1 //===- bolt/Core/BinaryContext.cpp - Low-level context --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryContext class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryContext.h" 14 #include "bolt/Core/BinaryEmitter.h" 15 #include "bolt/Core/BinaryFunction.h" 16 #include "bolt/Utils/CommandLineOpts.h" 17 #include "bolt/Utils/NameResolver.h" 18 #include "bolt/Utils/Utils.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" 21 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" 22 #include "llvm/DebugInfo/DWARF/DWARFUnit.h" 23 #include "llvm/MC/MCAsmLayout.h" 24 #include "llvm/MC/MCAssembler.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 27 #include "llvm/MC/MCInstPrinter.h" 28 #include "llvm/MC/MCObjectStreamer.h" 29 #include "llvm/MC/MCObjectWriter.h" 30 #include "llvm/MC/MCRegisterInfo.h" 31 #include "llvm/MC/MCSectionELF.h" 32 #include "llvm/MC/MCStreamer.h" 33 #include "llvm/MC/MCSubtargetInfo.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Error.h" 37 #include "llvm/Support/Regex.h" 38 #include <algorithm> 39 #include <functional> 40 #include <iterator> 41 #include <unordered_set> 42 43 using namespace llvm; 44 45 #undef DEBUG_TYPE 46 #define DEBUG_TYPE "bolt" 47 48 namespace opts { 49 50 cl::opt<bool> NoHugePages("no-huge-pages", 51 cl::desc("use regular size pages for code alignment"), 52 cl::Hidden, cl::cat(BoltCategory)); 53 54 static cl::opt<bool> 55 PrintDebugInfo("print-debug-info", 56 cl::desc("print debug info when printing functions"), 57 cl::Hidden, 58 cl::ZeroOrMore, 59 cl::cat(BoltCategory)); 60 61 cl::opt<bool> PrintRelocations( 62 "print-relocations", 63 cl::desc("print relocations when printing functions/objects"), cl::Hidden, 64 cl::cat(BoltCategory)); 65 66 static cl::opt<bool> 67 PrintMemData("print-mem-data", 68 cl::desc("print memory data annotations when printing functions"), 69 cl::Hidden, 70 cl::ZeroOrMore, 71 cl::cat(BoltCategory)); 72 73 } // namespace opts 74 75 namespace llvm { 76 namespace bolt { 77 78 BinaryContext::BinaryContext(std::unique_ptr<MCContext> Ctx, 79 std::unique_ptr<DWARFContext> DwCtx, 80 std::unique_ptr<Triple> TheTriple, 81 const Target *TheTarget, std::string TripleName, 82 std::unique_ptr<MCCodeEmitter> MCE, 83 std::unique_ptr<MCObjectFileInfo> MOFI, 84 std::unique_ptr<const MCAsmInfo> AsmInfo, 85 std::unique_ptr<const MCInstrInfo> MII, 86 std::unique_ptr<const MCSubtargetInfo> STI, 87 std::unique_ptr<MCInstPrinter> InstPrinter, 88 std::unique_ptr<const MCInstrAnalysis> MIA, 89 std::unique_ptr<MCPlusBuilder> MIB, 90 std::unique_ptr<const MCRegisterInfo> MRI, 91 std::unique_ptr<MCDisassembler> DisAsm) 92 : Ctx(std::move(Ctx)), DwCtx(std::move(DwCtx)), 93 TheTriple(std::move(TheTriple)), TheTarget(TheTarget), 94 TripleName(TripleName), MCE(std::move(MCE)), MOFI(std::move(MOFI)), 95 AsmInfo(std::move(AsmInfo)), MII(std::move(MII)), STI(std::move(STI)), 96 InstPrinter(std::move(InstPrinter)), MIA(std::move(MIA)), 97 MIB(std::move(MIB)), MRI(std::move(MRI)), DisAsm(std::move(DisAsm)) { 98 Relocation::Arch = this->TheTriple->getArch(); 99 RegularPageSize = isAArch64() ? RegularPageSizeAArch64 : RegularPageSizeX86; 100 PageAlign = opts::NoHugePages ? RegularPageSize : HugePageSize; 101 } 102 103 BinaryContext::~BinaryContext() { 104 for (BinarySection *Section : Sections) 105 delete Section; 106 for (BinaryFunction *InjectedFunction : InjectedBinaryFunctions) 107 delete InjectedFunction; 108 for (std::pair<const uint64_t, JumpTable *> JTI : JumpTables) 109 delete JTI.second; 110 clearBinaryData(); 111 } 112 113 /// Create BinaryContext for a given architecture \p ArchName and 114 /// triple \p TripleName. 115 Expected<std::unique_ptr<BinaryContext>> 116 BinaryContext::createBinaryContext(const ObjectFile *File, bool IsPIC, 117 std::unique_ptr<DWARFContext> DwCtx) { 118 StringRef ArchName = ""; 119 StringRef FeaturesStr = ""; 120 switch (File->getArch()) { 121 case llvm::Triple::x86_64: 122 ArchName = "x86-64"; 123 FeaturesStr = "+nopl"; 124 break; 125 case llvm::Triple::aarch64: 126 ArchName = "aarch64"; 127 FeaturesStr = "+fp-armv8,+neon,+crypto,+dotprod,+crc,+lse,+ras,+rdm," 128 "+fullfp16,+spe,+fuse-aes,+rcpc"; 129 break; 130 default: 131 return createStringError(std::errc::not_supported, 132 "BOLT-ERROR: Unrecognized machine in ELF file"); 133 } 134 135 auto TheTriple = std::make_unique<Triple>(File->makeTriple()); 136 const std::string TripleName = TheTriple->str(); 137 138 std::string Error; 139 const Target *TheTarget = 140 TargetRegistry::lookupTarget(std::string(ArchName), *TheTriple, Error); 141 if (!TheTarget) 142 return createStringError(make_error_code(std::errc::not_supported), 143 Twine("BOLT-ERROR: ", Error)); 144 145 std::unique_ptr<const MCRegisterInfo> MRI( 146 TheTarget->createMCRegInfo(TripleName)); 147 if (!MRI) 148 return createStringError( 149 make_error_code(std::errc::not_supported), 150 Twine("BOLT-ERROR: no register info for target ", TripleName)); 151 152 // Set up disassembler. 153 std::unique_ptr<MCAsmInfo> AsmInfo( 154 TheTarget->createMCAsmInfo(*MRI, TripleName, MCTargetOptions())); 155 if (!AsmInfo) 156 return createStringError( 157 make_error_code(std::errc::not_supported), 158 Twine("BOLT-ERROR: no assembly info for target ", TripleName)); 159 // BOLT creates "func@PLT" symbols for PLT entries. In function assembly dump 160 // we want to emit such names as using @PLT without double quotes to convey 161 // variant kind to the assembler. BOLT doesn't rely on the linker so we can 162 // override the default AsmInfo behavior to emit names the way we want. 163 AsmInfo->setAllowAtInName(true); 164 165 std::unique_ptr<const MCSubtargetInfo> STI( 166 TheTarget->createMCSubtargetInfo(TripleName, "", FeaturesStr)); 167 if (!STI) 168 return createStringError( 169 make_error_code(std::errc::not_supported), 170 Twine("BOLT-ERROR: no subtarget info for target ", TripleName)); 171 172 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); 173 if (!MII) 174 return createStringError( 175 make_error_code(std::errc::not_supported), 176 Twine("BOLT-ERROR: no instruction info for target ", TripleName)); 177 178 std::unique_ptr<MCContext> Ctx( 179 new MCContext(*TheTriple, AsmInfo.get(), MRI.get(), STI.get())); 180 std::unique_ptr<MCObjectFileInfo> MOFI( 181 TheTarget->createMCObjectFileInfo(*Ctx, IsPIC)); 182 Ctx->setObjectFileInfo(MOFI.get()); 183 // We do not support X86 Large code model. Change this in the future. 184 bool Large = false; 185 if (TheTriple->getArch() == llvm::Triple::aarch64) 186 Large = true; 187 unsigned LSDAEncoding = 188 Large ? dwarf::DW_EH_PE_absptr : dwarf::DW_EH_PE_udata4; 189 unsigned TTypeEncoding = 190 Large ? dwarf::DW_EH_PE_absptr : dwarf::DW_EH_PE_udata4; 191 if (IsPIC) { 192 LSDAEncoding = dwarf::DW_EH_PE_pcrel | 193 (Large ? dwarf::DW_EH_PE_sdata8 : dwarf::DW_EH_PE_sdata4); 194 TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 195 (Large ? dwarf::DW_EH_PE_sdata8 : dwarf::DW_EH_PE_sdata4); 196 } 197 198 std::unique_ptr<MCDisassembler> DisAsm( 199 TheTarget->createMCDisassembler(*STI, *Ctx)); 200 201 if (!DisAsm) 202 return createStringError( 203 make_error_code(std::errc::not_supported), 204 Twine("BOLT-ERROR: no disassembler info for target ", TripleName)); 205 206 std::unique_ptr<const MCInstrAnalysis> MIA( 207 TheTarget->createMCInstrAnalysis(MII.get())); 208 if (!MIA) 209 return createStringError( 210 make_error_code(std::errc::not_supported), 211 Twine("BOLT-ERROR: failed to create instruction analysis for target ", 212 TripleName)); 213 214 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 215 std::unique_ptr<MCInstPrinter> InstructionPrinter( 216 TheTarget->createMCInstPrinter(*TheTriple, AsmPrinterVariant, *AsmInfo, 217 *MII, *MRI)); 218 if (!InstructionPrinter) 219 return createStringError( 220 make_error_code(std::errc::not_supported), 221 Twine("BOLT-ERROR: no instruction printer for target ", TripleName)); 222 InstructionPrinter->setPrintImmHex(true); 223 224 std::unique_ptr<MCCodeEmitter> MCE( 225 TheTarget->createMCCodeEmitter(*MII, *Ctx)); 226 227 // Make sure we don't miss any output on core dumps. 228 outs().SetUnbuffered(); 229 errs().SetUnbuffered(); 230 dbgs().SetUnbuffered(); 231 232 auto BC = std::make_unique<BinaryContext>( 233 std::move(Ctx), std::move(DwCtx), std::move(TheTriple), TheTarget, 234 std::string(TripleName), std::move(MCE), std::move(MOFI), 235 std::move(AsmInfo), std::move(MII), std::move(STI), 236 std::move(InstructionPrinter), std::move(MIA), nullptr, std::move(MRI), 237 std::move(DisAsm)); 238 239 BC->TTypeEncoding = TTypeEncoding; 240 BC->LSDAEncoding = LSDAEncoding; 241 242 BC->MAB = std::unique_ptr<MCAsmBackend>( 243 BC->TheTarget->createMCAsmBackend(*BC->STI, *BC->MRI, MCTargetOptions())); 244 245 BC->setFilename(File->getFileName()); 246 247 BC->HasFixedLoadAddress = !IsPIC; 248 249 BC->SymbolicDisAsm = std::unique_ptr<MCDisassembler>( 250 BC->TheTarget->createMCDisassembler(*BC->STI, *BC->Ctx)); 251 252 if (!BC->SymbolicDisAsm) 253 return createStringError( 254 make_error_code(std::errc::not_supported), 255 Twine("BOLT-ERROR: no disassembler info for target ", TripleName)); 256 257 return std::move(BC); 258 } 259 260 bool BinaryContext::forceSymbolRelocations(StringRef SymbolName) const { 261 if (opts::HotText && 262 (SymbolName == "__hot_start" || SymbolName == "__hot_end")) 263 return true; 264 265 if (opts::HotData && 266 (SymbolName == "__hot_data_start" || SymbolName == "__hot_data_end")) 267 return true; 268 269 if (SymbolName == "_end") 270 return true; 271 272 return false; 273 } 274 275 std::unique_ptr<MCObjectWriter> 276 BinaryContext::createObjectWriter(raw_pwrite_stream &OS) { 277 return MAB->createObjectWriter(OS); 278 } 279 280 bool BinaryContext::validateObjectNesting() const { 281 auto Itr = BinaryDataMap.begin(); 282 auto End = BinaryDataMap.end(); 283 bool Valid = true; 284 while (Itr != End) { 285 auto Next = std::next(Itr); 286 while (Next != End && 287 Itr->second->getSection() == Next->second->getSection() && 288 Itr->second->containsRange(Next->second->getAddress(), 289 Next->second->getSize())) { 290 if (Next->second->Parent != Itr->second) { 291 errs() << "BOLT-WARNING: object nesting incorrect for:\n" 292 << "BOLT-WARNING: " << *Itr->second << "\n" 293 << "BOLT-WARNING: " << *Next->second << "\n"; 294 Valid = false; 295 } 296 ++Next; 297 } 298 Itr = Next; 299 } 300 return Valid; 301 } 302 303 bool BinaryContext::validateHoles() const { 304 bool Valid = true; 305 for (BinarySection &Section : sections()) { 306 for (const Relocation &Rel : Section.relocations()) { 307 uint64_t RelAddr = Rel.Offset + Section.getAddress(); 308 const BinaryData *BD = getBinaryDataContainingAddress(RelAddr); 309 if (!BD) { 310 errs() << "BOLT-WARNING: no BinaryData found for relocation at address" 311 << " 0x" << Twine::utohexstr(RelAddr) << " in " 312 << Section.getName() << "\n"; 313 Valid = false; 314 } else if (!BD->getAtomicRoot()) { 315 errs() << "BOLT-WARNING: no atomic BinaryData found for relocation at " 316 << "address 0x" << Twine::utohexstr(RelAddr) << " in " 317 << Section.getName() << "\n"; 318 Valid = false; 319 } 320 } 321 } 322 return Valid; 323 } 324 325 void BinaryContext::updateObjectNesting(BinaryDataMapType::iterator GAI) { 326 const uint64_t Address = GAI->second->getAddress(); 327 const uint64_t Size = GAI->second->getSize(); 328 329 auto fixParents = [&](BinaryDataMapType::iterator Itr, 330 BinaryData *NewParent) { 331 BinaryData *OldParent = Itr->second->Parent; 332 Itr->second->Parent = NewParent; 333 ++Itr; 334 while (Itr != BinaryDataMap.end() && OldParent && 335 Itr->second->Parent == OldParent) { 336 Itr->second->Parent = NewParent; 337 ++Itr; 338 } 339 }; 340 341 // Check if the previous symbol contains the newly added symbol. 342 if (GAI != BinaryDataMap.begin()) { 343 BinaryData *Prev = std::prev(GAI)->second; 344 while (Prev) { 345 if (Prev->getSection() == GAI->second->getSection() && 346 Prev->containsRange(Address, Size)) { 347 fixParents(GAI, Prev); 348 } else { 349 fixParents(GAI, nullptr); 350 } 351 Prev = Prev->Parent; 352 } 353 } 354 355 // Check if the newly added symbol contains any subsequent symbols. 356 if (Size != 0) { 357 BinaryData *BD = GAI->second->Parent ? GAI->second->Parent : GAI->second; 358 auto Itr = std::next(GAI); 359 while ( 360 Itr != BinaryDataMap.end() && 361 BD->containsRange(Itr->second->getAddress(), Itr->second->getSize())) { 362 Itr->second->Parent = BD; 363 ++Itr; 364 } 365 } 366 } 367 368 iterator_range<BinaryContext::binary_data_iterator> 369 BinaryContext::getSubBinaryData(BinaryData *BD) { 370 auto Start = std::next(BinaryDataMap.find(BD->getAddress())); 371 auto End = Start; 372 while (End != BinaryDataMap.end() && BD->isAncestorOf(End->second)) 373 ++End; 374 return make_range(Start, End); 375 } 376 377 std::pair<const MCSymbol *, uint64_t> 378 BinaryContext::handleAddressRef(uint64_t Address, BinaryFunction &BF, 379 bool IsPCRel) { 380 uint64_t Addend = 0; 381 382 if (isAArch64()) { 383 // Check if this is an access to a constant island and create bookkeeping 384 // to keep track of it and emit it later as part of this function. 385 if (MCSymbol *IslandSym = BF.getOrCreateIslandAccess(Address)) 386 return std::make_pair(IslandSym, Addend); 387 388 // Detect custom code written in assembly that refers to arbitrary 389 // constant islands from other functions. Write this reference so we 390 // can pull this constant island and emit it as part of this function 391 // too. 392 auto IslandIter = AddressToConstantIslandMap.lower_bound(Address); 393 if (IslandIter != AddressToConstantIslandMap.end()) { 394 if (MCSymbol *IslandSym = 395 IslandIter->second->getOrCreateProxyIslandAccess(Address, BF)) { 396 BF.createIslandDependency(IslandSym, IslandIter->second); 397 return std::make_pair(IslandSym, Addend); 398 } 399 } 400 } 401 402 // Note that the address does not necessarily have to reside inside 403 // a section, it could be an absolute address too. 404 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 405 if (Section && Section->isText()) { 406 if (BF.containsAddress(Address, /*UseMaxSize=*/isAArch64())) { 407 if (Address != BF.getAddress()) { 408 // The address could potentially escape. Mark it as another entry 409 // point into the function. 410 if (opts::Verbosity >= 1) { 411 outs() << "BOLT-INFO: potentially escaped address 0x" 412 << Twine::utohexstr(Address) << " in function " << BF << '\n'; 413 } 414 BF.HasInternalLabelReference = true; 415 return std::make_pair( 416 BF.addEntryPointAtOffset(Address - BF.getAddress()), Addend); 417 } 418 } else { 419 BF.InterproceduralReferences.insert(Address); 420 } 421 } 422 423 // With relocations, catch jump table references outside of the basic block 424 // containing the indirect jump. 425 if (HasRelocations) { 426 const MemoryContentsType MemType = analyzeMemoryAt(Address, BF); 427 if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE && IsPCRel) { 428 const MCSymbol *Symbol = 429 getOrCreateJumpTable(BF, Address, JumpTable::JTT_PIC); 430 431 return std::make_pair(Symbol, Addend); 432 } 433 } 434 435 if (BinaryData *BD = getBinaryDataContainingAddress(Address)) 436 return std::make_pair(BD->getSymbol(), Address - BD->getAddress()); 437 438 // TODO: use DWARF info to get size/alignment here? 439 MCSymbol *TargetSymbol = getOrCreateGlobalSymbol(Address, "DATAat"); 440 LLVM_DEBUG(dbgs() << "Created symbol " << TargetSymbol->getName() << '\n'); 441 return std::make_pair(TargetSymbol, Addend); 442 } 443 444 MemoryContentsType BinaryContext::analyzeMemoryAt(uint64_t Address, 445 BinaryFunction &BF) { 446 if (!isX86()) 447 return MemoryContentsType::UNKNOWN; 448 449 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 450 if (!Section) { 451 // No section - possibly an absolute address. Since we don't allow 452 // internal function addresses to escape the function scope - we 453 // consider it a tail call. 454 if (opts::Verbosity > 1) { 455 errs() << "BOLT-WARNING: no section for address 0x" 456 << Twine::utohexstr(Address) << " referenced from function " << BF 457 << '\n'; 458 } 459 return MemoryContentsType::UNKNOWN; 460 } 461 462 if (Section->isVirtual()) { 463 // The contents are filled at runtime. 464 return MemoryContentsType::UNKNOWN; 465 } 466 467 // No support for jump tables in code yet. 468 if (Section->isText()) 469 return MemoryContentsType::UNKNOWN; 470 471 // Start with checking for PIC jump table. We expect non-PIC jump tables 472 // to have high 32 bits set to 0. 473 if (analyzeJumpTable(Address, JumpTable::JTT_PIC, BF)) 474 return MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE; 475 476 if (analyzeJumpTable(Address, JumpTable::JTT_NORMAL, BF)) 477 return MemoryContentsType::POSSIBLE_JUMP_TABLE; 478 479 return MemoryContentsType::UNKNOWN; 480 } 481 482 /// Check if <fragment restored name> == <parent restored name>.cold(.\d+)? 483 bool isPotentialFragmentByName(BinaryFunction &Fragment, 484 BinaryFunction &Parent) { 485 for (StringRef Name : Parent.getNames()) { 486 std::string NamePrefix = Regex::escape(NameResolver::restore(Name)); 487 std::string NameRegex = Twine(NamePrefix, "\\.cold(\\.[0-9]+)?").str(); 488 if (Fragment.hasRestoredNameRegex(NameRegex)) 489 return true; 490 } 491 return false; 492 } 493 494 bool BinaryContext::analyzeJumpTable(const uint64_t Address, 495 const JumpTable::JumpTableType Type, 496 BinaryFunction &BF, 497 const uint64_t NextJTAddress, 498 JumpTable::OffsetsType *Offsets) { 499 // Is one of the targets __builtin_unreachable? 500 bool HasUnreachable = false; 501 502 // Number of targets other than __builtin_unreachable. 503 uint64_t NumRealEntries = 0; 504 505 constexpr uint64_t INVALID_OFFSET = std::numeric_limits<uint64_t>::max(); 506 auto addOffset = [&](uint64_t Offset) { 507 if (Offsets) 508 Offsets->emplace_back(Offset); 509 }; 510 511 auto doesBelongToFunction = [&](const uint64_t Addr, 512 BinaryFunction *TargetBF) -> bool { 513 if (BF.containsAddress(Addr)) 514 return true; 515 // Nothing to do if we failed to identify the containing function. 516 if (!TargetBF) 517 return false; 518 // Case 1: check if BF is a fragment and TargetBF is its parent. 519 if (BF.isFragment()) { 520 // Parent function may or may not be already registered. 521 // Set parent link based on function name matching heuristic. 522 return registerFragment(BF, *TargetBF); 523 } 524 // Case 2: check if TargetBF is a fragment and BF is its parent. 525 return TargetBF->isFragment() && registerFragment(*TargetBF, BF); 526 }; 527 528 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 529 if (!Section) 530 return false; 531 532 // The upper bound is defined by containing object, section limits, and 533 // the next jump table in memory. 534 uint64_t UpperBound = Section->getEndAddress(); 535 const BinaryData *JumpTableBD = getBinaryDataAtAddress(Address); 536 if (JumpTableBD && JumpTableBD->getSize()) { 537 assert(JumpTableBD->getEndAddress() <= UpperBound && 538 "data object cannot cross a section boundary"); 539 UpperBound = JumpTableBD->getEndAddress(); 540 } 541 if (NextJTAddress) 542 UpperBound = std::min(NextJTAddress, UpperBound); 543 544 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: analyzeJumpTable in " << BF.getPrintName() 545 << '\n'); 546 const uint64_t EntrySize = getJumpTableEntrySize(Type); 547 for (uint64_t EntryAddress = Address; EntryAddress <= UpperBound - EntrySize; 548 EntryAddress += EntrySize) { 549 LLVM_DEBUG(dbgs() << " * Checking 0x" << Twine::utohexstr(EntryAddress) 550 << " -> "); 551 // Check if there's a proper relocation against the jump table entry. 552 if (HasRelocations) { 553 if (Type == JumpTable::JTT_PIC && 554 !DataPCRelocations.count(EntryAddress)) { 555 LLVM_DEBUG( 556 dbgs() << "FAIL: JTT_PIC table, no relocation for this address\n"); 557 break; 558 } 559 if (Type == JumpTable::JTT_NORMAL && !getRelocationAt(EntryAddress)) { 560 LLVM_DEBUG( 561 dbgs() 562 << "FAIL: JTT_NORMAL table, no relocation for this address\n"); 563 break; 564 } 565 } 566 567 const uint64_t Value = 568 (Type == JumpTable::JTT_PIC) 569 ? Address + *getSignedValueAtAddress(EntryAddress, EntrySize) 570 : *getPointerAtAddress(EntryAddress); 571 572 // __builtin_unreachable() case. 573 if (Value == BF.getAddress() + BF.getSize()) { 574 addOffset(Value - BF.getAddress()); 575 HasUnreachable = true; 576 LLVM_DEBUG(dbgs() << "OK: __builtin_unreachable\n"); 577 continue; 578 } 579 580 // Function or one of its fragments. 581 BinaryFunction *TargetBF = getBinaryFunctionContainingAddress(Value); 582 583 // We assume that a jump table cannot have function start as an entry. 584 if (!doesBelongToFunction(Value, TargetBF) || Value == BF.getAddress()) { 585 LLVM_DEBUG({ 586 if (!BF.containsAddress(Value)) { 587 dbgs() << "FAIL: function doesn't contain this address\n"; 588 if (TargetBF) { 589 dbgs() << " ! function containing this address: " 590 << TargetBF->getPrintName() << '\n'; 591 if (TargetBF->isFragment()) 592 dbgs() << " ! is a fragment\n"; 593 for (BinaryFunction *TargetParent : TargetBF->ParentFragments) 594 dbgs() << " ! its parent is " 595 << (TargetParent ? TargetParent->getPrintName() : "(none)") 596 << '\n'; 597 } 598 } 599 if (Value == BF.getAddress()) 600 dbgs() << "FAIL: jump table cannot have function start as an entry\n"; 601 }); 602 break; 603 } 604 605 // Check there's an instruction at this offset. 606 if (TargetBF->getState() == BinaryFunction::State::Disassembled && 607 !TargetBF->getInstructionAtOffset(Value - TargetBF->getAddress())) { 608 LLVM_DEBUG(dbgs() << "FAIL: no instruction at this offset\n"); 609 break; 610 } 611 612 ++NumRealEntries; 613 614 if (TargetBF == &BF) { 615 // Address inside the function. 616 addOffset(Value - TargetBF->getAddress()); 617 LLVM_DEBUG(dbgs() << "OK: real entry\n"); 618 } else { 619 // Address in split fragment. 620 BF.setHasSplitJumpTable(true); 621 // Add invalid offset for proper identification of jump table size. 622 addOffset(INVALID_OFFSET); 623 LLVM_DEBUG(dbgs() << "OK: address in split fragment " 624 << TargetBF->getPrintName() << '\n'); 625 } 626 } 627 628 // It's a jump table if the number of real entries is more than 1, or there's 629 // one real entry and "unreachable" targets. If there are only multiple 630 // "unreachable" targets, then it's not a jump table. 631 return NumRealEntries + HasUnreachable >= 2; 632 } 633 634 void BinaryContext::populateJumpTables() { 635 LLVM_DEBUG(dbgs() << "DataPCRelocations: " << DataPCRelocations.size() 636 << '\n'); 637 for (auto JTI = JumpTables.begin(), JTE = JumpTables.end(); JTI != JTE; 638 ++JTI) { 639 JumpTable *JT = JTI->second; 640 BinaryFunction &BF = *JT->Parent; 641 642 if (!BF.isSimple()) 643 continue; 644 645 uint64_t NextJTAddress = 0; 646 auto NextJTI = std::next(JTI); 647 if (NextJTI != JTE) 648 NextJTAddress = NextJTI->second->getAddress(); 649 650 const bool Success = analyzeJumpTable(JT->getAddress(), JT->Type, BF, 651 NextJTAddress, &JT->OffsetEntries); 652 if (!Success) { 653 dbgs() << "failed to analyze jump table in function " << BF << '\n'; 654 JT->print(dbgs()); 655 if (NextJTI != JTE) { 656 dbgs() << "next jump table at 0x" 657 << Twine::utohexstr(NextJTI->second->getAddress()) 658 << " belongs to function " << *NextJTI->second->Parent << '\n'; 659 NextJTI->second->print(dbgs()); 660 } 661 llvm_unreachable("jump table heuristic failure"); 662 } 663 664 for (uint64_t EntryOffset : JT->OffsetEntries) { 665 if (EntryOffset == BF.getSize()) 666 BF.IgnoredBranches.emplace_back(EntryOffset, BF.getSize()); 667 else 668 BF.registerReferencedOffset(EntryOffset); 669 } 670 671 // In strict mode, erase PC-relative relocation record. Later we check that 672 // all such records are erased and thus have been accounted for. 673 if (opts::StrictMode && JT->Type == JumpTable::JTT_PIC) { 674 for (uint64_t Address = JT->getAddress(); 675 Address < JT->getAddress() + JT->getSize(); 676 Address += JT->EntrySize) { 677 DataPCRelocations.erase(DataPCRelocations.find(Address)); 678 } 679 } 680 681 // Mark to skip the function and all its fragments. 682 if (BF.hasSplitJumpTable()) 683 FragmentsToSkip.push_back(&BF); 684 } 685 686 if (opts::StrictMode && DataPCRelocations.size()) { 687 LLVM_DEBUG({ 688 dbgs() << DataPCRelocations.size() 689 << " unclaimed PC-relative relocations left in data:\n"; 690 for (uint64_t Reloc : DataPCRelocations) 691 dbgs() << Twine::utohexstr(Reloc) << '\n'; 692 }); 693 assert(0 && "unclaimed PC-relative relocations left in data\n"); 694 } 695 clearList(DataPCRelocations); 696 } 697 698 void BinaryContext::skipMarkedFragments() { 699 // Unique functions in the vector. 700 std::unordered_set<BinaryFunction *> UniqueFunctions(FragmentsToSkip.begin(), 701 FragmentsToSkip.end()); 702 // Copy the functions back to FragmentsToSkip. 703 FragmentsToSkip.assign(UniqueFunctions.begin(), UniqueFunctions.end()); 704 auto addToWorklist = [&](BinaryFunction *Function) -> void { 705 if (UniqueFunctions.count(Function)) 706 return; 707 FragmentsToSkip.push_back(Function); 708 UniqueFunctions.insert(Function); 709 }; 710 // Functions containing split jump tables need to be skipped with all 711 // fragments (transitively). 712 for (size_t I = 0; I != FragmentsToSkip.size(); I++) { 713 BinaryFunction *BF = FragmentsToSkip[I]; 714 assert(UniqueFunctions.count(BF) && 715 "internal error in traversing function fragments"); 716 if (opts::Verbosity >= 1) 717 errs() << "BOLT-WARNING: Ignoring " << BF->getPrintName() << '\n'; 718 BF->setSimple(false); 719 BF->setHasSplitJumpTable(true); 720 721 std::for_each(BF->Fragments.begin(), BF->Fragments.end(), addToWorklist); 722 std::for_each(BF->ParentFragments.begin(), BF->ParentFragments.end(), 723 addToWorklist); 724 } 725 if (!FragmentsToSkip.empty()) 726 errs() << "BOLT-WARNING: skipped " << FragmentsToSkip.size() << " function" 727 << (FragmentsToSkip.size() == 1 ? "" : "s") 728 << " due to cold fragments\n"; 729 FragmentsToSkip.clear(); 730 } 731 732 MCSymbol *BinaryContext::getOrCreateGlobalSymbol(uint64_t Address, Twine Prefix, 733 uint64_t Size, 734 uint16_t Alignment, 735 unsigned Flags) { 736 auto Itr = BinaryDataMap.find(Address); 737 if (Itr != BinaryDataMap.end()) { 738 assert(Itr->second->getSize() == Size || !Size); 739 return Itr->second->getSymbol(); 740 } 741 742 std::string Name = (Prefix + "0x" + Twine::utohexstr(Address)).str(); 743 assert(!GlobalSymbols.count(Name) && "created name is not unique"); 744 return registerNameAtAddress(Name, Address, Size, Alignment, Flags); 745 } 746 747 MCSymbol *BinaryContext::getOrCreateUndefinedGlobalSymbol(StringRef Name) { 748 return Ctx->getOrCreateSymbol(Name); 749 } 750 751 BinaryFunction *BinaryContext::createBinaryFunction( 752 const std::string &Name, BinarySection &Section, uint64_t Address, 753 uint64_t Size, uint64_t SymbolSize, uint16_t Alignment) { 754 auto Result = BinaryFunctions.emplace( 755 Address, BinaryFunction(Name, Section, Address, Size, *this)); 756 assert(Result.second == true && "unexpected duplicate function"); 757 BinaryFunction *BF = &Result.first->second; 758 registerNameAtAddress(Name, Address, SymbolSize ? SymbolSize : Size, 759 Alignment); 760 setSymbolToFunctionMap(BF->getSymbol(), BF); 761 return BF; 762 } 763 764 const MCSymbol * 765 BinaryContext::getOrCreateJumpTable(BinaryFunction &Function, uint64_t Address, 766 JumpTable::JumpTableType Type) { 767 if (JumpTable *JT = getJumpTableContainingAddress(Address)) { 768 assert(JT->Type == Type && "jump table types have to match"); 769 assert(JT->Parent == &Function && 770 "cannot re-use jump table of a different function"); 771 assert(Address == JT->getAddress() && "unexpected non-empty jump table"); 772 773 return JT->getFirstLabel(); 774 } 775 776 // Re-use the existing symbol if possible. 777 MCSymbol *JTLabel = nullptr; 778 if (BinaryData *Object = getBinaryDataAtAddress(Address)) { 779 if (!isInternalSymbolName(Object->getSymbol()->getName())) 780 JTLabel = Object->getSymbol(); 781 } 782 783 const uint64_t EntrySize = getJumpTableEntrySize(Type); 784 if (!JTLabel) { 785 const std::string JumpTableName = generateJumpTableName(Function, Address); 786 JTLabel = registerNameAtAddress(JumpTableName, Address, 0, EntrySize); 787 } 788 789 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: creating jump table " << JTLabel->getName() 790 << " in function " << Function << '\n'); 791 792 JumpTable *JT = new JumpTable(*JTLabel, Address, EntrySize, Type, 793 JumpTable::LabelMapType{{0, JTLabel}}, Function, 794 *getSectionForAddress(Address)); 795 JumpTables.emplace(Address, JT); 796 797 // Duplicate the entry for the parent function for easy access. 798 Function.JumpTables.emplace(Address, JT); 799 800 return JTLabel; 801 } 802 803 std::pair<uint64_t, const MCSymbol *> 804 BinaryContext::duplicateJumpTable(BinaryFunction &Function, JumpTable *JT, 805 const MCSymbol *OldLabel) { 806 auto L = scopeLock(); 807 unsigned Offset = 0; 808 bool Found = false; 809 for (std::pair<const unsigned, MCSymbol *> Elmt : JT->Labels) { 810 if (Elmt.second != OldLabel) 811 continue; 812 Offset = Elmt.first; 813 Found = true; 814 break; 815 } 816 assert(Found && "Label not found"); 817 (void)Found; 818 MCSymbol *NewLabel = Ctx->createNamedTempSymbol("duplicatedJT"); 819 JumpTable *NewJT = 820 new JumpTable(*NewLabel, JT->getAddress(), JT->EntrySize, JT->Type, 821 JumpTable::LabelMapType{{Offset, NewLabel}}, Function, 822 *getSectionForAddress(JT->getAddress())); 823 NewJT->Entries = JT->Entries; 824 NewJT->Counts = JT->Counts; 825 uint64_t JumpTableID = ++DuplicatedJumpTables; 826 // Invert it to differentiate from regular jump tables whose IDs are their 827 // addresses in the input binary memory space 828 JumpTableID = ~JumpTableID; 829 JumpTables.emplace(JumpTableID, NewJT); 830 Function.JumpTables.emplace(JumpTableID, NewJT); 831 return std::make_pair(JumpTableID, NewLabel); 832 } 833 834 std::string BinaryContext::generateJumpTableName(const BinaryFunction &BF, 835 uint64_t Address) { 836 size_t Id; 837 uint64_t Offset = 0; 838 if (const JumpTable *JT = BF.getJumpTableContainingAddress(Address)) { 839 Offset = Address - JT->getAddress(); 840 auto Itr = JT->Labels.find(Offset); 841 if (Itr != JT->Labels.end()) 842 return std::string(Itr->second->getName()); 843 Id = JumpTableIds.at(JT->getAddress()); 844 } else { 845 Id = JumpTableIds[Address] = BF.JumpTables.size(); 846 } 847 return ("JUMP_TABLE/" + BF.getOneName().str() + "." + std::to_string(Id) + 848 (Offset ? ("." + std::to_string(Offset)) : "")); 849 } 850 851 bool BinaryContext::hasValidCodePadding(const BinaryFunction &BF) { 852 // FIXME: aarch64 support is missing. 853 if (!isX86()) 854 return true; 855 856 if (BF.getSize() == BF.getMaxSize()) 857 return true; 858 859 ErrorOr<ArrayRef<unsigned char>> FunctionData = BF.getData(); 860 assert(FunctionData && "cannot get function as data"); 861 862 uint64_t Offset = BF.getSize(); 863 MCInst Instr; 864 uint64_t InstrSize = 0; 865 uint64_t InstrAddress = BF.getAddress() + Offset; 866 using std::placeholders::_1; 867 868 // Skip instructions that satisfy the predicate condition. 869 auto skipInstructions = [&](std::function<bool(const MCInst &)> Predicate) { 870 const uint64_t StartOffset = Offset; 871 for (; Offset < BF.getMaxSize(); 872 Offset += InstrSize, InstrAddress += InstrSize) { 873 if (!DisAsm->getInstruction(Instr, InstrSize, FunctionData->slice(Offset), 874 InstrAddress, nulls())) 875 break; 876 if (!Predicate(Instr)) 877 break; 878 } 879 880 return Offset - StartOffset; 881 }; 882 883 // Skip a sequence of zero bytes. 884 auto skipZeros = [&]() { 885 const uint64_t StartOffset = Offset; 886 for (; Offset < BF.getMaxSize(); ++Offset) 887 if ((*FunctionData)[Offset] != 0) 888 break; 889 890 return Offset - StartOffset; 891 }; 892 893 // Accept the whole padding area filled with breakpoints. 894 auto isBreakpoint = std::bind(&MCPlusBuilder::isBreakpoint, MIB.get(), _1); 895 if (skipInstructions(isBreakpoint) && Offset == BF.getMaxSize()) 896 return true; 897 898 auto isNoop = std::bind(&MCPlusBuilder::isNoop, MIB.get(), _1); 899 900 // Some functions have a jump to the next function or to the padding area 901 // inserted after the body. 902 auto isSkipJump = [&](const MCInst &Instr) { 903 uint64_t TargetAddress = 0; 904 if (MIB->isUnconditionalBranch(Instr) && 905 MIB->evaluateBranch(Instr, InstrAddress, InstrSize, TargetAddress)) { 906 if (TargetAddress >= InstrAddress + InstrSize && 907 TargetAddress <= BF.getAddress() + BF.getMaxSize()) { 908 return true; 909 } 910 } 911 return false; 912 }; 913 914 // Skip over nops, jumps, and zero padding. Allow interleaving (this happens). 915 while (skipInstructions(isNoop) || skipInstructions(isSkipJump) || 916 skipZeros()) 917 ; 918 919 if (Offset == BF.getMaxSize()) 920 return true; 921 922 if (opts::Verbosity >= 1) { 923 errs() << "BOLT-WARNING: bad padding at address 0x" 924 << Twine::utohexstr(BF.getAddress() + BF.getSize()) 925 << " starting at offset " << (Offset - BF.getSize()) 926 << " in function " << BF << '\n' 927 << FunctionData->slice(BF.getSize(), BF.getMaxSize() - BF.getSize()) 928 << '\n'; 929 } 930 931 return false; 932 } 933 934 void BinaryContext::adjustCodePadding() { 935 for (auto &BFI : BinaryFunctions) { 936 BinaryFunction &BF = BFI.second; 937 if (!shouldEmit(BF)) 938 continue; 939 940 if (!hasValidCodePadding(BF)) { 941 if (HasRelocations) { 942 if (opts::Verbosity >= 1) { 943 outs() << "BOLT-INFO: function " << BF 944 << " has invalid padding. Ignoring the function.\n"; 945 } 946 BF.setIgnored(); 947 } else { 948 BF.setMaxSize(BF.getSize()); 949 } 950 } 951 } 952 } 953 954 MCSymbol *BinaryContext::registerNameAtAddress(StringRef Name, uint64_t Address, 955 uint64_t Size, 956 uint16_t Alignment, 957 unsigned Flags) { 958 // Register the name with MCContext. 959 MCSymbol *Symbol = Ctx->getOrCreateSymbol(Name); 960 961 auto GAI = BinaryDataMap.find(Address); 962 BinaryData *BD; 963 if (GAI == BinaryDataMap.end()) { 964 ErrorOr<BinarySection &> SectionOrErr = getSectionForAddress(Address); 965 BinarySection &Section = 966 SectionOrErr ? SectionOrErr.get() : absoluteSection(); 967 BD = new BinaryData(*Symbol, Address, Size, Alignment ? Alignment : 1, 968 Section, Flags); 969 GAI = BinaryDataMap.emplace(Address, BD).first; 970 GlobalSymbols[Name] = BD; 971 updateObjectNesting(GAI); 972 } else { 973 BD = GAI->second; 974 if (!BD->hasName(Name)) { 975 GlobalSymbols[Name] = BD; 976 BD->Symbols.push_back(Symbol); 977 } 978 } 979 980 return Symbol; 981 } 982 983 const BinaryData * 984 BinaryContext::getBinaryDataContainingAddressImpl(uint64_t Address) const { 985 auto NI = BinaryDataMap.lower_bound(Address); 986 auto End = BinaryDataMap.end(); 987 if ((NI != End && Address == NI->first) || 988 ((NI != BinaryDataMap.begin()) && (NI-- != BinaryDataMap.begin()))) { 989 if (NI->second->containsAddress(Address)) 990 return NI->second; 991 992 // If this is a sub-symbol, see if a parent data contains the address. 993 const BinaryData *BD = NI->second->getParent(); 994 while (BD) { 995 if (BD->containsAddress(Address)) 996 return BD; 997 BD = BD->getParent(); 998 } 999 } 1000 return nullptr; 1001 } 1002 1003 bool BinaryContext::setBinaryDataSize(uint64_t Address, uint64_t Size) { 1004 auto NI = BinaryDataMap.find(Address); 1005 assert(NI != BinaryDataMap.end()); 1006 if (NI == BinaryDataMap.end()) 1007 return false; 1008 // TODO: it's possible that a jump table starts at the same address 1009 // as a larger blob of private data. When we set the size of the 1010 // jump table, it might be smaller than the total blob size. In this 1011 // case we just leave the original size since (currently) it won't really 1012 // affect anything. 1013 assert((!NI->second->Size || NI->second->Size == Size || 1014 (NI->second->isJumpTable() && NI->second->Size > Size)) && 1015 "can't change the size of a symbol that has already had its " 1016 "size set"); 1017 if (!NI->second->Size) { 1018 NI->second->Size = Size; 1019 updateObjectNesting(NI); 1020 return true; 1021 } 1022 return false; 1023 } 1024 1025 void BinaryContext::generateSymbolHashes() { 1026 auto isPadding = [](const BinaryData &BD) { 1027 StringRef Contents = BD.getSection().getContents(); 1028 StringRef SymData = Contents.substr(BD.getOffset(), BD.getSize()); 1029 return (BD.getName().startswith("HOLEat") || 1030 SymData.find_first_not_of(0) == StringRef::npos); 1031 }; 1032 1033 uint64_t NumCollisions = 0; 1034 for (auto &Entry : BinaryDataMap) { 1035 BinaryData &BD = *Entry.second; 1036 StringRef Name = BD.getName(); 1037 1038 if (!isInternalSymbolName(Name)) 1039 continue; 1040 1041 // First check if a non-anonymous alias exists and move it to the front. 1042 if (BD.getSymbols().size() > 1) { 1043 auto Itr = std::find_if(BD.getSymbols().begin(), BD.getSymbols().end(), 1044 [&](const MCSymbol *Symbol) { 1045 return !isInternalSymbolName(Symbol->getName()); 1046 }); 1047 if (Itr != BD.getSymbols().end()) { 1048 size_t Idx = std::distance(BD.getSymbols().begin(), Itr); 1049 std::swap(BD.getSymbols()[0], BD.getSymbols()[Idx]); 1050 continue; 1051 } 1052 } 1053 1054 // We have to skip 0 size symbols since they will all collide. 1055 if (BD.getSize() == 0) { 1056 continue; 1057 } 1058 1059 const uint64_t Hash = BD.getSection().hash(BD); 1060 const size_t Idx = Name.find("0x"); 1061 std::string NewName = 1062 (Twine(Name.substr(0, Idx)) + "_" + Twine::utohexstr(Hash)).str(); 1063 if (getBinaryDataByName(NewName)) { 1064 // Ignore collisions for symbols that appear to be padding 1065 // (i.e. all zeros or a "hole") 1066 if (!isPadding(BD)) { 1067 if (opts::Verbosity) { 1068 errs() << "BOLT-WARNING: collision detected when hashing " << BD 1069 << " with new name (" << NewName << "), skipping.\n"; 1070 } 1071 ++NumCollisions; 1072 } 1073 continue; 1074 } 1075 BD.Symbols.insert(BD.Symbols.begin(), Ctx->getOrCreateSymbol(NewName)); 1076 GlobalSymbols[NewName] = &BD; 1077 } 1078 if (NumCollisions) { 1079 errs() << "BOLT-WARNING: " << NumCollisions 1080 << " collisions detected while hashing binary objects"; 1081 if (!opts::Verbosity) 1082 errs() << ". Use -v=1 to see the list."; 1083 errs() << '\n'; 1084 } 1085 } 1086 1087 bool BinaryContext::registerFragment(BinaryFunction &TargetFunction, 1088 BinaryFunction &Function) const { 1089 if (!isPotentialFragmentByName(TargetFunction, Function)) 1090 return false; 1091 assert(TargetFunction.isFragment() && "TargetFunction must be a fragment"); 1092 if (TargetFunction.isParentFragment(&Function)) 1093 return true; 1094 TargetFunction.addParentFragment(Function); 1095 Function.addFragment(TargetFunction); 1096 if (!HasRelocations) { 1097 TargetFunction.setSimple(false); 1098 Function.setSimple(false); 1099 } 1100 if (opts::Verbosity >= 1) { 1101 outs() << "BOLT-INFO: marking " << TargetFunction << " as a fragment of " 1102 << Function << '\n'; 1103 } 1104 return true; 1105 } 1106 1107 void BinaryContext::processInterproceduralReferences(BinaryFunction &Function) { 1108 for (uint64_t Address : Function.InterproceduralReferences) { 1109 if (!Address) 1110 continue; 1111 1112 BinaryFunction *TargetFunction = 1113 getBinaryFunctionContainingAddress(Address); 1114 if (&Function == TargetFunction) 1115 continue; 1116 1117 if (TargetFunction) { 1118 if (TargetFunction->IsFragment && 1119 !registerFragment(*TargetFunction, Function)) { 1120 errs() << "BOLT-WARNING: interprocedural reference between unrelated " 1121 "fragments: " 1122 << Function.getPrintName() << " and " 1123 << TargetFunction->getPrintName() << '\n'; 1124 } 1125 if (uint64_t Offset = Address - TargetFunction->getAddress()) 1126 TargetFunction->addEntryPointAtOffset(Offset); 1127 1128 continue; 1129 } 1130 1131 // Check if address falls in function padding space - this could be 1132 // unmarked data in code. In this case adjust the padding space size. 1133 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1134 assert(Section && "cannot get section for referenced address"); 1135 1136 if (!Section->isText()) 1137 continue; 1138 1139 // PLT requires special handling and could be ignored in this context. 1140 StringRef SectionName = Section->getName(); 1141 if (SectionName == ".plt" || SectionName == ".plt.got") 1142 continue; 1143 1144 if (opts::processAllFunctions()) { 1145 errs() << "BOLT-ERROR: cannot process binaries with unmarked " 1146 << "object in code at address 0x" << Twine::utohexstr(Address) 1147 << " belonging to section " << SectionName << " in current mode\n"; 1148 exit(1); 1149 } 1150 1151 TargetFunction = getBinaryFunctionContainingAddress(Address, 1152 /*CheckPastEnd=*/false, 1153 /*UseMaxSize=*/true); 1154 // We are not going to overwrite non-simple functions, but for simple 1155 // ones - adjust the padding size. 1156 if (TargetFunction && TargetFunction->isSimple()) { 1157 errs() << "BOLT-WARNING: function " << *TargetFunction 1158 << " has an object detected in a padding region at address 0x" 1159 << Twine::utohexstr(Address) << '\n'; 1160 TargetFunction->setMaxSize(TargetFunction->getSize()); 1161 } 1162 } 1163 1164 clearList(Function.InterproceduralReferences); 1165 } 1166 1167 void BinaryContext::postProcessSymbolTable() { 1168 fixBinaryDataHoles(); 1169 bool Valid = true; 1170 for (auto &Entry : BinaryDataMap) { 1171 BinaryData *BD = Entry.second; 1172 if ((BD->getName().startswith("SYMBOLat") || 1173 BD->getName().startswith("DATAat")) && 1174 !BD->getParent() && !BD->getSize() && !BD->isAbsolute() && 1175 BD->getSection()) { 1176 errs() << "BOLT-WARNING: zero-sized top level symbol: " << *BD << "\n"; 1177 Valid = false; 1178 } 1179 } 1180 assert(Valid); 1181 (void)Valid; 1182 generateSymbolHashes(); 1183 } 1184 1185 void BinaryContext::foldFunction(BinaryFunction &ChildBF, 1186 BinaryFunction &ParentBF) { 1187 assert(!ChildBF.isMultiEntry() && !ParentBF.isMultiEntry() && 1188 "cannot merge functions with multiple entry points"); 1189 1190 std::unique_lock<std::shared_timed_mutex> WriteCtxLock(CtxMutex, 1191 std::defer_lock); 1192 std::unique_lock<std::shared_timed_mutex> WriteSymbolMapLock( 1193 SymbolToFunctionMapMutex, std::defer_lock); 1194 1195 const StringRef ChildName = ChildBF.getOneName(); 1196 1197 // Move symbols over and update bookkeeping info. 1198 for (MCSymbol *Symbol : ChildBF.getSymbols()) { 1199 ParentBF.getSymbols().push_back(Symbol); 1200 WriteSymbolMapLock.lock(); 1201 SymbolToFunctionMap[Symbol] = &ParentBF; 1202 WriteSymbolMapLock.unlock(); 1203 // NB: there's no need to update BinaryDataMap and GlobalSymbols. 1204 } 1205 ChildBF.getSymbols().clear(); 1206 1207 // Move other names the child function is known under. 1208 std::move(ChildBF.Aliases.begin(), ChildBF.Aliases.end(), 1209 std::back_inserter(ParentBF.Aliases)); 1210 ChildBF.Aliases.clear(); 1211 1212 if (HasRelocations) { 1213 // Merge execution counts of ChildBF into those of ParentBF. 1214 // Without relocations, we cannot reliably merge profiles as both functions 1215 // continue to exist and either one can be executed. 1216 ChildBF.mergeProfileDataInto(ParentBF); 1217 1218 std::shared_lock<std::shared_timed_mutex> ReadBfsLock(BinaryFunctionsMutex, 1219 std::defer_lock); 1220 std::unique_lock<std::shared_timed_mutex> WriteBfsLock(BinaryFunctionsMutex, 1221 std::defer_lock); 1222 // Remove ChildBF from the global set of functions in relocs mode. 1223 ReadBfsLock.lock(); 1224 auto FI = BinaryFunctions.find(ChildBF.getAddress()); 1225 ReadBfsLock.unlock(); 1226 1227 assert(FI != BinaryFunctions.end() && "function not found"); 1228 assert(&ChildBF == &FI->second && "function mismatch"); 1229 1230 WriteBfsLock.lock(); 1231 ChildBF.clearDisasmState(); 1232 FI = BinaryFunctions.erase(FI); 1233 WriteBfsLock.unlock(); 1234 1235 } else { 1236 // In non-relocation mode we keep the function, but rename it. 1237 std::string NewName = "__ICF_" + ChildName.str(); 1238 1239 WriteCtxLock.lock(); 1240 ChildBF.getSymbols().push_back(Ctx->getOrCreateSymbol(NewName)); 1241 WriteCtxLock.unlock(); 1242 1243 ChildBF.setFolded(&ParentBF); 1244 } 1245 } 1246 1247 void BinaryContext::fixBinaryDataHoles() { 1248 assert(validateObjectNesting() && "object nesting inconsitency detected"); 1249 1250 for (BinarySection &Section : allocatableSections()) { 1251 std::vector<std::pair<uint64_t, uint64_t>> Holes; 1252 1253 auto isNotHole = [&Section](const binary_data_iterator &Itr) { 1254 BinaryData *BD = Itr->second; 1255 bool isHole = (!BD->getParent() && !BD->getSize() && BD->isObject() && 1256 (BD->getName().startswith("SYMBOLat0x") || 1257 BD->getName().startswith("DATAat0x") || 1258 BD->getName().startswith("ANONYMOUS"))); 1259 return !isHole && BD->getSection() == Section && !BD->getParent(); 1260 }; 1261 1262 auto BDStart = BinaryDataMap.begin(); 1263 auto BDEnd = BinaryDataMap.end(); 1264 auto Itr = FilteredBinaryDataIterator(isNotHole, BDStart, BDEnd); 1265 auto End = FilteredBinaryDataIterator(isNotHole, BDEnd, BDEnd); 1266 1267 uint64_t EndAddress = Section.getAddress(); 1268 1269 while (Itr != End) { 1270 if (Itr->second->getAddress() > EndAddress) { 1271 uint64_t Gap = Itr->second->getAddress() - EndAddress; 1272 Holes.emplace_back(EndAddress, Gap); 1273 } 1274 EndAddress = Itr->second->getEndAddress(); 1275 ++Itr; 1276 } 1277 1278 if (EndAddress < Section.getEndAddress()) 1279 Holes.emplace_back(EndAddress, Section.getEndAddress() - EndAddress); 1280 1281 // If there is already a symbol at the start of the hole, grow that symbol 1282 // to cover the rest. Otherwise, create a new symbol to cover the hole. 1283 for (std::pair<uint64_t, uint64_t> &Hole : Holes) { 1284 BinaryData *BD = getBinaryDataAtAddress(Hole.first); 1285 if (BD) { 1286 // BD->getSection() can be != Section if there are sections that 1287 // overlap. In this case it is probably safe to just skip the holes 1288 // since the overlapping section will not(?) have any symbols in it. 1289 if (BD->getSection() == Section) 1290 setBinaryDataSize(Hole.first, Hole.second); 1291 } else { 1292 getOrCreateGlobalSymbol(Hole.first, "HOLEat", Hole.second, 1); 1293 } 1294 } 1295 } 1296 1297 assert(validateObjectNesting() && "object nesting inconsitency detected"); 1298 assert(validateHoles() && "top level hole detected in object map"); 1299 } 1300 1301 void BinaryContext::printGlobalSymbols(raw_ostream &OS) const { 1302 const BinarySection *CurrentSection = nullptr; 1303 bool FirstSection = true; 1304 1305 for (auto &Entry : BinaryDataMap) { 1306 const BinaryData *BD = Entry.second; 1307 const BinarySection &Section = BD->getSection(); 1308 if (FirstSection || Section != *CurrentSection) { 1309 uint64_t Address, Size; 1310 StringRef Name = Section.getName(); 1311 if (Section) { 1312 Address = Section.getAddress(); 1313 Size = Section.getSize(); 1314 } else { 1315 Address = BD->getAddress(); 1316 Size = BD->getSize(); 1317 } 1318 OS << "BOLT-INFO: Section " << Name << ", " 1319 << "0x" + Twine::utohexstr(Address) << ":" 1320 << "0x" + Twine::utohexstr(Address + Size) << "/" << Size << "\n"; 1321 CurrentSection = &Section; 1322 FirstSection = false; 1323 } 1324 1325 OS << "BOLT-INFO: "; 1326 const BinaryData *P = BD->getParent(); 1327 while (P) { 1328 OS << " "; 1329 P = P->getParent(); 1330 } 1331 OS << *BD << "\n"; 1332 } 1333 } 1334 1335 Expected<unsigned> BinaryContext::getDwarfFile( 1336 StringRef Directory, StringRef FileName, unsigned FileNumber, 1337 Optional<MD5::MD5Result> Checksum, Optional<StringRef> Source, 1338 unsigned CUID, unsigned DWARFVersion) { 1339 DwarfLineTable &Table = DwarfLineTablesCUMap[CUID]; 1340 return Table.tryGetFile(Directory, FileName, Checksum, Source, DWARFVersion, 1341 FileNumber); 1342 } 1343 1344 unsigned BinaryContext::addDebugFilenameToUnit(const uint32_t DestCUID, 1345 const uint32_t SrcCUID, 1346 unsigned FileIndex) { 1347 DWARFCompileUnit *SrcUnit = DwCtx->getCompileUnitForOffset(SrcCUID); 1348 const DWARFDebugLine::LineTable *LineTable = 1349 DwCtx->getLineTableForUnit(SrcUnit); 1350 const std::vector<DWARFDebugLine::FileNameEntry> &FileNames = 1351 LineTable->Prologue.FileNames; 1352 // Dir indexes start at 1, as DWARF file numbers, and a dir index 0 1353 // means empty dir. 1354 assert(FileIndex > 0 && FileIndex <= FileNames.size() && 1355 "FileIndex out of range for the compilation unit."); 1356 StringRef Dir = ""; 1357 if (FileNames[FileIndex - 1].DirIdx != 0) { 1358 if (Optional<const char *> DirName = dwarf::toString( 1359 LineTable->Prologue 1360 .IncludeDirectories[FileNames[FileIndex - 1].DirIdx - 1])) { 1361 Dir = *DirName; 1362 } 1363 } 1364 StringRef FileName = ""; 1365 if (Optional<const char *> FName = 1366 dwarf::toString(FileNames[FileIndex - 1].Name)) 1367 FileName = *FName; 1368 assert(FileName != ""); 1369 DWARFCompileUnit *DstUnit = DwCtx->getCompileUnitForOffset(DestCUID); 1370 return cantFail(getDwarfFile(Dir, FileName, 0, None, None, DestCUID, 1371 DstUnit->getVersion())); 1372 } 1373 1374 std::vector<BinaryFunction *> BinaryContext::getSortedFunctions() { 1375 std::vector<BinaryFunction *> SortedFunctions(BinaryFunctions.size()); 1376 std::transform(BinaryFunctions.begin(), BinaryFunctions.end(), 1377 SortedFunctions.begin(), 1378 [](std::pair<const uint64_t, BinaryFunction> &BFI) { 1379 return &BFI.second; 1380 }); 1381 1382 std::stable_sort(SortedFunctions.begin(), SortedFunctions.end(), 1383 [](const BinaryFunction *A, const BinaryFunction *B) { 1384 if (A->hasValidIndex() && B->hasValidIndex()) { 1385 return A->getIndex() < B->getIndex(); 1386 } 1387 return A->hasValidIndex(); 1388 }); 1389 return SortedFunctions; 1390 } 1391 1392 std::vector<BinaryFunction *> BinaryContext::getAllBinaryFunctions() { 1393 std::vector<BinaryFunction *> AllFunctions; 1394 AllFunctions.reserve(BinaryFunctions.size() + InjectedBinaryFunctions.size()); 1395 std::transform(BinaryFunctions.begin(), BinaryFunctions.end(), 1396 std::back_inserter(AllFunctions), 1397 [](std::pair<const uint64_t, BinaryFunction> &BFI) { 1398 return &BFI.second; 1399 }); 1400 std::copy(InjectedBinaryFunctions.begin(), InjectedBinaryFunctions.end(), 1401 std::back_inserter(AllFunctions)); 1402 1403 return AllFunctions; 1404 } 1405 1406 Optional<DWARFUnit *> BinaryContext::getDWOCU(uint64_t DWOId) { 1407 auto Iter = DWOCUs.find(DWOId); 1408 if (Iter == DWOCUs.end()) 1409 return None; 1410 1411 return Iter->second; 1412 } 1413 1414 DWARFContext *BinaryContext::getDWOContext() const { 1415 if (DWOCUs.empty()) 1416 return nullptr; 1417 return &DWOCUs.begin()->second->getContext(); 1418 } 1419 1420 /// Handles DWO sections that can either be in .o, .dwo or .dwp files. 1421 void BinaryContext::preprocessDWODebugInfo() { 1422 for (const std::unique_ptr<DWARFUnit> &CU : DwCtx->compile_units()) { 1423 DWARFUnit *const DwarfUnit = CU.get(); 1424 if (llvm::Optional<uint64_t> DWOId = DwarfUnit->getDWOId()) { 1425 DWARFUnit *DWOCU = DwarfUnit->getNonSkeletonUnitDIE(false).getDwarfUnit(); 1426 if (!DWOCU->isDWOUnit()) { 1427 std::string DWOName = dwarf::toString( 1428 DwarfUnit->getUnitDIE().find( 1429 {dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), 1430 ""); 1431 outs() << "BOLT-WARNING: Debug Fission: DWO debug information for " 1432 << DWOName 1433 << " was not retrieved and won't be updated. Please check " 1434 "relative path.\n"; 1435 continue; 1436 } 1437 DWOCUs[*DWOId] = DWOCU; 1438 } 1439 } 1440 } 1441 1442 void BinaryContext::preprocessDebugInfo() { 1443 struct CURange { 1444 uint64_t LowPC; 1445 uint64_t HighPC; 1446 DWARFUnit *Unit; 1447 1448 bool operator<(const CURange &Other) const { return LowPC < Other.LowPC; } 1449 }; 1450 1451 // Building a map of address ranges to CUs similar to .debug_aranges and use 1452 // it to assign CU to functions. 1453 std::vector<CURange> AllRanges; 1454 AllRanges.reserve(DwCtx->getNumCompileUnits()); 1455 for (const std::unique_ptr<DWARFUnit> &CU : DwCtx->compile_units()) { 1456 Expected<DWARFAddressRangesVector> RangesOrError = 1457 CU->getUnitDIE().getAddressRanges(); 1458 if (!RangesOrError) { 1459 consumeError(RangesOrError.takeError()); 1460 continue; 1461 } 1462 for (DWARFAddressRange &Range : *RangesOrError) { 1463 // Parts of the debug info could be invalidated due to corresponding code 1464 // being removed from the binary by the linker. Hence we check if the 1465 // address is a valid one. 1466 if (containsAddress(Range.LowPC)) 1467 AllRanges.emplace_back(CURange{Range.LowPC, Range.HighPC, CU.get()}); 1468 } 1469 1470 ContainsDwarf5 |= CU->getVersion() >= 5; 1471 ContainsDwarfLegacy |= CU->getVersion() < 5; 1472 } 1473 1474 if (ContainsDwarf5 && ContainsDwarfLegacy) 1475 llvm::errs() << "BOLT-WARNING: BOLT does not support mix mode binary with " 1476 "DWARF5 and DWARF{2,3,4}.\n"; 1477 1478 std::sort(AllRanges.begin(), AllRanges.end()); 1479 for (auto &KV : BinaryFunctions) { 1480 const uint64_t FunctionAddress = KV.first; 1481 BinaryFunction &Function = KV.second; 1482 1483 auto It = std::partition_point( 1484 AllRanges.begin(), AllRanges.end(), 1485 [=](CURange R) { return R.HighPC <= FunctionAddress; }); 1486 if (It != AllRanges.end() && It->LowPC <= FunctionAddress) { 1487 Function.setDWARFUnit(It->Unit); 1488 } 1489 } 1490 1491 // Discover units with debug info that needs to be updated. 1492 for (const auto &KV : BinaryFunctions) { 1493 const BinaryFunction &BF = KV.second; 1494 if (shouldEmit(BF) && BF.getDWARFUnit()) 1495 ProcessedCUs.insert(BF.getDWARFUnit()); 1496 } 1497 1498 // Clear debug info for functions from units that we are not going to process. 1499 for (auto &KV : BinaryFunctions) { 1500 BinaryFunction &BF = KV.second; 1501 if (BF.getDWARFUnit() && !ProcessedCUs.count(BF.getDWARFUnit())) 1502 BF.setDWARFUnit(nullptr); 1503 } 1504 1505 if (opts::Verbosity >= 1) { 1506 outs() << "BOLT-INFO: " << ProcessedCUs.size() << " out of " 1507 << DwCtx->getNumCompileUnits() << " CUs will be updated\n"; 1508 } 1509 1510 preprocessDWODebugInfo(); 1511 1512 // Populate MCContext with DWARF files from all units. 1513 StringRef GlobalPrefix = AsmInfo->getPrivateGlobalPrefix(); 1514 for (const std::unique_ptr<DWARFUnit> &CU : DwCtx->compile_units()) { 1515 const uint64_t CUID = CU->getOffset(); 1516 DwarfLineTable &BinaryLineTable = getDwarfLineTable(CUID); 1517 BinaryLineTable.setLabel(Ctx->getOrCreateSymbol( 1518 GlobalPrefix + "line_table_start" + Twine(CUID))); 1519 1520 if (!ProcessedCUs.count(CU.get())) 1521 continue; 1522 1523 const DWARFDebugLine::LineTable *LineTable = 1524 DwCtx->getLineTableForUnit(CU.get()); 1525 const std::vector<DWARFDebugLine::FileNameEntry> &FileNames = 1526 LineTable->Prologue.FileNames; 1527 1528 uint16_t DwarfVersion = LineTable->Prologue.getVersion(); 1529 if (DwarfVersion >= 5) { 1530 Optional<MD5::MD5Result> Checksum = None; 1531 if (LineTable->Prologue.ContentTypes.HasMD5) 1532 Checksum = LineTable->Prologue.FileNames[0].Checksum; 1533 Optional<const char *> Name = 1534 dwarf::toString(CU->getUnitDIE().find(dwarf::DW_AT_name), nullptr); 1535 if (Optional<uint64_t> DWOID = CU->getDWOId()) { 1536 auto Iter = DWOCUs.find(*DWOID); 1537 assert(Iter != DWOCUs.end() && "DWO CU was not found."); 1538 Name = dwarf::toString( 1539 Iter->second->getUnitDIE().find(dwarf::DW_AT_name), nullptr); 1540 } 1541 BinaryLineTable.setRootFile(CU->getCompilationDir(), *Name, Checksum, 1542 None); 1543 } 1544 1545 BinaryLineTable.setDwarfVersion(DwarfVersion); 1546 1547 // Assign a unique label to every line table, one per CU. 1548 // Make sure empty debug line tables are registered too. 1549 if (FileNames.empty()) { 1550 cantFail( 1551 getDwarfFile("", "<unknown>", 0, None, None, CUID, DwarfVersion)); 1552 continue; 1553 } 1554 const uint32_t Offset = DwarfVersion < 5 ? 1 : 0; 1555 for (size_t I = 0, Size = FileNames.size(); I != Size; ++I) { 1556 // Dir indexes start at 1, as DWARF file numbers, and a dir index 0 1557 // means empty dir. 1558 StringRef Dir = ""; 1559 if (FileNames[I].DirIdx != 0 || DwarfVersion >= 5) 1560 if (Optional<const char *> DirName = dwarf::toString( 1561 LineTable->Prologue 1562 .IncludeDirectories[FileNames[I].DirIdx - Offset])) 1563 Dir = *DirName; 1564 StringRef FileName = ""; 1565 if (Optional<const char *> FName = dwarf::toString(FileNames[I].Name)) 1566 FileName = *FName; 1567 assert(FileName != ""); 1568 Optional<MD5::MD5Result> Checksum = None; 1569 if (DwarfVersion >= 5 && LineTable->Prologue.ContentTypes.HasMD5) 1570 Checksum = LineTable->Prologue.FileNames[I].Checksum; 1571 cantFail( 1572 getDwarfFile(Dir, FileName, 0, Checksum, None, CUID, DwarfVersion)); 1573 } 1574 } 1575 } 1576 1577 bool BinaryContext::shouldEmit(const BinaryFunction &Function) const { 1578 if (Function.isPseudo()) 1579 return false; 1580 1581 if (opts::processAllFunctions()) 1582 return true; 1583 1584 if (Function.isIgnored()) 1585 return false; 1586 1587 // In relocation mode we will emit non-simple functions with CFG. 1588 // If the function does not have a CFG it should be marked as ignored. 1589 return HasRelocations || Function.isSimple(); 1590 } 1591 1592 void BinaryContext::printCFI(raw_ostream &OS, const MCCFIInstruction &Inst) { 1593 uint32_t Operation = Inst.getOperation(); 1594 switch (Operation) { 1595 case MCCFIInstruction::OpSameValue: 1596 OS << "OpSameValue Reg" << Inst.getRegister(); 1597 break; 1598 case MCCFIInstruction::OpRememberState: 1599 OS << "OpRememberState"; 1600 break; 1601 case MCCFIInstruction::OpRestoreState: 1602 OS << "OpRestoreState"; 1603 break; 1604 case MCCFIInstruction::OpOffset: 1605 OS << "OpOffset Reg" << Inst.getRegister() << " " << Inst.getOffset(); 1606 break; 1607 case MCCFIInstruction::OpDefCfaRegister: 1608 OS << "OpDefCfaRegister Reg" << Inst.getRegister(); 1609 break; 1610 case MCCFIInstruction::OpDefCfaOffset: 1611 OS << "OpDefCfaOffset " << Inst.getOffset(); 1612 break; 1613 case MCCFIInstruction::OpDefCfa: 1614 OS << "OpDefCfa Reg" << Inst.getRegister() << " " << Inst.getOffset(); 1615 break; 1616 case MCCFIInstruction::OpRelOffset: 1617 OS << "OpRelOffset Reg" << Inst.getRegister() << " " << Inst.getOffset(); 1618 break; 1619 case MCCFIInstruction::OpAdjustCfaOffset: 1620 OS << "OfAdjustCfaOffset " << Inst.getOffset(); 1621 break; 1622 case MCCFIInstruction::OpEscape: 1623 OS << "OpEscape"; 1624 break; 1625 case MCCFIInstruction::OpRestore: 1626 OS << "OpRestore Reg" << Inst.getRegister(); 1627 break; 1628 case MCCFIInstruction::OpUndefined: 1629 OS << "OpUndefined Reg" << Inst.getRegister(); 1630 break; 1631 case MCCFIInstruction::OpRegister: 1632 OS << "OpRegister Reg" << Inst.getRegister() << " Reg" 1633 << Inst.getRegister2(); 1634 break; 1635 case MCCFIInstruction::OpWindowSave: 1636 OS << "OpWindowSave"; 1637 break; 1638 case MCCFIInstruction::OpGnuArgsSize: 1639 OS << "OpGnuArgsSize"; 1640 break; 1641 default: 1642 OS << "Op#" << Operation; 1643 break; 1644 } 1645 } 1646 1647 MarkerSymType BinaryContext::getMarkerType(const SymbolRef &Symbol) const { 1648 // For aarch64, the ABI defines mapping symbols so we identify data in the 1649 // code section (see IHI0056B). $x identifies a symbol starting code or the 1650 // end of a data chunk inside code, $d indentifies start of data. 1651 if (!isAArch64() || ELFSymbolRef(Symbol).getSize()) 1652 return MarkerSymType::NONE; 1653 1654 Expected<StringRef> NameOrError = Symbol.getName(); 1655 Expected<object::SymbolRef::Type> TypeOrError = Symbol.getType(); 1656 1657 if (!TypeOrError || !NameOrError) 1658 return MarkerSymType::NONE; 1659 1660 if (*TypeOrError != SymbolRef::ST_Unknown) 1661 return MarkerSymType::NONE; 1662 1663 if (*NameOrError == "$x" || NameOrError->startswith("$x.")) 1664 return MarkerSymType::CODE; 1665 1666 if (*NameOrError == "$d" || NameOrError->startswith("$d.")) 1667 return MarkerSymType::DATA; 1668 1669 return MarkerSymType::NONE; 1670 } 1671 1672 bool BinaryContext::isMarker(const SymbolRef &Symbol) const { 1673 return getMarkerType(Symbol) != MarkerSymType::NONE; 1674 } 1675 1676 static void printDebugInfo(raw_ostream &OS, const MCInst &Instruction, 1677 const BinaryFunction *Function, 1678 DWARFContext *DwCtx) { 1679 DebugLineTableRowRef RowRef = 1680 DebugLineTableRowRef::fromSMLoc(Instruction.getLoc()); 1681 if (RowRef == DebugLineTableRowRef::NULL_ROW) 1682 return; 1683 1684 const DWARFDebugLine::LineTable *LineTable; 1685 if (Function && Function->getDWARFUnit() && 1686 Function->getDWARFUnit()->getOffset() == RowRef.DwCompileUnitIndex) { 1687 LineTable = Function->getDWARFLineTable(); 1688 } else { 1689 LineTable = DwCtx->getLineTableForUnit( 1690 DwCtx->getCompileUnitForOffset(RowRef.DwCompileUnitIndex)); 1691 } 1692 assert(LineTable && "line table expected for instruction with debug info"); 1693 1694 const DWARFDebugLine::Row &Row = LineTable->Rows[RowRef.RowIndex - 1]; 1695 StringRef FileName = ""; 1696 if (Optional<const char *> FName = 1697 dwarf::toString(LineTable->Prologue.FileNames[Row.File - 1].Name)) 1698 FileName = *FName; 1699 OS << " # debug line " << FileName << ":" << Row.Line; 1700 if (Row.Column) 1701 OS << ":" << Row.Column; 1702 if (Row.Discriminator) 1703 OS << " discriminator:" << Row.Discriminator; 1704 } 1705 1706 void BinaryContext::printInstruction(raw_ostream &OS, const MCInst &Instruction, 1707 uint64_t Offset, 1708 const BinaryFunction *Function, 1709 bool PrintMCInst, bool PrintMemData, 1710 bool PrintRelocations, 1711 StringRef Endl) const { 1712 if (MIB->isEHLabel(Instruction)) { 1713 OS << " EH_LABEL: " << *MIB->getTargetSymbol(Instruction) << Endl; 1714 return; 1715 } 1716 OS << format(" %08" PRIx64 ": ", Offset); 1717 if (MIB->isCFI(Instruction)) { 1718 uint32_t Offset = Instruction.getOperand(0).getImm(); 1719 OS << "\t!CFI\t$" << Offset << "\t; "; 1720 if (Function) 1721 printCFI(OS, *Function->getCFIFor(Instruction)); 1722 OS << Endl; 1723 return; 1724 } 1725 InstPrinter->printInst(&Instruction, 0, "", *STI, OS); 1726 if (MIB->isCall(Instruction)) { 1727 if (MIB->isTailCall(Instruction)) 1728 OS << " # TAILCALL "; 1729 if (MIB->isInvoke(Instruction)) { 1730 const Optional<MCPlus::MCLandingPad> EHInfo = MIB->getEHInfo(Instruction); 1731 OS << " # handler: "; 1732 if (EHInfo->first) 1733 OS << *EHInfo->first; 1734 else 1735 OS << '0'; 1736 OS << "; action: " << EHInfo->second; 1737 const int64_t GnuArgsSize = MIB->getGnuArgsSize(Instruction); 1738 if (GnuArgsSize >= 0) 1739 OS << "; GNU_args_size = " << GnuArgsSize; 1740 } 1741 } else if (MIB->isIndirectBranch(Instruction)) { 1742 if (uint64_t JTAddress = MIB->getJumpTable(Instruction)) { 1743 OS << " # JUMPTABLE @0x" << Twine::utohexstr(JTAddress); 1744 } else { 1745 OS << " # UNKNOWN CONTROL FLOW"; 1746 } 1747 } 1748 if (Optional<uint32_t> Offset = MIB->getOffset(Instruction)) 1749 OS << " # Offset: " << *Offset; 1750 1751 MIB->printAnnotations(Instruction, OS); 1752 1753 if (opts::PrintDebugInfo) 1754 printDebugInfo(OS, Instruction, Function, DwCtx.get()); 1755 1756 if ((opts::PrintRelocations || PrintRelocations) && Function) { 1757 const uint64_t Size = computeCodeSize(&Instruction, &Instruction + 1); 1758 Function->printRelocations(OS, Offset, Size); 1759 } 1760 1761 OS << Endl; 1762 1763 if (PrintMCInst) { 1764 Instruction.dump_pretty(OS, InstPrinter.get()); 1765 OS << Endl; 1766 } 1767 } 1768 1769 Optional<uint64_t> 1770 BinaryContext::getBaseAddressForMapping(uint64_t MMapAddress, 1771 uint64_t FileOffset) const { 1772 // Find a segment with a matching file offset. 1773 for (auto &KV : SegmentMapInfo) { 1774 const SegmentInfo &SegInfo = KV.second; 1775 if (alignDown(SegInfo.FileOffset, SegInfo.Alignment) == FileOffset) { 1776 // Use segment's aligned memory offset to calculate the base address. 1777 const uint64_t MemOffset = alignDown(SegInfo.Address, SegInfo.Alignment); 1778 return MMapAddress - MemOffset; 1779 } 1780 } 1781 1782 return NoneType(); 1783 } 1784 1785 ErrorOr<BinarySection &> BinaryContext::getSectionForAddress(uint64_t Address) { 1786 auto SI = AddressToSection.upper_bound(Address); 1787 if (SI != AddressToSection.begin()) { 1788 --SI; 1789 uint64_t UpperBound = SI->first + SI->second->getSize(); 1790 if (!SI->second->getSize()) 1791 UpperBound += 1; 1792 if (UpperBound > Address) 1793 return *SI->second; 1794 } 1795 return std::make_error_code(std::errc::bad_address); 1796 } 1797 1798 ErrorOr<StringRef> 1799 BinaryContext::getSectionNameForAddress(uint64_t Address) const { 1800 if (ErrorOr<const BinarySection &> Section = getSectionForAddress(Address)) 1801 return Section->getName(); 1802 return std::make_error_code(std::errc::bad_address); 1803 } 1804 1805 BinarySection &BinaryContext::registerSection(BinarySection *Section) { 1806 auto Res = Sections.insert(Section); 1807 (void)Res; 1808 assert(Res.second && "can't register the same section twice."); 1809 1810 // Only register allocatable sections in the AddressToSection map. 1811 if (Section->isAllocatable() && Section->getAddress()) 1812 AddressToSection.insert(std::make_pair(Section->getAddress(), Section)); 1813 NameToSection.insert( 1814 std::make_pair(std::string(Section->getName()), Section)); 1815 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: registering " << *Section << "\n"); 1816 return *Section; 1817 } 1818 1819 BinarySection &BinaryContext::registerSection(SectionRef Section) { 1820 return registerSection(new BinarySection(*this, Section)); 1821 } 1822 1823 BinarySection & 1824 BinaryContext::registerSection(StringRef SectionName, 1825 const BinarySection &OriginalSection) { 1826 return registerSection( 1827 new BinarySection(*this, SectionName, OriginalSection)); 1828 } 1829 1830 BinarySection & 1831 BinaryContext::registerOrUpdateSection(StringRef Name, unsigned ELFType, 1832 unsigned ELFFlags, uint8_t *Data, 1833 uint64_t Size, unsigned Alignment) { 1834 auto NamedSections = getSectionByName(Name); 1835 if (NamedSections.begin() != NamedSections.end()) { 1836 assert(std::next(NamedSections.begin()) == NamedSections.end() && 1837 "can only update unique sections"); 1838 BinarySection *Section = NamedSections.begin()->second; 1839 1840 LLVM_DEBUG(dbgs() << "BOLT-DEBUG: updating " << *Section << " -> "); 1841 const bool Flag = Section->isAllocatable(); 1842 (void)Flag; 1843 Section->update(Data, Size, Alignment, ELFType, ELFFlags); 1844 LLVM_DEBUG(dbgs() << *Section << "\n"); 1845 // FIXME: Fix section flags/attributes for MachO. 1846 if (isELF()) 1847 assert(Flag == Section->isAllocatable() && 1848 "can't change section allocation status"); 1849 return *Section; 1850 } 1851 1852 return registerSection( 1853 new BinarySection(*this, Name, Data, Size, Alignment, ELFType, ELFFlags)); 1854 } 1855 1856 bool BinaryContext::deregisterSection(BinarySection &Section) { 1857 BinarySection *SectionPtr = &Section; 1858 auto Itr = Sections.find(SectionPtr); 1859 if (Itr != Sections.end()) { 1860 auto Range = AddressToSection.equal_range(SectionPtr->getAddress()); 1861 while (Range.first != Range.second) { 1862 if (Range.first->second == SectionPtr) { 1863 AddressToSection.erase(Range.first); 1864 break; 1865 } 1866 ++Range.first; 1867 } 1868 1869 auto NameRange = 1870 NameToSection.equal_range(std::string(SectionPtr->getName())); 1871 while (NameRange.first != NameRange.second) { 1872 if (NameRange.first->second == SectionPtr) { 1873 NameToSection.erase(NameRange.first); 1874 break; 1875 } 1876 ++NameRange.first; 1877 } 1878 1879 Sections.erase(Itr); 1880 delete SectionPtr; 1881 return true; 1882 } 1883 return false; 1884 } 1885 1886 void BinaryContext::printSections(raw_ostream &OS) const { 1887 for (BinarySection *const &Section : Sections) 1888 OS << "BOLT-INFO: " << *Section << "\n"; 1889 } 1890 1891 BinarySection &BinaryContext::absoluteSection() { 1892 if (ErrorOr<BinarySection &> Section = getUniqueSectionByName("<absolute>")) 1893 return *Section; 1894 return registerOrUpdateSection("<absolute>", ELF::SHT_NULL, 0u); 1895 } 1896 1897 ErrorOr<uint64_t> BinaryContext::getUnsignedValueAtAddress(uint64_t Address, 1898 size_t Size) const { 1899 const ErrorOr<const BinarySection &> Section = getSectionForAddress(Address); 1900 if (!Section) 1901 return std::make_error_code(std::errc::bad_address); 1902 1903 if (Section->isVirtual()) 1904 return 0; 1905 1906 DataExtractor DE(Section->getContents(), AsmInfo->isLittleEndian(), 1907 AsmInfo->getCodePointerSize()); 1908 auto ValueOffset = static_cast<uint64_t>(Address - Section->getAddress()); 1909 return DE.getUnsigned(&ValueOffset, Size); 1910 } 1911 1912 ErrorOr<uint64_t> BinaryContext::getSignedValueAtAddress(uint64_t Address, 1913 size_t Size) const { 1914 const ErrorOr<const BinarySection &> Section = getSectionForAddress(Address); 1915 if (!Section) 1916 return std::make_error_code(std::errc::bad_address); 1917 1918 if (Section->isVirtual()) 1919 return 0; 1920 1921 DataExtractor DE(Section->getContents(), AsmInfo->isLittleEndian(), 1922 AsmInfo->getCodePointerSize()); 1923 auto ValueOffset = static_cast<uint64_t>(Address - Section->getAddress()); 1924 return DE.getSigned(&ValueOffset, Size); 1925 } 1926 1927 void BinaryContext::addRelocation(uint64_t Address, MCSymbol *Symbol, 1928 uint64_t Type, uint64_t Addend, 1929 uint64_t Value) { 1930 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1931 assert(Section && "cannot find section for address"); 1932 Section->addRelocation(Address - Section->getAddress(), Symbol, Type, Addend, 1933 Value); 1934 } 1935 1936 void BinaryContext::addDynamicRelocation(uint64_t Address, MCSymbol *Symbol, 1937 uint64_t Type, uint64_t Addend, 1938 uint64_t Value) { 1939 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1940 assert(Section && "cannot find section for address"); 1941 Section->addDynamicRelocation(Address - Section->getAddress(), Symbol, Type, 1942 Addend, Value); 1943 } 1944 1945 bool BinaryContext::removeRelocationAt(uint64_t Address) { 1946 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1947 assert(Section && "cannot find section for address"); 1948 return Section->removeRelocationAt(Address - Section->getAddress()); 1949 } 1950 1951 const Relocation *BinaryContext::getRelocationAt(uint64_t Address) { 1952 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1953 if (!Section) 1954 return nullptr; 1955 1956 return Section->getRelocationAt(Address - Section->getAddress()); 1957 } 1958 1959 const Relocation *BinaryContext::getDynamicRelocationAt(uint64_t Address) { 1960 ErrorOr<BinarySection &> Section = getSectionForAddress(Address); 1961 if (!Section) 1962 return nullptr; 1963 1964 return Section->getDynamicRelocationAt(Address - Section->getAddress()); 1965 } 1966 1967 void BinaryContext::markAmbiguousRelocations(BinaryData &BD, 1968 const uint64_t Address) { 1969 auto setImmovable = [&](BinaryData &BD) { 1970 BinaryData *Root = BD.getAtomicRoot(); 1971 LLVM_DEBUG(if (Root->isMoveable()) { 1972 dbgs() << "BOLT-DEBUG: setting " << *Root << " as immovable " 1973 << "due to ambiguous relocation referencing 0x" 1974 << Twine::utohexstr(Address) << '\n'; 1975 }); 1976 Root->setIsMoveable(false); 1977 }; 1978 1979 if (Address == BD.getAddress()) { 1980 setImmovable(BD); 1981 1982 // Set previous symbol as immovable 1983 BinaryData *Prev = getBinaryDataContainingAddress(Address - 1); 1984 if (Prev && Prev->getEndAddress() == BD.getAddress()) 1985 setImmovable(*Prev); 1986 } 1987 1988 if (Address == BD.getEndAddress()) { 1989 setImmovable(BD); 1990 1991 // Set next symbol as immovable 1992 BinaryData *Next = getBinaryDataContainingAddress(BD.getEndAddress()); 1993 if (Next && Next->getAddress() == BD.getEndAddress()) 1994 setImmovable(*Next); 1995 } 1996 } 1997 1998 BinaryFunction *BinaryContext::getFunctionForSymbol(const MCSymbol *Symbol, 1999 uint64_t *EntryDesc) { 2000 std::shared_lock<std::shared_timed_mutex> Lock(SymbolToFunctionMapMutex); 2001 auto BFI = SymbolToFunctionMap.find(Symbol); 2002 if (BFI == SymbolToFunctionMap.end()) 2003 return nullptr; 2004 2005 BinaryFunction *BF = BFI->second; 2006 if (EntryDesc) 2007 *EntryDesc = BF->getEntryIDForSymbol(Symbol); 2008 2009 return BF; 2010 } 2011 2012 void BinaryContext::exitWithBugReport(StringRef Message, 2013 const BinaryFunction &Function) const { 2014 errs() << "=======================================\n"; 2015 errs() << "BOLT is unable to proceed because it couldn't properly understand " 2016 "this function.\n"; 2017 errs() << "If you are running the most recent version of BOLT, you may " 2018 "want to " 2019 "report this and paste this dump.\nPlease check that there is no " 2020 "sensitive contents being shared in this dump.\n"; 2021 errs() << "\nOffending function: " << Function.getPrintName() << "\n\n"; 2022 ScopedPrinter SP(errs()); 2023 SP.printBinaryBlock("Function contents", *Function.getData()); 2024 errs() << "\n"; 2025 Function.dump(); 2026 errs() << "ERROR: " << Message; 2027 errs() << "\n=======================================\n"; 2028 exit(1); 2029 } 2030 2031 BinaryFunction * 2032 BinaryContext::createInjectedBinaryFunction(const std::string &Name, 2033 bool IsSimple) { 2034 InjectedBinaryFunctions.push_back(new BinaryFunction(Name, *this, IsSimple)); 2035 BinaryFunction *BF = InjectedBinaryFunctions.back(); 2036 setSymbolToFunctionMap(BF->getSymbol(), BF); 2037 BF->CurrentState = BinaryFunction::State::CFG; 2038 return BF; 2039 } 2040 2041 std::pair<size_t, size_t> 2042 BinaryContext::calculateEmittedSize(BinaryFunction &BF, bool FixBranches) { 2043 // Adjust branch instruction to match the current layout. 2044 if (FixBranches) 2045 BF.fixBranches(); 2046 2047 // Create local MC context to isolate the effect of ephemeral code emission. 2048 IndependentCodeEmitter MCEInstance = createIndependentMCCodeEmitter(); 2049 MCContext *LocalCtx = MCEInstance.LocalCtx.get(); 2050 MCAsmBackend *MAB = 2051 TheTarget->createMCAsmBackend(*STI, *MRI, MCTargetOptions()); 2052 2053 SmallString<256> Code; 2054 raw_svector_ostream VecOS(Code); 2055 2056 std::unique_ptr<MCObjectWriter> OW = MAB->createObjectWriter(VecOS); 2057 std::unique_ptr<MCStreamer> Streamer(TheTarget->createMCObjectStreamer( 2058 *TheTriple, *LocalCtx, std::unique_ptr<MCAsmBackend>(MAB), std::move(OW), 2059 std::unique_ptr<MCCodeEmitter>(MCEInstance.MCE.release()), *STI, 2060 /*RelaxAll=*/false, 2061 /*IncrementalLinkerCompatible=*/false, 2062 /*DWARFMustBeAtTheEnd=*/false)); 2063 2064 Streamer->initSections(false, *STI); 2065 2066 MCSection *Section = MCEInstance.LocalMOFI->getTextSection(); 2067 Section->setHasInstructions(true); 2068 2069 // Create symbols in the LocalCtx so that they get destroyed with it. 2070 MCSymbol *StartLabel = LocalCtx->createTempSymbol(); 2071 MCSymbol *EndLabel = LocalCtx->createTempSymbol(); 2072 MCSymbol *ColdStartLabel = LocalCtx->createTempSymbol(); 2073 MCSymbol *ColdEndLabel = LocalCtx->createTempSymbol(); 2074 2075 Streamer->switchSection(Section); 2076 Streamer->emitLabel(StartLabel); 2077 emitFunctionBody(*Streamer, BF, /*EmitColdPart=*/false, 2078 /*EmitCodeOnly=*/true); 2079 Streamer->emitLabel(EndLabel); 2080 2081 if (BF.isSplit()) { 2082 MCSectionELF *ColdSection = 2083 LocalCtx->getELFSection(BF.getColdCodeSectionName(), ELF::SHT_PROGBITS, 2084 ELF::SHF_EXECINSTR | ELF::SHF_ALLOC); 2085 ColdSection->setHasInstructions(true); 2086 2087 Streamer->switchSection(ColdSection); 2088 Streamer->emitLabel(ColdStartLabel); 2089 emitFunctionBody(*Streamer, BF, /*EmitColdPart=*/true, 2090 /*EmitCodeOnly=*/true); 2091 Streamer->emitLabel(ColdEndLabel); 2092 // To avoid calling MCObjectStreamer::flushPendingLabels() which is private 2093 Streamer->emitBytes(StringRef("")); 2094 Streamer->switchSection(Section); 2095 } 2096 2097 // To avoid calling MCObjectStreamer::flushPendingLabels() which is private or 2098 // MCStreamer::Finish(), which does more than we want 2099 Streamer->emitBytes(StringRef("")); 2100 2101 MCAssembler &Assembler = 2102 static_cast<MCObjectStreamer *>(Streamer.get())->getAssembler(); 2103 MCAsmLayout Layout(Assembler); 2104 Assembler.layout(Layout); 2105 2106 const uint64_t HotSize = 2107 Layout.getSymbolOffset(*EndLabel) - Layout.getSymbolOffset(*StartLabel); 2108 const uint64_t ColdSize = BF.isSplit() 2109 ? Layout.getSymbolOffset(*ColdEndLabel) - 2110 Layout.getSymbolOffset(*ColdStartLabel) 2111 : 0ULL; 2112 2113 // Clean-up the effect of the code emission. 2114 for (const MCSymbol &Symbol : Assembler.symbols()) { 2115 MCSymbol *MutableSymbol = const_cast<MCSymbol *>(&Symbol); 2116 MutableSymbol->setUndefined(); 2117 MutableSymbol->setIsRegistered(false); 2118 } 2119 2120 return std::make_pair(HotSize, ColdSize); 2121 } 2122 2123 bool BinaryContext::validateEncoding(const MCInst &Inst, 2124 ArrayRef<uint8_t> InputEncoding) const { 2125 SmallString<256> Code; 2126 SmallVector<MCFixup, 4> Fixups; 2127 raw_svector_ostream VecOS(Code); 2128 2129 MCE->encodeInstruction(Inst, VecOS, Fixups, *STI); 2130 auto EncodedData = ArrayRef<uint8_t>((uint8_t *)Code.data(), Code.size()); 2131 if (InputEncoding != EncodedData) { 2132 if (opts::Verbosity > 1) { 2133 errs() << "BOLT-WARNING: mismatched encoding detected\n" 2134 << " input: " << InputEncoding << '\n' 2135 << " output: " << EncodedData << '\n'; 2136 } 2137 return false; 2138 } 2139 2140 return true; 2141 } 2142 2143 uint64_t BinaryContext::getHotThreshold() const { 2144 static uint64_t Threshold = 0; 2145 if (Threshold == 0) { 2146 Threshold = std::max( 2147 (uint64_t)opts::ExecutionCountThreshold, 2148 NumProfiledFuncs ? SumExecutionCount / (2 * NumProfiledFuncs) : 1); 2149 } 2150 return Threshold; 2151 } 2152 2153 BinaryFunction *BinaryContext::getBinaryFunctionContainingAddress( 2154 uint64_t Address, bool CheckPastEnd, bool UseMaxSize) { 2155 auto FI = BinaryFunctions.upper_bound(Address); 2156 if (FI == BinaryFunctions.begin()) 2157 return nullptr; 2158 --FI; 2159 2160 const uint64_t UsedSize = 2161 UseMaxSize ? FI->second.getMaxSize() : FI->second.getSize(); 2162 2163 if (Address >= FI->first + UsedSize + (CheckPastEnd ? 1 : 0)) 2164 return nullptr; 2165 2166 return &FI->second; 2167 } 2168 2169 BinaryFunction *BinaryContext::getBinaryFunctionAtAddress(uint64_t Address) { 2170 // First, try to find a function starting at the given address. If the 2171 // function was folded, this will get us the original folded function if it 2172 // wasn't removed from the list, e.g. in non-relocation mode. 2173 auto BFI = BinaryFunctions.find(Address); 2174 if (BFI != BinaryFunctions.end()) 2175 return &BFI->second; 2176 2177 // We might have folded the function matching the object at the given 2178 // address. In such case, we look for a function matching the symbol 2179 // registered at the original address. The new function (the one that the 2180 // original was folded into) will hold the symbol. 2181 if (const BinaryData *BD = getBinaryDataAtAddress(Address)) { 2182 uint64_t EntryID = 0; 2183 BinaryFunction *BF = getFunctionForSymbol(BD->getSymbol(), &EntryID); 2184 if (BF && EntryID == 0) 2185 return BF; 2186 } 2187 return nullptr; 2188 } 2189 2190 DebugAddressRangesVector BinaryContext::translateModuleAddressRanges( 2191 const DWARFAddressRangesVector &InputRanges) const { 2192 DebugAddressRangesVector OutputRanges; 2193 2194 for (const DWARFAddressRange Range : InputRanges) { 2195 auto BFI = BinaryFunctions.lower_bound(Range.LowPC); 2196 while (BFI != BinaryFunctions.end()) { 2197 const BinaryFunction &Function = BFI->second; 2198 if (Function.getAddress() >= Range.HighPC) 2199 break; 2200 const DebugAddressRangesVector FunctionRanges = 2201 Function.getOutputAddressRanges(); 2202 std::move(std::begin(FunctionRanges), std::end(FunctionRanges), 2203 std::back_inserter(OutputRanges)); 2204 std::advance(BFI, 1); 2205 } 2206 } 2207 2208 return OutputRanges; 2209 } 2210 2211 } // namespace bolt 2212 } // namespace llvm 2213