does not throw. 2244 assert(!BC.MIB->getEHInfo(*CTCInstr) && 2245 "found tail call with associated landing pad"); 2246 2247 // Create a basic block with an unconditional tail call instruction using 2248 // the same destination. 2249 const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr); 2250 assert(CTCTargetLabel && "symbol expected for conditional tail call"); 2251 MCInst TailCallInstr; 2252 BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get()); 2253 // Link new BBs to the original input offset of the BB where the CTC 2254 // is, so we can map samples recorded in new BBs back to the original BB 2255 // seem in the input binary (if using BAT) 2256 std::unique_ptr<BinaryBasicBlock> TailCallBB = 2257 createBasicBlock(BC.Ctx->createNamedTempSymbol("TC")); 2258 TailCallBB->setOffset(BB.getInputOffset()); 2259 TailCallBB->addInstruction(TailCallInstr); 2260 TailCallBB->setCFIState(CFIStateBeforeCTC); 2261 2262 // Add CFG edge with profile info from BB to TailCallBB. 2263 BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount); 2264 2265 // Add execution count for the block. 2266 TailCallBB->setExecutionCount(CTCTakenCount); 2267 2268 BC.MIB->convertTailCallToJmp(*CTCInstr); 2269 2270 BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(), 2271 BC.Ctx.get()); 2272 2273 // Add basic block to the list that will be added to the end. 2274 NewBlocks.emplace_back(std::move(TailCallBB)); 2275 2276 // Swap edges as the TailCallBB corresponds to the taken branch. 2277 BB.swapConditionalSuccessors(); 2278 2279 // This branch is no longer a conditional tail call. 2280 BC.MIB->unsetConditionalTailCall(*CTCInstr); 2281 } 2282 2283 insertBasicBlocks(std::prev(end()), std::move(NewBlocks), 2284 /* UpdateLayout */ true, 2285 /* UpdateCFIState */ false); 2286 } 2287 2288 uint64_t BinaryFunction::getFunctionScore() const { 2289 if (FunctionScore != -1) 2290 return FunctionScore; 2291 2292 if (!isSimple() || !hasValidProfile()) { 2293 FunctionScore = 0; 2294 return FunctionScore; 2295 } 2296 2297 uint64_t TotalScore = 0ULL; 2298 for (BinaryBasicBlock *BB : layout()) { 2299 uint64_t BBExecCount = BB->getExecutionCount(); 2300 if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE) 2301 continue; 2302 TotalScore += BBExecCount; 2303 } 2304 FunctionScore = TotalScore; 2305 return FunctionScore; 2306 } 2307 2308 void BinaryFunction::annotateCFIState() { 2309 assert(CurrentState == State::Disassembled && "unexpected function state"); 2310 assert(!BasicBlocks.empty() && "basic block list should not be empty"); 2311 2312 // This is an index of the last processed CFI in FDE CFI program. 2313 uint32_t State = 0; 2314 2315 // This is an index of RememberState CFI reflecting effective state right 2316 // after execution of RestoreState CFI. 2317 // 2318 // It differs from State iff the CFI at (State-1) 2319 // was RestoreState (modulo GNU_args_size CFIs, which are ignored). 2320 // 2321 // This allows us to generate shorter replay sequences when producing new 2322 // CFI programs. 2323 uint32_t EffectiveState = 0; 2324 2325 // For tracking RememberState/RestoreState sequences. 2326 std::stack<uint32_t> StateStack; 2327 2328 for (BinaryBasicBlock *BB : BasicBlocks) { 2329 BB->setCFIState(EffectiveState); 2330 2331 for (const MCInst &Instr : *BB) { 2332 const MCCFIInstruction *CFI = getCFIFor(Instr); 2333 if (!CFI) 2334 continue; 2335 2336 ++State; 2337 2338 switch (CFI->getOperation()) { 2339 case MCCFIInstruction::OpRememberState: 2340 StateStack.push(EffectiveState); 2341 EffectiveState = State; 2342 break; 2343 case MCCFIInstruction::OpRestoreState: 2344 assert(!StateStack.empty() && "corrupt CFI stack"); 2345 EffectiveState = StateStack.top(); 2346 StateStack.pop(); 2347 break; 2348 case MCCFIInstruction::OpGnuArgsSize: 2349 // OpGnuArgsSize CFIs do not affect the CFI state. 2350 break; 2351 default: 2352 // Any other CFI updates the state. 2353 EffectiveState = State; 2354 break; 2355 } 2356 } 2357 } 2358 2359 assert(StateStack.empty() && "corrupt CFI stack"); 2360 } 2361 2362 namespace { 2363 2364 /// Our full interpretation of a DWARF CFI machine state at a given point 2365 struct CFISnapshot { 2366 /// CFA register number and offset defining the canonical frame at this 2367 /// point, or the number of a rule (CFI state) that computes it with a 2368 /// DWARF expression. This number will be negative if it refers to a CFI 2369 /// located in the CIE instead of the FDE. 2370 uint32_t CFAReg; 2371 int32_t CFAOffset; 2372 int32_t CFARule; 2373 /// Mapping of rules (CFI states) that define the location of each 2374 /// register. If absent, no rule defining the location of such register 2375 /// was ever read. This number will be negative if it refers to a CFI 2376 /// located in the CIE instead of the FDE. 2377 DenseMap<int32_t, int32_t> RegRule; 2378 2379 /// References to CIE, FDE and expanded instructions after a restore state 2380 const BinaryFunction::CFIInstrMapType &CIE; 2381 const BinaryFunction::CFIInstrMapType &FDE; 2382 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents; 2383 2384 /// Current FDE CFI number representing the state where the snapshot is at 2385 int32_t CurState; 2386 2387 /// Used when we don't have information about which state/rule to apply 2388 /// to recover the location of either the CFA or a specific register 2389 constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min(); 2390 2391 private: 2392 /// Update our snapshot by executing a single CFI 2393 void update(const MCCFIInstruction &Instr, int32_t RuleNumber) { 2394 switch (Instr.getOperation()) { 2395 case MCCFIInstruction::OpSameValue: 2396 case MCCFIInstruction::OpRelOffset: 2397 case MCCFIInstruction::OpOffset: 2398 case MCCFIInstruction::OpRestore: 2399 case MCCFIInstruction::OpUndefined: 2400 case MCCFIInstruction::OpRegister: 2401 RegRule[Instr.getRegister()] = RuleNumber; 2402 break; 2403 case MCCFIInstruction::OpDefCfaRegister: 2404 CFAReg = Instr.getRegister(); 2405 CFARule = UNKNOWN; 2406 break; 2407 case MCCFIInstruction::OpDefCfaOffset: 2408 CFAOffset = Instr.getOffset(); 2409 CFARule = UNKNOWN; 2410 break; 2411 case MCCFIInstruction::OpDefCfa: 2412 CFAReg = Instr.getRegister(); 2413 CFAOffset = Instr.getOffset(); 2414 CFARule = UNKNOWN; 2415 break; 2416 case MCCFIInstruction::OpEscape: { 2417 Optional<uint8_t> Reg = readDWARFExpressionTargetReg(Instr.getValues()); 2418 // Handle DW_CFA_def_cfa_expression 2419 if (!Reg) { 2420 CFARule = RuleNumber; 2421 break; 2422 } 2423 RegRule[*Reg] = RuleNumber; 2424 break; 2425 } 2426 case MCCFIInstruction::OpAdjustCfaOffset: 2427 case MCCFIInstruction::OpWindowSave: 2428 case MCCFIInstruction::OpNegateRAState: 2429 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2430 llvm_unreachable("unsupported CFI opcode"); 2431 break; 2432 case MCCFIInstruction::OpRememberState: 2433 case MCCFIInstruction::OpRestoreState: 2434 case MCCFIInstruction::OpGnuArgsSize: 2435 // do not affect CFI state 2436 break; 2437 } 2438 } 2439 2440 public: 2441 /// Advance state reading FDE CFI instructions up to State number 2442 void advanceTo(int32_t State) { 2443 for (int32_t I = CurState, E = State; I != E; ++I) { 2444 const MCCFIInstruction &Instr = FDE[I]; 2445 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2446 update(Instr, I); 2447 continue; 2448 } 2449 // If restore state instruction, fetch the equivalent CFIs that have 2450 // the same effect of this restore. This is used to ensure remember- 2451 // restore pairs are completely removed. 2452 auto Iter = FrameRestoreEquivalents.find(I); 2453 if (Iter == FrameRestoreEquivalents.end()) 2454 continue; 2455 for (int32_t RuleNumber : Iter->second) 2456 update(FDE[RuleNumber], RuleNumber); 2457 } 2458 2459 assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) || 2460 CFARule != UNKNOWN) && 2461 "CIE did not define default CFA?"); 2462 2463 CurState = State; 2464 } 2465 2466 /// Interpret all CIE and FDE instructions up until CFI State number and 2467 /// populate this snapshot 2468 CFISnapshot( 2469 const BinaryFunction::CFIInstrMapType &CIE, 2470 const BinaryFunction::CFIInstrMapType &FDE, 2471 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2472 int32_t State) 2473 : CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) { 2474 CFAReg = UNKNOWN; 2475 CFAOffset = UNKNOWN; 2476 CFARule = UNKNOWN; 2477 CurState = 0; 2478 2479 for (int32_t I = 0, E = CIE.size(); I != E; ++I) { 2480 const MCCFIInstruction &Instr = CIE[I]; 2481 update(Instr, -I); 2482 } 2483 2484 advanceTo(State); 2485 } 2486 }; 2487 2488 /// A CFI snapshot with the capability of checking if incremental additions to 2489 /// it are redundant. This is used to ensure we do not emit two CFI instructions 2490 /// back-to-back that are doing the same state change, or to avoid emitting a 2491 /// CFI at all when the state at that point would not be modified after that CFI 2492 struct CFISnapshotDiff : public CFISnapshot { 2493 bool RestoredCFAReg{false}; 2494 bool RestoredCFAOffset{false}; 2495 DenseMap<int32_t, bool> RestoredRegs; 2496 2497 CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {} 2498 2499 CFISnapshotDiff( 2500 const BinaryFunction::CFIInstrMapType &CIE, 2501 const BinaryFunction::CFIInstrMapType &FDE, 2502 const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents, 2503 int32_t State) 2504 : CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {} 2505 2506 /// Return true if applying Instr to this state is redundant and can be 2507 /// dismissed. 2508 bool isRedundant(const MCCFIInstruction &Instr) { 2509 switch (Instr.getOperation()) { 2510 case MCCFIInstruction::OpSameValue: 2511 case MCCFIInstruction::OpRelOffset: 2512 case MCCFIInstruction::OpOffset: 2513 case MCCFIInstruction::OpRestore: 2514 case MCCFIInstruction::OpUndefined: 2515 case MCCFIInstruction::OpRegister: 2516 case MCCFIInstruction::OpEscape: { 2517 uint32_t Reg; 2518 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2519 Reg = Instr.getRegister(); 2520 } else { 2521 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2522 // Handle DW_CFA_def_cfa_expression 2523 if (!R) { 2524 if (RestoredCFAReg && RestoredCFAOffset) 2525 return true; 2526 RestoredCFAReg = true; 2527 RestoredCFAOffset = true; 2528 return false; 2529 } 2530 Reg = *R; 2531 } 2532 if (RestoredRegs[Reg]) 2533 return true; 2534 RestoredRegs[Reg] = true; 2535 const int32_t CurRegRule = 2536 RegRule.find(Reg) != RegRule.end() ? RegRule[Reg] : UNKNOWN; 2537 if (CurRegRule == UNKNOWN) { 2538 if (Instr.getOperation() == MCCFIInstruction::OpRestore || 2539 Instr.getOperation() == MCCFIInstruction::OpSameValue) 2540 return true; 2541 return false; 2542 } 2543 const MCCFIInstruction &LastDef = 2544 CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule]; 2545 return LastDef == Instr; 2546 } 2547 case MCCFIInstruction::OpDefCfaRegister: 2548 if (RestoredCFAReg) 2549 return true; 2550 RestoredCFAReg = true; 2551 return CFAReg == Instr.getRegister(); 2552 case MCCFIInstruction::OpDefCfaOffset: 2553 if (RestoredCFAOffset) 2554 return true; 2555 RestoredCFAOffset = true; 2556 return CFAOffset == Instr.getOffset(); 2557 case MCCFIInstruction::OpDefCfa: 2558 if (RestoredCFAReg && RestoredCFAOffset) 2559 return true; 2560 RestoredCFAReg = true; 2561 RestoredCFAOffset = true; 2562 return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset(); 2563 case MCCFIInstruction::OpAdjustCfaOffset: 2564 case MCCFIInstruction::OpWindowSave: 2565 case MCCFIInstruction::OpNegateRAState: 2566 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2567 llvm_unreachable("unsupported CFI opcode"); 2568 return false; 2569 case MCCFIInstruction::OpRememberState: 2570 case MCCFIInstruction::OpRestoreState: 2571 case MCCFIInstruction::OpGnuArgsSize: 2572 // do not affect CFI state 2573 return true; 2574 } 2575 return false; 2576 } 2577 }; 2578 2579 } // end anonymous namespace 2580 2581 bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState, 2582 BinaryBasicBlock *InBB, 2583 BinaryBasicBlock::iterator InsertIt) { 2584 if (FromState == ToState) 2585 return true; 2586 assert(FromState < ToState && "can only replay CFIs forward"); 2587 2588 CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions, 2589 FrameRestoreEquivalents, FromState); 2590 2591 std::vector<uint32_t> NewCFIs; 2592 for (int32_t CurState = FromState; CurState < ToState; ++CurState) { 2593 MCCFIInstruction *Instr = &FrameInstructions[CurState]; 2594 if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) { 2595 auto Iter = FrameRestoreEquivalents.find(CurState); 2596 assert(Iter != FrameRestoreEquivalents.end()); 2597 NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end()); 2598 // RestoreState / Remember will be filtered out later by CFISnapshotDiff, 2599 // so we might as well fall-through here. 2600 } 2601 NewCFIs.push_back(CurState); 2602 continue; 2603 } 2604 2605 // Replay instructions while avoiding duplicates 2606 for (auto I = NewCFIs.rbegin(), E = NewCFIs.rend(); I != E; ++I) { 2607 if (CFIDiff.isRedundant(FrameInstructions[*I])) 2608 continue; 2609 InsertIt = addCFIPseudo(InBB, InsertIt, *I); 2610 } 2611 2612 return true; 2613 } 2614 2615 SmallVector<int32_t, 4> 2616 BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState, 2617 BinaryBasicBlock *InBB, 2618 BinaryBasicBlock::iterator &InsertIt) { 2619 SmallVector<int32_t, 4> NewStates; 2620 2621 CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions, 2622 FrameRestoreEquivalents, ToState); 2623 CFISnapshotDiff FromCFITable(ToCFITable); 2624 FromCFITable.advanceTo(FromState); 2625 2626 auto undoStateDefCfa = [&]() { 2627 if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) { 2628 FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa( 2629 nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset)); 2630 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2631 FrameInstructions.pop_back(); 2632 return; 2633 } 2634 NewStates.push_back(FrameInstructions.size() - 1); 2635 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2636 ++InsertIt; 2637 } else if (ToCFITable.CFARule < 0) { 2638 if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule])) 2639 return; 2640 NewStates.push_back(FrameInstructions.size()); 2641 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2642 ++InsertIt; 2643 FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]); 2644 } else if (!FromCFITable.isRedundant( 2645 FrameInstructions[ToCFITable.CFARule])) { 2646 NewStates.push_back(ToCFITable.CFARule); 2647 InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule); 2648 ++InsertIt; 2649 } 2650 }; 2651 2652 auto undoState = [&](const MCCFIInstruction &Instr) { 2653 switch (Instr.getOperation()) { 2654 case MCCFIInstruction::OpRememberState: 2655 case MCCFIInstruction::OpRestoreState: 2656 break; 2657 case MCCFIInstruction::OpSameValue: 2658 case MCCFIInstruction::OpRelOffset: 2659 case MCCFIInstruction::OpOffset: 2660 case MCCFIInstruction::OpRestore: 2661 case MCCFIInstruction::OpUndefined: 2662 case MCCFIInstruction::OpEscape: 2663 case MCCFIInstruction::OpRegister: { 2664 uint32_t Reg; 2665 if (Instr.getOperation() != MCCFIInstruction::OpEscape) { 2666 Reg = Instr.getRegister(); 2667 } else { 2668 Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues()); 2669 // Handle DW_CFA_def_cfa_expression 2670 if (!R) { 2671 undoStateDefCfa(); 2672 return; 2673 } 2674 Reg = *R; 2675 } 2676 2677 if (ToCFITable.RegRule.find(Reg) == ToCFITable.RegRule.end()) { 2678 FrameInstructions.emplace_back( 2679 MCCFIInstruction::createRestore(nullptr, Reg)); 2680 if (FromCFITable.isRedundant(FrameInstructions.back())) { 2681 FrameInstructions.pop_back(); 2682 break; 2683 } 2684 NewStates.push_back(FrameInstructions.size() - 1); 2685 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1); 2686 ++InsertIt; 2687 break; 2688 } 2689 const int32_t Rule = ToCFITable.RegRule[Reg]; 2690 if (Rule < 0) { 2691 if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule])) 2692 break; 2693 NewStates.push_back(FrameInstructions.size()); 2694 InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size()); 2695 ++InsertIt; 2696 FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]); 2697 break; 2698 } 2699 if (FromCFITable.isRedundant(FrameInstructions[Rule])) 2700 break; 2701 NewStates.push_back(Rule); 2702 InsertIt = addCFIPseudo(InBB, InsertIt, Rule); 2703 ++InsertIt; 2704 break; 2705 } 2706 case MCCFIInstruction::OpDefCfaRegister: 2707 case MCCFIInstruction::OpDefCfaOffset: 2708 case MCCFIInstruction::OpDefCfa: 2709 undoStateDefCfa(); 2710 break; 2711 case MCCFIInstruction::OpAdjustCfaOffset: 2712 case MCCFIInstruction::OpWindowSave: 2713 case MCCFIInstruction::OpNegateRAState: 2714 case MCCFIInstruction::OpLLVMDefAspaceCfa: 2715 llvm_unreachable("unsupported CFI opcode"); 2716 break; 2717 case MCCFIInstruction::OpGnuArgsSize: 2718 // do not affect CFI state 2719 break; 2720 } 2721 }; 2722 2723 // Undo all modifications from ToState to FromState 2724 for (int32_t I = ToState, E = FromState; I != E; ++I) { 2725 const MCCFIInstruction &Instr = FrameInstructions[I]; 2726 if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) { 2727 undoState(Instr); 2728 continue; 2729 } 2730 auto Iter = FrameRestoreEquivalents.find(I); 2731 if (Iter == FrameRestoreEquivalents.end()) 2732 continue; 2733 for (int32_t State : Iter->second) 2734 undoState(FrameInstructions[State]); 2735 } 2736 2737 return NewStates; 2738 } 2739 2740 void BinaryFunction::normalizeCFIState() { 2741 // Reordering blocks with remember-restore state instructions can be specially 2742 // tricky. When rewriting the CFI, we omit remember-restore state instructions 2743 // entirely. For restore state, we build a map expanding each restore to the 2744 // equivalent unwindCFIState sequence required at that point to achieve the 2745 // same effect of the restore. All remember state are then just ignored. 2746 std::stack<int32_t> Stack; 2747 for (BinaryBasicBlock *CurBB : BasicBlocksLayout) { 2748 for (auto II = CurBB->begin(); II != CurBB->end(); ++II) { 2749 if (const MCCFIInstruction *CFI = getCFIFor(*II)) { 2750 if (CFI->getOperation() == MCCFIInstruction::OpRememberState) { 2751 Stack.push(II->getOperand(0).getImm()); 2752 continue; 2753 } 2754 if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) { 2755 const int32_t RememberState = Stack.top(); 2756 const int32_t CurState = II->getOperand(0).getImm(); 2757 FrameRestoreEquivalents[CurState] = 2758 unwindCFIState(CurState, RememberState, CurBB, II); 2759 Stack.pop(); 2760 } 2761 } 2762 } 2763 } 2764 } 2765 2766 bool BinaryFunction::finalizeCFIState() { 2767 LLVM_DEBUG( 2768 dbgs() << "Trying to fix CFI states for each BB after reordering.\n"); 2769 LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this 2770 << ": "); 2771 2772 int32_t State = 0; 2773 bool SeenCold = false; 2774 const char *Sep = ""; 2775 (void)Sep; 2776 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 2777 const int32_t CFIStateAtExit = BB->getCFIStateAtExit(); 2778 2779 // Hot-cold border: check if this is the first BB to be allocated in a cold 2780 // region (with a different FDE). If yes, we need to reset the CFI state. 2781 if (!SeenCold && BB->isCold()) { 2782 State = 0; 2783 SeenCold = true; 2784 } 2785 2786 // We need to recover the correct state if it doesn't match expected 2787 // state at BB entry point. 2788 if (BB->getCFIState() < State) { 2789 // In this case, State is currently higher than what this BB expect it 2790 // to be. To solve this, we need to insert CFI instructions to undo 2791 // the effect of all CFI from BB's state to current State. 2792 auto InsertIt = BB->begin(); 2793 unwindCFIState(State, BB->getCFIState(), BB, InsertIt); 2794 } else if (BB->getCFIState() > State) { 2795 // If BB's CFI state is greater than State, it means we are behind in the 2796 // state. Just emit all instructions to reach this state at the 2797 // beginning of this BB. If this sequence of instructions involve 2798 // remember state or restore state, bail out. 2799 if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin())) 2800 return false; 2801 } 2802 2803 State = CFIStateAtExit; 2804 LLVM_DEBUG(dbgs() << Sep << State; Sep = ", "); 2805 } 2806 LLVM_DEBUG(dbgs() << "\n"); 2807 2808 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 2809 for (auto II = BB->begin(); II != BB->end();) { 2810 const MCCFIInstruction *CFI = getCFIFor(*II); 2811 if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState || 2812 CFI->getOperation() == MCCFIInstruction::OpRestoreState)) { 2813 II = BB->eraseInstruction(II); 2814 } else { 2815 ++II; 2816 } 2817 } 2818 } 2819 2820 return true; 2821 } 2822 2823 bool BinaryFunction::requiresAddressTranslation() const { 2824 return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe(); 2825 } 2826 2827 uint64_t BinaryFunction::getInstructionCount() const { 2828 uint64_t Count = 0; 2829 for (BinaryBasicBlock *const &Block : BasicBlocksLayout) 2830 Count += Block->getNumNonPseudos(); 2831 return Count; 2832 } 2833 2834 bool BinaryFunction::hasLayoutChanged() const { return ModifiedLayout; } 2835 2836 uint64_t BinaryFunction::getEditDistance() const { 2837 return ComputeEditDistance<BinaryBasicBlock *>(BasicBlocksPreviousLayout, 2838 BasicBlocksLayout); 2839 } 2840 2841 void BinaryFunction::clearDisasmState() { 2842 clearList(Instructions); 2843 clearList(IgnoredBranches); 2844 clearList(TakenBranches); 2845 clearList(InterproceduralReferences); 2846 2847 if (BC.HasRelocations) { 2848 for (std::pair<const uint32_t, MCSymbol *> &LI : Labels) 2849 BC.UndefinedSymbols.insert(LI.second); 2850 if (FunctionEndLabel) 2851 BC.UndefinedSymbols.insert(FunctionEndLabel); 2852 } 2853 } 2854 2855 void BinaryFunction::setTrapOnEntry() { 2856 clearDisasmState(); 2857 2858 auto addTrapAtOffset = [&](uint64_t Offset) { 2859 MCInst TrapInstr; 2860 BC.MIB->createTrap(TrapInstr); 2861 addInstruction(Offset, std::move(TrapInstr)); 2862 }; 2863 2864 addTrapAtOffset(0); 2865 for (const std::pair<const uint32_t, MCSymbol *> &KV : getLabels()) 2866 if (getSecondaryEntryPointSymbol(KV.second)) 2867 addTrapAtOffset(KV.first); 2868 2869 TrapsOnEntry = true; 2870 } 2871 2872 void BinaryFunction::setIgnored() { 2873 if (opts::processAllFunctions()) { 2874 // We can accept ignored functions before they've been disassembled. 2875 // In that case, they would still get disassembled and emited, but not 2876 // optimized. 2877 assert(CurrentState == State::Empty && 2878 "cannot ignore non-empty functions in current mode"); 2879 IsIgnored = true; 2880 return; 2881 } 2882 2883 clearDisasmState(); 2884 2885 // Clear CFG state too. 2886 if (hasCFG()) { 2887 releaseCFG(); 2888 2889 for (BinaryBasicBlock *BB : BasicBlocks) 2890 delete BB; 2891 clearList(BasicBlocks); 2892 2893 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 2894 delete BB; 2895 clearList(DeletedBasicBlocks); 2896 2897 clearList(BasicBlocksLayout); 2898 clearList(BasicBlocksPreviousLayout); 2899 } 2900 2901 CurrentState = State::Empty; 2902 2903 IsIgnored = true; 2904 IsSimple = false; 2905 LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n'); 2906 } 2907 2908 void BinaryFunction::duplicateConstantIslands() { 2909 assert(Islands && "function expected to have constant islands"); 2910 2911 for (BinaryBasicBlock *BB : layout()) { 2912 if (!BB->isCold()) 2913 continue; 2914 2915 for (MCInst &Inst : *BB) { 2916 int OpNum = 0; 2917 for (MCOperand &Operand : Inst) { 2918 if (!Operand.isExpr()) { 2919 ++OpNum; 2920 continue; 2921 } 2922 const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum); 2923 // Check if this is an island symbol 2924 if (!Islands->Symbols.count(Symbol) && 2925 !Islands->ProxySymbols.count(Symbol)) 2926 continue; 2927 2928 // Create cold symbol, if missing 2929 auto ISym = Islands->ColdSymbols.find(Symbol); 2930 MCSymbol *ColdSymbol; 2931 if (ISym != Islands->ColdSymbols.end()) { 2932 ColdSymbol = ISym->second; 2933 } else { 2934 ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold"); 2935 Islands->ColdSymbols[Symbol] = ColdSymbol; 2936 // Check if this is a proxy island symbol and update owner proxy map 2937 if (Islands->ProxySymbols.count(Symbol)) { 2938 BinaryFunction *Owner = Islands->ProxySymbols[Symbol]; 2939 auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol); 2940 Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol; 2941 } 2942 } 2943 2944 // Update instruction reference 2945 Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor( 2946 Inst, 2947 MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None, 2948 *BC.Ctx), 2949 *BC.Ctx, 0)); 2950 ++OpNum; 2951 } 2952 } 2953 } 2954 } 2955 2956 namespace { 2957 2958 #ifndef MAX_PATH 2959 #define MAX_PATH 255 2960 #endif 2961 2962 std::string constructFilename(std::string Filename, std::string Annotation, 2963 std::string Suffix) { 2964 std::replace(Filename.begin(), Filename.end(), '/', '-'); 2965 if (!Annotation.empty()) 2966 Annotation.insert(0, "-"); 2967 if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) { 2968 assert(Suffix.size() + Annotation.size() <= MAX_PATH); 2969 if (opts::Verbosity >= 1) { 2970 errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix 2971 << "\" exceeds the " << MAX_PATH << " size limit, truncating.\n"; 2972 } 2973 Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size())); 2974 } 2975 Filename += Annotation; 2976 Filename += Suffix; 2977 return Filename; 2978 } 2979 2980 std::string formatEscapes(const std::string &Str) { 2981 std::string Result; 2982 for (unsigned I = 0; I < Str.size(); ++I) { 2983 char C = Str[I]; 2984 switch (C) { 2985 case '\n': 2986 Result += " "; 2987 break; 2988 case '"': 2989 break; 2990 default: 2991 Result += C; 2992 break; 2993 } 2994 } 2995 return Result; 2996 } 2997 2998 } // namespace 2999 3000 void BinaryFunction::dumpGraph(raw_ostream &OS) const { 3001 OS << "digraph \"" << getPrintName() << "\" {\n" 3002 << "node [fontname=courier, shape=box, style=filled, colorscheme=brbg9]\n"; 3003 uint64_t Offset = Address; 3004 for (BinaryBasicBlock *BB : BasicBlocks) { 3005 auto LayoutPos = llvm::find(BasicBlocksLayout, BB); 3006 unsigned Layout = LayoutPos - BasicBlocksLayout.begin(); 3007 const char *ColdStr = BB->isCold() ? " (cold)" : ""; 3008 std::vector<std::string> Attrs; 3009 // Bold box for entry points 3010 if (isEntryPoint(*BB)) 3011 Attrs.push_back("penwidth=2"); 3012 if (BLI && BLI->getLoopFor(BB)) { 3013 // Distinguish innermost loops 3014 const BinaryLoop *Loop = BLI->getLoopFor(BB); 3015 if (Loop->isInnermost()) 3016 Attrs.push_back("fillcolor=6"); 3017 else // some outer loop 3018 Attrs.push_back("fillcolor=4"); 3019 } else { // non-loopy code 3020 Attrs.push_back("fillcolor=5"); 3021 } 3022 ListSeparator LS; 3023 OS << "\"" << BB->getName() << "\" ["; 3024 for (StringRef Attr : Attrs) 3025 OS << LS << Attr; 3026 OS << "]\n"; 3027 OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u,CFI:%u)\\n", 3028 BB->getName().data(), BB->getName().data(), ColdStr, 3029 BB->getKnownExecutionCount(), BB->getOffset(), getIndex(BB), 3030 Layout, BB->getCFIState()); 3031 3032 if (opts::DotToolTipCode) { 3033 std::string Str; 3034 raw_string_ostream CS(Str); 3035 Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this, 3036 /* PrintMCInst = */ false, 3037 /* PrintMemData = */ false, 3038 /* PrintRelocations = */ false, 3039 /* Endl = */ R"(\\l)"); 3040 OS << formatEscapes(CS.str()) << '\n'; 3041 } 3042 OS << "\"]\n"; 3043 3044 // analyzeBranch is just used to get the names of the branch 3045 // opcodes. 3046 const MCSymbol *TBB = nullptr; 3047 const MCSymbol *FBB = nullptr; 3048 MCInst *CondBranch = nullptr; 3049 MCInst *UncondBranch = nullptr; 3050 const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch); 3051 3052 const MCInst *LastInstr = BB->getLastNonPseudoInstr(); 3053 const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr); 3054 3055 auto BI = BB->branch_info_begin(); 3056 for (BinaryBasicBlock *Succ : BB->successors()) { 3057 std::string Branch; 3058 if (Success) { 3059 if (Succ == BB->getConditionalSuccessor(true)) { 3060 Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3061 CondBranch->getOpcode())) 3062 : "TB"; 3063 } else if (Succ == BB->getConditionalSuccessor(false)) { 3064 Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName( 3065 UncondBranch->getOpcode())) 3066 : "FB"; 3067 } else { 3068 Branch = "FT"; 3069 } 3070 } 3071 if (IsJumpTable) 3072 Branch = "JT"; 3073 OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(), 3074 Succ->getName().data(), Branch.c_str()); 3075 3076 if (BB->getExecutionCount() != COUNT_NO_PROFILE && 3077 BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) { 3078 OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")"; 3079 } else if (ExecutionCount != COUNT_NO_PROFILE && 3080 BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) { 3081 OS << "\\n(IC:" << BI->Count << ")"; 3082 } 3083 OS << "\"]\n"; 3084 3085 ++BI; 3086 } 3087 for (BinaryBasicBlock *LP : BB->landing_pads()) { 3088 OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n", 3089 BB->getName().data(), LP->getName().data()); 3090 } 3091 } 3092 OS << "}\n"; 3093 } 3094 3095 void BinaryFunction::viewGraph() const { 3096 SmallString<MAX_PATH> Filename; 3097 if (std::error_code EC = 3098 sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) { 3099 errs() << "BOLT-ERROR: " << EC.message() << ", unable to create " 3100 << " bolt-cfg-XXXXX.dot temporary file.\n"; 3101 return; 3102 } 3103 dumpGraphToFile(std::string(Filename)); 3104 if (DisplayGraph(Filename)) 3105 errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n"; 3106 if (std::error_code EC = sys::fs::remove(Filename)) { 3107 errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove " 3108 << Filename << "\n"; 3109 } 3110 } 3111 3112 void BinaryFunction::dumpGraphForPass(std::string Annotation) const { 3113 if (!opts::shouldPrint(*this)) 3114 return; 3115 3116 std::string Filename = constructFilename(getPrintName(), Annotation, ".dot"); 3117 if (opts::Verbosity >= 1) 3118 outs() << "BOLT-INFO: dumping CFG to " << Filename << "\n"; 3119 dumpGraphToFile(Filename); 3120 } 3121 3122 void BinaryFunction::dumpGraphToFile(std::string Filename) const { 3123 std::error_code EC; 3124 raw_fd_ostream of(Filename, EC, sys::fs::OF_None); 3125 if (EC) { 3126 if (opts::Verbosity >= 1) { 3127 errs() << "BOLT-WARNING: " << EC.message() << ", unable to open " 3128 << Filename << " for output.\n"; 3129 } 3130 return; 3131 } 3132 dumpGraph(of); 3133 } 3134 3135 bool BinaryFunction::validateCFG() const { 3136 bool Valid = true; 3137 for (BinaryBasicBlock *BB : BasicBlocks) 3138 Valid &= BB->validateSuccessorInvariants(); 3139 3140 if (!Valid) 3141 return Valid; 3142 3143 // Make sure all blocks in CFG are valid. 3144 auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) { 3145 if (!BB->isValid()) { 3146 errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName() 3147 << " detected in:\n"; 3148 this->dump(); 3149 return false; 3150 } 3151 return true; 3152 }; 3153 for (const BinaryBasicBlock *BB : BasicBlocks) { 3154 if (!validateBlock(BB, "block")) 3155 return false; 3156 for (const BinaryBasicBlock *PredBB : BB->predecessors()) 3157 if (!validateBlock(PredBB, "predecessor")) 3158 return false; 3159 for (const BinaryBasicBlock *SuccBB : BB->successors()) 3160 if (!validateBlock(SuccBB, "successor")) 3161 return false; 3162 for (const BinaryBasicBlock *LP : BB->landing_pads()) 3163 if (!validateBlock(LP, "landing pad")) 3164 return false; 3165 for (const BinaryBasicBlock *Thrower : BB->throwers()) 3166 if (!validateBlock(Thrower, "thrower")) 3167 return false; 3168 } 3169 3170 for (const BinaryBasicBlock *BB : BasicBlocks) { 3171 std::unordered_set<const BinaryBasicBlock *> BBLandingPads; 3172 for (const BinaryBasicBlock *LP : BB->landing_pads()) { 3173 if (BBLandingPads.count(LP)) { 3174 errs() << "BOLT-ERROR: duplicate landing pad detected in" 3175 << BB->getName() << " in function " << *this << '\n'; 3176 return false; 3177 } 3178 BBLandingPads.insert(LP); 3179 } 3180 3181 std::unordered_set<const BinaryBasicBlock *> BBThrowers; 3182 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3183 if (BBThrowers.count(Thrower)) { 3184 errs() << "BOLT-ERROR: duplicate thrower detected in" << BB->getName() 3185 << " in function " << *this << '\n'; 3186 return false; 3187 } 3188 BBThrowers.insert(Thrower); 3189 } 3190 3191 for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) { 3192 if (!llvm::is_contained(LPBlock->throwers(), BB)) { 3193 errs() << "BOLT-ERROR: inconsistent landing pad detected in " << *this 3194 << ": " << BB->getName() << " is in LandingPads but not in " 3195 << LPBlock->getName() << " Throwers\n"; 3196 return false; 3197 } 3198 } 3199 for (const BinaryBasicBlock *Thrower : BB->throwers()) { 3200 if (!llvm::is_contained(Thrower->landing_pads(), BB)) { 3201 errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this 3202 << ": " << BB->getName() << " is in Throwers list but not in " 3203 << Thrower->getName() << " LandingPads\n"; 3204 return false; 3205 } 3206 } 3207 } 3208 3209 return Valid; 3210 } 3211 3212 void BinaryFunction::fixBranches() { 3213 auto &MIB = BC.MIB; 3214 MCContext *Ctx = BC.Ctx.get(); 3215 3216 for (unsigned I = 0, E = BasicBlocksLayout.size(); I != E; ++I) { 3217 BinaryBasicBlock *BB = BasicBlocksLayout[I]; 3218 const MCSymbol *TBB = nullptr; 3219 const MCSymbol *FBB = nullptr; 3220 MCInst *CondBranch = nullptr; 3221 MCInst *UncondBranch = nullptr; 3222 if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) 3223 continue; 3224 3225 // We will create unconditional branch with correct destination if needed. 3226 if (UncondBranch) 3227 BB->eraseInstruction(BB->findInstruction(UncondBranch)); 3228 3229 // Basic block that follows the current one in the final layout. 3230 const BinaryBasicBlock *NextBB = nullptr; 3231 if (I + 1 != E && BB->isCold() == BasicBlocksLayout[I + 1]->isCold()) 3232 NextBB = BasicBlocksLayout[I + 1]; 3233 3234 if (BB->succ_size() == 1) { 3235 // __builtin_unreachable() could create a conditional branch that 3236 // falls-through into the next function - hence the block will have only 3237 // one valid successor. Since behaviour is undefined - we replace 3238 // the conditional branch with an unconditional if required. 3239 if (CondBranch) 3240 BB->eraseInstruction(BB->findInstruction(CondBranch)); 3241 if (BB->getSuccessor() == NextBB) 3242 continue; 3243 BB->addBranchInstruction(BB->getSuccessor()); 3244 } else if (BB->succ_size() == 2) { 3245 assert(CondBranch && "conditional branch expected"); 3246 const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true); 3247 const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false); 3248 // Check whether we support reversing this branch direction 3249 const bool IsSupported = 3250 !MIB->isUnsupportedBranch(CondBranch->getOpcode()); 3251 if (NextBB && NextBB == TSuccessor && IsSupported) { 3252 std::swap(TSuccessor, FSuccessor); 3253 { 3254 auto L = BC.scopeLock(); 3255 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx); 3256 } 3257 BB->swapConditionalSuccessors(); 3258 } else { 3259 auto L = BC.scopeLock(); 3260 MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx); 3261 } 3262 if (TSuccessor == FSuccessor) 3263 BB->removeDuplicateConditionalSuccessor(CondBranch); 3264 if (!NextBB || 3265 ((NextBB != TSuccessor || !IsSupported) && NextBB != FSuccessor)) { 3266 // If one of the branches is guaranteed to be "long" while the other 3267 // could be "short", then prioritize short for "taken". This will 3268 // generate a sequence 1 byte shorter on x86. 3269 if (IsSupported && BC.isX86() && 3270 TSuccessor->isCold() != FSuccessor->isCold() && 3271 BB->isCold() != TSuccessor->isCold()) { 3272 std::swap(TSuccessor, FSuccessor); 3273 { 3274 auto L = BC.scopeLock(); 3275 MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), 3276 Ctx); 3277 } 3278 BB->swapConditionalSuccessors(); 3279 } 3280 BB->addBranchInstruction(FSuccessor); 3281 } 3282 } 3283 // Cases where the number of successors is 0 (block ends with a 3284 // terminator) or more than 2 (switch table) don't require branch 3285 // instruction adjustments. 3286 } 3287 assert((!isSimple() || validateCFG()) && 3288 "Invalid CFG detected after fixing branches"); 3289 } 3290 3291 void BinaryFunction::propagateGnuArgsSizeInfo( 3292 MCPlusBuilder::AllocatorIdTy AllocId) { 3293 assert(CurrentState == State::Disassembled && "unexpected function state"); 3294 3295 if (!hasEHRanges() || !usesGnuArgsSize()) 3296 return; 3297 3298 // The current value of DW_CFA_GNU_args_size affects all following 3299 // invoke instructions until the next CFI overrides it. 3300 // It is important to iterate basic blocks in the original order when 3301 // assigning the value. 3302 uint64_t CurrentGnuArgsSize = 0; 3303 for (BinaryBasicBlock *BB : BasicBlocks) { 3304 for (auto II = BB->begin(); II != BB->end();) { 3305 MCInst &Instr = *II; 3306 if (BC.MIB->isCFI(Instr)) { 3307 const MCCFIInstruction *CFI = getCFIFor(Instr); 3308 if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) { 3309 CurrentGnuArgsSize = CFI->getOffset(); 3310 // Delete DW_CFA_GNU_args_size instructions and only regenerate 3311 // during the final code emission. The information is embedded 3312 // inside call instructions. 3313 II = BB->erasePseudoInstruction(II); 3314 continue; 3315 } 3316 } else if (BC.MIB->isInvoke(Instr)) { 3317 // Add the value of GNU_args_size as an extra operand to invokes. 3318 BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize, AllocId); 3319 } 3320 ++II; 3321 } 3322 } 3323 } 3324 3325 void BinaryFunction::postProcessBranches() { 3326 if (!isSimple()) 3327 return; 3328 for (BinaryBasicBlock *BB : BasicBlocksLayout) { 3329 auto LastInstrRI = BB->getLastNonPseudo(); 3330 if (BB->succ_size() == 1) { 3331 if (LastInstrRI != BB->rend() && 3332 BC.MIB->isConditionalBranch(*LastInstrRI)) { 3333 // __builtin_unreachable() could create a conditional branch that 3334 // falls-through into the next function - hence the block will have only 3335 // one valid successor. Such behaviour is undefined and thus we remove 3336 // the conditional branch while leaving a valid successor. 3337 BB->eraseInstruction(std::prev(LastInstrRI.base())); 3338 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in " 3339 << BB->getName() << " in function " << *this << '\n'); 3340 } 3341 } else if (BB->succ_size() == 0) { 3342 // Ignore unreachable basic blocks. 3343 if (BB->pred_size() == 0 || BB->isLandingPad()) 3344 continue; 3345 3346 // If it's the basic block that does not end up with a terminator - we 3347 // insert a return instruction unless it's a call instruction. 3348 if (LastInstrRI == BB->rend()) { 3349 LLVM_DEBUG( 3350 dbgs() << "BOLT-DEBUG: at least one instruction expected in BB " 3351 << BB->getName() << " in function " << *this << '\n'); 3352 continue; 3353 } 3354 if (!BC.MIB->isTerminator(*LastInstrRI) && 3355 !BC.MIB->isCall(*LastInstrRI)) { 3356 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block " 3357 << BB->getName() << " in function " << *this << '\n'); 3358 MCInst ReturnInstr; 3359 BC.MIB->createReturn(ReturnInstr); 3360 BB->addInstruction(ReturnInstr); 3361 } 3362 } 3363 } 3364 assert(validateCFG() && "invalid CFG"); 3365 } 3366 3367 MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) { 3368 assert(Offset && "cannot add primary entry point"); 3369 assert(CurrentState == State::Empty || CurrentState == State::Disassembled); 3370 3371 const uint64_t EntryPointAddress = getAddress() + Offset; 3372 MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress); 3373 3374 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol); 3375 if (EntrySymbol) 3376 return EntrySymbol; 3377 3378 if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) { 3379 EntrySymbol = EntryBD->getSymbol(); 3380 } else { 3381 EntrySymbol = BC.getOrCreateGlobalSymbol( 3382 EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@"); 3383 } 3384 SecondaryEntryPoints[LocalSymbol] = EntrySymbol; 3385 3386 BC.setSymbolToFunctionMap(EntrySymbol, this); 3387 3388 return EntrySymbol; 3389 } 3390 3391 MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) { 3392 assert(CurrentState == State::CFG && 3393 "basic block can be added as an entry only in a function with CFG"); 3394 3395 if (&BB == BasicBlocks.front()) 3396 return getSymbol(); 3397 3398 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB); 3399 if (EntrySymbol) 3400 return EntrySymbol; 3401 3402 EntrySymbol = 3403 BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName()); 3404 3405 SecondaryEntryPoints[BB.getLabel()] = EntrySymbol; 3406 3407 BC.setSymbolToFunctionMap(EntrySymbol, this); 3408 3409 return EntrySymbol; 3410 } 3411 3412 MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) { 3413 if (EntryID == 0) 3414 return getSymbol(); 3415 3416 if (!isMultiEntry()) 3417 return nullptr; 3418 3419 uint64_t NumEntries = 0; 3420 if (hasCFG()) { 3421 for (BinaryBasicBlock *BB : BasicBlocks) { 3422 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3423 if (!EntrySymbol) 3424 continue; 3425 if (NumEntries == EntryID) 3426 return EntrySymbol; 3427 ++NumEntries; 3428 } 3429 } else { 3430 for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3431 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3432 if (!EntrySymbol) 3433 continue; 3434 if (NumEntries == EntryID) 3435 return EntrySymbol; 3436 ++NumEntries; 3437 } 3438 } 3439 3440 return nullptr; 3441 } 3442 3443 uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const { 3444 if (!isMultiEntry()) 3445 return 0; 3446 3447 for (const MCSymbol *FunctionSymbol : getSymbols()) 3448 if (FunctionSymbol == Symbol) 3449 return 0; 3450 3451 // Check all secondary entries available as either basic blocks or lables. 3452 uint64_t NumEntries = 0; 3453 for (const BinaryBasicBlock *BB : BasicBlocks) { 3454 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB); 3455 if (!EntrySymbol) 3456 continue; 3457 if (EntrySymbol == Symbol) 3458 return NumEntries; 3459 ++NumEntries; 3460 } 3461 NumEntries = 0; 3462 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3463 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3464 if (!EntrySymbol) 3465 continue; 3466 if (EntrySymbol == Symbol) 3467 return NumEntries; 3468 ++NumEntries; 3469 } 3470 3471 llvm_unreachable("symbol not found"); 3472 } 3473 3474 bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const { 3475 bool Status = Callback(0, getSymbol()); 3476 if (!isMultiEntry()) 3477 return Status; 3478 3479 for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) { 3480 if (!Status) 3481 break; 3482 3483 MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second); 3484 if (!EntrySymbol) 3485 continue; 3486 3487 Status = Callback(KV.first, EntrySymbol); 3488 } 3489 3490 return Status; 3491 } 3492 3493 BinaryFunction::BasicBlockOrderType BinaryFunction::dfs() const { 3494 BasicBlockOrderType DFS; 3495 unsigned Index = 0; 3496 std::stack<BinaryBasicBlock *> Stack; 3497 3498 // Push entry points to the stack in reverse order. 3499 // 3500 // NB: we rely on the original order of entries to match. 3501 for (auto BBI = layout_rbegin(); BBI != layout_rend(); ++BBI) { 3502 BinaryBasicBlock *BB = *BBI; 3503 if (isEntryPoint(*BB)) 3504 Stack.push(BB); 3505 BB->setLayoutIndex(BinaryBasicBlock::InvalidIndex); 3506 } 3507 3508 while (!Stack.empty()) { 3509 BinaryBasicBlock *BB = Stack.top(); 3510 Stack.pop(); 3511 3512 if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex) 3513 continue; 3514 3515 BB->setLayoutIndex(Index++); 3516 DFS.push_back(BB); 3517 3518 for (BinaryBasicBlock *SuccBB : BB->landing_pads()) { 3519 Stack.push(SuccBB); 3520 } 3521 3522 const MCSymbol *TBB = nullptr; 3523 const MCSymbol *FBB = nullptr; 3524 MCInst *CondBranch = nullptr; 3525 MCInst *UncondBranch = nullptr; 3526 if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch && 3527 BB->succ_size() == 2) { 3528 if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode( 3529 *CondBranch)) == BC.MIB->getCondCode(*CondBranch)) { 3530 Stack.push(BB->getConditionalSuccessor(true)); 3531 Stack.push(BB->getConditionalSuccessor(false)); 3532 } else { 3533 Stack.push(BB->getConditionalSuccessor(false)); 3534 Stack.push(BB->getConditionalSuccessor(true)); 3535 } 3536 } else { 3537 for (BinaryBasicBlock *SuccBB : BB->successors()) { 3538 Stack.push(SuccBB); 3539 } 3540 } 3541 } 3542 3543 return DFS; 3544 } 3545 3546 size_t BinaryFunction::computeHash(bool UseDFS, 3547 OperandHashFuncTy OperandHashFunc) const { 3548 if (size() == 0) 3549 return 0; 3550 3551 assert(hasCFG() && "function is expected to have CFG"); 3552 3553 const BasicBlockOrderType &Order = UseDFS ? dfs() : BasicBlocksLayout; 3554 3555 // The hash is computed by creating a string of all instruction opcodes and 3556 // possibly their operands and then hashing that string with std::hash. 3557 std::string HashString; 3558 for (const BinaryBasicBlock *BB : Order) { 3559 for (const MCInst &Inst : *BB) { 3560 unsigned Opcode = Inst.getOpcode(); 3561 3562 if (BC.MIB->isPseudo(Inst)) 3563 continue; 3564 3565 // Ignore unconditional jumps since we check CFG consistency by processing 3566 // basic blocks in order and do not rely on branches to be in-sync with 3567 // CFG. Note that we still use condition code of conditional jumps. 3568 if (BC.MIB->isUnconditionalBranch(Inst)) 3569 continue; 3570 3571 if (Opcode == 0) 3572 HashString.push_back(0); 3573 3574 while (Opcode) { 3575 uint8_t LSB = Opcode & 0xff; 3576 HashString.push_back(LSB); 3577 Opcode = Opcode >> 8; 3578 } 3579 3580 for (const MCOperand &Op : MCPlus::primeOperands(Inst)) 3581 HashString.append(OperandHashFunc(Op)); 3582 } 3583 } 3584 3585 return Hash = std::hash<std::string>{}(HashString); 3586 } 3587 3588 void BinaryFunction::insertBasicBlocks( 3589 BinaryBasicBlock *Start, 3590 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3591 const bool UpdateLayout, const bool UpdateCFIState, 3592 const bool RecomputeLandingPads) { 3593 const int64_t StartIndex = Start ? getIndex(Start) : -1LL; 3594 const size_t NumNewBlocks = NewBBs.size(); 3595 3596 BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks, 3597 nullptr); 3598 3599 int64_t I = StartIndex + 1; 3600 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3601 assert(!BasicBlocks[I]); 3602 BasicBlocks[I++] = BB.release(); 3603 } 3604 3605 if (RecomputeLandingPads) 3606 recomputeLandingPads(); 3607 else 3608 updateBBIndices(0); 3609 3610 if (UpdateLayout) 3611 updateLayout(Start, NumNewBlocks); 3612 3613 if (UpdateCFIState) 3614 updateCFIState(Start, NumNewBlocks); 3615 } 3616 3617 BinaryFunction::iterator BinaryFunction::insertBasicBlocks( 3618 BinaryFunction::iterator StartBB, 3619 std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs, 3620 const bool UpdateLayout, const bool UpdateCFIState, 3621 const bool RecomputeLandingPads) { 3622 const unsigned StartIndex = getIndex(&*StartBB); 3623 const size_t NumNewBlocks = NewBBs.size(); 3624 3625 BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks, 3626 nullptr); 3627 auto RetIter = BasicBlocks.begin() + StartIndex + 1; 3628 3629 unsigned I = StartIndex + 1; 3630 for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) { 3631 assert(!BasicBlocks[I]); 3632 BasicBlocks[I++] = BB.release(); 3633 } 3634 3635 if (RecomputeLandingPads) 3636 recomputeLandingPads(); 3637 else 3638 updateBBIndices(0); 3639 3640 if (UpdateLayout) 3641 updateLayout(*std::prev(RetIter), NumNewBlocks); 3642 3643 if (UpdateCFIState) 3644 updateCFIState(*std::prev(RetIter), NumNewBlocks); 3645 3646 return RetIter; 3647 } 3648 3649 void BinaryFunction::updateBBIndices(const unsigned StartIndex) { 3650 for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I) 3651 BasicBlocks[I]->Index = I; 3652 } 3653 3654 void BinaryFunction::updateCFIState(BinaryBasicBlock *Start, 3655 const unsigned NumNewBlocks) { 3656 const int32_t CFIState = Start->getCFIStateAtExit(); 3657 const unsigned StartIndex = getIndex(Start) + 1; 3658 for (unsigned I = 0; I < NumNewBlocks; ++I) 3659 BasicBlocks[StartIndex + I]->setCFIState(CFIState); 3660 } 3661 3662 void BinaryFunction::updateLayout(BinaryBasicBlock *Start, 3663 const unsigned NumNewBlocks) { 3664 // If start not provided insert new blocks at the beginning 3665 if (!Start) { 3666 BasicBlocksLayout.insert(layout_begin(), BasicBlocks.begin(), 3667 BasicBlocks.begin() + NumNewBlocks); 3668 updateLayoutIndices(); 3669 return; 3670 } 3671 3672 // Insert new blocks in the layout immediately after Start. 3673 auto Pos = llvm::find(layout(), Start); 3674 assert(Pos != layout_end()); 3675 BasicBlockListType::iterator Begin = 3676 std::next(BasicBlocks.begin(), getIndex(Start) + 1); 3677 BasicBlockListType::iterator End = 3678 std::next(BasicBlocks.begin(), getIndex(Start) + NumNewBlocks + 1); 3679 BasicBlocksLayout.insert(Pos + 1, Begin, End); 3680 updateLayoutIndices(); 3681 } 3682 3683 bool BinaryFunction::checkForAmbiguousJumpTables() { 3684 SmallSet<uint64_t, 4> JumpTables; 3685 for (BinaryBasicBlock *&BB : BasicBlocks) { 3686 for (MCInst &Inst : *BB) { 3687 if (!BC.MIB->isIndirectBranch(Inst)) 3688 continue; 3689 uint64_t JTAddress = BC.MIB->getJumpTable(Inst); 3690 if (!JTAddress) 3691 continue; 3692 // This address can be inside another jump table, but we only consider 3693 // it ambiguous when the same start address is used, not the same JT 3694 // object. 3695 if (!JumpTables.count(JTAddress)) { 3696 JumpTables.insert(JTAddress); 3697 continue; 3698 } 3699 return true; 3700 } 3701 } 3702 return false; 3703 } 3704 3705 void BinaryFunction::disambiguateJumpTables( 3706 MCPlusBuilder::AllocatorIdTy AllocId) { 3707 assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations); 3708 SmallPtrSet<JumpTable *, 4> JumpTables; 3709 for (BinaryBasicBlock *&BB : BasicBlocks) { 3710 for (MCInst &Inst : *BB) { 3711 if (!BC.MIB->isIndirectBranch(Inst)) 3712 continue; 3713 JumpTable *JT = getJumpTable(Inst); 3714 if (!JT) 3715 continue; 3716 auto Iter = JumpTables.find(JT); 3717 if (Iter == JumpTables.end()) { 3718 JumpTables.insert(JT); 3719 continue; 3720 } 3721 // This instruction is an indirect jump using a jump table, but it is 3722 // using the same jump table of another jump. Try all our tricks to 3723 // extract the jump table symbol and make it point to a new, duplicated JT 3724 MCPhysReg BaseReg1; 3725 uint64_t Scale; 3726 const MCSymbol *Target; 3727 // In case we match if our first matcher, first instruction is the one to 3728 // patch 3729 MCInst *JTLoadInst = &Inst; 3730 // Try a standard indirect jump matcher, scale 8 3731 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher = 3732 BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1), 3733 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3734 /*Offset=*/BC.MIB->matchSymbol(Target)); 3735 if (!IndJmpMatcher->match( 3736 *BC.MRI, *BC.MIB, 3737 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3738 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3739 MCPhysReg BaseReg2; 3740 uint64_t Offset; 3741 // Standard JT matching failed. Trying now: 3742 // movq "jt.2397/1"(,%rax,8), %rax 3743 // jmpq *%rax 3744 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner = 3745 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1), 3746 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3747 /*Offset=*/BC.MIB->matchSymbol(Target)); 3748 MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get(); 3749 std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 = 3750 BC.MIB->matchIndJmp(std::move(LoadMatcherOwner)); 3751 if (!IndJmpMatcher2->match( 3752 *BC.MRI, *BC.MIB, 3753 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3754 BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) { 3755 // JT matching failed. Trying now: 3756 // PIC-style matcher, scale 4 3757 // addq %rdx, %rsi 3758 // addq %rdx, %rdi 3759 // leaq DATAat0x402450(%rip), %r11 3760 // movslq (%r11,%rdx,4), %rcx 3761 // addq %r11, %rcx 3762 // jmpq *%rcx # JUMPTABLE @0x402450 3763 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher = 3764 BC.MIB->matchIndJmp(BC.MIB->matchAdd( 3765 BC.MIB->matchReg(BaseReg1), 3766 BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2), 3767 BC.MIB->matchImm(Scale), BC.MIB->matchReg(), 3768 BC.MIB->matchImm(Offset)))); 3769 std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner = 3770 BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target)); 3771 MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get(); 3772 std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher = 3773 BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner), 3774 BC.MIB->matchAnyOperand())); 3775 if (!PICIndJmpMatcher->match( 3776 *BC.MRI, *BC.MIB, 3777 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) || 3778 Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 || 3779 !PICBaseAddrMatcher->match( 3780 *BC.MRI, *BC.MIB, 3781 MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) { 3782 llvm_unreachable("Failed to extract jump table base"); 3783 continue; 3784 } 3785 // Matched PIC, identify the instruction with the reference to the JT 3786 JTLoadInst = LEAMatcher->CurInst; 3787 } else { 3788 // Matched non-PIC 3789 JTLoadInst = LoadMatcher->CurInst; 3790 } 3791 } 3792 3793 uint64_t NewJumpTableID = 0; 3794 const MCSymbol *NewJTLabel; 3795 std::tie(NewJumpTableID, NewJTLabel) = 3796 BC.duplicateJumpTable(*this, JT, Target); 3797 { 3798 auto L = BC.scopeLock(); 3799 BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get()); 3800 } 3801 // We use a unique ID with the high bit set as address for this "injected" 3802 // jump table (not originally in the input binary). 3803 BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId); 3804 } 3805 } 3806 } 3807 3808 bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB, 3809 BinaryBasicBlock *OldDest, 3810 BinaryBasicBlock *NewDest) { 3811 MCInst *Instr = BB->getLastNonPseudoInstr(); 3812 if (!Instr || !BC.MIB->isIndirectBranch(*Instr)) 3813 return false; 3814 uint64_t JTAddress = BC.MIB->getJumpTable(*Instr); 3815 assert(JTAddress && "Invalid jump table address"); 3816 JumpTable *JT = getJumpTableContainingAddress(JTAddress); 3817 assert(JT && "No jump table structure for this indirect branch"); 3818 bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(), 3819 NewDest->getLabel()); 3820 (void)Patched; 3821 assert(Patched && "Invalid entry to be replaced in jump table"); 3822 return true; 3823 } 3824 3825 BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From, 3826 BinaryBasicBlock *To) { 3827 // Create intermediate BB 3828 MCSymbol *Tmp; 3829 { 3830 auto L = BC.scopeLock(); 3831 Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge"); 3832 } 3833 // Link new BBs to the original input offset of the From BB, so we can map 3834 // samples recorded in new BBs back to the original BB seem in the input 3835 // binary (if using BAT) 3836 std::unique_ptr<BinaryBasicBlock> NewBB = createBasicBlock(Tmp); 3837 NewBB->setOffset(From->getInputOffset()); 3838 BinaryBasicBlock *NewBBPtr = NewBB.get(); 3839 3840 // Update "From" BB 3841 auto I = From->succ_begin(); 3842 auto BI = From->branch_info_begin(); 3843 for (; I != From->succ_end(); ++I) { 3844 if (*I == To) 3845 break; 3846 ++BI; 3847 } 3848 assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!"); 3849 uint64_t OrigCount = BI->Count; 3850 uint64_t OrigMispreds = BI->MispredictedCount; 3851 replaceJumpTableEntryIn(From, To, NewBBPtr); 3852 From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds); 3853 3854 NewBB->addSuccessor(To, OrigCount, OrigMispreds); 3855 NewBB->setExecutionCount(OrigCount); 3856 NewBB->setIsCold(From->isCold()); 3857 3858 // Update CFI and BB layout with new intermediate BB 3859 std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs; 3860 NewBBs.emplace_back(std::move(NewBB)); 3861 insertBasicBlocks(From, std::move(NewBBs), true, true, 3862 /*RecomputeLandingPads=*/false); 3863 return NewBBPtr; 3864 } 3865 3866 void BinaryFunction::deleteConservativeEdges() { 3867 // Our goal is to aggressively remove edges from the CFG that we believe are 3868 // wrong. This is used for instrumentation, where it is safe to remove 3869 // fallthrough edges because we won't reorder blocks. 3870 for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) { 3871 BinaryBasicBlock *BB = *I; 3872 if (BB->succ_size() != 1 || BB->size() == 0) 3873 continue; 3874 3875 auto NextBB = std::next(I); 3876 MCInst *Last = BB->getLastNonPseudoInstr(); 3877 // Fallthrough is a landing pad? Delete this edge (as long as we don't 3878 // have a direct jump to it) 3879 if ((*BB->succ_begin())->isLandingPad() && NextBB != E && 3880 *BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) { 3881 BB->removeAllSuccessors(); 3882 continue; 3883 } 3884 3885 // Look for suspicious calls at the end of BB where gcc may optimize it and 3886 // remove the jump to the epilogue when it knows the call won't return. 3887 if (!Last || !BC.MIB->isCall(*Last)) 3888 continue; 3889 3890 const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last); 3891 if (!CalleeSymbol) 3892 continue; 3893 3894 StringRef CalleeName = CalleeSymbol->getName(); 3895 if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" && 3896 CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" && 3897 CalleeName != "abort@PLT") 3898 continue; 3899 3900 BB->removeAllSuccessors(); 3901 } 3902 } 3903 3904 bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol, 3905 uint64_t SymbolSize) const { 3906 // If this symbol is in a different section from the one where the 3907 // function symbol is, don't consider it as valid. 3908 if (!getOriginSection()->containsAddress( 3909 cantFail(Symbol.getAddress(), "cannot get symbol address"))) 3910 return false; 3911 3912 // Some symbols are tolerated inside function bodies, others are not. 3913 // The real function boundaries may not be known at this point. 3914 if (BC.isMarker(Symbol)) 3915 return true; 3916 3917 // It's okay to have a zero-sized symbol in the middle of non-zero-sized 3918 // function. 3919 if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress()))) 3920 return true; 3921 3922 if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown) 3923 return false; 3924 3925 if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global) 3926 return false; 3927 3928 return true; 3929 } 3930 3931 void BinaryFunction::adjustExecutionCount(uint64_t Count) { 3932 if (getKnownExecutionCount() == 0 || Count == 0) 3933 return; 3934 3935 if (ExecutionCount < Count) 3936 Count = ExecutionCount; 3937 3938 double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount; 3939 if (AdjustmentRatio < 0.0) 3940 AdjustmentRatio = 0.0; 3941 3942 for (BinaryBasicBlock *&BB : layout()) 3943 BB->adjustExecutionCount(AdjustmentRatio); 3944 3945 ExecutionCount -= Count; 3946 } 3947 3948 BinaryFunction::~BinaryFunction() { 3949 for (BinaryBasicBlock *BB : BasicBlocks) 3950 delete BB; 3951 for (BinaryBasicBlock *BB : DeletedBasicBlocks) 3952 delete BB; 3953 } 3954 3955 void BinaryFunction::calculateLoopInfo() { 3956 // Discover loops. 3957 BinaryDominatorTree DomTree; 3958 DomTree.recalculate(*this); 3959 BLI.reset(new BinaryLoopInfo()); 3960 BLI->analyze(DomTree); 3961 3962 // Traverse discovered loops and add depth and profile information. 3963 std::stack<BinaryLoop *> St; 3964 for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) { 3965 St.push(*I); 3966 ++BLI->OuterLoops; 3967 } 3968 3969 while (!St.empty()) { 3970 BinaryLoop *L = St.top(); 3971 St.pop(); 3972 ++BLI->TotalLoops; 3973 BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth); 3974 3975 // Add nested loops in the stack. 3976 for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) 3977 St.push(*I); 3978 3979 // Skip if no valid profile is found. 3980 if (!hasValidProfile()) { 3981 L->EntryCount = COUNT_NO_PROFILE; 3982 L->ExitCount = COUNT_NO_PROFILE; 3983 L->TotalBackEdgeCount = COUNT_NO_PROFILE; 3984 continue; 3985 } 3986 3987 // Compute back edge count. 3988 SmallVector<BinaryBasicBlock *, 1> Latches; 3989 L->getLoopLatches(Latches); 3990 3991 for (BinaryBasicBlock *Latch : Latches) { 3992 auto BI = Latch->branch_info_begin(); 3993 for (BinaryBasicBlock *Succ : Latch->successors()) { 3994 if (Succ == L->getHeader()) { 3995 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 3996 "profile data not found"); 3997 L->TotalBackEdgeCount += BI->Count; 3998 } 3999 ++BI; 4000 } 4001 } 4002 4003 // Compute entry count. 4004 L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount; 4005 4006 // Compute exit count. 4007 SmallVector<BinaryLoop::Edge, 1> ExitEdges; 4008 L->getExitEdges(ExitEdges); 4009 for (BinaryLoop::Edge &Exit : ExitEdges) { 4010 const BinaryBasicBlock *Exiting = Exit.first; 4011 const BinaryBasicBlock *ExitTarget = Exit.second; 4012 auto BI = Exiting->branch_info_begin(); 4013 for (BinaryBasicBlock *Succ : Exiting->successors()) { 4014 if (Succ == ExitTarget) { 4015 assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE && 4016 "profile data not found"); 4017 L->ExitCount += BI->Count; 4018 } 4019 ++BI; 4020 } 4021 } 4022 } 4023 } 4024 4025 void BinaryFunction::updateOutputValues(const MCAsmLayout &Layout) { 4026 if (!isEmitted()) { 4027 assert(!isInjected() && "injected function should be emitted"); 4028 setOutputAddress(getAddress()); 4029 setOutputSize(getSize()); 4030 return; 4031 } 4032 4033 const uint64_t BaseAddress = getCodeSection()->getOutputAddress(); 4034 ErrorOr<BinarySection &> ColdSection = getColdCodeSection(); 4035 const uint64_t ColdBaseAddress = 4036 isSplit() ? ColdSection->getOutputAddress() : 0; 4037 if (BC.HasRelocations || isInjected()) { 4038 const uint64_t StartOffset = Layout.getSymbolOffset(*getSymbol()); 4039 const uint64_t EndOffset = Layout.getSymbolOffset(*getFunctionEndLabel()); 4040 setOutputAddress(BaseAddress + StartOffset); 4041 setOutputSize(EndOffset - StartOffset); 4042 if (hasConstantIsland()) { 4043 const uint64_t DataOffset = 4044 Layout.getSymbolOffset(*getFunctionConstantIslandLabel()); 4045 setOutputDataAddress(BaseAddress + DataOffset); 4046 } 4047 if (isSplit()) { 4048 const MCSymbol *ColdStartSymbol = getColdSymbol(); 4049 assert(ColdStartSymbol && ColdStartSymbol->isDefined() && 4050 "split function should have defined cold symbol"); 4051 const MCSymbol *ColdEndSymbol = getFunctionColdEndLabel(); 4052 assert(ColdEndSymbol && ColdEndSymbol->isDefined() && 4053 "split function should have defined cold end symbol"); 4054 const uint64_t ColdStartOffset = Layout.getSymbolOffset(*ColdStartSymbol); 4055 const uint64_t ColdEndOffset = Layout.getSymbolOffset(*ColdEndSymbol); 4056 cold().setAddress(ColdBaseAddress + ColdStartOffset); 4057 cold().setImageSize(ColdEndOffset - ColdStartOffset); 4058 if (hasConstantIsland()) { 4059 const uint64_t DataOffset = 4060 Layout.getSymbolOffset(*getFunctionColdConstantIslandLabel()); 4061 setOutputColdDataAddress(ColdBaseAddress + DataOffset); 4062 } 4063 } 4064 } else { 4065 setOutputAddress(getAddress()); 4066 setOutputSize(Layout.getSymbolOffset(*getFunctionEndLabel())); 4067 } 4068 4069 // Update basic block output ranges for the debug info, if we have 4070 // secondary entry points in the symbol table to update or if writing BAT. 4071 if (!opts::UpdateDebugSections && !isMultiEntry() && 4072 !requiresAddressTranslation()) 4073 return; 4074 4075 // Output ranges should match the input if the body hasn't changed. 4076 if (!isSimple() && !BC.HasRelocations) 4077 return; 4078 4079 // AArch64 may have functions that only contains a constant island (no code). 4080 if (layout_begin() == layout_end()) 4081 return; 4082 4083 BinaryBasicBlock *PrevBB = nullptr; 4084 for (auto BBI = layout_begin(), BBE = layout_end(); BBI != BBE; ++BBI) { 4085 BinaryBasicBlock *BB = *BBI; 4086 assert(BB->getLabel()->isDefined() && "symbol should be defined"); 4087 const uint64_t BBBaseAddress = BB->isCold() ? ColdBaseAddress : BaseAddress; 4088 if (!BC.HasRelocations) { 4089 if (BB->isCold()) { 4090 assert(BBBaseAddress == cold().getAddress()); 4091 } else { 4092 assert(BBBaseAddress == getOutputAddress()); 4093 } 4094 } 4095 const uint64_t BBOffset = Layout.getSymbolOffset(*BB->getLabel()); 4096 const uint64_t BBAddress = BBBaseAddress + BBOffset; 4097 BB->setOutputStartAddress(BBAddress); 4098 4099 if (PrevBB) { 4100 uint64_t PrevBBEndAddress = BBAddress; 4101 if (BB->isCold() != PrevBB->isCold()) 4102 PrevBBEndAddress = getOutputAddress() + getOutputSize(); 4103 PrevBB->setOutputEndAddress(PrevBBEndAddress); 4104 } 4105 PrevBB = BB; 4106 4107 BB->updateOutputValues(Layout); 4108 } 4109 PrevBB->setOutputEndAddress(PrevBB->isCold() 4110 ? cold().getAddress() + cold().getImageSize() 4111 : getOutputAddress() + getOutputSize()); 4112 } 4113 4114 DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const { 4115 DebugAddressRangesVector OutputRanges; 4116 4117 if (isFolded()) 4118 return OutputRanges; 4119 4120 if (IsFragment) 4121 return OutputRanges; 4122 4123 OutputRanges.emplace_back(getOutputAddress(), 4124 getOutputAddress() + getOutputSize()); 4125 if (isSplit()) { 4126 assert(isEmitted() && "split function should be emitted"); 4127 OutputRanges.emplace_back(cold().getAddress(), 4128 cold().getAddress() + cold().getImageSize()); 4129 } 4130 4131 if (isSimple()) 4132 return OutputRanges; 4133 4134 for (BinaryFunction *Frag : Fragments) { 4135 assert(!Frag->isSimple() && 4136 "fragment of non-simple function should also be non-simple"); 4137 OutputRanges.emplace_back(Frag->getOutputAddress(), 4138 Frag->getOutputAddress() + Frag->getOutputSize()); 4139 } 4140 4141 return OutputRanges; 4142 } 4143 4144 uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const { 4145 if (isFolded()) 4146 return 0; 4147 4148 // If the function hasn't changed return the same address. 4149 if (!isEmitted()) 4150 return Address; 4151 4152 if (Address < getAddress()) 4153 return 0; 4154 4155 // Check if the address is associated with an instruction that is tracked 4156 // by address translation. 4157 auto KV = InputOffsetToAddressMap.find(Address - getAddress()); 4158 if (KV != InputOffsetToAddressMap.end()) 4159 return KV->second; 4160 4161 // FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay 4162 // intact. Instead we can use pseudo instructions and/or annotations. 4163 const uint64_t Offset = Address - getAddress(); 4164 const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4165 if (!BB) { 4166 // Special case for address immediately past the end of the function. 4167 if (Offset == getSize()) 4168 return getOutputAddress() + getOutputSize(); 4169 4170 return 0; 4171 } 4172 4173 return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(), 4174 BB->getOutputAddressRange().second); 4175 } 4176 4177 DebugAddressRangesVector BinaryFunction::translateInputToOutputRanges( 4178 const DWARFAddressRangesVector &InputRanges) const { 4179 DebugAddressRangesVector OutputRanges; 4180 4181 if (isFolded()) 4182 return OutputRanges; 4183 4184 // If the function hasn't changed return the same ranges. 4185 if (!isEmitted()) { 4186 OutputRanges.resize(InputRanges.size()); 4187 llvm::transform(InputRanges, OutputRanges.begin(), 4188 [](const DWARFAddressRange &Range) { 4189 return DebugAddressRange(Range.LowPC, Range.HighPC); 4190 }); 4191 return OutputRanges; 4192 } 4193 4194 // Even though we will merge ranges in a post-processing pass, we attempt to 4195 // merge them in a main processing loop as it improves the processing time. 4196 uint64_t PrevEndAddress = 0; 4197 for (const DWARFAddressRange &Range : InputRanges) { 4198 if (!containsAddress(Range.LowPC)) { 4199 LLVM_DEBUG( 4200 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4201 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) << ", 0x" 4202 << Twine::utohexstr(Range.HighPC) << "]\n"); 4203 PrevEndAddress = 0; 4204 continue; 4205 } 4206 uint64_t InputOffset = Range.LowPC - getAddress(); 4207 const uint64_t InputEndOffset = 4208 std::min(Range.HighPC - getAddress(), getSize()); 4209 4210 auto BBI = llvm::upper_bound(BasicBlockOffsets, 4211 BasicBlockOffset(InputOffset, nullptr), 4212 CompareBasicBlockOffsets()); 4213 --BBI; 4214 do { 4215 const BinaryBasicBlock *BB = BBI->second; 4216 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4217 LLVM_DEBUG( 4218 dbgs() << "BOLT-DEBUG: invalid debug address range detected for " 4219 << *this << " : [0x" << Twine::utohexstr(Range.LowPC) 4220 << ", 0x" << Twine::utohexstr(Range.HighPC) << "]\n"); 4221 PrevEndAddress = 0; 4222 break; 4223 } 4224 4225 // Skip the range if the block was deleted. 4226 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4227 const uint64_t StartAddress = 4228 OutputStart + InputOffset - BB->getOffset(); 4229 uint64_t EndAddress = BB->getOutputAddressRange().second; 4230 if (InputEndOffset < BB->getEndOffset()) 4231 EndAddress = StartAddress + InputEndOffset - InputOffset; 4232 4233 if (StartAddress == PrevEndAddress) { 4234 OutputRanges.back().HighPC = 4235 std::max(OutputRanges.back().HighPC, EndAddress); 4236 } else { 4237 OutputRanges.emplace_back(StartAddress, 4238 std::max(StartAddress, EndAddress)); 4239 } 4240 PrevEndAddress = OutputRanges.back().HighPC; 4241 } 4242 4243 InputOffset = BB->getEndOffset(); 4244 ++BBI; 4245 } while (InputOffset < InputEndOffset); 4246 } 4247 4248 // Post-processing pass to sort and merge ranges. 4249 llvm::sort(OutputRanges); 4250 DebugAddressRangesVector MergedRanges; 4251 PrevEndAddress = 0; 4252 for (const DebugAddressRange &Range : OutputRanges) { 4253 if (Range.LowPC <= PrevEndAddress) { 4254 MergedRanges.back().HighPC = 4255 std::max(MergedRanges.back().HighPC, Range.HighPC); 4256 } else { 4257 MergedRanges.emplace_back(Range.LowPC, Range.HighPC); 4258 } 4259 PrevEndAddress = MergedRanges.back().HighPC; 4260 } 4261 4262 return MergedRanges; 4263 } 4264 4265 MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) { 4266 if (CurrentState == State::Disassembled) { 4267 auto II = Instructions.find(Offset); 4268 return (II == Instructions.end()) ? nullptr : &II->second; 4269 } else if (CurrentState == State::CFG) { 4270 BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset); 4271 if (!BB) 4272 return nullptr; 4273 4274 for (MCInst &Inst : *BB) { 4275 constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max(); 4276 if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset)) 4277 return &Inst; 4278 } 4279 4280 if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) { 4281 const uint32_t Size = 4282 BC.MIB->getAnnotationWithDefault<uint32_t>(*LastInstr, "Size"); 4283 if (BB->getEndOffset() - Offset == Size) 4284 return LastInstr; 4285 } 4286 4287 return nullptr; 4288 } else { 4289 llvm_unreachable("invalid CFG state to use getInstructionAtOffset()"); 4290 } 4291 } 4292 4293 DebugLocationsVector BinaryFunction::translateInputToOutputLocationList( 4294 const DebugLocationsVector &InputLL) const { 4295 DebugLocationsVector OutputLL; 4296 4297 if (isFolded()) 4298 return OutputLL; 4299 4300 // If the function hasn't changed - there's nothing to update. 4301 if (!isEmitted()) 4302 return InputLL; 4303 4304 uint64_t PrevEndAddress = 0; 4305 SmallVectorImpl<uint8_t> *PrevExpr = nullptr; 4306 for (const DebugLocationEntry &Entry : InputLL) { 4307 const uint64_t Start = Entry.LowPC; 4308 const uint64_t End = Entry.HighPC; 4309 if (!containsAddress(Start)) { 4310 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4311 "for " 4312 << *this << " : [0x" << Twine::utohexstr(Start) 4313 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4314 continue; 4315 } 4316 uint64_t InputOffset = Start - getAddress(); 4317 const uint64_t InputEndOffset = std::min(End - getAddress(), getSize()); 4318 auto BBI = llvm::upper_bound(BasicBlockOffsets, 4319 BasicBlockOffset(InputOffset, nullptr), 4320 CompareBasicBlockOffsets()); 4321 --BBI; 4322 do { 4323 const BinaryBasicBlock *BB = BBI->second; 4324 if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) { 4325 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected " 4326 "for " 4327 << *this << " : [0x" << Twine::utohexstr(Start) 4328 << ", 0x" << Twine::utohexstr(End) << "]\n"); 4329 PrevEndAddress = 0; 4330 break; 4331 } 4332 4333 // Skip the range if the block was deleted. 4334 if (const uint64_t OutputStart = BB->getOutputAddressRange().first) { 4335 const uint64_t StartAddress = 4336 OutputStart + InputOffset - BB->getOffset(); 4337 uint64_t EndAddress = BB->getOutputAddressRange().second; 4338 if (InputEndOffset < BB->getEndOffset()) 4339 EndAddress = StartAddress + InputEndOffset - InputOffset; 4340 4341 if (StartAddress == PrevEndAddress && Entry.Expr == *PrevExpr) { 4342 OutputLL.back().HighPC = std::max(OutputLL.back().HighPC, EndAddress); 4343 } else { 4344 OutputLL.emplace_back(DebugLocationEntry{ 4345 StartAddress, std::max(StartAddress, EndAddress), Entry.Expr}); 4346 } 4347 PrevEndAddress = OutputLL.back().HighPC; 4348 PrevExpr = &OutputLL.back().Expr; 4349 } 4350 4351 ++BBI; 4352 InputOffset = BB->getEndOffset(); 4353 } while (InputOffset < InputEndOffset); 4354 } 4355 4356 // Sort and merge adjacent entries with identical location. 4357 llvm::stable_sort( 4358 OutputLL, [](const DebugLocationEntry &A, const DebugLocationEntry &B) { 4359 return A.LowPC < B.LowPC; 4360 }); 4361 DebugLocationsVector MergedLL; 4362 PrevEndAddress = 0; 4363 PrevExpr = nullptr; 4364 for (const DebugLocationEntry &Entry : OutputLL) { 4365 if (Entry.LowPC <= PrevEndAddress && *PrevExpr == Entry.Expr) { 4366 MergedLL.back().HighPC = std::max(Entry.HighPC, MergedLL.back().HighPC); 4367 } else { 4368 const uint64_t Begin = std::max(Entry.LowPC, PrevEndAddress); 4369 const uint64_t End = std::max(Begin, Entry.HighPC); 4370 MergedLL.emplace_back(DebugLocationEntry{Begin, End, Entry.Expr}); 4371 } 4372 PrevEndAddress = MergedLL.back().HighPC; 4373 PrevExpr = &MergedLL.back().Expr; 4374 } 4375 4376 return MergedLL; 4377 } 4378 4379 void BinaryFunction::printLoopInfo(raw_ostream &OS) const { 4380 if (!opts::shouldPrint(*this)) 4381 return; 4382 4383 OS << "Loop Info for Function \"" << *this << "\""; 4384 if (hasValidProfile()) 4385 OS << " (count: " << getExecutionCount() << ")"; 4386 OS << "\n"; 4387 4388 std::stack<BinaryLoop *> St; 4389 for_each(*BLI, [&](BinaryLoop *L) { St.push(L); }); 4390 while (!St.empty()) { 4391 BinaryLoop *L = St.top(); 4392 St.pop(); 4393 4394 for_each(*L, [&](BinaryLoop *Inner) { St.push(Inner); }); 4395 4396 if (!hasValidProfile()) 4397 continue; 4398 4399 OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer") 4400 << " loop header: " << L->getHeader()->getName(); 4401 OS << "\n"; 4402 OS << "Loop basic blocks: "; 4403 ListSeparator LS; 4404 for (BinaryBasicBlock *BB : L->blocks()) 4405 OS << LS << BB->getName(); 4406 OS << "\n"; 4407 if (hasValidProfile()) { 4408 OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n"; 4409 OS << "Loop entry count: " << L->EntryCount << "\n"; 4410 OS << "Loop exit count: " << L->ExitCount << "\n"; 4411 if (L->EntryCount > 0) { 4412 OS << "Average iters per entry: " 4413 << format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount) 4414 << "\n"; 4415 } 4416 } 4417 OS << "----\n"; 4418 } 4419 4420 OS << "Total number of loops: " << BLI->TotalLoops << "\n"; 4421 OS << "Number of outer loops: " << BLI->OuterLoops << "\n"; 4422 OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n"; 4423 } 4424 4425 bool BinaryFunction::isAArch64Veneer() const { 4426 if (BasicBlocks.size() != 1) 4427 return false; 4428 4429 BinaryBasicBlock &BB = **BasicBlocks.begin(); 4430 if (BB.size() != 3) 4431 return false; 4432 4433 for (MCInst &Inst : BB) 4434 if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer")) 4435 return false; 4436 4437 return true; 4438 } 4439 4440 } // namespace bolt 4441 } // namespace llvm 4442