1*87b6a3adSFeng Tang# event_analyzing_sample.py: general event handler in python
20076d546SFeng Tang#
3*87b6a3adSFeng Tang# Current perf report is already very powerful with the annotation integrated,
40076d546SFeng Tang# and this script is not trying to be as powerful as perf report, but
50076d546SFeng Tang# providing end user/developer a flexible way to analyze the events other
60076d546SFeng Tang# than trace points.
70076d546SFeng Tang#
80076d546SFeng Tang# The 2 database related functions in this script just show how to gather
90076d546SFeng Tang# the basic information, and users can modify and write their own functions
10*87b6a3adSFeng Tang# according to their specific requirement.
110076d546SFeng Tang#
12*87b6a3adSFeng Tang# The first function "show_general_events" just does a basic grouping for all
130076d546SFeng Tang# generic events with the help of sqlite, and the 2nd one "show_pebs_ll" is
140076d546SFeng Tang# for a x86 HW PMU event: PEBS with load latency data.
150076d546SFeng Tang#
160076d546SFeng Tang
170076d546SFeng Tangimport os
180076d546SFeng Tangimport sys
190076d546SFeng Tangimport math
200076d546SFeng Tangimport struct
210076d546SFeng Tangimport sqlite3
220076d546SFeng Tang
230076d546SFeng Tangsys.path.append(os.environ['PERF_EXEC_PATH'] + \
240076d546SFeng Tang        '/scripts/python/Perf-Trace-Util/lib/Perf/Trace')
250076d546SFeng Tang
260076d546SFeng Tangfrom perf_trace_context import *
270076d546SFeng Tangfrom EventClass import *
280076d546SFeng Tang
290076d546SFeng Tang#
300076d546SFeng Tang# If the perf.data has a big number of samples, then the insert operation
310076d546SFeng Tang# will be very time consuming (about 10+ minutes for 10000 samples) if the
320076d546SFeng Tang# .db database is on disk. Move the .db file to RAM based FS to speedup
330076d546SFeng Tang# the handling, which will cut the time down to several seconds.
340076d546SFeng Tang#
350076d546SFeng Tangcon = sqlite3.connect("/dev/shm/perf.db")
360076d546SFeng Tangcon.isolation_level = None
370076d546SFeng Tang
380076d546SFeng Tangdef trace_begin():
390076d546SFeng Tang	print "In trace_begin:\n"
400076d546SFeng Tang
410076d546SFeng Tang        #
420076d546SFeng Tang        # Will create several tables at the start, pebs_ll is for PEBS data with
430076d546SFeng Tang        # load latency info, while gen_events is for general event.
440076d546SFeng Tang        #
450076d546SFeng Tang        con.execute("""
460076d546SFeng Tang                create table if not exists gen_events (
470076d546SFeng Tang                        name text,
480076d546SFeng Tang                        symbol text,
490076d546SFeng Tang                        comm text,
500076d546SFeng Tang                        dso text
510076d546SFeng Tang                );""")
520076d546SFeng Tang        con.execute("""
530076d546SFeng Tang                create table if not exists pebs_ll (
540076d546SFeng Tang                        name text,
550076d546SFeng Tang                        symbol text,
560076d546SFeng Tang                        comm text,
570076d546SFeng Tang                        dso text,
580076d546SFeng Tang                        flags integer,
590076d546SFeng Tang                        ip integer,
600076d546SFeng Tang                        status integer,
610076d546SFeng Tang                        dse integer,
620076d546SFeng Tang                        dla integer,
630076d546SFeng Tang                        lat integer
640076d546SFeng Tang                );""")
650076d546SFeng Tang
660076d546SFeng Tang#
670076d546SFeng Tang# Create and insert event object to a database so that user could
680076d546SFeng Tang# do more analysis with simple database commands.
690076d546SFeng Tang#
700076d546SFeng Tangdef process_event(param_dict):
710076d546SFeng Tang        event_attr = param_dict["attr"]
720076d546SFeng Tang        sample     = param_dict["sample"]
730076d546SFeng Tang        raw_buf    = param_dict["raw_buf"]
740076d546SFeng Tang        comm       = param_dict["comm"]
750076d546SFeng Tang        name       = param_dict["ev_name"]
760076d546SFeng Tang
770076d546SFeng Tang        # Symbol and dso info are not always resolved
780076d546SFeng Tang        if (param_dict.has_key("dso")):
790076d546SFeng Tang                dso = param_dict["dso"]
800076d546SFeng Tang        else:
810076d546SFeng Tang                dso = "Unknown_dso"
820076d546SFeng Tang
830076d546SFeng Tang        if (param_dict.has_key("symbol")):
840076d546SFeng Tang                symbol = param_dict["symbol"]
850076d546SFeng Tang        else:
860076d546SFeng Tang                symbol = "Unknown_symbol"
870076d546SFeng Tang
88*87b6a3adSFeng Tang        # Create the event object and insert it to the right table in database
890076d546SFeng Tang        event = create_event(name, comm, dso, symbol, raw_buf)
900076d546SFeng Tang        insert_db(event)
910076d546SFeng Tang
920076d546SFeng Tangdef insert_db(event):
930076d546SFeng Tang        if event.ev_type == EVTYPE_GENERIC:
940076d546SFeng Tang                con.execute("insert into gen_events values(?, ?, ?, ?)",
950076d546SFeng Tang                                (event.name, event.symbol, event.comm, event.dso))
960076d546SFeng Tang        elif event.ev_type == EVTYPE_PEBS_LL:
970076d546SFeng Tang                event.ip &= 0x7fffffffffffffff
980076d546SFeng Tang                event.dla &= 0x7fffffffffffffff
990076d546SFeng Tang                con.execute("insert into pebs_ll values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)",
1000076d546SFeng Tang                        (event.name, event.symbol, event.comm, event.dso, event.flags,
1010076d546SFeng Tang                                event.ip, event.status, event.dse, event.dla, event.lat))
1020076d546SFeng Tang
1030076d546SFeng Tangdef trace_end():
1040076d546SFeng Tang	print "In trace_end:\n"
1050076d546SFeng Tang        # We show the basic info for the 2 type of event classes
1060076d546SFeng Tang        show_general_events()
1070076d546SFeng Tang        show_pebs_ll()
1080076d546SFeng Tang        con.close()
1090076d546SFeng Tang
1100076d546SFeng Tang#
1110076d546SFeng Tang# As the event number may be very big, so we can't use linear way
112*87b6a3adSFeng Tang# to show the histogram in real number, but use a log2 algorithm.
1130076d546SFeng Tang#
1140076d546SFeng Tang
1150076d546SFeng Tangdef num2sym(num):
1160076d546SFeng Tang        # Each number will have at least one '#'
1170076d546SFeng Tang        snum = '#' * (int)(math.log(num, 2) + 1)
1180076d546SFeng Tang        return snum
1190076d546SFeng Tang
1200076d546SFeng Tangdef show_general_events():
1210076d546SFeng Tang
1220076d546SFeng Tang        # Check the total record number in the table
1230076d546SFeng Tang        count = con.execute("select count(*) from gen_events")
1240076d546SFeng Tang        for t in count:
1250076d546SFeng Tang                print "There is %d records in gen_events table" % t[0]
1260076d546SFeng Tang                if t[0] == 0:
1270076d546SFeng Tang                        return
1280076d546SFeng Tang
1290076d546SFeng Tang        print "Statistics about the general events grouped by thread/symbol/dso: \n"
1300076d546SFeng Tang
1310076d546SFeng Tang         # Group by thread
1320076d546SFeng Tang        commq = con.execute("select comm, count(comm) from gen_events group by comm order by -count(comm)")
133*87b6a3adSFeng Tang        print "\n%16s %8s %16s\n%s" % ("comm", "number", "histogram", "="*42)
1340076d546SFeng Tang        for row in commq:
1350076d546SFeng Tang             print "%16s %8d     %s" % (row[0], row[1], num2sym(row[1]))
1360076d546SFeng Tang
1370076d546SFeng Tang        # Group by symbol
138*87b6a3adSFeng Tang        print "\n%32s %8s %16s\n%s" % ("symbol", "number", "histogram", "="*58)
1390076d546SFeng Tang        symbolq = con.execute("select symbol, count(symbol) from gen_events group by symbol order by -count(symbol)")
1400076d546SFeng Tang        for row in symbolq:
1410076d546SFeng Tang             print "%32s %8d     %s" % (row[0], row[1], num2sym(row[1]))
1420076d546SFeng Tang
1430076d546SFeng Tang        # Group by dso
144*87b6a3adSFeng Tang        print "\n%40s %8s %16s\n%s" % ("dso", "number", "histogram", "="*74)
1450076d546SFeng Tang        dsoq = con.execute("select dso, count(dso) from gen_events group by dso order by -count(dso)")
1460076d546SFeng Tang        for row in dsoq:
1470076d546SFeng Tang             print "%40s %8d     %s" % (row[0], row[1], num2sym(row[1]))
1480076d546SFeng Tang
1490076d546SFeng Tang#
1500076d546SFeng Tang# This function just shows the basic info, and we could do more with the
1510076d546SFeng Tang# data in the tables, like checking the function parameters when some
1520076d546SFeng Tang# big latency events happen.
1530076d546SFeng Tang#
1540076d546SFeng Tangdef show_pebs_ll():
1550076d546SFeng Tang
1560076d546SFeng Tang        count = con.execute("select count(*) from pebs_ll")
1570076d546SFeng Tang        for t in count:
1580076d546SFeng Tang                print "There is %d records in pebs_ll table" % t[0]
1590076d546SFeng Tang                if t[0] == 0:
1600076d546SFeng Tang                        return
1610076d546SFeng Tang
1620076d546SFeng Tang        print "Statistics about the PEBS Load Latency events grouped by thread/symbol/dse/latency: \n"
1630076d546SFeng Tang
1640076d546SFeng Tang        # Group by thread
1650076d546SFeng Tang        commq = con.execute("select comm, count(comm) from pebs_ll group by comm order by -count(comm)")
166*87b6a3adSFeng Tang        print "\n%16s %8s %16s\n%s" % ("comm", "number", "histogram", "="*42)
1670076d546SFeng Tang        for row in commq:
1680076d546SFeng Tang             print "%16s %8d     %s" % (row[0], row[1], num2sym(row[1]))
1690076d546SFeng Tang
1700076d546SFeng Tang        # Group by symbol
171*87b6a3adSFeng Tang        print "\n%32s %8s %16s\n%s" % ("symbol", "number", "histogram", "="*58)
1720076d546SFeng Tang        symbolq = con.execute("select symbol, count(symbol) from pebs_ll group by symbol order by -count(symbol)")
1730076d546SFeng Tang        for row in symbolq:
1740076d546SFeng Tang             print "%32s %8d     %s" % (row[0], row[1], num2sym(row[1]))
1750076d546SFeng Tang
1760076d546SFeng Tang        # Group by dse
1770076d546SFeng Tang        dseq = con.execute("select dse, count(dse) from pebs_ll group by dse order by -count(dse)")
178*87b6a3adSFeng Tang        print "\n%32s %8s %16s\n%s" % ("dse", "number", "histogram", "="*58)
1790076d546SFeng Tang        for row in dseq:
1800076d546SFeng Tang             print "%32s %8d     %s" % (row[0], row[1], num2sym(row[1]))
1810076d546SFeng Tang
1820076d546SFeng Tang        # Group by latency
1830076d546SFeng Tang        latq = con.execute("select lat, count(lat) from pebs_ll group by lat order by lat")
184*87b6a3adSFeng Tang        print "\n%32s %8s %16s\n%s" % ("latency", "number", "histogram", "="*58)
1850076d546SFeng Tang        for row in latq:
1860076d546SFeng Tang             print "%32s %8d     %s" % (row[0], row[1], num2sym(row[1]))
1870076d546SFeng Tang
1880076d546SFeng Tangdef trace_unhandled(event_name, context, event_fields_dict):
1890076d546SFeng Tang		print ' '.join(['%s=%s'%(k,str(v))for k,v in sorted(event_fields_dict.items())])
190