1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory bandwidth monitoring and allocation library
4  *
5  * Copyright (C) 2018 Intel Corporation
6  *
7  * Authors:
8  *    Sai Praneeth Prakhya <[email protected]>,
9  *    Fenghua Yu <[email protected]>
10  */
11 #include "resctrl.h"
12 
13 #define UNCORE_IMC		"uncore_imc"
14 #define READ_FILE_NAME		"events/cas_count_read"
15 #define WRITE_FILE_NAME		"events/cas_count_write"
16 #define DYN_PMU_PATH		"/sys/bus/event_source/devices"
17 #define SCALE			0.00006103515625
18 #define MAX_IMCS		20
19 #define MAX_TOKENS		5
20 #define READ			0
21 #define WRITE			1
22 #define CON_MON_MBM_LOCAL_BYTES_PATH				\
23 	"%s/%s/mon_groups/%s/mon_data/mon_L3_%02d/mbm_local_bytes"
24 
25 #define CON_MBM_LOCAL_BYTES_PATH		\
26 	"%s/%s/mon_data/mon_L3_%02d/mbm_local_bytes"
27 
28 #define MON_MBM_LOCAL_BYTES_PATH		\
29 	"%s/mon_groups/%s/mon_data/mon_L3_%02d/mbm_local_bytes"
30 
31 #define MBM_LOCAL_BYTES_PATH			\
32 	"%s/mon_data/mon_L3_%02d/mbm_local_bytes"
33 
34 #define CON_MON_LCC_OCCUP_PATH		\
35 	"%s/%s/mon_groups/%s/mon_data/mon_L3_%02d/llc_occupancy"
36 
37 #define CON_LCC_OCCUP_PATH		\
38 	"%s/%s/mon_data/mon_L3_%02d/llc_occupancy"
39 
40 #define MON_LCC_OCCUP_PATH		\
41 	"%s/mon_groups/%s/mon_data/mon_L3_%02d/llc_occupancy"
42 
43 #define LCC_OCCUP_PATH			\
44 	"%s/mon_data/mon_L3_%02d/llc_occupancy"
45 
46 struct membw_read_format {
47 	__u64 value;         /* The value of the event */
48 	__u64 time_enabled;  /* if PERF_FORMAT_TOTAL_TIME_ENABLED */
49 	__u64 time_running;  /* if PERF_FORMAT_TOTAL_TIME_RUNNING */
50 	__u64 id;            /* if PERF_FORMAT_ID */
51 };
52 
53 struct imc_counter_config {
54 	__u32 type;
55 	__u64 event;
56 	__u64 umask;
57 	struct perf_event_attr pe;
58 	struct membw_read_format return_value;
59 	int fd;
60 };
61 
62 static char mbm_total_path[1024];
63 static int imcs;
64 static struct imc_counter_config imc_counters_config[MAX_IMCS][2];
65 static const struct resctrl_test *current_test;
66 
67 void membw_initialize_perf_event_attr(int i, int j)
68 {
69 	memset(&imc_counters_config[i][j].pe, 0,
70 	       sizeof(struct perf_event_attr));
71 	imc_counters_config[i][j].pe.type = imc_counters_config[i][j].type;
72 	imc_counters_config[i][j].pe.size = sizeof(struct perf_event_attr);
73 	imc_counters_config[i][j].pe.disabled = 1;
74 	imc_counters_config[i][j].pe.inherit = 1;
75 	imc_counters_config[i][j].pe.exclude_guest = 0;
76 	imc_counters_config[i][j].pe.config =
77 		imc_counters_config[i][j].umask << 8 |
78 		imc_counters_config[i][j].event;
79 	imc_counters_config[i][j].pe.sample_type = PERF_SAMPLE_IDENTIFIER;
80 	imc_counters_config[i][j].pe.read_format =
81 		PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING;
82 }
83 
84 void membw_ioctl_perf_event_ioc_reset_enable(int i, int j)
85 {
86 	ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_RESET, 0);
87 	ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_ENABLE, 0);
88 }
89 
90 void membw_ioctl_perf_event_ioc_disable(int i, int j)
91 {
92 	ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_DISABLE, 0);
93 }
94 
95 /*
96  * get_event_and_umask:	Parse config into event and umask
97  * @cas_count_cfg:	Config
98  * @count:		iMC number
99  * @op:			Operation (read/write)
100  */
101 void get_event_and_umask(char *cas_count_cfg, int count, bool op)
102 {
103 	char *token[MAX_TOKENS];
104 	int i = 0;
105 
106 	strcat(cas_count_cfg, ",");
107 	token[0] = strtok(cas_count_cfg, "=,");
108 
109 	for (i = 1; i < MAX_TOKENS; i++)
110 		token[i] = strtok(NULL, "=,");
111 
112 	for (i = 0; i < MAX_TOKENS; i++) {
113 		if (!token[i])
114 			break;
115 		if (strcmp(token[i], "event") == 0) {
116 			if (op == READ)
117 				imc_counters_config[count][READ].event =
118 				strtol(token[i + 1], NULL, 16);
119 			else
120 				imc_counters_config[count][WRITE].event =
121 				strtol(token[i + 1], NULL, 16);
122 		}
123 		if (strcmp(token[i], "umask") == 0) {
124 			if (op == READ)
125 				imc_counters_config[count][READ].umask =
126 				strtol(token[i + 1], NULL, 16);
127 			else
128 				imc_counters_config[count][WRITE].umask =
129 				strtol(token[i + 1], NULL, 16);
130 		}
131 	}
132 }
133 
134 static int open_perf_event(int i, int cpu_no, int j)
135 {
136 	imc_counters_config[i][j].fd =
137 		perf_event_open(&imc_counters_config[i][j].pe, -1, cpu_no, -1,
138 				PERF_FLAG_FD_CLOEXEC);
139 
140 	if (imc_counters_config[i][j].fd == -1) {
141 		fprintf(stderr, "Error opening leader %llx\n",
142 			imc_counters_config[i][j].pe.config);
143 
144 		return -1;
145 	}
146 
147 	return 0;
148 }
149 
150 /* Get type and config (read and write) of an iMC counter */
151 static int read_from_imc_dir(char *imc_dir, int count)
152 {
153 	char cas_count_cfg[1024], imc_counter_cfg[1024], imc_counter_type[1024];
154 	FILE *fp;
155 
156 	/* Get type of iMC counter */
157 	sprintf(imc_counter_type, "%s%s", imc_dir, "type");
158 	fp = fopen(imc_counter_type, "r");
159 	if (!fp) {
160 		ksft_perror("Failed to open iMC counter type file");
161 
162 		return -1;
163 	}
164 	if (fscanf(fp, "%u", &imc_counters_config[count][READ].type) <= 0) {
165 		ksft_perror("Could not get iMC type");
166 		fclose(fp);
167 
168 		return -1;
169 	}
170 	fclose(fp);
171 
172 	imc_counters_config[count][WRITE].type =
173 				imc_counters_config[count][READ].type;
174 
175 	/* Get read config */
176 	sprintf(imc_counter_cfg, "%s%s", imc_dir, READ_FILE_NAME);
177 	fp = fopen(imc_counter_cfg, "r");
178 	if (!fp) {
179 		ksft_perror("Failed to open iMC config file");
180 
181 		return -1;
182 	}
183 	if (fscanf(fp, "%s", cas_count_cfg) <= 0) {
184 		ksft_perror("Could not get iMC cas count read");
185 		fclose(fp);
186 
187 		return -1;
188 	}
189 	fclose(fp);
190 
191 	get_event_and_umask(cas_count_cfg, count, READ);
192 
193 	/* Get write config */
194 	sprintf(imc_counter_cfg, "%s%s", imc_dir, WRITE_FILE_NAME);
195 	fp = fopen(imc_counter_cfg, "r");
196 	if (!fp) {
197 		ksft_perror("Failed to open iMC config file");
198 
199 		return -1;
200 	}
201 	if  (fscanf(fp, "%s", cas_count_cfg) <= 0) {
202 		ksft_perror("Could not get iMC cas count write");
203 		fclose(fp);
204 
205 		return -1;
206 	}
207 	fclose(fp);
208 
209 	get_event_and_umask(cas_count_cfg, count, WRITE);
210 
211 	return 0;
212 }
213 
214 /*
215  * A system can have 'n' number of iMC (Integrated Memory Controller)
216  * counters, get that 'n'. For each iMC counter get it's type and config.
217  * Also, each counter has two configs, one for read and the other for write.
218  * A config again has two parts, event and umask.
219  * Enumerate all these details into an array of structures.
220  *
221  * Return: >= 0 on success. < 0 on failure.
222  */
223 static int num_of_imcs(void)
224 {
225 	char imc_dir[512], *temp;
226 	unsigned int count = 0;
227 	struct dirent *ep;
228 	int ret;
229 	DIR *dp;
230 
231 	dp = opendir(DYN_PMU_PATH);
232 	if (dp) {
233 		while ((ep = readdir(dp))) {
234 			temp = strstr(ep->d_name, UNCORE_IMC);
235 			if (!temp)
236 				continue;
237 
238 			/*
239 			 * imc counters are named as "uncore_imc_<n>", hence
240 			 * increment the pointer to point to <n>. Note that
241 			 * sizeof(UNCORE_IMC) would count for null character as
242 			 * well and hence the last underscore character in
243 			 * uncore_imc'_' need not be counted.
244 			 */
245 			temp = temp + sizeof(UNCORE_IMC);
246 
247 			/*
248 			 * Some directories under "DYN_PMU_PATH" could have
249 			 * names like "uncore_imc_free_running", hence, check if
250 			 * first character is a numerical digit or not.
251 			 */
252 			if (temp[0] >= '0' && temp[0] <= '9') {
253 				sprintf(imc_dir, "%s/%s/", DYN_PMU_PATH,
254 					ep->d_name);
255 				ret = read_from_imc_dir(imc_dir, count);
256 				if (ret) {
257 					closedir(dp);
258 
259 					return ret;
260 				}
261 				count++;
262 			}
263 		}
264 		closedir(dp);
265 		if (count == 0) {
266 			ksft_print_msg("Unable to find iMC counters\n");
267 
268 			return -1;
269 		}
270 	} else {
271 		ksft_perror("Unable to open PMU directory");
272 
273 		return -1;
274 	}
275 
276 	return count;
277 }
278 
279 static int initialize_mem_bw_imc(void)
280 {
281 	int imc, j;
282 
283 	imcs = num_of_imcs();
284 	if (imcs <= 0)
285 		return imcs;
286 
287 	/* Initialize perf_event_attr structures for all iMC's */
288 	for (imc = 0; imc < imcs; imc++) {
289 		for (j = 0; j < 2; j++)
290 			membw_initialize_perf_event_attr(imc, j);
291 	}
292 
293 	return 0;
294 }
295 
296 static void perf_close_imc_mem_bw(void)
297 {
298 	int mc;
299 
300 	for (mc = 0; mc < imcs; mc++) {
301 		if (imc_counters_config[mc][READ].fd != -1)
302 			close(imc_counters_config[mc][READ].fd);
303 		if (imc_counters_config[mc][WRITE].fd != -1)
304 			close(imc_counters_config[mc][WRITE].fd);
305 	}
306 }
307 
308 /*
309  * perf_open_imc_mem_bw - Open perf fds for IMCs
310  * @cpu_no: CPU number that the benchmark PID is bound to
311  *
312  * Return: = 0 on success. < 0 on failure.
313  */
314 static int perf_open_imc_mem_bw(int cpu_no)
315 {
316 	int imc, ret;
317 
318 	for (imc = 0; imc < imcs; imc++) {
319 		imc_counters_config[imc][READ].fd = -1;
320 		imc_counters_config[imc][WRITE].fd = -1;
321 	}
322 
323 	for (imc = 0; imc < imcs; imc++) {
324 		ret = open_perf_event(imc, cpu_no, READ);
325 		if (ret)
326 			goto close_fds;
327 		ret = open_perf_event(imc, cpu_no, WRITE);
328 		if (ret)
329 			goto close_fds;
330 	}
331 
332 	return 0;
333 
334 close_fds:
335 	perf_close_imc_mem_bw();
336 	return -1;
337 }
338 
339 /*
340  * do_mem_bw_test - Perform memory bandwidth test
341  *
342  * Runs memory bandwidth test over one second period. Also, handles starting
343  * and stopping of the IMC perf counters around the test.
344  */
345 static void do_imc_mem_bw_test(void)
346 {
347 	int imc;
348 
349 	for (imc = 0; imc < imcs; imc++) {
350 		membw_ioctl_perf_event_ioc_reset_enable(imc, READ);
351 		membw_ioctl_perf_event_ioc_reset_enable(imc, WRITE);
352 	}
353 
354 	sleep(1);
355 
356 	/* Stop counters after a second to get results (both read and write) */
357 	for (imc = 0; imc < imcs; imc++) {
358 		membw_ioctl_perf_event_ioc_disable(imc, READ);
359 		membw_ioctl_perf_event_ioc_disable(imc, WRITE);
360 	}
361 }
362 
363 /*
364  * get_mem_bw_imc - Memory band width as reported by iMC counters
365  * @bw_report: Bandwidth report type (reads, writes)
366  *
367  * Memory B/W utilized by a process on a socket can be calculated using
368  * iMC counters. Perf events are used to read these counters.
369  *
370  * Return: = 0 on success. < 0 on failure.
371  */
372 static int get_mem_bw_imc(char *bw_report, float *bw_imc)
373 {
374 	float reads, writes, of_mul_read, of_mul_write;
375 	int imc;
376 
377 	/* Start all iMC counters to log values (both read and write) */
378 	reads = 0, writes = 0, of_mul_read = 1, of_mul_write = 1;
379 
380 	/*
381 	 * Get results which are stored in struct type imc_counter_config
382 	 * Take over flow into consideration before calculating total b/w
383 	 */
384 	for (imc = 0; imc < imcs; imc++) {
385 		struct imc_counter_config *r =
386 			&imc_counters_config[imc][READ];
387 		struct imc_counter_config *w =
388 			&imc_counters_config[imc][WRITE];
389 
390 		if (read(r->fd, &r->return_value,
391 			 sizeof(struct membw_read_format)) == -1) {
392 			ksft_perror("Couldn't get read b/w through iMC");
393 			return -1;
394 		}
395 
396 		if (read(w->fd, &w->return_value,
397 			 sizeof(struct membw_read_format)) == -1) {
398 			ksft_perror("Couldn't get write bw through iMC");
399 			return -1;
400 		}
401 
402 		__u64 r_time_enabled = r->return_value.time_enabled;
403 		__u64 r_time_running = r->return_value.time_running;
404 
405 		if (r_time_enabled != r_time_running)
406 			of_mul_read = (float)r_time_enabled /
407 					(float)r_time_running;
408 
409 		__u64 w_time_enabled = w->return_value.time_enabled;
410 		__u64 w_time_running = w->return_value.time_running;
411 
412 		if (w_time_enabled != w_time_running)
413 			of_mul_write = (float)w_time_enabled /
414 					(float)w_time_running;
415 		reads += r->return_value.value * of_mul_read * SCALE;
416 		writes += w->return_value.value * of_mul_write * SCALE;
417 	}
418 
419 	if (strcmp(bw_report, "reads") == 0) {
420 		*bw_imc = reads;
421 		return 0;
422 	}
423 
424 	if (strcmp(bw_report, "writes") == 0) {
425 		*bw_imc = writes;
426 		return 0;
427 	}
428 
429 	*bw_imc = reads + writes;
430 	return 0;
431 }
432 
433 void set_mbm_path(const char *ctrlgrp, const char *mongrp, int domain_id)
434 {
435 	if (ctrlgrp && mongrp)
436 		sprintf(mbm_total_path, CON_MON_MBM_LOCAL_BYTES_PATH,
437 			RESCTRL_PATH, ctrlgrp, mongrp, domain_id);
438 	else if (!ctrlgrp && mongrp)
439 		sprintf(mbm_total_path, MON_MBM_LOCAL_BYTES_PATH, RESCTRL_PATH,
440 			mongrp, domain_id);
441 	else if (ctrlgrp && !mongrp)
442 		sprintf(mbm_total_path, CON_MBM_LOCAL_BYTES_PATH, RESCTRL_PATH,
443 			ctrlgrp, domain_id);
444 	else if (!ctrlgrp && !mongrp)
445 		sprintf(mbm_total_path, MBM_LOCAL_BYTES_PATH, RESCTRL_PATH,
446 			domain_id);
447 }
448 
449 /*
450  * initialize_mem_bw_resctrl:	Appropriately populate "mbm_total_path"
451  * @ctrlgrp:			Name of the control monitor group (con_mon grp)
452  * @mongrp:			Name of the monitor group (mon grp)
453  * @cpu_no:			CPU number that the benchmark PID is binded to
454  * @resctrl_val:		Resctrl feature (Eg: mbm, mba.. etc)
455  */
456 static void initialize_mem_bw_resctrl(const char *ctrlgrp, const char *mongrp,
457 				      int cpu_no, char *resctrl_val)
458 {
459 	int domain_id;
460 
461 	if (get_domain_id("MB", cpu_no, &domain_id) < 0) {
462 		ksft_print_msg("Could not get domain ID\n");
463 		return;
464 	}
465 
466 	if (!strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR)))
467 		set_mbm_path(ctrlgrp, mongrp, domain_id);
468 
469 	if (!strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR))) {
470 		if (ctrlgrp)
471 			sprintf(mbm_total_path, CON_MBM_LOCAL_BYTES_PATH,
472 				RESCTRL_PATH, ctrlgrp, domain_id);
473 		else
474 			sprintf(mbm_total_path, MBM_LOCAL_BYTES_PATH,
475 				RESCTRL_PATH, domain_id);
476 	}
477 }
478 
479 /*
480  * Get MBM Local bytes as reported by resctrl FS
481  * For MBM,
482  * 1. If con_mon grp and mon grp are given, then read from con_mon grp's mon grp
483  * 2. If only con_mon grp is given, then read from con_mon grp
484  * 3. If both are not given, then read from root con_mon grp
485  * For MBA,
486  * 1. If con_mon grp is given, then read from it
487  * 2. If con_mon grp is not given, then read from root con_mon grp
488  */
489 static FILE *open_mem_bw_resctrl(const char *mbm_bw_file)
490 {
491 	FILE *fp;
492 
493 	fp = fopen(mbm_bw_file, "r");
494 	if (!fp)
495 		ksft_perror("Failed to open total bw file");
496 
497 	return fp;
498 }
499 
500 static int get_mem_bw_resctrl(FILE *fp, unsigned long *mbm_total)
501 {
502 	if (fscanf(fp, "%lu\n", mbm_total) <= 0) {
503 		ksft_perror("Could not get MBM local bytes");
504 		return -1;
505 	}
506 	return 0;
507 }
508 
509 pid_t bm_pid, ppid;
510 
511 void ctrlc_handler(int signum, siginfo_t *info, void *ptr)
512 {
513 	/* Only kill child after bm_pid is set after fork() */
514 	if (bm_pid)
515 		kill(bm_pid, SIGKILL);
516 	umount_resctrlfs();
517 	if (current_test && current_test->cleanup)
518 		current_test->cleanup();
519 	ksft_print_msg("Ending\n\n");
520 
521 	exit(EXIT_SUCCESS);
522 }
523 
524 /*
525  * Register CTRL-C handler for parent, as it has to kill
526  * child process before exiting.
527  */
528 int signal_handler_register(const struct resctrl_test *test)
529 {
530 	struct sigaction sigact = {};
531 	int ret = 0;
532 
533 	bm_pid = 0;
534 
535 	current_test = test;
536 	sigact.sa_sigaction = ctrlc_handler;
537 	sigemptyset(&sigact.sa_mask);
538 	sigact.sa_flags = SA_SIGINFO;
539 	if (sigaction(SIGINT, &sigact, NULL) ||
540 	    sigaction(SIGTERM, &sigact, NULL) ||
541 	    sigaction(SIGHUP, &sigact, NULL)) {
542 		ksft_perror("sigaction");
543 		ret = -1;
544 	}
545 	return ret;
546 }
547 
548 /*
549  * Reset signal handler to SIG_DFL.
550  * Non-Value return because the caller should keep
551  * the error code of other path even if sigaction fails.
552  */
553 void signal_handler_unregister(void)
554 {
555 	struct sigaction sigact = {};
556 
557 	current_test = NULL;
558 	sigact.sa_handler = SIG_DFL;
559 	sigemptyset(&sigact.sa_mask);
560 	if (sigaction(SIGINT, &sigact, NULL) ||
561 	    sigaction(SIGTERM, &sigact, NULL) ||
562 	    sigaction(SIGHUP, &sigact, NULL)) {
563 		ksft_perror("sigaction");
564 	}
565 }
566 
567 /*
568  * print_results_bw:	the memory bandwidth results are stored in a file
569  * @filename:		file that stores the results
570  * @bm_pid:		child pid that runs benchmark
571  * @bw_imc:		perf imc counter value
572  * @bw_resc:		memory bandwidth value
573  *
574  * Return:		0 on success, < 0 on error.
575  */
576 static int print_results_bw(char *filename,  int bm_pid, float bw_imc,
577 			    unsigned long bw_resc)
578 {
579 	unsigned long diff = fabs(bw_imc - bw_resc);
580 	FILE *fp;
581 
582 	if (strcmp(filename, "stdio") == 0 || strcmp(filename, "stderr") == 0) {
583 		printf("Pid: %d \t Mem_BW_iMC: %f \t ", bm_pid, bw_imc);
584 		printf("Mem_BW_resc: %lu \t Difference: %lu\n", bw_resc, diff);
585 	} else {
586 		fp = fopen(filename, "a");
587 		if (!fp) {
588 			ksft_perror("Cannot open results file");
589 
590 			return -1;
591 		}
592 		if (fprintf(fp, "Pid: %d \t Mem_BW_iMC: %f \t Mem_BW_resc: %lu \t Difference: %lu\n",
593 			    bm_pid, bw_imc, bw_resc, diff) <= 0) {
594 			ksft_print_msg("Could not log results\n");
595 			fclose(fp);
596 
597 			return -1;
598 		}
599 		fclose(fp);
600 	}
601 
602 	return 0;
603 }
604 
605 static void set_cmt_path(const char *ctrlgrp, const char *mongrp, char sock_num)
606 {
607 	if (strlen(ctrlgrp) && strlen(mongrp))
608 		sprintf(llc_occup_path,	CON_MON_LCC_OCCUP_PATH,	RESCTRL_PATH,
609 			ctrlgrp, mongrp, sock_num);
610 	else if (!strlen(ctrlgrp) && strlen(mongrp))
611 		sprintf(llc_occup_path,	MON_LCC_OCCUP_PATH, RESCTRL_PATH,
612 			mongrp, sock_num);
613 	else if (strlen(ctrlgrp) && !strlen(mongrp))
614 		sprintf(llc_occup_path,	CON_LCC_OCCUP_PATH, RESCTRL_PATH,
615 			ctrlgrp, sock_num);
616 	else if (!strlen(ctrlgrp) && !strlen(mongrp))
617 		sprintf(llc_occup_path, LCC_OCCUP_PATH,	RESCTRL_PATH, sock_num);
618 }
619 
620 /*
621  * initialize_llc_occu_resctrl:	Appropriately populate "llc_occup_path"
622  * @ctrlgrp:			Name of the control monitor group (con_mon grp)
623  * @mongrp:			Name of the monitor group (mon grp)
624  * @cpu_no:			CPU number that the benchmark PID is binded to
625  * @resctrl_val:		Resctrl feature (Eg: cat, cmt.. etc)
626  */
627 static void initialize_llc_occu_resctrl(const char *ctrlgrp, const char *mongrp,
628 					int cpu_no, char *resctrl_val)
629 {
630 	int domain_id;
631 
632 	if (get_domain_id("L3", cpu_no, &domain_id) < 0) {
633 		ksft_print_msg("Could not get domain ID\n");
634 		return;
635 	}
636 
637 	if (!strncmp(resctrl_val, CMT_STR, sizeof(CMT_STR)))
638 		set_cmt_path(ctrlgrp, mongrp, domain_id);
639 }
640 
641 /*
642  * Measure memory bandwidth from resctrl and from another source which is
643  * perf imc value or could be something else if perf imc event is not
644  * available. Compare the two values to validate resctrl value. It takes
645  * 1 sec to measure the data.
646  */
647 static int measure_vals(const struct user_params *uparams,
648 			struct resctrl_val_param *param)
649 {
650 	unsigned long bw_resc, bw_resc_start, bw_resc_end;
651 	FILE *mem_bw_fp;
652 	float bw_imc;
653 	int ret;
654 
655 	mem_bw_fp = open_mem_bw_resctrl(mbm_total_path);
656 	if (!mem_bw_fp)
657 		return -1;
658 
659 	ret = perf_open_imc_mem_bw(uparams->cpu);
660 	if (ret < 0)
661 		goto close_fp;
662 
663 	ret = get_mem_bw_resctrl(mem_bw_fp, &bw_resc_start);
664 	if (ret < 0)
665 		goto close_imc;
666 
667 	rewind(mem_bw_fp);
668 
669 	do_imc_mem_bw_test();
670 
671 	ret = get_mem_bw_resctrl(mem_bw_fp, &bw_resc_end);
672 	if (ret < 0)
673 		goto close_imc;
674 
675 	ret = get_mem_bw_imc(param->bw_report, &bw_imc);
676 	if (ret < 0)
677 		goto close_imc;
678 
679 	perf_close_imc_mem_bw();
680 	fclose(mem_bw_fp);
681 
682 	bw_resc = (bw_resc_end - bw_resc_start) / MB;
683 
684 	return print_results_bw(param->filename, bm_pid, bw_imc, bw_resc);
685 
686 close_imc:
687 	perf_close_imc_mem_bw();
688 close_fp:
689 	fclose(mem_bw_fp);
690 	return ret;
691 }
692 
693 /*
694  * run_benchmark - Run a specified benchmark or fill_buf (default benchmark)
695  *		   in specified signal. Direct benchmark stdio to /dev/null.
696  * @signum:	signal number
697  * @info:	signal info
698  * @ucontext:	user context in signal handling
699  */
700 static void run_benchmark(int signum, siginfo_t *info, void *ucontext)
701 {
702 	int operation, ret, memflush;
703 	char **benchmark_cmd;
704 	size_t span;
705 	bool once;
706 	FILE *fp;
707 
708 	benchmark_cmd = info->si_ptr;
709 
710 	/*
711 	 * Direct stdio of child to /dev/null, so that only parent writes to
712 	 * stdio (console)
713 	 */
714 	fp = freopen("/dev/null", "w", stdout);
715 	if (!fp) {
716 		ksft_perror("Unable to direct benchmark status to /dev/null");
717 		PARENT_EXIT();
718 	}
719 
720 	if (strcmp(benchmark_cmd[0], "fill_buf") == 0) {
721 		/* Execute default fill_buf benchmark */
722 		span = strtoul(benchmark_cmd[1], NULL, 10);
723 		memflush =  atoi(benchmark_cmd[2]);
724 		operation = atoi(benchmark_cmd[3]);
725 		if (!strcmp(benchmark_cmd[4], "true")) {
726 			once = true;
727 		} else if (!strcmp(benchmark_cmd[4], "false")) {
728 			once = false;
729 		} else {
730 			ksft_print_msg("Invalid once parameter\n");
731 			PARENT_EXIT();
732 		}
733 
734 		if (run_fill_buf(span, memflush, operation, once))
735 			fprintf(stderr, "Error in running fill buffer\n");
736 	} else {
737 		/* Execute specified benchmark */
738 		ret = execvp(benchmark_cmd[0], benchmark_cmd);
739 		if (ret)
740 			ksft_perror("execvp");
741 	}
742 
743 	fclose(stdout);
744 	ksft_print_msg("Unable to run specified benchmark\n");
745 	PARENT_EXIT();
746 }
747 
748 /*
749  * resctrl_val:	execute benchmark and measure memory bandwidth on
750  *			the benchmark
751  * @test:		test information structure
752  * @uparams:		user supplied parameters
753  * @benchmark_cmd:	benchmark command and its arguments
754  * @param:		parameters passed to resctrl_val()
755  *
756  * Return:		0 when the test was run, < 0 on error.
757  */
758 int resctrl_val(const struct resctrl_test *test,
759 		const struct user_params *uparams,
760 		const char * const *benchmark_cmd,
761 		struct resctrl_val_param *param)
762 {
763 	char *resctrl_val = param->resctrl_val;
764 	struct sigaction sigact;
765 	int ret = 0, pipefd[2];
766 	char pipe_message = 0;
767 	union sigval value;
768 
769 	if (strcmp(param->filename, "") == 0)
770 		sprintf(param->filename, "stdio");
771 
772 	if (!strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR)) ||
773 	    !strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR))) {
774 		ret = validate_bw_report_request(param->bw_report);
775 		if (ret)
776 			return ret;
777 	}
778 
779 	/*
780 	 * If benchmark wasn't successfully started by child, then child should
781 	 * kill parent, so save parent's pid
782 	 */
783 	ppid = getpid();
784 
785 	if (pipe(pipefd)) {
786 		ksft_perror("Unable to create pipe");
787 
788 		return -1;
789 	}
790 
791 	/*
792 	 * Fork to start benchmark, save child's pid so that it can be killed
793 	 * when needed
794 	 */
795 	fflush(stdout);
796 	bm_pid = fork();
797 	if (bm_pid == -1) {
798 		ksft_perror("Unable to fork");
799 
800 		return -1;
801 	}
802 
803 	if (bm_pid == 0) {
804 		/*
805 		 * Mask all signals except SIGUSR1, parent uses SIGUSR1 to
806 		 * start benchmark
807 		 */
808 		sigfillset(&sigact.sa_mask);
809 		sigdelset(&sigact.sa_mask, SIGUSR1);
810 
811 		sigact.sa_sigaction = run_benchmark;
812 		sigact.sa_flags = SA_SIGINFO;
813 
814 		/* Register for "SIGUSR1" signal from parent */
815 		if (sigaction(SIGUSR1, &sigact, NULL)) {
816 			ksft_perror("Can't register child for signal");
817 			PARENT_EXIT();
818 		}
819 
820 		/* Tell parent that child is ready */
821 		close(pipefd[0]);
822 		pipe_message = 1;
823 		if (write(pipefd[1], &pipe_message, sizeof(pipe_message)) <
824 		    sizeof(pipe_message)) {
825 			ksft_perror("Failed signaling parent process");
826 			close(pipefd[1]);
827 			return -1;
828 		}
829 		close(pipefd[1]);
830 
831 		/* Suspend child until delivery of "SIGUSR1" from parent */
832 		sigsuspend(&sigact.sa_mask);
833 
834 		ksft_perror("Child is done");
835 		PARENT_EXIT();
836 	}
837 
838 	ksft_print_msg("Benchmark PID: %d\n", bm_pid);
839 
840 	/*
841 	 * The cast removes constness but nothing mutates benchmark_cmd within
842 	 * the context of this process. At the receiving process, it becomes
843 	 * argv, which is mutable, on exec() but that's after fork() so it
844 	 * doesn't matter for the process running the tests.
845 	 */
846 	value.sival_ptr = (void *)benchmark_cmd;
847 
848 	/* Taskset benchmark to specified cpu */
849 	ret = taskset_benchmark(bm_pid, uparams->cpu, NULL);
850 	if (ret)
851 		goto out;
852 
853 	/* Write benchmark to specified control&monitoring grp in resctrl FS */
854 	ret = write_bm_pid_to_resctrl(bm_pid, param->ctrlgrp, param->mongrp,
855 				      resctrl_val);
856 	if (ret)
857 		goto out;
858 
859 	if (!strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR)) ||
860 	    !strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR))) {
861 		ret = initialize_mem_bw_imc();
862 		if (ret)
863 			goto out;
864 
865 		initialize_mem_bw_resctrl(param->ctrlgrp, param->mongrp,
866 					  uparams->cpu, resctrl_val);
867 	} else if (!strncmp(resctrl_val, CMT_STR, sizeof(CMT_STR)))
868 		initialize_llc_occu_resctrl(param->ctrlgrp, param->mongrp,
869 					    uparams->cpu, resctrl_val);
870 
871 	/* Parent waits for child to be ready. */
872 	close(pipefd[1]);
873 	while (pipe_message != 1) {
874 		if (read(pipefd[0], &pipe_message, sizeof(pipe_message)) <
875 		    sizeof(pipe_message)) {
876 			ksft_perror("Failed reading message from child process");
877 			close(pipefd[0]);
878 			goto out;
879 		}
880 	}
881 	close(pipefd[0]);
882 
883 	/* Signal child to start benchmark */
884 	if (sigqueue(bm_pid, SIGUSR1, value) == -1) {
885 		ksft_perror("sigqueue SIGUSR1 to child");
886 		ret = -1;
887 		goto out;
888 	}
889 
890 	/* Give benchmark enough time to fully run */
891 	sleep(1);
892 
893 	/* Test runs until the callback setup() tells the test to stop. */
894 	while (1) {
895 		ret = param->setup(test, uparams, param);
896 		if (ret == END_OF_TESTS) {
897 			ret = 0;
898 			break;
899 		}
900 		if (ret < 0)
901 			break;
902 
903 		if (!strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR)) ||
904 		    !strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR))) {
905 			ret = measure_vals(uparams, param);
906 			if (ret)
907 				break;
908 		} else if (!strncmp(resctrl_val, CMT_STR, sizeof(CMT_STR))) {
909 			sleep(1);
910 			ret = measure_llc_resctrl(param->filename, bm_pid);
911 			if (ret)
912 				break;
913 		}
914 	}
915 
916 out:
917 	kill(bm_pid, SIGKILL);
918 
919 	return ret;
920 }
921