1 //===- bolt/Core/BinaryEmitter.cpp - Emit code and data -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the collection of functions and classes used for 10 // emission of code and data into object/binary file. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "bolt/Core/BinaryEmitter.h" 15 #include "bolt/Core/BinaryContext.h" 16 #include "bolt/Core/BinaryFunction.h" 17 #include "bolt/Core/DebugData.h" 18 #include "bolt/Utils/CommandLineOpts.h" 19 #include "bolt/Utils/Utils.h" 20 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" 21 #include "llvm/MC/MCSection.h" 22 #include "llvm/MC/MCStreamer.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/LEB128.h" 25 #include "llvm/Support/SMLoc.h" 26 27 #define DEBUG_TYPE "bolt" 28 29 using namespace llvm; 30 using namespace bolt; 31 32 namespace opts { 33 34 extern cl::opt<JumpTableSupportLevel> JumpTables; 35 extern cl::opt<bool> PreserveBlocksAlignment; 36 37 cl::opt<bool> 38 AlignBlocks("align-blocks", 39 cl::desc("align basic blocks"), 40 cl::init(false), 41 cl::ZeroOrMore, 42 cl::cat(BoltOptCategory)); 43 44 cl::opt<MacroFusionType> 45 AlignMacroOpFusion("align-macro-fusion", 46 cl::desc("fix instruction alignment for macro-fusion (x86 relocation mode)"), 47 cl::init(MFT_HOT), 48 cl::values(clEnumValN(MFT_NONE, "none", 49 "do not insert alignment no-ops for macro-fusion"), 50 clEnumValN(MFT_HOT, "hot", 51 "only insert alignment no-ops on hot execution paths (default)"), 52 clEnumValN(MFT_ALL, "all", 53 "always align instructions to allow macro-fusion")), 54 cl::ZeroOrMore, 55 cl::cat(BoltRelocCategory)); 56 57 static cl::list<std::string> 58 BreakFunctionNames("break-funcs", 59 cl::CommaSeparated, 60 cl::desc("list of functions to core dump on (debugging)"), 61 cl::value_desc("func1,func2,func3,..."), 62 cl::Hidden, 63 cl::cat(BoltCategory)); 64 65 static cl::list<std::string> 66 FunctionPadSpec("pad-funcs", 67 cl::CommaSeparated, 68 cl::desc("list of functions to pad with amount of bytes"), 69 cl::value_desc("func1:pad1,func2:pad2,func3:pad3,..."), 70 cl::Hidden, 71 cl::cat(BoltCategory)); 72 73 static cl::opt<bool> 74 MarkFuncs("mark-funcs", 75 cl::desc("mark function boundaries with break instruction to make " 76 "sure we accidentally don't cross them"), 77 cl::ReallyHidden, 78 cl::ZeroOrMore, 79 cl::cat(BoltCategory)); 80 81 static cl::opt<bool> 82 PrintJumpTables("print-jump-tables", 83 cl::desc("print jump tables"), 84 cl::ZeroOrMore, 85 cl::Hidden, 86 cl::cat(BoltCategory)); 87 88 static cl::opt<bool> 89 X86AlignBranchBoundaryHotOnly("x86-align-branch-boundary-hot-only", 90 cl::desc("only apply branch boundary alignment in hot code"), 91 cl::init(true), 92 cl::cat(BoltOptCategory)); 93 94 size_t padFunction(const BinaryFunction &Function) { 95 static std::map<std::string, size_t> FunctionPadding; 96 97 if (FunctionPadding.empty() && !FunctionPadSpec.empty()) { 98 for (std::string &Spec : FunctionPadSpec) { 99 size_t N = Spec.find(':'); 100 if (N == std::string::npos) 101 continue; 102 std::string Name = Spec.substr(0, N); 103 size_t Padding = std::stoull(Spec.substr(N + 1)); 104 FunctionPadding[Name] = Padding; 105 } 106 } 107 108 for (auto &FPI : FunctionPadding) { 109 std::string Name = FPI.first; 110 size_t Padding = FPI.second; 111 if (Function.hasNameRegex(Name)) 112 return Padding; 113 } 114 115 return 0; 116 } 117 118 } // namespace opts 119 120 namespace { 121 using JumpTable = bolt::JumpTable; 122 123 class BinaryEmitter { 124 private: 125 BinaryEmitter(const BinaryEmitter &) = delete; 126 BinaryEmitter &operator=(const BinaryEmitter &) = delete; 127 128 MCStreamer &Streamer; 129 BinaryContext &BC; 130 131 public: 132 BinaryEmitter(MCStreamer &Streamer, BinaryContext &BC) 133 : Streamer(Streamer), BC(BC) {} 134 135 /// Emit all code and data. 136 void emitAll(StringRef OrgSecPrefix); 137 138 /// Emit function code. The caller is responsible for emitting function 139 /// symbol(s) and setting the section to emit the code to. 140 void emitFunctionBody(BinaryFunction &BF, bool EmitColdPart, 141 bool EmitCodeOnly = false); 142 143 private: 144 /// Emit function code. 145 void emitFunctions(); 146 147 /// Emit a single function. 148 bool emitFunction(BinaryFunction &BF, bool EmitColdPart); 149 150 /// Helper for emitFunctionBody to write data inside a function 151 /// (used for AArch64) 152 void emitConstantIslands(BinaryFunction &BF, bool EmitColdPart, 153 BinaryFunction *OnBehalfOf = nullptr); 154 155 /// Emit jump tables for the function. 156 void emitJumpTables(const BinaryFunction &BF); 157 158 /// Emit jump table data. Callee supplies sections for the data. 159 void emitJumpTable(const JumpTable &JT, MCSection *HotSection, 160 MCSection *ColdSection); 161 162 void emitCFIInstruction(const MCCFIInstruction &Inst) const; 163 164 /// Emit exception handling ranges for the function. 165 void emitLSDA(BinaryFunction &BF, bool EmitColdPart); 166 167 /// Emit line number information corresponding to \p NewLoc. \p PrevLoc 168 /// provides a context for de-duplication of line number info. 169 /// \p FirstInstr indicates if \p NewLoc represents the first instruction 170 /// in a sequence, such as a function fragment. 171 /// 172 /// Return new current location which is either \p NewLoc or \p PrevLoc. 173 SMLoc emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, SMLoc PrevLoc, 174 bool FirstInstr); 175 176 /// Use \p FunctionEndSymbol to mark the end of the line info sequence. 177 /// Note that it does not automatically result in the insertion of the EOS 178 /// marker in the line table program, but provides one to the DWARF generator 179 /// when it needs it. 180 void emitLineInfoEnd(const BinaryFunction &BF, MCSymbol *FunctionEndSymbol); 181 182 /// Emit debug line info for unprocessed functions from CUs that include 183 /// emitted functions. 184 void emitDebugLineInfoForOriginalFunctions(); 185 186 /// Emit debug line for CUs that were not modified. 187 void emitDebugLineInfoForUnprocessedCUs(); 188 189 /// Emit data sections that have code references in them. 190 void emitDataSections(StringRef OrgSecPrefix); 191 }; 192 193 } // anonymous namespace 194 195 void BinaryEmitter::emitAll(StringRef OrgSecPrefix) { 196 Streamer.initSections(false, *BC.STI); 197 198 if (opts::UpdateDebugSections && BC.isELF()) { 199 // Force the emission of debug line info into allocatable section to ensure 200 // RuntimeDyld will process it without ProcessAllSections flag. 201 // 202 // NB: on MachO all sections are required for execution, hence no need 203 // to change flags/attributes. 204 MCSectionELF *ELFDwarfLineSection = 205 static_cast<MCSectionELF *>(BC.MOFI->getDwarfLineSection()); 206 ELFDwarfLineSection->setFlags(ELF::SHF_ALLOC); 207 } 208 209 if (RuntimeLibrary *RtLibrary = BC.getRuntimeLibrary()) 210 RtLibrary->emitBinary(BC, Streamer); 211 212 BC.getTextSection()->setAlignment(Align(opts::AlignText)); 213 214 emitFunctions(); 215 216 if (opts::UpdateDebugSections) { 217 emitDebugLineInfoForOriginalFunctions(); 218 DwarfLineTable::emit(BC, Streamer); 219 } 220 221 emitDataSections(OrgSecPrefix); 222 223 Streamer.emitLabel(BC.Ctx->getOrCreateSymbol("_end")); 224 } 225 226 void BinaryEmitter::emitFunctions() { 227 auto emit = [&](const std::vector<BinaryFunction *> &Functions) { 228 const bool HasProfile = BC.NumProfiledFuncs > 0; 229 const bool OriginalAllowAutoPadding = Streamer.getAllowAutoPadding(); 230 for (BinaryFunction *Function : Functions) { 231 if (!BC.shouldEmit(*Function)) 232 continue; 233 234 LLVM_DEBUG(dbgs() << "BOLT: generating code for function \"" << *Function 235 << "\" : " << Function->getFunctionNumber() << '\n'); 236 237 // Was any part of the function emitted. 238 bool Emitted = false; 239 240 // Turn off Intel JCC Erratum mitigation for cold code if requested 241 if (HasProfile && opts::X86AlignBranchBoundaryHotOnly && 242 !Function->hasValidProfile()) 243 Streamer.setAllowAutoPadding(false); 244 245 Emitted |= emitFunction(*Function, /*EmitColdPart=*/false); 246 247 if (Function->isSplit()) { 248 if (opts::X86AlignBranchBoundaryHotOnly) 249 Streamer.setAllowAutoPadding(false); 250 Emitted |= emitFunction(*Function, /*EmitColdPart=*/true); 251 } 252 Streamer.setAllowAutoPadding(OriginalAllowAutoPadding); 253 254 if (Emitted) 255 Function->setEmitted(/*KeepCFG=*/opts::PrintCacheMetrics); 256 } 257 }; 258 259 // Mark the start of hot text. 260 if (opts::HotText) { 261 Streamer.SwitchSection(BC.getTextSection()); 262 Streamer.emitLabel(BC.getHotTextStartSymbol()); 263 } 264 265 // Emit functions in sorted order. 266 std::vector<BinaryFunction *> SortedFunctions = BC.getSortedFunctions(); 267 emit(SortedFunctions); 268 269 // Emit functions added by BOLT. 270 emit(BC.getInjectedBinaryFunctions()); 271 272 // Mark the end of hot text. 273 if (opts::HotText) { 274 Streamer.SwitchSection(BC.getTextSection()); 275 Streamer.emitLabel(BC.getHotTextEndSymbol()); 276 } 277 } 278 279 bool BinaryEmitter::emitFunction(BinaryFunction &Function, bool EmitColdPart) { 280 if (Function.size() == 0) 281 return false; 282 283 if (Function.getState() == BinaryFunction::State::Empty) 284 return false; 285 286 MCSection *Section = 287 BC.getCodeSection(EmitColdPart ? Function.getColdCodeSectionName() 288 : Function.getCodeSectionName()); 289 Streamer.SwitchSection(Section); 290 Section->setHasInstructions(true); 291 BC.Ctx->addGenDwarfSection(Section); 292 293 if (BC.HasRelocations) { 294 Streamer.emitCodeAlignment(BinaryFunction::MinAlign, &*BC.STI); 295 uint16_t MaxAlignBytes = EmitColdPart ? Function.getMaxColdAlignmentBytes() 296 : Function.getMaxAlignmentBytes(); 297 if (MaxAlignBytes > 0) 298 Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI, 299 MaxAlignBytes); 300 } else { 301 Streamer.emitCodeAlignment(Function.getAlignment(), &*BC.STI); 302 } 303 304 MCContext &Context = Streamer.getContext(); 305 const MCAsmInfo *MAI = Context.getAsmInfo(); 306 307 MCSymbol *StartSymbol = nullptr; 308 309 // Emit all symbols associated with the main function entry. 310 if (!EmitColdPart) { 311 StartSymbol = Function.getSymbol(); 312 for (MCSymbol *Symbol : Function.getSymbols()) { 313 Streamer.emitSymbolAttribute(Symbol, MCSA_ELF_TypeFunction); 314 Streamer.emitLabel(Symbol); 315 } 316 } else { 317 StartSymbol = Function.getColdSymbol(); 318 Streamer.emitSymbolAttribute(StartSymbol, MCSA_ELF_TypeFunction); 319 Streamer.emitLabel(StartSymbol); 320 } 321 322 // Emit CFI start 323 if (Function.hasCFI()) { 324 Streamer.emitCFIStartProc(/*IsSimple=*/false); 325 if (Function.getPersonalityFunction() != nullptr) { 326 Streamer.emitCFIPersonality(Function.getPersonalityFunction(), 327 Function.getPersonalityEncoding()); 328 } 329 MCSymbol *LSDASymbol = 330 EmitColdPart ? Function.getColdLSDASymbol() : Function.getLSDASymbol(); 331 if (LSDASymbol) 332 Streamer.emitCFILsda(LSDASymbol, BC.LSDAEncoding); 333 else 334 Streamer.emitCFILsda(0, dwarf::DW_EH_PE_omit); 335 // Emit CFI instructions relative to the CIE 336 for (const MCCFIInstruction &CFIInstr : Function.cie()) { 337 // Only write CIE CFI insns that LLVM will not already emit 338 const std::vector<MCCFIInstruction> &FrameInstrs = 339 MAI->getInitialFrameState(); 340 if (std::find(FrameInstrs.begin(), FrameInstrs.end(), CFIInstr) == 341 FrameInstrs.end()) 342 emitCFIInstruction(CFIInstr); 343 } 344 } 345 346 assert((Function.empty() || !(*Function.begin()).isCold()) && 347 "first basic block should never be cold"); 348 349 // Emit UD2 at the beginning if requested by user. 350 if (!opts::BreakFunctionNames.empty()) { 351 for (std::string &Name : opts::BreakFunctionNames) { 352 if (Function.hasNameRegex(Name)) { 353 Streamer.emitIntValue(0x0B0F, 2); // UD2: 0F 0B 354 break; 355 } 356 } 357 } 358 359 // Emit code. 360 emitFunctionBody(Function, EmitColdPart, /*EmitCodeOnly=*/false); 361 362 // Emit padding if requested. 363 if (size_t Padding = opts::padFunction(Function)) { 364 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: padding function " << Function << " with " 365 << Padding << " bytes\n"); 366 Streamer.emitFill(Padding, MAI->getTextAlignFillValue()); 367 } 368 369 if (opts::MarkFuncs) 370 Streamer.emitIntValue(BC.MIB->getTrapFillValue(), 1); 371 372 // Emit CFI end 373 if (Function.hasCFI()) 374 Streamer.emitCFIEndProc(); 375 376 MCSymbol *EndSymbol = EmitColdPart ? Function.getFunctionColdEndLabel() 377 : Function.getFunctionEndLabel(); 378 Streamer.emitLabel(EndSymbol); 379 380 if (MAI->hasDotTypeDotSizeDirective()) { 381 const MCExpr *SizeExpr = MCBinaryExpr::createSub( 382 MCSymbolRefExpr::create(EndSymbol, Context), 383 MCSymbolRefExpr::create(StartSymbol, Context), Context); 384 Streamer.emitELFSize(StartSymbol, SizeExpr); 385 } 386 387 if (opts::UpdateDebugSections && Function.getDWARFUnit()) 388 emitLineInfoEnd(Function, EndSymbol); 389 390 // Exception handling info for the function. 391 emitLSDA(Function, EmitColdPart); 392 393 if (!EmitColdPart && opts::JumpTables > JTS_NONE) 394 emitJumpTables(Function); 395 396 return true; 397 } 398 399 void BinaryEmitter::emitFunctionBody(BinaryFunction &BF, bool EmitColdPart, 400 bool EmitCodeOnly) { 401 if (!EmitCodeOnly && EmitColdPart && BF.hasConstantIsland()) 402 BF.duplicateConstantIslands(); 403 404 // Track the first emitted instruction with debug info. 405 bool FirstInstr = true; 406 for (BinaryBasicBlock *BB : BF.layout()) { 407 if (EmitColdPart != BB->isCold()) 408 continue; 409 410 if ((opts::AlignBlocks || opts::PreserveBlocksAlignment) && 411 BB->getAlignment() > 1) { 412 Streamer.emitCodeAlignment(BB->getAlignment(), &*BC.STI, 413 BB->getAlignmentMaxBytes()); 414 } 415 Streamer.emitLabel(BB->getLabel()); 416 if (!EmitCodeOnly) { 417 if (MCSymbol *EntrySymbol = BF.getSecondaryEntryPointSymbol(*BB)) 418 Streamer.emitLabel(EntrySymbol); 419 } 420 421 // Check if special alignment for macro-fusion is needed. 422 bool MayNeedMacroFusionAlignment = 423 (opts::AlignMacroOpFusion == MFT_ALL) || 424 (opts::AlignMacroOpFusion == MFT_HOT && BB->getKnownExecutionCount()); 425 BinaryBasicBlock::const_iterator MacroFusionPair; 426 if (MayNeedMacroFusionAlignment) { 427 MacroFusionPair = BB->getMacroOpFusionPair(); 428 if (MacroFusionPair == BB->end()) 429 MayNeedMacroFusionAlignment = false; 430 } 431 432 SMLoc LastLocSeen; 433 // Remember if the last instruction emitted was a prefix. 434 bool LastIsPrefix = false; 435 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) { 436 MCInst &Instr = *I; 437 438 if (EmitCodeOnly && BC.MIB->isPseudo(Instr)) 439 continue; 440 441 // Handle pseudo instructions. 442 if (BC.MIB->isEHLabel(Instr)) { 443 const MCSymbol *Label = BC.MIB->getTargetSymbol(Instr); 444 assert(Instr.getNumOperands() >= 1 && Label && 445 "bad EH_LABEL instruction"); 446 Streamer.emitLabel(const_cast<MCSymbol *>(Label)); 447 continue; 448 } 449 if (BC.MIB->isCFI(Instr)) { 450 emitCFIInstruction(*BF.getCFIFor(Instr)); 451 continue; 452 } 453 454 // Handle macro-fusion alignment. If we emitted a prefix as 455 // the last instruction, we should've already emitted the associated 456 // alignment hint, so don't emit it twice. 457 if (MayNeedMacroFusionAlignment && !LastIsPrefix && 458 I == MacroFusionPair) { 459 // This assumes the second instruction in the macro-op pair will get 460 // assigned to its own MCRelaxableFragment. Since all JCC instructions 461 // are relaxable, we should be safe. 462 } 463 464 if (!EmitCodeOnly && opts::UpdateDebugSections && BF.getDWARFUnit()) { 465 LastLocSeen = emitLineInfo(BF, Instr.getLoc(), LastLocSeen, FirstInstr); 466 FirstInstr = false; 467 } 468 469 // Prepare to tag this location with a label if we need to keep track of 470 // the location of calls/returns for BOLT address translation maps 471 if (!EmitCodeOnly && BF.requiresAddressTranslation() && 472 BC.MIB->getOffset(Instr)) { 473 const uint32_t Offset = *BC.MIB->getOffset(Instr); 474 MCSymbol *LocSym = BC.Ctx->createTempSymbol(); 475 Streamer.emitLabel(LocSym); 476 BB->getLocSyms().emplace_back(Offset, LocSym); 477 } 478 479 Streamer.emitInstruction(Instr, *BC.STI); 480 LastIsPrefix = BC.MIB->isPrefix(Instr); 481 } 482 } 483 484 if (!EmitCodeOnly) 485 emitConstantIslands(BF, EmitColdPart); 486 } 487 488 void BinaryEmitter::emitConstantIslands(BinaryFunction &BF, bool EmitColdPart, 489 BinaryFunction *OnBehalfOf) { 490 if (!BF.hasIslandsInfo()) 491 return; 492 493 BinaryFunction::IslandInfo &Islands = BF.getIslandInfo(); 494 if (Islands.DataOffsets.empty() && Islands.Dependency.empty()) 495 return; 496 497 if (!OnBehalfOf) { 498 if (!EmitColdPart) 499 Streamer.emitLabel(BF.getFunctionConstantIslandLabel()); 500 else 501 Streamer.emitLabel(BF.getFunctionColdConstantIslandLabel()); 502 } 503 504 assert((!OnBehalfOf || Islands.Proxies[OnBehalfOf].size() > 0) && 505 "spurious OnBehalfOf constant island emission"); 506 507 assert(!BF.isInjected() && 508 "injected functions should not have constant islands"); 509 // Raw contents of the function. 510 StringRef SectionContents = BF.getOriginSection()->getContents(); 511 512 // Raw contents of the function. 513 StringRef FunctionContents = SectionContents.substr( 514 BF.getAddress() - BF.getOriginSection()->getAddress(), BF.getMaxSize()); 515 516 if (opts::Verbosity && !OnBehalfOf) 517 outs() << "BOLT-INFO: emitting constant island for function " << BF << "\n"; 518 519 // We split the island into smaller blocks and output labels between them. 520 auto IS = Islands.Offsets.begin(); 521 for (auto DataIter = Islands.DataOffsets.begin(); 522 DataIter != Islands.DataOffsets.end(); ++DataIter) { 523 uint64_t FunctionOffset = *DataIter; 524 uint64_t EndOffset = 0ULL; 525 526 // Determine size of this data chunk 527 auto NextData = std::next(DataIter); 528 auto CodeIter = Islands.CodeOffsets.lower_bound(*DataIter); 529 if (CodeIter == Islands.CodeOffsets.end() && 530 NextData == Islands.DataOffsets.end()) { 531 EndOffset = BF.getMaxSize(); 532 } else if (CodeIter == Islands.CodeOffsets.end()) { 533 EndOffset = *NextData; 534 } else if (NextData == Islands.DataOffsets.end()) { 535 EndOffset = *CodeIter; 536 } else { 537 EndOffset = (*CodeIter > *NextData) ? *NextData : *CodeIter; 538 } 539 540 if (FunctionOffset == EndOffset) 541 continue; // Size is zero, nothing to emit 542 543 auto emitCI = [&](uint64_t &FunctionOffset, uint64_t EndOffset) { 544 if (FunctionOffset >= EndOffset) 545 return; 546 547 for (auto It = Islands.Relocations.lower_bound(FunctionOffset); 548 It != Islands.Relocations.end(); ++It) { 549 if (It->first >= EndOffset) 550 break; 551 552 const Relocation &Relocation = It->second; 553 if (FunctionOffset < Relocation.Offset) { 554 Streamer.emitBytes( 555 FunctionContents.slice(FunctionOffset, Relocation.Offset)); 556 FunctionOffset = Relocation.Offset; 557 } 558 559 LLVM_DEBUG( 560 dbgs() << "BOLT-DEBUG: emitting constant island relocation" 561 << " for " << BF << " at offset 0x" 562 << Twine::utohexstr(Relocation.Offset) << " with size " 563 << Relocation::getSizeForType(Relocation.Type) << '\n'); 564 565 FunctionOffset += Relocation.emit(&Streamer); 566 } 567 568 assert(FunctionOffset <= EndOffset && "overflow error"); 569 if (FunctionOffset < EndOffset) { 570 Streamer.emitBytes(FunctionContents.slice(FunctionOffset, EndOffset)); 571 FunctionOffset = EndOffset; 572 } 573 }; 574 575 // Emit labels, relocs and data 576 while (IS != Islands.Offsets.end() && IS->first < EndOffset) { 577 auto NextLabelOffset = 578 IS == Islands.Offsets.end() ? EndOffset : IS->first; 579 auto NextStop = std::min(NextLabelOffset, EndOffset); 580 assert(NextStop <= EndOffset && "internal overflow error"); 581 emitCI(FunctionOffset, NextStop); 582 if (IS != Islands.Offsets.end() && FunctionOffset == IS->first) { 583 // This is a slightly complex code to decide which label to emit. We 584 // have 4 cases to handle: regular symbol, cold symbol, regular or cold 585 // symbol being emitted on behalf of an external function. 586 if (!OnBehalfOf) { 587 if (!EmitColdPart) { 588 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " 589 << IS->second->getName() << " at offset 0x" 590 << Twine::utohexstr(IS->first) << '\n'); 591 if (IS->second->isUndefined()) 592 Streamer.emitLabel(IS->second); 593 else 594 assert(BF.hasName(std::string(IS->second->getName()))); 595 } else if (Islands.ColdSymbols.count(IS->second) != 0) { 596 LLVM_DEBUG(dbgs() 597 << "BOLT-DEBUG: emitted label " 598 << Islands.ColdSymbols[IS->second]->getName() << '\n'); 599 if (Islands.ColdSymbols[IS->second]->isUndefined()) 600 Streamer.emitLabel(Islands.ColdSymbols[IS->second]); 601 } 602 } else { 603 if (!EmitColdPart) { 604 if (MCSymbol *Sym = Islands.Proxies[OnBehalfOf][IS->second]) { 605 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " 606 << Sym->getName() << '\n'); 607 Streamer.emitLabel(Sym); 608 } 609 } else if (MCSymbol *Sym = 610 Islands.ColdProxies[OnBehalfOf][IS->second]) { 611 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitted label " << Sym->getName() 612 << '\n'); 613 Streamer.emitLabel(Sym); 614 } 615 } 616 ++IS; 617 } 618 } 619 assert(FunctionOffset <= EndOffset && "overflow error"); 620 emitCI(FunctionOffset, EndOffset); 621 } 622 assert(IS == Islands.Offsets.end() && "some symbols were not emitted!"); 623 624 if (OnBehalfOf) 625 return; 626 // Now emit constant islands from other functions that we may have used in 627 // this function. 628 for (BinaryFunction *ExternalFunc : Islands.Dependency) 629 emitConstantIslands(*ExternalFunc, EmitColdPart, &BF); 630 } 631 632 SMLoc BinaryEmitter::emitLineInfo(const BinaryFunction &BF, SMLoc NewLoc, 633 SMLoc PrevLoc, bool FirstInstr) { 634 DWARFUnit *FunctionCU = BF.getDWARFUnit(); 635 const DWARFDebugLine::LineTable *FunctionLineTable = BF.getDWARFLineTable(); 636 assert(FunctionCU && "cannot emit line info for function without CU"); 637 638 DebugLineTableRowRef RowReference = DebugLineTableRowRef::fromSMLoc(NewLoc); 639 640 // Check if no new line info needs to be emitted. 641 if (RowReference == DebugLineTableRowRef::NULL_ROW || 642 NewLoc.getPointer() == PrevLoc.getPointer()) 643 return PrevLoc; 644 645 unsigned CurrentFilenum = 0; 646 const DWARFDebugLine::LineTable *CurrentLineTable = FunctionLineTable; 647 648 // If the CU id from the current instruction location does not 649 // match the CU id from the current function, it means that we 650 // have come across some inlined code. We must look up the CU 651 // for the instruction's original function and get the line table 652 // from that. 653 const uint64_t FunctionUnitIndex = FunctionCU->getOffset(); 654 const uint32_t CurrentUnitIndex = RowReference.DwCompileUnitIndex; 655 if (CurrentUnitIndex != FunctionUnitIndex) { 656 CurrentLineTable = BC.DwCtx->getLineTableForUnit( 657 BC.DwCtx->getCompileUnitForOffset(CurrentUnitIndex)); 658 // Add filename from the inlined function to the current CU. 659 CurrentFilenum = BC.addDebugFilenameToUnit( 660 FunctionUnitIndex, CurrentUnitIndex, 661 CurrentLineTable->Rows[RowReference.RowIndex - 1].File); 662 } 663 664 const DWARFDebugLine::Row &CurrentRow = 665 CurrentLineTable->Rows[RowReference.RowIndex - 1]; 666 if (!CurrentFilenum) 667 CurrentFilenum = CurrentRow.File; 668 669 unsigned Flags = (DWARF2_FLAG_IS_STMT * CurrentRow.IsStmt) | 670 (DWARF2_FLAG_BASIC_BLOCK * CurrentRow.BasicBlock) | 671 (DWARF2_FLAG_PROLOGUE_END * CurrentRow.PrologueEnd) | 672 (DWARF2_FLAG_EPILOGUE_BEGIN * CurrentRow.EpilogueBegin); 673 674 // Always emit is_stmt at the beginning of function fragment. 675 if (FirstInstr) 676 Flags |= DWARF2_FLAG_IS_STMT; 677 678 BC.Ctx->setCurrentDwarfLoc(CurrentFilenum, CurrentRow.Line, CurrentRow.Column, 679 Flags, CurrentRow.Isa, CurrentRow.Discriminator); 680 const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc(); 681 BC.Ctx->clearDwarfLocSeen(); 682 683 MCSymbol *LineSym = BC.Ctx->createTempSymbol(); 684 Streamer.emitLabel(LineSym); 685 686 BC.getDwarfLineTable(FunctionUnitIndex) 687 .getMCLineSections() 688 .addLineEntry(MCDwarfLineEntry(LineSym, DwarfLoc), 689 Streamer.getCurrentSectionOnly()); 690 691 return NewLoc; 692 } 693 694 void BinaryEmitter::emitLineInfoEnd(const BinaryFunction &BF, 695 MCSymbol *FunctionEndLabel) { 696 DWARFUnit *FunctionCU = BF.getDWARFUnit(); 697 assert(FunctionCU && "DWARF unit expected"); 698 BC.Ctx->setCurrentDwarfLoc(0, 0, 0, DWARF2_FLAG_END_SEQUENCE, 0, 0); 699 const MCDwarfLoc &DwarfLoc = BC.Ctx->getCurrentDwarfLoc(); 700 BC.Ctx->clearDwarfLocSeen(); 701 BC.getDwarfLineTable(FunctionCU->getOffset()) 702 .getMCLineSections() 703 .addLineEntry(MCDwarfLineEntry(FunctionEndLabel, DwarfLoc), 704 Streamer.getCurrentSectionOnly()); 705 } 706 707 void BinaryEmitter::emitJumpTables(const BinaryFunction &BF) { 708 MCSection *ReadOnlySection = BC.MOFI->getReadOnlySection(); 709 MCSection *ReadOnlyColdSection = BC.MOFI->getContext().getELFSection( 710 ".rodata.cold", ELF::SHT_PROGBITS, ELF::SHF_ALLOC); 711 712 if (!BF.hasJumpTables()) 713 return; 714 715 if (opts::PrintJumpTables) 716 outs() << "BOLT-INFO: jump tables for function " << BF << ":\n"; 717 718 for (auto &JTI : BF.jumpTables()) { 719 JumpTable &JT = *JTI.second; 720 if (opts::PrintJumpTables) 721 JT.print(outs()); 722 if ((opts::JumpTables == JTS_BASIC || !BF.isSimple()) && 723 BC.HasRelocations) { 724 JT.updateOriginal(); 725 } else { 726 MCSection *HotSection, *ColdSection; 727 if (opts::JumpTables == JTS_BASIC) { 728 // In non-relocation mode we have to emit jump tables in local sections. 729 // This way we only overwrite them when the corresponding function is 730 // overwritten. 731 std::string Name = ".local." + JT.Labels[0]->getName().str(); 732 std::replace(Name.begin(), Name.end(), '/', '.'); 733 BinarySection &Section = 734 BC.registerOrUpdateSection(Name, ELF::SHT_PROGBITS, ELF::SHF_ALLOC); 735 Section.setAnonymous(true); 736 JT.setOutputSection(Section); 737 HotSection = BC.getDataSection(Name); 738 ColdSection = HotSection; 739 } else { 740 if (BF.isSimple()) { 741 HotSection = ReadOnlySection; 742 ColdSection = ReadOnlyColdSection; 743 } else { 744 HotSection = BF.hasProfile() ? ReadOnlySection : ReadOnlyColdSection; 745 ColdSection = HotSection; 746 } 747 } 748 emitJumpTable(JT, HotSection, ColdSection); 749 } 750 } 751 } 752 753 void BinaryEmitter::emitJumpTable(const JumpTable &JT, MCSection *HotSection, 754 MCSection *ColdSection) { 755 // Pre-process entries for aggressive splitting. 756 // Each label represents a separate switch table and gets its own count 757 // determining its destination. 758 std::map<MCSymbol *, uint64_t> LabelCounts; 759 if (opts::JumpTables > JTS_SPLIT && !JT.Counts.empty()) { 760 MCSymbol *CurrentLabel = JT.Labels.at(0); 761 uint64_t CurrentLabelCount = 0; 762 for (unsigned Index = 0; Index < JT.Entries.size(); ++Index) { 763 auto LI = JT.Labels.find(Index * JT.EntrySize); 764 if (LI != JT.Labels.end()) { 765 LabelCounts[CurrentLabel] = CurrentLabelCount; 766 CurrentLabel = LI->second; 767 CurrentLabelCount = 0; 768 } 769 CurrentLabelCount += JT.Counts[Index].Count; 770 } 771 LabelCounts[CurrentLabel] = CurrentLabelCount; 772 } else { 773 Streamer.SwitchSection(JT.Count > 0 ? HotSection : ColdSection); 774 Streamer.emitValueToAlignment(JT.EntrySize); 775 } 776 MCSymbol *LastLabel = nullptr; 777 uint64_t Offset = 0; 778 for (MCSymbol *Entry : JT.Entries) { 779 auto LI = JT.Labels.find(Offset); 780 if (LI != JT.Labels.end()) { 781 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: emitting jump table " 782 << LI->second->getName() 783 << " (originally was at address 0x" 784 << Twine::utohexstr(JT.getAddress() + Offset) 785 << (Offset ? "as part of larger jump table\n" : "\n")); 786 if (!LabelCounts.empty()) { 787 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump table count: " 788 << LabelCounts[LI->second] << '\n'); 789 if (LabelCounts[LI->second] > 0) 790 Streamer.SwitchSection(HotSection); 791 else 792 Streamer.SwitchSection(ColdSection); 793 Streamer.emitValueToAlignment(JT.EntrySize); 794 } 795 Streamer.emitLabel(LI->second); 796 LastLabel = LI->second; 797 } 798 if (JT.Type == JumpTable::JTT_NORMAL) { 799 Streamer.emitSymbolValue(Entry, JT.OutputEntrySize); 800 } else { // JTT_PIC 801 const MCSymbolRefExpr *JTExpr = 802 MCSymbolRefExpr::create(LastLabel, Streamer.getContext()); 803 const MCSymbolRefExpr *E = 804 MCSymbolRefExpr::create(Entry, Streamer.getContext()); 805 const MCBinaryExpr *Value = 806 MCBinaryExpr::createSub(E, JTExpr, Streamer.getContext()); 807 Streamer.emitValue(Value, JT.EntrySize); 808 } 809 Offset += JT.EntrySize; 810 } 811 } 812 813 void BinaryEmitter::emitCFIInstruction(const MCCFIInstruction &Inst) const { 814 switch (Inst.getOperation()) { 815 default: 816 llvm_unreachable("Unexpected instruction"); 817 case MCCFIInstruction::OpDefCfaOffset: 818 Streamer.emitCFIDefCfaOffset(Inst.getOffset()); 819 break; 820 case MCCFIInstruction::OpAdjustCfaOffset: 821 Streamer.emitCFIAdjustCfaOffset(Inst.getOffset()); 822 break; 823 case MCCFIInstruction::OpDefCfa: 824 Streamer.emitCFIDefCfa(Inst.getRegister(), Inst.getOffset()); 825 break; 826 case MCCFIInstruction::OpDefCfaRegister: 827 Streamer.emitCFIDefCfaRegister(Inst.getRegister()); 828 break; 829 case MCCFIInstruction::OpOffset: 830 Streamer.emitCFIOffset(Inst.getRegister(), Inst.getOffset()); 831 break; 832 case MCCFIInstruction::OpRegister: 833 Streamer.emitCFIRegister(Inst.getRegister(), Inst.getRegister2()); 834 break; 835 case MCCFIInstruction::OpWindowSave: 836 Streamer.emitCFIWindowSave(); 837 break; 838 case MCCFIInstruction::OpNegateRAState: 839 Streamer.emitCFINegateRAState(); 840 break; 841 case MCCFIInstruction::OpSameValue: 842 Streamer.emitCFISameValue(Inst.getRegister()); 843 break; 844 case MCCFIInstruction::OpGnuArgsSize: 845 Streamer.emitCFIGnuArgsSize(Inst.getOffset()); 846 break; 847 case MCCFIInstruction::OpEscape: 848 Streamer.AddComment(Inst.getComment()); 849 Streamer.emitCFIEscape(Inst.getValues()); 850 break; 851 case MCCFIInstruction::OpRestore: 852 Streamer.emitCFIRestore(Inst.getRegister()); 853 break; 854 case MCCFIInstruction::OpUndefined: 855 Streamer.emitCFIUndefined(Inst.getRegister()); 856 break; 857 } 858 } 859 860 // The code is based on EHStreamer::emitExceptionTable(). 861 void BinaryEmitter::emitLSDA(BinaryFunction &BF, bool EmitColdPart) { 862 const BinaryFunction::CallSitesType *Sites = 863 EmitColdPart ? &BF.getColdCallSites() : &BF.getCallSites(); 864 if (Sites->empty()) { 865 return; 866 } 867 868 // Calculate callsite table size. Size of each callsite entry is: 869 // 870 // sizeof(start) + sizeof(length) + sizeof(LP) + sizeof(uleb128(action)) 871 // 872 // or 873 // 874 // sizeof(dwarf::DW_EH_PE_data4) * 3 + sizeof(uleb128(action)) 875 uint64_t CallSiteTableLength = Sites->size() * 4 * 3; 876 for (const BinaryFunction::CallSite &CallSite : *Sites) { 877 CallSiteTableLength += getULEB128Size(CallSite.Action); 878 } 879 880 Streamer.SwitchSection(BC.MOFI->getLSDASection()); 881 882 const unsigned TTypeEncoding = BC.TTypeEncoding; 883 const unsigned TTypeEncodingSize = BC.getDWARFEncodingSize(TTypeEncoding); 884 const uint16_t TTypeAlignment = 4; 885 886 // Type tables have to be aligned at 4 bytes. 887 Streamer.emitValueToAlignment(TTypeAlignment); 888 889 // Emit the LSDA label. 890 MCSymbol *LSDASymbol = 891 EmitColdPart ? BF.getColdLSDASymbol() : BF.getLSDASymbol(); 892 assert(LSDASymbol && "no LSDA symbol set"); 893 Streamer.emitLabel(LSDASymbol); 894 895 // Corresponding FDE start. 896 const MCSymbol *StartSymbol = 897 EmitColdPart ? BF.getColdSymbol() : BF.getSymbol(); 898 899 // Emit the LSDA header. 900 901 // If LPStart is omitted, then the start of the FDE is used as a base for 902 // landing pad displacements. Then if a cold fragment starts with 903 // a landing pad, this means that the first landing pad offset will be 0. 904 // As a result, the exception handling runtime will ignore this landing pad 905 // because zero offset denotes the absence of a landing pad. 906 // For this reason, when the binary has fixed starting address we emit LPStart 907 // as 0 and output the absolute value of the landing pad in the table. 908 // 909 // If the base address can change, we cannot use absolute addresses for 910 // landing pads (at least not without runtime relocations). Hence, we fall 911 // back to emitting landing pads relative to the FDE start. 912 // As we are emitting label differences, we have to guarantee both labels are 913 // defined in the same section and hence cannot place the landing pad into a 914 // cold fragment when the corresponding call site is in the hot fragment. 915 // Because of this issue and the previously described issue of possible 916 // zero-offset landing pad we disable splitting of exception-handling 917 // code for shared objects. 918 std::function<void(const MCSymbol *)> emitLandingPad; 919 if (BC.HasFixedLoadAddress) { 920 Streamer.emitIntValue(dwarf::DW_EH_PE_udata4, 1); // LPStart format 921 Streamer.emitIntValue(0, 4); // LPStart 922 emitLandingPad = [&](const MCSymbol *LPSymbol) { 923 if (!LPSymbol) 924 Streamer.emitIntValue(0, 4); 925 else 926 Streamer.emitSymbolValue(LPSymbol, 4); 927 }; 928 } else { 929 assert(!EmitColdPart && 930 "cannot have exceptions in cold fragment for shared object"); 931 Streamer.emitIntValue(dwarf::DW_EH_PE_omit, 1); // LPStart format 932 emitLandingPad = [&](const MCSymbol *LPSymbol) { 933 if (!LPSymbol) 934 Streamer.emitIntValue(0, 4); 935 else 936 Streamer.emitAbsoluteSymbolDiff(LPSymbol, StartSymbol, 4); 937 }; 938 } 939 940 Streamer.emitIntValue(TTypeEncoding, 1); // TType format 941 942 // See the comment in EHStreamer::emitExceptionTable() on to use 943 // uleb128 encoding (which can use variable number of bytes to encode the same 944 // value) to ensure type info table is properly aligned at 4 bytes without 945 // iteratively fixing sizes of the tables. 946 unsigned CallSiteTableLengthSize = getULEB128Size(CallSiteTableLength); 947 unsigned TTypeBaseOffset = 948 sizeof(int8_t) + // Call site format 949 CallSiteTableLengthSize + // Call site table length size 950 CallSiteTableLength + // Call site table length 951 BF.getLSDAActionTable().size() + // Actions table size 952 BF.getLSDATypeTable().size() * TTypeEncodingSize; // Types table size 953 unsigned TTypeBaseOffsetSize = getULEB128Size(TTypeBaseOffset); 954 unsigned TotalSize = sizeof(int8_t) + // LPStart format 955 sizeof(int8_t) + // TType format 956 TTypeBaseOffsetSize + // TType base offset size 957 TTypeBaseOffset; // TType base offset 958 unsigned SizeAlign = (4 - TotalSize) & 3; 959 960 // Account for any extra padding that will be added to the call site table 961 // length. 962 Streamer.emitULEB128IntValue(TTypeBaseOffset, 963 /*PadTo=*/TTypeBaseOffsetSize + SizeAlign); 964 965 // Emit the landing pad call site table. We use signed data4 since we can emit 966 // a landing pad in a different part of the split function that could appear 967 // earlier in the address space than LPStart. 968 Streamer.emitIntValue(dwarf::DW_EH_PE_sdata4, 1); 969 Streamer.emitULEB128IntValue(CallSiteTableLength); 970 971 for (const BinaryFunction::CallSite &CallSite : *Sites) { 972 const MCSymbol *BeginLabel = CallSite.Start; 973 const MCSymbol *EndLabel = CallSite.End; 974 975 assert(BeginLabel && "start EH label expected"); 976 assert(EndLabel && "end EH label expected"); 977 978 // Start of the range is emitted relative to the start of current 979 // function split part. 980 Streamer.emitAbsoluteSymbolDiff(BeginLabel, StartSymbol, 4); 981 Streamer.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 982 emitLandingPad(CallSite.LP); 983 Streamer.emitULEB128IntValue(CallSite.Action); 984 } 985 986 // Write out action, type, and type index tables at the end. 987 // 988 // For action and type index tables there's no need to change the original 989 // table format unless we are doing function splitting, in which case we can 990 // split and optimize the tables. 991 // 992 // For type table we (re-)encode the table using TTypeEncoding matching 993 // the current assembler mode. 994 for (uint8_t const &Byte : BF.getLSDAActionTable()) 995 Streamer.emitIntValue(Byte, 1); 996 997 const BinaryFunction::LSDATypeTableTy &TypeTable = 998 (TTypeEncoding & dwarf::DW_EH_PE_indirect) ? BF.getLSDATypeAddressTable() 999 : BF.getLSDATypeTable(); 1000 assert(TypeTable.size() == BF.getLSDATypeTable().size() && 1001 "indirect type table size mismatch"); 1002 1003 for (int Index = TypeTable.size() - 1; Index >= 0; --Index) { 1004 const uint64_t TypeAddress = TypeTable[Index]; 1005 switch (TTypeEncoding & 0x70) { 1006 default: 1007 llvm_unreachable("unsupported TTypeEncoding"); 1008 case dwarf::DW_EH_PE_absptr: 1009 Streamer.emitIntValue(TypeAddress, TTypeEncodingSize); 1010 break; 1011 case dwarf::DW_EH_PE_pcrel: { 1012 if (TypeAddress) { 1013 const MCSymbol *TypeSymbol = 1014 BC.getOrCreateGlobalSymbol(TypeAddress, "TI", 0, TTypeAlignment); 1015 MCSymbol *DotSymbol = BC.Ctx->createNamedTempSymbol(); 1016 Streamer.emitLabel(DotSymbol); 1017 const MCBinaryExpr *SubDotExpr = MCBinaryExpr::createSub( 1018 MCSymbolRefExpr::create(TypeSymbol, *BC.Ctx), 1019 MCSymbolRefExpr::create(DotSymbol, *BC.Ctx), *BC.Ctx); 1020 Streamer.emitValue(SubDotExpr, TTypeEncodingSize); 1021 } else { 1022 Streamer.emitIntValue(0, TTypeEncodingSize); 1023 } 1024 break; 1025 } 1026 } 1027 } 1028 for (uint8_t const &Byte : BF.getLSDATypeIndexTable()) 1029 Streamer.emitIntValue(Byte, 1); 1030 } 1031 1032 void BinaryEmitter::emitDebugLineInfoForOriginalFunctions() { 1033 // If a function is in a CU containing at least one processed function, we 1034 // have to rewrite the whole line table for that CU. For unprocessed functions 1035 // we use data from the input line table. 1036 for (auto &It : BC.getBinaryFunctions()) { 1037 const BinaryFunction &Function = It.second; 1038 1039 // If the function was emitted, its line info was emitted with it. 1040 if (Function.isEmitted()) 1041 continue; 1042 1043 const DWARFDebugLine::LineTable *LineTable = Function.getDWARFLineTable(); 1044 if (!LineTable) 1045 continue; // nothing to update for this function 1046 1047 const uint64_t Address = Function.getAddress(); 1048 std::vector<uint32_t> Results; 1049 if (!LineTable->lookupAddressRange( 1050 {Address, object::SectionedAddress::UndefSection}, 1051 Function.getSize(), Results)) 1052 continue; 1053 1054 if (Results.empty()) 1055 continue; 1056 1057 // The first row returned could be the last row matching the start address. 1058 // Find the first row with the same address that is not the end of the 1059 // sequence. 1060 uint64_t FirstRow = Results.front(); 1061 while (FirstRow > 0) { 1062 const DWARFDebugLine::Row &PrevRow = LineTable->Rows[FirstRow - 1]; 1063 if (PrevRow.Address.Address != Address || PrevRow.EndSequence) 1064 break; 1065 --FirstRow; 1066 } 1067 1068 const uint64_t EndOfSequenceAddress = 1069 Function.getAddress() + Function.getMaxSize(); 1070 BC.getDwarfLineTable(Function.getDWARFUnit()->getOffset()) 1071 .addLineTableSequence(LineTable, FirstRow, Results.back(), 1072 EndOfSequenceAddress); 1073 } 1074 1075 // For units that are completely unprocessed, use original debug line contents 1076 // eliminating the need to regenerate line info program. 1077 emitDebugLineInfoForUnprocessedCUs(); 1078 } 1079 1080 void BinaryEmitter::emitDebugLineInfoForUnprocessedCUs() { 1081 // Sorted list of section offsets provides boundaries for section fragments, 1082 // where each fragment is the unit's contribution to debug line section. 1083 std::vector<uint64_t> StmtListOffsets; 1084 StmtListOffsets.reserve(BC.DwCtx->getNumCompileUnits()); 1085 for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) { 1086 DWARFDie CUDie = CU->getUnitDIE(); 1087 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list)); 1088 if (!StmtList) 1089 continue; 1090 1091 StmtListOffsets.push_back(*StmtList); 1092 } 1093 std::sort(StmtListOffsets.begin(), StmtListOffsets.end()); 1094 1095 // For each CU that was not processed, emit its line info as a binary blob. 1096 for (const std::unique_ptr<DWARFUnit> &CU : BC.DwCtx->compile_units()) { 1097 if (BC.ProcessedCUs.count(CU.get())) 1098 continue; 1099 1100 DWARFDie CUDie = CU->getUnitDIE(); 1101 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list)); 1102 if (!StmtList) 1103 continue; 1104 1105 StringRef DebugLineContents = CU->getLineSection().Data; 1106 1107 const uint64_t Begin = *StmtList; 1108 1109 // Statement list ends where the next unit contribution begins, or at the 1110 // end of the section. 1111 auto It = 1112 std::upper_bound(StmtListOffsets.begin(), StmtListOffsets.end(), Begin); 1113 const uint64_t End = 1114 It == StmtListOffsets.end() ? DebugLineContents.size() : *It; 1115 1116 BC.getDwarfLineTable(CU->getOffset()) 1117 .addRawContents(DebugLineContents.slice(Begin, End)); 1118 } 1119 } 1120 1121 void BinaryEmitter::emitDataSections(StringRef OrgSecPrefix) { 1122 for (BinarySection &Section : BC.sections()) { 1123 if (!Section.hasRelocations() || !Section.hasSectionRef()) 1124 continue; 1125 1126 StringRef SectionName = Section.getName(); 1127 std::string EmitName = Section.isReordered() 1128 ? std::string(Section.getOutputName()) 1129 : OrgSecPrefix.str() + std::string(SectionName); 1130 Section.emitAsData(Streamer, EmitName); 1131 Section.clearRelocations(); 1132 } 1133 } 1134 1135 namespace llvm { 1136 namespace bolt { 1137 1138 void emitBinaryContext(MCStreamer &Streamer, BinaryContext &BC, 1139 StringRef OrgSecPrefix) { 1140 BinaryEmitter(Streamer, BC).emitAll(OrgSecPrefix); 1141 } 1142 1143 void emitFunctionBody(MCStreamer &Streamer, BinaryFunction &BF, 1144 bool EmitColdPart, bool EmitCodeOnly) { 1145 BinaryEmitter(Streamer, BF.getBinaryContext()) 1146 .emitFunctionBody(BF, EmitColdPart, EmitCodeOnly); 1147 } 1148 1149 } // namespace bolt 1150 } // namespace llvm 1151