1 //===- bolt/Core/BinaryEmitter.cpp - Emit code and data -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the collection of functions and classes used for
10 // emission of code and data into object/binary file.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "bolt/Core/BinaryEmitter.h"
15 #include "bolt/Core/BinaryContext.h"
16 #include "bolt/Core/BinaryFunction.h"
17 #include "bolt/Core/DebugData.h"
18 #include "bolt/Utils/CommandLineOpts.h"
19 #include "bolt/Utils/Utils.h"
20 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
21 #include "llvm/MC/MCSection.h"
22 #include "llvm/MC/MCStreamer.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/LEB128.h"
25 #include "llvm/Support/SMLoc.h"
26 
27 #define DEBUG_TYPE "bolt"
28 
29 using namespace llvm;
30 using namespace bolt;
31 
32 namespace opts {
33 
34 extern cl::opt<JumpTableSupportLevel> JumpTables;
35 extern cl::opt<bool> PreserveBlocksAlignment;
36 
37 cl::opt<bool>
38 AlignBlocks("align-blocks",
39   cl::desc("align basic blocks"),
40   cl::init(false),
41   cl::ZeroOrMore,
42   cl::cat(BoltOptCategory));
43 
44 cl::opt<MacroFusionType>
45 AlignMacroOpFusion("align-macro-fusion",
46   cl::desc("fix instruction alignment for macro-fusion (x86 relocation mode)"),
47   cl::init(MFT_HOT),
48   cl::values(clEnumValN(MFT_NONE, "none",
49                "do not insert alignment no-ops for macro-fusion"),
50              clEnumValN(MFT_HOT, "hot",
51                "only insert alignment no-ops on hot execution paths (default)"),
52              clEnumValN(MFT_ALL, "all",
53                "always align instructions to allow macro-fusion")),
54   cl::ZeroOrMore,
55   cl::cat(BoltRelocCategory));
56 
57 static cl::list<std::string>
58 BreakFunctionNames("break-funcs",
59   cl::CommaSeparated,
60   cl::desc("list of functions to core dump on (debugging)"),
61   cl::value_desc("func1,func2,func3,..."),
62   cl::Hidden,
63   cl::cat(BoltCategory));
64 
65 static cl::list<std::string>
66 FunctionPadSpec("pad-funcs",
67   cl::CommaSeparated,
68   cl::desc("list of functions to pad with amount of bytes"),
69   cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..."),
70   cl::Hidden,
71   cl::cat(BoltCategory));
72 
73 static cl::opt<bool>
74 MarkFuncs("mark-funcs",
75   cl::desc("mark function boundaries with break instruction to make "
76            "sure we accidentally don't cross them"),
77   cl::ReallyHidden,
78   cl::ZeroOrMore,
79   cl::cat(BoltCategory));
80 
81 static cl::opt<bool>
82 PrintJumpTables("print-jump-tables",
83   cl::desc("print jump tables"),
84   cl::ZeroOrMore,
85   cl::Hidden,
86   cl::cat(BoltCategory));
87 
88 static cl::opt<bool>
89 X86AlignBranchBoundaryHotOnly("x86-align-branch-boundary-hot-only",
90   cl::desc("only apply branch boundary alignment in hot code"),
91   cl::init(true),
92   cl::cat(BoltOptCategory));
93 
94 size_t padFunction(const BinaryFunction &Function) {
95   static std::map<std::string, size_t> FunctionPadding;
96 
97   if (FunctionPadding.empty() && !FunctionPadSpec.empty()) {
98     for (std::string &Spec : FunctionPadSpec) {
99       size_t N = Spec.find(':');
100       if (N == std::string::npos)
101         continue;
102       std::string Name = Spec.substr(0, N);
103       size_t Padding = std::stoull(Spec.substr(N + 1));
104       FunctionPadding[Name] = Padding;
105     }
106   }
107 
108   for (auto &FPI : FunctionPadding) {
109     std::string Name = FPI.first;
110     size_t Padding = FPI.second;
111     if (Function.hasNameRegex(Name))
112       return Padding;
113   }
114 
115   return 0;
116 }
117 
118 } // namespace opts
119 
120 namespace {
121 using JumpTable = bolt::JumpTable;
122 
123 class BinaryEmitter {
124 private:
125   BinaryEmitter(const BinaryEmitter &) = delete;
126   BinaryEmitter &operator=(const BinaryEmitter &) = delete;
127 
128   MCStreamer &Streamer;
129   BinaryContext &BC;
130 
131 public:
132   BinaryEmitter(MCStreamer &Streamer, BinaryContext &BC)
133       : Streamer(Streamer), BC(BC) {}
134 
135   /// Emit all code and data.
136   void emitAll(StringRef OrgSecPrefix);
137 
138   /// Emit function code. The caller is responsible for emitting function
139   /// symbol(s) and setting the section to emit the code to.
140   void emitFunctionBody(BinaryFunction &BF, bool EmitColdPart,
141                         bool EmitCodeOnly = false);
142 
143 private:
144   /// Emit function code.
145   void emitFunctions();
146 
147   /// Emit a single function.
148   bool emitFunction(BinaryFunction &BF, bool EmitColdPart);
149 
150   /// Helper for emitFunctionBody to write data inside a function
151   /// (used for AArch64)
152   void emitConstantIslands(BinaryFunction &BF, bool EmitColdPart,
153                            BinaryFunction *OnBehalfOf = nullptr);
154 
155   /// Emit jump tables for the function.
156   void emitJumpTables(const BinaryFunction &BF);
157 
158   /// Emit jump table data. Callee supplies sections for the data.
159   void emitJumpTable(const JumpTable &JT, MCSection *HotSection,
160                      MCSection *ColdSection);
161 
162   void emitCFIInstruction(const MCCFIInstruction &Inst) const;
163 
164   /// Emit exception handling ranges for the function.
165   void emitLSDA(BinaryFunction &BF, bool EmitColdPart);
166 
167   /// Emit line number information corresponding to \p NewLoc. \p PrevLoc
168   /// provides a context for de-duplication of line number info.
169   /// \p FirstInstr indicates if \p NewLoc represents the first instruction
170   /// in a sequence, such as a function fragment.
171   ///
172   /// Return new current location which is either \p NewLoc or \p PrevLoc.
173   SMLoc emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, SMLoc PrevLoc,
174                      bool FirstInstr);
175 
176   /// Use \p FunctionEndSymbol to mark the end of the line info sequence.
177   /// Note that it does not automatically result in the insertion of the EOS
178   /// marker in the line table program, but provides one to the DWARF generator
179   /// when it needs it.
180   void emitLineInfoEnd(const BinaryFunction &BF, MCSymbol *FunctionEndSymbol);
181 
182   /// Emit debug line info for unprocessed functions from CUs that include
183   /// emitted functions.
184   void emitDebugLineInfoForOriginalFunctions();
185 
186   /// Emit debug line for CUs that were not modified.
187   void emitDebugLineInfoForUnprocessedCUs();
188 
189   /// Emit data sections that have code references in them.
190   void emitDataSections(StringRef OrgSecPrefix);
191 };
192 
193 } // anonymous namespace
194 
195 void BinaryEmitter::emitAll(StringRef OrgSecPrefix) {
196   Streamer.initSections(false, *BC.STI);
197 
198   if (opts::UpdateDebugSections && BC.isELF()) {
199     // Force the emission of debug line info into allocatable section to ensure
200     // RuntimeDyld will process it without ProcessAllSections flag.
201     //
202     // NB: on MachO all sections are required for execution, hence no need
203     //     to change flags/attributes.
204     MCSectionELF *ELFDwarfLineSection =
205         static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineSection());
206     ELFDwarfLineSection->setFlags(ELF::SHF_ALLOC);
207   }
208 
209   if (RuntimeLibrary *RtLibrary = BC.getRuntimeLibrary())
210     RtLibrary->emitBinary(BC, Streamer);
211 
212   BC.getTextSection()->setAlignment(Align(opts::AlignText));
213 
214   emitFunctions();
215 
216   if (opts::UpdateDebugSections) {
217     emitDebugLineInfoForOriginalFunctions();
218     DwarfLineTable::emit(BC, Streamer);
219   }
220 
221   emitDataSections(OrgSecPrefix);
222 
223   Streamer.emitLabel(BC.Ctx->getOrCreateSymbol("_end"));
224 }
225 
226 void BinaryEmitter::emitFunctions() {
227   auto emit = [&](const std::vector<BinaryFunction *> &Functions) {
228     const bool HasProfile = BC.NumProfiledFuncs > 0;
229     const bool OriginalAllowAutoPadding = Streamer.getAllowAutoPadding();
230     for (BinaryFunction *Function : Functions) {
231       if (!BC.shouldEmit(*Function))
232         continue;
233 
234       LLVM_DEBUG(dbgs() << "BOLT: generating code for function \"" << *Function
235                         << "\" : " << Function->getFunctionNumber() << '\n');
236 
237       // Was any part of the function emitted.
238       bool Emitted = false;
239 
240       // Turn off Intel JCC Erratum mitigation for cold code if requested
241       if (HasProfile && opts::X86AlignBranchBoundaryHotOnly &&
242           !Function->hasValidProfile())
243         Streamer.setAllowAutoPadding(false);
244 
245       Emitted |= emitFunction(*Function, /*EmitColdPart=*/false);
246 
247       if (Function->isSplit()) {
248         if (opts::X86AlignBranchBoundaryHotOnly)
249           Streamer.setAllowAutoPadding(false);
250         Emitted |= emitFunction(*Function, /*EmitColdPart=*/true);
251       }
252       Streamer.setAllowAutoPadding(OriginalAllowAutoPadding);
253 
254       if (Emitted)
255         Function->setEmitted(/*KeepCFG=*/opts::PrintCacheMetrics);
256     }
257   };
258 
259   // Mark the start of hot text.
260   if (opts::HotText) {
261     Streamer.SwitchSection(BC.getTextSection());
262     Streamer.emitLabel(BC.getHotTextStartSymbol());
263   }
264 
265   // Emit functions in sorted order.
266   std::vector<BinaryFunction *> SortedFunctions = BC.getSortedFunctions();
267   emit(SortedFunctions);
268 
269   // Emit functions added by BOLT.
270   emit(BC.getInjectedBinaryFunctions());
271 
272   // Mark the end of hot text.
273   if (opts::HotText) {
274     Streamer.SwitchSection(BC.getTextSection());
275     Streamer.emitLabel(BC.getHotTextEndSymbol());
276   }
277 }
278 
279 bool BinaryEmitter::emitFunction(BinaryFunction &Function, bool EmitColdPart) {
280   if (Function.size() == 0)
281     return false;
282 
283   if (Function.getState() == BinaryFunction::State::Empty)
284     return false;
285 
286   MCSection *Section =
287       BC.getCodeSection(EmitColdPart ? Function.getColdCodeSectionName()
288                                      : Function.getCodeSectionName());
289   Streamer.SwitchSection(Section);
290   Section->setHasInstructions(true);
291   BC.Ctx->addGenDwarfSection(Section);
292 
293   if (BC.HasRelocations) {
294     Streamer.emitCodeAlignment(BinaryFunction::MinAlign, &*BC.STI);
295     uint16_t MaxAlignBytes = EmitColdPart ? Function.getMaxColdAlignmentBytes()
296                                           : Function.getMaxAlignmentBytes();
297     if (MaxAlignBytes > 0)
298       Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI,
299                                  MaxAlignBytes);
300   } else {
301     Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI);
302   }
303 
304   MCContext &Context = Streamer.getContext();
305   const MCAsmInfo *MAI = Context.getAsmInfo();
306 
307   MCSymbol *StartSymbol = nullptr;
308 
309   // Emit all symbols associated with the main function entry.
310   if (!EmitColdPart) {
311     StartSymbol = Function.getSymbol();
312     for (MCSymbol *Symbol : Function.getSymbols()) {
313       Streamer.emitSymbolAttribute(Symbol, MCSA_ELF_TypeFunction);
314       Streamer.emitLabel(Symbol);
315     }
316   } else {
317     StartSymbol = Function.getColdSymbol();
318     Streamer.emitSymbolAttribute(StartSymbol, MCSA_ELF_TypeFunction);
319     Streamer.emitLabel(StartSymbol);
320   }
321 
322   // Emit CFI start
323   if (Function.hasCFI()) {
324     Streamer.emitCFIStartProc(/*IsSimple=*/false);
325     if (Function.getPersonalityFunction() != nullptr) {
326       Streamer.emitCFIPersonality(Function.getPersonalityFunction(),
327                                   Function.getPersonalityEncoding());
328     }
329     MCSymbol *LSDASymbol =
330         EmitColdPart ? Function.getColdLSDASymbol() : Function.getLSDASymbol();
331     if (LSDASymbol)
332       Streamer.emitCFILsda(LSDASymbol, BC.LSDAEncoding);
333     else
334       Streamer.emitCFILsda(0, dwarf::DW_EH_PE_omit);
335     // Emit CFI instructions relative to the CIE
336     for (const MCCFIInstruction &CFIInstr : Function.cie()) {
337       // Only write CIE CFI insns that LLVM will not already emit
338       const std::vector<MCCFIInstruction> &FrameInstrs =
339           MAI->getInitialFrameState();
340       if (std::find(FrameInstrs.begin(), FrameInstrs.end(), CFIInstr) ==
341           FrameInstrs.end())
342         emitCFIInstruction(CFIInstr);
343     }
344   }
345 
346   assert((Function.empty() || !(*Function.begin()).isCold()) &&
347          "first basic block should never be cold");
348 
349   // Emit UD2 at the beginning if requested by user.
350   if (!opts::BreakFunctionNames.empty()) {
351     for (std::string &Name : opts::BreakFunctionNames) {
352       if (Function.hasNameRegex(Name)) {
353         Streamer.emitIntValue(0x0B0F, 2); // UD2: 0F 0B
354         break;
355       }
356     }
357   }
358 
359   // Emit code.
360   emitFunctionBody(Function, EmitColdPart, /*EmitCodeOnly=*/false);
361 
362   // Emit padding if requested.
363   if (size_t Padding = opts::padFunction(Function)) {
364     LLVM_DEBUG(dbgs() << "BOLT-DEBUG: padding function " << Function << " with "
365                       << Padding << " bytes\n");
366     Streamer.emitFill(Padding, MAI->getTextAlignFillValue());
367   }
368 
369   if (opts::MarkFuncs)
370     Streamer.emitIntValue(BC.MIB->getTrapFillValue(), 1);
371 
372   // Emit CFI end
373   if (Function.hasCFI())
374     Streamer.emitCFIEndProc();
375 
376   MCSymbol *EndSymbol = EmitColdPart ? Function.getFunctionColdEndLabel()
377                                      : Function.getFunctionEndLabel();
378   Streamer.emitLabel(EndSymbol);
379 
380   if (MAI->hasDotTypeDotSizeDirective()) {
381     const MCExpr *SizeExpr = MCBinaryExpr::createSub(
382         MCSymbolRefExpr::create(EndSymbol, Context),
383         MCSymbolRefExpr::create(StartSymbol, Context), Context);
384     Streamer.emitELFSize(StartSymbol, SizeExpr);
385   }
386 
387   if (opts::UpdateDebugSections && Function.getDWARFUnit())
388     emitLineInfoEnd(Function, EndSymbol);
389 
390   // Exception handling info for the function.
391   emitLSDA(Function, EmitColdPart);
392 
393   if (!EmitColdPart && opts::JumpTables > JTS_NONE)
394     emitJumpTables(Function);
395 
396   return true;
397 }
398 
399 void BinaryEmitter::emitFunctionBody(BinaryFunction &BF, bool EmitColdPart,
400                                      bool EmitCodeOnly) {
401   if (!EmitCodeOnly && EmitColdPart && BF.hasConstantIsland())
402     BF.duplicateConstantIslands();
403 
404   // Track the first emitted instruction with debug info.
405   bool FirstInstr = true;
406   for (BinaryBasicBlock *BB : BF.layout()) {
407     if (EmitColdPart != BB->isCold())
408       continue;
409 
410     if ((opts::AlignBlocks || opts::PreserveBlocksAlignment) &&
411         BB->getAlignment() > 1) {
412       Streamer.emitCodeAlignment(BB->getAlignment(), &*BC.STI,
413                                  BB->getAlignmentMaxBytes());
414     }
415     Streamer.emitLabel(BB->getLabel());
416     if (!EmitCodeOnly) {
417       if (MCSymbol *EntrySymbol = BF.getSecondaryEntryPointSymbol(*BB))
418         Streamer.emitLabel(EntrySymbol);
419     }
420 
421     // Check if special alignment for macro-fusion is needed.
422     bool MayNeedMacroFusionAlignment =
423         (opts::AlignMacroOpFusion == MFT_ALL) ||
424         (opts::AlignMacroOpFusion == MFT_HOT && BB->getKnownExecutionCount());
425     BinaryBasicBlock::const_iterator MacroFusionPair;
426     if (MayNeedMacroFusionAlignment) {
427       MacroFusionPair = BB->getMacroOpFusionPair();
428       if (MacroFusionPair == BB->end())
429         MayNeedMacroFusionAlignment = false;
430     }
431 
432     SMLoc LastLocSeen;
433     // Remember if the last instruction emitted was a prefix.
434     bool LastIsPrefix = false;
435     for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
436       MCInst &Instr = *I;
437 
438       if (EmitCodeOnly && BC.MIB->isPseudo(Instr))
439         continue;
440 
441       // Handle pseudo instructions.
442       if (BC.MIB->isEHLabel(Instr)) {
443         const MCSymbol *Label = BC.MIB->getTargetSymbol(Instr);
444         assert(Instr.getNumOperands() >= 1 && Label &&
445                "bad EH_LABEL instruction");
446         Streamer.emitLabel(const_cast<MCSymbol *>(Label));
447         continue;
448       }
449       if (BC.MIB->isCFI(Instr)) {
450         emitCFIInstruction(*BF.getCFIFor(Instr));
451         continue;
452       }
453 
454       // Handle macro-fusion alignment. If we emitted a prefix as
455       // the last instruction, we should've already emitted the associated
456       // alignment hint, so don't emit it twice.
457       if (MayNeedMacroFusionAlignment && !LastIsPrefix &&
458           I == MacroFusionPair) {
459         // This assumes the second instruction in the macro-op pair will get
460         // assigned to its own MCRelaxableFragment. Since all JCC instructions
461         // are relaxable, we should be safe.
462       }
463 
464       if (!EmitCodeOnly && opts::UpdateDebugSections && BF.getDWARFUnit()) {
465         LastLocSeen = emitLineInfo(BF, Instr.getLoc(), LastLocSeen, FirstInstr);
466         FirstInstr = false;
467       }
468 
469       // Prepare to tag this location with a label if we need to keep track of
470       // the location of calls/returns for BOLT address translation maps
471       if (!EmitCodeOnly && BF.requiresAddressTranslation() &&
472           BC.MIB->getOffset(Instr)) {
473         const uint32_t Offset = *BC.MIB->getOffset(Instr);
474         MCSymbol *LocSym = BC.Ctx->createTempSymbol();
475         Streamer.emitLabel(LocSym);
476         BB->getLocSyms().emplace_back(Offset, LocSym);
477       }
478 
479       Streamer.emitInstruction(Instr, *BC.STI);
480       LastIsPrefix = BC.MIB->isPrefix(Instr);
481     }
482   }
483 
484   if (!EmitCodeOnly)
485     emitConstantIslands(BF, EmitColdPart);
486 }
487 
488 void BinaryEmitter::emitConstantIslands(BinaryFunction &BF, bool EmitColdPart,
489                                         BinaryFunction *OnBehalfOf) {
490   if (!BF.hasIslandsInfo())
491     return;
492 
493   BinaryFunction::IslandInfo &Islands = BF.getIslandInfo();
494   if (Islands.DataOffsets.empty() && Islands.Dependency.empty())
495     return;
496 
497   if (!OnBehalfOf) {
498     if (!EmitColdPart)
499       Streamer.emitLabel(BF.getFunctionConstantIslandLabel());
500     else
501       Streamer.emitLabel(BF.getFunctionColdConstantIslandLabel());
502   }
503 
504   assert((!OnBehalfOf || Islands.Proxies[OnBehalfOf].size() > 0) &&
505          "spurious OnBehalfOf constant island emission");
506 
507   assert(!BF.isInjected() &&
508          "injected functions should not have constant islands");
509   // Raw contents of the function.
510   StringRef SectionContents = BF.getOriginSection()->getContents();
511 
512   // Raw contents of the function.
513   StringRef FunctionContents = SectionContents.substr(
514       BF.getAddress() - BF.getOriginSection()->getAddress(), BF.getMaxSize());
515 
516   if (opts::Verbosity && !OnBehalfOf)
517     outs() << "BOLT-INFO: emitting constant island for function " << BF << "\n";
518 
519   // We split the island into smaller blocks and output labels between them.
520   auto IS = Islands.Offsets.begin();
521   for (auto DataIter = Islands.DataOffsets.begin();
522        DataIter != Islands.DataOffsets.end(); ++DataIter) {
523     uint64_t FunctionOffset = *DataIter;
524     uint64_t EndOffset = 0ULL;
525 
526     // Determine size of this data chunk
527     auto NextData = std::next(DataIter);
528     auto CodeIter = Islands.CodeOffsets.lower_bound(*DataIter);
529     if (CodeIter == Islands.CodeOffsets.end() &&
530         NextData == Islands.DataOffsets.end()) {
531       EndOffset = BF.getMaxSize();
532     } else if (CodeIter == Islands.CodeOffsets.end()) {
533       EndOffset = *NextData;
534     } else if (NextData == Islands.DataOffsets.end()) {
535       EndOffset = *CodeIter;
536     } else {
537       EndOffset = (*CodeIter > *NextData) ? *NextData : *CodeIter;
538     }
539 
540     if (FunctionOffset == EndOffset)
541       continue; // Size is zero, nothing to emit
542 
543     auto emitCI = [&](uint64_t &FunctionOffset, uint64_t EndOffset) {
544       if (FunctionOffset >= EndOffset)
545         return;
546 
547       for (auto It = Islands.Relocations.lower_bound(FunctionOffset);
548            It != Islands.Relocations.end(); ++It) {
549         if (It->first >= EndOffset)
550           break;
551 
552         const Relocation &Relocation = It->second;
553         if (FunctionOffset < Relocation.Offset) {
554           Streamer.emitBytes(
555               FunctionContents.slice(FunctionOffset, Relocation.Offset));
556           FunctionOffset = Relocation.Offset;
557         }
558 
559         LLVM_DEBUG(
560             dbgs() << "BOLT-DEBUG: emitting constant island relocation"
561                    << " for " << BF << " at offset 0x"
562                    << Twine::utohexstr(Relocation.Offset) << " with size "
563                    << Relocation::getSizeForType(Relocation.Type) << '\n');
564 
565         FunctionOffset += Relocation.emit(&Streamer);
566       }
567 
568       assert(FunctionOffset <= EndOffset && "overflow error");
569       if (FunctionOffset < EndOffset) {
570         Streamer.emitBytes(FunctionContents.slice(FunctionOffset, EndOffset));
571         FunctionOffset = EndOffset;
572       }
573     };
574 
575     // Emit labels, relocs and data
576     while (IS != Islands.Offsets.end() && IS->first < EndOffset) {
577       auto NextLabelOffset =
578           IS == Islands.Offsets.end() ? EndOffset : IS->first;
579       auto NextStop = std::min(NextLabelOffset, EndOffset);
580       assert(NextStop <= EndOffset && "internal overflow error");
581       emitCI(FunctionOffset, NextStop);
582       if (IS != Islands.Offsets.end() && FunctionOffset == IS->first) {
583         // This is a slightly complex code to decide which label to emit. We
584         // have 4 cases to handle: regular symbol, cold symbol, regular or cold
585         // symbol being emitted on behalf of an external function.
586         if (!OnBehalfOf) {
587           if (!EmitColdPart) {
588             LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label "
589                               << IS->second->getName() << " at offset 0x"
590                               << Twine::utohexstr(IS->first) << '\n');
591             if (IS->second->isUndefined())
592               Streamer.emitLabel(IS->second);
593             else
594               assert(BF.hasName(std::string(IS->second->getName())));
595           } else if (Islands.ColdSymbols.count(IS->second) != 0) {
596             LLVM_DEBUG(dbgs()
597                        << "BOLT-DEBUG: emitted label "
598                        << Islands.ColdSymbols[IS->second]->getName() << '\n');
599             if (Islands.ColdSymbols[IS->second]->isUndefined())
600               Streamer.emitLabel(Islands.ColdSymbols[IS->second]);
601           }
602         } else {
603           if (!EmitColdPart) {
604             if (MCSymbol *Sym = Islands.Proxies[OnBehalfOf][IS->second]) {
605               LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label "
606                                 << Sym->getName() << '\n');
607               Streamer.emitLabel(Sym);
608             }
609           } else if (MCSymbol *Sym =
610                          Islands.ColdProxies[OnBehalfOf][IS->second]) {
611             LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " << Sym->getName()
612                               << '\n');
613             Streamer.emitLabel(Sym);
614           }
615         }
616         ++IS;
617       }
618     }
619     assert(FunctionOffset <= EndOffset && "overflow error");
620     emitCI(FunctionOffset, EndOffset);
621   }
622   assert(IS == Islands.Offsets.end() && "some symbols were not emitted!");
623 
624   if (OnBehalfOf)
625     return;
626   // Now emit constant islands from other functions that we may have used in
627   // this function.
628   for (BinaryFunction *ExternalFunc : Islands.Dependency)
629     emitConstantIslands(*ExternalFunc, EmitColdPart, &BF);
630 }
631 
632 SMLoc BinaryEmitter::emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc,
633                                   SMLoc PrevLoc, bool FirstInstr) {
634   DWARFUnit *FunctionCU = BF.getDWARFUnit();
635   const DWARFDebugLine::LineTable *FunctionLineTable = BF.getDWARFLineTable();
636   assert(FunctionCU && "cannot emit line info for function without CU");
637 
638   DebugLineTableRowRef RowReference = DebugLineTableRowRef::fromSMLoc(NewLoc);
639 
640   // Check if no new line info needs to be emitted.
641   if (RowReference == DebugLineTableRowRef::NULL_ROW ||
642       NewLoc.getPointer() == PrevLoc.getPointer())
643     return PrevLoc;
644 
645   unsigned CurrentFilenum = 0;
646   const DWARFDebugLine::LineTable *CurrentLineTable = FunctionLineTable;
647 
648   // If the CU id from the current instruction location does not
649   // match the CU id from the current function, it means that we
650   // have come across some inlined code.  We must look up the CU
651   // for the instruction's original function and get the line table
652   // from that.
653   const uint64_t FunctionUnitIndex = FunctionCU->getOffset();
654   const uint32_t CurrentUnitIndex = RowReference.DwCompileUnitIndex;
655   if (CurrentUnitIndex != FunctionUnitIndex) {
656     CurrentLineTable = BC.DwCtx->getLineTableForUnit(
657         BC.DwCtx->getCompileUnitForOffset(CurrentUnitIndex));
658     // Add filename from the inlined function to the current CU.
659     CurrentFilenum = BC.addDebugFilenameToUnit(
660         FunctionUnitIndex, CurrentUnitIndex,
661         CurrentLineTable->Rows[RowReference.RowIndex - 1].File);
662   }
663 
664   const DWARFDebugLine::Row &CurrentRow =
665       CurrentLineTable->Rows[RowReference.RowIndex - 1];
666   if (!CurrentFilenum)
667     CurrentFilenum = CurrentRow.File;
668 
669   unsigned Flags = (DWARF2_FLAG_IS_STMT * CurrentRow.IsStmt) |
670                    (DWARF2_FLAG_BASIC_BLOCK * CurrentRow.BasicBlock) |
671                    (DWARF2_FLAG_PROLOGUE_END * CurrentRow.PrologueEnd) |
672                    (DWARF2_FLAG_EPILOGUE_BEGIN * CurrentRow.EpilogueBegin);
673 
674   // Always emit is_stmt at the beginning of function fragment.
675   if (FirstInstr)
676     Flags |= DWARF2_FLAG_IS_STMT;
677 
678   BC.Ctx->setCurrentDwarfLoc(CurrentFilenum, CurrentRow.Line, CurrentRow.Column,
679                              Flags, CurrentRow.Isa, CurrentRow.Discriminator);
680   const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc();
681   BC.Ctx->clearDwarfLocSeen();
682 
683   MCSymbol *LineSym = BC.Ctx->createTempSymbol();
684   Streamer.emitLabel(LineSym);
685 
686   BC.getDwarfLineTable(FunctionUnitIndex)
687       .getMCLineSections()
688       .addLineEntry(MCDwarfLineEntry(LineSym, DwarfLoc),
689                     Streamer.getCurrentSectionOnly());
690 
691   return NewLoc;
692 }
693 
694 void BinaryEmitter::emitLineInfoEnd(const BinaryFunction &BF,
695                                     MCSymbol *FunctionEndLabel) {
696   DWARFUnit *FunctionCU = BF.getDWARFUnit();
697   assert(FunctionCU && "DWARF unit expected");
698   BC.Ctx->setCurrentDwarfLoc(0, 0, 0, DWARF2_FLAG_END_SEQUENCE, 0, 0);
699   const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc();
700   BC.Ctx->clearDwarfLocSeen();
701   BC.getDwarfLineTable(FunctionCU->getOffset())
702       .getMCLineSections()
703       .addLineEntry(MCDwarfLineEntry(FunctionEndLabel, DwarfLoc),
704                     Streamer.getCurrentSectionOnly());
705 }
706 
707 void BinaryEmitter::emitJumpTables(const BinaryFunction &BF) {
708   MCSection *ReadOnlySection = BC.MOFI->getReadOnlySection();
709   MCSection *ReadOnlyColdSection = BC.MOFI->getContext().getELFSection(
710       ".rodata.cold", ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
711 
712   if (!BF.hasJumpTables())
713     return;
714 
715   if (opts::PrintJumpTables)
716     outs() << "BOLT-INFO: jump tables for function " << BF << ":\n";
717 
718   for (auto &JTI : BF.jumpTables()) {
719     JumpTable &JT = *JTI.second;
720     if (opts::PrintJumpTables)
721       JT.print(outs());
722     if ((opts::JumpTables == JTS_BASIC || !BF.isSimple()) &&
723         BC.HasRelocations) {
724       JT.updateOriginal();
725     } else {
726       MCSection *HotSection, *ColdSection;
727       if (opts::JumpTables == JTS_BASIC) {
728         // In non-relocation mode we have to emit jump tables in local sections.
729         // This way we only overwrite them when the corresponding function is
730         // overwritten.
731         std::string Name = ".local." + JT.Labels[0]->getName().str();
732         std::replace(Name.begin(), Name.end(), '/', '.');
733         BinarySection &Section =
734             BC.registerOrUpdateSection(Name, ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
735         Section.setAnonymous(true);
736         JT.setOutputSection(Section);
737         HotSection = BC.getDataSection(Name);
738         ColdSection = HotSection;
739       } else {
740         if (BF.isSimple()) {
741           HotSection = ReadOnlySection;
742           ColdSection = ReadOnlyColdSection;
743         } else {
744           HotSection = BF.hasProfile() ? ReadOnlySection : ReadOnlyColdSection;
745           ColdSection = HotSection;
746         }
747       }
748       emitJumpTable(JT, HotSection, ColdSection);
749     }
750   }
751 }
752 
753 void BinaryEmitter::emitJumpTable(const JumpTable &JT, MCSection *HotSection,
754                                   MCSection *ColdSection) {
755   // Pre-process entries for aggressive splitting.
756   // Each label represents a separate switch table and gets its own count
757   // determining its destination.
758   std::map<MCSymbol *, uint64_t> LabelCounts;
759   if (opts::JumpTables > JTS_SPLIT && !JT.Counts.empty()) {
760     MCSymbol *CurrentLabel = JT.Labels.at(0);
761     uint64_t CurrentLabelCount = 0;
762     for (unsigned Index = 0; Index < JT.Entries.size(); ++Index) {
763       auto LI = JT.Labels.find(Index * JT.EntrySize);
764       if (LI != JT.Labels.end()) {
765         LabelCounts[CurrentLabel] = CurrentLabelCount;
766         CurrentLabel = LI->second;
767         CurrentLabelCount = 0;
768       }
769       CurrentLabelCount += JT.Counts[Index].Count;
770     }
771     LabelCounts[CurrentLabel] = CurrentLabelCount;
772   } else {
773     Streamer.SwitchSection(JT.Count > 0 ? HotSection : ColdSection);
774     Streamer.emitValueToAlignment(JT.EntrySize);
775   }
776   MCSymbol *LastLabel = nullptr;
777   uint64_t Offset = 0;
778   for (MCSymbol *Entry : JT.Entries) {
779     auto LI = JT.Labels.find(Offset);
780     if (LI != JT.Labels.end()) {
781       LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitting jump table "
782                         << LI->second->getName()
783                         << " (originally was at address 0x"
784                         << Twine::utohexstr(JT.getAddress() + Offset)
785                         << (Offset ? "as part of larger jump table\n" : "\n"));
786       if (!LabelCounts.empty()) {
787         LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump table count: "
788                           << LabelCounts[LI->second] << '\n');
789         if (LabelCounts[LI->second] > 0)
790           Streamer.SwitchSection(HotSection);
791         else
792           Streamer.SwitchSection(ColdSection);
793         Streamer.emitValueToAlignment(JT.EntrySize);
794       }
795       Streamer.emitLabel(LI->second);
796       LastLabel = LI->second;
797     }
798     if (JT.Type == JumpTable::JTT_NORMAL) {
799       Streamer.emitSymbolValue(Entry, JT.OutputEntrySize);
800     } else { // JTT_PIC
801       const MCSymbolRefExpr *JTExpr =
802           MCSymbolRefExpr::create(LastLabel, Streamer.getContext());
803       const MCSymbolRefExpr *E =
804           MCSymbolRefExpr::create(Entry, Streamer.getContext());
805       const MCBinaryExpr *Value =
806           MCBinaryExpr::createSub(E, JTExpr, Streamer.getContext());
807       Streamer.emitValue(Value, JT.EntrySize);
808     }
809     Offset += JT.EntrySize;
810   }
811 }
812 
813 void BinaryEmitter::emitCFIInstruction(const MCCFIInstruction &Inst) const {
814   switch (Inst.getOperation()) {
815   default:
816     llvm_unreachable("Unexpected instruction");
817   case MCCFIInstruction::OpDefCfaOffset:
818     Streamer.emitCFIDefCfaOffset(Inst.getOffset());
819     break;
820   case MCCFIInstruction::OpAdjustCfaOffset:
821     Streamer.emitCFIAdjustCfaOffset(Inst.getOffset());
822     break;
823   case MCCFIInstruction::OpDefCfa:
824     Streamer.emitCFIDefCfa(Inst.getRegister(), Inst.getOffset());
825     break;
826   case MCCFIInstruction::OpDefCfaRegister:
827     Streamer.emitCFIDefCfaRegister(Inst.getRegister());
828     break;
829   case MCCFIInstruction::OpOffset:
830     Streamer.emitCFIOffset(Inst.getRegister(), Inst.getOffset());
831     break;
832   case MCCFIInstruction::OpRegister:
833     Streamer.emitCFIRegister(Inst.getRegister(), Inst.getRegister2());
834     break;
835   case MCCFIInstruction::OpWindowSave:
836     Streamer.emitCFIWindowSave();
837     break;
838   case MCCFIInstruction::OpNegateRAState:
839     Streamer.emitCFINegateRAState();
840     break;
841   case MCCFIInstruction::OpSameValue:
842     Streamer.emitCFISameValue(Inst.getRegister());
843     break;
844   case MCCFIInstruction::OpGnuArgsSize:
845     Streamer.emitCFIGnuArgsSize(Inst.getOffset());
846     break;
847   case MCCFIInstruction::OpEscape:
848     Streamer.AddComment(Inst.getComment());
849     Streamer.emitCFIEscape(Inst.getValues());
850     break;
851   case MCCFIInstruction::OpRestore:
852     Streamer.emitCFIRestore(Inst.getRegister());
853     break;
854   case MCCFIInstruction::OpUndefined:
855     Streamer.emitCFIUndefined(Inst.getRegister());
856     break;
857   }
858 }
859 
860 // The code is based on EHStreamer::emitExceptionTable().
861 void BinaryEmitter::emitLSDA(BinaryFunction &BF, bool EmitColdPart) {
862   const BinaryFunction::CallSitesType *Sites =
863       EmitColdPart ? &BF.getColdCallSites() : &BF.getCallSites();
864   if (Sites->empty()) {
865     return;
866   }
867 
868   // Calculate callsite table size. Size of each callsite entry is:
869   //
870   //  sizeof(start) + sizeof(length) + sizeof(LP) + sizeof(uleb128(action))
871   //
872   // or
873   //
874   //  sizeof(dwarf::DW_EH_PE_data4) * 3 + sizeof(uleb128(action))
875   uint64_t CallSiteTableLength = Sites->size() * 4 * 3;
876   for (const BinaryFunction::CallSite &CallSite : *Sites) {
877     CallSiteTableLength += getULEB128Size(CallSite.Action);
878   }
879 
880   Streamer.SwitchSection(BC.MOFI->getLSDASection());
881 
882   const unsigned TTypeEncoding = BC.TTypeEncoding;
883   const unsigned TTypeEncodingSize = BC.getDWARFEncodingSize(TTypeEncoding);
884   const uint16_t TTypeAlignment = 4;
885 
886   // Type tables have to be aligned at 4 bytes.
887   Streamer.emitValueToAlignment(TTypeAlignment);
888 
889   // Emit the LSDA label.
890   MCSymbol *LSDASymbol =
891       EmitColdPart ? BF.getColdLSDASymbol() : BF.getLSDASymbol();
892   assert(LSDASymbol && "no LSDA symbol set");
893   Streamer.emitLabel(LSDASymbol);
894 
895   // Corresponding FDE start.
896   const MCSymbol *StartSymbol =
897       EmitColdPart ? BF.getColdSymbol() : BF.getSymbol();
898 
899   // Emit the LSDA header.
900 
901   // If LPStart is omitted, then the start of the FDE is used as a base for
902   // landing pad displacements. Then if a cold fragment starts with
903   // a landing pad, this means that the first landing pad offset will be 0.
904   // As a result, the exception handling runtime will ignore this landing pad
905   // because zero offset denotes the absence of a landing pad.
906   // For this reason, when the binary has fixed starting address we emit LPStart
907   // as 0 and output the absolute value of the landing pad in the table.
908   //
909   // If the base address can change, we cannot use absolute addresses for
910   // landing pads (at least not without runtime relocations). Hence, we fall
911   // back to emitting landing pads relative to the FDE start.
912   // As we are emitting label differences, we have to guarantee both labels are
913   // defined in the same section and hence cannot place the landing pad into a
914   // cold fragment when the corresponding call site is in the hot fragment.
915   // Because of this issue and the previously described issue of possible
916   // zero-offset landing pad we disable splitting of exception-handling
917   // code for shared objects.
918   std::function<void(const MCSymbol *)> emitLandingPad;
919   if (BC.HasFixedLoadAddress) {
920     Streamer.emitIntValue(dwarf::DW_EH_PE_udata4, 1); // LPStart format
921     Streamer.emitIntValue(0, 4);                      // LPStart
922     emitLandingPad = [&](const MCSymbol *LPSymbol) {
923       if (!LPSymbol)
924         Streamer.emitIntValue(0, 4);
925       else
926         Streamer.emitSymbolValue(LPSymbol, 4);
927     };
928   } else {
929     assert(!EmitColdPart &&
930            "cannot have exceptions in cold fragment for shared object");
931     Streamer.emitIntValue(dwarf::DW_EH_PE_omit, 1); // LPStart format
932     emitLandingPad = [&](const MCSymbol *LPSymbol) {
933       if (!LPSymbol)
934         Streamer.emitIntValue(0, 4);
935       else
936         Streamer.emitAbsoluteSymbolDiff(LPSymbol, StartSymbol, 4);
937     };
938   }
939 
940   Streamer.emitIntValue(TTypeEncoding, 1); // TType format
941 
942   // See the comment in EHStreamer::emitExceptionTable() on to use
943   // uleb128 encoding (which can use variable number of bytes to encode the same
944   // value) to ensure type info table is properly aligned at 4 bytes without
945   // iteratively fixing sizes of the tables.
946   unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength);
947   unsigned TTypeBaseOffset =
948       sizeof(int8_t) +                 // Call site format
949       CallSiteTableLengthSize +        // Call site table length size
950       CallSiteTableLength +            // Call site table length
951       BF.getLSDAActionTable().size() + // Actions table size
952       BF.getLSDATypeTable().size() * TTypeEncodingSize; // Types table size
953   unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset);
954   unsigned TotalSize = sizeof(int8_t) +      // LPStart format
955                        sizeof(int8_t) +      // TType format
956                        TTypeBaseOffsetSize + // TType base offset size
957                        TTypeBaseOffset;      // TType base offset
958   unsigned SizeAlign = (4 - TotalSize) & 3;
959 
960   // Account for any extra padding that will be added to the call site table
961   // length.
962   Streamer.emitULEB128IntValue(TTypeBaseOffset,
963                                /*PadTo=*/TTypeBaseOffsetSize + SizeAlign);
964 
965   // Emit the landing pad call site table. We use signed data4 since we can emit
966   // a landing pad in a different part of the split function that could appear
967   // earlier in the address space than LPStart.
968   Streamer.emitIntValue(dwarf::DW_EH_PE_sdata4, 1);
969   Streamer.emitULEB128IntValue(CallSiteTableLength);
970 
971   for (const BinaryFunction::CallSite &CallSite : *Sites) {
972     const MCSymbol *BeginLabel = CallSite.Start;
973     const MCSymbol *EndLabel = CallSite.End;
974 
975     assert(BeginLabel && "start EH label expected");
976     assert(EndLabel && "end EH label expected");
977 
978     // Start of the range is emitted relative to the start of current
979     // function split part.
980     Streamer.emitAbsoluteSymbolDiff(BeginLabel, StartSymbol, 4);
981     Streamer.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
982     emitLandingPad(CallSite.LP);
983     Streamer.emitULEB128IntValue(CallSite.Action);
984   }
985 
986   // Write out action, type, and type index tables at the end.
987   //
988   // For action and type index tables there's no need to change the original
989   // table format unless we are doing function splitting, in which case we can
990   // split and optimize the tables.
991   //
992   // For type table we (re-)encode the table using TTypeEncoding matching
993   // the current assembler mode.
994   for (uint8_t const &Byte : BF.getLSDAActionTable())
995     Streamer.emitIntValue(Byte, 1);
996 
997   const BinaryFunction::LSDATypeTableTy &TypeTable =
998       (TTypeEncoding & dwarf::DW_EH_PE_indirect) ? BF.getLSDATypeAddressTable()
999                                                  : BF.getLSDATypeTable();
1000   assert(TypeTable.size() == BF.getLSDATypeTable().size() &&
1001          "indirect type table size mismatch");
1002 
1003   for (int Index = TypeTable.size() - 1; Index >= 0; --Index) {
1004     const uint64_t TypeAddress = TypeTable[Index];
1005     switch (TTypeEncoding & 0x70) {
1006     default:
1007       llvm_unreachable("unsupported TTypeEncoding");
1008     case dwarf::DW_EH_PE_absptr:
1009       Streamer.emitIntValue(TypeAddress, TTypeEncodingSize);
1010       break;
1011     case dwarf::DW_EH_PE_pcrel: {
1012       if (TypeAddress) {
1013         const MCSymbol *TypeSymbol =
1014             BC.getOrCreateGlobalSymbol(TypeAddress, "TI", 0, TTypeAlignment);
1015         MCSymbol *DotSymbol = BC.Ctx->createNamedTempSymbol();
1016         Streamer.emitLabel(DotSymbol);
1017         const MCBinaryExpr *SubDotExpr = MCBinaryExpr::createSub(
1018             MCSymbolRefExpr::create(TypeSymbol, *BC.Ctx),
1019             MCSymbolRefExpr::create(DotSymbol, *BC.Ctx), *BC.Ctx);
1020         Streamer.emitValue(SubDotExpr, TTypeEncodingSize);
1021       } else {
1022         Streamer.emitIntValue(0, TTypeEncodingSize);
1023       }
1024       break;
1025     }
1026     }
1027   }
1028   for (uint8_t const &Byte : BF.getLSDATypeIndexTable())
1029     Streamer.emitIntValue(Byte, 1);
1030 }
1031 
1032 void BinaryEmitter::emitDebugLineInfoForOriginalFunctions() {
1033   // If a function is in a CU containing at least one processed function, we
1034   // have to rewrite the whole line table for that CU. For unprocessed functions
1035   // we use data from the input line table.
1036   for (auto &It : BC.getBinaryFunctions()) {
1037     const BinaryFunction &Function = It.second;
1038 
1039     // If the function was emitted, its line info was emitted with it.
1040     if (Function.isEmitted())
1041       continue;
1042 
1043     const DWARFDebugLine::LineTable *LineTable = Function.getDWARFLineTable();
1044     if (!LineTable)
1045       continue; // nothing to update for this function
1046 
1047     const uint64_t Address = Function.getAddress();
1048     std::vector<uint32_t> Results;
1049     if (!LineTable->lookupAddressRange(
1050             {Address, object::SectionedAddress::UndefSection},
1051             Function.getSize(), Results))
1052       continue;
1053 
1054     if (Results.empty())
1055       continue;
1056 
1057     // The first row returned could be the last row matching the start address.
1058     // Find the first row with the same address that is not the end of the
1059     // sequence.
1060     uint64_t FirstRow = Results.front();
1061     while (FirstRow > 0) {
1062       const DWARFDebugLine::Row &PrevRow = LineTable->Rows[FirstRow - 1];
1063       if (PrevRow.Address.Address != Address || PrevRow.EndSequence)
1064         break;
1065       --FirstRow;
1066     }
1067 
1068     const uint64_t EndOfSequenceAddress =
1069         Function.getAddress() + Function.getMaxSize();
1070     BC.getDwarfLineTable(Function.getDWARFUnit()->getOffset())
1071         .addLineTableSequence(LineTable, FirstRow, Results.back(),
1072                               EndOfSequenceAddress);
1073   }
1074 
1075   // For units that are completely unprocessed, use original debug line contents
1076   // eliminating the need to regenerate line info program.
1077   emitDebugLineInfoForUnprocessedCUs();
1078 }
1079 
1080 void BinaryEmitter::emitDebugLineInfoForUnprocessedCUs() {
1081   // Sorted list of section offsets provides boundaries for section fragments,
1082   // where each fragment is the unit's contribution to debug line section.
1083   std::vector<uint64_t> StmtListOffsets;
1084   StmtListOffsets.reserve(BC.DwCtx->getNumCompileUnits());
1085   for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) {
1086     DWARFDie CUDie = CU->getUnitDIE();
1087     auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
1088     if (!StmtList)
1089       continue;
1090 
1091     StmtListOffsets.push_back(*StmtList);
1092   }
1093   std::sort(StmtListOffsets.begin(), StmtListOffsets.end());
1094 
1095   // For each CU that was not processed, emit its line info as a binary blob.
1096   for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) {
1097     if (BC.ProcessedCUs.count(CU.get()))
1098       continue;
1099 
1100     DWARFDie CUDie = CU->getUnitDIE();
1101     auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
1102     if (!StmtList)
1103       continue;
1104 
1105     StringRef DebugLineContents = CU->getLineSection().Data;
1106 
1107     const uint64_t Begin = *StmtList;
1108 
1109     // Statement list ends where the next unit contribution begins, or at the
1110     // end of the section.
1111     auto It =
1112         std::upper_bound(StmtListOffsets.begin(), StmtListOffsets.end(), Begin);
1113     const uint64_t End =
1114         It == StmtListOffsets.end() ? DebugLineContents.size() : *It;
1115 
1116     BC.getDwarfLineTable(CU->getOffset())
1117         .addRawContents(DebugLineContents.slice(Begin, End));
1118   }
1119 }
1120 
1121 void BinaryEmitter::emitDataSections(StringRef OrgSecPrefix) {
1122   for (BinarySection &Section : BC.sections()) {
1123     if (!Section.hasRelocations() || !Section.hasSectionRef())
1124       continue;
1125 
1126     StringRef SectionName = Section.getName();
1127     std::string EmitName = Section.isReordered()
1128                                ? std::string(Section.getOutputName())
1129                                : OrgSecPrefix.str() + std::string(SectionName);
1130     Section.emitAsData(Streamer, EmitName);
1131     Section.clearRelocations();
1132   }
1133 }
1134 
1135 namespace llvm {
1136 namespace bolt {
1137 
1138 void emitBinaryContext(MCStreamer &Streamer, BinaryContext &BC,
1139                        StringRef OrgSecPrefix) {
1140   BinaryEmitter(Streamer, BC).emitAll(OrgSecPrefix);
1141 }
1142 
1143 void emitFunctionBody(MCStreamer &Streamer, BinaryFunction &BF,
1144                       bool EmitColdPart, bool EmitCodeOnly) {
1145   BinaryEmitter(Streamer, BF.getBinaryContext())
1146       .emitFunctionBody(BF, EmitColdPart, EmitCodeOnly);
1147 }
1148 
1149 } // namespace bolt
1150 } // namespace llvm
1151