1 //===- bolt/Core/BinaryBasicBlock.cpp - Low-level basic block -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the BinaryBasicBlock class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "bolt/Core/BinaryBasicBlock.h" 14 #include "bolt/Core/BinaryContext.h" 15 #include "bolt/Core/BinaryFunction.h" 16 #include "llvm/MC/MCAsmLayout.h" 17 #include "llvm/MC/MCInst.h" 18 #include "llvm/Support/Errc.h" 19 20 #define DEBUG_TYPE "bolt" 21 22 namespace llvm { 23 namespace bolt { 24 25 constexpr uint32_t BinaryBasicBlock::INVALID_OFFSET; 26 27 bool operator<(const BinaryBasicBlock &LHS, const BinaryBasicBlock &RHS) { 28 return LHS.Index < RHS.Index; 29 } 30 31 bool BinaryBasicBlock::hasCFG() const { return getParent()->hasCFG(); } 32 33 bool BinaryBasicBlock::isEntryPoint() const { 34 return getParent()->isEntryPoint(*this); 35 } 36 37 bool BinaryBasicBlock::hasInstructions() const { 38 return getParent()->hasInstructions(); 39 } 40 41 bool BinaryBasicBlock::hasJumpTable() const { 42 const MCInst *Inst = getLastNonPseudoInstr(); 43 const JumpTable *JT = Inst ? Function->getJumpTable(*Inst) : nullptr; 44 return (JT != nullptr); 45 } 46 47 void BinaryBasicBlock::adjustNumPseudos(const MCInst &Inst, int Sign) { 48 BinaryContext &BC = Function->getBinaryContext(); 49 if (BC.MIB->isPseudo(Inst)) 50 NumPseudos += Sign; 51 } 52 53 BinaryBasicBlock::iterator BinaryBasicBlock::getFirstNonPseudo() { 54 const BinaryContext &BC = Function->getBinaryContext(); 55 for (auto II = Instructions.begin(), E = Instructions.end(); II != E; ++II) { 56 if (!BC.MIB->isPseudo(*II)) 57 return II; 58 } 59 return end(); 60 } 61 62 BinaryBasicBlock::reverse_iterator BinaryBasicBlock::getLastNonPseudo() { 63 const BinaryContext &BC = Function->getBinaryContext(); 64 for (auto RII = Instructions.rbegin(), E = Instructions.rend(); RII != E; 65 ++RII) { 66 if (!BC.MIB->isPseudo(*RII)) 67 return RII; 68 } 69 return rend(); 70 } 71 72 bool BinaryBasicBlock::validateSuccessorInvariants() { 73 const MCInst *Inst = getLastNonPseudoInstr(); 74 const JumpTable *JT = Inst ? Function->getJumpTable(*Inst) : nullptr; 75 BinaryContext &BC = Function->getBinaryContext(); 76 bool Valid = true; 77 78 if (JT) { 79 // Note: for now we assume that successors do not reference labels from 80 // any overlapping jump tables. We only look at the entries for the jump 81 // table that is referenced at the last instruction. 82 const auto Range = JT->getEntriesForAddress(BC.MIB->getJumpTable(*Inst)); 83 const std::vector<const MCSymbol *> Entries( 84 std::next(JT->Entries.begin(), Range.first), 85 std::next(JT->Entries.begin(), Range.second)); 86 std::set<const MCSymbol *> UniqueSyms(Entries.begin(), Entries.end()); 87 for (BinaryBasicBlock *Succ : Successors) { 88 auto Itr = UniqueSyms.find(Succ->getLabel()); 89 if (Itr != UniqueSyms.end()) { 90 UniqueSyms.erase(Itr); 91 } else { 92 // Work on the assumption that jump table blocks don't 93 // have a conditional successor. 94 Valid = false; 95 errs() << "BOLT-WARNING: Jump table successor " << Succ->getName() 96 << " not contained in the jump table.\n"; 97 } 98 } 99 // If there are any leftover entries in the jump table, they 100 // must be one of the function end labels. 101 if (Valid) { 102 for (const MCSymbol *Sym : UniqueSyms) { 103 Valid &= (Sym == Function->getFunctionEndLabel() || 104 Sym == Function->getFunctionColdEndLabel()); 105 if (!Valid) { 106 errs() << "BOLT-WARNING: Jump table contains illegal entry: " 107 << Sym->getName() << "\n"; 108 } 109 } 110 } 111 } else { 112 // Unknown control flow. 113 if (Inst && BC.MIB->isIndirectBranch(*Inst)) 114 return true; 115 116 const MCSymbol *TBB = nullptr; 117 const MCSymbol *FBB = nullptr; 118 MCInst *CondBranch = nullptr; 119 MCInst *UncondBranch = nullptr; 120 121 if (analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) { 122 switch (Successors.size()) { 123 case 0: 124 Valid = !CondBranch && !UncondBranch; 125 break; 126 case 1: { 127 const bool HasCondBlock = 128 CondBranch && Function->getBasicBlockForLabel( 129 BC.MIB->getTargetSymbol(*CondBranch)); 130 Valid = !CondBranch || !HasCondBlock; 131 break; 132 } 133 case 2: 134 Valid = (CondBranch && 135 (TBB == getConditionalSuccessor(true)->getLabel() && 136 ((!UncondBranch && !FBB) || 137 (UncondBranch && 138 FBB == getConditionalSuccessor(false)->getLabel())))); 139 break; 140 } 141 } 142 } 143 if (!Valid) { 144 errs() << "BOLT-WARNING: CFG invalid in " << *getFunction() << " @ " 145 << getName() << "\n"; 146 if (JT) { 147 errs() << "Jump Table instruction addr = 0x" 148 << Twine::utohexstr(BC.MIB->getJumpTable(*Inst)) << "\n"; 149 JT->print(errs()); 150 } 151 getFunction()->dump(); 152 } 153 return Valid; 154 } 155 156 BinaryBasicBlock *BinaryBasicBlock::getSuccessor(const MCSymbol *Label) const { 157 if (!Label && succ_size() == 1) 158 return *succ_begin(); 159 160 for (BinaryBasicBlock *BB : successors()) 161 if (BB->getLabel() == Label) 162 return BB; 163 164 return nullptr; 165 } 166 167 BinaryBasicBlock *BinaryBasicBlock::getSuccessor(const MCSymbol *Label, 168 BinaryBranchInfo &BI) const { 169 auto BIIter = branch_info_begin(); 170 for (BinaryBasicBlock *BB : successors()) { 171 if (BB->getLabel() == Label) { 172 BI = *BIIter; 173 return BB; 174 } 175 ++BIIter; 176 } 177 178 return nullptr; 179 } 180 181 BinaryBasicBlock *BinaryBasicBlock::getLandingPad(const MCSymbol *Label) const { 182 for (BinaryBasicBlock *BB : landing_pads()) 183 if (BB->getLabel() == Label) 184 return BB; 185 186 return nullptr; 187 } 188 189 int32_t BinaryBasicBlock::getCFIStateAtInstr(const MCInst *Instr) const { 190 assert( 191 getFunction()->getState() >= BinaryFunction::State::CFG && 192 "can only calculate CFI state when function is in or past the CFG state"); 193 194 const BinaryFunction::CFIInstrMapType &FDEProgram = 195 getFunction()->getFDEProgram(); 196 197 // Find the last CFI preceding Instr in this basic block. 198 const MCInst *LastCFI = nullptr; 199 bool InstrSeen = (Instr == nullptr); 200 for (auto RII = Instructions.rbegin(), E = Instructions.rend(); RII != E; 201 ++RII) { 202 if (!InstrSeen) { 203 InstrSeen = (&*RII == Instr); 204 continue; 205 } 206 if (Function->getBinaryContext().MIB->isCFI(*RII)) { 207 LastCFI = &*RII; 208 break; 209 } 210 } 211 212 assert(InstrSeen && "instruction expected in basic block"); 213 214 // CFI state is the same as at basic block entry point. 215 if (!LastCFI) 216 return getCFIState(); 217 218 // Fold all RememberState/RestoreState sequences, such as for: 219 // 220 // [ CFI #(K-1) ] 221 // RememberState (#K) 222 // .... 223 // RestoreState 224 // RememberState 225 // .... 226 // RestoreState 227 // [ GNU_args_size ] 228 // RememberState 229 // .... 230 // RestoreState <- LastCFI 231 // 232 // we return K - the most efficient state to (re-)generate. 233 int64_t State = LastCFI->getOperand(0).getImm(); 234 while (State >= 0 && 235 FDEProgram[State].getOperation() == MCCFIInstruction::OpRestoreState) { 236 int32_t Depth = 1; 237 --State; 238 assert(State >= 0 && "first CFI cannot be RestoreState"); 239 while (Depth && State >= 0) { 240 const MCCFIInstruction &CFIInstr = FDEProgram[State]; 241 if (CFIInstr.getOperation() == MCCFIInstruction::OpRestoreState) 242 ++Depth; 243 else if (CFIInstr.getOperation() == MCCFIInstruction::OpRememberState) 244 --Depth; 245 --State; 246 } 247 assert(Depth == 0 && "unbalanced RememberState/RestoreState stack"); 248 249 // Skip any GNU_args_size. 250 while (State >= 0 && FDEProgram[State].getOperation() == 251 MCCFIInstruction::OpGnuArgsSize) { 252 --State; 253 } 254 } 255 256 assert((State + 1 >= 0) && "miscalculated CFI state"); 257 return State + 1; 258 } 259 260 void BinaryBasicBlock::addSuccessor(BinaryBasicBlock *Succ, uint64_t Count, 261 uint64_t MispredictedCount) { 262 Successors.push_back(Succ); 263 BranchInfo.push_back({Count, MispredictedCount}); 264 Succ->Predecessors.push_back(this); 265 } 266 267 void BinaryBasicBlock::replaceSuccessor(BinaryBasicBlock *Succ, 268 BinaryBasicBlock *NewSucc, 269 uint64_t Count, 270 uint64_t MispredictedCount) { 271 Succ->removePredecessor(this, /*Multiple=*/false); 272 auto I = succ_begin(); 273 auto BI = BranchInfo.begin(); 274 for (; I != succ_end(); ++I) { 275 assert(BI != BranchInfo.end() && "missing BranchInfo entry"); 276 if (*I == Succ) 277 break; 278 ++BI; 279 } 280 assert(I != succ_end() && "no such successor!"); 281 282 *I = NewSucc; 283 *BI = BinaryBranchInfo{Count, MispredictedCount}; 284 NewSucc->addPredecessor(this); 285 } 286 287 void BinaryBasicBlock::removeAllSuccessors() { 288 for (BinaryBasicBlock *SuccessorBB : successors()) 289 SuccessorBB->removePredecessor(this); 290 Successors.clear(); 291 BranchInfo.clear(); 292 } 293 294 void BinaryBasicBlock::removeSuccessor(BinaryBasicBlock *Succ) { 295 Succ->removePredecessor(this, /*Multiple=*/false); 296 auto I = succ_begin(); 297 auto BI = BranchInfo.begin(); 298 for (; I != succ_end(); ++I) { 299 assert(BI != BranchInfo.end() && "missing BranchInfo entry"); 300 if (*I == Succ) 301 break; 302 ++BI; 303 } 304 assert(I != succ_end() && "no such successor!"); 305 306 Successors.erase(I); 307 BranchInfo.erase(BI); 308 } 309 310 void BinaryBasicBlock::addPredecessor(BinaryBasicBlock *Pred) { 311 Predecessors.push_back(Pred); 312 } 313 314 void BinaryBasicBlock::removePredecessor(BinaryBasicBlock *Pred, 315 bool Multiple) { 316 // Note: the predecessor could be listed multiple times. 317 bool Erased = false; 318 for (auto PredI = Predecessors.begin(); PredI != Predecessors.end();) { 319 if (*PredI == Pred) { 320 Erased = true; 321 PredI = Predecessors.erase(PredI); 322 if (!Multiple) 323 return; 324 } else { 325 ++PredI; 326 } 327 } 328 assert(Erased && "Pred is not a predecessor of this block!"); 329 } 330 331 void BinaryBasicBlock::removeDuplicateConditionalSuccessor(MCInst *CondBranch) { 332 assert(succ_size() == 2 && Successors[0] == Successors[1] && 333 "conditional successors expected"); 334 335 BinaryBasicBlock *Succ = Successors[0]; 336 const BinaryBranchInfo CondBI = BranchInfo[0]; 337 const BinaryBranchInfo UncondBI = BranchInfo[1]; 338 339 eraseInstruction(findInstruction(CondBranch)); 340 341 Successors.clear(); 342 BranchInfo.clear(); 343 344 Successors.push_back(Succ); 345 346 uint64_t Count = COUNT_NO_PROFILE; 347 if (CondBI.Count != COUNT_NO_PROFILE && UncondBI.Count != COUNT_NO_PROFILE) 348 Count = CondBI.Count + UncondBI.Count; 349 BranchInfo.push_back({Count, 0}); 350 } 351 352 void BinaryBasicBlock::adjustExecutionCount(double Ratio) { 353 auto adjustedCount = [&](uint64_t Count) -> uint64_t { 354 double NewCount = Count * Ratio; 355 if (!NewCount && Count && (Ratio > 0.0)) 356 NewCount = 1; 357 return NewCount; 358 }; 359 360 setExecutionCount(adjustedCount(getKnownExecutionCount())); 361 for (BinaryBranchInfo &BI : branch_info()) { 362 if (BI.Count != COUNT_NO_PROFILE) 363 BI.Count = adjustedCount(BI.Count); 364 if (BI.MispredictedCount != COUNT_INFERRED) 365 BI.MispredictedCount = adjustedCount(BI.MispredictedCount); 366 } 367 } 368 369 bool BinaryBasicBlock::analyzeBranch(const MCSymbol *&TBB, const MCSymbol *&FBB, 370 MCInst *&CondBranch, 371 MCInst *&UncondBranch) { 372 auto &MIB = Function->getBinaryContext().MIB; 373 return MIB->analyzeBranch(Instructions.begin(), Instructions.end(), TBB, FBB, 374 CondBranch, UncondBranch); 375 } 376 377 bool BinaryBasicBlock::isMacroOpFusionPair(const_iterator I) const { 378 auto &MIB = Function->getBinaryContext().MIB; 379 ArrayRef<MCInst> Insts = Instructions; 380 return MIB->isMacroOpFusionPair(Insts.slice(I - begin())); 381 } 382 383 BinaryBasicBlock::const_iterator 384 BinaryBasicBlock::getMacroOpFusionPair() const { 385 if (!Function->getBinaryContext().isX86()) 386 return end(); 387 388 if (getNumNonPseudos() < 2 || succ_size() != 2) 389 return end(); 390 391 auto RI = getLastNonPseudo(); 392 assert(RI != rend() && "cannot have an empty block with 2 successors"); 393 394 BinaryContext &BC = Function->getBinaryContext(); 395 396 // Skip instruction if it's an unconditional branch following 397 // a conditional one. 398 if (BC.MIB->isUnconditionalBranch(*RI)) 399 ++RI; 400 401 if (!BC.MIB->isConditionalBranch(*RI)) 402 return end(); 403 404 // Start checking with instruction preceding the conditional branch. 405 ++RI; 406 if (RI == rend()) 407 return end(); 408 409 auto II = std::prev(RI.base()); // convert to a forward iterator 410 if (isMacroOpFusionPair(II)) 411 return II; 412 413 return end(); 414 } 415 416 MCInst *BinaryBasicBlock::getTerminatorBefore(MCInst *Pos) { 417 BinaryContext &BC = Function->getBinaryContext(); 418 auto Itr = rbegin(); 419 bool Check = Pos ? false : true; 420 MCInst *FirstTerminator = nullptr; 421 while (Itr != rend()) { 422 if (!Check) { 423 if (&*Itr == Pos) 424 Check = true; 425 ++Itr; 426 continue; 427 } 428 if (BC.MIB->isTerminator(*Itr)) 429 FirstTerminator = &*Itr; 430 ++Itr; 431 } 432 return FirstTerminator; 433 } 434 435 bool BinaryBasicBlock::hasTerminatorAfter(MCInst *Pos) { 436 BinaryContext &BC = Function->getBinaryContext(); 437 auto Itr = rbegin(); 438 while (Itr != rend()) { 439 if (&*Itr == Pos) 440 return false; 441 if (BC.MIB->isTerminator(*Itr)) 442 return true; 443 ++Itr; 444 } 445 return false; 446 } 447 448 bool BinaryBasicBlock::swapConditionalSuccessors() { 449 if (succ_size() != 2) 450 return false; 451 452 std::swap(Successors[0], Successors[1]); 453 std::swap(BranchInfo[0], BranchInfo[1]); 454 return true; 455 } 456 457 void BinaryBasicBlock::addBranchInstruction(const BinaryBasicBlock *Successor) { 458 assert(isSuccessor(Successor)); 459 BinaryContext &BC = Function->getBinaryContext(); 460 MCInst NewInst; 461 std::unique_lock<std::shared_timed_mutex> Lock(BC.CtxMutex); 462 BC.MIB->createUncondBranch(NewInst, Successor->getLabel(), BC.Ctx.get()); 463 Instructions.emplace_back(std::move(NewInst)); 464 } 465 466 void BinaryBasicBlock::addTailCallInstruction(const MCSymbol *Target) { 467 BinaryContext &BC = Function->getBinaryContext(); 468 MCInst NewInst; 469 BC.MIB->createTailCall(NewInst, Target, BC.Ctx.get()); 470 Instructions.emplace_back(std::move(NewInst)); 471 } 472 473 uint32_t BinaryBasicBlock::getNumCalls() const { 474 uint32_t N = 0; 475 BinaryContext &BC = Function->getBinaryContext(); 476 for (const MCInst &Instr : Instructions) { 477 if (BC.MIB->isCall(Instr)) 478 ++N; 479 } 480 return N; 481 } 482 483 uint32_t BinaryBasicBlock::getNumPseudos() const { 484 #ifndef NDEBUG 485 BinaryContext &BC = Function->getBinaryContext(); 486 uint32_t N = 0; 487 for (const MCInst &Instr : Instructions) 488 if (BC.MIB->isPseudo(Instr)) 489 ++N; 490 491 if (N != NumPseudos) { 492 errs() << "BOLT-ERROR: instructions for basic block " << getName() 493 << " in function " << *Function << ": calculated pseudos " << N 494 << ", set pseudos " << NumPseudos << ", size " << size() << '\n'; 495 llvm_unreachable("pseudos mismatch"); 496 } 497 #endif 498 return NumPseudos; 499 } 500 501 ErrorOr<std::pair<double, double>> 502 BinaryBasicBlock::getBranchStats(const BinaryBasicBlock *Succ) const { 503 if (Function->hasValidProfile()) { 504 uint64_t TotalCount = 0; 505 uint64_t TotalMispreds = 0; 506 for (const BinaryBranchInfo &BI : BranchInfo) { 507 if (BI.Count != COUNT_NO_PROFILE) { 508 TotalCount += BI.Count; 509 TotalMispreds += BI.MispredictedCount; 510 } 511 } 512 513 if (TotalCount > 0) { 514 auto Itr = std::find(Successors.begin(), Successors.end(), Succ); 515 assert(Itr != Successors.end()); 516 const BinaryBranchInfo &BI = BranchInfo[Itr - Successors.begin()]; 517 if (BI.Count && BI.Count != COUNT_NO_PROFILE) { 518 if (TotalMispreds == 0) 519 TotalMispreds = 1; 520 return std::make_pair(double(BI.Count) / TotalCount, 521 double(BI.MispredictedCount) / TotalMispreds); 522 } 523 } 524 } 525 return make_error_code(llvm::errc::result_out_of_range); 526 } 527 528 void BinaryBasicBlock::dump() const { 529 BinaryContext &BC = Function->getBinaryContext(); 530 if (Label) 531 outs() << Label->getName() << ":\n"; 532 BC.printInstructions(outs(), Instructions.begin(), Instructions.end(), 533 getOffset()); 534 outs() << "preds:"; 535 for (auto itr = pred_begin(); itr != pred_end(); ++itr) { 536 outs() << " " << (*itr)->getName(); 537 } 538 outs() << "\nsuccs:"; 539 for (auto itr = succ_begin(); itr != succ_end(); ++itr) { 540 outs() << " " << (*itr)->getName(); 541 } 542 outs() << "\n"; 543 } 544 545 uint64_t BinaryBasicBlock::estimateSize(const MCCodeEmitter *Emitter) const { 546 return Function->getBinaryContext().computeCodeSize(begin(), end(), Emitter); 547 } 548 549 BinaryBasicBlock::BinaryBranchInfo & 550 BinaryBasicBlock::getBranchInfo(const BinaryBasicBlock &Succ) { 551 auto BI = branch_info_begin(); 552 for (BinaryBasicBlock *BB : successors()) { 553 if (&Succ == BB) 554 return *BI; 555 ++BI; 556 } 557 558 llvm_unreachable("Invalid successor"); 559 return *BI; 560 } 561 562 BinaryBasicBlock::BinaryBranchInfo & 563 BinaryBasicBlock::getBranchInfo(const MCSymbol *Label) { 564 auto BI = branch_info_begin(); 565 for (BinaryBasicBlock *BB : successors()) { 566 if (BB->getLabel() == Label) 567 return *BI; 568 ++BI; 569 } 570 571 llvm_unreachable("Invalid successor"); 572 return *BI; 573 } 574 575 BinaryBasicBlock *BinaryBasicBlock::splitAt(iterator II) { 576 assert(II != end() && "expected iterator pointing to instruction"); 577 578 BinaryBasicBlock *NewBlock = getFunction()->addBasicBlock(0); 579 580 // Adjust successors/predecessors and propagate the execution count. 581 moveAllSuccessorsTo(NewBlock); 582 addSuccessor(NewBlock, getExecutionCount(), 0); 583 584 // Set correct CFI state for the new block. 585 NewBlock->setCFIState(getCFIStateAtInstr(&*II)); 586 587 // Move instructions over. 588 adjustNumPseudos(II, end(), -1); 589 NewBlock->addInstructions(II, end()); 590 Instructions.erase(II, end()); 591 592 return NewBlock; 593 } 594 595 void BinaryBasicBlock::updateOutputValues(const MCAsmLayout &Layout) { 596 if (!LocSyms) 597 return; 598 599 const uint64_t BBAddress = getOutputAddressRange().first; 600 const uint64_t BBOffset = Layout.getSymbolOffset(*getLabel()); 601 for (const auto &LocSymKV : *LocSyms) { 602 const uint32_t InputFunctionOffset = LocSymKV.first; 603 const uint32_t OutputOffset = static_cast<uint32_t>( 604 Layout.getSymbolOffset(*LocSymKV.second) - BBOffset); 605 getOffsetTranslationTable().emplace_back( 606 std::make_pair(OutputOffset, InputFunctionOffset)); 607 608 // Update reverse (relative to BAT) address lookup table for function. 609 if (getFunction()->requiresAddressTranslation()) { 610 getFunction()->getInputOffsetToAddressMap().emplace( 611 std::make_pair(InputFunctionOffset, OutputOffset + BBAddress)); 612 } 613 } 614 LocSyms.reset(nullptr); 615 } 616 617 } // namespace bolt 618 } // namespace llvm 619