1 //===- bolt/Core/BinaryContext.cpp - Low-level context --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryContext class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryContext.h" 14 #include "bolt/Core/BinaryEmitter.h" 15 #include "bolt/Core/BinaryFunction.h" 16 #include "bolt/Utils/CommandLineOpts.h" 17 #include "bolt/Utils/NameResolver.h" 18 #include "bolt/Utils/Utils.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" 21 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" 22 #include "llvm/DebugInfo/DWARF/DWARFUnit.h" 23 #include "llvm/MC/MCAsmLayout.h" 24 #include "llvm/MC/MCAssembler.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 27 #include "llvm/MC/MCInstPrinter.h" 28 #include "llvm/MC/MCObjectStreamer.h" 29 #include "llvm/MC/MCObjectWriter.h" 30 #include "llvm/MC/MCRegisterInfo.h" 31 #include "llvm/MC/MCSectionELF.h" 32 #include "llvm/MC/MCStreamer.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Error.h" 37 #include "llvm/Support/Regex.h" 38 #include <algorithm> 39 #include <functional> 40 #include <iterator> 41 #include <unordered_set> 42 43 using namespace llvm; 44 45 #undef DEBUG_TYPE 46 #define DEBUG_TYPE "bolt" 47 48 namespace opts { 49 50 cl::opt<bool> NoHugePages("no-huge-pages", 51 cl::desc("use regular size pages for code alignment"), 52 cl::Hidden, cl::cat(BoltCategory)); 53 54 static cl::opt<bool> 55 PrintDebugInfo("print-debug-info", 56 cl::desc("print debug info when printing functions"), 57 cl::Hidden, 58 cl::ZeroOrMore, 59 cl::cat(BoltCategory)); 60 61 cl::opt<bool> PrintRelocations( 62 "print-relocations", 63 cl::desc("print relocations when printing functions/objects"), cl::Hidden, 64 cl::cat(BoltCategory)); 65 66 static cl::opt<bool> 67 PrintMemData("print-mem-data", 68 cl::desc("print memory data annotations when printing functions"), 69 cl::Hidden, 70 cl::ZeroOrMore, 71 cl::cat(BoltCategory)); 72 73 } // namespace opts 74 75 namespace llvm { 76 namespace bolt { 77 78 BinaryContext::BinaryContext(std::unique_ptr<MCContext> Ctx, 79 std::unique_ptr<DWARFContext> DwCtx, 80 std::unique_ptr<Triple> TheTriple, 81 const Target *TheTarget, std::string TripleName, 82 std::unique_ptr<MCCodeEmitter> MCE, 83 std::unique_ptr<MCObjectFileInfo> MOFI, 84 std::unique_ptr<const MCAsmInfo> AsmInfo, 85 std::unique_ptr<const MCInstrInfo> MII, 86 std::unique_ptr<const MCSubtargetInfo> STI, 87 std::unique_ptr<MCInstPrinter> InstPrinter, 88 std::unique_ptr<const MCInstrAnalysis> MIA, 89 std::unique_ptr<MCPlusBuilder> MIB, 90 std::unique_ptr<const MCRegisterInfo> MRI, 91 std::unique_ptr<MCDisassembler> DisAsm) 92 : Ctx(std::move(Ctx)), DwCtx(std::move(DwCtx)), 93 TheTriple(std::move(TheTriple)), TheTarget(TheTarget), 94 TripleName(TripleName), MCE(std::move(MCE)), MOFI(std::move(MOFI)), 95 AsmInfo(std::move(AsmInfo)), MII(std::move(MII)), STI(std::move(STI)), 96 InstPrinter(std::move(InstPrinter)), MIA(std::move(MIA)), 97 MIB(std::move(MIB)), MRI(std::move(MRI)), DisAsm(std::move(DisAsm)) { 98 Relocation::Arch = this->TheTriple->getArch(); 99 RegularPageSize = isAArch64() ? RegularPageSizeAArch64 : RegularPageSizeX86; 100 PageAlign = opts::NoHugePages ? RegularPageSize : HugePageSize; 101 } 102 103 BinaryContext::~BinaryContext() { 104 for (BinarySection *Section : Sections) 105 delete Section; 106 for (BinaryFunction *InjectedFunction : InjectedBinaryFunctions) 107 delete InjectedFunction; 108 for (std::pair<const uint64_t, JumpTable *> JTI : JumpTables) 109 delete JTI.second; 110 clearBinaryData(); 111 } 112 113 /// Create BinaryContext for a given architecture \p ArchName and 114 /// triple \p TripleName. 115 Expected<std::unique_ptr<BinaryContext>> 116 BinaryContext::createBinaryContext(const ObjectFile *File, bool IsPIC, 117 std::unique_ptr<DWARFContext> DwCtx) { 118 StringRef ArchName = ""; 119 StringRef FeaturesStr = ""; 120 switch (File->getArch()) { 121 case llvm::Triple::x86_64: 122 ArchName = "x86-64"; 123 FeaturesStr = "+nopl"; 124 break; 125 case llvm::Triple::aarch64: 126 ArchName = "aarch64"; 127 FeaturesStr = "+fp-armv8,+neon,+crypto,+dotprod,+crc,+lse,+ras,+rdm," 128 "+fullfp16,+spe,+fuse-aes,+rcpc"; 129 break; 130 default: 131 return createStringError(std::errc::not_supported, 132 "BOLT-ERROR: Unrecognized machine in ELF file"); 133 } 134 135 auto TheTriple = std::make_unique<Triple>(File->makeTriple()); 136 const std::string TripleName = TheTriple->str(); 137 138 std::string Error; 139 const Target *TheTarget = 140 TargetRegistry::lookupTarget(std::string(ArchName), *TheTriple, Error); 141 if (!TheTarget) 142 return createStringError(make_error_code(std::errc::not_supported), 143 Twine("BOLT-ERROR: ", Error)); 144 145 std::unique_ptr<const MCRegisterInfo> MRI( 146 TheTarget->createMCRegInfo(TripleName)); 147 if (!MRI) 148 return createStringError( 149 make_error_code(std::errc::not_supported), 150 Twine("BOLT-ERROR: no register info for target ", TripleName)); 151 152 // Set up disassembler. 153 std::unique_ptr<MCAsmInfo> AsmInfo( 154 TheTarget->createMCAsmInfo(*MRI, TripleName, MCTargetOptions())); 155 if (!AsmInfo) 156 return createStringError( 157 make_error_code(std::errc::not_supported), 158 Twine("BOLT-ERROR: no assembly info for target ", TripleName)); 159 // BOLT creates "func@PLT" symbols for PLT entries. In function assembly dump 160 // we want to emit such names as using @PLT without double quotes to convey 161 // variant kind to the assembler. BOLT doesn't rely on the linker so we can 162 // override the default AsmInfo behavior to emit names the way we want. 163 AsmInfo->setAllowAtInName(true); 164 165 std::unique_ptr<const MCSubtargetInfo> STI( 166 TheTarget->createMCSubtargetInfo(TripleName, "", FeaturesStr)); 167 if (!STI) 168 return createStringError( 169 make_error_code(std::errc::not_supported), 170 Twine("BOLT-ERROR: no subtarget info for target ", TripleName)); 171 172 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); 173 if (!MII) 174 return createStringError( 175 make_error_code(std::errc::not_supported), 176 Twine("BOLT-ERROR: no instruction info for target ", TripleName)); 177 178 std::unique_ptr<MCContext> Ctx( 179 new MCContext(*TheTriple, AsmInfo.get(), MRI.get(), STI.get())); 180 std::unique_ptr<MCObjectFileInfo> MOFI( 181 TheTarget->createMCObjectFileInfo(*Ctx, IsPIC)); 182 Ctx->setObjectFileInfo(MOFI.get()); 183 // We do not support X86 Large code model. Change this in the future. 184 bool Large = false; 185 if (TheTriple->getArch() == llvm::Triple::aarch64) 186 Large = true; 187 unsigned LSDAEncoding = 188 Large ? dwarf::DW_EH_PE_absptr : dwarf::DW_EH_PE_udata4; 189 unsigned TTypeEncoding = 190 Large ? dwarf::DW_EH_PE_absptr : dwarf::DW_EH_PE_udata4; 191 if (IsPIC) { 192 LSDAEncoding = dwarf::DW_EH_PE_pcrel | 193 (Large ? dwarf::DW_EH_PE_sdata8 : dwarf::DW_EH_PE_sdata4); 194 TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 195 (Large ? dwarf::DW_EH_PE_sdata8 : dwarf::DW_EH_PE_sdata4); 196 } 197 198 std::unique_ptr<MCDisassembler> DisAsm( 199 TheTarget->createMCDisassembler(*STI, *Ctx)); 200 201 if (!DisAsm) 202 return createStringError( 203 make_error_code(std::errc::not_supported), 204 Twine("BOLT-ERROR: no disassembler info for target ", TripleName)); 205 206 std::unique_ptr<const MCInstrAnalysis> MIA( 207 TheTarget->createMCInstrAnalysis(MII.get())); 208 if (!MIA) 209 return createStringError( 210 make_error_code(std::errc::not_supported), 211 Twine("BOLT-ERROR: failed to create instruction analysis for target ", 212 TripleName)); 213 214 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 215 std::unique_ptr<MCInstPrinter> InstructionPrinter( 216 TheTarget->createMCInstPrinter(*TheTriple, AsmPrinterVariant, *AsmInfo, 217 *MII, *MRI)); 218 if (!InstructionPrinter) 219 return createStringError( 220 make_error_code(std::errc::not_supported), 221 Twine("BOLT-ERROR: no instruction printer for target ", TripleName)); 222 InstructionPrinter->setPrintImmHex(true); 223 224 std::unique_ptr<MCCodeEmitter> MCE( 225 TheTarget->createMCCodeEmitter(*MII, *Ctx)); 226 227 // Make sure we don't miss any output on core dumps. 228 outs().SetUnbuffered(); 229 errs().SetUnbuffered(); 230 dbgs().SetUnbuffered(); 231 232 auto BC = std::make_unique<BinaryContext>( 233 std::move(Ctx), std::move(DwCtx), std::move(TheTriple), TheTarget, 234 std::string(TripleName), std::move(MCE), std::move(MOFI), 235 std::move(AsmInfo), std::move(MII), std::move(STI), 236 std::move(InstructionPrinter), std::move(MIA), nullptr, std::move(MRI), 237 std::move(DisAsm)); 238 239 BC->TTypeEncoding = TTypeEncoding; 240 BC->LSDAEncoding = LSDAEncoding; 241 242 BC->MAB = std::unique_ptr<MCAsmBackend>( 243 BC->TheTarget->createMCAsmBackend(*BC->STI, *BC->MRI, MCTargetOptions())); 244 245 BC->setFilename(File->getFileName()); 246 247 BC->HasFixedLoadAddress = !IsPIC; 248 249 BC->SymbolicDisAsm = std::unique_ptr<MCDisassembler>( 250 BC->TheTarget->createMCDisassembler(*BC->STI, *BC->Ctx)); 251 252 if (!BC->SymbolicDisAsm) 253 return createStringError( 254 make_error_code(std::errc::not_supported), 255 Twine("BOLT-ERROR: no disassembler info for target ", TripleName)); 256 257 return std::move(BC); 258 } 259 260 bool BinaryContext::forceSymbolRelocations(StringRef SymbolName) const { 261 if (opts::HotText && 262 (SymbolName == "__hot_start" || SymbolName == "__hot_end")) 263 return true; 264 265 if (opts::HotData && 266 (SymbolName == "__hot_data_start" || SymbolName == "__hot_data_end")) 267 return true; 268 269 if (SymbolName == "_end") 270 return true; 271 272 return false; 273 } 274 275 std::unique_ptr<MCObjectWriter> 276 BinaryContext::createObjectWriter(raw_pwrite_stream &OS) { 277 return MAB->createObjectWriter(OS); 278 } 279 280 bool BinaryContext::validateObjectNesting() const { 281 auto Itr = BinaryDataMap.begin(); 282 auto End = BinaryDataMap.end(); 283 bool Valid = true; 284 while (Itr != End) { 285 auto Next = std::next(Itr); 286 while (Next != End && 287 Itr->second->getSection() == Next->second->getSection() && 288 Itr->second->containsRange(Next->second->getAddress(), 289 Next->second->getSize())) { 290 if (Next->second->Parent != Itr->second) { 291 errs() << "BOLT-WARNING: object nesting incorrect for:\n" 292 << "BOLT-WARNING: " << *Itr->second << "\n" 293 << "BOLT-WARNING: " << *Next->second << "\n"; 294 Valid = false; 295 } 296 ++Next; 297 } 298 Itr = Next; 299 } 300 return Valid; 301 } 302 303 bool BinaryContext::validateHoles() const { 304 bool Valid = true; 305 for (BinarySection &Section : sections()) { 306 for (const Relocation &Rel : Section.relocations()) { 307 uint64_t RelAddr = Rel.Offset + Section.getAddress(); 308 const BinaryData *BD = getBinaryDataContainingAddress(RelAddr); 309 if (!BD) { 310 errs() << "BOLT-WARNING: no BinaryData found for relocation at address" 311 << " 0x" << Twine::utohexstr(RelAddr) << " in " 312 << Section.getName() << "\n"; 313 Valid = false; 314 } else if (!BD->getAtomicRoot()) { 315 errs() << "BOLT-WARNING: no atomic BinaryData found for relocation at " 316 << "address 0x" << Twine::utohexstr(RelAddr) << " in " 317 << Section.getName() << "\n"; 318 Valid = false; 319 } 320 } 321 } 322 return Valid; 323 } 324 325 void BinaryContext::updateObjectNesting(BinaryDataMapType::iterator GAI) { 326 const uint64_t Address = GAI->second->getAddress(); 327 const uint64_t Size = GAI->second->getSize(); 328 329 auto fixParents = [&](BinaryDataMapType::iterator Itr, 330 BinaryData *NewParent) { 331 BinaryData *OldParent = Itr->second->Parent; 332 Itr->second->Parent = NewParent; 333 ++Itr; 334 while (Itr != BinaryDataMap.end() && OldParent && 335 Itr->second->Parent == OldParent) { 336 Itr->second->Parent = NewParent; 337 ++Itr; 338 } 339 }; 340 341 // Check if the previous symbol contains the newly added symbol. 342 if (GAI != BinaryDataMap.begin()) { 343 BinaryData *Prev = std::prev(GAI)->second; 344 while (Prev) { 345 if (Prev->getSection() == GAI->second->getSection() && 346 Prev->containsRange(Address, Size)) { 347 fixParents(GAI, Prev); 348 } else { 349 fixParents(GAI, nullptr); 350 } 351 Prev = Prev->Parent; 352 } 353 } 354 355 // Check if the newly added symbol contains any subsequent symbols. 356 if (Size != 0) { 357 BinaryData *BD = GAI->second->Parent ? GAI->second->Parent : GAI->second; 358 auto Itr = std::next(GAI); 359 while ( 360 Itr != BinaryDataMap.end() && 361 BD->containsRange(Itr->second->getAddress(), Itr->second->getSize())) { 362 Itr->second->Parent = BD; 363 ++Itr; 364 } 365 } 366 } 367 368 iterator_range<BinaryContext::binary_data_iterator> 369 BinaryContext::getSubBinaryData(BinaryData *BD) { 370 auto Start = std::next(BinaryDataMap.find(BD->getAddress())); 371 auto End = Start; 372 while (End != BinaryDataMap.end() && BD->isAncestorOf(End->second)) 373 ++End; 374 return make_range(Start, End); 375 } 376 377 std::pair<const MCSymbol *, uint64_t> 378 BinaryContext::handleAddressRef(uint64_t Address, BinaryFunction &BF, 379 bool IsPCRel) { 380 uint64_t Addend = 0; 381 382 if (isAArch64()) { 383 // Check if this is an access to a constant island and create bookkeeping 384 // to keep track of it and emit it later as part of this function. 385 if (MCSymbol *IslandSym = BF.getOrCreateIslandAccess(Address)) 386 return std::make_pair(IslandSym, Addend); 387 388 // Detect custom code written in assembly that refers to arbitrary 389 // constant islands from other functions. Write this reference so we 390 // can pull this constant island and emit it as part of this function 391 // too. 392 auto IslandIter = AddressToConstantIslandMap.lower_bound(Address); 393 if (IslandIter != AddressToConstantIslandMap.end()) { 394 if (MCSymbol *IslandSym = 395 IslandIter->second->getOrCreateProxyIslandAccess(Address, BF)) { 396 BF.createIslandDependency(IslandSym, IslandIter->second); 397 return std::make_pair(IslandSym, Addend); 398 } 399 } 400 } 401 402 // Note that the address does not necessarily have to reside inside 403 // a section, it could be an absolute address too. 404 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 405 if (Section && Section->isText()) { 406 if (BF.containsAddress(Address, /*UseMaxSize=*/isAArch64())) { 407 if (Address != BF.getAddress()) { 408 // The address could potentially escape. Mark it as another entry 409 // point into the function. 410 if (opts::Verbosity >= 1) { 411 outs() << "BOLT-INFO: potentially escaped address 0x" 412 << Twine::utohexstr(Address) << " in function " << BF << '\n'; 413 } 414 BF.HasInternalLabelReference = true; 415 return std::make_pair( 416 BF.addEntryPointAtOffset(Address - BF.getAddress()), Addend); 417 } 418 } else { 419 BF.InterproceduralReferences.insert(Address); 420 } 421 } 422 423 // With relocations, catch jump table references outside of the basic block 424 // containing the indirect jump. 425 if (HasRelocations) { 426 const MemoryContentsType MemType = analyzeMemoryAt(Address, BF); 427 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE && IsPCRel) { 428 const MCSymbol *Symbol = 429 getOrCreateJumpTable(BF, Address, JumpTable::JTT_PIC); 430 431 return std::make_pair(Symbol, Addend); 432 } 433 } 434 435 if (BinaryData *BD = getBinaryDataContainingAddress(Address)) 436 return std::make_pair(BD->getSymbol(), Address - BD->getAddress()); 437 438 // TODO: use DWARF info to get size/alignment here? 439 MCSymbol *TargetSymbol = getOrCreateGlobalSymbol(Address, "DATAat"); 440 LLVM_DEBUG(dbgs() << "Created symbol " << TargetSymbol->getName() << '\n'); 441 return std::make_pair(TargetSymbol, Addend); 442 } 443 444 MemoryContentsType BinaryContext::analyzeMemoryAt(uint64_t Address, 445 BinaryFunction &BF) { 446 if (!isX86()) 447 return MemoryContentsType::UNKNOWN; 448 449 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 450 if (!Section) { 451 // No section - possibly an absolute address. Since we don't allow 452 // internal function addresses to escape the function scope - we 453 // consider it a tail call. 454 if (opts::Verbosity > 1) { 455 errs() << "BOLT-WARNING: no section for address 0x" 456 << Twine::utohexstr(Address) << " referenced from function " << BF 457 << '\n'; 458 } 459 return MemoryContentsType::UNKNOWN; 460 } 461 462 if (Section->isVirtual()) { 463 // The contents are filled at runtime. 464 return MemoryContentsType::UNKNOWN; 465 } 466 467 // No support for jump tables in code yet. 468 if (Section->isText()) 469 return MemoryContentsType::UNKNOWN; 470 471 // Start with checking for PIC jump table. We expect non-PIC jump tables 472 // to have high 32 bits set to 0. 473 if (analyzeJumpTable(Address, JumpTable::JTT_PIC, BF)) 474 return MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 475 476 if (analyzeJumpTable(Address, JumpTable::JTT_NORMAL, BF)) 477 return MemoryContentsType::POSSIBLE_JUMP_TABLE; 478 479 return MemoryContentsType::UNKNOWN; 480 } 481 482 /// Check if <fragment restored name> == <parent restored name>.cold(.\d+)? 483 bool isPotentialFragmentByName(BinaryFunction &Fragment, 484 BinaryFunction &Parent) { 485 for (StringRef Name : Parent.getNames()) { 486 std::string NamePrefix = Regex::escape(NameResolver::restore(Name)); 487 std::string NameRegex = Twine(NamePrefix, "\\.cold(\\.[0-9]+)?").str(); 488 if (Fragment.hasRestoredNameRegex(NameRegex)) 489 return true; 490 } 491 return false; 492 } 493 494 bool BinaryContext::analyzeJumpTable(const uint64_t Address, 495 const JumpTable::JumpTableType Type, 496 BinaryFunction &BF, 497 const uint64_t NextJTAddress, 498 JumpTable::OffsetsType *Offsets) { 499 // Is one of the targets __builtin_unreachable? 500 bool HasUnreachable = false; 501 502 // Number of targets other than __builtin_unreachable. 503 uint64_t NumRealEntries = 0; 504 505 constexpr uint64_t INVALID_OFFSET = std::numeric_limits<uint64_t>::max(); 506 auto addOffset = [&](uint64_t Offset) { 507 if (Offsets) 508 Offsets->emplace_back(Offset); 509 }; 510 511 auto doesBelongToFunction = [&](const uint64_t Addr, 512 BinaryFunction *TargetBF) -> bool { 513 if (BF.containsAddress(Addr)) 514 return true; 515 // Nothing to do if we failed to identify the containing function. 516 if (!TargetBF) 517 return false; 518 // Case 1: check if BF is a fragment and TargetBF is its parent. 519 if (BF.isFragment()) { 520 // Parent function may or may not be already registered. 521 // Set parent link based on function name matching heuristic. 522 return registerFragment(BF, *TargetBF); 523 } 524 // Case 2: check if TargetBF is a fragment and BF is its parent. 525 return TargetBF->isFragment() && registerFragment(*TargetBF, BF); 526 }; 527 528 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 529 if (!Section) 530 return false; 531 532 // The upper bound is defined by containing object, section limits, and 533 // the next jump table in memory. 534 uint64_t UpperBound = Section->getEndAddress(); 535 const BinaryData *JumpTableBD = getBinaryDataAtAddress(Address); 536 if (JumpTableBD && JumpTableBD->getSize()) { 537 assert(JumpTableBD->getEndAddress() <= UpperBound && 538 "data object cannot cross a section boundary"); 539 UpperBound = JumpTableBD->getEndAddress(); 540 } 541 if (NextJTAddress) 542 UpperBound = std::min(NextJTAddress, UpperBound); 543 544 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: analyzeJumpTable in " << BF.getPrintName() 545 << '\n'); 546 const uint64_t EntrySize = getJumpTableEntrySize(Type); 547 for (uint64_t EntryAddress = Address; EntryAddress <= UpperBound - EntrySize; 548 EntryAddress += EntrySize) { 549 LLVM_DEBUG(dbgs() << " * Checking 0x" << Twine::utohexstr(EntryAddress) 550 << " -> "); 551 // Check if there's a proper relocation against the jump table entry. 552 if (HasRelocations) { 553 if (Type == JumpTable::JTT_PIC && 554 !DataPCRelocations.count(EntryAddress)) { 555 LLVM_DEBUG( 556 dbgs() << "FAIL: JTT_PIC table, no relocation for this address\n"); 557 break; 558 } 559 if (Type == JumpTable::JTT_NORMAL && !getRelocationAt(EntryAddress)) { 560 LLVM_DEBUG( 561 dbgs() 562 << "FAIL: JTT_NORMAL table, no relocation for this address\n"); 563 break; 564 } 565 } 566 567 const uint64_t Value = 568 (Type == JumpTable::JTT_PIC) 569 ? Address + *getSignedValueAtAddress(EntryAddress, EntrySize) 570 : *getPointerAtAddress(EntryAddress); 571 572 // __builtin_unreachable() case. 573 if (Value == BF.getAddress() + BF.getSize()) { 574 addOffset(Value - BF.getAddress()); 575 HasUnreachable = true; 576 LLVM_DEBUG(dbgs() << "OK: __builtin_unreachable\n"); 577 continue; 578 } 579 580 // Function or one of its fragments. 581 BinaryFunction *TargetBF = getBinaryFunctionContainingAddress(Value); 582 583 // We assume that a jump table cannot have function start as an entry. 584 if (!doesBelongToFunction(Value, TargetBF) || Value == BF.getAddress()) { 585 LLVM_DEBUG({ 586 if (!BF.containsAddress(Value)) { 587 dbgs() << "FAIL: function doesn't contain this address\n"; 588 if (TargetBF) { 589 dbgs() << " ! function containing this address: " 590 << TargetBF->getPrintName() << '\n'; 591 if (TargetBF->isFragment()) 592 dbgs() << " ! is a fragment\n"; 593 for (BinaryFunction *TargetParent : TargetBF->ParentFragments) 594 dbgs() << " ! its parent is " 595 << (TargetParent ? TargetParent->getPrintName() : "(none)") 596 << '\n'; 597 } 598 } 599 if (Value == BF.getAddress()) 600 dbgs() << "FAIL: jump table cannot have function start as an entry\n"; 601 }); 602 break; 603 } 604 605 // Check there's an instruction at this offset. 606 if (TargetBF->getState() == BinaryFunction::State::Disassembled && 607 !TargetBF->getInstructionAtOffset(Value - TargetBF->getAddress())) { 608 LLVM_DEBUG(dbgs() << "FAIL: no instruction at this offset\n"); 609 break; 610 } 611 612 ++NumRealEntries; 613 614 if (TargetBF == &BF) { 615 // Address inside the function. 616 addOffset(Value - TargetBF->getAddress()); 617 LLVM_DEBUG(dbgs() << "OK: real entry\n"); 618 } else { 619 // Address in split fragment. 620 BF.setHasSplitJumpTable(true); 621 // Add invalid offset for proper identification of jump table size. 622 addOffset(INVALID_OFFSET); 623 LLVM_DEBUG(dbgs() << "OK: address in split fragment " 624 << TargetBF->getPrintName() << '\n'); 625 } 626 } 627 628 // It's a jump table if the number of real entries is more than 1, or there's 629 // one real entry and "unreachable" targets. If there are only multiple 630 // "unreachable" targets, then it's not a jump table. 631 return NumRealEntries + HasUnreachable >= 2; 632 } 633 634 void BinaryContext::populateJumpTables() { 635 LLVM_DEBUG(dbgs() << "DataPCRelocations: " << DataPCRelocations.size() 636 << '\n'); 637 for (auto JTI = JumpTables.begin(), JTE = JumpTables.end(); JTI != JTE; 638 ++JTI) { 639 JumpTable *JT = JTI->second; 640 BinaryFunction &BF = *JT->Parent; 641 642 if (!BF.isSimple()) 643 continue; 644 645 uint64_t NextJTAddress = 0; 646 auto NextJTI = std::next(JTI); 647 if (NextJTI != JTE) 648 NextJTAddress = NextJTI->second->getAddress(); 649 650 const bool Success = analyzeJumpTable(JT->getAddress(), JT->Type, BF, 651 NextJTAddress, &JT->OffsetEntries); 652 if (!Success) { 653 dbgs() << "failed to analyze jump table in function " << BF << '\n'; 654 JT->print(dbgs()); 655 if (NextJTI != JTE) { 656 dbgs() << "next jump table at 0x" 657 << Twine::utohexstr(NextJTI->second->getAddress()) 658 << " belongs to function " << *NextJTI->second->Parent << '\n'; 659 NextJTI->second->print(dbgs()); 660 } 661 llvm_unreachable("jump table heuristic failure"); 662 } 663 664 for (uint64_t EntryOffset : JT->OffsetEntries) { 665 if (EntryOffset == BF.getSize()) 666 BF.IgnoredBranches.emplace_back(EntryOffset, BF.getSize()); 667 else 668 BF.registerReferencedOffset(EntryOffset); 669 } 670 671 // In strict mode, erase PC-relative relocation record. Later we check that 672 // all such records are erased and thus have been accounted for. 673 if (opts::StrictMode && JT->Type == JumpTable::JTT_PIC) { 674 for (uint64_t Address = JT->getAddress(); 675 Address < JT->getAddress() + JT->getSize(); 676 Address += JT->EntrySize) { 677 DataPCRelocations.erase(DataPCRelocations.find(Address)); 678 } 679 } 680 681 // Mark to skip the function and all its fragments. 682 if (BF.hasSplitJumpTable()) 683 FragmentsToSkip.push_back(&BF); 684 } 685 686 if (opts::StrictMode && DataPCRelocations.size()) { 687 LLVM_DEBUG({ 688 dbgs() << DataPCRelocations.size() 689 << " unclaimed PC-relative relocations left in data:\n"; 690 for (uint64_t Reloc : DataPCRelocations) 691 dbgs() << Twine::utohexstr(Reloc) << '\n'; 692 }); 693 assert(0 && "unclaimed PC-relative relocations left in data\n"); 694 } 695 clearList(DataPCRelocations); 696 } 697 698 void BinaryContext::skipMarkedFragments() { 699 // Unique functions in the vector. 700 std::unordered_set<BinaryFunction *> UniqueFunctions(FragmentsToSkip.begin(), 701 FragmentsToSkip.end()); 702 // Copy the functions back to FragmentsToSkip. 703 FragmentsToSkip.assign(UniqueFunctions.begin(), UniqueFunctions.end()); 704 auto addToWorklist = [&](BinaryFunction *Function) -> void { 705 if (UniqueFunctions.count(Function)) 706 return; 707 FragmentsToSkip.push_back(Function); 708 UniqueFunctions.insert(Function); 709 }; 710 // Functions containing split jump tables need to be skipped with all 711 // fragments (transitively). 712 for (size_t I = 0; I != FragmentsToSkip.size(); I++) { 713 BinaryFunction *BF = FragmentsToSkip[I]; 714 assert(UniqueFunctions.count(BF) && 715 "internal error in traversing function fragments"); 716 if (opts::Verbosity >= 1) 717 errs() << "BOLT-WARNING: Ignoring " << BF->getPrintName() << '\n'; 718 BF->setIgnored(); 719 std::for_each(BF->Fragments.begin(), BF->Fragments.end(), addToWorklist); 720 std::for_each(BF->ParentFragments.begin(), BF->ParentFragments.end(), 721 addToWorklist); 722 } 723 if (!FragmentsToSkip.empty()) 724 errs() << "BOLT-WARNING: ignored " << FragmentsToSkip.size() << " function" 725 << (FragmentsToSkip.size() == 1 ? "" : "s") 726 << " due to cold fragments\n"; 727 FragmentsToSkip.clear(); 728 } 729 730 MCSymbol *BinaryContext::getOrCreateGlobalSymbol(uint64_t Address, Twine Prefix, 731 uint64_t Size, 732 uint16_t Alignment, 733 unsigned Flags) { 734 auto Itr = BinaryDataMap.find(Address); 735 if (Itr != BinaryDataMap.end()) { 736 assert(Itr->second->getSize() == Size || !Size); 737 return Itr->second->getSymbol(); 738 } 739 740 std::string Name = (Prefix + "0x" + Twine::utohexstr(Address)).str(); 741 assert(!GlobalSymbols.count(Name) && "created name is not unique"); 742 return registerNameAtAddress(Name, Address, Size, Alignment, Flags); 743 } 744 745 MCSymbol *BinaryContext::getOrCreateUndefinedGlobalSymbol(StringRef Name) { 746 return Ctx->getOrCreateSymbol(Name); 747 } 748 749 BinaryFunction *BinaryContext::createBinaryFunction( 750 const std::string &Name, BinarySection &Section, uint64_t Address, 751 uint64_t Size, uint64_t SymbolSize, uint16_t Alignment) { 752 auto Result = BinaryFunctions.emplace( 753 Address, BinaryFunction(Name, Section, Address, Size, *this)); 754 assert(Result.second == true && "unexpected duplicate function"); 755 BinaryFunction *BF = &Result.first->second; 756 registerNameAtAddress(Name, Address, SymbolSize ? SymbolSize : Size, 757 Alignment); 758 setSymbolToFunctionMap(BF->getSymbol(), BF); 759 return BF; 760 } 761 762 const MCSymbol * 763 BinaryContext::getOrCreateJumpTable(BinaryFunction &Function, uint64_t Address, 764 JumpTable::JumpTableType Type) { 765 if (JumpTable *JT = getJumpTableContainingAddress(Address)) { 766 assert(JT->Type == Type && "jump table types have to match"); 767 assert(JT->Parent == &Function && 768 "cannot re-use jump table of a different function"); 769 assert(Address == JT->getAddress() && "unexpected non-empty jump table"); 770 771 return JT->getFirstLabel(); 772 } 773 774 // Re-use the existing symbol if possible. 775 MCSymbol *JTLabel = nullptr; 776 if (BinaryData *Object = getBinaryDataAtAddress(Address)) { 777 if (!isInternalSymbolName(Object->getSymbol()->getName())) 778 JTLabel = Object->getSymbol(); 779 } 780 781 const uint64_t EntrySize = getJumpTableEntrySize(Type); 782 if (!JTLabel) { 783 const std::string JumpTableName = generateJumpTableName(Function, Address); 784 JTLabel = registerNameAtAddress(JumpTableName, Address, 0, EntrySize); 785 } 786 787 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: creating jump table " << JTLabel->getName() 788 << " in function " << Function << '\n'); 789 790 JumpTable *JT = new JumpTable(*JTLabel, Address, EntrySize, Type, 791 JumpTable::LabelMapType{{0, JTLabel}}, Function, 792 *getSectionForAddress(Address)); 793 JumpTables.emplace(Address, JT); 794 795 // Duplicate the entry for the parent function for easy access. 796 Function.JumpTables.emplace(Address, JT); 797 798 return JTLabel; 799 } 800 801 std::pair<uint64_t, const MCSymbol *> 802 BinaryContext::duplicateJumpTable(BinaryFunction &Function, JumpTable *JT, 803 const MCSymbol *OldLabel) { 804 auto L = scopeLock(); 805 unsigned Offset = 0; 806 bool Found = false; 807 for (std::pair<const unsigned, MCSymbol *> Elmt : JT->Labels) { 808 if (Elmt.second != OldLabel) 809 continue; 810 Offset = Elmt.first; 811 Found = true; 812 break; 813 } 814 assert(Found && "Label not found"); 815 (void)Found; 816 MCSymbol *NewLabel = Ctx->createNamedTempSymbol("duplicatedJT"); 817 JumpTable *NewJT = 818 new JumpTable(*NewLabel, JT->getAddress(), JT->EntrySize, JT->Type, 819 JumpTable::LabelMapType{{Offset, NewLabel}}, Function, 820 *getSectionForAddress(JT->getAddress())); 821 NewJT->Entries = JT->Entries; 822 NewJT->Counts = JT->Counts; 823 uint64_t JumpTableID = ++DuplicatedJumpTables; 824 // Invert it to differentiate from regular jump tables whose IDs are their 825 // addresses in the input binary memory space 826 JumpTableID = ~JumpTableID; 827 JumpTables.emplace(JumpTableID, NewJT); 828 Function.JumpTables.emplace(JumpTableID, NewJT); 829 return std::make_pair(JumpTableID, NewLabel); 830 } 831 832 std::string BinaryContext::generateJumpTableName(const BinaryFunction &BF, 833 uint64_t Address) { 834 size_t Id; 835 uint64_t Offset = 0; 836 if (const JumpTable *JT = BF.getJumpTableContainingAddress(Address)) { 837 Offset = Address - JT->getAddress(); 838 auto Itr = JT->Labels.find(Offset); 839 if (Itr != JT->Labels.end()) 840 return std::string(Itr->second->getName()); 841 Id = JumpTableIds.at(JT->getAddress()); 842 } else { 843 Id = JumpTableIds[Address] = BF.JumpTables.size(); 844 } 845 return ("JUMP_TABLE/" + BF.getOneName().str() + "." + std::to_string(Id) + 846 (Offset ? ("." + std::to_string(Offset)) : "")); 847 } 848 849 bool BinaryContext::hasValidCodePadding(const BinaryFunction &BF) { 850 // FIXME: aarch64 support is missing. 851 if (!isX86()) 852 return true; 853 854 if (BF.getSize() == BF.getMaxSize()) 855 return true; 856 857 ErrorOr<ArrayRef<unsigned char>> FunctionData = BF.getData(); 858 assert(FunctionData && "cannot get function as data"); 859 860 uint64_t Offset = BF.getSize(); 861 MCInst Instr; 862 uint64_t InstrSize = 0; 863 uint64_t InstrAddress = BF.getAddress() + Offset; 864 using std::placeholders::_1; 865 866 // Skip instructions that satisfy the predicate condition. 867 auto skipInstructions = [&](std::function<bool(const MCInst &)> Predicate) { 868 const uint64_t StartOffset = Offset; 869 for (; Offset < BF.getMaxSize(); 870 Offset += InstrSize, InstrAddress += InstrSize) { 871 if (!DisAsm->getInstruction(Instr, InstrSize, FunctionData->slice(Offset), 872 InstrAddress, nulls())) 873 break; 874 if (!Predicate(Instr)) 875 break; 876 } 877 878 return Offset - StartOffset; 879 }; 880 881 // Skip a sequence of zero bytes. 882 auto skipZeros = [&]() { 883 const uint64_t StartOffset = Offset; 884 for (; Offset < BF.getMaxSize(); ++Offset) 885 if ((*FunctionData)[Offset] != 0) 886 break; 887 888 return Offset - StartOffset; 889 }; 890 891 // Accept the whole padding area filled with breakpoints. 892 auto isBreakpoint = std::bind(&MCPlusBuilder::isBreakpoint, MIB.get(), _1); 893 if (skipInstructions(isBreakpoint) && Offset == BF.getMaxSize()) 894 return true; 895 896 auto isNoop = std::bind(&MCPlusBuilder::isNoop, MIB.get(), _1); 897 898 // Some functions have a jump to the next function or to the padding area 899 // inserted after the body. 900 auto isSkipJump = [&](const MCInst &Instr) { 901 uint64_t TargetAddress = 0; 902 if (MIB->isUnconditionalBranch(Instr) && 903 MIB->evaluateBranch(Instr, InstrAddress, InstrSize, TargetAddress)) { 904 if (TargetAddress >= InstrAddress + InstrSize && 905 TargetAddress <= BF.getAddress() + BF.getMaxSize()) { 906 return true; 907 } 908 } 909 return false; 910 }; 911 912 // Skip over nops, jumps, and zero padding. Allow interleaving (this happens). 913 while (skipInstructions(isNoop) || skipInstructions(isSkipJump) || 914 skipZeros()) 915 ; 916 917 if (Offset == BF.getMaxSize()) 918 return true; 919 920 if (opts::Verbosity >= 1) { 921 errs() << "BOLT-WARNING: bad padding at address 0x" 922 << Twine::utohexstr(BF.getAddress() + BF.getSize()) 923 << " starting at offset " << (Offset - BF.getSize()) 924 << " in function " << BF << '\n' 925 << FunctionData->slice(BF.getSize(), BF.getMaxSize() - BF.getSize()) 926 << '\n'; 927 } 928 929 return false; 930 } 931 932 void BinaryContext::adjustCodePadding() { 933 for (auto &BFI : BinaryFunctions) { 934 BinaryFunction &BF = BFI.second; 935 if (!shouldEmit(BF)) 936 continue; 937 938 if (!hasValidCodePadding(BF)) { 939 if (HasRelocations) { 940 if (opts::Verbosity >= 1) { 941 outs() << "BOLT-INFO: function " << BF 942 << " has invalid padding. Ignoring the function.\n"; 943 } 944 BF.setIgnored(); 945 } else { 946 BF.setMaxSize(BF.getSize()); 947 } 948 } 949 } 950 } 951 952 MCSymbol *BinaryContext::registerNameAtAddress(StringRef Name, uint64_t Address, 953 uint64_t Size, 954 uint16_t Alignment, 955 unsigned Flags) { 956 // Register the name with MCContext. 957 MCSymbol *Symbol = Ctx->getOrCreateSymbol(Name); 958 959 auto GAI = BinaryDataMap.find(Address); 960 BinaryData *BD; 961 if (GAI == BinaryDataMap.end()) { 962 ErrorOr<BinarySection &> SectionOrErr = getSectionForAddress(Address); 963 BinarySection &Section = 964 SectionOrErr ? SectionOrErr.get() : absoluteSection(); 965 BD = new BinaryData(*Symbol, Address, Size, Alignment ? Alignment : 1, 966 Section, Flags); 967 GAI = BinaryDataMap.emplace(Address, BD).first; 968 GlobalSymbols[Name] = BD; 969 updateObjectNesting(GAI); 970 } else { 971 BD = GAI->second; 972 if (!BD->hasName(Name)) { 973 GlobalSymbols[Name] = BD; 974 BD->Symbols.push_back(Symbol); 975 } 976 } 977 978 return Symbol; 979 } 980 981 const BinaryData * 982 BinaryContext::getBinaryDataContainingAddressImpl(uint64_t Address) const { 983 auto NI = BinaryDataMap.lower_bound(Address); 984 auto End = BinaryDataMap.end(); 985 if ((NI != End && Address == NI->first) || 986 ((NI != BinaryDataMap.begin()) && (NI-- != BinaryDataMap.begin()))) { 987 if (NI->second->containsAddress(Address)) 988 return NI->second; 989 990 // If this is a sub-symbol, see if a parent data contains the address. 991 const BinaryData *BD = NI->second->getParent(); 992 while (BD) { 993 if (BD->containsAddress(Address)) 994 return BD; 995 BD = BD->getParent(); 996 } 997 } 998 return nullptr; 999 } 1000 1001 bool BinaryContext::setBinaryDataSize(uint64_t Address, uint64_t Size) { 1002 auto NI = BinaryDataMap.find(Address); 1003 assert(NI != BinaryDataMap.end()); 1004 if (NI == BinaryDataMap.end()) 1005 return false; 1006 // TODO: it's possible that a jump table starts at the same address 1007 // as a larger blob of private data. When we set the size of the 1008 // jump table, it might be smaller than the total blob size. In this 1009 // case we just leave the original size since (currently) it won't really 1010 // affect anything. 1011 assert((!NI->second->Size || NI->second->Size == Size || 1012 (NI->second->isJumpTable() && NI->second->Size > Size)) && 1013 "can't change the size of a symbol that has already had its " 1014 "size set"); 1015 if (!NI->second->Size) { 1016 NI->second->Size = Size; 1017 updateObjectNesting(NI); 1018 return true; 1019 } 1020 return false; 1021 } 1022 1023 void BinaryContext::generateSymbolHashes() { 1024 auto isPadding = [](const BinaryData &BD) { 1025 StringRef Contents = BD.getSection().getContents(); 1026 StringRef SymData = Contents.substr(BD.getOffset(), BD.getSize()); 1027 return (BD.getName().startswith("HOLEat") || 1028 SymData.find_first_not_of(0) == StringRef::npos); 1029 }; 1030 1031 uint64_t NumCollisions = 0; 1032 for (auto &Entry : BinaryDataMap) { 1033 BinaryData &BD = *Entry.second; 1034 StringRef Name = BD.getName(); 1035 1036 if (!isInternalSymbolName(Name)) 1037 continue; 1038 1039 // First check if a non-anonymous alias exists and move it to the front. 1040 if (BD.getSymbols().size() > 1) { 1041 auto Itr = std::find_if(BD.getSymbols().begin(), BD.getSymbols().end(), 1042 [&](const MCSymbol *Symbol) { 1043 return !isInternalSymbolName(Symbol->getName()); 1044 }); 1045 if (Itr != BD.getSymbols().end()) { 1046 size_t Idx = std::distance(BD.getSymbols().begin(), Itr); 1047 std::swap(BD.getSymbols()[0], BD.getSymbols()[Idx]); 1048 continue; 1049 } 1050 } 1051 1052 // We have to skip 0 size symbols since they will all collide. 1053 if (BD.getSize() == 0) { 1054 continue; 1055 } 1056 1057 const uint64_t Hash = BD.getSection().hash(BD); 1058 const size_t Idx = Name.find("0x"); 1059 std::string NewName = 1060 (Twine(Name.substr(0, Idx)) + "_" + Twine::utohexstr(Hash)).str(); 1061 if (getBinaryDataByName(NewName)) { 1062 // Ignore collisions for symbols that appear to be padding 1063 // (i.e. all zeros or a "hole") 1064 if (!isPadding(BD)) { 1065 if (opts::Verbosity) { 1066 errs() << "BOLT-WARNING: collision detected when hashing " << BD 1067 << " with new name (" << NewName << "), skipping.\n"; 1068 } 1069 ++NumCollisions; 1070 } 1071 continue; 1072 } 1073 BD.Symbols.insert(BD.Symbols.begin(), Ctx->getOrCreateSymbol(NewName)); 1074 GlobalSymbols[NewName] = &BD; 1075 } 1076 if (NumCollisions) { 1077 errs() << "BOLT-WARNING: " << NumCollisions 1078 << " collisions detected while hashing binary objects"; 1079 if (!opts::Verbosity) 1080 errs() << ". Use -v=1 to see the list."; 1081 errs() << '\n'; 1082 } 1083 } 1084 1085 bool BinaryContext::registerFragment(BinaryFunction &TargetFunction, 1086 BinaryFunction &Function) const { 1087 if (!isPotentialFragmentByName(TargetFunction, Function)) 1088 return false; 1089 assert(TargetFunction.isFragment() && "TargetFunction must be a fragment"); 1090 if (TargetFunction.isParentFragment(&Function)) 1091 return true; 1092 TargetFunction.addParentFragment(Function); 1093 Function.addFragment(TargetFunction); 1094 if (!HasRelocations) { 1095 TargetFunction.setSimple(false); 1096 Function.setSimple(false); 1097 } 1098 if (opts::Verbosity >= 1) { 1099 outs() << "BOLT-INFO: marking " << TargetFunction << " as a fragment of " 1100 << Function << '\n'; 1101 } 1102 return true; 1103 } 1104 1105 void BinaryContext::processInterproceduralReferences(BinaryFunction &Function) { 1106 for (uint64_t Address : Function.InterproceduralReferences) { 1107 if (!Address) 1108 continue; 1109 1110 BinaryFunction *TargetFunction = 1111 getBinaryFunctionContainingAddress(Address); 1112 if (&Function == TargetFunction) 1113 continue; 1114 1115 if (TargetFunction) { 1116 if (TargetFunction->IsFragment && 1117 !registerFragment(*TargetFunction, Function)) { 1118 errs() << "BOLT-WARNING: interprocedural reference between unrelated " 1119 "fragments: " 1120 << Function.getPrintName() << " and " 1121 << TargetFunction->getPrintName() << '\n'; 1122 } 1123 if (uint64_t Offset = Address - TargetFunction->getAddress()) 1124 TargetFunction->addEntryPointAtOffset(Offset); 1125 1126 continue; 1127 } 1128 1129 // Check if address falls in function padding space - this could be 1130 // unmarked data in code. In this case adjust the padding space size. 1131 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1132 assert(Section && "cannot get section for referenced address"); 1133 1134 if (!Section->isText()) 1135 continue; 1136 1137 // PLT requires special handling and could be ignored in this context. 1138 StringRef SectionName = Section->getName(); 1139 if (SectionName == ".plt" || SectionName == ".plt.got") 1140 continue; 1141 1142 if (opts::processAllFunctions()) { 1143 errs() << "BOLT-ERROR: cannot process binaries with unmarked " 1144 << "object in code at address 0x" << Twine::utohexstr(Address) 1145 << " belonging to section " << SectionName << " in current mode\n"; 1146 exit(1); 1147 } 1148 1149 TargetFunction = getBinaryFunctionContainingAddress(Address, 1150 /*CheckPastEnd=*/false, 1151 /*UseMaxSize=*/true); 1152 // We are not going to overwrite non-simple functions, but for simple 1153 // ones - adjust the padding size. 1154 if (TargetFunction && TargetFunction->isSimple()) { 1155 errs() << "BOLT-WARNING: function " << *TargetFunction 1156 << " has an object detected in a padding region at address 0x" 1157 << Twine::utohexstr(Address) << '\n'; 1158 TargetFunction->setMaxSize(TargetFunction->getSize()); 1159 } 1160 } 1161 1162 clearList(Function.InterproceduralReferences); 1163 } 1164 1165 void BinaryContext::postProcessSymbolTable() { 1166 fixBinaryDataHoles(); 1167 bool Valid = true; 1168 for (auto &Entry : BinaryDataMap) { 1169 BinaryData *BD = Entry.second; 1170 if ((BD->getName().startswith("SYMBOLat") || 1171 BD->getName().startswith("DATAat")) && 1172 !BD->getParent() && !BD->getSize() && !BD->isAbsolute() && 1173 BD->getSection()) { 1174 errs() << "BOLT-WARNING: zero-sized top level symbol: " << *BD << "\n"; 1175 Valid = false; 1176 } 1177 } 1178 assert(Valid); 1179 (void)Valid; 1180 generateSymbolHashes(); 1181 } 1182 1183 void BinaryContext::foldFunction(BinaryFunction &ChildBF, 1184 BinaryFunction &ParentBF) { 1185 assert(!ChildBF.isMultiEntry() && !ParentBF.isMultiEntry() && 1186 "cannot merge functions with multiple entry points"); 1187 1188 std::unique_lock<std::shared_timed_mutex> WriteCtxLock(CtxMutex, 1189 std::defer_lock); 1190 std::unique_lock<std::shared_timed_mutex> WriteSymbolMapLock( 1191 SymbolToFunctionMapMutex, std::defer_lock); 1192 1193 const StringRef ChildName = ChildBF.getOneName(); 1194 1195 // Move symbols over and update bookkeeping info. 1196 for (MCSymbol *Symbol : ChildBF.getSymbols()) { 1197 ParentBF.getSymbols().push_back(Symbol); 1198 WriteSymbolMapLock.lock(); 1199 SymbolToFunctionMap[Symbol] = &ParentBF; 1200 WriteSymbolMapLock.unlock(); 1201 // NB: there's no need to update BinaryDataMap and GlobalSymbols. 1202 } 1203 ChildBF.getSymbols().clear(); 1204 1205 // Move other names the child function is known under. 1206 std::move(ChildBF.Aliases.begin(), ChildBF.Aliases.end(), 1207 std::back_inserter(ParentBF.Aliases)); 1208 ChildBF.Aliases.clear(); 1209 1210 if (HasRelocations) { 1211 // Merge execution counts of ChildBF into those of ParentBF. 1212 // Without relocations, we cannot reliably merge profiles as both functions 1213 // continue to exist and either one can be executed. 1214 ChildBF.mergeProfileDataInto(ParentBF); 1215 1216 std::shared_lock<std::shared_timed_mutex> ReadBfsLock(BinaryFunctionsMutex, 1217 std::defer_lock); 1218 std::unique_lock<std::shared_timed_mutex> WriteBfsLock(BinaryFunctionsMutex, 1219 std::defer_lock); 1220 // Remove ChildBF from the global set of functions in relocs mode. 1221 ReadBfsLock.lock(); 1222 auto FI = BinaryFunctions.find(ChildBF.getAddress()); 1223 ReadBfsLock.unlock(); 1224 1225 assert(FI != BinaryFunctions.end() && "function not found"); 1226 assert(&ChildBF == &FI->second && "function mismatch"); 1227 1228 WriteBfsLock.lock(); 1229 ChildBF.clearDisasmState(); 1230 FI = BinaryFunctions.erase(FI); 1231 WriteBfsLock.unlock(); 1232 1233 } else { 1234 // In non-relocation mode we keep the function, but rename it. 1235 std::string NewName = "__ICF_" + ChildName.str(); 1236 1237 WriteCtxLock.lock(); 1238 ChildBF.getSymbols().push_back(Ctx->getOrCreateSymbol(NewName)); 1239 WriteCtxLock.unlock(); 1240 1241 ChildBF.setFolded(&ParentBF); 1242 } 1243 } 1244 1245 void BinaryContext::fixBinaryDataHoles() { 1246 assert(validateObjectNesting() && "object nesting inconsitency detected"); 1247 1248 for (BinarySection &Section : allocatableSections()) { 1249 std::vector<std::pair<uint64_t, uint64_t>> Holes; 1250 1251 auto isNotHole = [&Section](const binary_data_iterator &Itr) { 1252 BinaryData *BD = Itr->second; 1253 bool isHole = (!BD->getParent() && !BD->getSize() && BD->isObject() && 1254 (BD->getName().startswith("SYMBOLat0x") || 1255 BD->getName().startswith("DATAat0x") || 1256 BD->getName().startswith("ANONYMOUS"))); 1257 return !isHole && BD->getSection() == Section && !BD->getParent(); 1258 }; 1259 1260 auto BDStart = BinaryDataMap.begin(); 1261 auto BDEnd = BinaryDataMap.end(); 1262 auto Itr = FilteredBinaryDataIterator(isNotHole, BDStart, BDEnd); 1263 auto End = FilteredBinaryDataIterator(isNotHole, BDEnd, BDEnd); 1264 1265 uint64_t EndAddress = Section.getAddress(); 1266 1267 while (Itr != End) { 1268 if (Itr->second->getAddress() > EndAddress) { 1269 uint64_t Gap = Itr->second->getAddress() - EndAddress; 1270 Holes.emplace_back(EndAddress, Gap); 1271 } 1272 EndAddress = Itr->second->getEndAddress(); 1273 ++Itr; 1274 } 1275 1276 if (EndAddress < Section.getEndAddress()) 1277 Holes.emplace_back(EndAddress, Section.getEndAddress() - EndAddress); 1278 1279 // If there is already a symbol at the start of the hole, grow that symbol 1280 // to cover the rest. Otherwise, create a new symbol to cover the hole. 1281 for (std::pair<uint64_t, uint64_t> &Hole : Holes) { 1282 BinaryData *BD = getBinaryDataAtAddress(Hole.first); 1283 if (BD) { 1284 // BD->getSection() can be != Section if there are sections that 1285 // overlap. In this case it is probably safe to just skip the holes 1286 // since the overlapping section will not(?) have any symbols in it. 1287 if (BD->getSection() == Section) 1288 setBinaryDataSize(Hole.first, Hole.second); 1289 } else { 1290 getOrCreateGlobalSymbol(Hole.first, "HOLEat", Hole.second, 1); 1291 } 1292 } 1293 } 1294 1295 assert(validateObjectNesting() && "object nesting inconsitency detected"); 1296 assert(validateHoles() && "top level hole detected in object map"); 1297 } 1298 1299 void BinaryContext::printGlobalSymbols(raw_ostream &OS) const { 1300 const BinarySection *CurrentSection = nullptr; 1301 bool FirstSection = true; 1302 1303 for (auto &Entry : BinaryDataMap) { 1304 const BinaryData *BD = Entry.second; 1305 const BinarySection &Section = BD->getSection(); 1306 if (FirstSection || Section != *CurrentSection) { 1307 uint64_t Address, Size; 1308 StringRef Name = Section.getName(); 1309 if (Section) { 1310 Address = Section.getAddress(); 1311 Size = Section.getSize(); 1312 } else { 1313 Address = BD->getAddress(); 1314 Size = BD->getSize(); 1315 } 1316 OS << "BOLT-INFO: Section " << Name << ", " 1317 << "0x" + Twine::utohexstr(Address) << ":" 1318 << "0x" + Twine::utohexstr(Address + Size) << "/" << Size << "\n"; 1319 CurrentSection = &Section; 1320 FirstSection = false; 1321 } 1322 1323 OS << "BOLT-INFO: "; 1324 const BinaryData *P = BD->getParent(); 1325 while (P) { 1326 OS << " "; 1327 P = P->getParent(); 1328 } 1329 OS << *BD << "\n"; 1330 } 1331 } 1332 1333 Expected<unsigned> BinaryContext::getDwarfFile( 1334 StringRef Directory, StringRef FileName, unsigned FileNumber, 1335 Optional<MD5::MD5Result> Checksum, Optional<StringRef> Source, 1336 unsigned CUID, unsigned DWARFVersion) { 1337 DwarfLineTable &Table = DwarfLineTablesCUMap[CUID]; 1338 return Table.tryGetFile(Directory, FileName, Checksum, Source, DWARFVersion, 1339 FileNumber); 1340 } 1341 1342 unsigned BinaryContext::addDebugFilenameToUnit(const uint32_t DestCUID, 1343 const uint32_t SrcCUID, 1344 unsigned FileIndex) { 1345 DWARFCompileUnit *SrcUnit = DwCtx->getCompileUnitForOffset(SrcCUID); 1346 const DWARFDebugLine::LineTable *LineTable = 1347 DwCtx->getLineTableForUnit(SrcUnit); 1348 const std::vector<DWARFDebugLine::FileNameEntry> &FileNames = 1349 LineTable->Prologue.FileNames; 1350 // Dir indexes start at 1, as DWARF file numbers, and a dir index 0 1351 // means empty dir. 1352 assert(FileIndex > 0 && FileIndex <= FileNames.size() && 1353 "FileIndex out of range for the compilation unit."); 1354 StringRef Dir = ""; 1355 if (FileNames[FileIndex - 1].DirIdx != 0) { 1356 if (Optional<const char *> DirName = dwarf::toString( 1357 LineTable->Prologue 1358 .IncludeDirectories[FileNames[FileIndex - 1].DirIdx - 1])) { 1359 Dir = *DirName; 1360 } 1361 } 1362 StringRef FileName = ""; 1363 if (Optional<const char *> FName = 1364 dwarf::toString(FileNames[FileIndex - 1].Name)) 1365 FileName = *FName; 1366 assert(FileName != ""); 1367 DWARFCompileUnit *DstUnit = DwCtx->getCompileUnitForOffset(DestCUID); 1368 return cantFail(getDwarfFile(Dir, FileName, 0, None, None, DestCUID, 1369 DstUnit->getVersion())); 1370 } 1371 1372 std::vector<BinaryFunction *> BinaryContext::getSortedFunctions() { 1373 std::vector<BinaryFunction *> SortedFunctions(BinaryFunctions.size()); 1374 std::transform(BinaryFunctions.begin(), BinaryFunctions.end(), 1375 SortedFunctions.begin(), 1376 [](std::pair<const uint64_t, BinaryFunction> &BFI) { 1377 return &BFI.second; 1378 }); 1379 1380 std::stable_sort(SortedFunctions.begin(), SortedFunctions.end(), 1381 [](const BinaryFunction *A, const BinaryFunction *B) { 1382 if (A->hasValidIndex() && B->hasValidIndex()) { 1383 return A->getIndex() < B->getIndex(); 1384 } 1385 return A->hasValidIndex(); 1386 }); 1387 return SortedFunctions; 1388 } 1389 1390 std::vector<BinaryFunction *> BinaryContext::getAllBinaryFunctions() { 1391 std::vector<BinaryFunction *> AllFunctions; 1392 AllFunctions.reserve(BinaryFunctions.size() + InjectedBinaryFunctions.size()); 1393 std::transform(BinaryFunctions.begin(), BinaryFunctions.end(), 1394 std::back_inserter(AllFunctions), 1395 [](std::pair<const uint64_t, BinaryFunction> &BFI) { 1396 return &BFI.second; 1397 }); 1398 std::copy(InjectedBinaryFunctions.begin(), InjectedBinaryFunctions.end(), 1399 std::back_inserter(AllFunctions)); 1400 1401 return AllFunctions; 1402 } 1403 1404 Optional<DWARFUnit *> BinaryContext::getDWOCU(uint64_t DWOId) { 1405 auto Iter = DWOCUs.find(DWOId); 1406 if (Iter == DWOCUs.end()) 1407 return None; 1408 1409 return Iter->second; 1410 } 1411 1412 DWARFContext *BinaryContext::getDWOContext() { 1413 if (DWOCUs.empty()) 1414 return nullptr; 1415 return &DWOCUs.begin()->second->getContext(); 1416 } 1417 1418 /// Handles DWO sections that can either be in .o, .dwo or .dwp files. 1419 void BinaryContext::preprocessDWODebugInfo() { 1420 for (const std::unique_ptr<DWARFUnit> &CU : DwCtx->compile_units()) { 1421 DWARFUnit *const DwarfUnit = CU.get(); 1422 if (llvm::Optional<uint64_t> DWOId = DwarfUnit->getDWOId()) { 1423 DWARFUnit *DWOCU = DwarfUnit->getNonSkeletonUnitDIE(false).getDwarfUnit(); 1424 if (!DWOCU->isDWOUnit()) { 1425 std::string DWOName = dwarf::toString( 1426 DwarfUnit->getUnitDIE().find( 1427 {dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), 1428 ""); 1429 outs() << "BOLT-WARNING: Debug Fission: DWO debug information for " 1430 << DWOName 1431 << " was not retrieved and won't be updated. Please check " 1432 "relative path.\n"; 1433 continue; 1434 } 1435 DWOCUs[*DWOId] = DWOCU; 1436 } 1437 } 1438 } 1439 1440 void BinaryContext::preprocessDebugInfo() { 1441 struct CURange { 1442 uint64_t LowPC; 1443 uint64_t HighPC; 1444 DWARFUnit *Unit; 1445 1446 bool operator<(const CURange &Other) const { return LowPC < Other.LowPC; } 1447 }; 1448 1449 // Building a map of address ranges to CUs similar to .debug_aranges and use 1450 // it to assign CU to functions. 1451 std::vector<CURange> AllRanges; 1452 AllRanges.reserve(DwCtx->getNumCompileUnits()); 1453 for (const std::unique_ptr<DWARFUnit> &CU : DwCtx->compile_units()) { 1454 Expected<DWARFAddressRangesVector> RangesOrError = 1455 CU->getUnitDIE().getAddressRanges(); 1456 if (!RangesOrError) { 1457 consumeError(RangesOrError.takeError()); 1458 continue; 1459 } 1460 for (DWARFAddressRange &Range : *RangesOrError) { 1461 // Parts of the debug info could be invalidated due to corresponding code 1462 // being removed from the binary by the linker. Hence we check if the 1463 // address is a valid one. 1464 if (containsAddress(Range.LowPC)) 1465 AllRanges.emplace_back(CURange{Range.LowPC, Range.HighPC, CU.get()}); 1466 } 1467 1468 ContainsDwarf5 |= CU->getVersion() >= 5; 1469 ContainsDwarfLegacy |= CU->getVersion() < 5; 1470 } 1471 1472 if (ContainsDwarf5 && ContainsDwarfLegacy) 1473 llvm::errs() << "BOLT-WARNING: BOLT does not support mix mode binary with " 1474 "DWARF5 and DWARF{2,3,4}.\n"; 1475 1476 std::sort(AllRanges.begin(), AllRanges.end()); 1477 for (auto &KV : BinaryFunctions) { 1478 const uint64_t FunctionAddress = KV.first; 1479 BinaryFunction &Function = KV.second; 1480 1481 auto It = std::partition_point( 1482 AllRanges.begin(), AllRanges.end(), 1483 [=](CURange R) { return R.HighPC <= FunctionAddress; }); 1484 if (It != AllRanges.end() && It->LowPC <= FunctionAddress) { 1485 Function.setDWARFUnit(It->Unit); 1486 } 1487 } 1488 1489 // Discover units with debug info that needs to be updated. 1490 for (const auto &KV : BinaryFunctions) { 1491 const BinaryFunction &BF = KV.second; 1492 if (shouldEmit(BF) && BF.getDWARFUnit()) 1493 ProcessedCUs.insert(BF.getDWARFUnit()); 1494 } 1495 1496 // Clear debug info for functions from units that we are not going to process. 1497 for (auto &KV : BinaryFunctions) { 1498 BinaryFunction &BF = KV.second; 1499 if (BF.getDWARFUnit() && !ProcessedCUs.count(BF.getDWARFUnit())) 1500 BF.setDWARFUnit(nullptr); 1501 } 1502 1503 if (opts::Verbosity >= 1) { 1504 outs() << "BOLT-INFO: " << ProcessedCUs.size() << " out of " 1505 << DwCtx->getNumCompileUnits() << " CUs will be updated\n"; 1506 } 1507 1508 preprocessDWODebugInfo(); 1509 1510 // Populate MCContext with DWARF files from all units. 1511 StringRef GlobalPrefix = AsmInfo->getPrivateGlobalPrefix(); 1512 for (const std::unique_ptr<DWARFUnit> &CU : DwCtx->compile_units()) { 1513 const uint64_t CUID = CU->getOffset(); 1514 DwarfLineTable &BinaryLineTable = getDwarfLineTable(CUID); 1515 BinaryLineTable.setLabel(Ctx->getOrCreateSymbol( 1516 GlobalPrefix + "line_table_start" + Twine(CUID))); 1517 1518 if (!ProcessedCUs.count(CU.get())) 1519 continue; 1520 1521 const DWARFDebugLine::LineTable *LineTable = 1522 DwCtx->getLineTableForUnit(CU.get()); 1523 const std::vector<DWARFDebugLine::FileNameEntry> &FileNames = 1524 LineTable->Prologue.FileNames; 1525 1526 uint16_t DwarfVersion = LineTable->Prologue.getVersion(); 1527 if (DwarfVersion >= 5) { 1528 Optional<MD5::MD5Result> Checksum = None; 1529 if (LineTable->Prologue.ContentTypes.HasMD5) 1530 Checksum = LineTable->Prologue.FileNames[0].Checksum; 1531 Optional<const char *> Name = 1532 dwarf::toString(CU->getUnitDIE().find(dwarf::DW_AT_name), nullptr); 1533 if (Optional<uint64_t> DWOID = CU->getDWOId()) { 1534 auto Iter = DWOCUs.find(*DWOID); 1535 assert(Iter != DWOCUs.end() && "DWO CU was not found."); 1536 Name = dwarf::toString( 1537 Iter->second->getUnitDIE().find(dwarf::DW_AT_name), nullptr); 1538 } 1539 BinaryLineTable.setRootFile(CU->getCompilationDir(), *Name, Checksum, 1540 None); 1541 } 1542 1543 BinaryLineTable.setDwarfVersion(DwarfVersion); 1544 1545 // Assign a unique label to every line table, one per CU. 1546 // Make sure empty debug line tables are registered too. 1547 if (FileNames.empty()) { 1548 cantFail( 1549 getDwarfFile("", "<unknown>", 0, None, None, CUID, DwarfVersion)); 1550 continue; 1551 } 1552 const uint32_t Offset = DwarfVersion < 5 ? 1 : 0; 1553 for (size_t I = 0, Size = FileNames.size(); I != Size; ++I) { 1554 // Dir indexes start at 1, as DWARF file numbers, and a dir index 0 1555 // means empty dir. 1556 StringRef Dir = ""; 1557 if (FileNames[I].DirIdx != 0 || DwarfVersion >= 5) 1558 if (Optional<const char *> DirName = dwarf::toString( 1559 LineTable->Prologue 1560 .IncludeDirectories[FileNames[I].DirIdx - Offset])) 1561 Dir = *DirName; 1562 StringRef FileName = ""; 1563 if (Optional<const char *> FName = dwarf::toString(FileNames[I].Name)) 1564 FileName = *FName; 1565 assert(FileName != ""); 1566 Optional<MD5::MD5Result> Checksum = None; 1567 if (DwarfVersion >= 5 && LineTable->Prologue.ContentTypes.HasMD5) 1568 Checksum = LineTable->Prologue.FileNames[I].Checksum; 1569 cantFail( 1570 getDwarfFile(Dir, FileName, 0, Checksum, None, CUID, DwarfVersion)); 1571 } 1572 } 1573 } 1574 1575 bool BinaryContext::shouldEmit(const BinaryFunction &Function) const { 1576 if (Function.isPseudo()) 1577 return false; 1578 1579 if (opts::processAllFunctions()) 1580 return true; 1581 1582 if (Function.isIgnored()) 1583 return false; 1584 1585 // In relocation mode we will emit non-simple functions with CFG. 1586 // If the function does not have a CFG it should be marked as ignored. 1587 return HasRelocations || Function.isSimple(); 1588 } 1589 1590 void BinaryContext::printCFI(raw_ostream &OS, const MCCFIInstruction &Inst) { 1591 uint32_t Operation = Inst.getOperation(); 1592 switch (Operation) { 1593 case MCCFIInstruction::OpSameValue: 1594 OS << "OpSameValue Reg" << Inst.getRegister(); 1595 break; 1596 case MCCFIInstruction::OpRememberState: 1597 OS << "OpRememberState"; 1598 break; 1599 case MCCFIInstruction::OpRestoreState: 1600 OS << "OpRestoreState"; 1601 break; 1602 case MCCFIInstruction::OpOffset: 1603 OS << "OpOffset Reg" << Inst.getRegister() << " " << Inst.getOffset(); 1604 break; 1605 case MCCFIInstruction::OpDefCfaRegister: 1606 OS << "OpDefCfaRegister Reg" << Inst.getRegister(); 1607 break; 1608 case MCCFIInstruction::OpDefCfaOffset: 1609 OS << "OpDefCfaOffset " << Inst.getOffset(); 1610 break; 1611 case MCCFIInstruction::OpDefCfa: 1612 OS << "OpDefCfa Reg" << Inst.getRegister() << " " << Inst.getOffset(); 1613 break; 1614 case MCCFIInstruction::OpRelOffset: 1615 OS << "OpRelOffset Reg" << Inst.getRegister() << " " << Inst.getOffset(); 1616 break; 1617 case MCCFIInstruction::OpAdjustCfaOffset: 1618 OS << "OfAdjustCfaOffset " << Inst.getOffset(); 1619 break; 1620 case MCCFIInstruction::OpEscape: 1621 OS << "OpEscape"; 1622 break; 1623 case MCCFIInstruction::OpRestore: 1624 OS << "OpRestore Reg" << Inst.getRegister(); 1625 break; 1626 case MCCFIInstruction::OpUndefined: 1627 OS << "OpUndefined Reg" << Inst.getRegister(); 1628 break; 1629 case MCCFIInstruction::OpRegister: 1630 OS << "OpRegister Reg" << Inst.getRegister() << " Reg" 1631 << Inst.getRegister2(); 1632 break; 1633 case MCCFIInstruction::OpWindowSave: 1634 OS << "OpWindowSave"; 1635 break; 1636 case MCCFIInstruction::OpGnuArgsSize: 1637 OS << "OpGnuArgsSize"; 1638 break; 1639 default: 1640 OS << "Op#" << Operation; 1641 break; 1642 } 1643 } 1644 1645 MarkerSymType BinaryContext::getMarkerType(const SymbolRef &Symbol) const { 1646 // For aarch64, the ABI defines mapping symbols so we identify data in the 1647 // code section (see IHI0056B). $x identifies a symbol starting code or the 1648 // end of a data chunk inside code, $d indentifies start of data. 1649 if (!isAArch64() || ELFSymbolRef(Symbol).getSize()) 1650 return MarkerSymType::NONE; 1651 1652 Expected<StringRef> NameOrError = Symbol.getName(); 1653 Expected<object::SymbolRef::Type> TypeOrError = Symbol.getType(); 1654 1655 if (!TypeOrError || !NameOrError) 1656 return MarkerSymType::NONE; 1657 1658 if (*TypeOrError != SymbolRef::ST_Unknown) 1659 return MarkerSymType::NONE; 1660 1661 if (*NameOrError == "$x" || NameOrError->startswith("$x.")) 1662 return MarkerSymType::CODE; 1663 1664 if (*NameOrError == "$d" || NameOrError->startswith("$d.")) 1665 return MarkerSymType::DATA; 1666 1667 return MarkerSymType::NONE; 1668 } 1669 1670 bool BinaryContext::isMarker(const SymbolRef &Symbol) const { 1671 return getMarkerType(Symbol) != MarkerSymType::NONE; 1672 } 1673 1674 void BinaryContext::printInstruction(raw_ostream &OS, const MCInst &Instruction, 1675 uint64_t Offset, 1676 const BinaryFunction *Function, 1677 bool PrintMCInst, bool PrintMemData, 1678 bool PrintRelocations, 1679 StringRef Endl) const { 1680 if (MIB->isEHLabel(Instruction)) { 1681 OS << " EH_LABEL: " << *MIB->getTargetSymbol(Instruction) << Endl; 1682 return; 1683 } 1684 OS << format(" %08" PRIx64 ": ", Offset); 1685 if (MIB->isCFI(Instruction)) { 1686 uint32_t Offset = Instruction.getOperand(0).getImm(); 1687 OS << "\t!CFI\t$" << Offset << "\t; "; 1688 if (Function) 1689 printCFI(OS, *Function->getCFIFor(Instruction)); 1690 OS << Endl; 1691 return; 1692 } 1693 InstPrinter->printInst(&Instruction, 0, "", *STI, OS); 1694 if (MIB->isCall(Instruction)) { 1695 if (MIB->isTailCall(Instruction)) 1696 OS << " # TAILCALL "; 1697 if (MIB->isInvoke(Instruction)) { 1698 const Optional<MCPlus::MCLandingPad> EHInfo = MIB->getEHInfo(Instruction); 1699 OS << " # handler: "; 1700 if (EHInfo->first) 1701 OS << *EHInfo->first; 1702 else 1703 OS << '0'; 1704 OS << "; action: " << EHInfo->second; 1705 const int64_t GnuArgsSize = MIB->getGnuArgsSize(Instruction); 1706 if (GnuArgsSize >= 0) 1707 OS << "; GNU_args_size = " << GnuArgsSize; 1708 } 1709 } else if (MIB->isIndirectBranch(Instruction)) { 1710 if (uint64_t JTAddress = MIB->getJumpTable(Instruction)) { 1711 OS << " # JUMPTABLE @0x" << Twine::utohexstr(JTAddress); 1712 } else { 1713 OS << " # UNKNOWN CONTROL FLOW"; 1714 } 1715 } 1716 if (Optional<uint32_t> Offset = MIB->getOffset(Instruction)) 1717 OS << " # Offset: " << *Offset; 1718 1719 MIB->printAnnotations(Instruction, OS); 1720 1721 if (opts::PrintDebugInfo) { 1722 DebugLineTableRowRef RowRef = 1723 DebugLineTableRowRef::fromSMLoc(Instruction.getLoc()); 1724 if (RowRef != DebugLineTableRowRef::NULL_ROW) { 1725 const DWARFDebugLine::LineTable *LineTable; 1726 if (Function && Function->getDWARFUnit() && 1727 Function->getDWARFUnit()->getOffset() == RowRef.DwCompileUnitIndex) { 1728 LineTable = Function->getDWARFLineTable(); 1729 } else { 1730 LineTable = DwCtx->getLineTableForUnit( 1731 DwCtx->getCompileUnitForOffset(RowRef.DwCompileUnitIndex)); 1732 } 1733 assert(LineTable && 1734 "line table expected for instruction with debug info"); 1735 1736 const DWARFDebugLine::Row &Row = LineTable->Rows[RowRef.RowIndex - 1]; 1737 StringRef FileName = ""; 1738 if (Optional<const char *> FName = 1739 dwarf::toString(LineTable->Prologue.FileNames[Row.File - 1].Name)) 1740 FileName = *FName; 1741 OS << " # debug line " << FileName << ":" << Row.Line; 1742 if (Row.Column) 1743 OS << ":" << Row.Column; 1744 if (Row.Discriminator) 1745 OS << " discriminator:" << Row.Discriminator; 1746 } 1747 } 1748 1749 if ((opts::PrintRelocations || PrintRelocations) && Function) { 1750 const uint64_t Size = computeCodeSize(&Instruction, &Instruction + 1); 1751 Function->printRelocations(OS, Offset, Size); 1752 } 1753 1754 OS << Endl; 1755 1756 if (PrintMCInst) { 1757 Instruction.dump_pretty(OS, InstPrinter.get()); 1758 OS << Endl; 1759 } 1760 } 1761 1762 Optional<uint64_t> 1763 BinaryContext::getBaseAddressForMapping(uint64_t MMapAddress, 1764 uint64_t FileOffset) const { 1765 // Find a segment with a matching file offset. 1766 for (auto &KV : SegmentMapInfo) { 1767 const SegmentInfo &SegInfo = KV.second; 1768 if (alignDown(SegInfo.FileOffset, SegInfo.Alignment) == FileOffset) { 1769 // Use segment's aligned memory offset to calculate the base address. 1770 const uint64_t MemOffset = alignDown(SegInfo.Address, SegInfo.Alignment); 1771 return MMapAddress - MemOffset; 1772 } 1773 } 1774 1775 return NoneType(); 1776 } 1777 1778 ErrorOr<BinarySection &> BinaryContext::getSectionForAddress(uint64_t Address) { 1779 auto SI = AddressToSection.upper_bound(Address); 1780 if (SI != AddressToSection.begin()) { 1781 --SI; 1782 uint64_t UpperBound = SI->first + SI->second->getSize(); 1783 if (!SI->second->getSize()) 1784 UpperBound += 1; 1785 if (UpperBound > Address) 1786 return *SI->second; 1787 } 1788 return std::make_error_code(std::errc::bad_address); 1789 } 1790 1791 ErrorOr<StringRef> 1792 BinaryContext::getSectionNameForAddress(uint64_t Address) const { 1793 if (ErrorOr<const BinarySection &> Section = getSectionForAddress(Address)) 1794 return Section->getName(); 1795 return std::make_error_code(std::errc::bad_address); 1796 } 1797 1798 BinarySection &BinaryContext::registerSection(BinarySection *Section) { 1799 auto Res = Sections.insert(Section); 1800 (void)Res; 1801 assert(Res.second && "can't register the same section twice."); 1802 1803 // Only register allocatable sections in the AddressToSection map. 1804 if (Section->isAllocatable() && Section->getAddress()) 1805 AddressToSection.insert(std::make_pair(Section->getAddress(), Section)); 1806 NameToSection.insert( 1807 std::make_pair(std::string(Section->getName()), Section)); 1808 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: registering " << *Section << "\n"); 1809 return *Section; 1810 } 1811 1812 BinarySection &BinaryContext::registerSection(SectionRef Section) { 1813 return registerSection(new BinarySection(*this, Section)); 1814 } 1815 1816 BinarySection & 1817 BinaryContext::registerSection(StringRef SectionName, 1818 const BinarySection &OriginalSection) { 1819 return registerSection( 1820 new BinarySection(*this, SectionName, OriginalSection)); 1821 } 1822 1823 BinarySection & 1824 BinaryContext::registerOrUpdateSection(StringRef Name, unsigned ELFType, 1825 unsigned ELFFlags, uint8_t *Data, 1826 uint64_t Size, unsigned Alignment) { 1827 auto NamedSections = getSectionByName(Name); 1828 if (NamedSections.begin() != NamedSections.end()) { 1829 assert(std::next(NamedSections.begin()) == NamedSections.end() && 1830 "can only update unique sections"); 1831 BinarySection *Section = NamedSections.begin()->second; 1832 1833 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: updating " << *Section << " -> "); 1834 const bool Flag = Section->isAllocatable(); 1835 (void)Flag; 1836 Section->update(Data, Size, Alignment, ELFType, ELFFlags); 1837 LLVM_DEBUG(dbgs() << *Section << "\n"); 1838 // FIXME: Fix section flags/attributes for MachO. 1839 if (isELF()) 1840 assert(Flag == Section->isAllocatable() && 1841 "can't change section allocation status"); 1842 return *Section; 1843 } 1844 1845 return registerSection( 1846 new BinarySection(*this, Name, Data, Size, Alignment, ELFType, ELFFlags)); 1847 } 1848 1849 bool BinaryContext::deregisterSection(BinarySection &Section) { 1850 BinarySection *SectionPtr = &Section; 1851 auto Itr = Sections.find(SectionPtr); 1852 if (Itr != Sections.end()) { 1853 auto Range = AddressToSection.equal_range(SectionPtr->getAddress()); 1854 while (Range.first != Range.second) { 1855 if (Range.first->second == SectionPtr) { 1856 AddressToSection.erase(Range.first); 1857 break; 1858 } 1859 ++Range.first; 1860 } 1861 1862 auto NameRange = 1863 NameToSection.equal_range(std::string(SectionPtr->getName())); 1864 while (NameRange.first != NameRange.second) { 1865 if (NameRange.first->second == SectionPtr) { 1866 NameToSection.erase(NameRange.first); 1867 break; 1868 } 1869 ++NameRange.first; 1870 } 1871 1872 Sections.erase(Itr); 1873 delete SectionPtr; 1874 return true; 1875 } 1876 return false; 1877 } 1878 1879 void BinaryContext::printSections(raw_ostream &OS) const { 1880 for (BinarySection *const &Section : Sections) 1881 OS << "BOLT-INFO: " << *Section << "\n"; 1882 } 1883 1884 BinarySection &BinaryContext::absoluteSection() { 1885 if (ErrorOr<BinarySection &> Section = getUniqueSectionByName("<absolute>")) 1886 return *Section; 1887 return registerOrUpdateSection("<absolute>", ELF::SHT_NULL, 0u); 1888 } 1889 1890 ErrorOr<uint64_t> BinaryContext::getUnsignedValueAtAddress(uint64_t Address, 1891 size_t Size) const { 1892 const ErrorOr<const BinarySection &> Section = getSectionForAddress(Address); 1893 if (!Section) 1894 return std::make_error_code(std::errc::bad_address); 1895 1896 if (Section->isVirtual()) 1897 return 0; 1898 1899 DataExtractor DE(Section->getContents(), AsmInfo->isLittleEndian(), 1900 AsmInfo->getCodePointerSize()); 1901 auto ValueOffset = static_cast<uint64_t>(Address - Section->getAddress()); 1902 return DE.getUnsigned(&ValueOffset, Size); 1903 } 1904 1905 ErrorOr<uint64_t> BinaryContext::getSignedValueAtAddress(uint64_t Address, 1906 size_t Size) const { 1907 const ErrorOr<const BinarySection &> Section = getSectionForAddress(Address); 1908 if (!Section) 1909 return std::make_error_code(std::errc::bad_address); 1910 1911 if (Section->isVirtual()) 1912 return 0; 1913 1914 DataExtractor DE(Section->getContents(), AsmInfo->isLittleEndian(), 1915 AsmInfo->getCodePointerSize()); 1916 auto ValueOffset = static_cast<uint64_t>(Address - Section->getAddress()); 1917 return DE.getSigned(&ValueOffset, Size); 1918 } 1919 1920 void BinaryContext::addRelocation(uint64_t Address, MCSymbol *Symbol, 1921 uint64_t Type, uint64_t Addend, 1922 uint64_t Value) { 1923 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1924 assert(Section && "cannot find section for address"); 1925 Section->addRelocation(Address - Section->getAddress(), Symbol, Type, Addend, 1926 Value); 1927 } 1928 1929 void BinaryContext::addDynamicRelocation(uint64_t Address, MCSymbol *Symbol, 1930 uint64_t Type, uint64_t Addend, 1931 uint64_t Value) { 1932 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1933 assert(Section && "cannot find section for address"); 1934 Section->addDynamicRelocation(Address - Section->getAddress(), Symbol, Type, 1935 Addend, Value); 1936 } 1937 1938 bool BinaryContext::removeRelocationAt(uint64_t Address) { 1939 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1940 assert(Section && "cannot find section for address"); 1941 return Section->removeRelocationAt(Address - Section->getAddress()); 1942 } 1943 1944 const Relocation *BinaryContext::getRelocationAt(uint64_t Address) { 1945 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1946 if (!Section) 1947 return nullptr; 1948 1949 return Section->getRelocationAt(Address - Section->getAddress()); 1950 } 1951 1952 const Relocation *BinaryContext::getDynamicRelocationAt(uint64_t Address) { 1953 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1954 if (!Section) 1955 return nullptr; 1956 1957 return Section->getDynamicRelocationAt(Address - Section->getAddress()); 1958 } 1959 1960 void BinaryContext::markAmbiguousRelocations(BinaryData &BD, 1961 const uint64_t Address) { 1962 auto setImmovable = [&](BinaryData &BD) { 1963 BinaryData *Root = BD.getAtomicRoot(); 1964 LLVM_DEBUG(if (Root->isMoveable()) { 1965 dbgs() << "BOLT-DEBUG: setting " << *Root << " as immovable " 1966 << "due to ambiguous relocation referencing 0x" 1967 << Twine::utohexstr(Address) << '\n'; 1968 }); 1969 Root->setIsMoveable(false); 1970 }; 1971 1972 if (Address == BD.getAddress()) { 1973 setImmovable(BD); 1974 1975 // Set previous symbol as immovable 1976 BinaryData *Prev = getBinaryDataContainingAddress(Address - 1); 1977 if (Prev && Prev->getEndAddress() == BD.getAddress()) 1978 setImmovable(*Prev); 1979 } 1980 1981 if (Address == BD.getEndAddress()) { 1982 setImmovable(BD); 1983 1984 // Set next symbol as immovable 1985 BinaryData *Next = getBinaryDataContainingAddress(BD.getEndAddress()); 1986 if (Next && Next->getAddress() == BD.getEndAddress()) 1987 setImmovable(*Next); 1988 } 1989 } 1990 1991 BinaryFunction *BinaryContext::getFunctionForSymbol(const MCSymbol *Symbol, 1992 uint64_t *EntryDesc) { 1993 std::shared_lock<std::shared_timed_mutex> Lock(SymbolToFunctionMapMutex); 1994 auto BFI = SymbolToFunctionMap.find(Symbol); 1995 if (BFI == SymbolToFunctionMap.end()) 1996 return nullptr; 1997 1998 BinaryFunction *BF = BFI->second; 1999 if (EntryDesc) 2000 *EntryDesc = BF->getEntryIDForSymbol(Symbol); 2001 2002 return BF; 2003 } 2004 2005 void BinaryContext::exitWithBugReport(StringRef Message, 2006 const BinaryFunction &Function) const { 2007 errs() << "=======================================\n"; 2008 errs() << "BOLT is unable to proceed because it couldn't properly understand " 2009 "this function.\n"; 2010 errs() << "If you are running the most recent version of BOLT, you may " 2011 "want to " 2012 "report this and paste this dump.\nPlease check that there is no " 2013 "sensitive contents being shared in this dump.\n"; 2014 errs() << "\nOffending function: " << Function.getPrintName() << "\n\n"; 2015 ScopedPrinter SP(errs()); 2016 SP.printBinaryBlock("Function contents", *Function.getData()); 2017 errs() << "\n"; 2018 Function.dump(); 2019 errs() << "ERROR: " << Message; 2020 errs() << "\n=======================================\n"; 2021 exit(1); 2022 } 2023 2024 BinaryFunction * 2025 BinaryContext::createInjectedBinaryFunction(const std::string &Name, 2026 bool IsSimple) { 2027 InjectedBinaryFunctions.push_back(new BinaryFunction(Name, *this, IsSimple)); 2028 BinaryFunction *BF = InjectedBinaryFunctions.back(); 2029 setSymbolToFunctionMap(BF->getSymbol(), BF); 2030 BF->CurrentState = BinaryFunction::State::CFG; 2031 return BF; 2032 } 2033 2034 std::pair<size_t, size_t> 2035 BinaryContext::calculateEmittedSize(BinaryFunction &BF, bool FixBranches) { 2036 // Adjust branch instruction to match the current layout. 2037 if (FixBranches) 2038 BF.fixBranches(); 2039 2040 // Create local MC context to isolate the effect of ephemeral code emission. 2041 IndependentCodeEmitter MCEInstance = createIndependentMCCodeEmitter(); 2042 MCContext *LocalCtx = MCEInstance.LocalCtx.get(); 2043 MCAsmBackend *MAB = 2044 TheTarget->createMCAsmBackend(*STI, *MRI, MCTargetOptions()); 2045 2046 SmallString<256> Code; 2047 raw_svector_ostream VecOS(Code); 2048 2049 std::unique_ptr<MCObjectWriter> OW = MAB->createObjectWriter(VecOS); 2050 std::unique_ptr<MCStreamer> Streamer(TheTarget->createMCObjectStreamer( 2051 *TheTriple, *LocalCtx, std::unique_ptr<MCAsmBackend>(MAB), std::move(OW), 2052 std::unique_ptr<MCCodeEmitter>(MCEInstance.MCE.release()), *STI, 2053 /*RelaxAll=*/false, 2054 /*IncrementalLinkerCompatible=*/false, 2055 /*DWARFMustBeAtTheEnd=*/false)); 2056 2057 Streamer->initSections(false, *STI); 2058 2059 MCSection *Section = MCEInstance.LocalMOFI->getTextSection(); 2060 Section->setHasInstructions(true); 2061 2062 // Create symbols in the LocalCtx so that they get destroyed with it. 2063 MCSymbol *StartLabel = LocalCtx->createTempSymbol(); 2064 MCSymbol *EndLabel = LocalCtx->createTempSymbol(); 2065 MCSymbol *ColdStartLabel = LocalCtx->createTempSymbol(); 2066 MCSymbol *ColdEndLabel = LocalCtx->createTempSymbol(); 2067 2068 Streamer->SwitchSection(Section); 2069 Streamer->emitLabel(StartLabel); 2070 emitFunctionBody(*Streamer, BF, /*EmitColdPart=*/false, 2071 /*EmitCodeOnly=*/true); 2072 Streamer->emitLabel(EndLabel); 2073 2074 if (BF.isSplit()) { 2075 MCSectionELF *ColdSection = 2076 LocalCtx->getELFSection(BF.getColdCodeSectionName(), ELF::SHT_PROGBITS, 2077 ELF::SHF_EXECINSTR | ELF::SHF_ALLOC); 2078 ColdSection->setHasInstructions(true); 2079 2080 Streamer->SwitchSection(ColdSection); 2081 Streamer->emitLabel(ColdStartLabel); 2082 emitFunctionBody(*Streamer, BF, /*EmitColdPart=*/true, 2083 /*EmitCodeOnly=*/true); 2084 Streamer->emitLabel(ColdEndLabel); 2085 // To avoid calling MCObjectStreamer::flushPendingLabels() which is private 2086 Streamer->emitBytes(StringRef("")); 2087 Streamer->SwitchSection(Section); 2088 } 2089 2090 // To avoid calling MCObjectStreamer::flushPendingLabels() which is private or 2091 // MCStreamer::Finish(), which does more than we want 2092 Streamer->emitBytes(StringRef("")); 2093 2094 MCAssembler &Assembler = 2095 static_cast<MCObjectStreamer *>(Streamer.get())->getAssembler(); 2096 MCAsmLayout Layout(Assembler); 2097 Assembler.layout(Layout); 2098 2099 const uint64_t HotSize = 2100 Layout.getSymbolOffset(*EndLabel) - Layout.getSymbolOffset(*StartLabel); 2101 const uint64_t ColdSize = BF.isSplit() 2102 ? Layout.getSymbolOffset(*ColdEndLabel) - 2103 Layout.getSymbolOffset(*ColdStartLabel) 2104 : 0ULL; 2105 2106 // Clean-up the effect of the code emission. 2107 for (const MCSymbol &Symbol : Assembler.symbols()) { 2108 MCSymbol *MutableSymbol = const_cast<MCSymbol *>(&Symbol); 2109 MutableSymbol->setUndefined(); 2110 MutableSymbol->setIsRegistered(false); 2111 } 2112 2113 return std::make_pair(HotSize, ColdSize); 2114 } 2115 2116 bool BinaryContext::validateEncoding(const MCInst &Inst, 2117 ArrayRef<uint8_t> InputEncoding) const { 2118 SmallString<256> Code; 2119 SmallVector<MCFixup, 4> Fixups; 2120 raw_svector_ostream VecOS(Code); 2121 2122 MCE->encodeInstruction(Inst, VecOS, Fixups, *STI); 2123 auto EncodedData = ArrayRef<uint8_t>((uint8_t *)Code.data(), Code.size()); 2124 if (InputEncoding != EncodedData) { 2125 if (opts::Verbosity > 1) { 2126 errs() << "BOLT-WARNING: mismatched encoding detected\n" 2127 << " input: " << InputEncoding << '\n' 2128 << " output: " << EncodedData << '\n'; 2129 } 2130 return false; 2131 } 2132 2133 return true; 2134 } 2135 2136 uint64_t BinaryContext::getHotThreshold() const { 2137 static uint64_t Threshold = 0; 2138 if (Threshold == 0) { 2139 Threshold = std::max( 2140 (uint64_t)opts::ExecutionCountThreshold, 2141 NumProfiledFuncs ? SumExecutionCount / (2 * NumProfiledFuncs) : 1); 2142 } 2143 return Threshold; 2144 } 2145 2146 BinaryFunction *BinaryContext::getBinaryFunctionContainingAddress( 2147 uint64_t Address, bool CheckPastEnd, bool UseMaxSize) { 2148 auto FI = BinaryFunctions.upper_bound(Address); 2149 if (FI == BinaryFunctions.begin()) 2150 return nullptr; 2151 --FI; 2152 2153 const uint64_t UsedSize = 2154 UseMaxSize ? FI->second.getMaxSize() : FI->second.getSize(); 2155 2156 if (Address >= FI->first + UsedSize + (CheckPastEnd ? 1 : 0)) 2157 return nullptr; 2158 2159 return &FI->second; 2160 } 2161 2162 BinaryFunction *BinaryContext::getBinaryFunctionAtAddress(uint64_t Address) { 2163 // First, try to find a function starting at the given address. If the 2164 // function was folded, this will get us the original folded function if it 2165 // wasn't removed from the list, e.g. in non-relocation mode. 2166 auto BFI = BinaryFunctions.find(Address); 2167 if (BFI != BinaryFunctions.end()) 2168 return &BFI->second; 2169 2170 // We might have folded the function matching the object at the given 2171 // address. In such case, we look for a function matching the symbol 2172 // registered at the original address. The new function (the one that the 2173 // original was folded into) will hold the symbol. 2174 if (const BinaryData *BD = getBinaryDataAtAddress(Address)) { 2175 uint64_t EntryID = 0; 2176 BinaryFunction *BF = getFunctionForSymbol(BD->getSymbol(), &EntryID); 2177 if (BF && EntryID == 0) 2178 return BF; 2179 } 2180 return nullptr; 2181 } 2182 2183 DebugAddressRangesVector BinaryContext::translateModuleAddressRanges( 2184 const DWARFAddressRangesVector &InputRanges) const { 2185 DebugAddressRangesVector OutputRanges; 2186 2187 for (const DWARFAddressRange Range : InputRanges) { 2188 auto BFI = BinaryFunctions.lower_bound(Range.LowPC); 2189 while (BFI != BinaryFunctions.end()) { 2190 const BinaryFunction &Function = BFI->second; 2191 if (Function.getAddress() >= Range.HighPC) 2192 break; 2193 const DebugAddressRangesVector FunctionRanges = 2194 Function.getOutputAddressRanges(); 2195 std::move(std::begin(FunctionRanges), std::end(FunctionRanges), 2196 std::back_inserter(OutputRanges)); 2197 std::advance(BFI, 1); 2198 } 2199 } 2200 2201 return OutputRanges; 2202 } 2203 2204 } // namespace bolt 2205 } // namespace llvm 2206