1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <[email protected]> 7 * Copyright (C) 2015 Wang Nan <[email protected]> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <sys/epoll.h> 38 #include <sys/ioctl.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 #include <sys/types.h> 42 #include <sys/vfs.h> 43 #include <sys/utsname.h> 44 #include <sys/resource.h> 45 #include <libelf.h> 46 #include <gelf.h> 47 #include <zlib.h> 48 49 #include "libbpf.h" 50 #include "bpf.h" 51 #include "btf.h" 52 #include "str_error.h" 53 #include "libbpf_internal.h" 54 #include "hashmap.h" 55 #include "bpf_gen_internal.h" 56 #include "zip.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 static int map_set_def_max_entries(struct bpf_map *map); 74 75 static const char * const attach_type_name[] = { 76 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 77 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 78 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 79 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 80 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 81 [BPF_CGROUP_DEVICE] = "cgroup_device", 82 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 83 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 84 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 85 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 86 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 87 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 88 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 89 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 90 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 91 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 92 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 93 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 94 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 95 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 96 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 97 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 98 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 99 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 100 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 101 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 102 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 103 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 104 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 105 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 106 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 107 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 108 [BPF_LIRC_MODE2] = "lirc_mode2", 109 [BPF_FLOW_DISSECTOR] = "flow_dissector", 110 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 111 [BPF_TRACE_FENTRY] = "trace_fentry", 112 [BPF_TRACE_FEXIT] = "trace_fexit", 113 [BPF_MODIFY_RETURN] = "modify_return", 114 [BPF_LSM_MAC] = "lsm_mac", 115 [BPF_LSM_CGROUP] = "lsm_cgroup", 116 [BPF_SK_LOOKUP] = "sk_lookup", 117 [BPF_TRACE_ITER] = "trace_iter", 118 [BPF_XDP_DEVMAP] = "xdp_devmap", 119 [BPF_XDP_CPUMAP] = "xdp_cpumap", 120 [BPF_XDP] = "xdp", 121 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 122 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 123 [BPF_PERF_EVENT] = "perf_event", 124 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 125 [BPF_STRUCT_OPS] = "struct_ops", 126 [BPF_NETFILTER] = "netfilter", 127 [BPF_TCX_INGRESS] = "tcx_ingress", 128 [BPF_TCX_EGRESS] = "tcx_egress", 129 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 130 [BPF_NETKIT_PRIMARY] = "netkit_primary", 131 [BPF_NETKIT_PEER] = "netkit_peer", 132 }; 133 134 static const char * const link_type_name[] = { 135 [BPF_LINK_TYPE_UNSPEC] = "unspec", 136 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 137 [BPF_LINK_TYPE_TRACING] = "tracing", 138 [BPF_LINK_TYPE_CGROUP] = "cgroup", 139 [BPF_LINK_TYPE_ITER] = "iter", 140 [BPF_LINK_TYPE_NETNS] = "netns", 141 [BPF_LINK_TYPE_XDP] = "xdp", 142 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 143 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 144 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 145 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 146 [BPF_LINK_TYPE_TCX] = "tcx", 147 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 148 [BPF_LINK_TYPE_NETKIT] = "netkit", 149 }; 150 151 static const char * const map_type_name[] = { 152 [BPF_MAP_TYPE_UNSPEC] = "unspec", 153 [BPF_MAP_TYPE_HASH] = "hash", 154 [BPF_MAP_TYPE_ARRAY] = "array", 155 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 156 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 157 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 158 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 159 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 160 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 161 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 162 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 163 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 164 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 165 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 166 [BPF_MAP_TYPE_DEVMAP] = "devmap", 167 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 168 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 169 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 170 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 171 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 172 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 173 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 174 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 175 [BPF_MAP_TYPE_QUEUE] = "queue", 176 [BPF_MAP_TYPE_STACK] = "stack", 177 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 178 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 179 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 180 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 181 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 182 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 183 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 184 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 185 }; 186 187 static const char * const prog_type_name[] = { 188 [BPF_PROG_TYPE_UNSPEC] = "unspec", 189 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 190 [BPF_PROG_TYPE_KPROBE] = "kprobe", 191 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 192 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 193 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 194 [BPF_PROG_TYPE_XDP] = "xdp", 195 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 196 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 197 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 198 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 199 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 200 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 201 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 202 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 203 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 204 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 205 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 206 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 207 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 208 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 209 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 210 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 211 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 212 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 213 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 214 [BPF_PROG_TYPE_TRACING] = "tracing", 215 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 216 [BPF_PROG_TYPE_EXT] = "ext", 217 [BPF_PROG_TYPE_LSM] = "lsm", 218 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 219 [BPF_PROG_TYPE_SYSCALL] = "syscall", 220 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 221 }; 222 223 static int __base_pr(enum libbpf_print_level level, const char *format, 224 va_list args) 225 { 226 if (level == LIBBPF_DEBUG) 227 return 0; 228 229 return vfprintf(stderr, format, args); 230 } 231 232 static libbpf_print_fn_t __libbpf_pr = __base_pr; 233 234 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 235 { 236 libbpf_print_fn_t old_print_fn; 237 238 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 239 240 return old_print_fn; 241 } 242 243 __printf(2, 3) 244 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 245 { 246 va_list args; 247 int old_errno; 248 libbpf_print_fn_t print_fn; 249 250 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 251 if (!print_fn) 252 return; 253 254 old_errno = errno; 255 256 va_start(args, format); 257 __libbpf_pr(level, format, args); 258 va_end(args); 259 260 errno = old_errno; 261 } 262 263 static void pr_perm_msg(int err) 264 { 265 struct rlimit limit; 266 char buf[100]; 267 268 if (err != -EPERM || geteuid() != 0) 269 return; 270 271 err = getrlimit(RLIMIT_MEMLOCK, &limit); 272 if (err) 273 return; 274 275 if (limit.rlim_cur == RLIM_INFINITY) 276 return; 277 278 if (limit.rlim_cur < 1024) 279 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 280 else if (limit.rlim_cur < 1024*1024) 281 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 282 else 283 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 284 285 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 286 buf); 287 } 288 289 #define STRERR_BUFSIZE 128 290 291 /* Copied from tools/perf/util/util.h */ 292 #ifndef zfree 293 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 294 #endif 295 296 #ifndef zclose 297 # define zclose(fd) ({ \ 298 int ___err = 0; \ 299 if ((fd) >= 0) \ 300 ___err = close((fd)); \ 301 fd = -1; \ 302 ___err; }) 303 #endif 304 305 static inline __u64 ptr_to_u64(const void *ptr) 306 { 307 return (__u64) (unsigned long) ptr; 308 } 309 310 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 311 { 312 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 313 return 0; 314 } 315 316 __u32 libbpf_major_version(void) 317 { 318 return LIBBPF_MAJOR_VERSION; 319 } 320 321 __u32 libbpf_minor_version(void) 322 { 323 return LIBBPF_MINOR_VERSION; 324 } 325 326 const char *libbpf_version_string(void) 327 { 328 #define __S(X) #X 329 #define _S(X) __S(X) 330 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 331 #undef _S 332 #undef __S 333 } 334 335 enum reloc_type { 336 RELO_LD64, 337 RELO_CALL, 338 RELO_DATA, 339 RELO_EXTERN_LD64, 340 RELO_EXTERN_CALL, 341 RELO_SUBPROG_ADDR, 342 RELO_CORE, 343 }; 344 345 struct reloc_desc { 346 enum reloc_type type; 347 int insn_idx; 348 union { 349 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 350 struct { 351 int map_idx; 352 int sym_off; 353 int ext_idx; 354 }; 355 }; 356 }; 357 358 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 359 enum sec_def_flags { 360 SEC_NONE = 0, 361 /* expected_attach_type is optional, if kernel doesn't support that */ 362 SEC_EXP_ATTACH_OPT = 1, 363 /* legacy, only used by libbpf_get_type_names() and 364 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 365 * This used to be associated with cgroup (and few other) BPF programs 366 * that were attachable through BPF_PROG_ATTACH command. Pretty 367 * meaningless nowadays, though. 368 */ 369 SEC_ATTACHABLE = 2, 370 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 371 /* attachment target is specified through BTF ID in either kernel or 372 * other BPF program's BTF object 373 */ 374 SEC_ATTACH_BTF = 4, 375 /* BPF program type allows sleeping/blocking in kernel */ 376 SEC_SLEEPABLE = 8, 377 /* BPF program support non-linear XDP buffer */ 378 SEC_XDP_FRAGS = 16, 379 /* Setup proper attach type for usdt probes. */ 380 SEC_USDT = 32, 381 }; 382 383 struct bpf_sec_def { 384 char *sec; 385 enum bpf_prog_type prog_type; 386 enum bpf_attach_type expected_attach_type; 387 long cookie; 388 int handler_id; 389 390 libbpf_prog_setup_fn_t prog_setup_fn; 391 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 392 libbpf_prog_attach_fn_t prog_attach_fn; 393 }; 394 395 /* 396 * bpf_prog should be a better name but it has been used in 397 * linux/filter.h. 398 */ 399 struct bpf_program { 400 char *name; 401 char *sec_name; 402 size_t sec_idx; 403 const struct bpf_sec_def *sec_def; 404 /* this program's instruction offset (in number of instructions) 405 * within its containing ELF section 406 */ 407 size_t sec_insn_off; 408 /* number of original instructions in ELF section belonging to this 409 * program, not taking into account subprogram instructions possible 410 * appended later during relocation 411 */ 412 size_t sec_insn_cnt; 413 /* Offset (in number of instructions) of the start of instruction 414 * belonging to this BPF program within its containing main BPF 415 * program. For the entry-point (main) BPF program, this is always 416 * zero. For a sub-program, this gets reset before each of main BPF 417 * programs are processed and relocated and is used to determined 418 * whether sub-program was already appended to the main program, and 419 * if yes, at which instruction offset. 420 */ 421 size_t sub_insn_off; 422 423 /* instructions that belong to BPF program; insns[0] is located at 424 * sec_insn_off instruction within its ELF section in ELF file, so 425 * when mapping ELF file instruction index to the local instruction, 426 * one needs to subtract sec_insn_off; and vice versa. 427 */ 428 struct bpf_insn *insns; 429 /* actual number of instruction in this BPF program's image; for 430 * entry-point BPF programs this includes the size of main program 431 * itself plus all the used sub-programs, appended at the end 432 */ 433 size_t insns_cnt; 434 435 struct reloc_desc *reloc_desc; 436 int nr_reloc; 437 438 /* BPF verifier log settings */ 439 char *log_buf; 440 size_t log_size; 441 __u32 log_level; 442 443 struct bpf_object *obj; 444 445 int fd; 446 bool autoload; 447 bool autoattach; 448 bool sym_global; 449 bool mark_btf_static; 450 enum bpf_prog_type type; 451 enum bpf_attach_type expected_attach_type; 452 int exception_cb_idx; 453 454 int prog_ifindex; 455 __u32 attach_btf_obj_fd; 456 __u32 attach_btf_id; 457 __u32 attach_prog_fd; 458 459 void *func_info; 460 __u32 func_info_rec_size; 461 __u32 func_info_cnt; 462 463 void *line_info; 464 __u32 line_info_rec_size; 465 __u32 line_info_cnt; 466 __u32 prog_flags; 467 }; 468 469 struct bpf_struct_ops { 470 const char *tname; 471 const struct btf_type *type; 472 struct bpf_program **progs; 473 __u32 *kern_func_off; 474 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 475 void *data; 476 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 477 * btf_vmlinux's format. 478 * struct bpf_struct_ops_tcp_congestion_ops { 479 * [... some other kernel fields ...] 480 * struct tcp_congestion_ops data; 481 * } 482 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 483 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 484 * from "data". 485 */ 486 void *kern_vdata; 487 __u32 type_id; 488 }; 489 490 #define DATA_SEC ".data" 491 #define BSS_SEC ".bss" 492 #define RODATA_SEC ".rodata" 493 #define KCONFIG_SEC ".kconfig" 494 #define KSYMS_SEC ".ksyms" 495 #define STRUCT_OPS_SEC ".struct_ops" 496 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 497 498 enum libbpf_map_type { 499 LIBBPF_MAP_UNSPEC, 500 LIBBPF_MAP_DATA, 501 LIBBPF_MAP_BSS, 502 LIBBPF_MAP_RODATA, 503 LIBBPF_MAP_KCONFIG, 504 }; 505 506 struct bpf_map_def { 507 unsigned int type; 508 unsigned int key_size; 509 unsigned int value_size; 510 unsigned int max_entries; 511 unsigned int map_flags; 512 }; 513 514 struct bpf_map { 515 struct bpf_object *obj; 516 char *name; 517 /* real_name is defined for special internal maps (.rodata*, 518 * .data*, .bss, .kconfig) and preserves their original ELF section 519 * name. This is important to be able to find corresponding BTF 520 * DATASEC information. 521 */ 522 char *real_name; 523 int fd; 524 int sec_idx; 525 size_t sec_offset; 526 int map_ifindex; 527 int inner_map_fd; 528 struct bpf_map_def def; 529 __u32 numa_node; 530 __u32 btf_var_idx; 531 __u32 btf_key_type_id; 532 __u32 btf_value_type_id; 533 __u32 btf_vmlinux_value_type_id; 534 enum libbpf_map_type libbpf_type; 535 void *mmaped; 536 struct bpf_struct_ops *st_ops; 537 struct bpf_map *inner_map; 538 void **init_slots; 539 int init_slots_sz; 540 char *pin_path; 541 bool pinned; 542 bool reused; 543 bool autocreate; 544 __u64 map_extra; 545 }; 546 547 enum extern_type { 548 EXT_UNKNOWN, 549 EXT_KCFG, 550 EXT_KSYM, 551 }; 552 553 enum kcfg_type { 554 KCFG_UNKNOWN, 555 KCFG_CHAR, 556 KCFG_BOOL, 557 KCFG_INT, 558 KCFG_TRISTATE, 559 KCFG_CHAR_ARR, 560 }; 561 562 struct extern_desc { 563 enum extern_type type; 564 int sym_idx; 565 int btf_id; 566 int sec_btf_id; 567 const char *name; 568 char *essent_name; 569 bool is_set; 570 bool is_weak; 571 union { 572 struct { 573 enum kcfg_type type; 574 int sz; 575 int align; 576 int data_off; 577 bool is_signed; 578 } kcfg; 579 struct { 580 unsigned long long addr; 581 582 /* target btf_id of the corresponding kernel var. */ 583 int kernel_btf_obj_fd; 584 int kernel_btf_id; 585 586 /* local btf_id of the ksym extern's type. */ 587 __u32 type_id; 588 /* BTF fd index to be patched in for insn->off, this is 589 * 0 for vmlinux BTF, index in obj->fd_array for module 590 * BTF 591 */ 592 __s16 btf_fd_idx; 593 } ksym; 594 }; 595 }; 596 597 struct module_btf { 598 struct btf *btf; 599 char *name; 600 __u32 id; 601 int fd; 602 int fd_array_idx; 603 }; 604 605 enum sec_type { 606 SEC_UNUSED = 0, 607 SEC_RELO, 608 SEC_BSS, 609 SEC_DATA, 610 SEC_RODATA, 611 }; 612 613 struct elf_sec_desc { 614 enum sec_type sec_type; 615 Elf64_Shdr *shdr; 616 Elf_Data *data; 617 }; 618 619 struct elf_state { 620 int fd; 621 const void *obj_buf; 622 size_t obj_buf_sz; 623 Elf *elf; 624 Elf64_Ehdr *ehdr; 625 Elf_Data *symbols; 626 Elf_Data *st_ops_data; 627 Elf_Data *st_ops_link_data; 628 size_t shstrndx; /* section index for section name strings */ 629 size_t strtabidx; 630 struct elf_sec_desc *secs; 631 size_t sec_cnt; 632 int btf_maps_shndx; 633 __u32 btf_maps_sec_btf_id; 634 int text_shndx; 635 int symbols_shndx; 636 int st_ops_shndx; 637 int st_ops_link_shndx; 638 }; 639 640 struct usdt_manager; 641 642 struct bpf_object { 643 char name[BPF_OBJ_NAME_LEN]; 644 char license[64]; 645 __u32 kern_version; 646 647 struct bpf_program *programs; 648 size_t nr_programs; 649 struct bpf_map *maps; 650 size_t nr_maps; 651 size_t maps_cap; 652 653 char *kconfig; 654 struct extern_desc *externs; 655 int nr_extern; 656 int kconfig_map_idx; 657 658 bool loaded; 659 bool has_subcalls; 660 bool has_rodata; 661 662 struct bpf_gen *gen_loader; 663 664 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 665 struct elf_state efile; 666 667 struct btf *btf; 668 struct btf_ext *btf_ext; 669 670 /* Parse and load BTF vmlinux if any of the programs in the object need 671 * it at load time. 672 */ 673 struct btf *btf_vmlinux; 674 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 675 * override for vmlinux BTF. 676 */ 677 char *btf_custom_path; 678 /* vmlinux BTF override for CO-RE relocations */ 679 struct btf *btf_vmlinux_override; 680 /* Lazily initialized kernel module BTFs */ 681 struct module_btf *btf_modules; 682 bool btf_modules_loaded; 683 size_t btf_module_cnt; 684 size_t btf_module_cap; 685 686 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 687 char *log_buf; 688 size_t log_size; 689 __u32 log_level; 690 691 int *fd_array; 692 size_t fd_array_cap; 693 size_t fd_array_cnt; 694 695 struct usdt_manager *usdt_man; 696 697 char path[]; 698 }; 699 700 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 701 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 702 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 703 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 704 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 705 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 706 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 707 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 708 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 709 710 void bpf_program__unload(struct bpf_program *prog) 711 { 712 if (!prog) 713 return; 714 715 zclose(prog->fd); 716 717 zfree(&prog->func_info); 718 zfree(&prog->line_info); 719 } 720 721 static void bpf_program__exit(struct bpf_program *prog) 722 { 723 if (!prog) 724 return; 725 726 bpf_program__unload(prog); 727 zfree(&prog->name); 728 zfree(&prog->sec_name); 729 zfree(&prog->insns); 730 zfree(&prog->reloc_desc); 731 732 prog->nr_reloc = 0; 733 prog->insns_cnt = 0; 734 prog->sec_idx = -1; 735 } 736 737 static bool insn_is_subprog_call(const struct bpf_insn *insn) 738 { 739 return BPF_CLASS(insn->code) == BPF_JMP && 740 BPF_OP(insn->code) == BPF_CALL && 741 BPF_SRC(insn->code) == BPF_K && 742 insn->src_reg == BPF_PSEUDO_CALL && 743 insn->dst_reg == 0 && 744 insn->off == 0; 745 } 746 747 static bool is_call_insn(const struct bpf_insn *insn) 748 { 749 return insn->code == (BPF_JMP | BPF_CALL); 750 } 751 752 static bool insn_is_pseudo_func(struct bpf_insn *insn) 753 { 754 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 755 } 756 757 static int 758 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 759 const char *name, size_t sec_idx, const char *sec_name, 760 size_t sec_off, void *insn_data, size_t insn_data_sz) 761 { 762 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 763 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 764 sec_name, name, sec_off, insn_data_sz); 765 return -EINVAL; 766 } 767 768 memset(prog, 0, sizeof(*prog)); 769 prog->obj = obj; 770 771 prog->sec_idx = sec_idx; 772 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 773 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 774 /* insns_cnt can later be increased by appending used subprograms */ 775 prog->insns_cnt = prog->sec_insn_cnt; 776 777 prog->type = BPF_PROG_TYPE_UNSPEC; 778 prog->fd = -1; 779 prog->exception_cb_idx = -1; 780 781 /* libbpf's convention for SEC("?abc...") is that it's just like 782 * SEC("abc...") but the corresponding bpf_program starts out with 783 * autoload set to false. 784 */ 785 if (sec_name[0] == '?') { 786 prog->autoload = false; 787 /* from now on forget there was ? in section name */ 788 sec_name++; 789 } else { 790 prog->autoload = true; 791 } 792 793 prog->autoattach = true; 794 795 /* inherit object's log_level */ 796 prog->log_level = obj->log_level; 797 798 prog->sec_name = strdup(sec_name); 799 if (!prog->sec_name) 800 goto errout; 801 802 prog->name = strdup(name); 803 if (!prog->name) 804 goto errout; 805 806 prog->insns = malloc(insn_data_sz); 807 if (!prog->insns) 808 goto errout; 809 memcpy(prog->insns, insn_data, insn_data_sz); 810 811 return 0; 812 errout: 813 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 814 bpf_program__exit(prog); 815 return -ENOMEM; 816 } 817 818 static int 819 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 820 const char *sec_name, int sec_idx) 821 { 822 Elf_Data *symbols = obj->efile.symbols; 823 struct bpf_program *prog, *progs; 824 void *data = sec_data->d_buf; 825 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 826 int nr_progs, err, i; 827 const char *name; 828 Elf64_Sym *sym; 829 830 progs = obj->programs; 831 nr_progs = obj->nr_programs; 832 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 833 834 for (i = 0; i < nr_syms; i++) { 835 sym = elf_sym_by_idx(obj, i); 836 837 if (sym->st_shndx != sec_idx) 838 continue; 839 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 840 continue; 841 842 prog_sz = sym->st_size; 843 sec_off = sym->st_value; 844 845 name = elf_sym_str(obj, sym->st_name); 846 if (!name) { 847 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 848 sec_name, sec_off); 849 return -LIBBPF_ERRNO__FORMAT; 850 } 851 852 if (sec_off + prog_sz > sec_sz) { 853 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 854 sec_name, sec_off); 855 return -LIBBPF_ERRNO__FORMAT; 856 } 857 858 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 859 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 860 return -ENOTSUP; 861 } 862 863 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 864 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 865 866 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 867 if (!progs) { 868 /* 869 * In this case the original obj->programs 870 * is still valid, so don't need special treat for 871 * bpf_close_object(). 872 */ 873 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 874 sec_name, name); 875 return -ENOMEM; 876 } 877 obj->programs = progs; 878 879 prog = &progs[nr_progs]; 880 881 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 882 sec_off, data + sec_off, prog_sz); 883 if (err) 884 return err; 885 886 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 887 prog->sym_global = true; 888 889 /* if function is a global/weak symbol, but has restricted 890 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 891 * as static to enable more permissive BPF verification mode 892 * with more outside context available to BPF verifier 893 */ 894 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 895 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 896 prog->mark_btf_static = true; 897 898 nr_progs++; 899 obj->nr_programs = nr_progs; 900 } 901 902 return 0; 903 } 904 905 static const struct btf_member * 906 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 907 { 908 struct btf_member *m; 909 int i; 910 911 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 912 if (btf_member_bit_offset(t, i) == bit_offset) 913 return m; 914 } 915 916 return NULL; 917 } 918 919 static const struct btf_member * 920 find_member_by_name(const struct btf *btf, const struct btf_type *t, 921 const char *name) 922 { 923 struct btf_member *m; 924 int i; 925 926 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 927 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 928 return m; 929 } 930 931 return NULL; 932 } 933 934 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 935 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 936 const char *name, __u32 kind); 937 938 static int 939 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 940 const struct btf_type **type, __u32 *type_id, 941 const struct btf_type **vtype, __u32 *vtype_id, 942 const struct btf_member **data_member) 943 { 944 const struct btf_type *kern_type, *kern_vtype; 945 const struct btf_member *kern_data_member; 946 __s32 kern_vtype_id, kern_type_id; 947 __u32 i; 948 949 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 950 if (kern_type_id < 0) { 951 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 952 tname); 953 return kern_type_id; 954 } 955 kern_type = btf__type_by_id(btf, kern_type_id); 956 957 /* Find the corresponding "map_value" type that will be used 958 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 959 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 960 * btf_vmlinux. 961 */ 962 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 963 tname, BTF_KIND_STRUCT); 964 if (kern_vtype_id < 0) { 965 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 966 STRUCT_OPS_VALUE_PREFIX, tname); 967 return kern_vtype_id; 968 } 969 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 970 971 /* Find "struct tcp_congestion_ops" from 972 * struct bpf_struct_ops_tcp_congestion_ops { 973 * [ ... ] 974 * struct tcp_congestion_ops data; 975 * } 976 */ 977 kern_data_member = btf_members(kern_vtype); 978 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 979 if (kern_data_member->type == kern_type_id) 980 break; 981 } 982 if (i == btf_vlen(kern_vtype)) { 983 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 984 tname, STRUCT_OPS_VALUE_PREFIX, tname); 985 return -EINVAL; 986 } 987 988 *type = kern_type; 989 *type_id = kern_type_id; 990 *vtype = kern_vtype; 991 *vtype_id = kern_vtype_id; 992 *data_member = kern_data_member; 993 994 return 0; 995 } 996 997 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 998 { 999 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1000 } 1001 1002 /* Init the map's fields that depend on kern_btf */ 1003 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 1004 const struct btf *btf, 1005 const struct btf *kern_btf) 1006 { 1007 const struct btf_member *member, *kern_member, *kern_data_member; 1008 const struct btf_type *type, *kern_type, *kern_vtype; 1009 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1010 struct bpf_struct_ops *st_ops; 1011 void *data, *kern_data; 1012 const char *tname; 1013 int err; 1014 1015 st_ops = map->st_ops; 1016 type = st_ops->type; 1017 tname = st_ops->tname; 1018 err = find_struct_ops_kern_types(kern_btf, tname, 1019 &kern_type, &kern_type_id, 1020 &kern_vtype, &kern_vtype_id, 1021 &kern_data_member); 1022 if (err) 1023 return err; 1024 1025 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1026 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1027 1028 map->def.value_size = kern_vtype->size; 1029 map->btf_vmlinux_value_type_id = kern_vtype_id; 1030 1031 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1032 if (!st_ops->kern_vdata) 1033 return -ENOMEM; 1034 1035 data = st_ops->data; 1036 kern_data_off = kern_data_member->offset / 8; 1037 kern_data = st_ops->kern_vdata + kern_data_off; 1038 1039 member = btf_members(type); 1040 for (i = 0; i < btf_vlen(type); i++, member++) { 1041 const struct btf_type *mtype, *kern_mtype; 1042 __u32 mtype_id, kern_mtype_id; 1043 void *mdata, *kern_mdata; 1044 __s64 msize, kern_msize; 1045 __u32 moff, kern_moff; 1046 __u32 kern_member_idx; 1047 const char *mname; 1048 1049 mname = btf__name_by_offset(btf, member->name_off); 1050 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1051 if (!kern_member) { 1052 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1053 map->name, mname); 1054 return -ENOTSUP; 1055 } 1056 1057 kern_member_idx = kern_member - btf_members(kern_type); 1058 if (btf_member_bitfield_size(type, i) || 1059 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1060 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1061 map->name, mname); 1062 return -ENOTSUP; 1063 } 1064 1065 moff = member->offset / 8; 1066 kern_moff = kern_member->offset / 8; 1067 1068 mdata = data + moff; 1069 kern_mdata = kern_data + kern_moff; 1070 1071 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1072 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1073 &kern_mtype_id); 1074 if (BTF_INFO_KIND(mtype->info) != 1075 BTF_INFO_KIND(kern_mtype->info)) { 1076 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1077 map->name, mname, BTF_INFO_KIND(mtype->info), 1078 BTF_INFO_KIND(kern_mtype->info)); 1079 return -ENOTSUP; 1080 } 1081 1082 if (btf_is_ptr(mtype)) { 1083 struct bpf_program *prog; 1084 1085 prog = st_ops->progs[i]; 1086 if (!prog) 1087 continue; 1088 1089 kern_mtype = skip_mods_and_typedefs(kern_btf, 1090 kern_mtype->type, 1091 &kern_mtype_id); 1092 1093 /* mtype->type must be a func_proto which was 1094 * guaranteed in bpf_object__collect_st_ops_relos(), 1095 * so only check kern_mtype for func_proto here. 1096 */ 1097 if (!btf_is_func_proto(kern_mtype)) { 1098 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1099 map->name, mname); 1100 return -ENOTSUP; 1101 } 1102 1103 prog->attach_btf_id = kern_type_id; 1104 prog->expected_attach_type = kern_member_idx; 1105 1106 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1107 1108 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1109 map->name, mname, prog->name, moff, 1110 kern_moff); 1111 1112 continue; 1113 } 1114 1115 msize = btf__resolve_size(btf, mtype_id); 1116 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1117 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1118 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1119 map->name, mname, (ssize_t)msize, 1120 (ssize_t)kern_msize); 1121 return -ENOTSUP; 1122 } 1123 1124 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1125 map->name, mname, (unsigned int)msize, 1126 moff, kern_moff); 1127 memcpy(kern_mdata, mdata, msize); 1128 } 1129 1130 return 0; 1131 } 1132 1133 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1134 { 1135 struct bpf_map *map; 1136 size_t i; 1137 int err; 1138 1139 for (i = 0; i < obj->nr_maps; i++) { 1140 map = &obj->maps[i]; 1141 1142 if (!bpf_map__is_struct_ops(map)) 1143 continue; 1144 1145 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1146 obj->btf_vmlinux); 1147 if (err) 1148 return err; 1149 } 1150 1151 return 0; 1152 } 1153 1154 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1155 int shndx, Elf_Data *data, __u32 map_flags) 1156 { 1157 const struct btf_type *type, *datasec; 1158 const struct btf_var_secinfo *vsi; 1159 struct bpf_struct_ops *st_ops; 1160 const char *tname, *var_name; 1161 __s32 type_id, datasec_id; 1162 const struct btf *btf; 1163 struct bpf_map *map; 1164 __u32 i; 1165 1166 if (shndx == -1) 1167 return 0; 1168 1169 btf = obj->btf; 1170 datasec_id = btf__find_by_name_kind(btf, sec_name, 1171 BTF_KIND_DATASEC); 1172 if (datasec_id < 0) { 1173 pr_warn("struct_ops init: DATASEC %s not found\n", 1174 sec_name); 1175 return -EINVAL; 1176 } 1177 1178 datasec = btf__type_by_id(btf, datasec_id); 1179 vsi = btf_var_secinfos(datasec); 1180 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1181 type = btf__type_by_id(obj->btf, vsi->type); 1182 var_name = btf__name_by_offset(obj->btf, type->name_off); 1183 1184 type_id = btf__resolve_type(obj->btf, vsi->type); 1185 if (type_id < 0) { 1186 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1187 vsi->type, sec_name); 1188 return -EINVAL; 1189 } 1190 1191 type = btf__type_by_id(obj->btf, type_id); 1192 tname = btf__name_by_offset(obj->btf, type->name_off); 1193 if (!tname[0]) { 1194 pr_warn("struct_ops init: anonymous type is not supported\n"); 1195 return -ENOTSUP; 1196 } 1197 if (!btf_is_struct(type)) { 1198 pr_warn("struct_ops init: %s is not a struct\n", tname); 1199 return -EINVAL; 1200 } 1201 1202 map = bpf_object__add_map(obj); 1203 if (IS_ERR(map)) 1204 return PTR_ERR(map); 1205 1206 map->sec_idx = shndx; 1207 map->sec_offset = vsi->offset; 1208 map->name = strdup(var_name); 1209 if (!map->name) 1210 return -ENOMEM; 1211 1212 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1213 map->def.key_size = sizeof(int); 1214 map->def.value_size = type->size; 1215 map->def.max_entries = 1; 1216 map->def.map_flags = map_flags; 1217 1218 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1219 if (!map->st_ops) 1220 return -ENOMEM; 1221 st_ops = map->st_ops; 1222 st_ops->data = malloc(type->size); 1223 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1224 st_ops->kern_func_off = malloc(btf_vlen(type) * 1225 sizeof(*st_ops->kern_func_off)); 1226 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1227 return -ENOMEM; 1228 1229 if (vsi->offset + type->size > data->d_size) { 1230 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1231 var_name, sec_name); 1232 return -EINVAL; 1233 } 1234 1235 memcpy(st_ops->data, 1236 data->d_buf + vsi->offset, 1237 type->size); 1238 st_ops->tname = tname; 1239 st_ops->type = type; 1240 st_ops->type_id = type_id; 1241 1242 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1243 tname, type_id, var_name, vsi->offset); 1244 } 1245 1246 return 0; 1247 } 1248 1249 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1250 { 1251 int err; 1252 1253 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx, 1254 obj->efile.st_ops_data, 0); 1255 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC, 1256 obj->efile.st_ops_link_shndx, 1257 obj->efile.st_ops_link_data, 1258 BPF_F_LINK); 1259 return err; 1260 } 1261 1262 static struct bpf_object *bpf_object__new(const char *path, 1263 const void *obj_buf, 1264 size_t obj_buf_sz, 1265 const char *obj_name) 1266 { 1267 struct bpf_object *obj; 1268 char *end; 1269 1270 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1271 if (!obj) { 1272 pr_warn("alloc memory failed for %s\n", path); 1273 return ERR_PTR(-ENOMEM); 1274 } 1275 1276 strcpy(obj->path, path); 1277 if (obj_name) { 1278 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1279 } else { 1280 /* Using basename() GNU version which doesn't modify arg. */ 1281 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1282 end = strchr(obj->name, '.'); 1283 if (end) 1284 *end = 0; 1285 } 1286 1287 obj->efile.fd = -1; 1288 /* 1289 * Caller of this function should also call 1290 * bpf_object__elf_finish() after data collection to return 1291 * obj_buf to user. If not, we should duplicate the buffer to 1292 * avoid user freeing them before elf finish. 1293 */ 1294 obj->efile.obj_buf = obj_buf; 1295 obj->efile.obj_buf_sz = obj_buf_sz; 1296 obj->efile.btf_maps_shndx = -1; 1297 obj->efile.st_ops_shndx = -1; 1298 obj->efile.st_ops_link_shndx = -1; 1299 obj->kconfig_map_idx = -1; 1300 1301 obj->kern_version = get_kernel_version(); 1302 obj->loaded = false; 1303 1304 return obj; 1305 } 1306 1307 static void bpf_object__elf_finish(struct bpf_object *obj) 1308 { 1309 if (!obj->efile.elf) 1310 return; 1311 1312 elf_end(obj->efile.elf); 1313 obj->efile.elf = NULL; 1314 obj->efile.symbols = NULL; 1315 obj->efile.st_ops_data = NULL; 1316 obj->efile.st_ops_link_data = NULL; 1317 1318 zfree(&obj->efile.secs); 1319 obj->efile.sec_cnt = 0; 1320 zclose(obj->efile.fd); 1321 obj->efile.obj_buf = NULL; 1322 obj->efile.obj_buf_sz = 0; 1323 } 1324 1325 static int bpf_object__elf_init(struct bpf_object *obj) 1326 { 1327 Elf64_Ehdr *ehdr; 1328 int err = 0; 1329 Elf *elf; 1330 1331 if (obj->efile.elf) { 1332 pr_warn("elf: init internal error\n"); 1333 return -LIBBPF_ERRNO__LIBELF; 1334 } 1335 1336 if (obj->efile.obj_buf_sz > 0) { 1337 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1338 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1339 } else { 1340 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1341 if (obj->efile.fd < 0) { 1342 char errmsg[STRERR_BUFSIZE], *cp; 1343 1344 err = -errno; 1345 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1346 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1347 return err; 1348 } 1349 1350 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1351 } 1352 1353 if (!elf) { 1354 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1355 err = -LIBBPF_ERRNO__LIBELF; 1356 goto errout; 1357 } 1358 1359 obj->efile.elf = elf; 1360 1361 if (elf_kind(elf) != ELF_K_ELF) { 1362 err = -LIBBPF_ERRNO__FORMAT; 1363 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1364 goto errout; 1365 } 1366 1367 if (gelf_getclass(elf) != ELFCLASS64) { 1368 err = -LIBBPF_ERRNO__FORMAT; 1369 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1370 goto errout; 1371 } 1372 1373 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1374 if (!obj->efile.ehdr) { 1375 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1376 err = -LIBBPF_ERRNO__FORMAT; 1377 goto errout; 1378 } 1379 1380 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1381 pr_warn("elf: failed to get section names section index for %s: %s\n", 1382 obj->path, elf_errmsg(-1)); 1383 err = -LIBBPF_ERRNO__FORMAT; 1384 goto errout; 1385 } 1386 1387 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1388 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1389 pr_warn("elf: failed to get section names strings from %s: %s\n", 1390 obj->path, elf_errmsg(-1)); 1391 err = -LIBBPF_ERRNO__FORMAT; 1392 goto errout; 1393 } 1394 1395 /* Old LLVM set e_machine to EM_NONE */ 1396 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1397 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1398 err = -LIBBPF_ERRNO__FORMAT; 1399 goto errout; 1400 } 1401 1402 return 0; 1403 errout: 1404 bpf_object__elf_finish(obj); 1405 return err; 1406 } 1407 1408 static int bpf_object__check_endianness(struct bpf_object *obj) 1409 { 1410 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1411 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1412 return 0; 1413 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1414 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1415 return 0; 1416 #else 1417 # error "Unrecognized __BYTE_ORDER__" 1418 #endif 1419 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1420 return -LIBBPF_ERRNO__ENDIAN; 1421 } 1422 1423 static int 1424 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1425 { 1426 if (!data) { 1427 pr_warn("invalid license section in %s\n", obj->path); 1428 return -LIBBPF_ERRNO__FORMAT; 1429 } 1430 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1431 * go over allowed ELF data section buffer 1432 */ 1433 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1434 pr_debug("license of %s is %s\n", obj->path, obj->license); 1435 return 0; 1436 } 1437 1438 static int 1439 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1440 { 1441 __u32 kver; 1442 1443 if (!data || size != sizeof(kver)) { 1444 pr_warn("invalid kver section in %s\n", obj->path); 1445 return -LIBBPF_ERRNO__FORMAT; 1446 } 1447 memcpy(&kver, data, sizeof(kver)); 1448 obj->kern_version = kver; 1449 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1450 return 0; 1451 } 1452 1453 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1454 { 1455 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1456 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1457 return true; 1458 return false; 1459 } 1460 1461 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1462 { 1463 Elf_Data *data; 1464 Elf_Scn *scn; 1465 1466 if (!name) 1467 return -EINVAL; 1468 1469 scn = elf_sec_by_name(obj, name); 1470 data = elf_sec_data(obj, scn); 1471 if (data) { 1472 *size = data->d_size; 1473 return 0; /* found it */ 1474 } 1475 1476 return -ENOENT; 1477 } 1478 1479 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1480 { 1481 Elf_Data *symbols = obj->efile.symbols; 1482 const char *sname; 1483 size_t si; 1484 1485 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1486 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1487 1488 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1489 continue; 1490 1491 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1492 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1493 continue; 1494 1495 sname = elf_sym_str(obj, sym->st_name); 1496 if (!sname) { 1497 pr_warn("failed to get sym name string for var %s\n", name); 1498 return ERR_PTR(-EIO); 1499 } 1500 if (strcmp(name, sname) == 0) 1501 return sym; 1502 } 1503 1504 return ERR_PTR(-ENOENT); 1505 } 1506 1507 static int create_placeholder_fd(void) 1508 { 1509 int fd; 1510 1511 fd = ensure_good_fd(memfd_create("libbpf-placeholder-fd", MFD_CLOEXEC)); 1512 if (fd < 0) 1513 return -errno; 1514 return fd; 1515 } 1516 1517 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1518 { 1519 struct bpf_map *map; 1520 int err; 1521 1522 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1523 sizeof(*obj->maps), obj->nr_maps + 1); 1524 if (err) 1525 return ERR_PTR(err); 1526 1527 map = &obj->maps[obj->nr_maps++]; 1528 map->obj = obj; 1529 /* Preallocate map FD without actually creating BPF map just yet. 1530 * These map FD "placeholders" will be reused later without changing 1531 * FD value when map is actually created in the kernel. 1532 * 1533 * This is useful to be able to perform BPF program relocations 1534 * without having to create BPF maps before that step. This allows us 1535 * to finalize and load BTF very late in BPF object's loading phase, 1536 * right before BPF maps have to be created and BPF programs have to 1537 * be loaded. By having these map FD placeholders we can perform all 1538 * the sanitizations, relocations, and any other adjustments before we 1539 * start creating actual BPF kernel objects (BTF, maps, progs). 1540 */ 1541 map->fd = create_placeholder_fd(); 1542 if (map->fd < 0) 1543 return ERR_PTR(map->fd); 1544 map->inner_map_fd = -1; 1545 map->autocreate = true; 1546 1547 return map; 1548 } 1549 1550 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1551 { 1552 const long page_sz = sysconf(_SC_PAGE_SIZE); 1553 size_t map_sz; 1554 1555 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1556 map_sz = roundup(map_sz, page_sz); 1557 return map_sz; 1558 } 1559 1560 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1561 { 1562 void *mmaped; 1563 1564 if (!map->mmaped) 1565 return -EINVAL; 1566 1567 if (old_sz == new_sz) 1568 return 0; 1569 1570 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1571 if (mmaped == MAP_FAILED) 1572 return -errno; 1573 1574 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1575 munmap(map->mmaped, old_sz); 1576 map->mmaped = mmaped; 1577 return 0; 1578 } 1579 1580 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1581 { 1582 char map_name[BPF_OBJ_NAME_LEN], *p; 1583 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1584 1585 /* This is one of the more confusing parts of libbpf for various 1586 * reasons, some of which are historical. The original idea for naming 1587 * internal names was to include as much of BPF object name prefix as 1588 * possible, so that it can be distinguished from similar internal 1589 * maps of a different BPF object. 1590 * As an example, let's say we have bpf_object named 'my_object_name' 1591 * and internal map corresponding to '.rodata' ELF section. The final 1592 * map name advertised to user and to the kernel will be 1593 * 'my_objec.rodata', taking first 8 characters of object name and 1594 * entire 7 characters of '.rodata'. 1595 * Somewhat confusingly, if internal map ELF section name is shorter 1596 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1597 * for the suffix, even though we only have 4 actual characters, and 1598 * resulting map will be called 'my_objec.bss', not even using all 15 1599 * characters allowed by the kernel. Oh well, at least the truncated 1600 * object name is somewhat consistent in this case. But if the map 1601 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1602 * (8 chars) and thus will be left with only first 7 characters of the 1603 * object name ('my_obje'). Happy guessing, user, that the final map 1604 * name will be "my_obje.kconfig". 1605 * Now, with libbpf starting to support arbitrarily named .rodata.* 1606 * and .data.* data sections, it's possible that ELF section name is 1607 * longer than allowed 15 chars, so we now need to be careful to take 1608 * only up to 15 first characters of ELF name, taking no BPF object 1609 * name characters at all. So '.rodata.abracadabra' will result in 1610 * '.rodata.abracad' kernel and user-visible name. 1611 * We need to keep this convoluted logic intact for .data, .bss and 1612 * .rodata maps, but for new custom .data.custom and .rodata.custom 1613 * maps we use their ELF names as is, not prepending bpf_object name 1614 * in front. We still need to truncate them to 15 characters for the 1615 * kernel. Full name can be recovered for such maps by using DATASEC 1616 * BTF type associated with such map's value type, though. 1617 */ 1618 if (sfx_len >= BPF_OBJ_NAME_LEN) 1619 sfx_len = BPF_OBJ_NAME_LEN - 1; 1620 1621 /* if there are two or more dots in map name, it's a custom dot map */ 1622 if (strchr(real_name + 1, '.') != NULL) 1623 pfx_len = 0; 1624 else 1625 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1626 1627 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1628 sfx_len, real_name); 1629 1630 /* sanitise map name to characters allowed by kernel */ 1631 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1632 if (!isalnum(*p) && *p != '_' && *p != '.') 1633 *p = '_'; 1634 1635 return strdup(map_name); 1636 } 1637 1638 static int 1639 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1640 1641 /* Internal BPF map is mmap()'able only if at least one of corresponding 1642 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1643 * variable and it's not marked as __hidden (which turns it into, effectively, 1644 * a STATIC variable). 1645 */ 1646 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1647 { 1648 const struct btf_type *t, *vt; 1649 struct btf_var_secinfo *vsi; 1650 int i, n; 1651 1652 if (!map->btf_value_type_id) 1653 return false; 1654 1655 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1656 if (!btf_is_datasec(t)) 1657 return false; 1658 1659 vsi = btf_var_secinfos(t); 1660 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1661 vt = btf__type_by_id(obj->btf, vsi->type); 1662 if (!btf_is_var(vt)) 1663 continue; 1664 1665 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1666 return true; 1667 } 1668 1669 return false; 1670 } 1671 1672 static int 1673 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1674 const char *real_name, int sec_idx, void *data, size_t data_sz) 1675 { 1676 struct bpf_map_def *def; 1677 struct bpf_map *map; 1678 size_t mmap_sz; 1679 int err; 1680 1681 map = bpf_object__add_map(obj); 1682 if (IS_ERR(map)) 1683 return PTR_ERR(map); 1684 1685 map->libbpf_type = type; 1686 map->sec_idx = sec_idx; 1687 map->sec_offset = 0; 1688 map->real_name = strdup(real_name); 1689 map->name = internal_map_name(obj, real_name); 1690 if (!map->real_name || !map->name) { 1691 zfree(&map->real_name); 1692 zfree(&map->name); 1693 return -ENOMEM; 1694 } 1695 1696 def = &map->def; 1697 def->type = BPF_MAP_TYPE_ARRAY; 1698 def->key_size = sizeof(int); 1699 def->value_size = data_sz; 1700 def->max_entries = 1; 1701 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1702 ? BPF_F_RDONLY_PROG : 0; 1703 1704 /* failures are fine because of maps like .rodata.str1.1 */ 1705 (void) map_fill_btf_type_info(obj, map); 1706 1707 if (map_is_mmapable(obj, map)) 1708 def->map_flags |= BPF_F_MMAPABLE; 1709 1710 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1711 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1712 1713 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 1714 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1715 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1716 if (map->mmaped == MAP_FAILED) { 1717 err = -errno; 1718 map->mmaped = NULL; 1719 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1720 map->name, err); 1721 zfree(&map->real_name); 1722 zfree(&map->name); 1723 return err; 1724 } 1725 1726 if (data) 1727 memcpy(map->mmaped, data, data_sz); 1728 1729 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1730 return 0; 1731 } 1732 1733 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1734 { 1735 struct elf_sec_desc *sec_desc; 1736 const char *sec_name; 1737 int err = 0, sec_idx; 1738 1739 /* 1740 * Populate obj->maps with libbpf internal maps. 1741 */ 1742 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1743 sec_desc = &obj->efile.secs[sec_idx]; 1744 1745 /* Skip recognized sections with size 0. */ 1746 if (!sec_desc->data || sec_desc->data->d_size == 0) 1747 continue; 1748 1749 switch (sec_desc->sec_type) { 1750 case SEC_DATA: 1751 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1752 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1753 sec_name, sec_idx, 1754 sec_desc->data->d_buf, 1755 sec_desc->data->d_size); 1756 break; 1757 case SEC_RODATA: 1758 obj->has_rodata = true; 1759 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1760 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1761 sec_name, sec_idx, 1762 sec_desc->data->d_buf, 1763 sec_desc->data->d_size); 1764 break; 1765 case SEC_BSS: 1766 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1767 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1768 sec_name, sec_idx, 1769 NULL, 1770 sec_desc->data->d_size); 1771 break; 1772 default: 1773 /* skip */ 1774 break; 1775 } 1776 if (err) 1777 return err; 1778 } 1779 return 0; 1780 } 1781 1782 1783 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1784 const void *name) 1785 { 1786 int i; 1787 1788 for (i = 0; i < obj->nr_extern; i++) { 1789 if (strcmp(obj->externs[i].name, name) == 0) 1790 return &obj->externs[i]; 1791 } 1792 return NULL; 1793 } 1794 1795 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1796 char value) 1797 { 1798 switch (ext->kcfg.type) { 1799 case KCFG_BOOL: 1800 if (value == 'm') { 1801 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1802 ext->name, value); 1803 return -EINVAL; 1804 } 1805 *(bool *)ext_val = value == 'y' ? true : false; 1806 break; 1807 case KCFG_TRISTATE: 1808 if (value == 'y') 1809 *(enum libbpf_tristate *)ext_val = TRI_YES; 1810 else if (value == 'm') 1811 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1812 else /* value == 'n' */ 1813 *(enum libbpf_tristate *)ext_val = TRI_NO; 1814 break; 1815 case KCFG_CHAR: 1816 *(char *)ext_val = value; 1817 break; 1818 case KCFG_UNKNOWN: 1819 case KCFG_INT: 1820 case KCFG_CHAR_ARR: 1821 default: 1822 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1823 ext->name, value); 1824 return -EINVAL; 1825 } 1826 ext->is_set = true; 1827 return 0; 1828 } 1829 1830 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1831 const char *value) 1832 { 1833 size_t len; 1834 1835 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1836 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1837 ext->name, value); 1838 return -EINVAL; 1839 } 1840 1841 len = strlen(value); 1842 if (value[len - 1] != '"') { 1843 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1844 ext->name, value); 1845 return -EINVAL; 1846 } 1847 1848 /* strip quotes */ 1849 len -= 2; 1850 if (len >= ext->kcfg.sz) { 1851 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1852 ext->name, value, len, ext->kcfg.sz - 1); 1853 len = ext->kcfg.sz - 1; 1854 } 1855 memcpy(ext_val, value + 1, len); 1856 ext_val[len] = '\0'; 1857 ext->is_set = true; 1858 return 0; 1859 } 1860 1861 static int parse_u64(const char *value, __u64 *res) 1862 { 1863 char *value_end; 1864 int err; 1865 1866 errno = 0; 1867 *res = strtoull(value, &value_end, 0); 1868 if (errno) { 1869 err = -errno; 1870 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1871 return err; 1872 } 1873 if (*value_end) { 1874 pr_warn("failed to parse '%s' as integer completely\n", value); 1875 return -EINVAL; 1876 } 1877 return 0; 1878 } 1879 1880 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1881 { 1882 int bit_sz = ext->kcfg.sz * 8; 1883 1884 if (ext->kcfg.sz == 8) 1885 return true; 1886 1887 /* Validate that value stored in u64 fits in integer of `ext->sz` 1888 * bytes size without any loss of information. If the target integer 1889 * is signed, we rely on the following limits of integer type of 1890 * Y bits and subsequent transformation: 1891 * 1892 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1893 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1894 * 0 <= X + 2^(Y-1) < 2^Y 1895 * 1896 * For unsigned target integer, check that all the (64 - Y) bits are 1897 * zero. 1898 */ 1899 if (ext->kcfg.is_signed) 1900 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1901 else 1902 return (v >> bit_sz) == 0; 1903 } 1904 1905 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1906 __u64 value) 1907 { 1908 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1909 ext->kcfg.type != KCFG_BOOL) { 1910 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1911 ext->name, (unsigned long long)value); 1912 return -EINVAL; 1913 } 1914 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1915 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1916 ext->name, (unsigned long long)value); 1917 return -EINVAL; 1918 1919 } 1920 if (!is_kcfg_value_in_range(ext, value)) { 1921 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1922 ext->name, (unsigned long long)value, ext->kcfg.sz); 1923 return -ERANGE; 1924 } 1925 switch (ext->kcfg.sz) { 1926 case 1: 1927 *(__u8 *)ext_val = value; 1928 break; 1929 case 2: 1930 *(__u16 *)ext_val = value; 1931 break; 1932 case 4: 1933 *(__u32 *)ext_val = value; 1934 break; 1935 case 8: 1936 *(__u64 *)ext_val = value; 1937 break; 1938 default: 1939 return -EINVAL; 1940 } 1941 ext->is_set = true; 1942 return 0; 1943 } 1944 1945 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1946 char *buf, void *data) 1947 { 1948 struct extern_desc *ext; 1949 char *sep, *value; 1950 int len, err = 0; 1951 void *ext_val; 1952 __u64 num; 1953 1954 if (!str_has_pfx(buf, "CONFIG_")) 1955 return 0; 1956 1957 sep = strchr(buf, '='); 1958 if (!sep) { 1959 pr_warn("failed to parse '%s': no separator\n", buf); 1960 return -EINVAL; 1961 } 1962 1963 /* Trim ending '\n' */ 1964 len = strlen(buf); 1965 if (buf[len - 1] == '\n') 1966 buf[len - 1] = '\0'; 1967 /* Split on '=' and ensure that a value is present. */ 1968 *sep = '\0'; 1969 if (!sep[1]) { 1970 *sep = '='; 1971 pr_warn("failed to parse '%s': no value\n", buf); 1972 return -EINVAL; 1973 } 1974 1975 ext = find_extern_by_name(obj, buf); 1976 if (!ext || ext->is_set) 1977 return 0; 1978 1979 ext_val = data + ext->kcfg.data_off; 1980 value = sep + 1; 1981 1982 switch (*value) { 1983 case 'y': case 'n': case 'm': 1984 err = set_kcfg_value_tri(ext, ext_val, *value); 1985 break; 1986 case '"': 1987 err = set_kcfg_value_str(ext, ext_val, value); 1988 break; 1989 default: 1990 /* assume integer */ 1991 err = parse_u64(value, &num); 1992 if (err) { 1993 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1994 return err; 1995 } 1996 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1997 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1998 return -EINVAL; 1999 } 2000 err = set_kcfg_value_num(ext, ext_val, num); 2001 break; 2002 } 2003 if (err) 2004 return err; 2005 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 2006 return 0; 2007 } 2008 2009 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 2010 { 2011 char buf[PATH_MAX]; 2012 struct utsname uts; 2013 int len, err = 0; 2014 gzFile file; 2015 2016 uname(&uts); 2017 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 2018 if (len < 0) 2019 return -EINVAL; 2020 else if (len >= PATH_MAX) 2021 return -ENAMETOOLONG; 2022 2023 /* gzopen also accepts uncompressed files. */ 2024 file = gzopen(buf, "re"); 2025 if (!file) 2026 file = gzopen("/proc/config.gz", "re"); 2027 2028 if (!file) { 2029 pr_warn("failed to open system Kconfig\n"); 2030 return -ENOENT; 2031 } 2032 2033 while (gzgets(file, buf, sizeof(buf))) { 2034 err = bpf_object__process_kconfig_line(obj, buf, data); 2035 if (err) { 2036 pr_warn("error parsing system Kconfig line '%s': %d\n", 2037 buf, err); 2038 goto out; 2039 } 2040 } 2041 2042 out: 2043 gzclose(file); 2044 return err; 2045 } 2046 2047 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2048 const char *config, void *data) 2049 { 2050 char buf[PATH_MAX]; 2051 int err = 0; 2052 FILE *file; 2053 2054 file = fmemopen((void *)config, strlen(config), "r"); 2055 if (!file) { 2056 err = -errno; 2057 pr_warn("failed to open in-memory Kconfig: %d\n", err); 2058 return err; 2059 } 2060 2061 while (fgets(buf, sizeof(buf), file)) { 2062 err = bpf_object__process_kconfig_line(obj, buf, data); 2063 if (err) { 2064 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2065 buf, err); 2066 break; 2067 } 2068 } 2069 2070 fclose(file); 2071 return err; 2072 } 2073 2074 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2075 { 2076 struct extern_desc *last_ext = NULL, *ext; 2077 size_t map_sz; 2078 int i, err; 2079 2080 for (i = 0; i < obj->nr_extern; i++) { 2081 ext = &obj->externs[i]; 2082 if (ext->type == EXT_KCFG) 2083 last_ext = ext; 2084 } 2085 2086 if (!last_ext) 2087 return 0; 2088 2089 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2090 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2091 ".kconfig", obj->efile.symbols_shndx, 2092 NULL, map_sz); 2093 if (err) 2094 return err; 2095 2096 obj->kconfig_map_idx = obj->nr_maps - 1; 2097 2098 return 0; 2099 } 2100 2101 const struct btf_type * 2102 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2103 { 2104 const struct btf_type *t = btf__type_by_id(btf, id); 2105 2106 if (res_id) 2107 *res_id = id; 2108 2109 while (btf_is_mod(t) || btf_is_typedef(t)) { 2110 if (res_id) 2111 *res_id = t->type; 2112 t = btf__type_by_id(btf, t->type); 2113 } 2114 2115 return t; 2116 } 2117 2118 static const struct btf_type * 2119 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2120 { 2121 const struct btf_type *t; 2122 2123 t = skip_mods_and_typedefs(btf, id, NULL); 2124 if (!btf_is_ptr(t)) 2125 return NULL; 2126 2127 t = skip_mods_and_typedefs(btf, t->type, res_id); 2128 2129 return btf_is_func_proto(t) ? t : NULL; 2130 } 2131 2132 static const char *__btf_kind_str(__u16 kind) 2133 { 2134 switch (kind) { 2135 case BTF_KIND_UNKN: return "void"; 2136 case BTF_KIND_INT: return "int"; 2137 case BTF_KIND_PTR: return "ptr"; 2138 case BTF_KIND_ARRAY: return "array"; 2139 case BTF_KIND_STRUCT: return "struct"; 2140 case BTF_KIND_UNION: return "union"; 2141 case BTF_KIND_ENUM: return "enum"; 2142 case BTF_KIND_FWD: return "fwd"; 2143 case BTF_KIND_TYPEDEF: return "typedef"; 2144 case BTF_KIND_VOLATILE: return "volatile"; 2145 case BTF_KIND_CONST: return "const"; 2146 case BTF_KIND_RESTRICT: return "restrict"; 2147 case BTF_KIND_FUNC: return "func"; 2148 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2149 case BTF_KIND_VAR: return "var"; 2150 case BTF_KIND_DATASEC: return "datasec"; 2151 case BTF_KIND_FLOAT: return "float"; 2152 case BTF_KIND_DECL_TAG: return "decl_tag"; 2153 case BTF_KIND_TYPE_TAG: return "type_tag"; 2154 case BTF_KIND_ENUM64: return "enum64"; 2155 default: return "unknown"; 2156 } 2157 } 2158 2159 const char *btf_kind_str(const struct btf_type *t) 2160 { 2161 return __btf_kind_str(btf_kind(t)); 2162 } 2163 2164 /* 2165 * Fetch integer attribute of BTF map definition. Such attributes are 2166 * represented using a pointer to an array, in which dimensionality of array 2167 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2168 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2169 * type definition, while using only sizeof(void *) space in ELF data section. 2170 */ 2171 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2172 const struct btf_member *m, __u32 *res) 2173 { 2174 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2175 const char *name = btf__name_by_offset(btf, m->name_off); 2176 const struct btf_array *arr_info; 2177 const struct btf_type *arr_t; 2178 2179 if (!btf_is_ptr(t)) { 2180 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2181 map_name, name, btf_kind_str(t)); 2182 return false; 2183 } 2184 2185 arr_t = btf__type_by_id(btf, t->type); 2186 if (!arr_t) { 2187 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2188 map_name, name, t->type); 2189 return false; 2190 } 2191 if (!btf_is_array(arr_t)) { 2192 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2193 map_name, name, btf_kind_str(arr_t)); 2194 return false; 2195 } 2196 arr_info = btf_array(arr_t); 2197 *res = arr_info->nelems; 2198 return true; 2199 } 2200 2201 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2202 { 2203 int len; 2204 2205 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2206 if (len < 0) 2207 return -EINVAL; 2208 if (len >= buf_sz) 2209 return -ENAMETOOLONG; 2210 2211 return 0; 2212 } 2213 2214 static int build_map_pin_path(struct bpf_map *map, const char *path) 2215 { 2216 char buf[PATH_MAX]; 2217 int err; 2218 2219 if (!path) 2220 path = "/sys/fs/bpf"; 2221 2222 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2223 if (err) 2224 return err; 2225 2226 return bpf_map__set_pin_path(map, buf); 2227 } 2228 2229 /* should match definition in bpf_helpers.h */ 2230 enum libbpf_pin_type { 2231 LIBBPF_PIN_NONE, 2232 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2233 LIBBPF_PIN_BY_NAME, 2234 }; 2235 2236 int parse_btf_map_def(const char *map_name, struct btf *btf, 2237 const struct btf_type *def_t, bool strict, 2238 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2239 { 2240 const struct btf_type *t; 2241 const struct btf_member *m; 2242 bool is_inner = inner_def == NULL; 2243 int vlen, i; 2244 2245 vlen = btf_vlen(def_t); 2246 m = btf_members(def_t); 2247 for (i = 0; i < vlen; i++, m++) { 2248 const char *name = btf__name_by_offset(btf, m->name_off); 2249 2250 if (!name) { 2251 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2252 return -EINVAL; 2253 } 2254 if (strcmp(name, "type") == 0) { 2255 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2256 return -EINVAL; 2257 map_def->parts |= MAP_DEF_MAP_TYPE; 2258 } else if (strcmp(name, "max_entries") == 0) { 2259 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2260 return -EINVAL; 2261 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2262 } else if (strcmp(name, "map_flags") == 0) { 2263 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2264 return -EINVAL; 2265 map_def->parts |= MAP_DEF_MAP_FLAGS; 2266 } else if (strcmp(name, "numa_node") == 0) { 2267 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2268 return -EINVAL; 2269 map_def->parts |= MAP_DEF_NUMA_NODE; 2270 } else if (strcmp(name, "key_size") == 0) { 2271 __u32 sz; 2272 2273 if (!get_map_field_int(map_name, btf, m, &sz)) 2274 return -EINVAL; 2275 if (map_def->key_size && map_def->key_size != sz) { 2276 pr_warn("map '%s': conflicting key size %u != %u.\n", 2277 map_name, map_def->key_size, sz); 2278 return -EINVAL; 2279 } 2280 map_def->key_size = sz; 2281 map_def->parts |= MAP_DEF_KEY_SIZE; 2282 } else if (strcmp(name, "key") == 0) { 2283 __s64 sz; 2284 2285 t = btf__type_by_id(btf, m->type); 2286 if (!t) { 2287 pr_warn("map '%s': key type [%d] not found.\n", 2288 map_name, m->type); 2289 return -EINVAL; 2290 } 2291 if (!btf_is_ptr(t)) { 2292 pr_warn("map '%s': key spec is not PTR: %s.\n", 2293 map_name, btf_kind_str(t)); 2294 return -EINVAL; 2295 } 2296 sz = btf__resolve_size(btf, t->type); 2297 if (sz < 0) { 2298 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2299 map_name, t->type, (ssize_t)sz); 2300 return sz; 2301 } 2302 if (map_def->key_size && map_def->key_size != sz) { 2303 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2304 map_name, map_def->key_size, (ssize_t)sz); 2305 return -EINVAL; 2306 } 2307 map_def->key_size = sz; 2308 map_def->key_type_id = t->type; 2309 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2310 } else if (strcmp(name, "value_size") == 0) { 2311 __u32 sz; 2312 2313 if (!get_map_field_int(map_name, btf, m, &sz)) 2314 return -EINVAL; 2315 if (map_def->value_size && map_def->value_size != sz) { 2316 pr_warn("map '%s': conflicting value size %u != %u.\n", 2317 map_name, map_def->value_size, sz); 2318 return -EINVAL; 2319 } 2320 map_def->value_size = sz; 2321 map_def->parts |= MAP_DEF_VALUE_SIZE; 2322 } else if (strcmp(name, "value") == 0) { 2323 __s64 sz; 2324 2325 t = btf__type_by_id(btf, m->type); 2326 if (!t) { 2327 pr_warn("map '%s': value type [%d] not found.\n", 2328 map_name, m->type); 2329 return -EINVAL; 2330 } 2331 if (!btf_is_ptr(t)) { 2332 pr_warn("map '%s': value spec is not PTR: %s.\n", 2333 map_name, btf_kind_str(t)); 2334 return -EINVAL; 2335 } 2336 sz = btf__resolve_size(btf, t->type); 2337 if (sz < 0) { 2338 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2339 map_name, t->type, (ssize_t)sz); 2340 return sz; 2341 } 2342 if (map_def->value_size && map_def->value_size != sz) { 2343 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2344 map_name, map_def->value_size, (ssize_t)sz); 2345 return -EINVAL; 2346 } 2347 map_def->value_size = sz; 2348 map_def->value_type_id = t->type; 2349 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2350 } 2351 else if (strcmp(name, "values") == 0) { 2352 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2353 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2354 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2355 char inner_map_name[128]; 2356 int err; 2357 2358 if (is_inner) { 2359 pr_warn("map '%s': multi-level inner maps not supported.\n", 2360 map_name); 2361 return -ENOTSUP; 2362 } 2363 if (i != vlen - 1) { 2364 pr_warn("map '%s': '%s' member should be last.\n", 2365 map_name, name); 2366 return -EINVAL; 2367 } 2368 if (!is_map_in_map && !is_prog_array) { 2369 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2370 map_name); 2371 return -ENOTSUP; 2372 } 2373 if (map_def->value_size && map_def->value_size != 4) { 2374 pr_warn("map '%s': conflicting value size %u != 4.\n", 2375 map_name, map_def->value_size); 2376 return -EINVAL; 2377 } 2378 map_def->value_size = 4; 2379 t = btf__type_by_id(btf, m->type); 2380 if (!t) { 2381 pr_warn("map '%s': %s type [%d] not found.\n", 2382 map_name, desc, m->type); 2383 return -EINVAL; 2384 } 2385 if (!btf_is_array(t) || btf_array(t)->nelems) { 2386 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2387 map_name, desc); 2388 return -EINVAL; 2389 } 2390 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2391 if (!btf_is_ptr(t)) { 2392 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2393 map_name, desc, btf_kind_str(t)); 2394 return -EINVAL; 2395 } 2396 t = skip_mods_and_typedefs(btf, t->type, NULL); 2397 if (is_prog_array) { 2398 if (!btf_is_func_proto(t)) { 2399 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2400 map_name, btf_kind_str(t)); 2401 return -EINVAL; 2402 } 2403 continue; 2404 } 2405 if (!btf_is_struct(t)) { 2406 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2407 map_name, btf_kind_str(t)); 2408 return -EINVAL; 2409 } 2410 2411 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2412 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2413 if (err) 2414 return err; 2415 2416 map_def->parts |= MAP_DEF_INNER_MAP; 2417 } else if (strcmp(name, "pinning") == 0) { 2418 __u32 val; 2419 2420 if (is_inner) { 2421 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2422 return -EINVAL; 2423 } 2424 if (!get_map_field_int(map_name, btf, m, &val)) 2425 return -EINVAL; 2426 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2427 pr_warn("map '%s': invalid pinning value %u.\n", 2428 map_name, val); 2429 return -EINVAL; 2430 } 2431 map_def->pinning = val; 2432 map_def->parts |= MAP_DEF_PINNING; 2433 } else if (strcmp(name, "map_extra") == 0) { 2434 __u32 map_extra; 2435 2436 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2437 return -EINVAL; 2438 map_def->map_extra = map_extra; 2439 map_def->parts |= MAP_DEF_MAP_EXTRA; 2440 } else { 2441 if (strict) { 2442 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2443 return -ENOTSUP; 2444 } 2445 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2446 } 2447 } 2448 2449 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2450 pr_warn("map '%s': map type isn't specified.\n", map_name); 2451 return -EINVAL; 2452 } 2453 2454 return 0; 2455 } 2456 2457 static size_t adjust_ringbuf_sz(size_t sz) 2458 { 2459 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2460 __u32 mul; 2461 2462 /* if user forgot to set any size, make sure they see error */ 2463 if (sz == 0) 2464 return 0; 2465 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2466 * a power-of-2 multiple of kernel's page size. If user diligently 2467 * satisified these conditions, pass the size through. 2468 */ 2469 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2470 return sz; 2471 2472 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2473 * user-set size to satisfy both user size request and kernel 2474 * requirements and substitute correct max_entries for map creation. 2475 */ 2476 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2477 if (mul * page_sz > sz) 2478 return mul * page_sz; 2479 } 2480 2481 /* if it's impossible to satisfy the conditions (i.e., user size is 2482 * very close to UINT_MAX but is not a power-of-2 multiple of 2483 * page_size) then just return original size and let kernel reject it 2484 */ 2485 return sz; 2486 } 2487 2488 static bool map_is_ringbuf(const struct bpf_map *map) 2489 { 2490 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2491 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2492 } 2493 2494 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2495 { 2496 map->def.type = def->map_type; 2497 map->def.key_size = def->key_size; 2498 map->def.value_size = def->value_size; 2499 map->def.max_entries = def->max_entries; 2500 map->def.map_flags = def->map_flags; 2501 map->map_extra = def->map_extra; 2502 2503 map->numa_node = def->numa_node; 2504 map->btf_key_type_id = def->key_type_id; 2505 map->btf_value_type_id = def->value_type_id; 2506 2507 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2508 if (map_is_ringbuf(map)) 2509 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2510 2511 if (def->parts & MAP_DEF_MAP_TYPE) 2512 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2513 2514 if (def->parts & MAP_DEF_KEY_TYPE) 2515 pr_debug("map '%s': found key [%u], sz = %u.\n", 2516 map->name, def->key_type_id, def->key_size); 2517 else if (def->parts & MAP_DEF_KEY_SIZE) 2518 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2519 2520 if (def->parts & MAP_DEF_VALUE_TYPE) 2521 pr_debug("map '%s': found value [%u], sz = %u.\n", 2522 map->name, def->value_type_id, def->value_size); 2523 else if (def->parts & MAP_DEF_VALUE_SIZE) 2524 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2525 2526 if (def->parts & MAP_DEF_MAX_ENTRIES) 2527 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2528 if (def->parts & MAP_DEF_MAP_FLAGS) 2529 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2530 if (def->parts & MAP_DEF_MAP_EXTRA) 2531 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2532 (unsigned long long)def->map_extra); 2533 if (def->parts & MAP_DEF_PINNING) 2534 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2535 if (def->parts & MAP_DEF_NUMA_NODE) 2536 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2537 2538 if (def->parts & MAP_DEF_INNER_MAP) 2539 pr_debug("map '%s': found inner map definition.\n", map->name); 2540 } 2541 2542 static const char *btf_var_linkage_str(__u32 linkage) 2543 { 2544 switch (linkage) { 2545 case BTF_VAR_STATIC: return "static"; 2546 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2547 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2548 default: return "unknown"; 2549 } 2550 } 2551 2552 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2553 const struct btf_type *sec, 2554 int var_idx, int sec_idx, 2555 const Elf_Data *data, bool strict, 2556 const char *pin_root_path) 2557 { 2558 struct btf_map_def map_def = {}, inner_def = {}; 2559 const struct btf_type *var, *def; 2560 const struct btf_var_secinfo *vi; 2561 const struct btf_var *var_extra; 2562 const char *map_name; 2563 struct bpf_map *map; 2564 int err; 2565 2566 vi = btf_var_secinfos(sec) + var_idx; 2567 var = btf__type_by_id(obj->btf, vi->type); 2568 var_extra = btf_var(var); 2569 map_name = btf__name_by_offset(obj->btf, var->name_off); 2570 2571 if (map_name == NULL || map_name[0] == '\0') { 2572 pr_warn("map #%d: empty name.\n", var_idx); 2573 return -EINVAL; 2574 } 2575 if ((__u64)vi->offset + vi->size > data->d_size) { 2576 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2577 return -EINVAL; 2578 } 2579 if (!btf_is_var(var)) { 2580 pr_warn("map '%s': unexpected var kind %s.\n", 2581 map_name, btf_kind_str(var)); 2582 return -EINVAL; 2583 } 2584 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2585 pr_warn("map '%s': unsupported map linkage %s.\n", 2586 map_name, btf_var_linkage_str(var_extra->linkage)); 2587 return -EOPNOTSUPP; 2588 } 2589 2590 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2591 if (!btf_is_struct(def)) { 2592 pr_warn("map '%s': unexpected def kind %s.\n", 2593 map_name, btf_kind_str(var)); 2594 return -EINVAL; 2595 } 2596 if (def->size > vi->size) { 2597 pr_warn("map '%s': invalid def size.\n", map_name); 2598 return -EINVAL; 2599 } 2600 2601 map = bpf_object__add_map(obj); 2602 if (IS_ERR(map)) 2603 return PTR_ERR(map); 2604 map->name = strdup(map_name); 2605 if (!map->name) { 2606 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2607 return -ENOMEM; 2608 } 2609 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2610 map->def.type = BPF_MAP_TYPE_UNSPEC; 2611 map->sec_idx = sec_idx; 2612 map->sec_offset = vi->offset; 2613 map->btf_var_idx = var_idx; 2614 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2615 map_name, map->sec_idx, map->sec_offset); 2616 2617 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2618 if (err) 2619 return err; 2620 2621 fill_map_from_def(map, &map_def); 2622 2623 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2624 err = build_map_pin_path(map, pin_root_path); 2625 if (err) { 2626 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2627 return err; 2628 } 2629 } 2630 2631 if (map_def.parts & MAP_DEF_INNER_MAP) { 2632 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2633 if (!map->inner_map) 2634 return -ENOMEM; 2635 map->inner_map->fd = create_placeholder_fd(); 2636 if (map->inner_map->fd < 0) 2637 return map->inner_map->fd; 2638 map->inner_map->sec_idx = sec_idx; 2639 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2640 if (!map->inner_map->name) 2641 return -ENOMEM; 2642 sprintf(map->inner_map->name, "%s.inner", map_name); 2643 2644 fill_map_from_def(map->inner_map, &inner_def); 2645 } 2646 2647 err = map_fill_btf_type_info(obj, map); 2648 if (err) 2649 return err; 2650 2651 return 0; 2652 } 2653 2654 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2655 const char *pin_root_path) 2656 { 2657 const struct btf_type *sec = NULL; 2658 int nr_types, i, vlen, err; 2659 const struct btf_type *t; 2660 const char *name; 2661 Elf_Data *data; 2662 Elf_Scn *scn; 2663 2664 if (obj->efile.btf_maps_shndx < 0) 2665 return 0; 2666 2667 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2668 data = elf_sec_data(obj, scn); 2669 if (!scn || !data) { 2670 pr_warn("elf: failed to get %s map definitions for %s\n", 2671 MAPS_ELF_SEC, obj->path); 2672 return -EINVAL; 2673 } 2674 2675 nr_types = btf__type_cnt(obj->btf); 2676 for (i = 1; i < nr_types; i++) { 2677 t = btf__type_by_id(obj->btf, i); 2678 if (!btf_is_datasec(t)) 2679 continue; 2680 name = btf__name_by_offset(obj->btf, t->name_off); 2681 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2682 sec = t; 2683 obj->efile.btf_maps_sec_btf_id = i; 2684 break; 2685 } 2686 } 2687 2688 if (!sec) { 2689 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2690 return -ENOENT; 2691 } 2692 2693 vlen = btf_vlen(sec); 2694 for (i = 0; i < vlen; i++) { 2695 err = bpf_object__init_user_btf_map(obj, sec, i, 2696 obj->efile.btf_maps_shndx, 2697 data, strict, 2698 pin_root_path); 2699 if (err) 2700 return err; 2701 } 2702 2703 return 0; 2704 } 2705 2706 static int bpf_object__init_maps(struct bpf_object *obj, 2707 const struct bpf_object_open_opts *opts) 2708 { 2709 const char *pin_root_path; 2710 bool strict; 2711 int err = 0; 2712 2713 strict = !OPTS_GET(opts, relaxed_maps, false); 2714 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2715 2716 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2717 err = err ?: bpf_object__init_global_data_maps(obj); 2718 err = err ?: bpf_object__init_kconfig_map(obj); 2719 err = err ?: bpf_object_init_struct_ops(obj); 2720 2721 return err; 2722 } 2723 2724 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2725 { 2726 Elf64_Shdr *sh; 2727 2728 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2729 if (!sh) 2730 return false; 2731 2732 return sh->sh_flags & SHF_EXECINSTR; 2733 } 2734 2735 static bool btf_needs_sanitization(struct bpf_object *obj) 2736 { 2737 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2738 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2739 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2740 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2741 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2742 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2743 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2744 2745 return !has_func || !has_datasec || !has_func_global || !has_float || 2746 !has_decl_tag || !has_type_tag || !has_enum64; 2747 } 2748 2749 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2750 { 2751 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2752 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2753 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2754 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2755 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2756 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2757 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2758 int enum64_placeholder_id = 0; 2759 struct btf_type *t; 2760 int i, j, vlen; 2761 2762 for (i = 1; i < btf__type_cnt(btf); i++) { 2763 t = (struct btf_type *)btf__type_by_id(btf, i); 2764 2765 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2766 /* replace VAR/DECL_TAG with INT */ 2767 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2768 /* 2769 * using size = 1 is the safest choice, 4 will be too 2770 * big and cause kernel BTF validation failure if 2771 * original variable took less than 4 bytes 2772 */ 2773 t->size = 1; 2774 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2775 } else if (!has_datasec && btf_is_datasec(t)) { 2776 /* replace DATASEC with STRUCT */ 2777 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2778 struct btf_member *m = btf_members(t); 2779 struct btf_type *vt; 2780 char *name; 2781 2782 name = (char *)btf__name_by_offset(btf, t->name_off); 2783 while (*name) { 2784 if (*name == '.') 2785 *name = '_'; 2786 name++; 2787 } 2788 2789 vlen = btf_vlen(t); 2790 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2791 for (j = 0; j < vlen; j++, v++, m++) { 2792 /* order of field assignments is important */ 2793 m->offset = v->offset * 8; 2794 m->type = v->type; 2795 /* preserve variable name as member name */ 2796 vt = (void *)btf__type_by_id(btf, v->type); 2797 m->name_off = vt->name_off; 2798 } 2799 } else if (!has_func && btf_is_func_proto(t)) { 2800 /* replace FUNC_PROTO with ENUM */ 2801 vlen = btf_vlen(t); 2802 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2803 t->size = sizeof(__u32); /* kernel enforced */ 2804 } else if (!has_func && btf_is_func(t)) { 2805 /* replace FUNC with TYPEDEF */ 2806 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2807 } else if (!has_func_global && btf_is_func(t)) { 2808 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2809 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2810 } else if (!has_float && btf_is_float(t)) { 2811 /* replace FLOAT with an equally-sized empty STRUCT; 2812 * since C compilers do not accept e.g. "float" as a 2813 * valid struct name, make it anonymous 2814 */ 2815 t->name_off = 0; 2816 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2817 } else if (!has_type_tag && btf_is_type_tag(t)) { 2818 /* replace TYPE_TAG with a CONST */ 2819 t->name_off = 0; 2820 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2821 } else if (!has_enum64 && btf_is_enum(t)) { 2822 /* clear the kflag */ 2823 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2824 } else if (!has_enum64 && btf_is_enum64(t)) { 2825 /* replace ENUM64 with a union */ 2826 struct btf_member *m; 2827 2828 if (enum64_placeholder_id == 0) { 2829 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2830 if (enum64_placeholder_id < 0) 2831 return enum64_placeholder_id; 2832 2833 t = (struct btf_type *)btf__type_by_id(btf, i); 2834 } 2835 2836 m = btf_members(t); 2837 vlen = btf_vlen(t); 2838 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2839 for (j = 0; j < vlen; j++, m++) { 2840 m->type = enum64_placeholder_id; 2841 m->offset = 0; 2842 } 2843 } 2844 } 2845 2846 return 0; 2847 } 2848 2849 static bool libbpf_needs_btf(const struct bpf_object *obj) 2850 { 2851 return obj->efile.btf_maps_shndx >= 0 || 2852 obj->efile.st_ops_shndx >= 0 || 2853 obj->efile.st_ops_link_shndx >= 0 || 2854 obj->nr_extern > 0; 2855 } 2856 2857 static bool kernel_needs_btf(const struct bpf_object *obj) 2858 { 2859 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0; 2860 } 2861 2862 static int bpf_object__init_btf(struct bpf_object *obj, 2863 Elf_Data *btf_data, 2864 Elf_Data *btf_ext_data) 2865 { 2866 int err = -ENOENT; 2867 2868 if (btf_data) { 2869 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2870 err = libbpf_get_error(obj->btf); 2871 if (err) { 2872 obj->btf = NULL; 2873 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2874 goto out; 2875 } 2876 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2877 btf__set_pointer_size(obj->btf, 8); 2878 } 2879 if (btf_ext_data) { 2880 struct btf_ext_info *ext_segs[3]; 2881 int seg_num, sec_num; 2882 2883 if (!obj->btf) { 2884 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2885 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2886 goto out; 2887 } 2888 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2889 err = libbpf_get_error(obj->btf_ext); 2890 if (err) { 2891 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2892 BTF_EXT_ELF_SEC, err); 2893 obj->btf_ext = NULL; 2894 goto out; 2895 } 2896 2897 /* setup .BTF.ext to ELF section mapping */ 2898 ext_segs[0] = &obj->btf_ext->func_info; 2899 ext_segs[1] = &obj->btf_ext->line_info; 2900 ext_segs[2] = &obj->btf_ext->core_relo_info; 2901 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2902 struct btf_ext_info *seg = ext_segs[seg_num]; 2903 const struct btf_ext_info_sec *sec; 2904 const char *sec_name; 2905 Elf_Scn *scn; 2906 2907 if (seg->sec_cnt == 0) 2908 continue; 2909 2910 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2911 if (!seg->sec_idxs) { 2912 err = -ENOMEM; 2913 goto out; 2914 } 2915 2916 sec_num = 0; 2917 for_each_btf_ext_sec(seg, sec) { 2918 /* preventively increment index to avoid doing 2919 * this before every continue below 2920 */ 2921 sec_num++; 2922 2923 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2924 if (str_is_empty(sec_name)) 2925 continue; 2926 scn = elf_sec_by_name(obj, sec_name); 2927 if (!scn) 2928 continue; 2929 2930 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2931 } 2932 } 2933 } 2934 out: 2935 if (err && libbpf_needs_btf(obj)) { 2936 pr_warn("BTF is required, but is missing or corrupted.\n"); 2937 return err; 2938 } 2939 return 0; 2940 } 2941 2942 static int compare_vsi_off(const void *_a, const void *_b) 2943 { 2944 const struct btf_var_secinfo *a = _a; 2945 const struct btf_var_secinfo *b = _b; 2946 2947 return a->offset - b->offset; 2948 } 2949 2950 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2951 struct btf_type *t) 2952 { 2953 __u32 size = 0, i, vars = btf_vlen(t); 2954 const char *sec_name = btf__name_by_offset(btf, t->name_off); 2955 struct btf_var_secinfo *vsi; 2956 bool fixup_offsets = false; 2957 int err; 2958 2959 if (!sec_name) { 2960 pr_debug("No name found in string section for DATASEC kind.\n"); 2961 return -ENOENT; 2962 } 2963 2964 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 2965 * variable offsets set at the previous step. Further, not every 2966 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 2967 * all fixups altogether for such sections and go straight to sorting 2968 * VARs within their DATASEC. 2969 */ 2970 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 2971 goto sort_vars; 2972 2973 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 2974 * fix this up. But BPF static linker already fixes this up and fills 2975 * all the sizes and offsets during static linking. So this step has 2976 * to be optional. But the STV_HIDDEN handling is non-optional for any 2977 * non-extern DATASEC, so the variable fixup loop below handles both 2978 * functions at the same time, paying the cost of BTF VAR <-> ELF 2979 * symbol matching just once. 2980 */ 2981 if (t->size == 0) { 2982 err = find_elf_sec_sz(obj, sec_name, &size); 2983 if (err || !size) { 2984 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 2985 sec_name, size, err); 2986 return -ENOENT; 2987 } 2988 2989 t->size = size; 2990 fixup_offsets = true; 2991 } 2992 2993 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2994 const struct btf_type *t_var; 2995 struct btf_var *var; 2996 const char *var_name; 2997 Elf64_Sym *sym; 2998 2999 t_var = btf__type_by_id(btf, vsi->type); 3000 if (!t_var || !btf_is_var(t_var)) { 3001 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 3002 return -EINVAL; 3003 } 3004 3005 var = btf_var(t_var); 3006 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 3007 continue; 3008 3009 var_name = btf__name_by_offset(btf, t_var->name_off); 3010 if (!var_name) { 3011 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 3012 sec_name, i); 3013 return -ENOENT; 3014 } 3015 3016 sym = find_elf_var_sym(obj, var_name); 3017 if (IS_ERR(sym)) { 3018 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 3019 sec_name, var_name); 3020 return -ENOENT; 3021 } 3022 3023 if (fixup_offsets) 3024 vsi->offset = sym->st_value; 3025 3026 /* if variable is a global/weak symbol, but has restricted 3027 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3028 * as static. This follows similar logic for functions (BPF 3029 * subprogs) and influences libbpf's further decisions about 3030 * whether to make global data BPF array maps as 3031 * BPF_F_MMAPABLE. 3032 */ 3033 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3034 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3035 var->linkage = BTF_VAR_STATIC; 3036 } 3037 3038 sort_vars: 3039 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3040 return 0; 3041 } 3042 3043 static int bpf_object_fixup_btf(struct bpf_object *obj) 3044 { 3045 int i, n, err = 0; 3046 3047 if (!obj->btf) 3048 return 0; 3049 3050 n = btf__type_cnt(obj->btf); 3051 for (i = 1; i < n; i++) { 3052 struct btf_type *t = btf_type_by_id(obj->btf, i); 3053 3054 /* Loader needs to fix up some of the things compiler 3055 * couldn't get its hands on while emitting BTF. This 3056 * is section size and global variable offset. We use 3057 * the info from the ELF itself for this purpose. 3058 */ 3059 if (btf_is_datasec(t)) { 3060 err = btf_fixup_datasec(obj, obj->btf, t); 3061 if (err) 3062 return err; 3063 } 3064 } 3065 3066 return 0; 3067 } 3068 3069 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3070 { 3071 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3072 prog->type == BPF_PROG_TYPE_LSM) 3073 return true; 3074 3075 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3076 * also need vmlinux BTF 3077 */ 3078 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3079 return true; 3080 3081 return false; 3082 } 3083 3084 static bool map_needs_vmlinux_btf(struct bpf_map *map) 3085 { 3086 return bpf_map__is_struct_ops(map); 3087 } 3088 3089 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3090 { 3091 struct bpf_program *prog; 3092 struct bpf_map *map; 3093 int i; 3094 3095 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3096 * is not specified 3097 */ 3098 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3099 return true; 3100 3101 /* Support for typed ksyms needs kernel BTF */ 3102 for (i = 0; i < obj->nr_extern; i++) { 3103 const struct extern_desc *ext; 3104 3105 ext = &obj->externs[i]; 3106 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3107 return true; 3108 } 3109 3110 bpf_object__for_each_program(prog, obj) { 3111 if (!prog->autoload) 3112 continue; 3113 if (prog_needs_vmlinux_btf(prog)) 3114 return true; 3115 } 3116 3117 bpf_object__for_each_map(map, obj) { 3118 if (map_needs_vmlinux_btf(map)) 3119 return true; 3120 } 3121 3122 return false; 3123 } 3124 3125 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3126 { 3127 int err; 3128 3129 /* btf_vmlinux could be loaded earlier */ 3130 if (obj->btf_vmlinux || obj->gen_loader) 3131 return 0; 3132 3133 if (!force && !obj_needs_vmlinux_btf(obj)) 3134 return 0; 3135 3136 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3137 err = libbpf_get_error(obj->btf_vmlinux); 3138 if (err) { 3139 pr_warn("Error loading vmlinux BTF: %d\n", err); 3140 obj->btf_vmlinux = NULL; 3141 return err; 3142 } 3143 return 0; 3144 } 3145 3146 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3147 { 3148 struct btf *kern_btf = obj->btf; 3149 bool btf_mandatory, sanitize; 3150 int i, err = 0; 3151 3152 if (!obj->btf) 3153 return 0; 3154 3155 if (!kernel_supports(obj, FEAT_BTF)) { 3156 if (kernel_needs_btf(obj)) { 3157 err = -EOPNOTSUPP; 3158 goto report; 3159 } 3160 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3161 return 0; 3162 } 3163 3164 /* Even though some subprogs are global/weak, user might prefer more 3165 * permissive BPF verification process that BPF verifier performs for 3166 * static functions, taking into account more context from the caller 3167 * functions. In such case, they need to mark such subprogs with 3168 * __attribute__((visibility("hidden"))) and libbpf will adjust 3169 * corresponding FUNC BTF type to be marked as static and trigger more 3170 * involved BPF verification process. 3171 */ 3172 for (i = 0; i < obj->nr_programs; i++) { 3173 struct bpf_program *prog = &obj->programs[i]; 3174 struct btf_type *t; 3175 const char *name; 3176 int j, n; 3177 3178 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3179 continue; 3180 3181 n = btf__type_cnt(obj->btf); 3182 for (j = 1; j < n; j++) { 3183 t = btf_type_by_id(obj->btf, j); 3184 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3185 continue; 3186 3187 name = btf__str_by_offset(obj->btf, t->name_off); 3188 if (strcmp(name, prog->name) != 0) 3189 continue; 3190 3191 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3192 break; 3193 } 3194 } 3195 3196 sanitize = btf_needs_sanitization(obj); 3197 if (sanitize) { 3198 const void *raw_data; 3199 __u32 sz; 3200 3201 /* clone BTF to sanitize a copy and leave the original intact */ 3202 raw_data = btf__raw_data(obj->btf, &sz); 3203 kern_btf = btf__new(raw_data, sz); 3204 err = libbpf_get_error(kern_btf); 3205 if (err) 3206 return err; 3207 3208 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3209 btf__set_pointer_size(obj->btf, 8); 3210 err = bpf_object__sanitize_btf(obj, kern_btf); 3211 if (err) 3212 return err; 3213 } 3214 3215 if (obj->gen_loader) { 3216 __u32 raw_size = 0; 3217 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3218 3219 if (!raw_data) 3220 return -ENOMEM; 3221 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3222 /* Pretend to have valid FD to pass various fd >= 0 checks. 3223 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3224 */ 3225 btf__set_fd(kern_btf, 0); 3226 } else { 3227 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3228 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3229 obj->log_level ? 1 : 0); 3230 } 3231 if (sanitize) { 3232 if (!err) { 3233 /* move fd to libbpf's BTF */ 3234 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3235 btf__set_fd(kern_btf, -1); 3236 } 3237 btf__free(kern_btf); 3238 } 3239 report: 3240 if (err) { 3241 btf_mandatory = kernel_needs_btf(obj); 3242 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3243 btf_mandatory ? "BTF is mandatory, can't proceed." 3244 : "BTF is optional, ignoring."); 3245 if (!btf_mandatory) 3246 err = 0; 3247 } 3248 return err; 3249 } 3250 3251 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3252 { 3253 const char *name; 3254 3255 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3256 if (!name) { 3257 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3258 off, obj->path, elf_errmsg(-1)); 3259 return NULL; 3260 } 3261 3262 return name; 3263 } 3264 3265 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3266 { 3267 const char *name; 3268 3269 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3270 if (!name) { 3271 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3272 off, obj->path, elf_errmsg(-1)); 3273 return NULL; 3274 } 3275 3276 return name; 3277 } 3278 3279 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3280 { 3281 Elf_Scn *scn; 3282 3283 scn = elf_getscn(obj->efile.elf, idx); 3284 if (!scn) { 3285 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3286 idx, obj->path, elf_errmsg(-1)); 3287 return NULL; 3288 } 3289 return scn; 3290 } 3291 3292 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3293 { 3294 Elf_Scn *scn = NULL; 3295 Elf *elf = obj->efile.elf; 3296 const char *sec_name; 3297 3298 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3299 sec_name = elf_sec_name(obj, scn); 3300 if (!sec_name) 3301 return NULL; 3302 3303 if (strcmp(sec_name, name) != 0) 3304 continue; 3305 3306 return scn; 3307 } 3308 return NULL; 3309 } 3310 3311 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3312 { 3313 Elf64_Shdr *shdr; 3314 3315 if (!scn) 3316 return NULL; 3317 3318 shdr = elf64_getshdr(scn); 3319 if (!shdr) { 3320 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3321 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3322 return NULL; 3323 } 3324 3325 return shdr; 3326 } 3327 3328 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3329 { 3330 const char *name; 3331 Elf64_Shdr *sh; 3332 3333 if (!scn) 3334 return NULL; 3335 3336 sh = elf_sec_hdr(obj, scn); 3337 if (!sh) 3338 return NULL; 3339 3340 name = elf_sec_str(obj, sh->sh_name); 3341 if (!name) { 3342 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3343 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3344 return NULL; 3345 } 3346 3347 return name; 3348 } 3349 3350 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3351 { 3352 Elf_Data *data; 3353 3354 if (!scn) 3355 return NULL; 3356 3357 data = elf_getdata(scn, 0); 3358 if (!data) { 3359 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3360 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3361 obj->path, elf_errmsg(-1)); 3362 return NULL; 3363 } 3364 3365 return data; 3366 } 3367 3368 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3369 { 3370 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3371 return NULL; 3372 3373 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3374 } 3375 3376 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3377 { 3378 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3379 return NULL; 3380 3381 return (Elf64_Rel *)data->d_buf + idx; 3382 } 3383 3384 static bool is_sec_name_dwarf(const char *name) 3385 { 3386 /* approximation, but the actual list is too long */ 3387 return str_has_pfx(name, ".debug_"); 3388 } 3389 3390 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3391 { 3392 /* no special handling of .strtab */ 3393 if (hdr->sh_type == SHT_STRTAB) 3394 return true; 3395 3396 /* ignore .llvm_addrsig section as well */ 3397 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3398 return true; 3399 3400 /* no subprograms will lead to an empty .text section, ignore it */ 3401 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3402 strcmp(name, ".text") == 0) 3403 return true; 3404 3405 /* DWARF sections */ 3406 if (is_sec_name_dwarf(name)) 3407 return true; 3408 3409 if (str_has_pfx(name, ".rel")) { 3410 name += sizeof(".rel") - 1; 3411 /* DWARF section relocations */ 3412 if (is_sec_name_dwarf(name)) 3413 return true; 3414 3415 /* .BTF and .BTF.ext don't need relocations */ 3416 if (strcmp(name, BTF_ELF_SEC) == 0 || 3417 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3418 return true; 3419 } 3420 3421 return false; 3422 } 3423 3424 static int cmp_progs(const void *_a, const void *_b) 3425 { 3426 const struct bpf_program *a = _a; 3427 const struct bpf_program *b = _b; 3428 3429 if (a->sec_idx != b->sec_idx) 3430 return a->sec_idx < b->sec_idx ? -1 : 1; 3431 3432 /* sec_insn_off can't be the same within the section */ 3433 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3434 } 3435 3436 static int bpf_object__elf_collect(struct bpf_object *obj) 3437 { 3438 struct elf_sec_desc *sec_desc; 3439 Elf *elf = obj->efile.elf; 3440 Elf_Data *btf_ext_data = NULL; 3441 Elf_Data *btf_data = NULL; 3442 int idx = 0, err = 0; 3443 const char *name; 3444 Elf_Data *data; 3445 Elf_Scn *scn; 3446 Elf64_Shdr *sh; 3447 3448 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3449 * section. Since section count retrieved by elf_getshdrnum() does 3450 * include sec #0, it is already the necessary size of an array to keep 3451 * all the sections. 3452 */ 3453 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3454 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3455 obj->path, elf_errmsg(-1)); 3456 return -LIBBPF_ERRNO__FORMAT; 3457 } 3458 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3459 if (!obj->efile.secs) 3460 return -ENOMEM; 3461 3462 /* a bunch of ELF parsing functionality depends on processing symbols, 3463 * so do the first pass and find the symbol table 3464 */ 3465 scn = NULL; 3466 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3467 sh = elf_sec_hdr(obj, scn); 3468 if (!sh) 3469 return -LIBBPF_ERRNO__FORMAT; 3470 3471 if (sh->sh_type == SHT_SYMTAB) { 3472 if (obj->efile.symbols) { 3473 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3474 return -LIBBPF_ERRNO__FORMAT; 3475 } 3476 3477 data = elf_sec_data(obj, scn); 3478 if (!data) 3479 return -LIBBPF_ERRNO__FORMAT; 3480 3481 idx = elf_ndxscn(scn); 3482 3483 obj->efile.symbols = data; 3484 obj->efile.symbols_shndx = idx; 3485 obj->efile.strtabidx = sh->sh_link; 3486 } 3487 } 3488 3489 if (!obj->efile.symbols) { 3490 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3491 obj->path); 3492 return -ENOENT; 3493 } 3494 3495 scn = NULL; 3496 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3497 idx = elf_ndxscn(scn); 3498 sec_desc = &obj->efile.secs[idx]; 3499 3500 sh = elf_sec_hdr(obj, scn); 3501 if (!sh) 3502 return -LIBBPF_ERRNO__FORMAT; 3503 3504 name = elf_sec_str(obj, sh->sh_name); 3505 if (!name) 3506 return -LIBBPF_ERRNO__FORMAT; 3507 3508 if (ignore_elf_section(sh, name)) 3509 continue; 3510 3511 data = elf_sec_data(obj, scn); 3512 if (!data) 3513 return -LIBBPF_ERRNO__FORMAT; 3514 3515 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3516 idx, name, (unsigned long)data->d_size, 3517 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3518 (int)sh->sh_type); 3519 3520 if (strcmp(name, "license") == 0) { 3521 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3522 if (err) 3523 return err; 3524 } else if (strcmp(name, "version") == 0) { 3525 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3526 if (err) 3527 return err; 3528 } else if (strcmp(name, "maps") == 0) { 3529 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3530 return -ENOTSUP; 3531 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3532 obj->efile.btf_maps_shndx = idx; 3533 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3534 if (sh->sh_type != SHT_PROGBITS) 3535 return -LIBBPF_ERRNO__FORMAT; 3536 btf_data = data; 3537 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3538 if (sh->sh_type != SHT_PROGBITS) 3539 return -LIBBPF_ERRNO__FORMAT; 3540 btf_ext_data = data; 3541 } else if (sh->sh_type == SHT_SYMTAB) { 3542 /* already processed during the first pass above */ 3543 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3544 if (sh->sh_flags & SHF_EXECINSTR) { 3545 if (strcmp(name, ".text") == 0) 3546 obj->efile.text_shndx = idx; 3547 err = bpf_object__add_programs(obj, data, name, idx); 3548 if (err) 3549 return err; 3550 } else if (strcmp(name, DATA_SEC) == 0 || 3551 str_has_pfx(name, DATA_SEC ".")) { 3552 sec_desc->sec_type = SEC_DATA; 3553 sec_desc->shdr = sh; 3554 sec_desc->data = data; 3555 } else if (strcmp(name, RODATA_SEC) == 0 || 3556 str_has_pfx(name, RODATA_SEC ".")) { 3557 sec_desc->sec_type = SEC_RODATA; 3558 sec_desc->shdr = sh; 3559 sec_desc->data = data; 3560 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3561 obj->efile.st_ops_data = data; 3562 obj->efile.st_ops_shndx = idx; 3563 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) { 3564 obj->efile.st_ops_link_data = data; 3565 obj->efile.st_ops_link_shndx = idx; 3566 } else { 3567 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3568 idx, name); 3569 } 3570 } else if (sh->sh_type == SHT_REL) { 3571 int targ_sec_idx = sh->sh_info; /* points to other section */ 3572 3573 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3574 targ_sec_idx >= obj->efile.sec_cnt) 3575 return -LIBBPF_ERRNO__FORMAT; 3576 3577 /* Only do relo for section with exec instructions */ 3578 if (!section_have_execinstr(obj, targ_sec_idx) && 3579 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3580 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3581 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3582 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3583 idx, name, targ_sec_idx, 3584 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3585 continue; 3586 } 3587 3588 sec_desc->sec_type = SEC_RELO; 3589 sec_desc->shdr = sh; 3590 sec_desc->data = data; 3591 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3592 str_has_pfx(name, BSS_SEC "."))) { 3593 sec_desc->sec_type = SEC_BSS; 3594 sec_desc->shdr = sh; 3595 sec_desc->data = data; 3596 } else { 3597 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3598 (size_t)sh->sh_size); 3599 } 3600 } 3601 3602 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3603 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3604 return -LIBBPF_ERRNO__FORMAT; 3605 } 3606 3607 /* sort BPF programs by section name and in-section instruction offset 3608 * for faster search 3609 */ 3610 if (obj->nr_programs) 3611 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3612 3613 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3614 } 3615 3616 static bool sym_is_extern(const Elf64_Sym *sym) 3617 { 3618 int bind = ELF64_ST_BIND(sym->st_info); 3619 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3620 return sym->st_shndx == SHN_UNDEF && 3621 (bind == STB_GLOBAL || bind == STB_WEAK) && 3622 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3623 } 3624 3625 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3626 { 3627 int bind = ELF64_ST_BIND(sym->st_info); 3628 int type = ELF64_ST_TYPE(sym->st_info); 3629 3630 /* in .text section */ 3631 if (sym->st_shndx != text_shndx) 3632 return false; 3633 3634 /* local function */ 3635 if (bind == STB_LOCAL && type == STT_SECTION) 3636 return true; 3637 3638 /* global function */ 3639 return bind == STB_GLOBAL && type == STT_FUNC; 3640 } 3641 3642 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3643 { 3644 const struct btf_type *t; 3645 const char *tname; 3646 int i, n; 3647 3648 if (!btf) 3649 return -ESRCH; 3650 3651 n = btf__type_cnt(btf); 3652 for (i = 1; i < n; i++) { 3653 t = btf__type_by_id(btf, i); 3654 3655 if (!btf_is_var(t) && !btf_is_func(t)) 3656 continue; 3657 3658 tname = btf__name_by_offset(btf, t->name_off); 3659 if (strcmp(tname, ext_name)) 3660 continue; 3661 3662 if (btf_is_var(t) && 3663 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3664 return -EINVAL; 3665 3666 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3667 return -EINVAL; 3668 3669 return i; 3670 } 3671 3672 return -ENOENT; 3673 } 3674 3675 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3676 const struct btf_var_secinfo *vs; 3677 const struct btf_type *t; 3678 int i, j, n; 3679 3680 if (!btf) 3681 return -ESRCH; 3682 3683 n = btf__type_cnt(btf); 3684 for (i = 1; i < n; i++) { 3685 t = btf__type_by_id(btf, i); 3686 3687 if (!btf_is_datasec(t)) 3688 continue; 3689 3690 vs = btf_var_secinfos(t); 3691 for (j = 0; j < btf_vlen(t); j++, vs++) { 3692 if (vs->type == ext_btf_id) 3693 return i; 3694 } 3695 } 3696 3697 return -ENOENT; 3698 } 3699 3700 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3701 bool *is_signed) 3702 { 3703 const struct btf_type *t; 3704 const char *name; 3705 3706 t = skip_mods_and_typedefs(btf, id, NULL); 3707 name = btf__name_by_offset(btf, t->name_off); 3708 3709 if (is_signed) 3710 *is_signed = false; 3711 switch (btf_kind(t)) { 3712 case BTF_KIND_INT: { 3713 int enc = btf_int_encoding(t); 3714 3715 if (enc & BTF_INT_BOOL) 3716 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3717 if (is_signed) 3718 *is_signed = enc & BTF_INT_SIGNED; 3719 if (t->size == 1) 3720 return KCFG_CHAR; 3721 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3722 return KCFG_UNKNOWN; 3723 return KCFG_INT; 3724 } 3725 case BTF_KIND_ENUM: 3726 if (t->size != 4) 3727 return KCFG_UNKNOWN; 3728 if (strcmp(name, "libbpf_tristate")) 3729 return KCFG_UNKNOWN; 3730 return KCFG_TRISTATE; 3731 case BTF_KIND_ENUM64: 3732 if (strcmp(name, "libbpf_tristate")) 3733 return KCFG_UNKNOWN; 3734 return KCFG_TRISTATE; 3735 case BTF_KIND_ARRAY: 3736 if (btf_array(t)->nelems == 0) 3737 return KCFG_UNKNOWN; 3738 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3739 return KCFG_UNKNOWN; 3740 return KCFG_CHAR_ARR; 3741 default: 3742 return KCFG_UNKNOWN; 3743 } 3744 } 3745 3746 static int cmp_externs(const void *_a, const void *_b) 3747 { 3748 const struct extern_desc *a = _a; 3749 const struct extern_desc *b = _b; 3750 3751 if (a->type != b->type) 3752 return a->type < b->type ? -1 : 1; 3753 3754 if (a->type == EXT_KCFG) { 3755 /* descending order by alignment requirements */ 3756 if (a->kcfg.align != b->kcfg.align) 3757 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3758 /* ascending order by size, within same alignment class */ 3759 if (a->kcfg.sz != b->kcfg.sz) 3760 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3761 } 3762 3763 /* resolve ties by name */ 3764 return strcmp(a->name, b->name); 3765 } 3766 3767 static int find_int_btf_id(const struct btf *btf) 3768 { 3769 const struct btf_type *t; 3770 int i, n; 3771 3772 n = btf__type_cnt(btf); 3773 for (i = 1; i < n; i++) { 3774 t = btf__type_by_id(btf, i); 3775 3776 if (btf_is_int(t) && btf_int_bits(t) == 32) 3777 return i; 3778 } 3779 3780 return 0; 3781 } 3782 3783 static int add_dummy_ksym_var(struct btf *btf) 3784 { 3785 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3786 const struct btf_var_secinfo *vs; 3787 const struct btf_type *sec; 3788 3789 if (!btf) 3790 return 0; 3791 3792 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3793 BTF_KIND_DATASEC); 3794 if (sec_btf_id < 0) 3795 return 0; 3796 3797 sec = btf__type_by_id(btf, sec_btf_id); 3798 vs = btf_var_secinfos(sec); 3799 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3800 const struct btf_type *vt; 3801 3802 vt = btf__type_by_id(btf, vs->type); 3803 if (btf_is_func(vt)) 3804 break; 3805 } 3806 3807 /* No func in ksyms sec. No need to add dummy var. */ 3808 if (i == btf_vlen(sec)) 3809 return 0; 3810 3811 int_btf_id = find_int_btf_id(btf); 3812 dummy_var_btf_id = btf__add_var(btf, 3813 "dummy_ksym", 3814 BTF_VAR_GLOBAL_ALLOCATED, 3815 int_btf_id); 3816 if (dummy_var_btf_id < 0) 3817 pr_warn("cannot create a dummy_ksym var\n"); 3818 3819 return dummy_var_btf_id; 3820 } 3821 3822 static int bpf_object__collect_externs(struct bpf_object *obj) 3823 { 3824 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3825 const struct btf_type *t; 3826 struct extern_desc *ext; 3827 int i, n, off, dummy_var_btf_id; 3828 const char *ext_name, *sec_name; 3829 size_t ext_essent_len; 3830 Elf_Scn *scn; 3831 Elf64_Shdr *sh; 3832 3833 if (!obj->efile.symbols) 3834 return 0; 3835 3836 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3837 sh = elf_sec_hdr(obj, scn); 3838 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3839 return -LIBBPF_ERRNO__FORMAT; 3840 3841 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3842 if (dummy_var_btf_id < 0) 3843 return dummy_var_btf_id; 3844 3845 n = sh->sh_size / sh->sh_entsize; 3846 pr_debug("looking for externs among %d symbols...\n", n); 3847 3848 for (i = 0; i < n; i++) { 3849 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3850 3851 if (!sym) 3852 return -LIBBPF_ERRNO__FORMAT; 3853 if (!sym_is_extern(sym)) 3854 continue; 3855 ext_name = elf_sym_str(obj, sym->st_name); 3856 if (!ext_name || !ext_name[0]) 3857 continue; 3858 3859 ext = obj->externs; 3860 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3861 if (!ext) 3862 return -ENOMEM; 3863 obj->externs = ext; 3864 ext = &ext[obj->nr_extern]; 3865 memset(ext, 0, sizeof(*ext)); 3866 obj->nr_extern++; 3867 3868 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3869 if (ext->btf_id <= 0) { 3870 pr_warn("failed to find BTF for extern '%s': %d\n", 3871 ext_name, ext->btf_id); 3872 return ext->btf_id; 3873 } 3874 t = btf__type_by_id(obj->btf, ext->btf_id); 3875 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3876 ext->sym_idx = i; 3877 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3878 3879 ext_essent_len = bpf_core_essential_name_len(ext->name); 3880 ext->essent_name = NULL; 3881 if (ext_essent_len != strlen(ext->name)) { 3882 ext->essent_name = strndup(ext->name, ext_essent_len); 3883 if (!ext->essent_name) 3884 return -ENOMEM; 3885 } 3886 3887 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3888 if (ext->sec_btf_id <= 0) { 3889 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3890 ext_name, ext->btf_id, ext->sec_btf_id); 3891 return ext->sec_btf_id; 3892 } 3893 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3894 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3895 3896 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3897 if (btf_is_func(t)) { 3898 pr_warn("extern function %s is unsupported under %s section\n", 3899 ext->name, KCONFIG_SEC); 3900 return -ENOTSUP; 3901 } 3902 kcfg_sec = sec; 3903 ext->type = EXT_KCFG; 3904 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3905 if (ext->kcfg.sz <= 0) { 3906 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3907 ext_name, ext->kcfg.sz); 3908 return ext->kcfg.sz; 3909 } 3910 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3911 if (ext->kcfg.align <= 0) { 3912 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3913 ext_name, ext->kcfg.align); 3914 return -EINVAL; 3915 } 3916 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3917 &ext->kcfg.is_signed); 3918 if (ext->kcfg.type == KCFG_UNKNOWN) { 3919 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3920 return -ENOTSUP; 3921 } 3922 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3923 ksym_sec = sec; 3924 ext->type = EXT_KSYM; 3925 skip_mods_and_typedefs(obj->btf, t->type, 3926 &ext->ksym.type_id); 3927 } else { 3928 pr_warn("unrecognized extern section '%s'\n", sec_name); 3929 return -ENOTSUP; 3930 } 3931 } 3932 pr_debug("collected %d externs total\n", obj->nr_extern); 3933 3934 if (!obj->nr_extern) 3935 return 0; 3936 3937 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3938 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3939 3940 /* for .ksyms section, we need to turn all externs into allocated 3941 * variables in BTF to pass kernel verification; we do this by 3942 * pretending that each extern is a 8-byte variable 3943 */ 3944 if (ksym_sec) { 3945 /* find existing 4-byte integer type in BTF to use for fake 3946 * extern variables in DATASEC 3947 */ 3948 int int_btf_id = find_int_btf_id(obj->btf); 3949 /* For extern function, a dummy_var added earlier 3950 * will be used to replace the vs->type and 3951 * its name string will be used to refill 3952 * the missing param's name. 3953 */ 3954 const struct btf_type *dummy_var; 3955 3956 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3957 for (i = 0; i < obj->nr_extern; i++) { 3958 ext = &obj->externs[i]; 3959 if (ext->type != EXT_KSYM) 3960 continue; 3961 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3962 i, ext->sym_idx, ext->name); 3963 } 3964 3965 sec = ksym_sec; 3966 n = btf_vlen(sec); 3967 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3968 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3969 struct btf_type *vt; 3970 3971 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3972 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3973 ext = find_extern_by_name(obj, ext_name); 3974 if (!ext) { 3975 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3976 btf_kind_str(vt), ext_name); 3977 return -ESRCH; 3978 } 3979 if (btf_is_func(vt)) { 3980 const struct btf_type *func_proto; 3981 struct btf_param *param; 3982 int j; 3983 3984 func_proto = btf__type_by_id(obj->btf, 3985 vt->type); 3986 param = btf_params(func_proto); 3987 /* Reuse the dummy_var string if the 3988 * func proto does not have param name. 3989 */ 3990 for (j = 0; j < btf_vlen(func_proto); j++) 3991 if (param[j].type && !param[j].name_off) 3992 param[j].name_off = 3993 dummy_var->name_off; 3994 vs->type = dummy_var_btf_id; 3995 vt->info &= ~0xffff; 3996 vt->info |= BTF_FUNC_GLOBAL; 3997 } else { 3998 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3999 vt->type = int_btf_id; 4000 } 4001 vs->offset = off; 4002 vs->size = sizeof(int); 4003 } 4004 sec->size = off; 4005 } 4006 4007 if (kcfg_sec) { 4008 sec = kcfg_sec; 4009 /* for kcfg externs calculate their offsets within a .kconfig map */ 4010 off = 0; 4011 for (i = 0; i < obj->nr_extern; i++) { 4012 ext = &obj->externs[i]; 4013 if (ext->type != EXT_KCFG) 4014 continue; 4015 4016 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4017 off = ext->kcfg.data_off + ext->kcfg.sz; 4018 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4019 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4020 } 4021 sec->size = off; 4022 n = btf_vlen(sec); 4023 for (i = 0; i < n; i++) { 4024 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4025 4026 t = btf__type_by_id(obj->btf, vs->type); 4027 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4028 ext = find_extern_by_name(obj, ext_name); 4029 if (!ext) { 4030 pr_warn("failed to find extern definition for BTF var '%s'\n", 4031 ext_name); 4032 return -ESRCH; 4033 } 4034 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4035 vs->offset = ext->kcfg.data_off; 4036 } 4037 } 4038 return 0; 4039 } 4040 4041 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4042 { 4043 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 4044 } 4045 4046 struct bpf_program * 4047 bpf_object__find_program_by_name(const struct bpf_object *obj, 4048 const char *name) 4049 { 4050 struct bpf_program *prog; 4051 4052 bpf_object__for_each_program(prog, obj) { 4053 if (prog_is_subprog(obj, prog)) 4054 continue; 4055 if (!strcmp(prog->name, name)) 4056 return prog; 4057 } 4058 return errno = ENOENT, NULL; 4059 } 4060 4061 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4062 int shndx) 4063 { 4064 switch (obj->efile.secs[shndx].sec_type) { 4065 case SEC_BSS: 4066 case SEC_DATA: 4067 case SEC_RODATA: 4068 return true; 4069 default: 4070 return false; 4071 } 4072 } 4073 4074 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4075 int shndx) 4076 { 4077 return shndx == obj->efile.btf_maps_shndx; 4078 } 4079 4080 static enum libbpf_map_type 4081 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4082 { 4083 if (shndx == obj->efile.symbols_shndx) 4084 return LIBBPF_MAP_KCONFIG; 4085 4086 switch (obj->efile.secs[shndx].sec_type) { 4087 case SEC_BSS: 4088 return LIBBPF_MAP_BSS; 4089 case SEC_DATA: 4090 return LIBBPF_MAP_DATA; 4091 case SEC_RODATA: 4092 return LIBBPF_MAP_RODATA; 4093 default: 4094 return LIBBPF_MAP_UNSPEC; 4095 } 4096 } 4097 4098 static int bpf_program__record_reloc(struct bpf_program *prog, 4099 struct reloc_desc *reloc_desc, 4100 __u32 insn_idx, const char *sym_name, 4101 const Elf64_Sym *sym, const Elf64_Rel *rel) 4102 { 4103 struct bpf_insn *insn = &prog->insns[insn_idx]; 4104 size_t map_idx, nr_maps = prog->obj->nr_maps; 4105 struct bpf_object *obj = prog->obj; 4106 __u32 shdr_idx = sym->st_shndx; 4107 enum libbpf_map_type type; 4108 const char *sym_sec_name; 4109 struct bpf_map *map; 4110 4111 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4112 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4113 prog->name, sym_name, insn_idx, insn->code); 4114 return -LIBBPF_ERRNO__RELOC; 4115 } 4116 4117 if (sym_is_extern(sym)) { 4118 int sym_idx = ELF64_R_SYM(rel->r_info); 4119 int i, n = obj->nr_extern; 4120 struct extern_desc *ext; 4121 4122 for (i = 0; i < n; i++) { 4123 ext = &obj->externs[i]; 4124 if (ext->sym_idx == sym_idx) 4125 break; 4126 } 4127 if (i >= n) { 4128 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4129 prog->name, sym_name, sym_idx); 4130 return -LIBBPF_ERRNO__RELOC; 4131 } 4132 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4133 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4134 if (insn->code == (BPF_JMP | BPF_CALL)) 4135 reloc_desc->type = RELO_EXTERN_CALL; 4136 else 4137 reloc_desc->type = RELO_EXTERN_LD64; 4138 reloc_desc->insn_idx = insn_idx; 4139 reloc_desc->ext_idx = i; 4140 return 0; 4141 } 4142 4143 /* sub-program call relocation */ 4144 if (is_call_insn(insn)) { 4145 if (insn->src_reg != BPF_PSEUDO_CALL) { 4146 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4147 return -LIBBPF_ERRNO__RELOC; 4148 } 4149 /* text_shndx can be 0, if no default "main" program exists */ 4150 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4151 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4152 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4153 prog->name, sym_name, sym_sec_name); 4154 return -LIBBPF_ERRNO__RELOC; 4155 } 4156 if (sym->st_value % BPF_INSN_SZ) { 4157 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4158 prog->name, sym_name, (size_t)sym->st_value); 4159 return -LIBBPF_ERRNO__RELOC; 4160 } 4161 reloc_desc->type = RELO_CALL; 4162 reloc_desc->insn_idx = insn_idx; 4163 reloc_desc->sym_off = sym->st_value; 4164 return 0; 4165 } 4166 4167 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4168 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4169 prog->name, sym_name, shdr_idx); 4170 return -LIBBPF_ERRNO__RELOC; 4171 } 4172 4173 /* loading subprog addresses */ 4174 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4175 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4176 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4177 */ 4178 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4179 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4180 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4181 return -LIBBPF_ERRNO__RELOC; 4182 } 4183 4184 reloc_desc->type = RELO_SUBPROG_ADDR; 4185 reloc_desc->insn_idx = insn_idx; 4186 reloc_desc->sym_off = sym->st_value; 4187 return 0; 4188 } 4189 4190 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4191 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4192 4193 /* generic map reference relocation */ 4194 if (type == LIBBPF_MAP_UNSPEC) { 4195 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4196 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4197 prog->name, sym_name, sym_sec_name); 4198 return -LIBBPF_ERRNO__RELOC; 4199 } 4200 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4201 map = &obj->maps[map_idx]; 4202 if (map->libbpf_type != type || 4203 map->sec_idx != sym->st_shndx || 4204 map->sec_offset != sym->st_value) 4205 continue; 4206 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4207 prog->name, map_idx, map->name, map->sec_idx, 4208 map->sec_offset, insn_idx); 4209 break; 4210 } 4211 if (map_idx >= nr_maps) { 4212 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4213 prog->name, sym_sec_name, (size_t)sym->st_value); 4214 return -LIBBPF_ERRNO__RELOC; 4215 } 4216 reloc_desc->type = RELO_LD64; 4217 reloc_desc->insn_idx = insn_idx; 4218 reloc_desc->map_idx = map_idx; 4219 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4220 return 0; 4221 } 4222 4223 /* global data map relocation */ 4224 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4225 pr_warn("prog '%s': bad data relo against section '%s'\n", 4226 prog->name, sym_sec_name); 4227 return -LIBBPF_ERRNO__RELOC; 4228 } 4229 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4230 map = &obj->maps[map_idx]; 4231 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4232 continue; 4233 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4234 prog->name, map_idx, map->name, map->sec_idx, 4235 map->sec_offset, insn_idx); 4236 break; 4237 } 4238 if (map_idx >= nr_maps) { 4239 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4240 prog->name, sym_sec_name); 4241 return -LIBBPF_ERRNO__RELOC; 4242 } 4243 4244 reloc_desc->type = RELO_DATA; 4245 reloc_desc->insn_idx = insn_idx; 4246 reloc_desc->map_idx = map_idx; 4247 reloc_desc->sym_off = sym->st_value; 4248 return 0; 4249 } 4250 4251 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4252 { 4253 return insn_idx >= prog->sec_insn_off && 4254 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4255 } 4256 4257 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4258 size_t sec_idx, size_t insn_idx) 4259 { 4260 int l = 0, r = obj->nr_programs - 1, m; 4261 struct bpf_program *prog; 4262 4263 if (!obj->nr_programs) 4264 return NULL; 4265 4266 while (l < r) { 4267 m = l + (r - l + 1) / 2; 4268 prog = &obj->programs[m]; 4269 4270 if (prog->sec_idx < sec_idx || 4271 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4272 l = m; 4273 else 4274 r = m - 1; 4275 } 4276 /* matching program could be at index l, but it still might be the 4277 * wrong one, so we need to double check conditions for the last time 4278 */ 4279 prog = &obj->programs[l]; 4280 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4281 return prog; 4282 return NULL; 4283 } 4284 4285 static int 4286 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4287 { 4288 const char *relo_sec_name, *sec_name; 4289 size_t sec_idx = shdr->sh_info, sym_idx; 4290 struct bpf_program *prog; 4291 struct reloc_desc *relos; 4292 int err, i, nrels; 4293 const char *sym_name; 4294 __u32 insn_idx; 4295 Elf_Scn *scn; 4296 Elf_Data *scn_data; 4297 Elf64_Sym *sym; 4298 Elf64_Rel *rel; 4299 4300 if (sec_idx >= obj->efile.sec_cnt) 4301 return -EINVAL; 4302 4303 scn = elf_sec_by_idx(obj, sec_idx); 4304 scn_data = elf_sec_data(obj, scn); 4305 if (!scn_data) 4306 return -LIBBPF_ERRNO__FORMAT; 4307 4308 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4309 sec_name = elf_sec_name(obj, scn); 4310 if (!relo_sec_name || !sec_name) 4311 return -EINVAL; 4312 4313 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4314 relo_sec_name, sec_idx, sec_name); 4315 nrels = shdr->sh_size / shdr->sh_entsize; 4316 4317 for (i = 0; i < nrels; i++) { 4318 rel = elf_rel_by_idx(data, i); 4319 if (!rel) { 4320 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4321 return -LIBBPF_ERRNO__FORMAT; 4322 } 4323 4324 sym_idx = ELF64_R_SYM(rel->r_info); 4325 sym = elf_sym_by_idx(obj, sym_idx); 4326 if (!sym) { 4327 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4328 relo_sec_name, sym_idx, i); 4329 return -LIBBPF_ERRNO__FORMAT; 4330 } 4331 4332 if (sym->st_shndx >= obj->efile.sec_cnt) { 4333 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4334 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4335 return -LIBBPF_ERRNO__FORMAT; 4336 } 4337 4338 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4339 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4340 relo_sec_name, (size_t)rel->r_offset, i); 4341 return -LIBBPF_ERRNO__FORMAT; 4342 } 4343 4344 insn_idx = rel->r_offset / BPF_INSN_SZ; 4345 /* relocations against static functions are recorded as 4346 * relocations against the section that contains a function; 4347 * in such case, symbol will be STT_SECTION and sym.st_name 4348 * will point to empty string (0), so fetch section name 4349 * instead 4350 */ 4351 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4352 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4353 else 4354 sym_name = elf_sym_str(obj, sym->st_name); 4355 sym_name = sym_name ?: "<?"; 4356 4357 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4358 relo_sec_name, i, insn_idx, sym_name); 4359 4360 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4361 if (!prog) { 4362 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4363 relo_sec_name, i, sec_name, insn_idx); 4364 continue; 4365 } 4366 4367 relos = libbpf_reallocarray(prog->reloc_desc, 4368 prog->nr_reloc + 1, sizeof(*relos)); 4369 if (!relos) 4370 return -ENOMEM; 4371 prog->reloc_desc = relos; 4372 4373 /* adjust insn_idx to local BPF program frame of reference */ 4374 insn_idx -= prog->sec_insn_off; 4375 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4376 insn_idx, sym_name, sym, rel); 4377 if (err) 4378 return err; 4379 4380 prog->nr_reloc++; 4381 } 4382 return 0; 4383 } 4384 4385 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4386 { 4387 int id; 4388 4389 if (!obj->btf) 4390 return -ENOENT; 4391 4392 /* if it's BTF-defined map, we don't need to search for type IDs. 4393 * For struct_ops map, it does not need btf_key_type_id and 4394 * btf_value_type_id. 4395 */ 4396 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4397 return 0; 4398 4399 /* 4400 * LLVM annotates global data differently in BTF, that is, 4401 * only as '.data', '.bss' or '.rodata'. 4402 */ 4403 if (!bpf_map__is_internal(map)) 4404 return -ENOENT; 4405 4406 id = btf__find_by_name(obj->btf, map->real_name); 4407 if (id < 0) 4408 return id; 4409 4410 map->btf_key_type_id = 0; 4411 map->btf_value_type_id = id; 4412 return 0; 4413 } 4414 4415 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4416 { 4417 char file[PATH_MAX], buff[4096]; 4418 FILE *fp; 4419 __u32 val; 4420 int err; 4421 4422 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4423 memset(info, 0, sizeof(*info)); 4424 4425 fp = fopen(file, "re"); 4426 if (!fp) { 4427 err = -errno; 4428 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4429 err); 4430 return err; 4431 } 4432 4433 while (fgets(buff, sizeof(buff), fp)) { 4434 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4435 info->type = val; 4436 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4437 info->key_size = val; 4438 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4439 info->value_size = val; 4440 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4441 info->max_entries = val; 4442 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4443 info->map_flags = val; 4444 } 4445 4446 fclose(fp); 4447 4448 return 0; 4449 } 4450 4451 bool bpf_map__autocreate(const struct bpf_map *map) 4452 { 4453 return map->autocreate; 4454 } 4455 4456 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4457 { 4458 if (map->obj->loaded) 4459 return libbpf_err(-EBUSY); 4460 4461 map->autocreate = autocreate; 4462 return 0; 4463 } 4464 4465 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4466 { 4467 struct bpf_map_info info; 4468 __u32 len = sizeof(info), name_len; 4469 int new_fd, err; 4470 char *new_name; 4471 4472 memset(&info, 0, len); 4473 err = bpf_map_get_info_by_fd(fd, &info, &len); 4474 if (err && errno == EINVAL) 4475 err = bpf_get_map_info_from_fdinfo(fd, &info); 4476 if (err) 4477 return libbpf_err(err); 4478 4479 name_len = strlen(info.name); 4480 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4481 new_name = strdup(map->name); 4482 else 4483 new_name = strdup(info.name); 4484 4485 if (!new_name) 4486 return libbpf_err(-errno); 4487 4488 /* 4489 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4490 * This is similar to what we do in ensure_good_fd(), but without 4491 * closing original FD. 4492 */ 4493 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4494 if (new_fd < 0) { 4495 err = -errno; 4496 goto err_free_new_name; 4497 } 4498 4499 err = reuse_fd(map->fd, new_fd); 4500 if (err) 4501 goto err_free_new_name; 4502 4503 free(map->name); 4504 4505 map->name = new_name; 4506 map->def.type = info.type; 4507 map->def.key_size = info.key_size; 4508 map->def.value_size = info.value_size; 4509 map->def.max_entries = info.max_entries; 4510 map->def.map_flags = info.map_flags; 4511 map->btf_key_type_id = info.btf_key_type_id; 4512 map->btf_value_type_id = info.btf_value_type_id; 4513 map->reused = true; 4514 map->map_extra = info.map_extra; 4515 4516 return 0; 4517 4518 err_free_new_name: 4519 free(new_name); 4520 return libbpf_err(err); 4521 } 4522 4523 __u32 bpf_map__max_entries(const struct bpf_map *map) 4524 { 4525 return map->def.max_entries; 4526 } 4527 4528 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4529 { 4530 if (!bpf_map_type__is_map_in_map(map->def.type)) 4531 return errno = EINVAL, NULL; 4532 4533 return map->inner_map; 4534 } 4535 4536 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4537 { 4538 if (map->obj->loaded) 4539 return libbpf_err(-EBUSY); 4540 4541 map->def.max_entries = max_entries; 4542 4543 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4544 if (map_is_ringbuf(map)) 4545 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4546 4547 return 0; 4548 } 4549 4550 static int 4551 bpf_object__probe_loading(struct bpf_object *obj) 4552 { 4553 char *cp, errmsg[STRERR_BUFSIZE]; 4554 struct bpf_insn insns[] = { 4555 BPF_MOV64_IMM(BPF_REG_0, 0), 4556 BPF_EXIT_INSN(), 4557 }; 4558 int ret, insn_cnt = ARRAY_SIZE(insns); 4559 4560 if (obj->gen_loader) 4561 return 0; 4562 4563 ret = bump_rlimit_memlock(); 4564 if (ret) 4565 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4566 4567 /* make sure basic loading works */ 4568 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4569 if (ret < 0) 4570 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4571 if (ret < 0) { 4572 ret = errno; 4573 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4574 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4575 "program. Make sure your kernel supports BPF " 4576 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4577 "set to big enough value.\n", __func__, cp, ret); 4578 return -ret; 4579 } 4580 close(ret); 4581 4582 return 0; 4583 } 4584 4585 static int probe_fd(int fd) 4586 { 4587 if (fd >= 0) 4588 close(fd); 4589 return fd >= 0; 4590 } 4591 4592 static int probe_kern_prog_name(void) 4593 { 4594 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4595 struct bpf_insn insns[] = { 4596 BPF_MOV64_IMM(BPF_REG_0, 0), 4597 BPF_EXIT_INSN(), 4598 }; 4599 union bpf_attr attr; 4600 int ret; 4601 4602 memset(&attr, 0, attr_sz); 4603 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4604 attr.license = ptr_to_u64("GPL"); 4605 attr.insns = ptr_to_u64(insns); 4606 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4607 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4608 4609 /* make sure loading with name works */ 4610 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4611 return probe_fd(ret); 4612 } 4613 4614 static int probe_kern_global_data(void) 4615 { 4616 char *cp, errmsg[STRERR_BUFSIZE]; 4617 struct bpf_insn insns[] = { 4618 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4619 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4620 BPF_MOV64_IMM(BPF_REG_0, 0), 4621 BPF_EXIT_INSN(), 4622 }; 4623 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4624 4625 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4626 if (map < 0) { 4627 ret = -errno; 4628 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4629 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4630 __func__, cp, -ret); 4631 return ret; 4632 } 4633 4634 insns[0].imm = map; 4635 4636 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4637 close(map); 4638 return probe_fd(ret); 4639 } 4640 4641 static int probe_kern_btf(void) 4642 { 4643 static const char strs[] = "\0int"; 4644 __u32 types[] = { 4645 /* int */ 4646 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4647 }; 4648 4649 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4650 strs, sizeof(strs))); 4651 } 4652 4653 static int probe_kern_btf_func(void) 4654 { 4655 static const char strs[] = "\0int\0x\0a"; 4656 /* void x(int a) {} */ 4657 __u32 types[] = { 4658 /* int */ 4659 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4660 /* FUNC_PROTO */ /* [2] */ 4661 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4662 BTF_PARAM_ENC(7, 1), 4663 /* FUNC x */ /* [3] */ 4664 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4665 }; 4666 4667 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4668 strs, sizeof(strs))); 4669 } 4670 4671 static int probe_kern_btf_func_global(void) 4672 { 4673 static const char strs[] = "\0int\0x\0a"; 4674 /* static void x(int a) {} */ 4675 __u32 types[] = { 4676 /* int */ 4677 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4678 /* FUNC_PROTO */ /* [2] */ 4679 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4680 BTF_PARAM_ENC(7, 1), 4681 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4682 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4683 }; 4684 4685 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4686 strs, sizeof(strs))); 4687 } 4688 4689 static int probe_kern_btf_datasec(void) 4690 { 4691 static const char strs[] = "\0x\0.data"; 4692 /* static int a; */ 4693 __u32 types[] = { 4694 /* int */ 4695 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4696 /* VAR x */ /* [2] */ 4697 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4698 BTF_VAR_STATIC, 4699 /* DATASEC val */ /* [3] */ 4700 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4701 BTF_VAR_SECINFO_ENC(2, 0, 4), 4702 }; 4703 4704 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4705 strs, sizeof(strs))); 4706 } 4707 4708 static int probe_kern_btf_float(void) 4709 { 4710 static const char strs[] = "\0float"; 4711 __u32 types[] = { 4712 /* float */ 4713 BTF_TYPE_FLOAT_ENC(1, 4), 4714 }; 4715 4716 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4717 strs, sizeof(strs))); 4718 } 4719 4720 static int probe_kern_btf_decl_tag(void) 4721 { 4722 static const char strs[] = "\0tag"; 4723 __u32 types[] = { 4724 /* int */ 4725 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4726 /* VAR x */ /* [2] */ 4727 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4728 BTF_VAR_STATIC, 4729 /* attr */ 4730 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4731 }; 4732 4733 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4734 strs, sizeof(strs))); 4735 } 4736 4737 static int probe_kern_btf_type_tag(void) 4738 { 4739 static const char strs[] = "\0tag"; 4740 __u32 types[] = { 4741 /* int */ 4742 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4743 /* attr */ 4744 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4745 /* ptr */ 4746 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4747 }; 4748 4749 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4750 strs, sizeof(strs))); 4751 } 4752 4753 static int probe_kern_array_mmap(void) 4754 { 4755 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4756 int fd; 4757 4758 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4759 return probe_fd(fd); 4760 } 4761 4762 static int probe_kern_exp_attach_type(void) 4763 { 4764 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4765 struct bpf_insn insns[] = { 4766 BPF_MOV64_IMM(BPF_REG_0, 0), 4767 BPF_EXIT_INSN(), 4768 }; 4769 int fd, insn_cnt = ARRAY_SIZE(insns); 4770 4771 /* use any valid combination of program type and (optional) 4772 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4773 * to see if kernel supports expected_attach_type field for 4774 * BPF_PROG_LOAD command 4775 */ 4776 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4777 return probe_fd(fd); 4778 } 4779 4780 static int probe_kern_probe_read_kernel(void) 4781 { 4782 struct bpf_insn insns[] = { 4783 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4784 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4785 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4786 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4787 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4788 BPF_EXIT_INSN(), 4789 }; 4790 int fd, insn_cnt = ARRAY_SIZE(insns); 4791 4792 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4793 return probe_fd(fd); 4794 } 4795 4796 static int probe_prog_bind_map(void) 4797 { 4798 char *cp, errmsg[STRERR_BUFSIZE]; 4799 struct bpf_insn insns[] = { 4800 BPF_MOV64_IMM(BPF_REG_0, 0), 4801 BPF_EXIT_INSN(), 4802 }; 4803 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4804 4805 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4806 if (map < 0) { 4807 ret = -errno; 4808 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4809 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4810 __func__, cp, -ret); 4811 return ret; 4812 } 4813 4814 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4815 if (prog < 0) { 4816 close(map); 4817 return 0; 4818 } 4819 4820 ret = bpf_prog_bind_map(prog, map, NULL); 4821 4822 close(map); 4823 close(prog); 4824 4825 return ret >= 0; 4826 } 4827 4828 static int probe_module_btf(void) 4829 { 4830 static const char strs[] = "\0int"; 4831 __u32 types[] = { 4832 /* int */ 4833 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4834 }; 4835 struct bpf_btf_info info; 4836 __u32 len = sizeof(info); 4837 char name[16]; 4838 int fd, err; 4839 4840 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4841 if (fd < 0) 4842 return 0; /* BTF not supported at all */ 4843 4844 memset(&info, 0, sizeof(info)); 4845 info.name = ptr_to_u64(name); 4846 info.name_len = sizeof(name); 4847 4848 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4849 * kernel's module BTF support coincides with support for 4850 * name/name_len fields in struct bpf_btf_info. 4851 */ 4852 err = bpf_btf_get_info_by_fd(fd, &info, &len); 4853 close(fd); 4854 return !err; 4855 } 4856 4857 static int probe_perf_link(void) 4858 { 4859 struct bpf_insn insns[] = { 4860 BPF_MOV64_IMM(BPF_REG_0, 0), 4861 BPF_EXIT_INSN(), 4862 }; 4863 int prog_fd, link_fd, err; 4864 4865 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4866 insns, ARRAY_SIZE(insns), NULL); 4867 if (prog_fd < 0) 4868 return -errno; 4869 4870 /* use invalid perf_event FD to get EBADF, if link is supported; 4871 * otherwise EINVAL should be returned 4872 */ 4873 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4874 err = -errno; /* close() can clobber errno */ 4875 4876 if (link_fd >= 0) 4877 close(link_fd); 4878 close(prog_fd); 4879 4880 return link_fd < 0 && err == -EBADF; 4881 } 4882 4883 static int probe_uprobe_multi_link(void) 4884 { 4885 LIBBPF_OPTS(bpf_prog_load_opts, load_opts, 4886 .expected_attach_type = BPF_TRACE_UPROBE_MULTI, 4887 ); 4888 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 4889 struct bpf_insn insns[] = { 4890 BPF_MOV64_IMM(BPF_REG_0, 0), 4891 BPF_EXIT_INSN(), 4892 }; 4893 int prog_fd, link_fd, err; 4894 unsigned long offset = 0; 4895 4896 prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", 4897 insns, ARRAY_SIZE(insns), &load_opts); 4898 if (prog_fd < 0) 4899 return -errno; 4900 4901 /* Creating uprobe in '/' binary should fail with -EBADF. */ 4902 link_opts.uprobe_multi.path = "/"; 4903 link_opts.uprobe_multi.offsets = &offset; 4904 link_opts.uprobe_multi.cnt = 1; 4905 4906 link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts); 4907 err = -errno; /* close() can clobber errno */ 4908 4909 if (link_fd >= 0) 4910 close(link_fd); 4911 close(prog_fd); 4912 4913 return link_fd < 0 && err == -EBADF; 4914 } 4915 4916 static int probe_kern_bpf_cookie(void) 4917 { 4918 struct bpf_insn insns[] = { 4919 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4920 BPF_EXIT_INSN(), 4921 }; 4922 int ret, insn_cnt = ARRAY_SIZE(insns); 4923 4924 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4925 return probe_fd(ret); 4926 } 4927 4928 static int probe_kern_btf_enum64(void) 4929 { 4930 static const char strs[] = "\0enum64"; 4931 __u32 types[] = { 4932 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4933 }; 4934 4935 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4936 strs, sizeof(strs))); 4937 } 4938 4939 static int probe_kern_syscall_wrapper(void); 4940 4941 enum kern_feature_result { 4942 FEAT_UNKNOWN = 0, 4943 FEAT_SUPPORTED = 1, 4944 FEAT_MISSING = 2, 4945 }; 4946 4947 typedef int (*feature_probe_fn)(void); 4948 4949 static struct kern_feature_desc { 4950 const char *desc; 4951 feature_probe_fn probe; 4952 enum kern_feature_result res; 4953 } feature_probes[__FEAT_CNT] = { 4954 [FEAT_PROG_NAME] = { 4955 "BPF program name", probe_kern_prog_name, 4956 }, 4957 [FEAT_GLOBAL_DATA] = { 4958 "global variables", probe_kern_global_data, 4959 }, 4960 [FEAT_BTF] = { 4961 "minimal BTF", probe_kern_btf, 4962 }, 4963 [FEAT_BTF_FUNC] = { 4964 "BTF functions", probe_kern_btf_func, 4965 }, 4966 [FEAT_BTF_GLOBAL_FUNC] = { 4967 "BTF global function", probe_kern_btf_func_global, 4968 }, 4969 [FEAT_BTF_DATASEC] = { 4970 "BTF data section and variable", probe_kern_btf_datasec, 4971 }, 4972 [FEAT_ARRAY_MMAP] = { 4973 "ARRAY map mmap()", probe_kern_array_mmap, 4974 }, 4975 [FEAT_EXP_ATTACH_TYPE] = { 4976 "BPF_PROG_LOAD expected_attach_type attribute", 4977 probe_kern_exp_attach_type, 4978 }, 4979 [FEAT_PROBE_READ_KERN] = { 4980 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4981 }, 4982 [FEAT_PROG_BIND_MAP] = { 4983 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4984 }, 4985 [FEAT_MODULE_BTF] = { 4986 "module BTF support", probe_module_btf, 4987 }, 4988 [FEAT_BTF_FLOAT] = { 4989 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4990 }, 4991 [FEAT_PERF_LINK] = { 4992 "BPF perf link support", probe_perf_link, 4993 }, 4994 [FEAT_BTF_DECL_TAG] = { 4995 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4996 }, 4997 [FEAT_BTF_TYPE_TAG] = { 4998 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4999 }, 5000 [FEAT_MEMCG_ACCOUNT] = { 5001 "memcg-based memory accounting", probe_memcg_account, 5002 }, 5003 [FEAT_BPF_COOKIE] = { 5004 "BPF cookie support", probe_kern_bpf_cookie, 5005 }, 5006 [FEAT_BTF_ENUM64] = { 5007 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 5008 }, 5009 [FEAT_SYSCALL_WRAPPER] = { 5010 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 5011 }, 5012 [FEAT_UPROBE_MULTI_LINK] = { 5013 "BPF multi-uprobe link support", probe_uprobe_multi_link, 5014 }, 5015 }; 5016 5017 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 5018 { 5019 struct kern_feature_desc *feat = &feature_probes[feat_id]; 5020 int ret; 5021 5022 if (obj && obj->gen_loader) 5023 /* To generate loader program assume the latest kernel 5024 * to avoid doing extra prog_load, map_create syscalls. 5025 */ 5026 return true; 5027 5028 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 5029 ret = feat->probe(); 5030 if (ret > 0) { 5031 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 5032 } else if (ret == 0) { 5033 WRITE_ONCE(feat->res, FEAT_MISSING); 5034 } else { 5035 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 5036 WRITE_ONCE(feat->res, FEAT_MISSING); 5037 } 5038 } 5039 5040 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 5041 } 5042 5043 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5044 { 5045 struct bpf_map_info map_info; 5046 char msg[STRERR_BUFSIZE]; 5047 __u32 map_info_len = sizeof(map_info); 5048 int err; 5049 5050 memset(&map_info, 0, map_info_len); 5051 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5052 if (err && errno == EINVAL) 5053 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5054 if (err) { 5055 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5056 libbpf_strerror_r(errno, msg, sizeof(msg))); 5057 return false; 5058 } 5059 5060 return (map_info.type == map->def.type && 5061 map_info.key_size == map->def.key_size && 5062 map_info.value_size == map->def.value_size && 5063 map_info.max_entries == map->def.max_entries && 5064 map_info.map_flags == map->def.map_flags && 5065 map_info.map_extra == map->map_extra); 5066 } 5067 5068 static int 5069 bpf_object__reuse_map(struct bpf_map *map) 5070 { 5071 char *cp, errmsg[STRERR_BUFSIZE]; 5072 int err, pin_fd; 5073 5074 pin_fd = bpf_obj_get(map->pin_path); 5075 if (pin_fd < 0) { 5076 err = -errno; 5077 if (err == -ENOENT) { 5078 pr_debug("found no pinned map to reuse at '%s'\n", 5079 map->pin_path); 5080 return 0; 5081 } 5082 5083 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5084 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5085 map->pin_path, cp); 5086 return err; 5087 } 5088 5089 if (!map_is_reuse_compat(map, pin_fd)) { 5090 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5091 map->pin_path); 5092 close(pin_fd); 5093 return -EINVAL; 5094 } 5095 5096 err = bpf_map__reuse_fd(map, pin_fd); 5097 close(pin_fd); 5098 if (err) 5099 return err; 5100 5101 map->pinned = true; 5102 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5103 5104 return 0; 5105 } 5106 5107 static int 5108 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5109 { 5110 enum libbpf_map_type map_type = map->libbpf_type; 5111 char *cp, errmsg[STRERR_BUFSIZE]; 5112 int err, zero = 0; 5113 5114 if (obj->gen_loader) { 5115 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5116 map->mmaped, map->def.value_size); 5117 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5118 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5119 return 0; 5120 } 5121 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5122 if (err) { 5123 err = -errno; 5124 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5125 pr_warn("Error setting initial map(%s) contents: %s\n", 5126 map->name, cp); 5127 return err; 5128 } 5129 5130 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5131 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5132 err = bpf_map_freeze(map->fd); 5133 if (err) { 5134 err = -errno; 5135 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5136 pr_warn("Error freezing map(%s) as read-only: %s\n", 5137 map->name, cp); 5138 return err; 5139 } 5140 } 5141 return 0; 5142 } 5143 5144 static void bpf_map__destroy(struct bpf_map *map); 5145 5146 static bool map_is_created(const struct bpf_map *map) 5147 { 5148 return map->obj->loaded || map->reused; 5149 } 5150 5151 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5152 { 5153 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5154 struct bpf_map_def *def = &map->def; 5155 const char *map_name = NULL; 5156 int err = 0, map_fd; 5157 5158 if (kernel_supports(obj, FEAT_PROG_NAME)) 5159 map_name = map->name; 5160 create_attr.map_ifindex = map->map_ifindex; 5161 create_attr.map_flags = def->map_flags; 5162 create_attr.numa_node = map->numa_node; 5163 create_attr.map_extra = map->map_extra; 5164 5165 if (bpf_map__is_struct_ops(map)) 5166 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5167 5168 if (obj->btf && btf__fd(obj->btf) >= 0) { 5169 create_attr.btf_fd = btf__fd(obj->btf); 5170 create_attr.btf_key_type_id = map->btf_key_type_id; 5171 create_attr.btf_value_type_id = map->btf_value_type_id; 5172 } 5173 5174 if (bpf_map_type__is_map_in_map(def->type)) { 5175 if (map->inner_map) { 5176 err = map_set_def_max_entries(map->inner_map); 5177 if (err) 5178 return err; 5179 err = bpf_object__create_map(obj, map->inner_map, true); 5180 if (err) { 5181 pr_warn("map '%s': failed to create inner map: %d\n", 5182 map->name, err); 5183 return err; 5184 } 5185 map->inner_map_fd = map->inner_map->fd; 5186 } 5187 if (map->inner_map_fd >= 0) 5188 create_attr.inner_map_fd = map->inner_map_fd; 5189 } 5190 5191 switch (def->type) { 5192 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5193 case BPF_MAP_TYPE_CGROUP_ARRAY: 5194 case BPF_MAP_TYPE_STACK_TRACE: 5195 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5196 case BPF_MAP_TYPE_HASH_OF_MAPS: 5197 case BPF_MAP_TYPE_DEVMAP: 5198 case BPF_MAP_TYPE_DEVMAP_HASH: 5199 case BPF_MAP_TYPE_CPUMAP: 5200 case BPF_MAP_TYPE_XSKMAP: 5201 case BPF_MAP_TYPE_SOCKMAP: 5202 case BPF_MAP_TYPE_SOCKHASH: 5203 case BPF_MAP_TYPE_QUEUE: 5204 case BPF_MAP_TYPE_STACK: 5205 create_attr.btf_fd = 0; 5206 create_attr.btf_key_type_id = 0; 5207 create_attr.btf_value_type_id = 0; 5208 map->btf_key_type_id = 0; 5209 map->btf_value_type_id = 0; 5210 default: 5211 break; 5212 } 5213 5214 if (obj->gen_loader) { 5215 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5216 def->key_size, def->value_size, def->max_entries, 5217 &create_attr, is_inner ? -1 : map - obj->maps); 5218 /* We keep pretenting we have valid FD to pass various fd >= 0 5219 * checks by just keeping original placeholder FDs in place. 5220 * See bpf_object__add_map() comment. 5221 * This placeholder fd will not be used with any syscall and 5222 * will be reset to -1 eventually. 5223 */ 5224 map_fd = map->fd; 5225 } else { 5226 map_fd = bpf_map_create(def->type, map_name, 5227 def->key_size, def->value_size, 5228 def->max_entries, &create_attr); 5229 } 5230 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) { 5231 char *cp, errmsg[STRERR_BUFSIZE]; 5232 5233 err = -errno; 5234 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5235 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5236 map->name, cp, err); 5237 create_attr.btf_fd = 0; 5238 create_attr.btf_key_type_id = 0; 5239 create_attr.btf_value_type_id = 0; 5240 map->btf_key_type_id = 0; 5241 map->btf_value_type_id = 0; 5242 map_fd = bpf_map_create(def->type, map_name, 5243 def->key_size, def->value_size, 5244 def->max_entries, &create_attr); 5245 } 5246 5247 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5248 if (obj->gen_loader) 5249 map->inner_map->fd = -1; 5250 bpf_map__destroy(map->inner_map); 5251 zfree(&map->inner_map); 5252 } 5253 5254 if (map_fd < 0) 5255 return map_fd; 5256 5257 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */ 5258 if (map->fd == map_fd) 5259 return 0; 5260 5261 /* Keep placeholder FD value but now point it to the BPF map object. 5262 * This way everything that relied on this map's FD (e.g., relocated 5263 * ldimm64 instructions) will stay valid and won't need adjustments. 5264 * map->fd stays valid but now point to what map_fd points to. 5265 */ 5266 return reuse_fd(map->fd, map_fd); 5267 } 5268 5269 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5270 { 5271 const struct bpf_map *targ_map; 5272 unsigned int i; 5273 int fd, err = 0; 5274 5275 for (i = 0; i < map->init_slots_sz; i++) { 5276 if (!map->init_slots[i]) 5277 continue; 5278 5279 targ_map = map->init_slots[i]; 5280 fd = targ_map->fd; 5281 5282 if (obj->gen_loader) { 5283 bpf_gen__populate_outer_map(obj->gen_loader, 5284 map - obj->maps, i, 5285 targ_map - obj->maps); 5286 } else { 5287 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5288 } 5289 if (err) { 5290 err = -errno; 5291 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5292 map->name, i, targ_map->name, fd, err); 5293 return err; 5294 } 5295 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5296 map->name, i, targ_map->name, fd); 5297 } 5298 5299 zfree(&map->init_slots); 5300 map->init_slots_sz = 0; 5301 5302 return 0; 5303 } 5304 5305 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5306 { 5307 const struct bpf_program *targ_prog; 5308 unsigned int i; 5309 int fd, err; 5310 5311 if (obj->gen_loader) 5312 return -ENOTSUP; 5313 5314 for (i = 0; i < map->init_slots_sz; i++) { 5315 if (!map->init_slots[i]) 5316 continue; 5317 5318 targ_prog = map->init_slots[i]; 5319 fd = bpf_program__fd(targ_prog); 5320 5321 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5322 if (err) { 5323 err = -errno; 5324 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5325 map->name, i, targ_prog->name, fd, err); 5326 return err; 5327 } 5328 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5329 map->name, i, targ_prog->name, fd); 5330 } 5331 5332 zfree(&map->init_slots); 5333 map->init_slots_sz = 0; 5334 5335 return 0; 5336 } 5337 5338 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5339 { 5340 struct bpf_map *map; 5341 int i, err; 5342 5343 for (i = 0; i < obj->nr_maps; i++) { 5344 map = &obj->maps[i]; 5345 5346 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5347 continue; 5348 5349 err = init_prog_array_slots(obj, map); 5350 if (err < 0) 5351 return err; 5352 } 5353 return 0; 5354 } 5355 5356 static int map_set_def_max_entries(struct bpf_map *map) 5357 { 5358 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5359 int nr_cpus; 5360 5361 nr_cpus = libbpf_num_possible_cpus(); 5362 if (nr_cpus < 0) { 5363 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5364 map->name, nr_cpus); 5365 return nr_cpus; 5366 } 5367 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5368 map->def.max_entries = nr_cpus; 5369 } 5370 5371 return 0; 5372 } 5373 5374 static int 5375 bpf_object__create_maps(struct bpf_object *obj) 5376 { 5377 struct bpf_map *map; 5378 char *cp, errmsg[STRERR_BUFSIZE]; 5379 unsigned int i, j; 5380 int err; 5381 bool retried; 5382 5383 for (i = 0; i < obj->nr_maps; i++) { 5384 map = &obj->maps[i]; 5385 5386 /* To support old kernels, we skip creating global data maps 5387 * (.rodata, .data, .kconfig, etc); later on, during program 5388 * loading, if we detect that at least one of the to-be-loaded 5389 * programs is referencing any global data map, we'll error 5390 * out with program name and relocation index logged. 5391 * This approach allows to accommodate Clang emitting 5392 * unnecessary .rodata.str1.1 sections for string literals, 5393 * but also it allows to have CO-RE applications that use 5394 * global variables in some of BPF programs, but not others. 5395 * If those global variable-using programs are not loaded at 5396 * runtime due to bpf_program__set_autoload(prog, false), 5397 * bpf_object loading will succeed just fine even on old 5398 * kernels. 5399 */ 5400 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5401 map->autocreate = false; 5402 5403 if (!map->autocreate) { 5404 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5405 continue; 5406 } 5407 5408 err = map_set_def_max_entries(map); 5409 if (err) 5410 goto err_out; 5411 5412 retried = false; 5413 retry: 5414 if (map->pin_path) { 5415 err = bpf_object__reuse_map(map); 5416 if (err) { 5417 pr_warn("map '%s': error reusing pinned map\n", 5418 map->name); 5419 goto err_out; 5420 } 5421 if (retried && map->fd < 0) { 5422 pr_warn("map '%s': cannot find pinned map\n", 5423 map->name); 5424 err = -ENOENT; 5425 goto err_out; 5426 } 5427 } 5428 5429 if (map->reused) { 5430 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5431 map->name, map->fd); 5432 } else { 5433 err = bpf_object__create_map(obj, map, false); 5434 if (err) 5435 goto err_out; 5436 5437 pr_debug("map '%s': created successfully, fd=%d\n", 5438 map->name, map->fd); 5439 5440 if (bpf_map__is_internal(map)) { 5441 err = bpf_object__populate_internal_map(obj, map); 5442 if (err < 0) 5443 goto err_out; 5444 } 5445 5446 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5447 err = init_map_in_map_slots(obj, map); 5448 if (err < 0) 5449 goto err_out; 5450 } 5451 } 5452 5453 if (map->pin_path && !map->pinned) { 5454 err = bpf_map__pin(map, NULL); 5455 if (err) { 5456 if (!retried && err == -EEXIST) { 5457 retried = true; 5458 goto retry; 5459 } 5460 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5461 map->name, map->pin_path, err); 5462 goto err_out; 5463 } 5464 } 5465 } 5466 5467 return 0; 5468 5469 err_out: 5470 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5471 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5472 pr_perm_msg(err); 5473 for (j = 0; j < i; j++) 5474 zclose(obj->maps[j].fd); 5475 return err; 5476 } 5477 5478 static bool bpf_core_is_flavor_sep(const char *s) 5479 { 5480 /* check X___Y name pattern, where X and Y are not underscores */ 5481 return s[0] != '_' && /* X */ 5482 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5483 s[4] != '_'; /* Y */ 5484 } 5485 5486 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5487 * before last triple underscore. Struct name part after last triple 5488 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5489 */ 5490 size_t bpf_core_essential_name_len(const char *name) 5491 { 5492 size_t n = strlen(name); 5493 int i; 5494 5495 for (i = n - 5; i >= 0; i--) { 5496 if (bpf_core_is_flavor_sep(name + i)) 5497 return i + 1; 5498 } 5499 return n; 5500 } 5501 5502 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5503 { 5504 if (!cands) 5505 return; 5506 5507 free(cands->cands); 5508 free(cands); 5509 } 5510 5511 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5512 size_t local_essent_len, 5513 const struct btf *targ_btf, 5514 const char *targ_btf_name, 5515 int targ_start_id, 5516 struct bpf_core_cand_list *cands) 5517 { 5518 struct bpf_core_cand *new_cands, *cand; 5519 const struct btf_type *t, *local_t; 5520 const char *targ_name, *local_name; 5521 size_t targ_essent_len; 5522 int n, i; 5523 5524 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5525 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5526 5527 n = btf__type_cnt(targ_btf); 5528 for (i = targ_start_id; i < n; i++) { 5529 t = btf__type_by_id(targ_btf, i); 5530 if (!btf_kind_core_compat(t, local_t)) 5531 continue; 5532 5533 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5534 if (str_is_empty(targ_name)) 5535 continue; 5536 5537 targ_essent_len = bpf_core_essential_name_len(targ_name); 5538 if (targ_essent_len != local_essent_len) 5539 continue; 5540 5541 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5542 continue; 5543 5544 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5545 local_cand->id, btf_kind_str(local_t), 5546 local_name, i, btf_kind_str(t), targ_name, 5547 targ_btf_name); 5548 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5549 sizeof(*cands->cands)); 5550 if (!new_cands) 5551 return -ENOMEM; 5552 5553 cand = &new_cands[cands->len]; 5554 cand->btf = targ_btf; 5555 cand->id = i; 5556 5557 cands->cands = new_cands; 5558 cands->len++; 5559 } 5560 return 0; 5561 } 5562 5563 static int load_module_btfs(struct bpf_object *obj) 5564 { 5565 struct bpf_btf_info info; 5566 struct module_btf *mod_btf; 5567 struct btf *btf; 5568 char name[64]; 5569 __u32 id = 0, len; 5570 int err, fd; 5571 5572 if (obj->btf_modules_loaded) 5573 return 0; 5574 5575 if (obj->gen_loader) 5576 return 0; 5577 5578 /* don't do this again, even if we find no module BTFs */ 5579 obj->btf_modules_loaded = true; 5580 5581 /* kernel too old to support module BTFs */ 5582 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5583 return 0; 5584 5585 while (true) { 5586 err = bpf_btf_get_next_id(id, &id); 5587 if (err && errno == ENOENT) 5588 return 0; 5589 if (err && errno == EPERM) { 5590 pr_debug("skipping module BTFs loading, missing privileges\n"); 5591 return 0; 5592 } 5593 if (err) { 5594 err = -errno; 5595 pr_warn("failed to iterate BTF objects: %d\n", err); 5596 return err; 5597 } 5598 5599 fd = bpf_btf_get_fd_by_id(id); 5600 if (fd < 0) { 5601 if (errno == ENOENT) 5602 continue; /* expected race: BTF was unloaded */ 5603 err = -errno; 5604 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5605 return err; 5606 } 5607 5608 len = sizeof(info); 5609 memset(&info, 0, sizeof(info)); 5610 info.name = ptr_to_u64(name); 5611 info.name_len = sizeof(name); 5612 5613 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5614 if (err) { 5615 err = -errno; 5616 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5617 goto err_out; 5618 } 5619 5620 /* ignore non-module BTFs */ 5621 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5622 close(fd); 5623 continue; 5624 } 5625 5626 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5627 err = libbpf_get_error(btf); 5628 if (err) { 5629 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5630 name, id, err); 5631 goto err_out; 5632 } 5633 5634 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5635 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5636 if (err) 5637 goto err_out; 5638 5639 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5640 5641 mod_btf->btf = btf; 5642 mod_btf->id = id; 5643 mod_btf->fd = fd; 5644 mod_btf->name = strdup(name); 5645 if (!mod_btf->name) { 5646 err = -ENOMEM; 5647 goto err_out; 5648 } 5649 continue; 5650 5651 err_out: 5652 close(fd); 5653 return err; 5654 } 5655 5656 return 0; 5657 } 5658 5659 static struct bpf_core_cand_list * 5660 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5661 { 5662 struct bpf_core_cand local_cand = {}; 5663 struct bpf_core_cand_list *cands; 5664 const struct btf *main_btf; 5665 const struct btf_type *local_t; 5666 const char *local_name; 5667 size_t local_essent_len; 5668 int err, i; 5669 5670 local_cand.btf = local_btf; 5671 local_cand.id = local_type_id; 5672 local_t = btf__type_by_id(local_btf, local_type_id); 5673 if (!local_t) 5674 return ERR_PTR(-EINVAL); 5675 5676 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5677 if (str_is_empty(local_name)) 5678 return ERR_PTR(-EINVAL); 5679 local_essent_len = bpf_core_essential_name_len(local_name); 5680 5681 cands = calloc(1, sizeof(*cands)); 5682 if (!cands) 5683 return ERR_PTR(-ENOMEM); 5684 5685 /* Attempt to find target candidates in vmlinux BTF first */ 5686 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5687 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5688 if (err) 5689 goto err_out; 5690 5691 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5692 if (cands->len) 5693 return cands; 5694 5695 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5696 if (obj->btf_vmlinux_override) 5697 return cands; 5698 5699 /* now look through module BTFs, trying to still find candidates */ 5700 err = load_module_btfs(obj); 5701 if (err) 5702 goto err_out; 5703 5704 for (i = 0; i < obj->btf_module_cnt; i++) { 5705 err = bpf_core_add_cands(&local_cand, local_essent_len, 5706 obj->btf_modules[i].btf, 5707 obj->btf_modules[i].name, 5708 btf__type_cnt(obj->btf_vmlinux), 5709 cands); 5710 if (err) 5711 goto err_out; 5712 } 5713 5714 return cands; 5715 err_out: 5716 bpf_core_free_cands(cands); 5717 return ERR_PTR(err); 5718 } 5719 5720 /* Check local and target types for compatibility. This check is used for 5721 * type-based CO-RE relocations and follow slightly different rules than 5722 * field-based relocations. This function assumes that root types were already 5723 * checked for name match. Beyond that initial root-level name check, names 5724 * are completely ignored. Compatibility rules are as follows: 5725 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5726 * kind should match for local and target types (i.e., STRUCT is not 5727 * compatible with UNION); 5728 * - for ENUMs, the size is ignored; 5729 * - for INT, size and signedness are ignored; 5730 * - for ARRAY, dimensionality is ignored, element types are checked for 5731 * compatibility recursively; 5732 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5733 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5734 * - FUNC_PROTOs are compatible if they have compatible signature: same 5735 * number of input args and compatible return and argument types. 5736 * These rules are not set in stone and probably will be adjusted as we get 5737 * more experience with using BPF CO-RE relocations. 5738 */ 5739 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5740 const struct btf *targ_btf, __u32 targ_id) 5741 { 5742 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5743 } 5744 5745 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5746 const struct btf *targ_btf, __u32 targ_id) 5747 { 5748 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5749 } 5750 5751 static size_t bpf_core_hash_fn(const long key, void *ctx) 5752 { 5753 return key; 5754 } 5755 5756 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5757 { 5758 return k1 == k2; 5759 } 5760 5761 static int record_relo_core(struct bpf_program *prog, 5762 const struct bpf_core_relo *core_relo, int insn_idx) 5763 { 5764 struct reloc_desc *relos, *relo; 5765 5766 relos = libbpf_reallocarray(prog->reloc_desc, 5767 prog->nr_reloc + 1, sizeof(*relos)); 5768 if (!relos) 5769 return -ENOMEM; 5770 relo = &relos[prog->nr_reloc]; 5771 relo->type = RELO_CORE; 5772 relo->insn_idx = insn_idx; 5773 relo->core_relo = core_relo; 5774 prog->reloc_desc = relos; 5775 prog->nr_reloc++; 5776 return 0; 5777 } 5778 5779 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5780 { 5781 struct reloc_desc *relo; 5782 int i; 5783 5784 for (i = 0; i < prog->nr_reloc; i++) { 5785 relo = &prog->reloc_desc[i]; 5786 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5787 continue; 5788 5789 return relo->core_relo; 5790 } 5791 5792 return NULL; 5793 } 5794 5795 static int bpf_core_resolve_relo(struct bpf_program *prog, 5796 const struct bpf_core_relo *relo, 5797 int relo_idx, 5798 const struct btf *local_btf, 5799 struct hashmap *cand_cache, 5800 struct bpf_core_relo_res *targ_res) 5801 { 5802 struct bpf_core_spec specs_scratch[3] = {}; 5803 struct bpf_core_cand_list *cands = NULL; 5804 const char *prog_name = prog->name; 5805 const struct btf_type *local_type; 5806 const char *local_name; 5807 __u32 local_id = relo->type_id; 5808 int err; 5809 5810 local_type = btf__type_by_id(local_btf, local_id); 5811 if (!local_type) 5812 return -EINVAL; 5813 5814 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5815 if (!local_name) 5816 return -EINVAL; 5817 5818 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5819 !hashmap__find(cand_cache, local_id, &cands)) { 5820 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5821 if (IS_ERR(cands)) { 5822 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5823 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5824 local_name, PTR_ERR(cands)); 5825 return PTR_ERR(cands); 5826 } 5827 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5828 if (err) { 5829 bpf_core_free_cands(cands); 5830 return err; 5831 } 5832 } 5833 5834 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5835 targ_res); 5836 } 5837 5838 static int 5839 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5840 { 5841 const struct btf_ext_info_sec *sec; 5842 struct bpf_core_relo_res targ_res; 5843 const struct bpf_core_relo *rec; 5844 const struct btf_ext_info *seg; 5845 struct hashmap_entry *entry; 5846 struct hashmap *cand_cache = NULL; 5847 struct bpf_program *prog; 5848 struct bpf_insn *insn; 5849 const char *sec_name; 5850 int i, err = 0, insn_idx, sec_idx, sec_num; 5851 5852 if (obj->btf_ext->core_relo_info.len == 0) 5853 return 0; 5854 5855 if (targ_btf_path) { 5856 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5857 err = libbpf_get_error(obj->btf_vmlinux_override); 5858 if (err) { 5859 pr_warn("failed to parse target BTF: %d\n", err); 5860 return err; 5861 } 5862 } 5863 5864 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5865 if (IS_ERR(cand_cache)) { 5866 err = PTR_ERR(cand_cache); 5867 goto out; 5868 } 5869 5870 seg = &obj->btf_ext->core_relo_info; 5871 sec_num = 0; 5872 for_each_btf_ext_sec(seg, sec) { 5873 sec_idx = seg->sec_idxs[sec_num]; 5874 sec_num++; 5875 5876 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5877 if (str_is_empty(sec_name)) { 5878 err = -EINVAL; 5879 goto out; 5880 } 5881 5882 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5883 5884 for_each_btf_ext_rec(seg, sec, i, rec) { 5885 if (rec->insn_off % BPF_INSN_SZ) 5886 return -EINVAL; 5887 insn_idx = rec->insn_off / BPF_INSN_SZ; 5888 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5889 if (!prog) { 5890 /* When __weak subprog is "overridden" by another instance 5891 * of the subprog from a different object file, linker still 5892 * appends all the .BTF.ext info that used to belong to that 5893 * eliminated subprogram. 5894 * This is similar to what x86-64 linker does for relocations. 5895 * So just ignore such relocations just like we ignore 5896 * subprog instructions when discovering subprograms. 5897 */ 5898 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5899 sec_name, i, insn_idx); 5900 continue; 5901 } 5902 /* no need to apply CO-RE relocation if the program is 5903 * not going to be loaded 5904 */ 5905 if (!prog->autoload) 5906 continue; 5907 5908 /* adjust insn_idx from section frame of reference to the local 5909 * program's frame of reference; (sub-)program code is not yet 5910 * relocated, so it's enough to just subtract in-section offset 5911 */ 5912 insn_idx = insn_idx - prog->sec_insn_off; 5913 if (insn_idx >= prog->insns_cnt) 5914 return -EINVAL; 5915 insn = &prog->insns[insn_idx]; 5916 5917 err = record_relo_core(prog, rec, insn_idx); 5918 if (err) { 5919 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5920 prog->name, i, err); 5921 goto out; 5922 } 5923 5924 if (prog->obj->gen_loader) 5925 continue; 5926 5927 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5928 if (err) { 5929 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5930 prog->name, i, err); 5931 goto out; 5932 } 5933 5934 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5935 if (err) { 5936 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5937 prog->name, i, insn_idx, err); 5938 goto out; 5939 } 5940 } 5941 } 5942 5943 out: 5944 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5945 btf__free(obj->btf_vmlinux_override); 5946 obj->btf_vmlinux_override = NULL; 5947 5948 if (!IS_ERR_OR_NULL(cand_cache)) { 5949 hashmap__for_each_entry(cand_cache, entry, i) { 5950 bpf_core_free_cands(entry->pvalue); 5951 } 5952 hashmap__free(cand_cache); 5953 } 5954 return err; 5955 } 5956 5957 /* base map load ldimm64 special constant, used also for log fixup logic */ 5958 #define POISON_LDIMM64_MAP_BASE 2001000000 5959 #define POISON_LDIMM64_MAP_PFX "200100" 5960 5961 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5962 int insn_idx, struct bpf_insn *insn, 5963 int map_idx, const struct bpf_map *map) 5964 { 5965 int i; 5966 5967 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5968 prog->name, relo_idx, insn_idx, map_idx, map->name); 5969 5970 /* we turn single ldimm64 into two identical invalid calls */ 5971 for (i = 0; i < 2; i++) { 5972 insn->code = BPF_JMP | BPF_CALL; 5973 insn->dst_reg = 0; 5974 insn->src_reg = 0; 5975 insn->off = 0; 5976 /* if this instruction is reachable (not a dead code), 5977 * verifier will complain with something like: 5978 * invalid func unknown#2001000123 5979 * where lower 123 is map index into obj->maps[] array 5980 */ 5981 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 5982 5983 insn++; 5984 } 5985 } 5986 5987 /* unresolved kfunc call special constant, used also for log fixup logic */ 5988 #define POISON_CALL_KFUNC_BASE 2002000000 5989 #define POISON_CALL_KFUNC_PFX "2002" 5990 5991 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 5992 int insn_idx, struct bpf_insn *insn, 5993 int ext_idx, const struct extern_desc *ext) 5994 { 5995 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 5996 prog->name, relo_idx, insn_idx, ext->name); 5997 5998 /* we turn kfunc call into invalid helper call with identifiable constant */ 5999 insn->code = BPF_JMP | BPF_CALL; 6000 insn->dst_reg = 0; 6001 insn->src_reg = 0; 6002 insn->off = 0; 6003 /* if this instruction is reachable (not a dead code), 6004 * verifier will complain with something like: 6005 * invalid func unknown#2001000123 6006 * where lower 123 is extern index into obj->externs[] array 6007 */ 6008 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 6009 } 6010 6011 /* Relocate data references within program code: 6012 * - map references; 6013 * - global variable references; 6014 * - extern references. 6015 */ 6016 static int 6017 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6018 { 6019 int i; 6020 6021 for (i = 0; i < prog->nr_reloc; i++) { 6022 struct reloc_desc *relo = &prog->reloc_desc[i]; 6023 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6024 const struct bpf_map *map; 6025 struct extern_desc *ext; 6026 6027 switch (relo->type) { 6028 case RELO_LD64: 6029 map = &obj->maps[relo->map_idx]; 6030 if (obj->gen_loader) { 6031 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6032 insn[0].imm = relo->map_idx; 6033 } else if (map->autocreate) { 6034 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6035 insn[0].imm = map->fd; 6036 } else { 6037 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6038 relo->map_idx, map); 6039 } 6040 break; 6041 case RELO_DATA: 6042 map = &obj->maps[relo->map_idx]; 6043 insn[1].imm = insn[0].imm + relo->sym_off; 6044 if (obj->gen_loader) { 6045 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6046 insn[0].imm = relo->map_idx; 6047 } else if (map->autocreate) { 6048 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6049 insn[0].imm = map->fd; 6050 } else { 6051 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6052 relo->map_idx, map); 6053 } 6054 break; 6055 case RELO_EXTERN_LD64: 6056 ext = &obj->externs[relo->ext_idx]; 6057 if (ext->type == EXT_KCFG) { 6058 if (obj->gen_loader) { 6059 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6060 insn[0].imm = obj->kconfig_map_idx; 6061 } else { 6062 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6063 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6064 } 6065 insn[1].imm = ext->kcfg.data_off; 6066 } else /* EXT_KSYM */ { 6067 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6068 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6069 insn[0].imm = ext->ksym.kernel_btf_id; 6070 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6071 } else { /* typeless ksyms or unresolved typed ksyms */ 6072 insn[0].imm = (__u32)ext->ksym.addr; 6073 insn[1].imm = ext->ksym.addr >> 32; 6074 } 6075 } 6076 break; 6077 case RELO_EXTERN_CALL: 6078 ext = &obj->externs[relo->ext_idx]; 6079 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6080 if (ext->is_set) { 6081 insn[0].imm = ext->ksym.kernel_btf_id; 6082 insn[0].off = ext->ksym.btf_fd_idx; 6083 } else { /* unresolved weak kfunc call */ 6084 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6085 relo->ext_idx, ext); 6086 } 6087 break; 6088 case RELO_SUBPROG_ADDR: 6089 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6090 pr_warn("prog '%s': relo #%d: bad insn\n", 6091 prog->name, i); 6092 return -EINVAL; 6093 } 6094 /* handled already */ 6095 break; 6096 case RELO_CALL: 6097 /* handled already */ 6098 break; 6099 case RELO_CORE: 6100 /* will be handled by bpf_program_record_relos() */ 6101 break; 6102 default: 6103 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6104 prog->name, i, relo->type); 6105 return -EINVAL; 6106 } 6107 } 6108 6109 return 0; 6110 } 6111 6112 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6113 const struct bpf_program *prog, 6114 const struct btf_ext_info *ext_info, 6115 void **prog_info, __u32 *prog_rec_cnt, 6116 __u32 *prog_rec_sz) 6117 { 6118 void *copy_start = NULL, *copy_end = NULL; 6119 void *rec, *rec_end, *new_prog_info; 6120 const struct btf_ext_info_sec *sec; 6121 size_t old_sz, new_sz; 6122 int i, sec_num, sec_idx, off_adj; 6123 6124 sec_num = 0; 6125 for_each_btf_ext_sec(ext_info, sec) { 6126 sec_idx = ext_info->sec_idxs[sec_num]; 6127 sec_num++; 6128 if (prog->sec_idx != sec_idx) 6129 continue; 6130 6131 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6132 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6133 6134 if (insn_off < prog->sec_insn_off) 6135 continue; 6136 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6137 break; 6138 6139 if (!copy_start) 6140 copy_start = rec; 6141 copy_end = rec + ext_info->rec_size; 6142 } 6143 6144 if (!copy_start) 6145 return -ENOENT; 6146 6147 /* append func/line info of a given (sub-)program to the main 6148 * program func/line info 6149 */ 6150 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6151 new_sz = old_sz + (copy_end - copy_start); 6152 new_prog_info = realloc(*prog_info, new_sz); 6153 if (!new_prog_info) 6154 return -ENOMEM; 6155 *prog_info = new_prog_info; 6156 *prog_rec_cnt = new_sz / ext_info->rec_size; 6157 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6158 6159 /* Kernel instruction offsets are in units of 8-byte 6160 * instructions, while .BTF.ext instruction offsets generated 6161 * by Clang are in units of bytes. So convert Clang offsets 6162 * into kernel offsets and adjust offset according to program 6163 * relocated position. 6164 */ 6165 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6166 rec = new_prog_info + old_sz; 6167 rec_end = new_prog_info + new_sz; 6168 for (; rec < rec_end; rec += ext_info->rec_size) { 6169 __u32 *insn_off = rec; 6170 6171 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6172 } 6173 *prog_rec_sz = ext_info->rec_size; 6174 return 0; 6175 } 6176 6177 return -ENOENT; 6178 } 6179 6180 static int 6181 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6182 struct bpf_program *main_prog, 6183 const struct bpf_program *prog) 6184 { 6185 int err; 6186 6187 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6188 * support func/line info 6189 */ 6190 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6191 return 0; 6192 6193 /* only attempt func info relocation if main program's func_info 6194 * relocation was successful 6195 */ 6196 if (main_prog != prog && !main_prog->func_info) 6197 goto line_info; 6198 6199 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6200 &main_prog->func_info, 6201 &main_prog->func_info_cnt, 6202 &main_prog->func_info_rec_size); 6203 if (err) { 6204 if (err != -ENOENT) { 6205 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6206 prog->name, err); 6207 return err; 6208 } 6209 if (main_prog->func_info) { 6210 /* 6211 * Some info has already been found but has problem 6212 * in the last btf_ext reloc. Must have to error out. 6213 */ 6214 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6215 return err; 6216 } 6217 /* Have problem loading the very first info. Ignore the rest. */ 6218 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6219 prog->name); 6220 } 6221 6222 line_info: 6223 /* don't relocate line info if main program's relocation failed */ 6224 if (main_prog != prog && !main_prog->line_info) 6225 return 0; 6226 6227 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6228 &main_prog->line_info, 6229 &main_prog->line_info_cnt, 6230 &main_prog->line_info_rec_size); 6231 if (err) { 6232 if (err != -ENOENT) { 6233 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6234 prog->name, err); 6235 return err; 6236 } 6237 if (main_prog->line_info) { 6238 /* 6239 * Some info has already been found but has problem 6240 * in the last btf_ext reloc. Must have to error out. 6241 */ 6242 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6243 return err; 6244 } 6245 /* Have problem loading the very first info. Ignore the rest. */ 6246 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6247 prog->name); 6248 } 6249 return 0; 6250 } 6251 6252 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6253 { 6254 size_t insn_idx = *(const size_t *)key; 6255 const struct reloc_desc *relo = elem; 6256 6257 if (insn_idx == relo->insn_idx) 6258 return 0; 6259 return insn_idx < relo->insn_idx ? -1 : 1; 6260 } 6261 6262 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6263 { 6264 if (!prog->nr_reloc) 6265 return NULL; 6266 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6267 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6268 } 6269 6270 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6271 { 6272 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6273 struct reloc_desc *relos; 6274 int i; 6275 6276 if (main_prog == subprog) 6277 return 0; 6278 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6279 /* if new count is zero, reallocarray can return a valid NULL result; 6280 * in this case the previous pointer will be freed, so we *have to* 6281 * reassign old pointer to the new value (even if it's NULL) 6282 */ 6283 if (!relos && new_cnt) 6284 return -ENOMEM; 6285 if (subprog->nr_reloc) 6286 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6287 sizeof(*relos) * subprog->nr_reloc); 6288 6289 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6290 relos[i].insn_idx += subprog->sub_insn_off; 6291 /* After insn_idx adjustment the 'relos' array is still sorted 6292 * by insn_idx and doesn't break bsearch. 6293 */ 6294 main_prog->reloc_desc = relos; 6295 main_prog->nr_reloc = new_cnt; 6296 return 0; 6297 } 6298 6299 static int 6300 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6301 struct bpf_program *subprog) 6302 { 6303 struct bpf_insn *insns; 6304 size_t new_cnt; 6305 int err; 6306 6307 subprog->sub_insn_off = main_prog->insns_cnt; 6308 6309 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6310 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6311 if (!insns) { 6312 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6313 return -ENOMEM; 6314 } 6315 main_prog->insns = insns; 6316 main_prog->insns_cnt = new_cnt; 6317 6318 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6319 subprog->insns_cnt * sizeof(*insns)); 6320 6321 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6322 main_prog->name, subprog->insns_cnt, subprog->name); 6323 6324 /* The subprog insns are now appended. Append its relos too. */ 6325 err = append_subprog_relos(main_prog, subprog); 6326 if (err) 6327 return err; 6328 return 0; 6329 } 6330 6331 static int 6332 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6333 struct bpf_program *prog) 6334 { 6335 size_t sub_insn_idx, insn_idx; 6336 struct bpf_program *subprog; 6337 struct reloc_desc *relo; 6338 struct bpf_insn *insn; 6339 int err; 6340 6341 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6342 if (err) 6343 return err; 6344 6345 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6346 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6347 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6348 continue; 6349 6350 relo = find_prog_insn_relo(prog, insn_idx); 6351 if (relo && relo->type == RELO_EXTERN_CALL) 6352 /* kfunc relocations will be handled later 6353 * in bpf_object__relocate_data() 6354 */ 6355 continue; 6356 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6357 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6358 prog->name, insn_idx, relo->type); 6359 return -LIBBPF_ERRNO__RELOC; 6360 } 6361 if (relo) { 6362 /* sub-program instruction index is a combination of 6363 * an offset of a symbol pointed to by relocation and 6364 * call instruction's imm field; for global functions, 6365 * call always has imm = -1, but for static functions 6366 * relocation is against STT_SECTION and insn->imm 6367 * points to a start of a static function 6368 * 6369 * for subprog addr relocation, the relo->sym_off + insn->imm is 6370 * the byte offset in the corresponding section. 6371 */ 6372 if (relo->type == RELO_CALL) 6373 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6374 else 6375 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6376 } else if (insn_is_pseudo_func(insn)) { 6377 /* 6378 * RELO_SUBPROG_ADDR relo is always emitted even if both 6379 * functions are in the same section, so it shouldn't reach here. 6380 */ 6381 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6382 prog->name, insn_idx); 6383 return -LIBBPF_ERRNO__RELOC; 6384 } else { 6385 /* if subprogram call is to a static function within 6386 * the same ELF section, there won't be any relocation 6387 * emitted, but it also means there is no additional 6388 * offset necessary, insns->imm is relative to 6389 * instruction's original position within the section 6390 */ 6391 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6392 } 6393 6394 /* we enforce that sub-programs should be in .text section */ 6395 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6396 if (!subprog) { 6397 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6398 prog->name); 6399 return -LIBBPF_ERRNO__RELOC; 6400 } 6401 6402 /* if it's the first call instruction calling into this 6403 * subprogram (meaning this subprog hasn't been processed 6404 * yet) within the context of current main program: 6405 * - append it at the end of main program's instructions blog; 6406 * - process is recursively, while current program is put on hold; 6407 * - if that subprogram calls some other not yet processes 6408 * subprogram, same thing will happen recursively until 6409 * there are no more unprocesses subprograms left to append 6410 * and relocate. 6411 */ 6412 if (subprog->sub_insn_off == 0) { 6413 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6414 if (err) 6415 return err; 6416 err = bpf_object__reloc_code(obj, main_prog, subprog); 6417 if (err) 6418 return err; 6419 } 6420 6421 /* main_prog->insns memory could have been re-allocated, so 6422 * calculate pointer again 6423 */ 6424 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6425 /* calculate correct instruction position within current main 6426 * prog; each main prog can have a different set of 6427 * subprograms appended (potentially in different order as 6428 * well), so position of any subprog can be different for 6429 * different main programs 6430 */ 6431 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6432 6433 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6434 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6435 } 6436 6437 return 0; 6438 } 6439 6440 /* 6441 * Relocate sub-program calls. 6442 * 6443 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6444 * main prog) is processed separately. For each subprog (non-entry functions, 6445 * that can be called from either entry progs or other subprogs) gets their 6446 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6447 * hasn't been yet appended and relocated within current main prog. Once its 6448 * relocated, sub_insn_off will point at the position within current main prog 6449 * where given subprog was appended. This will further be used to relocate all 6450 * the call instructions jumping into this subprog. 6451 * 6452 * We start with main program and process all call instructions. If the call 6453 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6454 * is zero), subprog instructions are appended at the end of main program's 6455 * instruction array. Then main program is "put on hold" while we recursively 6456 * process newly appended subprogram. If that subprogram calls into another 6457 * subprogram that hasn't been appended, new subprogram is appended again to 6458 * the *main* prog's instructions (subprog's instructions are always left 6459 * untouched, as they need to be in unmodified state for subsequent main progs 6460 * and subprog instructions are always sent only as part of a main prog) and 6461 * the process continues recursively. Once all the subprogs called from a main 6462 * prog or any of its subprogs are appended (and relocated), all their 6463 * positions within finalized instructions array are known, so it's easy to 6464 * rewrite call instructions with correct relative offsets, corresponding to 6465 * desired target subprog. 6466 * 6467 * Its important to realize that some subprogs might not be called from some 6468 * main prog and any of its called/used subprogs. Those will keep their 6469 * subprog->sub_insn_off as zero at all times and won't be appended to current 6470 * main prog and won't be relocated within the context of current main prog. 6471 * They might still be used from other main progs later. 6472 * 6473 * Visually this process can be shown as below. Suppose we have two main 6474 * programs mainA and mainB and BPF object contains three subprogs: subA, 6475 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6476 * subC both call subB: 6477 * 6478 * +--------+ +-------+ 6479 * | v v | 6480 * +--+---+ +--+-+-+ +---+--+ 6481 * | subA | | subB | | subC | 6482 * +--+---+ +------+ +---+--+ 6483 * ^ ^ 6484 * | | 6485 * +---+-------+ +------+----+ 6486 * | mainA | | mainB | 6487 * +-----------+ +-----------+ 6488 * 6489 * We'll start relocating mainA, will find subA, append it and start 6490 * processing sub A recursively: 6491 * 6492 * +-----------+------+ 6493 * | mainA | subA | 6494 * +-----------+------+ 6495 * 6496 * At this point we notice that subB is used from subA, so we append it and 6497 * relocate (there are no further subcalls from subB): 6498 * 6499 * +-----------+------+------+ 6500 * | mainA | subA | subB | 6501 * +-----------+------+------+ 6502 * 6503 * At this point, we relocate subA calls, then go one level up and finish with 6504 * relocatin mainA calls. mainA is done. 6505 * 6506 * For mainB process is similar but results in different order. We start with 6507 * mainB and skip subA and subB, as mainB never calls them (at least 6508 * directly), but we see subC is needed, so we append and start processing it: 6509 * 6510 * +-----------+------+ 6511 * | mainB | subC | 6512 * +-----------+------+ 6513 * Now we see subC needs subB, so we go back to it, append and relocate it: 6514 * 6515 * +-----------+------+------+ 6516 * | mainB | subC | subB | 6517 * +-----------+------+------+ 6518 * 6519 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6520 */ 6521 static int 6522 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6523 { 6524 struct bpf_program *subprog; 6525 int i, err; 6526 6527 /* mark all subprogs as not relocated (yet) within the context of 6528 * current main program 6529 */ 6530 for (i = 0; i < obj->nr_programs; i++) { 6531 subprog = &obj->programs[i]; 6532 if (!prog_is_subprog(obj, subprog)) 6533 continue; 6534 6535 subprog->sub_insn_off = 0; 6536 } 6537 6538 err = bpf_object__reloc_code(obj, prog, prog); 6539 if (err) 6540 return err; 6541 6542 return 0; 6543 } 6544 6545 static void 6546 bpf_object__free_relocs(struct bpf_object *obj) 6547 { 6548 struct bpf_program *prog; 6549 int i; 6550 6551 /* free up relocation descriptors */ 6552 for (i = 0; i < obj->nr_programs; i++) { 6553 prog = &obj->programs[i]; 6554 zfree(&prog->reloc_desc); 6555 prog->nr_reloc = 0; 6556 } 6557 } 6558 6559 static int cmp_relocs(const void *_a, const void *_b) 6560 { 6561 const struct reloc_desc *a = _a; 6562 const struct reloc_desc *b = _b; 6563 6564 if (a->insn_idx != b->insn_idx) 6565 return a->insn_idx < b->insn_idx ? -1 : 1; 6566 6567 /* no two relocations should have the same insn_idx, but ... */ 6568 if (a->type != b->type) 6569 return a->type < b->type ? -1 : 1; 6570 6571 return 0; 6572 } 6573 6574 static void bpf_object__sort_relos(struct bpf_object *obj) 6575 { 6576 int i; 6577 6578 for (i = 0; i < obj->nr_programs; i++) { 6579 struct bpf_program *p = &obj->programs[i]; 6580 6581 if (!p->nr_reloc) 6582 continue; 6583 6584 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6585 } 6586 } 6587 6588 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog) 6589 { 6590 const char *str = "exception_callback:"; 6591 size_t pfx_len = strlen(str); 6592 int i, j, n; 6593 6594 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG)) 6595 return 0; 6596 6597 n = btf__type_cnt(obj->btf); 6598 for (i = 1; i < n; i++) { 6599 const char *name; 6600 struct btf_type *t; 6601 6602 t = btf_type_by_id(obj->btf, i); 6603 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 6604 continue; 6605 6606 name = btf__str_by_offset(obj->btf, t->name_off); 6607 if (strncmp(name, str, pfx_len) != 0) 6608 continue; 6609 6610 t = btf_type_by_id(obj->btf, t->type); 6611 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 6612 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 6613 prog->name); 6614 return -EINVAL; 6615 } 6616 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0) 6617 continue; 6618 /* Multiple callbacks are specified for the same prog, 6619 * the verifier will eventually return an error for this 6620 * case, hence simply skip appending a subprog. 6621 */ 6622 if (prog->exception_cb_idx >= 0) { 6623 prog->exception_cb_idx = -1; 6624 break; 6625 } 6626 6627 name += pfx_len; 6628 if (str_is_empty(name)) { 6629 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 6630 prog->name); 6631 return -EINVAL; 6632 } 6633 6634 for (j = 0; j < obj->nr_programs; j++) { 6635 struct bpf_program *subprog = &obj->programs[j]; 6636 6637 if (!prog_is_subprog(obj, subprog)) 6638 continue; 6639 if (strcmp(name, subprog->name) != 0) 6640 continue; 6641 /* Enforce non-hidden, as from verifier point of 6642 * view it expects global functions, whereas the 6643 * mark_btf_static fixes up linkage as static. 6644 */ 6645 if (!subprog->sym_global || subprog->mark_btf_static) { 6646 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 6647 prog->name, subprog->name); 6648 return -EINVAL; 6649 } 6650 /* Let's see if we already saw a static exception callback with the same name */ 6651 if (prog->exception_cb_idx >= 0) { 6652 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 6653 prog->name, subprog->name); 6654 return -EINVAL; 6655 } 6656 prog->exception_cb_idx = j; 6657 break; 6658 } 6659 6660 if (prog->exception_cb_idx >= 0) 6661 continue; 6662 6663 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 6664 return -ENOENT; 6665 } 6666 6667 return 0; 6668 } 6669 6670 static struct { 6671 enum bpf_prog_type prog_type; 6672 const char *ctx_name; 6673 } global_ctx_map[] = { 6674 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" }, 6675 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" }, 6676 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" }, 6677 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" }, 6678 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" }, 6679 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" }, 6680 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" }, 6681 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" }, 6682 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" }, 6683 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" }, 6684 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" }, 6685 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" }, 6686 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" }, 6687 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" }, 6688 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" }, 6689 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" }, 6690 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" }, 6691 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" }, 6692 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" }, 6693 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" }, 6694 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" }, 6695 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" }, 6696 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" }, 6697 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" }, 6698 { BPF_PROG_TYPE_XDP, "xdp_md" }, 6699 /* all other program types don't have "named" context structs */ 6700 }; 6701 6702 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog, 6703 const char *subprog_name, int arg_idx, 6704 int arg_type_id, const char *ctx_name) 6705 { 6706 const struct btf_type *t; 6707 const char *tname; 6708 6709 /* check if existing parameter already matches verifier expectations */ 6710 t = skip_mods_and_typedefs(btf, arg_type_id, NULL); 6711 if (!btf_is_ptr(t)) 6712 goto out_warn; 6713 6714 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe 6715 * and perf_event programs, so check this case early on and forget 6716 * about it for subsequent checks 6717 */ 6718 while (btf_is_mod(t)) 6719 t = btf__type_by_id(btf, t->type); 6720 if (btf_is_typedef(t) && 6721 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) { 6722 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6723 if (strcmp(tname, "bpf_user_pt_regs_t") == 0) 6724 return false; /* canonical type for kprobe/perf_event */ 6725 } 6726 6727 /* now we can ignore typedefs moving forward */ 6728 t = skip_mods_and_typedefs(btf, t->type, NULL); 6729 6730 /* if it's `void *`, definitely fix up BTF info */ 6731 if (btf_is_void(t)) 6732 return true; 6733 6734 /* if it's already proper canonical type, no need to fix up */ 6735 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6736 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0) 6737 return false; 6738 6739 /* special cases */ 6740 switch (prog->type) { 6741 case BPF_PROG_TYPE_KPROBE: 6742 case BPF_PROG_TYPE_PERF_EVENT: 6743 /* `struct pt_regs *` is expected, but we need to fix up */ 6744 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6745 return true; 6746 break; 6747 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6748 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6749 /* allow u64* as ctx */ 6750 if (btf_is_int(t) && t->size == 8) 6751 return true; 6752 break; 6753 default: 6754 break; 6755 } 6756 6757 out_warn: 6758 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n", 6759 prog->name, subprog_name, arg_idx, ctx_name); 6760 return false; 6761 } 6762 6763 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog) 6764 { 6765 int fn_id, fn_proto_id, ret_type_id, orig_proto_id; 6766 int i, err, arg_cnt, fn_name_off, linkage; 6767 struct btf_type *fn_t, *fn_proto_t, *t; 6768 struct btf_param *p; 6769 6770 /* caller already validated FUNC -> FUNC_PROTO validity */ 6771 fn_t = btf_type_by_id(btf, orig_fn_id); 6772 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6773 6774 /* Note that each btf__add_xxx() operation invalidates 6775 * all btf_type and string pointers, so we need to be 6776 * very careful when cloning BTF types. BTF type 6777 * pointers have to be always refetched. And to avoid 6778 * problems with invalidated string pointers, we 6779 * add empty strings initially, then just fix up 6780 * name_off offsets in place. Offsets are stable for 6781 * existing strings, so that works out. 6782 */ 6783 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */ 6784 linkage = btf_func_linkage(fn_t); 6785 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */ 6786 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */ 6787 arg_cnt = btf_vlen(fn_proto_t); 6788 6789 /* clone FUNC_PROTO and its params */ 6790 fn_proto_id = btf__add_func_proto(btf, ret_type_id); 6791 if (fn_proto_id < 0) 6792 return -EINVAL; 6793 6794 for (i = 0; i < arg_cnt; i++) { 6795 int name_off; 6796 6797 /* copy original parameter data */ 6798 t = btf_type_by_id(btf, orig_proto_id); 6799 p = &btf_params(t)[i]; 6800 name_off = p->name_off; 6801 6802 err = btf__add_func_param(btf, "", p->type); 6803 if (err) 6804 return err; 6805 6806 fn_proto_t = btf_type_by_id(btf, fn_proto_id); 6807 p = &btf_params(fn_proto_t)[i]; 6808 p->name_off = name_off; /* use remembered str offset */ 6809 } 6810 6811 /* clone FUNC now, btf__add_func() enforces non-empty name, so use 6812 * entry program's name as a placeholder, which we replace immediately 6813 * with original name_off 6814 */ 6815 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id); 6816 if (fn_id < 0) 6817 return -EINVAL; 6818 6819 fn_t = btf_type_by_id(btf, fn_id); 6820 fn_t->name_off = fn_name_off; /* reuse original string */ 6821 6822 return fn_id; 6823 } 6824 6825 static int probe_kern_arg_ctx_tag(void) 6826 { 6827 /* To minimize merge conflicts with BPF token series that refactors 6828 * feature detection code a lot, we don't integrate 6829 * probe_kern_arg_ctx_tag() into kernel_supports() feature-detection 6830 * framework yet, doing our own caching internally. 6831 * This will be cleaned up a bit later when bpf/bpf-next trees settle. 6832 */ 6833 static int cached_result = -1; 6834 static const char strs[] = "\0a\0b\0arg:ctx\0"; 6835 const __u32 types[] = { 6836 /* [1] INT */ 6837 BTF_TYPE_INT_ENC(1 /* "a" */, BTF_INT_SIGNED, 0, 32, 4), 6838 /* [2] PTR -> VOID */ 6839 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 0), 6840 /* [3] FUNC_PROTO `int(void *a)` */ 6841 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 1), 6842 BTF_PARAM_ENC(1 /* "a" */, 2), 6843 /* [4] FUNC 'a' -> FUNC_PROTO (main prog) */ 6844 BTF_TYPE_ENC(1 /* "a" */, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 3), 6845 /* [5] FUNC_PROTO `int(void *b __arg_ctx)` */ 6846 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 1), 6847 BTF_PARAM_ENC(3 /* "b" */, 2), 6848 /* [6] FUNC 'b' -> FUNC_PROTO (subprog) */ 6849 BTF_TYPE_ENC(3 /* "b" */, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 5), 6850 /* [7] DECL_TAG 'arg:ctx' -> func 'b' arg 'b' */ 6851 BTF_TYPE_DECL_TAG_ENC(5 /* "arg:ctx" */, 6, 0), 6852 }; 6853 const struct bpf_insn insns[] = { 6854 /* main prog */ 6855 BPF_CALL_REL(+1), 6856 BPF_EXIT_INSN(), 6857 /* global subprog */ 6858 BPF_EMIT_CALL(BPF_FUNC_get_func_ip), /* needs PTR_TO_CTX */ 6859 BPF_EXIT_INSN(), 6860 }; 6861 const struct bpf_func_info_min func_infos[] = { 6862 { 0, 4 }, /* main prog -> FUNC 'a' */ 6863 { 2, 6 }, /* subprog -> FUNC 'b' */ 6864 }; 6865 LIBBPF_OPTS(bpf_prog_load_opts, opts); 6866 int prog_fd, btf_fd, insn_cnt = ARRAY_SIZE(insns); 6867 6868 if (cached_result >= 0) 6869 return cached_result; 6870 6871 btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 6872 if (btf_fd < 0) 6873 return 0; 6874 6875 opts.prog_btf_fd = btf_fd; 6876 opts.func_info = &func_infos; 6877 opts.func_info_cnt = ARRAY_SIZE(func_infos); 6878 opts.func_info_rec_size = sizeof(func_infos[0]); 6879 6880 prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, "det_arg_ctx", 6881 "GPL", insns, insn_cnt, &opts); 6882 close(btf_fd); 6883 6884 cached_result = probe_fd(prog_fd); 6885 return cached_result; 6886 } 6887 6888 /* Check if main program or global subprog's function prototype has `arg:ctx` 6889 * argument tags, and, if necessary, substitute correct type to match what BPF 6890 * verifier would expect, taking into account specific program type. This 6891 * allows to support __arg_ctx tag transparently on old kernels that don't yet 6892 * have a native support for it in the verifier, making user's life much 6893 * easier. 6894 */ 6895 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog) 6896 { 6897 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name; 6898 struct bpf_func_info_min *func_rec; 6899 struct btf_type *fn_t, *fn_proto_t; 6900 struct btf *btf = obj->btf; 6901 const struct btf_type *t; 6902 struct btf_param *p; 6903 int ptr_id = 0, struct_id, tag_id, orig_fn_id; 6904 int i, n, arg_idx, arg_cnt, err, rec_idx; 6905 int *orig_ids; 6906 6907 /* no .BTF.ext, no problem */ 6908 if (!obj->btf_ext || !prog->func_info) 6909 return 0; 6910 6911 /* don't do any fix ups if kernel natively supports __arg_ctx */ 6912 if (probe_kern_arg_ctx_tag() > 0) 6913 return 0; 6914 6915 /* some BPF program types just don't have named context structs, so 6916 * this fallback mechanism doesn't work for them 6917 */ 6918 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) { 6919 if (global_ctx_map[i].prog_type != prog->type) 6920 continue; 6921 ctx_name = global_ctx_map[i].ctx_name; 6922 break; 6923 } 6924 if (!ctx_name) 6925 return 0; 6926 6927 /* remember original func BTF IDs to detect if we already cloned them */ 6928 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids)); 6929 if (!orig_ids) 6930 return -ENOMEM; 6931 for (i = 0; i < prog->func_info_cnt; i++) { 6932 func_rec = prog->func_info + prog->func_info_rec_size * i; 6933 orig_ids[i] = func_rec->type_id; 6934 } 6935 6936 /* go through each DECL_TAG with "arg:ctx" and see if it points to one 6937 * of our subprogs; if yes and subprog is global and needs adjustment, 6938 * clone and adjust FUNC -> FUNC_PROTO combo 6939 */ 6940 for (i = 1, n = btf__type_cnt(btf); i < n; i++) { 6941 /* only DECL_TAG with "arg:ctx" value are interesting */ 6942 t = btf__type_by_id(btf, i); 6943 if (!btf_is_decl_tag(t)) 6944 continue; 6945 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0) 6946 continue; 6947 6948 /* only global funcs need adjustment, if at all */ 6949 orig_fn_id = t->type; 6950 fn_t = btf_type_by_id(btf, orig_fn_id); 6951 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL) 6952 continue; 6953 6954 /* sanity check FUNC -> FUNC_PROTO chain, just in case */ 6955 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6956 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t)) 6957 continue; 6958 6959 /* find corresponding func_info record */ 6960 func_rec = NULL; 6961 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) { 6962 if (orig_ids[rec_idx] == t->type) { 6963 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx; 6964 break; 6965 } 6966 } 6967 /* current main program doesn't call into this subprog */ 6968 if (!func_rec) 6969 continue; 6970 6971 /* some more sanity checking of DECL_TAG */ 6972 arg_cnt = btf_vlen(fn_proto_t); 6973 arg_idx = btf_decl_tag(t)->component_idx; 6974 if (arg_idx < 0 || arg_idx >= arg_cnt) 6975 continue; 6976 6977 /* check if we should fix up argument type */ 6978 p = &btf_params(fn_proto_t)[arg_idx]; 6979 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>"; 6980 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name)) 6981 continue; 6982 6983 /* clone fn/fn_proto, unless we already did it for another arg */ 6984 if (func_rec->type_id == orig_fn_id) { 6985 int fn_id; 6986 6987 fn_id = clone_func_btf_info(btf, orig_fn_id, prog); 6988 if (fn_id < 0) { 6989 err = fn_id; 6990 goto err_out; 6991 } 6992 6993 /* point func_info record to a cloned FUNC type */ 6994 func_rec->type_id = fn_id; 6995 } 6996 6997 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument; 6998 * we do it just once per main BPF program, as all global 6999 * funcs share the same program type, so need only PTR -> 7000 * STRUCT type chain 7001 */ 7002 if (ptr_id == 0) { 7003 struct_id = btf__add_struct(btf, ctx_name, 0); 7004 ptr_id = btf__add_ptr(btf, struct_id); 7005 if (ptr_id < 0 || struct_id < 0) { 7006 err = -EINVAL; 7007 goto err_out; 7008 } 7009 } 7010 7011 /* for completeness, clone DECL_TAG and point it to cloned param */ 7012 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx); 7013 if (tag_id < 0) { 7014 err = -EINVAL; 7015 goto err_out; 7016 } 7017 7018 /* all the BTF manipulations invalidated pointers, refetch them */ 7019 fn_t = btf_type_by_id(btf, func_rec->type_id); 7020 fn_proto_t = btf_type_by_id(btf, fn_t->type); 7021 7022 /* fix up type ID pointed to by param */ 7023 p = &btf_params(fn_proto_t)[arg_idx]; 7024 p->type = ptr_id; 7025 } 7026 7027 free(orig_ids); 7028 return 0; 7029 err_out: 7030 free(orig_ids); 7031 return err; 7032 } 7033 7034 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 7035 { 7036 struct bpf_program *prog; 7037 size_t i, j; 7038 int err; 7039 7040 if (obj->btf_ext) { 7041 err = bpf_object__relocate_core(obj, targ_btf_path); 7042 if (err) { 7043 pr_warn("failed to perform CO-RE relocations: %d\n", 7044 err); 7045 return err; 7046 } 7047 bpf_object__sort_relos(obj); 7048 } 7049 7050 /* Before relocating calls pre-process relocations and mark 7051 * few ld_imm64 instructions that points to subprogs. 7052 * Otherwise bpf_object__reloc_code() later would have to consider 7053 * all ld_imm64 insns as relocation candidates. That would 7054 * reduce relocation speed, since amount of find_prog_insn_relo() 7055 * would increase and most of them will fail to find a relo. 7056 */ 7057 for (i = 0; i < obj->nr_programs; i++) { 7058 prog = &obj->programs[i]; 7059 for (j = 0; j < prog->nr_reloc; j++) { 7060 struct reloc_desc *relo = &prog->reloc_desc[j]; 7061 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 7062 7063 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 7064 if (relo->type == RELO_SUBPROG_ADDR) 7065 insn[0].src_reg = BPF_PSEUDO_FUNC; 7066 } 7067 } 7068 7069 /* relocate subprogram calls and append used subprograms to main 7070 * programs; each copy of subprogram code needs to be relocated 7071 * differently for each main program, because its code location might 7072 * have changed. 7073 * Append subprog relos to main programs to allow data relos to be 7074 * processed after text is completely relocated. 7075 */ 7076 for (i = 0; i < obj->nr_programs; i++) { 7077 prog = &obj->programs[i]; 7078 /* sub-program's sub-calls are relocated within the context of 7079 * its main program only 7080 */ 7081 if (prog_is_subprog(obj, prog)) 7082 continue; 7083 if (!prog->autoload) 7084 continue; 7085 7086 err = bpf_object__relocate_calls(obj, prog); 7087 if (err) { 7088 pr_warn("prog '%s': failed to relocate calls: %d\n", 7089 prog->name, err); 7090 return err; 7091 } 7092 7093 err = bpf_prog_assign_exc_cb(obj, prog); 7094 if (err) 7095 return err; 7096 /* Now, also append exception callback if it has not been done already. */ 7097 if (prog->exception_cb_idx >= 0) { 7098 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 7099 7100 /* Calling exception callback directly is disallowed, which the 7101 * verifier will reject later. In case it was processed already, 7102 * we can skip this step, otherwise for all other valid cases we 7103 * have to append exception callback now. 7104 */ 7105 if (subprog->sub_insn_off == 0) { 7106 err = bpf_object__append_subprog_code(obj, prog, subprog); 7107 if (err) 7108 return err; 7109 err = bpf_object__reloc_code(obj, prog, subprog); 7110 if (err) 7111 return err; 7112 } 7113 } 7114 } 7115 for (i = 0; i < obj->nr_programs; i++) { 7116 prog = &obj->programs[i]; 7117 if (prog_is_subprog(obj, prog)) 7118 continue; 7119 if (!prog->autoload) 7120 continue; 7121 7122 /* Process data relos for main programs */ 7123 err = bpf_object__relocate_data(obj, prog); 7124 if (err) { 7125 pr_warn("prog '%s': failed to relocate data references: %d\n", 7126 prog->name, err); 7127 return err; 7128 } 7129 7130 /* Fix up .BTF.ext information, if necessary */ 7131 err = bpf_program_fixup_func_info(obj, prog); 7132 if (err) { 7133 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %d\n", 7134 prog->name, err); 7135 return err; 7136 } 7137 } 7138 7139 return 0; 7140 } 7141 7142 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7143 Elf64_Shdr *shdr, Elf_Data *data); 7144 7145 static int bpf_object__collect_map_relos(struct bpf_object *obj, 7146 Elf64_Shdr *shdr, Elf_Data *data) 7147 { 7148 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 7149 int i, j, nrels, new_sz; 7150 const struct btf_var_secinfo *vi = NULL; 7151 const struct btf_type *sec, *var, *def; 7152 struct bpf_map *map = NULL, *targ_map = NULL; 7153 struct bpf_program *targ_prog = NULL; 7154 bool is_prog_array, is_map_in_map; 7155 const struct btf_member *member; 7156 const char *name, *mname, *type; 7157 unsigned int moff; 7158 Elf64_Sym *sym; 7159 Elf64_Rel *rel; 7160 void *tmp; 7161 7162 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 7163 return -EINVAL; 7164 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 7165 if (!sec) 7166 return -EINVAL; 7167 7168 nrels = shdr->sh_size / shdr->sh_entsize; 7169 for (i = 0; i < nrels; i++) { 7170 rel = elf_rel_by_idx(data, i); 7171 if (!rel) { 7172 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 7173 return -LIBBPF_ERRNO__FORMAT; 7174 } 7175 7176 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 7177 if (!sym) { 7178 pr_warn(".maps relo #%d: symbol %zx not found\n", 7179 i, (size_t)ELF64_R_SYM(rel->r_info)); 7180 return -LIBBPF_ERRNO__FORMAT; 7181 } 7182 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 7183 7184 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 7185 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 7186 (size_t)rel->r_offset, sym->st_name, name); 7187 7188 for (j = 0; j < obj->nr_maps; j++) { 7189 map = &obj->maps[j]; 7190 if (map->sec_idx != obj->efile.btf_maps_shndx) 7191 continue; 7192 7193 vi = btf_var_secinfos(sec) + map->btf_var_idx; 7194 if (vi->offset <= rel->r_offset && 7195 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 7196 break; 7197 } 7198 if (j == obj->nr_maps) { 7199 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 7200 i, name, (size_t)rel->r_offset); 7201 return -EINVAL; 7202 } 7203 7204 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 7205 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 7206 type = is_map_in_map ? "map" : "prog"; 7207 if (is_map_in_map) { 7208 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 7209 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 7210 i, name); 7211 return -LIBBPF_ERRNO__RELOC; 7212 } 7213 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 7214 map->def.key_size != sizeof(int)) { 7215 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 7216 i, map->name, sizeof(int)); 7217 return -EINVAL; 7218 } 7219 targ_map = bpf_object__find_map_by_name(obj, name); 7220 if (!targ_map) { 7221 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 7222 i, name); 7223 return -ESRCH; 7224 } 7225 } else if (is_prog_array) { 7226 targ_prog = bpf_object__find_program_by_name(obj, name); 7227 if (!targ_prog) { 7228 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 7229 i, name); 7230 return -ESRCH; 7231 } 7232 if (targ_prog->sec_idx != sym->st_shndx || 7233 targ_prog->sec_insn_off * 8 != sym->st_value || 7234 prog_is_subprog(obj, targ_prog)) { 7235 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 7236 i, name); 7237 return -LIBBPF_ERRNO__RELOC; 7238 } 7239 } else { 7240 return -EINVAL; 7241 } 7242 7243 var = btf__type_by_id(obj->btf, vi->type); 7244 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 7245 if (btf_vlen(def) == 0) 7246 return -EINVAL; 7247 member = btf_members(def) + btf_vlen(def) - 1; 7248 mname = btf__name_by_offset(obj->btf, member->name_off); 7249 if (strcmp(mname, "values")) 7250 return -EINVAL; 7251 7252 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 7253 if (rel->r_offset - vi->offset < moff) 7254 return -EINVAL; 7255 7256 moff = rel->r_offset - vi->offset - moff; 7257 /* here we use BPF pointer size, which is always 64 bit, as we 7258 * are parsing ELF that was built for BPF target 7259 */ 7260 if (moff % bpf_ptr_sz) 7261 return -EINVAL; 7262 moff /= bpf_ptr_sz; 7263 if (moff >= map->init_slots_sz) { 7264 new_sz = moff + 1; 7265 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 7266 if (!tmp) 7267 return -ENOMEM; 7268 map->init_slots = tmp; 7269 memset(map->init_slots + map->init_slots_sz, 0, 7270 (new_sz - map->init_slots_sz) * host_ptr_sz); 7271 map->init_slots_sz = new_sz; 7272 } 7273 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 7274 7275 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 7276 i, map->name, moff, type, name); 7277 } 7278 7279 return 0; 7280 } 7281 7282 static int bpf_object__collect_relos(struct bpf_object *obj) 7283 { 7284 int i, err; 7285 7286 for (i = 0; i < obj->efile.sec_cnt; i++) { 7287 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 7288 Elf64_Shdr *shdr; 7289 Elf_Data *data; 7290 int idx; 7291 7292 if (sec_desc->sec_type != SEC_RELO) 7293 continue; 7294 7295 shdr = sec_desc->shdr; 7296 data = sec_desc->data; 7297 idx = shdr->sh_info; 7298 7299 if (shdr->sh_type != SHT_REL) { 7300 pr_warn("internal error at %d\n", __LINE__); 7301 return -LIBBPF_ERRNO__INTERNAL; 7302 } 7303 7304 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx) 7305 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7306 else if (idx == obj->efile.btf_maps_shndx) 7307 err = bpf_object__collect_map_relos(obj, shdr, data); 7308 else 7309 err = bpf_object__collect_prog_relos(obj, shdr, data); 7310 if (err) 7311 return err; 7312 } 7313 7314 bpf_object__sort_relos(obj); 7315 return 0; 7316 } 7317 7318 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7319 { 7320 if (BPF_CLASS(insn->code) == BPF_JMP && 7321 BPF_OP(insn->code) == BPF_CALL && 7322 BPF_SRC(insn->code) == BPF_K && 7323 insn->src_reg == 0 && 7324 insn->dst_reg == 0) { 7325 *func_id = insn->imm; 7326 return true; 7327 } 7328 return false; 7329 } 7330 7331 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7332 { 7333 struct bpf_insn *insn = prog->insns; 7334 enum bpf_func_id func_id; 7335 int i; 7336 7337 if (obj->gen_loader) 7338 return 0; 7339 7340 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7341 if (!insn_is_helper_call(insn, &func_id)) 7342 continue; 7343 7344 /* on kernels that don't yet support 7345 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7346 * to bpf_probe_read() which works well for old kernels 7347 */ 7348 switch (func_id) { 7349 case BPF_FUNC_probe_read_kernel: 7350 case BPF_FUNC_probe_read_user: 7351 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7352 insn->imm = BPF_FUNC_probe_read; 7353 break; 7354 case BPF_FUNC_probe_read_kernel_str: 7355 case BPF_FUNC_probe_read_user_str: 7356 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7357 insn->imm = BPF_FUNC_probe_read_str; 7358 break; 7359 default: 7360 break; 7361 } 7362 } 7363 return 0; 7364 } 7365 7366 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 7367 int *btf_obj_fd, int *btf_type_id); 7368 7369 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 7370 static int libbpf_prepare_prog_load(struct bpf_program *prog, 7371 struct bpf_prog_load_opts *opts, long cookie) 7372 { 7373 enum sec_def_flags def = cookie; 7374 7375 /* old kernels might not support specifying expected_attach_type */ 7376 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 7377 opts->expected_attach_type = 0; 7378 7379 if (def & SEC_SLEEPABLE) 7380 opts->prog_flags |= BPF_F_SLEEPABLE; 7381 7382 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 7383 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 7384 7385 /* special check for usdt to use uprobe_multi link */ 7386 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) 7387 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7388 7389 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 7390 int btf_obj_fd = 0, btf_type_id = 0, err; 7391 const char *attach_name; 7392 7393 attach_name = strchr(prog->sec_name, '/'); 7394 if (!attach_name) { 7395 /* if BPF program is annotated with just SEC("fentry") 7396 * (or similar) without declaratively specifying 7397 * target, then it is expected that target will be 7398 * specified with bpf_program__set_attach_target() at 7399 * runtime before BPF object load step. If not, then 7400 * there is nothing to load into the kernel as BPF 7401 * verifier won't be able to validate BPF program 7402 * correctness anyways. 7403 */ 7404 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 7405 prog->name); 7406 return -EINVAL; 7407 } 7408 attach_name++; /* skip over / */ 7409 7410 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 7411 if (err) 7412 return err; 7413 7414 /* cache resolved BTF FD and BTF type ID in the prog */ 7415 prog->attach_btf_obj_fd = btf_obj_fd; 7416 prog->attach_btf_id = btf_type_id; 7417 7418 /* but by now libbpf common logic is not utilizing 7419 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 7420 * this callback is called after opts were populated by 7421 * libbpf, so this callback has to update opts explicitly here 7422 */ 7423 opts->attach_btf_obj_fd = btf_obj_fd; 7424 opts->attach_btf_id = btf_type_id; 7425 } 7426 return 0; 7427 } 7428 7429 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7430 7431 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7432 struct bpf_insn *insns, int insns_cnt, 7433 const char *license, __u32 kern_version, int *prog_fd) 7434 { 7435 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7436 const char *prog_name = NULL; 7437 char *cp, errmsg[STRERR_BUFSIZE]; 7438 size_t log_buf_size = 0; 7439 char *log_buf = NULL, *tmp; 7440 int btf_fd, ret, err; 7441 bool own_log_buf = true; 7442 __u32 log_level = prog->log_level; 7443 7444 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 7445 /* 7446 * The program type must be set. Most likely we couldn't find a proper 7447 * section definition at load time, and thus we didn't infer the type. 7448 */ 7449 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7450 prog->name, prog->sec_name); 7451 return -EINVAL; 7452 } 7453 7454 if (!insns || !insns_cnt) 7455 return -EINVAL; 7456 7457 if (kernel_supports(obj, FEAT_PROG_NAME)) 7458 prog_name = prog->name; 7459 load_attr.attach_prog_fd = prog->attach_prog_fd; 7460 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7461 load_attr.attach_btf_id = prog->attach_btf_id; 7462 load_attr.kern_version = kern_version; 7463 load_attr.prog_ifindex = prog->prog_ifindex; 7464 7465 /* specify func_info/line_info only if kernel supports them */ 7466 btf_fd = btf__fd(obj->btf); 7467 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7468 load_attr.prog_btf_fd = btf_fd; 7469 load_attr.func_info = prog->func_info; 7470 load_attr.func_info_rec_size = prog->func_info_rec_size; 7471 load_attr.func_info_cnt = prog->func_info_cnt; 7472 load_attr.line_info = prog->line_info; 7473 load_attr.line_info_rec_size = prog->line_info_rec_size; 7474 load_attr.line_info_cnt = prog->line_info_cnt; 7475 } 7476 load_attr.log_level = log_level; 7477 load_attr.prog_flags = prog->prog_flags; 7478 load_attr.fd_array = obj->fd_array; 7479 7480 /* adjust load_attr if sec_def provides custom preload callback */ 7481 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7482 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7483 if (err < 0) { 7484 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 7485 prog->name, err); 7486 return err; 7487 } 7488 insns = prog->insns; 7489 insns_cnt = prog->insns_cnt; 7490 } 7491 7492 /* allow prog_prepare_load_fn to change expected_attach_type */ 7493 load_attr.expected_attach_type = prog->expected_attach_type; 7494 7495 if (obj->gen_loader) { 7496 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7497 license, insns, insns_cnt, &load_attr, 7498 prog - obj->programs); 7499 *prog_fd = -1; 7500 return 0; 7501 } 7502 7503 retry_load: 7504 /* if log_level is zero, we don't request logs initially even if 7505 * custom log_buf is specified; if the program load fails, then we'll 7506 * bump log_level to 1 and use either custom log_buf or we'll allocate 7507 * our own and retry the load to get details on what failed 7508 */ 7509 if (log_level) { 7510 if (prog->log_buf) { 7511 log_buf = prog->log_buf; 7512 log_buf_size = prog->log_size; 7513 own_log_buf = false; 7514 } else if (obj->log_buf) { 7515 log_buf = obj->log_buf; 7516 log_buf_size = obj->log_size; 7517 own_log_buf = false; 7518 } else { 7519 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7520 tmp = realloc(log_buf, log_buf_size); 7521 if (!tmp) { 7522 ret = -ENOMEM; 7523 goto out; 7524 } 7525 log_buf = tmp; 7526 log_buf[0] = '\0'; 7527 own_log_buf = true; 7528 } 7529 } 7530 7531 load_attr.log_buf = log_buf; 7532 load_attr.log_size = log_buf_size; 7533 load_attr.log_level = log_level; 7534 7535 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7536 if (ret >= 0) { 7537 if (log_level && own_log_buf) { 7538 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7539 prog->name, log_buf); 7540 } 7541 7542 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7543 struct bpf_map *map; 7544 int i; 7545 7546 for (i = 0; i < obj->nr_maps; i++) { 7547 map = &prog->obj->maps[i]; 7548 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7549 continue; 7550 7551 if (bpf_prog_bind_map(ret, map->fd, NULL)) { 7552 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7553 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7554 prog->name, map->real_name, cp); 7555 /* Don't fail hard if can't bind rodata. */ 7556 } 7557 } 7558 } 7559 7560 *prog_fd = ret; 7561 ret = 0; 7562 goto out; 7563 } 7564 7565 if (log_level == 0) { 7566 log_level = 1; 7567 goto retry_load; 7568 } 7569 /* On ENOSPC, increase log buffer size and retry, unless custom 7570 * log_buf is specified. 7571 * Be careful to not overflow u32, though. Kernel's log buf size limit 7572 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7573 * multiply by 2 unless we are sure we'll fit within 32 bits. 7574 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7575 */ 7576 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7577 goto retry_load; 7578 7579 ret = -errno; 7580 7581 /* post-process verifier log to improve error descriptions */ 7582 fixup_verifier_log(prog, log_buf, log_buf_size); 7583 7584 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7585 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 7586 pr_perm_msg(ret); 7587 7588 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7589 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7590 prog->name, log_buf); 7591 } 7592 7593 out: 7594 if (own_log_buf) 7595 free(log_buf); 7596 return ret; 7597 } 7598 7599 static char *find_prev_line(char *buf, char *cur) 7600 { 7601 char *p; 7602 7603 if (cur == buf) /* end of a log buf */ 7604 return NULL; 7605 7606 p = cur - 1; 7607 while (p - 1 >= buf && *(p - 1) != '\n') 7608 p--; 7609 7610 return p; 7611 } 7612 7613 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7614 char *orig, size_t orig_sz, const char *patch) 7615 { 7616 /* size of the remaining log content to the right from the to-be-replaced part */ 7617 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7618 size_t patch_sz = strlen(patch); 7619 7620 if (patch_sz != orig_sz) { 7621 /* If patch line(s) are longer than original piece of verifier log, 7622 * shift log contents by (patch_sz - orig_sz) bytes to the right 7623 * starting from after to-be-replaced part of the log. 7624 * 7625 * If patch line(s) are shorter than original piece of verifier log, 7626 * shift log contents by (orig_sz - patch_sz) bytes to the left 7627 * starting from after to-be-replaced part of the log 7628 * 7629 * We need to be careful about not overflowing available 7630 * buf_sz capacity. If that's the case, we'll truncate the end 7631 * of the original log, as necessary. 7632 */ 7633 if (patch_sz > orig_sz) { 7634 if (orig + patch_sz >= buf + buf_sz) { 7635 /* patch is big enough to cover remaining space completely */ 7636 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7637 rem_sz = 0; 7638 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7639 /* patch causes part of remaining log to be truncated */ 7640 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7641 } 7642 } 7643 /* shift remaining log to the right by calculated amount */ 7644 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7645 } 7646 7647 memcpy(orig, patch, patch_sz); 7648 } 7649 7650 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7651 char *buf, size_t buf_sz, size_t log_sz, 7652 char *line1, char *line2, char *line3) 7653 { 7654 /* Expected log for failed and not properly guarded CO-RE relocation: 7655 * line1 -> 123: (85) call unknown#195896080 7656 * line2 -> invalid func unknown#195896080 7657 * line3 -> <anything else or end of buffer> 7658 * 7659 * "123" is the index of the instruction that was poisoned. We extract 7660 * instruction index to find corresponding CO-RE relocation and 7661 * replace this part of the log with more relevant information about 7662 * failed CO-RE relocation. 7663 */ 7664 const struct bpf_core_relo *relo; 7665 struct bpf_core_spec spec; 7666 char patch[512], spec_buf[256]; 7667 int insn_idx, err, spec_len; 7668 7669 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7670 return; 7671 7672 relo = find_relo_core(prog, insn_idx); 7673 if (!relo) 7674 return; 7675 7676 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7677 if (err) 7678 return; 7679 7680 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7681 snprintf(patch, sizeof(patch), 7682 "%d: <invalid CO-RE relocation>\n" 7683 "failed to resolve CO-RE relocation %s%s\n", 7684 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7685 7686 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7687 } 7688 7689 static void fixup_log_missing_map_load(struct bpf_program *prog, 7690 char *buf, size_t buf_sz, size_t log_sz, 7691 char *line1, char *line2, char *line3) 7692 { 7693 /* Expected log for failed and not properly guarded map reference: 7694 * line1 -> 123: (85) call unknown#2001000345 7695 * line2 -> invalid func unknown#2001000345 7696 * line3 -> <anything else or end of buffer> 7697 * 7698 * "123" is the index of the instruction that was poisoned. 7699 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7700 */ 7701 struct bpf_object *obj = prog->obj; 7702 const struct bpf_map *map; 7703 int insn_idx, map_idx; 7704 char patch[128]; 7705 7706 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7707 return; 7708 7709 map_idx -= POISON_LDIMM64_MAP_BASE; 7710 if (map_idx < 0 || map_idx >= obj->nr_maps) 7711 return; 7712 map = &obj->maps[map_idx]; 7713 7714 snprintf(patch, sizeof(patch), 7715 "%d: <invalid BPF map reference>\n" 7716 "BPF map '%s' is referenced but wasn't created\n", 7717 insn_idx, map->name); 7718 7719 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7720 } 7721 7722 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7723 char *buf, size_t buf_sz, size_t log_sz, 7724 char *line1, char *line2, char *line3) 7725 { 7726 /* Expected log for failed and not properly guarded kfunc call: 7727 * line1 -> 123: (85) call unknown#2002000345 7728 * line2 -> invalid func unknown#2002000345 7729 * line3 -> <anything else or end of buffer> 7730 * 7731 * "123" is the index of the instruction that was poisoned. 7732 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7733 */ 7734 struct bpf_object *obj = prog->obj; 7735 const struct extern_desc *ext; 7736 int insn_idx, ext_idx; 7737 char patch[128]; 7738 7739 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7740 return; 7741 7742 ext_idx -= POISON_CALL_KFUNC_BASE; 7743 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7744 return; 7745 ext = &obj->externs[ext_idx]; 7746 7747 snprintf(patch, sizeof(patch), 7748 "%d: <invalid kfunc call>\n" 7749 "kfunc '%s' is referenced but wasn't resolved\n", 7750 insn_idx, ext->name); 7751 7752 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7753 } 7754 7755 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7756 { 7757 /* look for familiar error patterns in last N lines of the log */ 7758 const size_t max_last_line_cnt = 10; 7759 char *prev_line, *cur_line, *next_line; 7760 size_t log_sz; 7761 int i; 7762 7763 if (!buf) 7764 return; 7765 7766 log_sz = strlen(buf) + 1; 7767 next_line = buf + log_sz - 1; 7768 7769 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7770 cur_line = find_prev_line(buf, next_line); 7771 if (!cur_line) 7772 return; 7773 7774 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7775 prev_line = find_prev_line(buf, cur_line); 7776 if (!prev_line) 7777 continue; 7778 7779 /* failed CO-RE relocation case */ 7780 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7781 prev_line, cur_line, next_line); 7782 return; 7783 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7784 prev_line = find_prev_line(buf, cur_line); 7785 if (!prev_line) 7786 continue; 7787 7788 /* reference to uncreated BPF map */ 7789 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7790 prev_line, cur_line, next_line); 7791 return; 7792 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7793 prev_line = find_prev_line(buf, cur_line); 7794 if (!prev_line) 7795 continue; 7796 7797 /* reference to unresolved kfunc */ 7798 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7799 prev_line, cur_line, next_line); 7800 return; 7801 } 7802 } 7803 } 7804 7805 static int bpf_program_record_relos(struct bpf_program *prog) 7806 { 7807 struct bpf_object *obj = prog->obj; 7808 int i; 7809 7810 for (i = 0; i < prog->nr_reloc; i++) { 7811 struct reloc_desc *relo = &prog->reloc_desc[i]; 7812 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7813 int kind; 7814 7815 switch (relo->type) { 7816 case RELO_EXTERN_LD64: 7817 if (ext->type != EXT_KSYM) 7818 continue; 7819 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7820 BTF_KIND_VAR : BTF_KIND_FUNC; 7821 bpf_gen__record_extern(obj->gen_loader, ext->name, 7822 ext->is_weak, !ext->ksym.type_id, 7823 true, kind, relo->insn_idx); 7824 break; 7825 case RELO_EXTERN_CALL: 7826 bpf_gen__record_extern(obj->gen_loader, ext->name, 7827 ext->is_weak, false, false, BTF_KIND_FUNC, 7828 relo->insn_idx); 7829 break; 7830 case RELO_CORE: { 7831 struct bpf_core_relo cr = { 7832 .insn_off = relo->insn_idx * 8, 7833 .type_id = relo->core_relo->type_id, 7834 .access_str_off = relo->core_relo->access_str_off, 7835 .kind = relo->core_relo->kind, 7836 }; 7837 7838 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7839 break; 7840 } 7841 default: 7842 continue; 7843 } 7844 } 7845 return 0; 7846 } 7847 7848 static int 7849 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7850 { 7851 struct bpf_program *prog; 7852 size_t i; 7853 int err; 7854 7855 for (i = 0; i < obj->nr_programs; i++) { 7856 prog = &obj->programs[i]; 7857 err = bpf_object__sanitize_prog(obj, prog); 7858 if (err) 7859 return err; 7860 } 7861 7862 for (i = 0; i < obj->nr_programs; i++) { 7863 prog = &obj->programs[i]; 7864 if (prog_is_subprog(obj, prog)) 7865 continue; 7866 if (!prog->autoload) { 7867 pr_debug("prog '%s': skipped loading\n", prog->name); 7868 continue; 7869 } 7870 prog->log_level |= log_level; 7871 7872 if (obj->gen_loader) 7873 bpf_program_record_relos(prog); 7874 7875 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7876 obj->license, obj->kern_version, &prog->fd); 7877 if (err) { 7878 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7879 return err; 7880 } 7881 } 7882 7883 bpf_object__free_relocs(obj); 7884 return 0; 7885 } 7886 7887 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7888 7889 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7890 { 7891 struct bpf_program *prog; 7892 int err; 7893 7894 bpf_object__for_each_program(prog, obj) { 7895 prog->sec_def = find_sec_def(prog->sec_name); 7896 if (!prog->sec_def) { 7897 /* couldn't guess, but user might manually specify */ 7898 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7899 prog->name, prog->sec_name); 7900 continue; 7901 } 7902 7903 prog->type = prog->sec_def->prog_type; 7904 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7905 7906 /* sec_def can have custom callback which should be called 7907 * after bpf_program is initialized to adjust its properties 7908 */ 7909 if (prog->sec_def->prog_setup_fn) { 7910 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7911 if (err < 0) { 7912 pr_warn("prog '%s': failed to initialize: %d\n", 7913 prog->name, err); 7914 return err; 7915 } 7916 } 7917 } 7918 7919 return 0; 7920 } 7921 7922 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7923 const struct bpf_object_open_opts *opts) 7924 { 7925 const char *obj_name, *kconfig, *btf_tmp_path; 7926 struct bpf_object *obj; 7927 char tmp_name[64]; 7928 int err; 7929 char *log_buf; 7930 size_t log_size; 7931 __u32 log_level; 7932 7933 if (elf_version(EV_CURRENT) == EV_NONE) { 7934 pr_warn("failed to init libelf for %s\n", 7935 path ? : "(mem buf)"); 7936 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7937 } 7938 7939 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7940 return ERR_PTR(-EINVAL); 7941 7942 obj_name = OPTS_GET(opts, object_name, NULL); 7943 if (obj_buf) { 7944 if (!obj_name) { 7945 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7946 (unsigned long)obj_buf, 7947 (unsigned long)obj_buf_sz); 7948 obj_name = tmp_name; 7949 } 7950 path = obj_name; 7951 pr_debug("loading object '%s' from buffer\n", obj_name); 7952 } 7953 7954 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7955 log_size = OPTS_GET(opts, kernel_log_size, 0); 7956 log_level = OPTS_GET(opts, kernel_log_level, 0); 7957 if (log_size > UINT_MAX) 7958 return ERR_PTR(-EINVAL); 7959 if (log_size && !log_buf) 7960 return ERR_PTR(-EINVAL); 7961 7962 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7963 if (IS_ERR(obj)) 7964 return obj; 7965 7966 obj->log_buf = log_buf; 7967 obj->log_size = log_size; 7968 obj->log_level = log_level; 7969 7970 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7971 if (btf_tmp_path) { 7972 if (strlen(btf_tmp_path) >= PATH_MAX) { 7973 err = -ENAMETOOLONG; 7974 goto out; 7975 } 7976 obj->btf_custom_path = strdup(btf_tmp_path); 7977 if (!obj->btf_custom_path) { 7978 err = -ENOMEM; 7979 goto out; 7980 } 7981 } 7982 7983 kconfig = OPTS_GET(opts, kconfig, NULL); 7984 if (kconfig) { 7985 obj->kconfig = strdup(kconfig); 7986 if (!obj->kconfig) { 7987 err = -ENOMEM; 7988 goto out; 7989 } 7990 } 7991 7992 err = bpf_object__elf_init(obj); 7993 err = err ? : bpf_object__check_endianness(obj); 7994 err = err ? : bpf_object__elf_collect(obj); 7995 err = err ? : bpf_object__collect_externs(obj); 7996 err = err ? : bpf_object_fixup_btf(obj); 7997 err = err ? : bpf_object__init_maps(obj, opts); 7998 err = err ? : bpf_object_init_progs(obj, opts); 7999 err = err ? : bpf_object__collect_relos(obj); 8000 if (err) 8001 goto out; 8002 8003 bpf_object__elf_finish(obj); 8004 8005 return obj; 8006 out: 8007 bpf_object__close(obj); 8008 return ERR_PTR(err); 8009 } 8010 8011 struct bpf_object * 8012 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 8013 { 8014 if (!path) 8015 return libbpf_err_ptr(-EINVAL); 8016 8017 pr_debug("loading %s\n", path); 8018 8019 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 8020 } 8021 8022 struct bpf_object *bpf_object__open(const char *path) 8023 { 8024 return bpf_object__open_file(path, NULL); 8025 } 8026 8027 struct bpf_object * 8028 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 8029 const struct bpf_object_open_opts *opts) 8030 { 8031 if (!obj_buf || obj_buf_sz == 0) 8032 return libbpf_err_ptr(-EINVAL); 8033 8034 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 8035 } 8036 8037 static int bpf_object_unload(struct bpf_object *obj) 8038 { 8039 size_t i; 8040 8041 if (!obj) 8042 return libbpf_err(-EINVAL); 8043 8044 for (i = 0; i < obj->nr_maps; i++) { 8045 zclose(obj->maps[i].fd); 8046 if (obj->maps[i].st_ops) 8047 zfree(&obj->maps[i].st_ops->kern_vdata); 8048 } 8049 8050 for (i = 0; i < obj->nr_programs; i++) 8051 bpf_program__unload(&obj->programs[i]); 8052 8053 return 0; 8054 } 8055 8056 static int bpf_object__sanitize_maps(struct bpf_object *obj) 8057 { 8058 struct bpf_map *m; 8059 8060 bpf_object__for_each_map(m, obj) { 8061 if (!bpf_map__is_internal(m)) 8062 continue; 8063 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 8064 m->def.map_flags &= ~BPF_F_MMAPABLE; 8065 } 8066 8067 return 0; 8068 } 8069 8070 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 8071 { 8072 char sym_type, sym_name[500]; 8073 unsigned long long sym_addr; 8074 int ret, err = 0; 8075 FILE *f; 8076 8077 f = fopen("/proc/kallsyms", "re"); 8078 if (!f) { 8079 err = -errno; 8080 pr_warn("failed to open /proc/kallsyms: %d\n", err); 8081 return err; 8082 } 8083 8084 while (true) { 8085 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 8086 &sym_addr, &sym_type, sym_name); 8087 if (ret == EOF && feof(f)) 8088 break; 8089 if (ret != 3) { 8090 pr_warn("failed to read kallsyms entry: %d\n", ret); 8091 err = -EINVAL; 8092 break; 8093 } 8094 8095 err = cb(sym_addr, sym_type, sym_name, ctx); 8096 if (err) 8097 break; 8098 } 8099 8100 fclose(f); 8101 return err; 8102 } 8103 8104 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 8105 const char *sym_name, void *ctx) 8106 { 8107 struct bpf_object *obj = ctx; 8108 const struct btf_type *t; 8109 struct extern_desc *ext; 8110 8111 ext = find_extern_by_name(obj, sym_name); 8112 if (!ext || ext->type != EXT_KSYM) 8113 return 0; 8114 8115 t = btf__type_by_id(obj->btf, ext->btf_id); 8116 if (!btf_is_var(t)) 8117 return 0; 8118 8119 if (ext->is_set && ext->ksym.addr != sym_addr) { 8120 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 8121 sym_name, ext->ksym.addr, sym_addr); 8122 return -EINVAL; 8123 } 8124 if (!ext->is_set) { 8125 ext->is_set = true; 8126 ext->ksym.addr = sym_addr; 8127 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 8128 } 8129 return 0; 8130 } 8131 8132 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 8133 { 8134 return libbpf_kallsyms_parse(kallsyms_cb, obj); 8135 } 8136 8137 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 8138 __u16 kind, struct btf **res_btf, 8139 struct module_btf **res_mod_btf) 8140 { 8141 struct module_btf *mod_btf; 8142 struct btf *btf; 8143 int i, id, err; 8144 8145 btf = obj->btf_vmlinux; 8146 mod_btf = NULL; 8147 id = btf__find_by_name_kind(btf, ksym_name, kind); 8148 8149 if (id == -ENOENT) { 8150 err = load_module_btfs(obj); 8151 if (err) 8152 return err; 8153 8154 for (i = 0; i < obj->btf_module_cnt; i++) { 8155 /* we assume module_btf's BTF FD is always >0 */ 8156 mod_btf = &obj->btf_modules[i]; 8157 btf = mod_btf->btf; 8158 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 8159 if (id != -ENOENT) 8160 break; 8161 } 8162 } 8163 if (id <= 0) 8164 return -ESRCH; 8165 8166 *res_btf = btf; 8167 *res_mod_btf = mod_btf; 8168 return id; 8169 } 8170 8171 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 8172 struct extern_desc *ext) 8173 { 8174 const struct btf_type *targ_var, *targ_type; 8175 __u32 targ_type_id, local_type_id; 8176 struct module_btf *mod_btf = NULL; 8177 const char *targ_var_name; 8178 struct btf *btf = NULL; 8179 int id, err; 8180 8181 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 8182 if (id < 0) { 8183 if (id == -ESRCH && ext->is_weak) 8184 return 0; 8185 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 8186 ext->name); 8187 return id; 8188 } 8189 8190 /* find local type_id */ 8191 local_type_id = ext->ksym.type_id; 8192 8193 /* find target type_id */ 8194 targ_var = btf__type_by_id(btf, id); 8195 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 8196 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 8197 8198 err = bpf_core_types_are_compat(obj->btf, local_type_id, 8199 btf, targ_type_id); 8200 if (err <= 0) { 8201 const struct btf_type *local_type; 8202 const char *targ_name, *local_name; 8203 8204 local_type = btf__type_by_id(obj->btf, local_type_id); 8205 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 8206 targ_name = btf__name_by_offset(btf, targ_type->name_off); 8207 8208 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 8209 ext->name, local_type_id, 8210 btf_kind_str(local_type), local_name, targ_type_id, 8211 btf_kind_str(targ_type), targ_name); 8212 return -EINVAL; 8213 } 8214 8215 ext->is_set = true; 8216 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8217 ext->ksym.kernel_btf_id = id; 8218 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 8219 ext->name, id, btf_kind_str(targ_var), targ_var_name); 8220 8221 return 0; 8222 } 8223 8224 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 8225 struct extern_desc *ext) 8226 { 8227 int local_func_proto_id, kfunc_proto_id, kfunc_id; 8228 struct module_btf *mod_btf = NULL; 8229 const struct btf_type *kern_func; 8230 struct btf *kern_btf = NULL; 8231 int ret; 8232 8233 local_func_proto_id = ext->ksym.type_id; 8234 8235 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 8236 &mod_btf); 8237 if (kfunc_id < 0) { 8238 if (kfunc_id == -ESRCH && ext->is_weak) 8239 return 0; 8240 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 8241 ext->name); 8242 return kfunc_id; 8243 } 8244 8245 kern_func = btf__type_by_id(kern_btf, kfunc_id); 8246 kfunc_proto_id = kern_func->type; 8247 8248 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 8249 kern_btf, kfunc_proto_id); 8250 if (ret <= 0) { 8251 if (ext->is_weak) 8252 return 0; 8253 8254 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 8255 ext->name, local_func_proto_id, 8256 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 8257 return -EINVAL; 8258 } 8259 8260 /* set index for module BTF fd in fd_array, if unset */ 8261 if (mod_btf && !mod_btf->fd_array_idx) { 8262 /* insn->off is s16 */ 8263 if (obj->fd_array_cnt == INT16_MAX) { 8264 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 8265 ext->name, mod_btf->fd_array_idx); 8266 return -E2BIG; 8267 } 8268 /* Cannot use index 0 for module BTF fd */ 8269 if (!obj->fd_array_cnt) 8270 obj->fd_array_cnt = 1; 8271 8272 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 8273 obj->fd_array_cnt + 1); 8274 if (ret) 8275 return ret; 8276 mod_btf->fd_array_idx = obj->fd_array_cnt; 8277 /* we assume module BTF FD is always >0 */ 8278 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 8279 } 8280 8281 ext->is_set = true; 8282 ext->ksym.kernel_btf_id = kfunc_id; 8283 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 8284 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 8285 * populates FD into ld_imm64 insn when it's used to point to kfunc. 8286 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 8287 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 8288 */ 8289 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8290 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 8291 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 8292 8293 return 0; 8294 } 8295 8296 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 8297 { 8298 const struct btf_type *t; 8299 struct extern_desc *ext; 8300 int i, err; 8301 8302 for (i = 0; i < obj->nr_extern; i++) { 8303 ext = &obj->externs[i]; 8304 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 8305 continue; 8306 8307 if (obj->gen_loader) { 8308 ext->is_set = true; 8309 ext->ksym.kernel_btf_obj_fd = 0; 8310 ext->ksym.kernel_btf_id = 0; 8311 continue; 8312 } 8313 t = btf__type_by_id(obj->btf, ext->btf_id); 8314 if (btf_is_var(t)) 8315 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 8316 else 8317 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 8318 if (err) 8319 return err; 8320 } 8321 return 0; 8322 } 8323 8324 static int bpf_object__resolve_externs(struct bpf_object *obj, 8325 const char *extra_kconfig) 8326 { 8327 bool need_config = false, need_kallsyms = false; 8328 bool need_vmlinux_btf = false; 8329 struct extern_desc *ext; 8330 void *kcfg_data = NULL; 8331 int err, i; 8332 8333 if (obj->nr_extern == 0) 8334 return 0; 8335 8336 if (obj->kconfig_map_idx >= 0) 8337 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 8338 8339 for (i = 0; i < obj->nr_extern; i++) { 8340 ext = &obj->externs[i]; 8341 8342 if (ext->type == EXT_KSYM) { 8343 if (ext->ksym.type_id) 8344 need_vmlinux_btf = true; 8345 else 8346 need_kallsyms = true; 8347 continue; 8348 } else if (ext->type == EXT_KCFG) { 8349 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 8350 __u64 value = 0; 8351 8352 /* Kconfig externs need actual /proc/config.gz */ 8353 if (str_has_pfx(ext->name, "CONFIG_")) { 8354 need_config = true; 8355 continue; 8356 } 8357 8358 /* Virtual kcfg externs are customly handled by libbpf */ 8359 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 8360 value = get_kernel_version(); 8361 if (!value) { 8362 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 8363 return -EINVAL; 8364 } 8365 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 8366 value = kernel_supports(obj, FEAT_BPF_COOKIE); 8367 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 8368 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 8369 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 8370 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 8371 * __kconfig externs, where LINUX_ ones are virtual and filled out 8372 * customly by libbpf (their values don't come from Kconfig). 8373 * If LINUX_xxx variable is not recognized by libbpf, but is marked 8374 * __weak, it defaults to zero value, just like for CONFIG_xxx 8375 * externs. 8376 */ 8377 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 8378 return -EINVAL; 8379 } 8380 8381 err = set_kcfg_value_num(ext, ext_ptr, value); 8382 if (err) 8383 return err; 8384 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 8385 ext->name, (long long)value); 8386 } else { 8387 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 8388 return -EINVAL; 8389 } 8390 } 8391 if (need_config && extra_kconfig) { 8392 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 8393 if (err) 8394 return -EINVAL; 8395 need_config = false; 8396 for (i = 0; i < obj->nr_extern; i++) { 8397 ext = &obj->externs[i]; 8398 if (ext->type == EXT_KCFG && !ext->is_set) { 8399 need_config = true; 8400 break; 8401 } 8402 } 8403 } 8404 if (need_config) { 8405 err = bpf_object__read_kconfig_file(obj, kcfg_data); 8406 if (err) 8407 return -EINVAL; 8408 } 8409 if (need_kallsyms) { 8410 err = bpf_object__read_kallsyms_file(obj); 8411 if (err) 8412 return -EINVAL; 8413 } 8414 if (need_vmlinux_btf) { 8415 err = bpf_object__resolve_ksyms_btf_id(obj); 8416 if (err) 8417 return -EINVAL; 8418 } 8419 for (i = 0; i < obj->nr_extern; i++) { 8420 ext = &obj->externs[i]; 8421 8422 if (!ext->is_set && !ext->is_weak) { 8423 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 8424 return -ESRCH; 8425 } else if (!ext->is_set) { 8426 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8427 ext->name); 8428 } 8429 } 8430 8431 return 0; 8432 } 8433 8434 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8435 { 8436 struct bpf_struct_ops *st_ops; 8437 __u32 i; 8438 8439 st_ops = map->st_ops; 8440 for (i = 0; i < btf_vlen(st_ops->type); i++) { 8441 struct bpf_program *prog = st_ops->progs[i]; 8442 void *kern_data; 8443 int prog_fd; 8444 8445 if (!prog) 8446 continue; 8447 8448 prog_fd = bpf_program__fd(prog); 8449 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8450 *(unsigned long *)kern_data = prog_fd; 8451 } 8452 } 8453 8454 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8455 { 8456 int i; 8457 8458 for (i = 0; i < obj->nr_maps; i++) 8459 if (bpf_map__is_struct_ops(&obj->maps[i])) 8460 bpf_map_prepare_vdata(&obj->maps[i]); 8461 8462 return 0; 8463 } 8464 8465 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8466 { 8467 int err, i; 8468 8469 if (!obj) 8470 return libbpf_err(-EINVAL); 8471 8472 if (obj->loaded) { 8473 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8474 return libbpf_err(-EINVAL); 8475 } 8476 8477 if (obj->gen_loader) 8478 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8479 8480 err = bpf_object__probe_loading(obj); 8481 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8482 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8483 err = err ? : bpf_object__sanitize_maps(obj); 8484 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8485 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8486 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8487 err = err ? : bpf_object__create_maps(obj); 8488 err = err ? : bpf_object__load_progs(obj, extra_log_level); 8489 err = err ? : bpf_object_init_prog_arrays(obj); 8490 err = err ? : bpf_object_prepare_struct_ops(obj); 8491 8492 if (obj->gen_loader) { 8493 /* reset FDs */ 8494 if (obj->btf) 8495 btf__set_fd(obj->btf, -1); 8496 if (!err) 8497 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8498 } 8499 8500 /* clean up fd_array */ 8501 zfree(&obj->fd_array); 8502 8503 /* clean up module BTFs */ 8504 for (i = 0; i < obj->btf_module_cnt; i++) { 8505 close(obj->btf_modules[i].fd); 8506 btf__free(obj->btf_modules[i].btf); 8507 free(obj->btf_modules[i].name); 8508 } 8509 free(obj->btf_modules); 8510 8511 /* clean up vmlinux BTF */ 8512 btf__free(obj->btf_vmlinux); 8513 obj->btf_vmlinux = NULL; 8514 8515 obj->loaded = true; /* doesn't matter if successfully or not */ 8516 8517 if (err) 8518 goto out; 8519 8520 return 0; 8521 out: 8522 /* unpin any maps that were auto-pinned during load */ 8523 for (i = 0; i < obj->nr_maps; i++) 8524 if (obj->maps[i].pinned && !obj->maps[i].reused) 8525 bpf_map__unpin(&obj->maps[i], NULL); 8526 8527 bpf_object_unload(obj); 8528 pr_warn("failed to load object '%s'\n", obj->path); 8529 return libbpf_err(err); 8530 } 8531 8532 int bpf_object__load(struct bpf_object *obj) 8533 { 8534 return bpf_object_load(obj, 0, NULL); 8535 } 8536 8537 static int make_parent_dir(const char *path) 8538 { 8539 char *cp, errmsg[STRERR_BUFSIZE]; 8540 char *dname, *dir; 8541 int err = 0; 8542 8543 dname = strdup(path); 8544 if (dname == NULL) 8545 return -ENOMEM; 8546 8547 dir = dirname(dname); 8548 if (mkdir(dir, 0700) && errno != EEXIST) 8549 err = -errno; 8550 8551 free(dname); 8552 if (err) { 8553 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8554 pr_warn("failed to mkdir %s: %s\n", path, cp); 8555 } 8556 return err; 8557 } 8558 8559 static int check_path(const char *path) 8560 { 8561 char *cp, errmsg[STRERR_BUFSIZE]; 8562 struct statfs st_fs; 8563 char *dname, *dir; 8564 int err = 0; 8565 8566 if (path == NULL) 8567 return -EINVAL; 8568 8569 dname = strdup(path); 8570 if (dname == NULL) 8571 return -ENOMEM; 8572 8573 dir = dirname(dname); 8574 if (statfs(dir, &st_fs)) { 8575 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 8576 pr_warn("failed to statfs %s: %s\n", dir, cp); 8577 err = -errno; 8578 } 8579 free(dname); 8580 8581 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8582 pr_warn("specified path %s is not on BPF FS\n", path); 8583 err = -EINVAL; 8584 } 8585 8586 return err; 8587 } 8588 8589 int bpf_program__pin(struct bpf_program *prog, const char *path) 8590 { 8591 char *cp, errmsg[STRERR_BUFSIZE]; 8592 int err; 8593 8594 if (prog->fd < 0) { 8595 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8596 return libbpf_err(-EINVAL); 8597 } 8598 8599 err = make_parent_dir(path); 8600 if (err) 8601 return libbpf_err(err); 8602 8603 err = check_path(path); 8604 if (err) 8605 return libbpf_err(err); 8606 8607 if (bpf_obj_pin(prog->fd, path)) { 8608 err = -errno; 8609 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8610 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 8611 return libbpf_err(err); 8612 } 8613 8614 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8615 return 0; 8616 } 8617 8618 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8619 { 8620 int err; 8621 8622 if (prog->fd < 0) { 8623 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8624 return libbpf_err(-EINVAL); 8625 } 8626 8627 err = check_path(path); 8628 if (err) 8629 return libbpf_err(err); 8630 8631 err = unlink(path); 8632 if (err) 8633 return libbpf_err(-errno); 8634 8635 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8636 return 0; 8637 } 8638 8639 int bpf_map__pin(struct bpf_map *map, const char *path) 8640 { 8641 char *cp, errmsg[STRERR_BUFSIZE]; 8642 int err; 8643 8644 if (map == NULL) { 8645 pr_warn("invalid map pointer\n"); 8646 return libbpf_err(-EINVAL); 8647 } 8648 8649 if (map->pin_path) { 8650 if (path && strcmp(path, map->pin_path)) { 8651 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8652 bpf_map__name(map), map->pin_path, path); 8653 return libbpf_err(-EINVAL); 8654 } else if (map->pinned) { 8655 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8656 bpf_map__name(map), map->pin_path); 8657 return 0; 8658 } 8659 } else { 8660 if (!path) { 8661 pr_warn("missing a path to pin map '%s' at\n", 8662 bpf_map__name(map)); 8663 return libbpf_err(-EINVAL); 8664 } else if (map->pinned) { 8665 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8666 return libbpf_err(-EEXIST); 8667 } 8668 8669 map->pin_path = strdup(path); 8670 if (!map->pin_path) { 8671 err = -errno; 8672 goto out_err; 8673 } 8674 } 8675 8676 err = make_parent_dir(map->pin_path); 8677 if (err) 8678 return libbpf_err(err); 8679 8680 err = check_path(map->pin_path); 8681 if (err) 8682 return libbpf_err(err); 8683 8684 if (bpf_obj_pin(map->fd, map->pin_path)) { 8685 err = -errno; 8686 goto out_err; 8687 } 8688 8689 map->pinned = true; 8690 pr_debug("pinned map '%s'\n", map->pin_path); 8691 8692 return 0; 8693 8694 out_err: 8695 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8696 pr_warn("failed to pin map: %s\n", cp); 8697 return libbpf_err(err); 8698 } 8699 8700 int bpf_map__unpin(struct bpf_map *map, const char *path) 8701 { 8702 int err; 8703 8704 if (map == NULL) { 8705 pr_warn("invalid map pointer\n"); 8706 return libbpf_err(-EINVAL); 8707 } 8708 8709 if (map->pin_path) { 8710 if (path && strcmp(path, map->pin_path)) { 8711 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8712 bpf_map__name(map), map->pin_path, path); 8713 return libbpf_err(-EINVAL); 8714 } 8715 path = map->pin_path; 8716 } else if (!path) { 8717 pr_warn("no path to unpin map '%s' from\n", 8718 bpf_map__name(map)); 8719 return libbpf_err(-EINVAL); 8720 } 8721 8722 err = check_path(path); 8723 if (err) 8724 return libbpf_err(err); 8725 8726 err = unlink(path); 8727 if (err != 0) 8728 return libbpf_err(-errno); 8729 8730 map->pinned = false; 8731 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8732 8733 return 0; 8734 } 8735 8736 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8737 { 8738 char *new = NULL; 8739 8740 if (path) { 8741 new = strdup(path); 8742 if (!new) 8743 return libbpf_err(-errno); 8744 } 8745 8746 free(map->pin_path); 8747 map->pin_path = new; 8748 return 0; 8749 } 8750 8751 __alias(bpf_map__pin_path) 8752 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8753 8754 const char *bpf_map__pin_path(const struct bpf_map *map) 8755 { 8756 return map->pin_path; 8757 } 8758 8759 bool bpf_map__is_pinned(const struct bpf_map *map) 8760 { 8761 return map->pinned; 8762 } 8763 8764 static void sanitize_pin_path(char *s) 8765 { 8766 /* bpffs disallows periods in path names */ 8767 while (*s) { 8768 if (*s == '.') 8769 *s = '_'; 8770 s++; 8771 } 8772 } 8773 8774 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8775 { 8776 struct bpf_map *map; 8777 int err; 8778 8779 if (!obj) 8780 return libbpf_err(-ENOENT); 8781 8782 if (!obj->loaded) { 8783 pr_warn("object not yet loaded; load it first\n"); 8784 return libbpf_err(-ENOENT); 8785 } 8786 8787 bpf_object__for_each_map(map, obj) { 8788 char *pin_path = NULL; 8789 char buf[PATH_MAX]; 8790 8791 if (!map->autocreate) 8792 continue; 8793 8794 if (path) { 8795 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8796 if (err) 8797 goto err_unpin_maps; 8798 sanitize_pin_path(buf); 8799 pin_path = buf; 8800 } else if (!map->pin_path) { 8801 continue; 8802 } 8803 8804 err = bpf_map__pin(map, pin_path); 8805 if (err) 8806 goto err_unpin_maps; 8807 } 8808 8809 return 0; 8810 8811 err_unpin_maps: 8812 while ((map = bpf_object__prev_map(obj, map))) { 8813 if (!map->pin_path) 8814 continue; 8815 8816 bpf_map__unpin(map, NULL); 8817 } 8818 8819 return libbpf_err(err); 8820 } 8821 8822 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8823 { 8824 struct bpf_map *map; 8825 int err; 8826 8827 if (!obj) 8828 return libbpf_err(-ENOENT); 8829 8830 bpf_object__for_each_map(map, obj) { 8831 char *pin_path = NULL; 8832 char buf[PATH_MAX]; 8833 8834 if (path) { 8835 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8836 if (err) 8837 return libbpf_err(err); 8838 sanitize_pin_path(buf); 8839 pin_path = buf; 8840 } else if (!map->pin_path) { 8841 continue; 8842 } 8843 8844 err = bpf_map__unpin(map, pin_path); 8845 if (err) 8846 return libbpf_err(err); 8847 } 8848 8849 return 0; 8850 } 8851 8852 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8853 { 8854 struct bpf_program *prog; 8855 char buf[PATH_MAX]; 8856 int err; 8857 8858 if (!obj) 8859 return libbpf_err(-ENOENT); 8860 8861 if (!obj->loaded) { 8862 pr_warn("object not yet loaded; load it first\n"); 8863 return libbpf_err(-ENOENT); 8864 } 8865 8866 bpf_object__for_each_program(prog, obj) { 8867 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8868 if (err) 8869 goto err_unpin_programs; 8870 8871 err = bpf_program__pin(prog, buf); 8872 if (err) 8873 goto err_unpin_programs; 8874 } 8875 8876 return 0; 8877 8878 err_unpin_programs: 8879 while ((prog = bpf_object__prev_program(obj, prog))) { 8880 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8881 continue; 8882 8883 bpf_program__unpin(prog, buf); 8884 } 8885 8886 return libbpf_err(err); 8887 } 8888 8889 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8890 { 8891 struct bpf_program *prog; 8892 int err; 8893 8894 if (!obj) 8895 return libbpf_err(-ENOENT); 8896 8897 bpf_object__for_each_program(prog, obj) { 8898 char buf[PATH_MAX]; 8899 8900 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8901 if (err) 8902 return libbpf_err(err); 8903 8904 err = bpf_program__unpin(prog, buf); 8905 if (err) 8906 return libbpf_err(err); 8907 } 8908 8909 return 0; 8910 } 8911 8912 int bpf_object__pin(struct bpf_object *obj, const char *path) 8913 { 8914 int err; 8915 8916 err = bpf_object__pin_maps(obj, path); 8917 if (err) 8918 return libbpf_err(err); 8919 8920 err = bpf_object__pin_programs(obj, path); 8921 if (err) { 8922 bpf_object__unpin_maps(obj, path); 8923 return libbpf_err(err); 8924 } 8925 8926 return 0; 8927 } 8928 8929 int bpf_object__unpin(struct bpf_object *obj, const char *path) 8930 { 8931 int err; 8932 8933 err = bpf_object__unpin_programs(obj, path); 8934 if (err) 8935 return libbpf_err(err); 8936 8937 err = bpf_object__unpin_maps(obj, path); 8938 if (err) 8939 return libbpf_err(err); 8940 8941 return 0; 8942 } 8943 8944 static void bpf_map__destroy(struct bpf_map *map) 8945 { 8946 if (map->inner_map) { 8947 bpf_map__destroy(map->inner_map); 8948 zfree(&map->inner_map); 8949 } 8950 8951 zfree(&map->init_slots); 8952 map->init_slots_sz = 0; 8953 8954 if (map->mmaped) { 8955 size_t mmap_sz; 8956 8957 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 8958 munmap(map->mmaped, mmap_sz); 8959 map->mmaped = NULL; 8960 } 8961 8962 if (map->st_ops) { 8963 zfree(&map->st_ops->data); 8964 zfree(&map->st_ops->progs); 8965 zfree(&map->st_ops->kern_func_off); 8966 zfree(&map->st_ops); 8967 } 8968 8969 zfree(&map->name); 8970 zfree(&map->real_name); 8971 zfree(&map->pin_path); 8972 8973 if (map->fd >= 0) 8974 zclose(map->fd); 8975 } 8976 8977 void bpf_object__close(struct bpf_object *obj) 8978 { 8979 size_t i; 8980 8981 if (IS_ERR_OR_NULL(obj)) 8982 return; 8983 8984 usdt_manager_free(obj->usdt_man); 8985 obj->usdt_man = NULL; 8986 8987 bpf_gen__free(obj->gen_loader); 8988 bpf_object__elf_finish(obj); 8989 bpf_object_unload(obj); 8990 btf__free(obj->btf); 8991 btf__free(obj->btf_vmlinux); 8992 btf_ext__free(obj->btf_ext); 8993 8994 for (i = 0; i < obj->nr_maps; i++) 8995 bpf_map__destroy(&obj->maps[i]); 8996 8997 zfree(&obj->btf_custom_path); 8998 zfree(&obj->kconfig); 8999 9000 for (i = 0; i < obj->nr_extern; i++) 9001 zfree(&obj->externs[i].essent_name); 9002 9003 zfree(&obj->externs); 9004 obj->nr_extern = 0; 9005 9006 zfree(&obj->maps); 9007 obj->nr_maps = 0; 9008 9009 if (obj->programs && obj->nr_programs) { 9010 for (i = 0; i < obj->nr_programs; i++) 9011 bpf_program__exit(&obj->programs[i]); 9012 } 9013 zfree(&obj->programs); 9014 9015 free(obj); 9016 } 9017 9018 const char *bpf_object__name(const struct bpf_object *obj) 9019 { 9020 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 9021 } 9022 9023 unsigned int bpf_object__kversion(const struct bpf_object *obj) 9024 { 9025 return obj ? obj->kern_version : 0; 9026 } 9027 9028 struct btf *bpf_object__btf(const struct bpf_object *obj) 9029 { 9030 return obj ? obj->btf : NULL; 9031 } 9032 9033 int bpf_object__btf_fd(const struct bpf_object *obj) 9034 { 9035 return obj->btf ? btf__fd(obj->btf) : -1; 9036 } 9037 9038 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 9039 { 9040 if (obj->loaded) 9041 return libbpf_err(-EINVAL); 9042 9043 obj->kern_version = kern_version; 9044 9045 return 0; 9046 } 9047 9048 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 9049 { 9050 struct bpf_gen *gen; 9051 9052 if (!opts) 9053 return -EFAULT; 9054 if (!OPTS_VALID(opts, gen_loader_opts)) 9055 return -EINVAL; 9056 gen = calloc(sizeof(*gen), 1); 9057 if (!gen) 9058 return -ENOMEM; 9059 gen->opts = opts; 9060 obj->gen_loader = gen; 9061 return 0; 9062 } 9063 9064 static struct bpf_program * 9065 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 9066 bool forward) 9067 { 9068 size_t nr_programs = obj->nr_programs; 9069 ssize_t idx; 9070 9071 if (!nr_programs) 9072 return NULL; 9073 9074 if (!p) 9075 /* Iter from the beginning */ 9076 return forward ? &obj->programs[0] : 9077 &obj->programs[nr_programs - 1]; 9078 9079 if (p->obj != obj) { 9080 pr_warn("error: program handler doesn't match object\n"); 9081 return errno = EINVAL, NULL; 9082 } 9083 9084 idx = (p - obj->programs) + (forward ? 1 : -1); 9085 if (idx >= obj->nr_programs || idx < 0) 9086 return NULL; 9087 return &obj->programs[idx]; 9088 } 9089 9090 struct bpf_program * 9091 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 9092 { 9093 struct bpf_program *prog = prev; 9094 9095 do { 9096 prog = __bpf_program__iter(prog, obj, true); 9097 } while (prog && prog_is_subprog(obj, prog)); 9098 9099 return prog; 9100 } 9101 9102 struct bpf_program * 9103 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 9104 { 9105 struct bpf_program *prog = next; 9106 9107 do { 9108 prog = __bpf_program__iter(prog, obj, false); 9109 } while (prog && prog_is_subprog(obj, prog)); 9110 9111 return prog; 9112 } 9113 9114 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 9115 { 9116 prog->prog_ifindex = ifindex; 9117 } 9118 9119 const char *bpf_program__name(const struct bpf_program *prog) 9120 { 9121 return prog->name; 9122 } 9123 9124 const char *bpf_program__section_name(const struct bpf_program *prog) 9125 { 9126 return prog->sec_name; 9127 } 9128 9129 bool bpf_program__autoload(const struct bpf_program *prog) 9130 { 9131 return prog->autoload; 9132 } 9133 9134 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 9135 { 9136 if (prog->obj->loaded) 9137 return libbpf_err(-EINVAL); 9138 9139 prog->autoload = autoload; 9140 return 0; 9141 } 9142 9143 bool bpf_program__autoattach(const struct bpf_program *prog) 9144 { 9145 return prog->autoattach; 9146 } 9147 9148 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 9149 { 9150 prog->autoattach = autoattach; 9151 } 9152 9153 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 9154 { 9155 return prog->insns; 9156 } 9157 9158 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 9159 { 9160 return prog->insns_cnt; 9161 } 9162 9163 int bpf_program__set_insns(struct bpf_program *prog, 9164 struct bpf_insn *new_insns, size_t new_insn_cnt) 9165 { 9166 struct bpf_insn *insns; 9167 9168 if (prog->obj->loaded) 9169 return -EBUSY; 9170 9171 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 9172 /* NULL is a valid return from reallocarray if the new count is zero */ 9173 if (!insns && new_insn_cnt) { 9174 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 9175 return -ENOMEM; 9176 } 9177 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 9178 9179 prog->insns = insns; 9180 prog->insns_cnt = new_insn_cnt; 9181 return 0; 9182 } 9183 9184 int bpf_program__fd(const struct bpf_program *prog) 9185 { 9186 if (!prog) 9187 return libbpf_err(-EINVAL); 9188 9189 if (prog->fd < 0) 9190 return libbpf_err(-ENOENT); 9191 9192 return prog->fd; 9193 } 9194 9195 __alias(bpf_program__type) 9196 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 9197 9198 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 9199 { 9200 return prog->type; 9201 } 9202 9203 static size_t custom_sec_def_cnt; 9204 static struct bpf_sec_def *custom_sec_defs; 9205 static struct bpf_sec_def custom_fallback_def; 9206 static bool has_custom_fallback_def; 9207 static int last_custom_sec_def_handler_id; 9208 9209 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 9210 { 9211 if (prog->obj->loaded) 9212 return libbpf_err(-EBUSY); 9213 9214 /* if type is not changed, do nothing */ 9215 if (prog->type == type) 9216 return 0; 9217 9218 prog->type = type; 9219 9220 /* If a program type was changed, we need to reset associated SEC() 9221 * handler, as it will be invalid now. The only exception is a generic 9222 * fallback handler, which by definition is program type-agnostic and 9223 * is a catch-all custom handler, optionally set by the application, 9224 * so should be able to handle any type of BPF program. 9225 */ 9226 if (prog->sec_def != &custom_fallback_def) 9227 prog->sec_def = NULL; 9228 return 0; 9229 } 9230 9231 __alias(bpf_program__expected_attach_type) 9232 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 9233 9234 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 9235 { 9236 return prog->expected_attach_type; 9237 } 9238 9239 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 9240 enum bpf_attach_type type) 9241 { 9242 if (prog->obj->loaded) 9243 return libbpf_err(-EBUSY); 9244 9245 prog->expected_attach_type = type; 9246 return 0; 9247 } 9248 9249 __u32 bpf_program__flags(const struct bpf_program *prog) 9250 { 9251 return prog->prog_flags; 9252 } 9253 9254 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 9255 { 9256 if (prog->obj->loaded) 9257 return libbpf_err(-EBUSY); 9258 9259 prog->prog_flags = flags; 9260 return 0; 9261 } 9262 9263 __u32 bpf_program__log_level(const struct bpf_program *prog) 9264 { 9265 return prog->log_level; 9266 } 9267 9268 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 9269 { 9270 if (prog->obj->loaded) 9271 return libbpf_err(-EBUSY); 9272 9273 prog->log_level = log_level; 9274 return 0; 9275 } 9276 9277 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 9278 { 9279 *log_size = prog->log_size; 9280 return prog->log_buf; 9281 } 9282 9283 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 9284 { 9285 if (log_size && !log_buf) 9286 return -EINVAL; 9287 if (prog->log_size > UINT_MAX) 9288 return -EINVAL; 9289 if (prog->obj->loaded) 9290 return -EBUSY; 9291 9292 prog->log_buf = log_buf; 9293 prog->log_size = log_size; 9294 return 0; 9295 } 9296 9297 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 9298 .sec = (char *)sec_pfx, \ 9299 .prog_type = BPF_PROG_TYPE_##ptype, \ 9300 .expected_attach_type = atype, \ 9301 .cookie = (long)(flags), \ 9302 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 9303 __VA_ARGS__ \ 9304 } 9305 9306 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9307 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9308 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9309 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9310 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9311 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9312 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9313 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9314 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9315 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9316 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9317 9318 static const struct bpf_sec_def section_defs[] = { 9319 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 9320 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 9321 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 9322 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9323 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9324 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9325 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9326 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9327 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9328 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9329 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9330 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9331 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9332 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9333 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9334 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9335 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9336 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 9337 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 9338 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 9339 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 9340 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 9341 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 9342 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9343 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9344 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9345 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 9346 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 9347 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9348 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9349 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9350 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9351 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9352 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9353 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9354 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9355 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9356 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9357 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9358 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9359 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9360 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9361 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9362 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9363 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 9364 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9365 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9366 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9367 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9368 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9369 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9370 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9371 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9372 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 9373 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 9374 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 9375 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 9376 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 9377 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 9378 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 9379 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 9380 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 9381 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 9382 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 9383 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 9384 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 9385 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 9386 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 9387 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 9388 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 9389 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 9390 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 9391 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 9392 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 9393 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 9394 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 9395 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 9396 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 9397 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 9398 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 9399 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 9400 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 9401 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 9402 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 9403 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 9404 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 9405 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 9406 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 9407 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 9408 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 9409 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 9410 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 9411 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 9412 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 9413 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 9414 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9415 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 9416 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 9417 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 9418 }; 9419 9420 int libbpf_register_prog_handler(const char *sec, 9421 enum bpf_prog_type prog_type, 9422 enum bpf_attach_type exp_attach_type, 9423 const struct libbpf_prog_handler_opts *opts) 9424 { 9425 struct bpf_sec_def *sec_def; 9426 9427 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9428 return libbpf_err(-EINVAL); 9429 9430 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9431 return libbpf_err(-E2BIG); 9432 9433 if (sec) { 9434 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9435 sizeof(*sec_def)); 9436 if (!sec_def) 9437 return libbpf_err(-ENOMEM); 9438 9439 custom_sec_defs = sec_def; 9440 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9441 } else { 9442 if (has_custom_fallback_def) 9443 return libbpf_err(-EBUSY); 9444 9445 sec_def = &custom_fallback_def; 9446 } 9447 9448 sec_def->sec = sec ? strdup(sec) : NULL; 9449 if (sec && !sec_def->sec) 9450 return libbpf_err(-ENOMEM); 9451 9452 sec_def->prog_type = prog_type; 9453 sec_def->expected_attach_type = exp_attach_type; 9454 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9455 9456 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9457 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9458 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9459 9460 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9461 9462 if (sec) 9463 custom_sec_def_cnt++; 9464 else 9465 has_custom_fallback_def = true; 9466 9467 return sec_def->handler_id; 9468 } 9469 9470 int libbpf_unregister_prog_handler(int handler_id) 9471 { 9472 struct bpf_sec_def *sec_defs; 9473 int i; 9474 9475 if (handler_id <= 0) 9476 return libbpf_err(-EINVAL); 9477 9478 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9479 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9480 has_custom_fallback_def = false; 9481 return 0; 9482 } 9483 9484 for (i = 0; i < custom_sec_def_cnt; i++) { 9485 if (custom_sec_defs[i].handler_id == handler_id) 9486 break; 9487 } 9488 9489 if (i == custom_sec_def_cnt) 9490 return libbpf_err(-ENOENT); 9491 9492 free(custom_sec_defs[i].sec); 9493 for (i = i + 1; i < custom_sec_def_cnt; i++) 9494 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9495 custom_sec_def_cnt--; 9496 9497 /* try to shrink the array, but it's ok if we couldn't */ 9498 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9499 /* if new count is zero, reallocarray can return a valid NULL result; 9500 * in this case the previous pointer will be freed, so we *have to* 9501 * reassign old pointer to the new value (even if it's NULL) 9502 */ 9503 if (sec_defs || custom_sec_def_cnt == 0) 9504 custom_sec_defs = sec_defs; 9505 9506 return 0; 9507 } 9508 9509 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9510 { 9511 size_t len = strlen(sec_def->sec); 9512 9513 /* "type/" always has to have proper SEC("type/extras") form */ 9514 if (sec_def->sec[len - 1] == '/') { 9515 if (str_has_pfx(sec_name, sec_def->sec)) 9516 return true; 9517 return false; 9518 } 9519 9520 /* "type+" means it can be either exact SEC("type") or 9521 * well-formed SEC("type/extras") with proper '/' separator 9522 */ 9523 if (sec_def->sec[len - 1] == '+') { 9524 len--; 9525 /* not even a prefix */ 9526 if (strncmp(sec_name, sec_def->sec, len) != 0) 9527 return false; 9528 /* exact match or has '/' separator */ 9529 if (sec_name[len] == '\0' || sec_name[len] == '/') 9530 return true; 9531 return false; 9532 } 9533 9534 return strcmp(sec_name, sec_def->sec) == 0; 9535 } 9536 9537 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9538 { 9539 const struct bpf_sec_def *sec_def; 9540 int i, n; 9541 9542 n = custom_sec_def_cnt; 9543 for (i = 0; i < n; i++) { 9544 sec_def = &custom_sec_defs[i]; 9545 if (sec_def_matches(sec_def, sec_name)) 9546 return sec_def; 9547 } 9548 9549 n = ARRAY_SIZE(section_defs); 9550 for (i = 0; i < n; i++) { 9551 sec_def = §ion_defs[i]; 9552 if (sec_def_matches(sec_def, sec_name)) 9553 return sec_def; 9554 } 9555 9556 if (has_custom_fallback_def) 9557 return &custom_fallback_def; 9558 9559 return NULL; 9560 } 9561 9562 #define MAX_TYPE_NAME_SIZE 32 9563 9564 static char *libbpf_get_type_names(bool attach_type) 9565 { 9566 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9567 char *buf; 9568 9569 buf = malloc(len); 9570 if (!buf) 9571 return NULL; 9572 9573 buf[0] = '\0'; 9574 /* Forge string buf with all available names */ 9575 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9576 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9577 9578 if (attach_type) { 9579 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9580 continue; 9581 9582 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9583 continue; 9584 } 9585 9586 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9587 free(buf); 9588 return NULL; 9589 } 9590 strcat(buf, " "); 9591 strcat(buf, section_defs[i].sec); 9592 } 9593 9594 return buf; 9595 } 9596 9597 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9598 enum bpf_attach_type *expected_attach_type) 9599 { 9600 const struct bpf_sec_def *sec_def; 9601 char *type_names; 9602 9603 if (!name) 9604 return libbpf_err(-EINVAL); 9605 9606 sec_def = find_sec_def(name); 9607 if (sec_def) { 9608 *prog_type = sec_def->prog_type; 9609 *expected_attach_type = sec_def->expected_attach_type; 9610 return 0; 9611 } 9612 9613 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9614 type_names = libbpf_get_type_names(false); 9615 if (type_names != NULL) { 9616 pr_debug("supported section(type) names are:%s\n", type_names); 9617 free(type_names); 9618 } 9619 9620 return libbpf_err(-ESRCH); 9621 } 9622 9623 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9624 { 9625 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9626 return NULL; 9627 9628 return attach_type_name[t]; 9629 } 9630 9631 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9632 { 9633 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9634 return NULL; 9635 9636 return link_type_name[t]; 9637 } 9638 9639 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9640 { 9641 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9642 return NULL; 9643 9644 return map_type_name[t]; 9645 } 9646 9647 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9648 { 9649 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9650 return NULL; 9651 9652 return prog_type_name[t]; 9653 } 9654 9655 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9656 int sec_idx, 9657 size_t offset) 9658 { 9659 struct bpf_map *map; 9660 size_t i; 9661 9662 for (i = 0; i < obj->nr_maps; i++) { 9663 map = &obj->maps[i]; 9664 if (!bpf_map__is_struct_ops(map)) 9665 continue; 9666 if (map->sec_idx == sec_idx && 9667 map->sec_offset <= offset && 9668 offset - map->sec_offset < map->def.value_size) 9669 return map; 9670 } 9671 9672 return NULL; 9673 } 9674 9675 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9676 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9677 Elf64_Shdr *shdr, Elf_Data *data) 9678 { 9679 const struct btf_member *member; 9680 struct bpf_struct_ops *st_ops; 9681 struct bpf_program *prog; 9682 unsigned int shdr_idx; 9683 const struct btf *btf; 9684 struct bpf_map *map; 9685 unsigned int moff, insn_idx; 9686 const char *name; 9687 __u32 member_idx; 9688 Elf64_Sym *sym; 9689 Elf64_Rel *rel; 9690 int i, nrels; 9691 9692 btf = obj->btf; 9693 nrels = shdr->sh_size / shdr->sh_entsize; 9694 for (i = 0; i < nrels; i++) { 9695 rel = elf_rel_by_idx(data, i); 9696 if (!rel) { 9697 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9698 return -LIBBPF_ERRNO__FORMAT; 9699 } 9700 9701 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9702 if (!sym) { 9703 pr_warn("struct_ops reloc: symbol %zx not found\n", 9704 (size_t)ELF64_R_SYM(rel->r_info)); 9705 return -LIBBPF_ERRNO__FORMAT; 9706 } 9707 9708 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9709 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9710 if (!map) { 9711 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9712 (size_t)rel->r_offset); 9713 return -EINVAL; 9714 } 9715 9716 moff = rel->r_offset - map->sec_offset; 9717 shdr_idx = sym->st_shndx; 9718 st_ops = map->st_ops; 9719 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9720 map->name, 9721 (long long)(rel->r_info >> 32), 9722 (long long)sym->st_value, 9723 shdr_idx, (size_t)rel->r_offset, 9724 map->sec_offset, sym->st_name, name); 9725 9726 if (shdr_idx >= SHN_LORESERVE) { 9727 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9728 map->name, (size_t)rel->r_offset, shdr_idx); 9729 return -LIBBPF_ERRNO__RELOC; 9730 } 9731 if (sym->st_value % BPF_INSN_SZ) { 9732 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9733 map->name, (unsigned long long)sym->st_value); 9734 return -LIBBPF_ERRNO__FORMAT; 9735 } 9736 insn_idx = sym->st_value / BPF_INSN_SZ; 9737 9738 member = find_member_by_offset(st_ops->type, moff * 8); 9739 if (!member) { 9740 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9741 map->name, moff); 9742 return -EINVAL; 9743 } 9744 member_idx = member - btf_members(st_ops->type); 9745 name = btf__name_by_offset(btf, member->name_off); 9746 9747 if (!resolve_func_ptr(btf, member->type, NULL)) { 9748 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9749 map->name, name); 9750 return -EINVAL; 9751 } 9752 9753 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9754 if (!prog) { 9755 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9756 map->name, shdr_idx, name); 9757 return -EINVAL; 9758 } 9759 9760 /* prevent the use of BPF prog with invalid type */ 9761 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9762 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9763 map->name, prog->name); 9764 return -EINVAL; 9765 } 9766 9767 /* if we haven't yet processed this BPF program, record proper 9768 * attach_btf_id and member_idx 9769 */ 9770 if (!prog->attach_btf_id) { 9771 prog->attach_btf_id = st_ops->type_id; 9772 prog->expected_attach_type = member_idx; 9773 } 9774 9775 /* struct_ops BPF prog can be re-used between multiple 9776 * .struct_ops & .struct_ops.link as long as it's the 9777 * same struct_ops struct definition and the same 9778 * function pointer field 9779 */ 9780 if (prog->attach_btf_id != st_ops->type_id || 9781 prog->expected_attach_type != member_idx) { 9782 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9783 map->name, prog->name, prog->sec_name, prog->type, 9784 prog->attach_btf_id, prog->expected_attach_type, name); 9785 return -EINVAL; 9786 } 9787 9788 st_ops->progs[member_idx] = prog; 9789 } 9790 9791 return 0; 9792 } 9793 9794 #define BTF_TRACE_PREFIX "btf_trace_" 9795 #define BTF_LSM_PREFIX "bpf_lsm_" 9796 #define BTF_ITER_PREFIX "bpf_iter_" 9797 #define BTF_MAX_NAME_SIZE 128 9798 9799 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9800 const char **prefix, int *kind) 9801 { 9802 switch (attach_type) { 9803 case BPF_TRACE_RAW_TP: 9804 *prefix = BTF_TRACE_PREFIX; 9805 *kind = BTF_KIND_TYPEDEF; 9806 break; 9807 case BPF_LSM_MAC: 9808 case BPF_LSM_CGROUP: 9809 *prefix = BTF_LSM_PREFIX; 9810 *kind = BTF_KIND_FUNC; 9811 break; 9812 case BPF_TRACE_ITER: 9813 *prefix = BTF_ITER_PREFIX; 9814 *kind = BTF_KIND_FUNC; 9815 break; 9816 default: 9817 *prefix = ""; 9818 *kind = BTF_KIND_FUNC; 9819 } 9820 } 9821 9822 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9823 const char *name, __u32 kind) 9824 { 9825 char btf_type_name[BTF_MAX_NAME_SIZE]; 9826 int ret; 9827 9828 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9829 "%s%s", prefix, name); 9830 /* snprintf returns the number of characters written excluding the 9831 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9832 * indicates truncation. 9833 */ 9834 if (ret < 0 || ret >= sizeof(btf_type_name)) 9835 return -ENAMETOOLONG; 9836 return btf__find_by_name_kind(btf, btf_type_name, kind); 9837 } 9838 9839 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9840 enum bpf_attach_type attach_type) 9841 { 9842 const char *prefix; 9843 int kind; 9844 9845 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9846 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9847 } 9848 9849 int libbpf_find_vmlinux_btf_id(const char *name, 9850 enum bpf_attach_type attach_type) 9851 { 9852 struct btf *btf; 9853 int err; 9854 9855 btf = btf__load_vmlinux_btf(); 9856 err = libbpf_get_error(btf); 9857 if (err) { 9858 pr_warn("vmlinux BTF is not found\n"); 9859 return libbpf_err(err); 9860 } 9861 9862 err = find_attach_btf_id(btf, name, attach_type); 9863 if (err <= 0) 9864 pr_warn("%s is not found in vmlinux BTF\n", name); 9865 9866 btf__free(btf); 9867 return libbpf_err(err); 9868 } 9869 9870 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9871 { 9872 struct bpf_prog_info info; 9873 __u32 info_len = sizeof(info); 9874 struct btf *btf; 9875 int err; 9876 9877 memset(&info, 0, info_len); 9878 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9879 if (err) { 9880 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9881 attach_prog_fd, err); 9882 return err; 9883 } 9884 9885 err = -EINVAL; 9886 if (!info.btf_id) { 9887 pr_warn("The target program doesn't have BTF\n"); 9888 goto out; 9889 } 9890 btf = btf__load_from_kernel_by_id(info.btf_id); 9891 err = libbpf_get_error(btf); 9892 if (err) { 9893 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9894 goto out; 9895 } 9896 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9897 btf__free(btf); 9898 if (err <= 0) { 9899 pr_warn("%s is not found in prog's BTF\n", name); 9900 goto out; 9901 } 9902 out: 9903 return err; 9904 } 9905 9906 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9907 enum bpf_attach_type attach_type, 9908 int *btf_obj_fd, int *btf_type_id) 9909 { 9910 int ret, i; 9911 9912 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9913 if (ret > 0) { 9914 *btf_obj_fd = 0; /* vmlinux BTF */ 9915 *btf_type_id = ret; 9916 return 0; 9917 } 9918 if (ret != -ENOENT) 9919 return ret; 9920 9921 ret = load_module_btfs(obj); 9922 if (ret) 9923 return ret; 9924 9925 for (i = 0; i < obj->btf_module_cnt; i++) { 9926 const struct module_btf *mod = &obj->btf_modules[i]; 9927 9928 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9929 if (ret > 0) { 9930 *btf_obj_fd = mod->fd; 9931 *btf_type_id = ret; 9932 return 0; 9933 } 9934 if (ret == -ENOENT) 9935 continue; 9936 9937 return ret; 9938 } 9939 9940 return -ESRCH; 9941 } 9942 9943 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9944 int *btf_obj_fd, int *btf_type_id) 9945 { 9946 enum bpf_attach_type attach_type = prog->expected_attach_type; 9947 __u32 attach_prog_fd = prog->attach_prog_fd; 9948 int err = 0; 9949 9950 /* BPF program's BTF ID */ 9951 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9952 if (!attach_prog_fd) { 9953 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9954 return -EINVAL; 9955 } 9956 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9957 if (err < 0) { 9958 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9959 prog->name, attach_prog_fd, attach_name, err); 9960 return err; 9961 } 9962 *btf_obj_fd = 0; 9963 *btf_type_id = err; 9964 return 0; 9965 } 9966 9967 /* kernel/module BTF ID */ 9968 if (prog->obj->gen_loader) { 9969 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9970 *btf_obj_fd = 0; 9971 *btf_type_id = 1; 9972 } else { 9973 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9974 } 9975 if (err) { 9976 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9977 prog->name, attach_name, err); 9978 return err; 9979 } 9980 return 0; 9981 } 9982 9983 int libbpf_attach_type_by_name(const char *name, 9984 enum bpf_attach_type *attach_type) 9985 { 9986 char *type_names; 9987 const struct bpf_sec_def *sec_def; 9988 9989 if (!name) 9990 return libbpf_err(-EINVAL); 9991 9992 sec_def = find_sec_def(name); 9993 if (!sec_def) { 9994 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9995 type_names = libbpf_get_type_names(true); 9996 if (type_names != NULL) { 9997 pr_debug("attachable section(type) names are:%s\n", type_names); 9998 free(type_names); 9999 } 10000 10001 return libbpf_err(-EINVAL); 10002 } 10003 10004 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 10005 return libbpf_err(-EINVAL); 10006 if (!(sec_def->cookie & SEC_ATTACHABLE)) 10007 return libbpf_err(-EINVAL); 10008 10009 *attach_type = sec_def->expected_attach_type; 10010 return 0; 10011 } 10012 10013 int bpf_map__fd(const struct bpf_map *map) 10014 { 10015 if (!map) 10016 return libbpf_err(-EINVAL); 10017 if (!map_is_created(map)) 10018 return -1; 10019 return map->fd; 10020 } 10021 10022 static bool map_uses_real_name(const struct bpf_map *map) 10023 { 10024 /* Since libbpf started to support custom .data.* and .rodata.* maps, 10025 * their user-visible name differs from kernel-visible name. Users see 10026 * such map's corresponding ELF section name as a map name. 10027 * This check distinguishes .data/.rodata from .data.* and .rodata.* 10028 * maps to know which name has to be returned to the user. 10029 */ 10030 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 10031 return true; 10032 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 10033 return true; 10034 return false; 10035 } 10036 10037 const char *bpf_map__name(const struct bpf_map *map) 10038 { 10039 if (!map) 10040 return NULL; 10041 10042 if (map_uses_real_name(map)) 10043 return map->real_name; 10044 10045 return map->name; 10046 } 10047 10048 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 10049 { 10050 return map->def.type; 10051 } 10052 10053 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 10054 { 10055 if (map_is_created(map)) 10056 return libbpf_err(-EBUSY); 10057 map->def.type = type; 10058 return 0; 10059 } 10060 10061 __u32 bpf_map__map_flags(const struct bpf_map *map) 10062 { 10063 return map->def.map_flags; 10064 } 10065 10066 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 10067 { 10068 if (map_is_created(map)) 10069 return libbpf_err(-EBUSY); 10070 map->def.map_flags = flags; 10071 return 0; 10072 } 10073 10074 __u64 bpf_map__map_extra(const struct bpf_map *map) 10075 { 10076 return map->map_extra; 10077 } 10078 10079 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 10080 { 10081 if (map_is_created(map)) 10082 return libbpf_err(-EBUSY); 10083 map->map_extra = map_extra; 10084 return 0; 10085 } 10086 10087 __u32 bpf_map__numa_node(const struct bpf_map *map) 10088 { 10089 return map->numa_node; 10090 } 10091 10092 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 10093 { 10094 if (map_is_created(map)) 10095 return libbpf_err(-EBUSY); 10096 map->numa_node = numa_node; 10097 return 0; 10098 } 10099 10100 __u32 bpf_map__key_size(const struct bpf_map *map) 10101 { 10102 return map->def.key_size; 10103 } 10104 10105 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 10106 { 10107 if (map_is_created(map)) 10108 return libbpf_err(-EBUSY); 10109 map->def.key_size = size; 10110 return 0; 10111 } 10112 10113 __u32 bpf_map__value_size(const struct bpf_map *map) 10114 { 10115 return map->def.value_size; 10116 } 10117 10118 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 10119 { 10120 struct btf *btf; 10121 struct btf_type *datasec_type, *var_type; 10122 struct btf_var_secinfo *var; 10123 const struct btf_type *array_type; 10124 const struct btf_array *array; 10125 int vlen, element_sz, new_array_id; 10126 __u32 nr_elements; 10127 10128 /* check btf existence */ 10129 btf = bpf_object__btf(map->obj); 10130 if (!btf) 10131 return -ENOENT; 10132 10133 /* verify map is datasec */ 10134 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 10135 if (!btf_is_datasec(datasec_type)) { 10136 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 10137 bpf_map__name(map)); 10138 return -EINVAL; 10139 } 10140 10141 /* verify datasec has at least one var */ 10142 vlen = btf_vlen(datasec_type); 10143 if (vlen == 0) { 10144 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 10145 bpf_map__name(map)); 10146 return -EINVAL; 10147 } 10148 10149 /* verify last var in the datasec is an array */ 10150 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10151 var_type = btf_type_by_id(btf, var->type); 10152 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 10153 if (!btf_is_array(array_type)) { 10154 pr_warn("map '%s': cannot be resized, last var must be an array\n", 10155 bpf_map__name(map)); 10156 return -EINVAL; 10157 } 10158 10159 /* verify request size aligns with array */ 10160 array = btf_array(array_type); 10161 element_sz = btf__resolve_size(btf, array->type); 10162 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 10163 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 10164 bpf_map__name(map), element_sz, size); 10165 return -EINVAL; 10166 } 10167 10168 /* create a new array based on the existing array, but with new length */ 10169 nr_elements = (size - var->offset) / element_sz; 10170 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 10171 if (new_array_id < 0) 10172 return new_array_id; 10173 10174 /* adding a new btf type invalidates existing pointers to btf objects, 10175 * so refresh pointers before proceeding 10176 */ 10177 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 10178 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10179 var_type = btf_type_by_id(btf, var->type); 10180 10181 /* finally update btf info */ 10182 datasec_type->size = size; 10183 var->size = size - var->offset; 10184 var_type->type = new_array_id; 10185 10186 return 0; 10187 } 10188 10189 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 10190 { 10191 if (map->obj->loaded || map->reused) 10192 return libbpf_err(-EBUSY); 10193 10194 if (map->mmaped) { 10195 int err; 10196 size_t mmap_old_sz, mmap_new_sz; 10197 10198 mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 10199 mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries); 10200 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 10201 if (err) { 10202 pr_warn("map '%s': failed to resize memory-mapped region: %d\n", 10203 bpf_map__name(map), err); 10204 return err; 10205 } 10206 err = map_btf_datasec_resize(map, size); 10207 if (err && err != -ENOENT) { 10208 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n", 10209 bpf_map__name(map), err); 10210 map->btf_value_type_id = 0; 10211 map->btf_key_type_id = 0; 10212 } 10213 } 10214 10215 map->def.value_size = size; 10216 return 0; 10217 } 10218 10219 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 10220 { 10221 return map ? map->btf_key_type_id : 0; 10222 } 10223 10224 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 10225 { 10226 return map ? map->btf_value_type_id : 0; 10227 } 10228 10229 int bpf_map__set_initial_value(struct bpf_map *map, 10230 const void *data, size_t size) 10231 { 10232 if (map->obj->loaded || map->reused) 10233 return libbpf_err(-EBUSY); 10234 10235 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 10236 size != map->def.value_size) 10237 return libbpf_err(-EINVAL); 10238 10239 memcpy(map->mmaped, data, size); 10240 return 0; 10241 } 10242 10243 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 10244 { 10245 if (!map->mmaped) 10246 return NULL; 10247 *psize = map->def.value_size; 10248 return map->mmaped; 10249 } 10250 10251 bool bpf_map__is_internal(const struct bpf_map *map) 10252 { 10253 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 10254 } 10255 10256 __u32 bpf_map__ifindex(const struct bpf_map *map) 10257 { 10258 return map->map_ifindex; 10259 } 10260 10261 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 10262 { 10263 if (map_is_created(map)) 10264 return libbpf_err(-EBUSY); 10265 map->map_ifindex = ifindex; 10266 return 0; 10267 } 10268 10269 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 10270 { 10271 if (!bpf_map_type__is_map_in_map(map->def.type)) { 10272 pr_warn("error: unsupported map type\n"); 10273 return libbpf_err(-EINVAL); 10274 } 10275 if (map->inner_map_fd != -1) { 10276 pr_warn("error: inner_map_fd already specified\n"); 10277 return libbpf_err(-EINVAL); 10278 } 10279 if (map->inner_map) { 10280 bpf_map__destroy(map->inner_map); 10281 zfree(&map->inner_map); 10282 } 10283 map->inner_map_fd = fd; 10284 return 0; 10285 } 10286 10287 static struct bpf_map * 10288 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 10289 { 10290 ssize_t idx; 10291 struct bpf_map *s, *e; 10292 10293 if (!obj || !obj->maps) 10294 return errno = EINVAL, NULL; 10295 10296 s = obj->maps; 10297 e = obj->maps + obj->nr_maps; 10298 10299 if ((m < s) || (m >= e)) { 10300 pr_warn("error in %s: map handler doesn't belong to object\n", 10301 __func__); 10302 return errno = EINVAL, NULL; 10303 } 10304 10305 idx = (m - obj->maps) + i; 10306 if (idx >= obj->nr_maps || idx < 0) 10307 return NULL; 10308 return &obj->maps[idx]; 10309 } 10310 10311 struct bpf_map * 10312 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 10313 { 10314 if (prev == NULL) 10315 return obj->maps; 10316 10317 return __bpf_map__iter(prev, obj, 1); 10318 } 10319 10320 struct bpf_map * 10321 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 10322 { 10323 if (next == NULL) { 10324 if (!obj->nr_maps) 10325 return NULL; 10326 return obj->maps + obj->nr_maps - 1; 10327 } 10328 10329 return __bpf_map__iter(next, obj, -1); 10330 } 10331 10332 struct bpf_map * 10333 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 10334 { 10335 struct bpf_map *pos; 10336 10337 bpf_object__for_each_map(pos, obj) { 10338 /* if it's a special internal map name (which always starts 10339 * with dot) then check if that special name matches the 10340 * real map name (ELF section name) 10341 */ 10342 if (name[0] == '.') { 10343 if (pos->real_name && strcmp(pos->real_name, name) == 0) 10344 return pos; 10345 continue; 10346 } 10347 /* otherwise map name has to be an exact match */ 10348 if (map_uses_real_name(pos)) { 10349 if (strcmp(pos->real_name, name) == 0) 10350 return pos; 10351 continue; 10352 } 10353 if (strcmp(pos->name, name) == 0) 10354 return pos; 10355 } 10356 return errno = ENOENT, NULL; 10357 } 10358 10359 int 10360 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 10361 { 10362 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 10363 } 10364 10365 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 10366 size_t value_sz, bool check_value_sz) 10367 { 10368 if (!map_is_created(map)) /* map is not yet created */ 10369 return -ENOENT; 10370 10371 if (map->def.key_size != key_sz) { 10372 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 10373 map->name, key_sz, map->def.key_size); 10374 return -EINVAL; 10375 } 10376 10377 if (!check_value_sz) 10378 return 0; 10379 10380 switch (map->def.type) { 10381 case BPF_MAP_TYPE_PERCPU_ARRAY: 10382 case BPF_MAP_TYPE_PERCPU_HASH: 10383 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10384 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 10385 int num_cpu = libbpf_num_possible_cpus(); 10386 size_t elem_sz = roundup(map->def.value_size, 8); 10387 10388 if (value_sz != num_cpu * elem_sz) { 10389 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 10390 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 10391 return -EINVAL; 10392 } 10393 break; 10394 } 10395 default: 10396 if (map->def.value_size != value_sz) { 10397 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 10398 map->name, value_sz, map->def.value_size); 10399 return -EINVAL; 10400 } 10401 break; 10402 } 10403 return 0; 10404 } 10405 10406 int bpf_map__lookup_elem(const struct bpf_map *map, 10407 const void *key, size_t key_sz, 10408 void *value, size_t value_sz, __u64 flags) 10409 { 10410 int err; 10411 10412 err = validate_map_op(map, key_sz, value_sz, true); 10413 if (err) 10414 return libbpf_err(err); 10415 10416 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10417 } 10418 10419 int bpf_map__update_elem(const struct bpf_map *map, 10420 const void *key, size_t key_sz, 10421 const void *value, size_t value_sz, __u64 flags) 10422 { 10423 int err; 10424 10425 err = validate_map_op(map, key_sz, value_sz, true); 10426 if (err) 10427 return libbpf_err(err); 10428 10429 return bpf_map_update_elem(map->fd, key, value, flags); 10430 } 10431 10432 int bpf_map__delete_elem(const struct bpf_map *map, 10433 const void *key, size_t key_sz, __u64 flags) 10434 { 10435 int err; 10436 10437 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10438 if (err) 10439 return libbpf_err(err); 10440 10441 return bpf_map_delete_elem_flags(map->fd, key, flags); 10442 } 10443 10444 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10445 const void *key, size_t key_sz, 10446 void *value, size_t value_sz, __u64 flags) 10447 { 10448 int err; 10449 10450 err = validate_map_op(map, key_sz, value_sz, true); 10451 if (err) 10452 return libbpf_err(err); 10453 10454 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10455 } 10456 10457 int bpf_map__get_next_key(const struct bpf_map *map, 10458 const void *cur_key, void *next_key, size_t key_sz) 10459 { 10460 int err; 10461 10462 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10463 if (err) 10464 return libbpf_err(err); 10465 10466 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10467 } 10468 10469 long libbpf_get_error(const void *ptr) 10470 { 10471 if (!IS_ERR_OR_NULL(ptr)) 10472 return 0; 10473 10474 if (IS_ERR(ptr)) 10475 errno = -PTR_ERR(ptr); 10476 10477 /* If ptr == NULL, then errno should be already set by the failing 10478 * API, because libbpf never returns NULL on success and it now always 10479 * sets errno on error. So no extra errno handling for ptr == NULL 10480 * case. 10481 */ 10482 return -errno; 10483 } 10484 10485 /* Replace link's underlying BPF program with the new one */ 10486 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10487 { 10488 int ret; 10489 10490 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 10491 return libbpf_err_errno(ret); 10492 } 10493 10494 /* Release "ownership" of underlying BPF resource (typically, BPF program 10495 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10496 * link, when destructed through bpf_link__destroy() call won't attempt to 10497 * detach/unregisted that BPF resource. This is useful in situations where, 10498 * say, attached BPF program has to outlive userspace program that attached it 10499 * in the system. Depending on type of BPF program, though, there might be 10500 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10501 * exit of userspace program doesn't trigger automatic detachment and clean up 10502 * inside the kernel. 10503 */ 10504 void bpf_link__disconnect(struct bpf_link *link) 10505 { 10506 link->disconnected = true; 10507 } 10508 10509 int bpf_link__destroy(struct bpf_link *link) 10510 { 10511 int err = 0; 10512 10513 if (IS_ERR_OR_NULL(link)) 10514 return 0; 10515 10516 if (!link->disconnected && link->detach) 10517 err = link->detach(link); 10518 if (link->pin_path) 10519 free(link->pin_path); 10520 if (link->dealloc) 10521 link->dealloc(link); 10522 else 10523 free(link); 10524 10525 return libbpf_err(err); 10526 } 10527 10528 int bpf_link__fd(const struct bpf_link *link) 10529 { 10530 return link->fd; 10531 } 10532 10533 const char *bpf_link__pin_path(const struct bpf_link *link) 10534 { 10535 return link->pin_path; 10536 } 10537 10538 static int bpf_link__detach_fd(struct bpf_link *link) 10539 { 10540 return libbpf_err_errno(close(link->fd)); 10541 } 10542 10543 struct bpf_link *bpf_link__open(const char *path) 10544 { 10545 struct bpf_link *link; 10546 int fd; 10547 10548 fd = bpf_obj_get(path); 10549 if (fd < 0) { 10550 fd = -errno; 10551 pr_warn("failed to open link at %s: %d\n", path, fd); 10552 return libbpf_err_ptr(fd); 10553 } 10554 10555 link = calloc(1, sizeof(*link)); 10556 if (!link) { 10557 close(fd); 10558 return libbpf_err_ptr(-ENOMEM); 10559 } 10560 link->detach = &bpf_link__detach_fd; 10561 link->fd = fd; 10562 10563 link->pin_path = strdup(path); 10564 if (!link->pin_path) { 10565 bpf_link__destroy(link); 10566 return libbpf_err_ptr(-ENOMEM); 10567 } 10568 10569 return link; 10570 } 10571 10572 int bpf_link__detach(struct bpf_link *link) 10573 { 10574 return bpf_link_detach(link->fd) ? -errno : 0; 10575 } 10576 10577 int bpf_link__pin(struct bpf_link *link, const char *path) 10578 { 10579 int err; 10580 10581 if (link->pin_path) 10582 return libbpf_err(-EBUSY); 10583 err = make_parent_dir(path); 10584 if (err) 10585 return libbpf_err(err); 10586 err = check_path(path); 10587 if (err) 10588 return libbpf_err(err); 10589 10590 link->pin_path = strdup(path); 10591 if (!link->pin_path) 10592 return libbpf_err(-ENOMEM); 10593 10594 if (bpf_obj_pin(link->fd, link->pin_path)) { 10595 err = -errno; 10596 zfree(&link->pin_path); 10597 return libbpf_err(err); 10598 } 10599 10600 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10601 return 0; 10602 } 10603 10604 int bpf_link__unpin(struct bpf_link *link) 10605 { 10606 int err; 10607 10608 if (!link->pin_path) 10609 return libbpf_err(-EINVAL); 10610 10611 err = unlink(link->pin_path); 10612 if (err != 0) 10613 return -errno; 10614 10615 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10616 zfree(&link->pin_path); 10617 return 0; 10618 } 10619 10620 struct bpf_link_perf { 10621 struct bpf_link link; 10622 int perf_event_fd; 10623 /* legacy kprobe support: keep track of probe identifier and type */ 10624 char *legacy_probe_name; 10625 bool legacy_is_kprobe; 10626 bool legacy_is_retprobe; 10627 }; 10628 10629 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10630 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10631 10632 static int bpf_link_perf_detach(struct bpf_link *link) 10633 { 10634 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10635 int err = 0; 10636 10637 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10638 err = -errno; 10639 10640 if (perf_link->perf_event_fd != link->fd) 10641 close(perf_link->perf_event_fd); 10642 close(link->fd); 10643 10644 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10645 if (perf_link->legacy_probe_name) { 10646 if (perf_link->legacy_is_kprobe) { 10647 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10648 perf_link->legacy_is_retprobe); 10649 } else { 10650 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10651 perf_link->legacy_is_retprobe); 10652 } 10653 } 10654 10655 return err; 10656 } 10657 10658 static void bpf_link_perf_dealloc(struct bpf_link *link) 10659 { 10660 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10661 10662 free(perf_link->legacy_probe_name); 10663 free(perf_link); 10664 } 10665 10666 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10667 const struct bpf_perf_event_opts *opts) 10668 { 10669 char errmsg[STRERR_BUFSIZE]; 10670 struct bpf_link_perf *link; 10671 int prog_fd, link_fd = -1, err; 10672 bool force_ioctl_attach; 10673 10674 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10675 return libbpf_err_ptr(-EINVAL); 10676 10677 if (pfd < 0) { 10678 pr_warn("prog '%s': invalid perf event FD %d\n", 10679 prog->name, pfd); 10680 return libbpf_err_ptr(-EINVAL); 10681 } 10682 prog_fd = bpf_program__fd(prog); 10683 if (prog_fd < 0) { 10684 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10685 prog->name); 10686 return libbpf_err_ptr(-EINVAL); 10687 } 10688 10689 link = calloc(1, sizeof(*link)); 10690 if (!link) 10691 return libbpf_err_ptr(-ENOMEM); 10692 link->link.detach = &bpf_link_perf_detach; 10693 link->link.dealloc = &bpf_link_perf_dealloc; 10694 link->perf_event_fd = pfd; 10695 10696 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10697 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10698 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10699 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10700 10701 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10702 if (link_fd < 0) { 10703 err = -errno; 10704 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10705 prog->name, pfd, 10706 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10707 goto err_out; 10708 } 10709 link->link.fd = link_fd; 10710 } else { 10711 if (OPTS_GET(opts, bpf_cookie, 0)) { 10712 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10713 err = -EOPNOTSUPP; 10714 goto err_out; 10715 } 10716 10717 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10718 err = -errno; 10719 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10720 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10721 if (err == -EPROTO) 10722 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10723 prog->name, pfd); 10724 goto err_out; 10725 } 10726 link->link.fd = pfd; 10727 } 10728 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10729 err = -errno; 10730 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10731 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10732 goto err_out; 10733 } 10734 10735 return &link->link; 10736 err_out: 10737 if (link_fd >= 0) 10738 close(link_fd); 10739 free(link); 10740 return libbpf_err_ptr(err); 10741 } 10742 10743 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10744 { 10745 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10746 } 10747 10748 /* 10749 * this function is expected to parse integer in the range of [0, 2^31-1] from 10750 * given file using scanf format string fmt. If actual parsed value is 10751 * negative, the result might be indistinguishable from error 10752 */ 10753 static int parse_uint_from_file(const char *file, const char *fmt) 10754 { 10755 char buf[STRERR_BUFSIZE]; 10756 int err, ret; 10757 FILE *f; 10758 10759 f = fopen(file, "re"); 10760 if (!f) { 10761 err = -errno; 10762 pr_debug("failed to open '%s': %s\n", file, 10763 libbpf_strerror_r(err, buf, sizeof(buf))); 10764 return err; 10765 } 10766 err = fscanf(f, fmt, &ret); 10767 if (err != 1) { 10768 err = err == EOF ? -EIO : -errno; 10769 pr_debug("failed to parse '%s': %s\n", file, 10770 libbpf_strerror_r(err, buf, sizeof(buf))); 10771 fclose(f); 10772 return err; 10773 } 10774 fclose(f); 10775 return ret; 10776 } 10777 10778 static int determine_kprobe_perf_type(void) 10779 { 10780 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10781 10782 return parse_uint_from_file(file, "%d\n"); 10783 } 10784 10785 static int determine_uprobe_perf_type(void) 10786 { 10787 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10788 10789 return parse_uint_from_file(file, "%d\n"); 10790 } 10791 10792 static int determine_kprobe_retprobe_bit(void) 10793 { 10794 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10795 10796 return parse_uint_from_file(file, "config:%d\n"); 10797 } 10798 10799 static int determine_uprobe_retprobe_bit(void) 10800 { 10801 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10802 10803 return parse_uint_from_file(file, "config:%d\n"); 10804 } 10805 10806 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10807 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10808 10809 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10810 uint64_t offset, int pid, size_t ref_ctr_off) 10811 { 10812 const size_t attr_sz = sizeof(struct perf_event_attr); 10813 struct perf_event_attr attr; 10814 char errmsg[STRERR_BUFSIZE]; 10815 int type, pfd; 10816 10817 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10818 return -EINVAL; 10819 10820 memset(&attr, 0, attr_sz); 10821 10822 type = uprobe ? determine_uprobe_perf_type() 10823 : determine_kprobe_perf_type(); 10824 if (type < 0) { 10825 pr_warn("failed to determine %s perf type: %s\n", 10826 uprobe ? "uprobe" : "kprobe", 10827 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10828 return type; 10829 } 10830 if (retprobe) { 10831 int bit = uprobe ? determine_uprobe_retprobe_bit() 10832 : determine_kprobe_retprobe_bit(); 10833 10834 if (bit < 0) { 10835 pr_warn("failed to determine %s retprobe bit: %s\n", 10836 uprobe ? "uprobe" : "kprobe", 10837 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10838 return bit; 10839 } 10840 attr.config |= 1 << bit; 10841 } 10842 attr.size = attr_sz; 10843 attr.type = type; 10844 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10845 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10846 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10847 10848 /* pid filter is meaningful only for uprobes */ 10849 pfd = syscall(__NR_perf_event_open, &attr, 10850 pid < 0 ? -1 : pid /* pid */, 10851 pid == -1 ? 0 : -1 /* cpu */, 10852 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10853 return pfd >= 0 ? pfd : -errno; 10854 } 10855 10856 static int append_to_file(const char *file, const char *fmt, ...) 10857 { 10858 int fd, n, err = 0; 10859 va_list ap; 10860 char buf[1024]; 10861 10862 va_start(ap, fmt); 10863 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10864 va_end(ap); 10865 10866 if (n < 0 || n >= sizeof(buf)) 10867 return -EINVAL; 10868 10869 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10870 if (fd < 0) 10871 return -errno; 10872 10873 if (write(fd, buf, n) < 0) 10874 err = -errno; 10875 10876 close(fd); 10877 return err; 10878 } 10879 10880 #define DEBUGFS "/sys/kernel/debug/tracing" 10881 #define TRACEFS "/sys/kernel/tracing" 10882 10883 static bool use_debugfs(void) 10884 { 10885 static int has_debugfs = -1; 10886 10887 if (has_debugfs < 0) 10888 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 10889 10890 return has_debugfs == 1; 10891 } 10892 10893 static const char *tracefs_path(void) 10894 { 10895 return use_debugfs() ? DEBUGFS : TRACEFS; 10896 } 10897 10898 static const char *tracefs_kprobe_events(void) 10899 { 10900 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 10901 } 10902 10903 static const char *tracefs_uprobe_events(void) 10904 { 10905 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 10906 } 10907 10908 static const char *tracefs_available_filter_functions(void) 10909 { 10910 return use_debugfs() ? DEBUGFS"/available_filter_functions" 10911 : TRACEFS"/available_filter_functions"; 10912 } 10913 10914 static const char *tracefs_available_filter_functions_addrs(void) 10915 { 10916 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 10917 : TRACEFS"/available_filter_functions_addrs"; 10918 } 10919 10920 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10921 const char *kfunc_name, size_t offset) 10922 { 10923 static int index = 0; 10924 int i; 10925 10926 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10927 __sync_fetch_and_add(&index, 1)); 10928 10929 /* sanitize binary_path in the probe name */ 10930 for (i = 0; buf[i]; i++) { 10931 if (!isalnum(buf[i])) 10932 buf[i] = '_'; 10933 } 10934 } 10935 10936 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10937 const char *kfunc_name, size_t offset) 10938 { 10939 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 10940 retprobe ? 'r' : 'p', 10941 retprobe ? "kretprobes" : "kprobes", 10942 probe_name, kfunc_name, offset); 10943 } 10944 10945 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10946 { 10947 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10948 retprobe ? "kretprobes" : "kprobes", probe_name); 10949 } 10950 10951 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10952 { 10953 char file[256]; 10954 10955 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10956 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10957 10958 return parse_uint_from_file(file, "%d\n"); 10959 } 10960 10961 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10962 const char *kfunc_name, size_t offset, int pid) 10963 { 10964 const size_t attr_sz = sizeof(struct perf_event_attr); 10965 struct perf_event_attr attr; 10966 char errmsg[STRERR_BUFSIZE]; 10967 int type, pfd, err; 10968 10969 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10970 if (err < 0) { 10971 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10972 kfunc_name, offset, 10973 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10974 return err; 10975 } 10976 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10977 if (type < 0) { 10978 err = type; 10979 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10980 kfunc_name, offset, 10981 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10982 goto err_clean_legacy; 10983 } 10984 10985 memset(&attr, 0, attr_sz); 10986 attr.size = attr_sz; 10987 attr.config = type; 10988 attr.type = PERF_TYPE_TRACEPOINT; 10989 10990 pfd = syscall(__NR_perf_event_open, &attr, 10991 pid < 0 ? -1 : pid, /* pid */ 10992 pid == -1 ? 0 : -1, /* cpu */ 10993 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10994 if (pfd < 0) { 10995 err = -errno; 10996 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10997 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10998 goto err_clean_legacy; 10999 } 11000 return pfd; 11001 11002 err_clean_legacy: 11003 /* Clear the newly added legacy kprobe_event */ 11004 remove_kprobe_event_legacy(probe_name, retprobe); 11005 return err; 11006 } 11007 11008 static const char *arch_specific_syscall_pfx(void) 11009 { 11010 #if defined(__x86_64__) 11011 return "x64"; 11012 #elif defined(__i386__) 11013 return "ia32"; 11014 #elif defined(__s390x__) 11015 return "s390x"; 11016 #elif defined(__s390__) 11017 return "s390"; 11018 #elif defined(__arm__) 11019 return "arm"; 11020 #elif defined(__aarch64__) 11021 return "arm64"; 11022 #elif defined(__mips__) 11023 return "mips"; 11024 #elif defined(__riscv) 11025 return "riscv"; 11026 #elif defined(__powerpc__) 11027 return "powerpc"; 11028 #elif defined(__powerpc64__) 11029 return "powerpc64"; 11030 #else 11031 return NULL; 11032 #endif 11033 } 11034 11035 static int probe_kern_syscall_wrapper(void) 11036 { 11037 char syscall_name[64]; 11038 const char *ksys_pfx; 11039 11040 ksys_pfx = arch_specific_syscall_pfx(); 11041 if (!ksys_pfx) 11042 return 0; 11043 11044 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 11045 11046 if (determine_kprobe_perf_type() >= 0) { 11047 int pfd; 11048 11049 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 11050 if (pfd >= 0) 11051 close(pfd); 11052 11053 return pfd >= 0 ? 1 : 0; 11054 } else { /* legacy mode */ 11055 char probe_name[128]; 11056 11057 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 11058 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 11059 return 0; 11060 11061 (void)remove_kprobe_event_legacy(probe_name, false); 11062 return 1; 11063 } 11064 } 11065 11066 struct bpf_link * 11067 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 11068 const char *func_name, 11069 const struct bpf_kprobe_opts *opts) 11070 { 11071 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11072 enum probe_attach_mode attach_mode; 11073 char errmsg[STRERR_BUFSIZE]; 11074 char *legacy_probe = NULL; 11075 struct bpf_link *link; 11076 size_t offset; 11077 bool retprobe, legacy; 11078 int pfd, err; 11079 11080 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 11081 return libbpf_err_ptr(-EINVAL); 11082 11083 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11084 retprobe = OPTS_GET(opts, retprobe, false); 11085 offset = OPTS_GET(opts, offset, 0); 11086 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11087 11088 legacy = determine_kprobe_perf_type() < 0; 11089 switch (attach_mode) { 11090 case PROBE_ATTACH_MODE_LEGACY: 11091 legacy = true; 11092 pe_opts.force_ioctl_attach = true; 11093 break; 11094 case PROBE_ATTACH_MODE_PERF: 11095 if (legacy) 11096 return libbpf_err_ptr(-ENOTSUP); 11097 pe_opts.force_ioctl_attach = true; 11098 break; 11099 case PROBE_ATTACH_MODE_LINK: 11100 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11101 return libbpf_err_ptr(-ENOTSUP); 11102 break; 11103 case PROBE_ATTACH_MODE_DEFAULT: 11104 break; 11105 default: 11106 return libbpf_err_ptr(-EINVAL); 11107 } 11108 11109 if (!legacy) { 11110 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 11111 func_name, offset, 11112 -1 /* pid */, 0 /* ref_ctr_off */); 11113 } else { 11114 char probe_name[256]; 11115 11116 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 11117 func_name, offset); 11118 11119 legacy_probe = strdup(probe_name); 11120 if (!legacy_probe) 11121 return libbpf_err_ptr(-ENOMEM); 11122 11123 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 11124 offset, -1 /* pid */); 11125 } 11126 if (pfd < 0) { 11127 err = -errno; 11128 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 11129 prog->name, retprobe ? "kretprobe" : "kprobe", 11130 func_name, offset, 11131 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11132 goto err_out; 11133 } 11134 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11135 err = libbpf_get_error(link); 11136 if (err) { 11137 close(pfd); 11138 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 11139 prog->name, retprobe ? "kretprobe" : "kprobe", 11140 func_name, offset, 11141 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11142 goto err_clean_legacy; 11143 } 11144 if (legacy) { 11145 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11146 11147 perf_link->legacy_probe_name = legacy_probe; 11148 perf_link->legacy_is_kprobe = true; 11149 perf_link->legacy_is_retprobe = retprobe; 11150 } 11151 11152 return link; 11153 11154 err_clean_legacy: 11155 if (legacy) 11156 remove_kprobe_event_legacy(legacy_probe, retprobe); 11157 err_out: 11158 free(legacy_probe); 11159 return libbpf_err_ptr(err); 11160 } 11161 11162 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 11163 bool retprobe, 11164 const char *func_name) 11165 { 11166 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 11167 .retprobe = retprobe, 11168 ); 11169 11170 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 11171 } 11172 11173 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 11174 const char *syscall_name, 11175 const struct bpf_ksyscall_opts *opts) 11176 { 11177 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 11178 char func_name[128]; 11179 11180 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 11181 return libbpf_err_ptr(-EINVAL); 11182 11183 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 11184 /* arch_specific_syscall_pfx() should never return NULL here 11185 * because it is guarded by kernel_supports(). However, since 11186 * compiler does not know that we have an explicit conditional 11187 * as well. 11188 */ 11189 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 11190 arch_specific_syscall_pfx() ? : "", syscall_name); 11191 } else { 11192 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 11193 } 11194 11195 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 11196 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11197 11198 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 11199 } 11200 11201 /* Adapted from perf/util/string.c */ 11202 bool glob_match(const char *str, const char *pat) 11203 { 11204 while (*str && *pat && *pat != '*') { 11205 if (*pat == '?') { /* Matches any single character */ 11206 str++; 11207 pat++; 11208 continue; 11209 } 11210 if (*str != *pat) 11211 return false; 11212 str++; 11213 pat++; 11214 } 11215 /* Check wild card */ 11216 if (*pat == '*') { 11217 while (*pat == '*') 11218 pat++; 11219 if (!*pat) /* Tail wild card matches all */ 11220 return true; 11221 while (*str) 11222 if (glob_match(str++, pat)) 11223 return true; 11224 } 11225 return !*str && !*pat; 11226 } 11227 11228 struct kprobe_multi_resolve { 11229 const char *pattern; 11230 unsigned long *addrs; 11231 size_t cap; 11232 size_t cnt; 11233 }; 11234 11235 struct avail_kallsyms_data { 11236 char **syms; 11237 size_t cnt; 11238 struct kprobe_multi_resolve *res; 11239 }; 11240 11241 static int avail_func_cmp(const void *a, const void *b) 11242 { 11243 return strcmp(*(const char **)a, *(const char **)b); 11244 } 11245 11246 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 11247 const char *sym_name, void *ctx) 11248 { 11249 struct avail_kallsyms_data *data = ctx; 11250 struct kprobe_multi_resolve *res = data->res; 11251 int err; 11252 11253 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 11254 return 0; 11255 11256 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 11257 if (err) 11258 return err; 11259 11260 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11261 return 0; 11262 } 11263 11264 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 11265 { 11266 const char *available_functions_file = tracefs_available_filter_functions(); 11267 struct avail_kallsyms_data data; 11268 char sym_name[500]; 11269 FILE *f; 11270 int err = 0, ret, i; 11271 char **syms = NULL; 11272 size_t cap = 0, cnt = 0; 11273 11274 f = fopen(available_functions_file, "re"); 11275 if (!f) { 11276 err = -errno; 11277 pr_warn("failed to open %s: %d\n", available_functions_file, err); 11278 return err; 11279 } 11280 11281 while (true) { 11282 char *name; 11283 11284 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 11285 if (ret == EOF && feof(f)) 11286 break; 11287 11288 if (ret != 1) { 11289 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 11290 err = -EINVAL; 11291 goto cleanup; 11292 } 11293 11294 if (!glob_match(sym_name, res->pattern)) 11295 continue; 11296 11297 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 11298 if (err) 11299 goto cleanup; 11300 11301 name = strdup(sym_name); 11302 if (!name) { 11303 err = -errno; 11304 goto cleanup; 11305 } 11306 11307 syms[cnt++] = name; 11308 } 11309 11310 /* no entries found, bail out */ 11311 if (cnt == 0) { 11312 err = -ENOENT; 11313 goto cleanup; 11314 } 11315 11316 /* sort available functions */ 11317 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 11318 11319 data.syms = syms; 11320 data.res = res; 11321 data.cnt = cnt; 11322 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 11323 11324 if (res->cnt == 0) 11325 err = -ENOENT; 11326 11327 cleanup: 11328 for (i = 0; i < cnt; i++) 11329 free((char *)syms[i]); 11330 free(syms); 11331 11332 fclose(f); 11333 return err; 11334 } 11335 11336 static bool has_available_filter_functions_addrs(void) 11337 { 11338 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 11339 } 11340 11341 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 11342 { 11343 const char *available_path = tracefs_available_filter_functions_addrs(); 11344 char sym_name[500]; 11345 FILE *f; 11346 int ret, err = 0; 11347 unsigned long long sym_addr; 11348 11349 f = fopen(available_path, "re"); 11350 if (!f) { 11351 err = -errno; 11352 pr_warn("failed to open %s: %d\n", available_path, err); 11353 return err; 11354 } 11355 11356 while (true) { 11357 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 11358 if (ret == EOF && feof(f)) 11359 break; 11360 11361 if (ret != 2) { 11362 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 11363 ret); 11364 err = -EINVAL; 11365 goto cleanup; 11366 } 11367 11368 if (!glob_match(sym_name, res->pattern)) 11369 continue; 11370 11371 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 11372 sizeof(*res->addrs), res->cnt + 1); 11373 if (err) 11374 goto cleanup; 11375 11376 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11377 } 11378 11379 if (res->cnt == 0) 11380 err = -ENOENT; 11381 11382 cleanup: 11383 fclose(f); 11384 return err; 11385 } 11386 11387 struct bpf_link * 11388 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 11389 const char *pattern, 11390 const struct bpf_kprobe_multi_opts *opts) 11391 { 11392 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11393 struct kprobe_multi_resolve res = { 11394 .pattern = pattern, 11395 }; 11396 struct bpf_link *link = NULL; 11397 char errmsg[STRERR_BUFSIZE]; 11398 const unsigned long *addrs; 11399 int err, link_fd, prog_fd; 11400 const __u64 *cookies; 11401 const char **syms; 11402 bool retprobe; 11403 size_t cnt; 11404 11405 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 11406 return libbpf_err_ptr(-EINVAL); 11407 11408 syms = OPTS_GET(opts, syms, false); 11409 addrs = OPTS_GET(opts, addrs, false); 11410 cnt = OPTS_GET(opts, cnt, false); 11411 cookies = OPTS_GET(opts, cookies, false); 11412 11413 if (!pattern && !addrs && !syms) 11414 return libbpf_err_ptr(-EINVAL); 11415 if (pattern && (addrs || syms || cookies || cnt)) 11416 return libbpf_err_ptr(-EINVAL); 11417 if (!pattern && !cnt) 11418 return libbpf_err_ptr(-EINVAL); 11419 if (addrs && syms) 11420 return libbpf_err_ptr(-EINVAL); 11421 11422 if (pattern) { 11423 if (has_available_filter_functions_addrs()) 11424 err = libbpf_available_kprobes_parse(&res); 11425 else 11426 err = libbpf_available_kallsyms_parse(&res); 11427 if (err) 11428 goto error; 11429 addrs = res.addrs; 11430 cnt = res.cnt; 11431 } 11432 11433 retprobe = OPTS_GET(opts, retprobe, false); 11434 11435 lopts.kprobe_multi.syms = syms; 11436 lopts.kprobe_multi.addrs = addrs; 11437 lopts.kprobe_multi.cookies = cookies; 11438 lopts.kprobe_multi.cnt = cnt; 11439 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11440 11441 link = calloc(1, sizeof(*link)); 11442 if (!link) { 11443 err = -ENOMEM; 11444 goto error; 11445 } 11446 link->detach = &bpf_link__detach_fd; 11447 11448 prog_fd = bpf_program__fd(prog); 11449 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 11450 if (link_fd < 0) { 11451 err = -errno; 11452 pr_warn("prog '%s': failed to attach: %s\n", 11453 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11454 goto error; 11455 } 11456 link->fd = link_fd; 11457 free(res.addrs); 11458 return link; 11459 11460 error: 11461 free(link); 11462 free(res.addrs); 11463 return libbpf_err_ptr(err); 11464 } 11465 11466 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11467 { 11468 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11469 unsigned long offset = 0; 11470 const char *func_name; 11471 char *func; 11472 int n; 11473 11474 *link = NULL; 11475 11476 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11477 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11478 return 0; 11479 11480 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11481 if (opts.retprobe) 11482 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11483 else 11484 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11485 11486 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11487 if (n < 1) { 11488 pr_warn("kprobe name is invalid: %s\n", func_name); 11489 return -EINVAL; 11490 } 11491 if (opts.retprobe && offset != 0) { 11492 free(func); 11493 pr_warn("kretprobes do not support offset specification\n"); 11494 return -EINVAL; 11495 } 11496 11497 opts.offset = offset; 11498 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11499 free(func); 11500 return libbpf_get_error(*link); 11501 } 11502 11503 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11504 { 11505 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11506 const char *syscall_name; 11507 11508 *link = NULL; 11509 11510 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11511 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11512 return 0; 11513 11514 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11515 if (opts.retprobe) 11516 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11517 else 11518 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11519 11520 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11521 return *link ? 0 : -errno; 11522 } 11523 11524 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11525 { 11526 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11527 const char *spec; 11528 char *pattern; 11529 int n; 11530 11531 *link = NULL; 11532 11533 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11534 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11535 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11536 return 0; 11537 11538 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11539 if (opts.retprobe) 11540 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11541 else 11542 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11543 11544 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11545 if (n < 1) { 11546 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 11547 return -EINVAL; 11548 } 11549 11550 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11551 free(pattern); 11552 return libbpf_get_error(*link); 11553 } 11554 11555 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11556 { 11557 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11558 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11559 int n, ret = -EINVAL; 11560 11561 *link = NULL; 11562 11563 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11564 &probe_type, &binary_path, &func_name); 11565 switch (n) { 11566 case 1: 11567 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11568 ret = 0; 11569 break; 11570 case 3: 11571 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0; 11572 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11573 ret = libbpf_get_error(*link); 11574 break; 11575 default: 11576 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11577 prog->sec_name); 11578 break; 11579 } 11580 free(probe_type); 11581 free(binary_path); 11582 free(func_name); 11583 return ret; 11584 } 11585 11586 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 11587 const char *binary_path, uint64_t offset) 11588 { 11589 int i; 11590 11591 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 11592 11593 /* sanitize binary_path in the probe name */ 11594 for (i = 0; buf[i]; i++) { 11595 if (!isalnum(buf[i])) 11596 buf[i] = '_'; 11597 } 11598 } 11599 11600 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11601 const char *binary_path, size_t offset) 11602 { 11603 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11604 retprobe ? 'r' : 'p', 11605 retprobe ? "uretprobes" : "uprobes", 11606 probe_name, binary_path, offset); 11607 } 11608 11609 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11610 { 11611 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11612 retprobe ? "uretprobes" : "uprobes", probe_name); 11613 } 11614 11615 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11616 { 11617 char file[512]; 11618 11619 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11620 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11621 11622 return parse_uint_from_file(file, "%d\n"); 11623 } 11624 11625 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11626 const char *binary_path, size_t offset, int pid) 11627 { 11628 const size_t attr_sz = sizeof(struct perf_event_attr); 11629 struct perf_event_attr attr; 11630 int type, pfd, err; 11631 11632 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11633 if (err < 0) { 11634 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 11635 binary_path, (size_t)offset, err); 11636 return err; 11637 } 11638 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11639 if (type < 0) { 11640 err = type; 11641 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 11642 binary_path, offset, err); 11643 goto err_clean_legacy; 11644 } 11645 11646 memset(&attr, 0, attr_sz); 11647 attr.size = attr_sz; 11648 attr.config = type; 11649 attr.type = PERF_TYPE_TRACEPOINT; 11650 11651 pfd = syscall(__NR_perf_event_open, &attr, 11652 pid < 0 ? -1 : pid, /* pid */ 11653 pid == -1 ? 0 : -1, /* cpu */ 11654 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11655 if (pfd < 0) { 11656 err = -errno; 11657 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 11658 goto err_clean_legacy; 11659 } 11660 return pfd; 11661 11662 err_clean_legacy: 11663 /* Clear the newly added legacy uprobe_event */ 11664 remove_uprobe_event_legacy(probe_name, retprobe); 11665 return err; 11666 } 11667 11668 /* Find offset of function name in archive specified by path. Currently 11669 * supported are .zip files that do not compress their contents, as used on 11670 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11671 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11672 * library functions. 11673 * 11674 * An overview of the APK format specifically provided here: 11675 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11676 */ 11677 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11678 const char *func_name) 11679 { 11680 struct zip_archive *archive; 11681 struct zip_entry entry; 11682 long ret; 11683 Elf *elf; 11684 11685 archive = zip_archive_open(archive_path); 11686 if (IS_ERR(archive)) { 11687 ret = PTR_ERR(archive); 11688 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11689 return ret; 11690 } 11691 11692 ret = zip_archive_find_entry(archive, file_name, &entry); 11693 if (ret) { 11694 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11695 archive_path, ret); 11696 goto out; 11697 } 11698 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11699 (unsigned long)entry.data_offset); 11700 11701 if (entry.compression) { 11702 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11703 archive_path); 11704 ret = -LIBBPF_ERRNO__FORMAT; 11705 goto out; 11706 } 11707 11708 elf = elf_memory((void *)entry.data, entry.data_length); 11709 if (!elf) { 11710 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11711 elf_errmsg(-1)); 11712 ret = -LIBBPF_ERRNO__LIBELF; 11713 goto out; 11714 } 11715 11716 ret = elf_find_func_offset(elf, file_name, func_name); 11717 if (ret > 0) { 11718 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11719 func_name, file_name, archive_path, entry.data_offset, ret, 11720 ret + entry.data_offset); 11721 ret += entry.data_offset; 11722 } 11723 elf_end(elf); 11724 11725 out: 11726 zip_archive_close(archive); 11727 return ret; 11728 } 11729 11730 static const char *arch_specific_lib_paths(void) 11731 { 11732 /* 11733 * Based on https://packages.debian.org/sid/libc6. 11734 * 11735 * Assume that the traced program is built for the same architecture 11736 * as libbpf, which should cover the vast majority of cases. 11737 */ 11738 #if defined(__x86_64__) 11739 return "/lib/x86_64-linux-gnu"; 11740 #elif defined(__i386__) 11741 return "/lib/i386-linux-gnu"; 11742 #elif defined(__s390x__) 11743 return "/lib/s390x-linux-gnu"; 11744 #elif defined(__s390__) 11745 return "/lib/s390-linux-gnu"; 11746 #elif defined(__arm__) && defined(__SOFTFP__) 11747 return "/lib/arm-linux-gnueabi"; 11748 #elif defined(__arm__) && !defined(__SOFTFP__) 11749 return "/lib/arm-linux-gnueabihf"; 11750 #elif defined(__aarch64__) 11751 return "/lib/aarch64-linux-gnu"; 11752 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11753 return "/lib/mips64el-linux-gnuabi64"; 11754 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11755 return "/lib/mipsel-linux-gnu"; 11756 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11757 return "/lib/powerpc64le-linux-gnu"; 11758 #elif defined(__sparc__) && defined(__arch64__) 11759 return "/lib/sparc64-linux-gnu"; 11760 #elif defined(__riscv) && __riscv_xlen == 64 11761 return "/lib/riscv64-linux-gnu"; 11762 #else 11763 return NULL; 11764 #endif 11765 } 11766 11767 /* Get full path to program/shared library. */ 11768 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11769 { 11770 const char *search_paths[3] = {}; 11771 int i, perm; 11772 11773 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11774 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11775 search_paths[1] = "/usr/lib64:/usr/lib"; 11776 search_paths[2] = arch_specific_lib_paths(); 11777 perm = R_OK; 11778 } else { 11779 search_paths[0] = getenv("PATH"); 11780 search_paths[1] = "/usr/bin:/usr/sbin"; 11781 perm = R_OK | X_OK; 11782 } 11783 11784 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11785 const char *s; 11786 11787 if (!search_paths[i]) 11788 continue; 11789 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11790 char *next_path; 11791 int seg_len; 11792 11793 if (s[0] == ':') 11794 s++; 11795 next_path = strchr(s, ':'); 11796 seg_len = next_path ? next_path - s : strlen(s); 11797 if (!seg_len) 11798 continue; 11799 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11800 /* ensure it has required permissions */ 11801 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11802 continue; 11803 pr_debug("resolved '%s' to '%s'\n", file, result); 11804 return 0; 11805 } 11806 } 11807 return -ENOENT; 11808 } 11809 11810 struct bpf_link * 11811 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 11812 pid_t pid, 11813 const char *path, 11814 const char *func_pattern, 11815 const struct bpf_uprobe_multi_opts *opts) 11816 { 11817 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 11818 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11819 unsigned long *resolved_offsets = NULL; 11820 int err = 0, link_fd, prog_fd; 11821 struct bpf_link *link = NULL; 11822 char errmsg[STRERR_BUFSIZE]; 11823 char full_path[PATH_MAX]; 11824 const __u64 *cookies; 11825 const char **syms; 11826 size_t cnt; 11827 11828 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 11829 return libbpf_err_ptr(-EINVAL); 11830 11831 syms = OPTS_GET(opts, syms, NULL); 11832 offsets = OPTS_GET(opts, offsets, NULL); 11833 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 11834 cookies = OPTS_GET(opts, cookies, NULL); 11835 cnt = OPTS_GET(opts, cnt, 0); 11836 11837 /* 11838 * User can specify 2 mutually exclusive set of inputs: 11839 * 11840 * 1) use only path/func_pattern/pid arguments 11841 * 11842 * 2) use path/pid with allowed combinations of: 11843 * syms/offsets/ref_ctr_offsets/cookies/cnt 11844 * 11845 * - syms and offsets are mutually exclusive 11846 * - ref_ctr_offsets and cookies are optional 11847 * 11848 * Any other usage results in error. 11849 */ 11850 11851 if (!path) 11852 return libbpf_err_ptr(-EINVAL); 11853 if (!func_pattern && cnt == 0) 11854 return libbpf_err_ptr(-EINVAL); 11855 11856 if (func_pattern) { 11857 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 11858 return libbpf_err_ptr(-EINVAL); 11859 } else { 11860 if (!!syms == !!offsets) 11861 return libbpf_err_ptr(-EINVAL); 11862 } 11863 11864 if (func_pattern) { 11865 if (!strchr(path, '/')) { 11866 err = resolve_full_path(path, full_path, sizeof(full_path)); 11867 if (err) { 11868 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11869 prog->name, path, err); 11870 return libbpf_err_ptr(err); 11871 } 11872 path = full_path; 11873 } 11874 11875 err = elf_resolve_pattern_offsets(path, func_pattern, 11876 &resolved_offsets, &cnt); 11877 if (err < 0) 11878 return libbpf_err_ptr(err); 11879 offsets = resolved_offsets; 11880 } else if (syms) { 11881 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC); 11882 if (err < 0) 11883 return libbpf_err_ptr(err); 11884 offsets = resolved_offsets; 11885 } 11886 11887 lopts.uprobe_multi.path = path; 11888 lopts.uprobe_multi.offsets = offsets; 11889 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 11890 lopts.uprobe_multi.cookies = cookies; 11891 lopts.uprobe_multi.cnt = cnt; 11892 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0; 11893 11894 if (pid == 0) 11895 pid = getpid(); 11896 if (pid > 0) 11897 lopts.uprobe_multi.pid = pid; 11898 11899 link = calloc(1, sizeof(*link)); 11900 if (!link) { 11901 err = -ENOMEM; 11902 goto error; 11903 } 11904 link->detach = &bpf_link__detach_fd; 11905 11906 prog_fd = bpf_program__fd(prog); 11907 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts); 11908 if (link_fd < 0) { 11909 err = -errno; 11910 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 11911 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11912 goto error; 11913 } 11914 link->fd = link_fd; 11915 free(resolved_offsets); 11916 return link; 11917 11918 error: 11919 free(resolved_offsets); 11920 free(link); 11921 return libbpf_err_ptr(err); 11922 } 11923 11924 LIBBPF_API struct bpf_link * 11925 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 11926 const char *binary_path, size_t func_offset, 11927 const struct bpf_uprobe_opts *opts) 11928 { 11929 const char *archive_path = NULL, *archive_sep = NULL; 11930 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 11931 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11932 enum probe_attach_mode attach_mode; 11933 char full_path[PATH_MAX]; 11934 struct bpf_link *link; 11935 size_t ref_ctr_off; 11936 int pfd, err; 11937 bool retprobe, legacy; 11938 const char *func_name; 11939 11940 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11941 return libbpf_err_ptr(-EINVAL); 11942 11943 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11944 retprobe = OPTS_GET(opts, retprobe, false); 11945 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11946 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11947 11948 if (!binary_path) 11949 return libbpf_err_ptr(-EINVAL); 11950 11951 /* Check if "binary_path" refers to an archive. */ 11952 archive_sep = strstr(binary_path, "!/"); 11953 if (archive_sep) { 11954 full_path[0] = '\0'; 11955 libbpf_strlcpy(full_path, binary_path, 11956 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 11957 archive_path = full_path; 11958 binary_path = archive_sep + 2; 11959 } else if (!strchr(binary_path, '/')) { 11960 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 11961 if (err) { 11962 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11963 prog->name, binary_path, err); 11964 return libbpf_err_ptr(err); 11965 } 11966 binary_path = full_path; 11967 } 11968 func_name = OPTS_GET(opts, func_name, NULL); 11969 if (func_name) { 11970 long sym_off; 11971 11972 if (archive_path) { 11973 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 11974 func_name); 11975 binary_path = archive_path; 11976 } else { 11977 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 11978 } 11979 if (sym_off < 0) 11980 return libbpf_err_ptr(sym_off); 11981 func_offset += sym_off; 11982 } 11983 11984 legacy = determine_uprobe_perf_type() < 0; 11985 switch (attach_mode) { 11986 case PROBE_ATTACH_MODE_LEGACY: 11987 legacy = true; 11988 pe_opts.force_ioctl_attach = true; 11989 break; 11990 case PROBE_ATTACH_MODE_PERF: 11991 if (legacy) 11992 return libbpf_err_ptr(-ENOTSUP); 11993 pe_opts.force_ioctl_attach = true; 11994 break; 11995 case PROBE_ATTACH_MODE_LINK: 11996 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11997 return libbpf_err_ptr(-ENOTSUP); 11998 break; 11999 case PROBE_ATTACH_MODE_DEFAULT: 12000 break; 12001 default: 12002 return libbpf_err_ptr(-EINVAL); 12003 } 12004 12005 if (!legacy) { 12006 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 12007 func_offset, pid, ref_ctr_off); 12008 } else { 12009 char probe_name[PATH_MAX + 64]; 12010 12011 if (ref_ctr_off) 12012 return libbpf_err_ptr(-EINVAL); 12013 12014 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 12015 binary_path, func_offset); 12016 12017 legacy_probe = strdup(probe_name); 12018 if (!legacy_probe) 12019 return libbpf_err_ptr(-ENOMEM); 12020 12021 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 12022 binary_path, func_offset, pid); 12023 } 12024 if (pfd < 0) { 12025 err = -errno; 12026 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 12027 prog->name, retprobe ? "uretprobe" : "uprobe", 12028 binary_path, func_offset, 12029 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12030 goto err_out; 12031 } 12032 12033 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12034 err = libbpf_get_error(link); 12035 if (err) { 12036 close(pfd); 12037 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 12038 prog->name, retprobe ? "uretprobe" : "uprobe", 12039 binary_path, func_offset, 12040 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12041 goto err_clean_legacy; 12042 } 12043 if (legacy) { 12044 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 12045 12046 perf_link->legacy_probe_name = legacy_probe; 12047 perf_link->legacy_is_kprobe = false; 12048 perf_link->legacy_is_retprobe = retprobe; 12049 } 12050 return link; 12051 12052 err_clean_legacy: 12053 if (legacy) 12054 remove_uprobe_event_legacy(legacy_probe, retprobe); 12055 err_out: 12056 free(legacy_probe); 12057 return libbpf_err_ptr(err); 12058 } 12059 12060 /* Format of u[ret]probe section definition supporting auto-attach: 12061 * u[ret]probe/binary:function[+offset] 12062 * 12063 * binary can be an absolute/relative path or a filename; the latter is resolved to a 12064 * full binary path via bpf_program__attach_uprobe_opts. 12065 * 12066 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 12067 * specified (and auto-attach is not possible) or the above format is specified for 12068 * auto-attach. 12069 */ 12070 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12071 { 12072 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 12073 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 12074 int n, c, ret = -EINVAL; 12075 long offset = 0; 12076 12077 *link = NULL; 12078 12079 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 12080 &probe_type, &binary_path, &func_name); 12081 switch (n) { 12082 case 1: 12083 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 12084 ret = 0; 12085 break; 12086 case 2: 12087 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 12088 prog->name, prog->sec_name); 12089 break; 12090 case 3: 12091 /* check if user specifies `+offset`, if yes, this should be 12092 * the last part of the string, make sure sscanf read to EOL 12093 */ 12094 func_off = strrchr(func_name, '+'); 12095 if (func_off) { 12096 n = sscanf(func_off, "+%li%n", &offset, &c); 12097 if (n == 1 && *(func_off + c) == '\0') 12098 func_off[0] = '\0'; 12099 else 12100 offset = 0; 12101 } 12102 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 12103 strcmp(probe_type, "uretprobe.s") == 0; 12104 if (opts.retprobe && offset != 0) { 12105 pr_warn("prog '%s': uretprobes do not support offset specification\n", 12106 prog->name); 12107 break; 12108 } 12109 opts.func_name = func_name; 12110 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 12111 ret = libbpf_get_error(*link); 12112 break; 12113 default: 12114 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 12115 prog->sec_name); 12116 break; 12117 } 12118 free(probe_type); 12119 free(binary_path); 12120 free(func_name); 12121 12122 return ret; 12123 } 12124 12125 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 12126 bool retprobe, pid_t pid, 12127 const char *binary_path, 12128 size_t func_offset) 12129 { 12130 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 12131 12132 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 12133 } 12134 12135 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 12136 pid_t pid, const char *binary_path, 12137 const char *usdt_provider, const char *usdt_name, 12138 const struct bpf_usdt_opts *opts) 12139 { 12140 char resolved_path[512]; 12141 struct bpf_object *obj = prog->obj; 12142 struct bpf_link *link; 12143 __u64 usdt_cookie; 12144 int err; 12145 12146 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12147 return libbpf_err_ptr(-EINVAL); 12148 12149 if (bpf_program__fd(prog) < 0) { 12150 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 12151 prog->name); 12152 return libbpf_err_ptr(-EINVAL); 12153 } 12154 12155 if (!binary_path) 12156 return libbpf_err_ptr(-EINVAL); 12157 12158 if (!strchr(binary_path, '/')) { 12159 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 12160 if (err) { 12161 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 12162 prog->name, binary_path, err); 12163 return libbpf_err_ptr(err); 12164 } 12165 binary_path = resolved_path; 12166 } 12167 12168 /* USDT manager is instantiated lazily on first USDT attach. It will 12169 * be destroyed together with BPF object in bpf_object__close(). 12170 */ 12171 if (IS_ERR(obj->usdt_man)) 12172 return libbpf_ptr(obj->usdt_man); 12173 if (!obj->usdt_man) { 12174 obj->usdt_man = usdt_manager_new(obj); 12175 if (IS_ERR(obj->usdt_man)) 12176 return libbpf_ptr(obj->usdt_man); 12177 } 12178 12179 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 12180 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 12181 usdt_provider, usdt_name, usdt_cookie); 12182 err = libbpf_get_error(link); 12183 if (err) 12184 return libbpf_err_ptr(err); 12185 return link; 12186 } 12187 12188 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12189 { 12190 char *path = NULL, *provider = NULL, *name = NULL; 12191 const char *sec_name; 12192 int n, err; 12193 12194 sec_name = bpf_program__section_name(prog); 12195 if (strcmp(sec_name, "usdt") == 0) { 12196 /* no auto-attach for just SEC("usdt") */ 12197 *link = NULL; 12198 return 0; 12199 } 12200 12201 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 12202 if (n != 3) { 12203 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 12204 sec_name); 12205 err = -EINVAL; 12206 } else { 12207 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 12208 provider, name, NULL); 12209 err = libbpf_get_error(*link); 12210 } 12211 free(path); 12212 free(provider); 12213 free(name); 12214 return err; 12215 } 12216 12217 static int determine_tracepoint_id(const char *tp_category, 12218 const char *tp_name) 12219 { 12220 char file[PATH_MAX]; 12221 int ret; 12222 12223 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 12224 tracefs_path(), tp_category, tp_name); 12225 if (ret < 0) 12226 return -errno; 12227 if (ret >= sizeof(file)) { 12228 pr_debug("tracepoint %s/%s path is too long\n", 12229 tp_category, tp_name); 12230 return -E2BIG; 12231 } 12232 return parse_uint_from_file(file, "%d\n"); 12233 } 12234 12235 static int perf_event_open_tracepoint(const char *tp_category, 12236 const char *tp_name) 12237 { 12238 const size_t attr_sz = sizeof(struct perf_event_attr); 12239 struct perf_event_attr attr; 12240 char errmsg[STRERR_BUFSIZE]; 12241 int tp_id, pfd, err; 12242 12243 tp_id = determine_tracepoint_id(tp_category, tp_name); 12244 if (tp_id < 0) { 12245 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 12246 tp_category, tp_name, 12247 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 12248 return tp_id; 12249 } 12250 12251 memset(&attr, 0, attr_sz); 12252 attr.type = PERF_TYPE_TRACEPOINT; 12253 attr.size = attr_sz; 12254 attr.config = tp_id; 12255 12256 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 12257 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12258 if (pfd < 0) { 12259 err = -errno; 12260 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 12261 tp_category, tp_name, 12262 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12263 return err; 12264 } 12265 return pfd; 12266 } 12267 12268 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 12269 const char *tp_category, 12270 const char *tp_name, 12271 const struct bpf_tracepoint_opts *opts) 12272 { 12273 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12274 char errmsg[STRERR_BUFSIZE]; 12275 struct bpf_link *link; 12276 int pfd, err; 12277 12278 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 12279 return libbpf_err_ptr(-EINVAL); 12280 12281 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12282 12283 pfd = perf_event_open_tracepoint(tp_category, tp_name); 12284 if (pfd < 0) { 12285 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 12286 prog->name, tp_category, tp_name, 12287 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12288 return libbpf_err_ptr(pfd); 12289 } 12290 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12291 err = libbpf_get_error(link); 12292 if (err) { 12293 close(pfd); 12294 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 12295 prog->name, tp_category, tp_name, 12296 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12297 return libbpf_err_ptr(err); 12298 } 12299 return link; 12300 } 12301 12302 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 12303 const char *tp_category, 12304 const char *tp_name) 12305 { 12306 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 12307 } 12308 12309 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12310 { 12311 char *sec_name, *tp_cat, *tp_name; 12312 12313 *link = NULL; 12314 12315 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 12316 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 12317 return 0; 12318 12319 sec_name = strdup(prog->sec_name); 12320 if (!sec_name) 12321 return -ENOMEM; 12322 12323 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 12324 if (str_has_pfx(prog->sec_name, "tp/")) 12325 tp_cat = sec_name + sizeof("tp/") - 1; 12326 else 12327 tp_cat = sec_name + sizeof("tracepoint/") - 1; 12328 tp_name = strchr(tp_cat, '/'); 12329 if (!tp_name) { 12330 free(sec_name); 12331 return -EINVAL; 12332 } 12333 *tp_name = '\0'; 12334 tp_name++; 12335 12336 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 12337 free(sec_name); 12338 return libbpf_get_error(*link); 12339 } 12340 12341 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 12342 const char *tp_name) 12343 { 12344 char errmsg[STRERR_BUFSIZE]; 12345 struct bpf_link *link; 12346 int prog_fd, pfd; 12347 12348 prog_fd = bpf_program__fd(prog); 12349 if (prog_fd < 0) { 12350 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12351 return libbpf_err_ptr(-EINVAL); 12352 } 12353 12354 link = calloc(1, sizeof(*link)); 12355 if (!link) 12356 return libbpf_err_ptr(-ENOMEM); 12357 link->detach = &bpf_link__detach_fd; 12358 12359 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 12360 if (pfd < 0) { 12361 pfd = -errno; 12362 free(link); 12363 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 12364 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12365 return libbpf_err_ptr(pfd); 12366 } 12367 link->fd = pfd; 12368 return link; 12369 } 12370 12371 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12372 { 12373 static const char *const prefixes[] = { 12374 "raw_tp", 12375 "raw_tracepoint", 12376 "raw_tp.w", 12377 "raw_tracepoint.w", 12378 }; 12379 size_t i; 12380 const char *tp_name = NULL; 12381 12382 *link = NULL; 12383 12384 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 12385 size_t pfx_len; 12386 12387 if (!str_has_pfx(prog->sec_name, prefixes[i])) 12388 continue; 12389 12390 pfx_len = strlen(prefixes[i]); 12391 /* no auto-attach case of, e.g., SEC("raw_tp") */ 12392 if (prog->sec_name[pfx_len] == '\0') 12393 return 0; 12394 12395 if (prog->sec_name[pfx_len] != '/') 12396 continue; 12397 12398 tp_name = prog->sec_name + pfx_len + 1; 12399 break; 12400 } 12401 12402 if (!tp_name) { 12403 pr_warn("prog '%s': invalid section name '%s'\n", 12404 prog->name, prog->sec_name); 12405 return -EINVAL; 12406 } 12407 12408 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 12409 return libbpf_get_error(*link); 12410 } 12411 12412 /* Common logic for all BPF program types that attach to a btf_id */ 12413 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 12414 const struct bpf_trace_opts *opts) 12415 { 12416 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 12417 char errmsg[STRERR_BUFSIZE]; 12418 struct bpf_link *link; 12419 int prog_fd, pfd; 12420 12421 if (!OPTS_VALID(opts, bpf_trace_opts)) 12422 return libbpf_err_ptr(-EINVAL); 12423 12424 prog_fd = bpf_program__fd(prog); 12425 if (prog_fd < 0) { 12426 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12427 return libbpf_err_ptr(-EINVAL); 12428 } 12429 12430 link = calloc(1, sizeof(*link)); 12431 if (!link) 12432 return libbpf_err_ptr(-ENOMEM); 12433 link->detach = &bpf_link__detach_fd; 12434 12435 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12436 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12437 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12438 if (pfd < 0) { 12439 pfd = -errno; 12440 free(link); 12441 pr_warn("prog '%s': failed to attach: %s\n", 12442 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12443 return libbpf_err_ptr(pfd); 12444 } 12445 link->fd = pfd; 12446 return link; 12447 } 12448 12449 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12450 { 12451 return bpf_program__attach_btf_id(prog, NULL); 12452 } 12453 12454 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12455 const struct bpf_trace_opts *opts) 12456 { 12457 return bpf_program__attach_btf_id(prog, opts); 12458 } 12459 12460 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12461 { 12462 return bpf_program__attach_btf_id(prog, NULL); 12463 } 12464 12465 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12466 { 12467 *link = bpf_program__attach_trace(prog); 12468 return libbpf_get_error(*link); 12469 } 12470 12471 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12472 { 12473 *link = bpf_program__attach_lsm(prog); 12474 return libbpf_get_error(*link); 12475 } 12476 12477 static struct bpf_link * 12478 bpf_program_attach_fd(const struct bpf_program *prog, 12479 int target_fd, const char *target_name, 12480 const struct bpf_link_create_opts *opts) 12481 { 12482 enum bpf_attach_type attach_type; 12483 char errmsg[STRERR_BUFSIZE]; 12484 struct bpf_link *link; 12485 int prog_fd, link_fd; 12486 12487 prog_fd = bpf_program__fd(prog); 12488 if (prog_fd < 0) { 12489 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12490 return libbpf_err_ptr(-EINVAL); 12491 } 12492 12493 link = calloc(1, sizeof(*link)); 12494 if (!link) 12495 return libbpf_err_ptr(-ENOMEM); 12496 link->detach = &bpf_link__detach_fd; 12497 12498 attach_type = bpf_program__expected_attach_type(prog); 12499 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12500 if (link_fd < 0) { 12501 link_fd = -errno; 12502 free(link); 12503 pr_warn("prog '%s': failed to attach to %s: %s\n", 12504 prog->name, target_name, 12505 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12506 return libbpf_err_ptr(link_fd); 12507 } 12508 link->fd = link_fd; 12509 return link; 12510 } 12511 12512 struct bpf_link * 12513 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12514 { 12515 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12516 } 12517 12518 struct bpf_link * 12519 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12520 { 12521 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12522 } 12523 12524 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12525 { 12526 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12527 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12528 } 12529 12530 struct bpf_link * 12531 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12532 const struct bpf_tcx_opts *opts) 12533 { 12534 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12535 __u32 relative_id; 12536 int relative_fd; 12537 12538 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12539 return libbpf_err_ptr(-EINVAL); 12540 12541 relative_id = OPTS_GET(opts, relative_id, 0); 12542 relative_fd = OPTS_GET(opts, relative_fd, 0); 12543 12544 /* validate we don't have unexpected combinations of non-zero fields */ 12545 if (!ifindex) { 12546 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12547 prog->name); 12548 return libbpf_err_ptr(-EINVAL); 12549 } 12550 if (relative_fd && relative_id) { 12551 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12552 prog->name); 12553 return libbpf_err_ptr(-EINVAL); 12554 } 12555 12556 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12557 link_create_opts.tcx.relative_fd = relative_fd; 12558 link_create_opts.tcx.relative_id = relative_id; 12559 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12560 12561 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12562 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12563 } 12564 12565 struct bpf_link * 12566 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 12567 const struct bpf_netkit_opts *opts) 12568 { 12569 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12570 __u32 relative_id; 12571 int relative_fd; 12572 12573 if (!OPTS_VALID(opts, bpf_netkit_opts)) 12574 return libbpf_err_ptr(-EINVAL); 12575 12576 relative_id = OPTS_GET(opts, relative_id, 0); 12577 relative_fd = OPTS_GET(opts, relative_fd, 0); 12578 12579 /* validate we don't have unexpected combinations of non-zero fields */ 12580 if (!ifindex) { 12581 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12582 prog->name); 12583 return libbpf_err_ptr(-EINVAL); 12584 } 12585 if (relative_fd && relative_id) { 12586 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12587 prog->name); 12588 return libbpf_err_ptr(-EINVAL); 12589 } 12590 12591 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 12592 link_create_opts.netkit.relative_fd = relative_fd; 12593 link_create_opts.netkit.relative_id = relative_id; 12594 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12595 12596 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 12597 } 12598 12599 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12600 int target_fd, 12601 const char *attach_func_name) 12602 { 12603 int btf_id; 12604 12605 if (!!target_fd != !!attach_func_name) { 12606 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12607 prog->name); 12608 return libbpf_err_ptr(-EINVAL); 12609 } 12610 12611 if (prog->type != BPF_PROG_TYPE_EXT) { 12612 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 12613 prog->name); 12614 return libbpf_err_ptr(-EINVAL); 12615 } 12616 12617 if (target_fd) { 12618 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12619 12620 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 12621 if (btf_id < 0) 12622 return libbpf_err_ptr(btf_id); 12623 12624 target_opts.target_btf_id = btf_id; 12625 12626 return bpf_program_attach_fd(prog, target_fd, "freplace", 12627 &target_opts); 12628 } else { 12629 /* no target, so use raw_tracepoint_open for compatibility 12630 * with old kernels 12631 */ 12632 return bpf_program__attach_trace(prog); 12633 } 12634 } 12635 12636 struct bpf_link * 12637 bpf_program__attach_iter(const struct bpf_program *prog, 12638 const struct bpf_iter_attach_opts *opts) 12639 { 12640 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12641 char errmsg[STRERR_BUFSIZE]; 12642 struct bpf_link *link; 12643 int prog_fd, link_fd; 12644 __u32 target_fd = 0; 12645 12646 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12647 return libbpf_err_ptr(-EINVAL); 12648 12649 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12650 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12651 12652 prog_fd = bpf_program__fd(prog); 12653 if (prog_fd < 0) { 12654 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12655 return libbpf_err_ptr(-EINVAL); 12656 } 12657 12658 link = calloc(1, sizeof(*link)); 12659 if (!link) 12660 return libbpf_err_ptr(-ENOMEM); 12661 link->detach = &bpf_link__detach_fd; 12662 12663 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12664 &link_create_opts); 12665 if (link_fd < 0) { 12666 link_fd = -errno; 12667 free(link); 12668 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12669 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12670 return libbpf_err_ptr(link_fd); 12671 } 12672 link->fd = link_fd; 12673 return link; 12674 } 12675 12676 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12677 { 12678 *link = bpf_program__attach_iter(prog, NULL); 12679 return libbpf_get_error(*link); 12680 } 12681 12682 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 12683 const struct bpf_netfilter_opts *opts) 12684 { 12685 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12686 struct bpf_link *link; 12687 int prog_fd, link_fd; 12688 12689 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 12690 return libbpf_err_ptr(-EINVAL); 12691 12692 prog_fd = bpf_program__fd(prog); 12693 if (prog_fd < 0) { 12694 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12695 return libbpf_err_ptr(-EINVAL); 12696 } 12697 12698 link = calloc(1, sizeof(*link)); 12699 if (!link) 12700 return libbpf_err_ptr(-ENOMEM); 12701 12702 link->detach = &bpf_link__detach_fd; 12703 12704 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 12705 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 12706 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 12707 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 12708 12709 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 12710 if (link_fd < 0) { 12711 char errmsg[STRERR_BUFSIZE]; 12712 12713 link_fd = -errno; 12714 free(link); 12715 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 12716 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12717 return libbpf_err_ptr(link_fd); 12718 } 12719 link->fd = link_fd; 12720 12721 return link; 12722 } 12723 12724 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 12725 { 12726 struct bpf_link *link = NULL; 12727 int err; 12728 12729 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12730 return libbpf_err_ptr(-EOPNOTSUPP); 12731 12732 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 12733 if (err) 12734 return libbpf_err_ptr(err); 12735 12736 /* When calling bpf_program__attach() explicitly, auto-attach support 12737 * is expected to work, so NULL returned link is considered an error. 12738 * This is different for skeleton's attach, see comment in 12739 * bpf_object__attach_skeleton(). 12740 */ 12741 if (!link) 12742 return libbpf_err_ptr(-EOPNOTSUPP); 12743 12744 return link; 12745 } 12746 12747 struct bpf_link_struct_ops { 12748 struct bpf_link link; 12749 int map_fd; 12750 }; 12751 12752 static int bpf_link__detach_struct_ops(struct bpf_link *link) 12753 { 12754 struct bpf_link_struct_ops *st_link; 12755 __u32 zero = 0; 12756 12757 st_link = container_of(link, struct bpf_link_struct_ops, link); 12758 12759 if (st_link->map_fd < 0) 12760 /* w/o a real link */ 12761 return bpf_map_delete_elem(link->fd, &zero); 12762 12763 return close(link->fd); 12764 } 12765 12766 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 12767 { 12768 struct bpf_link_struct_ops *link; 12769 __u32 zero = 0; 12770 int err, fd; 12771 12772 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 12773 return libbpf_err_ptr(-EINVAL); 12774 12775 link = calloc(1, sizeof(*link)); 12776 if (!link) 12777 return libbpf_err_ptr(-EINVAL); 12778 12779 /* kern_vdata should be prepared during the loading phase. */ 12780 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12781 /* It can be EBUSY if the map has been used to create or 12782 * update a link before. We don't allow updating the value of 12783 * a struct_ops once it is set. That ensures that the value 12784 * never changed. So, it is safe to skip EBUSY. 12785 */ 12786 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 12787 free(link); 12788 return libbpf_err_ptr(err); 12789 } 12790 12791 link->link.detach = bpf_link__detach_struct_ops; 12792 12793 if (!(map->def.map_flags & BPF_F_LINK)) { 12794 /* w/o a real link */ 12795 link->link.fd = map->fd; 12796 link->map_fd = -1; 12797 return &link->link; 12798 } 12799 12800 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 12801 if (fd < 0) { 12802 free(link); 12803 return libbpf_err_ptr(fd); 12804 } 12805 12806 link->link.fd = fd; 12807 link->map_fd = map->fd; 12808 12809 return &link->link; 12810 } 12811 12812 /* 12813 * Swap the back struct_ops of a link with a new struct_ops map. 12814 */ 12815 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 12816 { 12817 struct bpf_link_struct_ops *st_ops_link; 12818 __u32 zero = 0; 12819 int err; 12820 12821 if (!bpf_map__is_struct_ops(map) || !map_is_created(map)) 12822 return -EINVAL; 12823 12824 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 12825 /* Ensure the type of a link is correct */ 12826 if (st_ops_link->map_fd < 0) 12827 return -EINVAL; 12828 12829 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12830 /* It can be EBUSY if the map has been used to create or 12831 * update a link before. We don't allow updating the value of 12832 * a struct_ops once it is set. That ensures that the value 12833 * never changed. So, it is safe to skip EBUSY. 12834 */ 12835 if (err && err != -EBUSY) 12836 return err; 12837 12838 err = bpf_link_update(link->fd, map->fd, NULL); 12839 if (err < 0) 12840 return err; 12841 12842 st_ops_link->map_fd = map->fd; 12843 12844 return 0; 12845 } 12846 12847 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 12848 void *private_data); 12849 12850 static enum bpf_perf_event_ret 12851 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 12852 void **copy_mem, size_t *copy_size, 12853 bpf_perf_event_print_t fn, void *private_data) 12854 { 12855 struct perf_event_mmap_page *header = mmap_mem; 12856 __u64 data_head = ring_buffer_read_head(header); 12857 __u64 data_tail = header->data_tail; 12858 void *base = ((__u8 *)header) + page_size; 12859 int ret = LIBBPF_PERF_EVENT_CONT; 12860 struct perf_event_header *ehdr; 12861 size_t ehdr_size; 12862 12863 while (data_head != data_tail) { 12864 ehdr = base + (data_tail & (mmap_size - 1)); 12865 ehdr_size = ehdr->size; 12866 12867 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 12868 void *copy_start = ehdr; 12869 size_t len_first = base + mmap_size - copy_start; 12870 size_t len_secnd = ehdr_size - len_first; 12871 12872 if (*copy_size < ehdr_size) { 12873 free(*copy_mem); 12874 *copy_mem = malloc(ehdr_size); 12875 if (!*copy_mem) { 12876 *copy_size = 0; 12877 ret = LIBBPF_PERF_EVENT_ERROR; 12878 break; 12879 } 12880 *copy_size = ehdr_size; 12881 } 12882 12883 memcpy(*copy_mem, copy_start, len_first); 12884 memcpy(*copy_mem + len_first, base, len_secnd); 12885 ehdr = *copy_mem; 12886 } 12887 12888 ret = fn(ehdr, private_data); 12889 data_tail += ehdr_size; 12890 if (ret != LIBBPF_PERF_EVENT_CONT) 12891 break; 12892 } 12893 12894 ring_buffer_write_tail(header, data_tail); 12895 return libbpf_err(ret); 12896 } 12897 12898 struct perf_buffer; 12899 12900 struct perf_buffer_params { 12901 struct perf_event_attr *attr; 12902 /* if event_cb is specified, it takes precendence */ 12903 perf_buffer_event_fn event_cb; 12904 /* sample_cb and lost_cb are higher-level common-case callbacks */ 12905 perf_buffer_sample_fn sample_cb; 12906 perf_buffer_lost_fn lost_cb; 12907 void *ctx; 12908 int cpu_cnt; 12909 int *cpus; 12910 int *map_keys; 12911 }; 12912 12913 struct perf_cpu_buf { 12914 struct perf_buffer *pb; 12915 void *base; /* mmap()'ed memory */ 12916 void *buf; /* for reconstructing segmented data */ 12917 size_t buf_size; 12918 int fd; 12919 int cpu; 12920 int map_key; 12921 }; 12922 12923 struct perf_buffer { 12924 perf_buffer_event_fn event_cb; 12925 perf_buffer_sample_fn sample_cb; 12926 perf_buffer_lost_fn lost_cb; 12927 void *ctx; /* passed into callbacks */ 12928 12929 size_t page_size; 12930 size_t mmap_size; 12931 struct perf_cpu_buf **cpu_bufs; 12932 struct epoll_event *events; 12933 int cpu_cnt; /* number of allocated CPU buffers */ 12934 int epoll_fd; /* perf event FD */ 12935 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 12936 }; 12937 12938 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 12939 struct perf_cpu_buf *cpu_buf) 12940 { 12941 if (!cpu_buf) 12942 return; 12943 if (cpu_buf->base && 12944 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 12945 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 12946 if (cpu_buf->fd >= 0) { 12947 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 12948 close(cpu_buf->fd); 12949 } 12950 free(cpu_buf->buf); 12951 free(cpu_buf); 12952 } 12953 12954 void perf_buffer__free(struct perf_buffer *pb) 12955 { 12956 int i; 12957 12958 if (IS_ERR_OR_NULL(pb)) 12959 return; 12960 if (pb->cpu_bufs) { 12961 for (i = 0; i < pb->cpu_cnt; i++) { 12962 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12963 12964 if (!cpu_buf) 12965 continue; 12966 12967 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 12968 perf_buffer__free_cpu_buf(pb, cpu_buf); 12969 } 12970 free(pb->cpu_bufs); 12971 } 12972 if (pb->epoll_fd >= 0) 12973 close(pb->epoll_fd); 12974 free(pb->events); 12975 free(pb); 12976 } 12977 12978 static struct perf_cpu_buf * 12979 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 12980 int cpu, int map_key) 12981 { 12982 struct perf_cpu_buf *cpu_buf; 12983 char msg[STRERR_BUFSIZE]; 12984 int err; 12985 12986 cpu_buf = calloc(1, sizeof(*cpu_buf)); 12987 if (!cpu_buf) 12988 return ERR_PTR(-ENOMEM); 12989 12990 cpu_buf->pb = pb; 12991 cpu_buf->cpu = cpu; 12992 cpu_buf->map_key = map_key; 12993 12994 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 12995 -1, PERF_FLAG_FD_CLOEXEC); 12996 if (cpu_buf->fd < 0) { 12997 err = -errno; 12998 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 12999 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 13000 goto error; 13001 } 13002 13003 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 13004 PROT_READ | PROT_WRITE, MAP_SHARED, 13005 cpu_buf->fd, 0); 13006 if (cpu_buf->base == MAP_FAILED) { 13007 cpu_buf->base = NULL; 13008 err = -errno; 13009 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 13010 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 13011 goto error; 13012 } 13013 13014 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 13015 err = -errno; 13016 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 13017 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 13018 goto error; 13019 } 13020 13021 return cpu_buf; 13022 13023 error: 13024 perf_buffer__free_cpu_buf(pb, cpu_buf); 13025 return (struct perf_cpu_buf *)ERR_PTR(err); 13026 } 13027 13028 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13029 struct perf_buffer_params *p); 13030 13031 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 13032 perf_buffer_sample_fn sample_cb, 13033 perf_buffer_lost_fn lost_cb, 13034 void *ctx, 13035 const struct perf_buffer_opts *opts) 13036 { 13037 const size_t attr_sz = sizeof(struct perf_event_attr); 13038 struct perf_buffer_params p = {}; 13039 struct perf_event_attr attr; 13040 __u32 sample_period; 13041 13042 if (!OPTS_VALID(opts, perf_buffer_opts)) 13043 return libbpf_err_ptr(-EINVAL); 13044 13045 sample_period = OPTS_GET(opts, sample_period, 1); 13046 if (!sample_period) 13047 sample_period = 1; 13048 13049 memset(&attr, 0, attr_sz); 13050 attr.size = attr_sz; 13051 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 13052 attr.type = PERF_TYPE_SOFTWARE; 13053 attr.sample_type = PERF_SAMPLE_RAW; 13054 attr.sample_period = sample_period; 13055 attr.wakeup_events = sample_period; 13056 13057 p.attr = &attr; 13058 p.sample_cb = sample_cb; 13059 p.lost_cb = lost_cb; 13060 p.ctx = ctx; 13061 13062 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13063 } 13064 13065 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 13066 struct perf_event_attr *attr, 13067 perf_buffer_event_fn event_cb, void *ctx, 13068 const struct perf_buffer_raw_opts *opts) 13069 { 13070 struct perf_buffer_params p = {}; 13071 13072 if (!attr) 13073 return libbpf_err_ptr(-EINVAL); 13074 13075 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 13076 return libbpf_err_ptr(-EINVAL); 13077 13078 p.attr = attr; 13079 p.event_cb = event_cb; 13080 p.ctx = ctx; 13081 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 13082 p.cpus = OPTS_GET(opts, cpus, NULL); 13083 p.map_keys = OPTS_GET(opts, map_keys, NULL); 13084 13085 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13086 } 13087 13088 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13089 struct perf_buffer_params *p) 13090 { 13091 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 13092 struct bpf_map_info map; 13093 char msg[STRERR_BUFSIZE]; 13094 struct perf_buffer *pb; 13095 bool *online = NULL; 13096 __u32 map_info_len; 13097 int err, i, j, n; 13098 13099 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 13100 pr_warn("page count should be power of two, but is %zu\n", 13101 page_cnt); 13102 return ERR_PTR(-EINVAL); 13103 } 13104 13105 /* best-effort sanity checks */ 13106 memset(&map, 0, sizeof(map)); 13107 map_info_len = sizeof(map); 13108 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 13109 if (err) { 13110 err = -errno; 13111 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 13112 * -EBADFD, -EFAULT, or -E2BIG on real error 13113 */ 13114 if (err != -EINVAL) { 13115 pr_warn("failed to get map info for map FD %d: %s\n", 13116 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 13117 return ERR_PTR(err); 13118 } 13119 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 13120 map_fd); 13121 } else { 13122 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 13123 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 13124 map.name); 13125 return ERR_PTR(-EINVAL); 13126 } 13127 } 13128 13129 pb = calloc(1, sizeof(*pb)); 13130 if (!pb) 13131 return ERR_PTR(-ENOMEM); 13132 13133 pb->event_cb = p->event_cb; 13134 pb->sample_cb = p->sample_cb; 13135 pb->lost_cb = p->lost_cb; 13136 pb->ctx = p->ctx; 13137 13138 pb->page_size = getpagesize(); 13139 pb->mmap_size = pb->page_size * page_cnt; 13140 pb->map_fd = map_fd; 13141 13142 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 13143 if (pb->epoll_fd < 0) { 13144 err = -errno; 13145 pr_warn("failed to create epoll instance: %s\n", 13146 libbpf_strerror_r(err, msg, sizeof(msg))); 13147 goto error; 13148 } 13149 13150 if (p->cpu_cnt > 0) { 13151 pb->cpu_cnt = p->cpu_cnt; 13152 } else { 13153 pb->cpu_cnt = libbpf_num_possible_cpus(); 13154 if (pb->cpu_cnt < 0) { 13155 err = pb->cpu_cnt; 13156 goto error; 13157 } 13158 if (map.max_entries && map.max_entries < pb->cpu_cnt) 13159 pb->cpu_cnt = map.max_entries; 13160 } 13161 13162 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 13163 if (!pb->events) { 13164 err = -ENOMEM; 13165 pr_warn("failed to allocate events: out of memory\n"); 13166 goto error; 13167 } 13168 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 13169 if (!pb->cpu_bufs) { 13170 err = -ENOMEM; 13171 pr_warn("failed to allocate buffers: out of memory\n"); 13172 goto error; 13173 } 13174 13175 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 13176 if (err) { 13177 pr_warn("failed to get online CPU mask: %d\n", err); 13178 goto error; 13179 } 13180 13181 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 13182 struct perf_cpu_buf *cpu_buf; 13183 int cpu, map_key; 13184 13185 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 13186 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 13187 13188 /* in case user didn't explicitly requested particular CPUs to 13189 * be attached to, skip offline/not present CPUs 13190 */ 13191 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 13192 continue; 13193 13194 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 13195 if (IS_ERR(cpu_buf)) { 13196 err = PTR_ERR(cpu_buf); 13197 goto error; 13198 } 13199 13200 pb->cpu_bufs[j] = cpu_buf; 13201 13202 err = bpf_map_update_elem(pb->map_fd, &map_key, 13203 &cpu_buf->fd, 0); 13204 if (err) { 13205 err = -errno; 13206 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 13207 cpu, map_key, cpu_buf->fd, 13208 libbpf_strerror_r(err, msg, sizeof(msg))); 13209 goto error; 13210 } 13211 13212 pb->events[j].events = EPOLLIN; 13213 pb->events[j].data.ptr = cpu_buf; 13214 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 13215 &pb->events[j]) < 0) { 13216 err = -errno; 13217 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 13218 cpu, cpu_buf->fd, 13219 libbpf_strerror_r(err, msg, sizeof(msg))); 13220 goto error; 13221 } 13222 j++; 13223 } 13224 pb->cpu_cnt = j; 13225 free(online); 13226 13227 return pb; 13228 13229 error: 13230 free(online); 13231 if (pb) 13232 perf_buffer__free(pb); 13233 return ERR_PTR(err); 13234 } 13235 13236 struct perf_sample_raw { 13237 struct perf_event_header header; 13238 uint32_t size; 13239 char data[]; 13240 }; 13241 13242 struct perf_sample_lost { 13243 struct perf_event_header header; 13244 uint64_t id; 13245 uint64_t lost; 13246 uint64_t sample_id; 13247 }; 13248 13249 static enum bpf_perf_event_ret 13250 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 13251 { 13252 struct perf_cpu_buf *cpu_buf = ctx; 13253 struct perf_buffer *pb = cpu_buf->pb; 13254 void *data = e; 13255 13256 /* user wants full control over parsing perf event */ 13257 if (pb->event_cb) 13258 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 13259 13260 switch (e->type) { 13261 case PERF_RECORD_SAMPLE: { 13262 struct perf_sample_raw *s = data; 13263 13264 if (pb->sample_cb) 13265 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 13266 break; 13267 } 13268 case PERF_RECORD_LOST: { 13269 struct perf_sample_lost *s = data; 13270 13271 if (pb->lost_cb) 13272 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 13273 break; 13274 } 13275 default: 13276 pr_warn("unknown perf sample type %d\n", e->type); 13277 return LIBBPF_PERF_EVENT_ERROR; 13278 } 13279 return LIBBPF_PERF_EVENT_CONT; 13280 } 13281 13282 static int perf_buffer__process_records(struct perf_buffer *pb, 13283 struct perf_cpu_buf *cpu_buf) 13284 { 13285 enum bpf_perf_event_ret ret; 13286 13287 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 13288 pb->page_size, &cpu_buf->buf, 13289 &cpu_buf->buf_size, 13290 perf_buffer__process_record, cpu_buf); 13291 if (ret != LIBBPF_PERF_EVENT_CONT) 13292 return ret; 13293 return 0; 13294 } 13295 13296 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 13297 { 13298 return pb->epoll_fd; 13299 } 13300 13301 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 13302 { 13303 int i, cnt, err; 13304 13305 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 13306 if (cnt < 0) 13307 return -errno; 13308 13309 for (i = 0; i < cnt; i++) { 13310 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 13311 13312 err = perf_buffer__process_records(pb, cpu_buf); 13313 if (err) { 13314 pr_warn("error while processing records: %d\n", err); 13315 return libbpf_err(err); 13316 } 13317 } 13318 return cnt; 13319 } 13320 13321 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 13322 * manager. 13323 */ 13324 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 13325 { 13326 return pb->cpu_cnt; 13327 } 13328 13329 /* 13330 * Return perf_event FD of a ring buffer in *buf_idx* slot of 13331 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 13332 * select()/poll()/epoll() Linux syscalls. 13333 */ 13334 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 13335 { 13336 struct perf_cpu_buf *cpu_buf; 13337 13338 if (buf_idx >= pb->cpu_cnt) 13339 return libbpf_err(-EINVAL); 13340 13341 cpu_buf = pb->cpu_bufs[buf_idx]; 13342 if (!cpu_buf) 13343 return libbpf_err(-ENOENT); 13344 13345 return cpu_buf->fd; 13346 } 13347 13348 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 13349 { 13350 struct perf_cpu_buf *cpu_buf; 13351 13352 if (buf_idx >= pb->cpu_cnt) 13353 return libbpf_err(-EINVAL); 13354 13355 cpu_buf = pb->cpu_bufs[buf_idx]; 13356 if (!cpu_buf) 13357 return libbpf_err(-ENOENT); 13358 13359 *buf = cpu_buf->base; 13360 *buf_size = pb->mmap_size; 13361 return 0; 13362 } 13363 13364 /* 13365 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 13366 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 13367 * consume, do nothing and return success. 13368 * Returns: 13369 * - 0 on success; 13370 * - <0 on failure. 13371 */ 13372 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 13373 { 13374 struct perf_cpu_buf *cpu_buf; 13375 13376 if (buf_idx >= pb->cpu_cnt) 13377 return libbpf_err(-EINVAL); 13378 13379 cpu_buf = pb->cpu_bufs[buf_idx]; 13380 if (!cpu_buf) 13381 return libbpf_err(-ENOENT); 13382 13383 return perf_buffer__process_records(pb, cpu_buf); 13384 } 13385 13386 int perf_buffer__consume(struct perf_buffer *pb) 13387 { 13388 int i, err; 13389 13390 for (i = 0; i < pb->cpu_cnt; i++) { 13391 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13392 13393 if (!cpu_buf) 13394 continue; 13395 13396 err = perf_buffer__process_records(pb, cpu_buf); 13397 if (err) { 13398 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 13399 return libbpf_err(err); 13400 } 13401 } 13402 return 0; 13403 } 13404 13405 int bpf_program__set_attach_target(struct bpf_program *prog, 13406 int attach_prog_fd, 13407 const char *attach_func_name) 13408 { 13409 int btf_obj_fd = 0, btf_id = 0, err; 13410 13411 if (!prog || attach_prog_fd < 0) 13412 return libbpf_err(-EINVAL); 13413 13414 if (prog->obj->loaded) 13415 return libbpf_err(-EINVAL); 13416 13417 if (attach_prog_fd && !attach_func_name) { 13418 /* remember attach_prog_fd and let bpf_program__load() find 13419 * BTF ID during the program load 13420 */ 13421 prog->attach_prog_fd = attach_prog_fd; 13422 return 0; 13423 } 13424 13425 if (attach_prog_fd) { 13426 btf_id = libbpf_find_prog_btf_id(attach_func_name, 13427 attach_prog_fd); 13428 if (btf_id < 0) 13429 return libbpf_err(btf_id); 13430 } else { 13431 if (!attach_func_name) 13432 return libbpf_err(-EINVAL); 13433 13434 /* load btf_vmlinux, if not yet */ 13435 err = bpf_object__load_vmlinux_btf(prog->obj, true); 13436 if (err) 13437 return libbpf_err(err); 13438 err = find_kernel_btf_id(prog->obj, attach_func_name, 13439 prog->expected_attach_type, 13440 &btf_obj_fd, &btf_id); 13441 if (err) 13442 return libbpf_err(err); 13443 } 13444 13445 prog->attach_btf_id = btf_id; 13446 prog->attach_btf_obj_fd = btf_obj_fd; 13447 prog->attach_prog_fd = attach_prog_fd; 13448 return 0; 13449 } 13450 13451 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13452 { 13453 int err = 0, n, len, start, end = -1; 13454 bool *tmp; 13455 13456 *mask = NULL; 13457 *mask_sz = 0; 13458 13459 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13460 while (*s) { 13461 if (*s == ',' || *s == '\n') { 13462 s++; 13463 continue; 13464 } 13465 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13466 if (n <= 0 || n > 2) { 13467 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13468 err = -EINVAL; 13469 goto cleanup; 13470 } else if (n == 1) { 13471 end = start; 13472 } 13473 if (start < 0 || start > end) { 13474 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13475 start, end, s); 13476 err = -EINVAL; 13477 goto cleanup; 13478 } 13479 tmp = realloc(*mask, end + 1); 13480 if (!tmp) { 13481 err = -ENOMEM; 13482 goto cleanup; 13483 } 13484 *mask = tmp; 13485 memset(tmp + *mask_sz, 0, start - *mask_sz); 13486 memset(tmp + start, 1, end - start + 1); 13487 *mask_sz = end + 1; 13488 s += len; 13489 } 13490 if (!*mask_sz) { 13491 pr_warn("Empty CPU range\n"); 13492 return -EINVAL; 13493 } 13494 return 0; 13495 cleanup: 13496 free(*mask); 13497 *mask = NULL; 13498 return err; 13499 } 13500 13501 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13502 { 13503 int fd, err = 0, len; 13504 char buf[128]; 13505 13506 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13507 if (fd < 0) { 13508 err = -errno; 13509 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 13510 return err; 13511 } 13512 len = read(fd, buf, sizeof(buf)); 13513 close(fd); 13514 if (len <= 0) { 13515 err = len ? -errno : -EINVAL; 13516 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 13517 return err; 13518 } 13519 if (len >= sizeof(buf)) { 13520 pr_warn("CPU mask is too big in file %s\n", fcpu); 13521 return -E2BIG; 13522 } 13523 buf[len] = '\0'; 13524 13525 return parse_cpu_mask_str(buf, mask, mask_sz); 13526 } 13527 13528 int libbpf_num_possible_cpus(void) 13529 { 13530 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13531 static int cpus; 13532 int err, n, i, tmp_cpus; 13533 bool *mask; 13534 13535 tmp_cpus = READ_ONCE(cpus); 13536 if (tmp_cpus > 0) 13537 return tmp_cpus; 13538 13539 err = parse_cpu_mask_file(fcpu, &mask, &n); 13540 if (err) 13541 return libbpf_err(err); 13542 13543 tmp_cpus = 0; 13544 for (i = 0; i < n; i++) { 13545 if (mask[i]) 13546 tmp_cpus++; 13547 } 13548 free(mask); 13549 13550 WRITE_ONCE(cpus, tmp_cpus); 13551 return tmp_cpus; 13552 } 13553 13554 static int populate_skeleton_maps(const struct bpf_object *obj, 13555 struct bpf_map_skeleton *maps, 13556 size_t map_cnt) 13557 { 13558 int i; 13559 13560 for (i = 0; i < map_cnt; i++) { 13561 struct bpf_map **map = maps[i].map; 13562 const char *name = maps[i].name; 13563 void **mmaped = maps[i].mmaped; 13564 13565 *map = bpf_object__find_map_by_name(obj, name); 13566 if (!*map) { 13567 pr_warn("failed to find skeleton map '%s'\n", name); 13568 return -ESRCH; 13569 } 13570 13571 /* externs shouldn't be pre-setup from user code */ 13572 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13573 *mmaped = (*map)->mmaped; 13574 } 13575 return 0; 13576 } 13577 13578 static int populate_skeleton_progs(const struct bpf_object *obj, 13579 struct bpf_prog_skeleton *progs, 13580 size_t prog_cnt) 13581 { 13582 int i; 13583 13584 for (i = 0; i < prog_cnt; i++) { 13585 struct bpf_program **prog = progs[i].prog; 13586 const char *name = progs[i].name; 13587 13588 *prog = bpf_object__find_program_by_name(obj, name); 13589 if (!*prog) { 13590 pr_warn("failed to find skeleton program '%s'\n", name); 13591 return -ESRCH; 13592 } 13593 } 13594 return 0; 13595 } 13596 13597 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13598 const struct bpf_object_open_opts *opts) 13599 { 13600 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 13601 .object_name = s->name, 13602 ); 13603 struct bpf_object *obj; 13604 int err; 13605 13606 /* Attempt to preserve opts->object_name, unless overriden by user 13607 * explicitly. Overwriting object name for skeletons is discouraged, 13608 * as it breaks global data maps, because they contain object name 13609 * prefix as their own map name prefix. When skeleton is generated, 13610 * bpftool is making an assumption that this name will stay the same. 13611 */ 13612 if (opts) { 13613 memcpy(&skel_opts, opts, sizeof(*opts)); 13614 if (!opts->object_name) 13615 skel_opts.object_name = s->name; 13616 } 13617 13618 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 13619 err = libbpf_get_error(obj); 13620 if (err) { 13621 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 13622 s->name, err); 13623 return libbpf_err(err); 13624 } 13625 13626 *s->obj = obj; 13627 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 13628 if (err) { 13629 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 13630 return libbpf_err(err); 13631 } 13632 13633 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 13634 if (err) { 13635 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 13636 return libbpf_err(err); 13637 } 13638 13639 return 0; 13640 } 13641 13642 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13643 { 13644 int err, len, var_idx, i; 13645 const char *var_name; 13646 const struct bpf_map *map; 13647 struct btf *btf; 13648 __u32 map_type_id; 13649 const struct btf_type *map_type, *var_type; 13650 const struct bpf_var_skeleton *var_skel; 13651 struct btf_var_secinfo *var; 13652 13653 if (!s->obj) 13654 return libbpf_err(-EINVAL); 13655 13656 btf = bpf_object__btf(s->obj); 13657 if (!btf) { 13658 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13659 bpf_object__name(s->obj)); 13660 return libbpf_err(-errno); 13661 } 13662 13663 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 13664 if (err) { 13665 pr_warn("failed to populate subskeleton maps: %d\n", err); 13666 return libbpf_err(err); 13667 } 13668 13669 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 13670 if (err) { 13671 pr_warn("failed to populate subskeleton maps: %d\n", err); 13672 return libbpf_err(err); 13673 } 13674 13675 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13676 var_skel = &s->vars[var_idx]; 13677 map = *var_skel->map; 13678 map_type_id = bpf_map__btf_value_type_id(map); 13679 map_type = btf__type_by_id(btf, map_type_id); 13680 13681 if (!btf_is_datasec(map_type)) { 13682 pr_warn("type for map '%1$s' is not a datasec: %2$s", 13683 bpf_map__name(map), 13684 __btf_kind_str(btf_kind(map_type))); 13685 return libbpf_err(-EINVAL); 13686 } 13687 13688 len = btf_vlen(map_type); 13689 var = btf_var_secinfos(map_type); 13690 for (i = 0; i < len; i++, var++) { 13691 var_type = btf__type_by_id(btf, var->type); 13692 var_name = btf__name_by_offset(btf, var_type->name_off); 13693 if (strcmp(var_name, var_skel->name) == 0) { 13694 *var_skel->addr = map->mmaped + var->offset; 13695 break; 13696 } 13697 } 13698 } 13699 return 0; 13700 } 13701 13702 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13703 { 13704 if (!s) 13705 return; 13706 free(s->maps); 13707 free(s->progs); 13708 free(s->vars); 13709 free(s); 13710 } 13711 13712 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13713 { 13714 int i, err; 13715 13716 err = bpf_object__load(*s->obj); 13717 if (err) { 13718 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 13719 return libbpf_err(err); 13720 } 13721 13722 for (i = 0; i < s->map_cnt; i++) { 13723 struct bpf_map *map = *s->maps[i].map; 13724 size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 13725 int prot, map_fd = map->fd; 13726 void **mmaped = s->maps[i].mmaped; 13727 13728 if (!mmaped) 13729 continue; 13730 13731 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 13732 *mmaped = NULL; 13733 continue; 13734 } 13735 13736 if (map->def.map_flags & BPF_F_RDONLY_PROG) 13737 prot = PROT_READ; 13738 else 13739 prot = PROT_READ | PROT_WRITE; 13740 13741 /* Remap anonymous mmap()-ed "map initialization image" as 13742 * a BPF map-backed mmap()-ed memory, but preserving the same 13743 * memory address. This will cause kernel to change process' 13744 * page table to point to a different piece of kernel memory, 13745 * but from userspace point of view memory address (and its 13746 * contents, being identical at this point) will stay the 13747 * same. This mapping will be released by bpf_object__close() 13748 * as per normal clean up procedure, so we don't need to worry 13749 * about it from skeleton's clean up perspective. 13750 */ 13751 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0); 13752 if (*mmaped == MAP_FAILED) { 13753 err = -errno; 13754 *mmaped = NULL; 13755 pr_warn("failed to re-mmap() map '%s': %d\n", 13756 bpf_map__name(map), err); 13757 return libbpf_err(err); 13758 } 13759 } 13760 13761 return 0; 13762 } 13763 13764 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13765 { 13766 int i, err; 13767 13768 for (i = 0; i < s->prog_cnt; i++) { 13769 struct bpf_program *prog = *s->progs[i].prog; 13770 struct bpf_link **link = s->progs[i].link; 13771 13772 if (!prog->autoload || !prog->autoattach) 13773 continue; 13774 13775 /* auto-attaching not supported for this program */ 13776 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13777 continue; 13778 13779 /* if user already set the link manually, don't attempt auto-attach */ 13780 if (*link) 13781 continue; 13782 13783 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13784 if (err) { 13785 pr_warn("prog '%s': failed to auto-attach: %d\n", 13786 bpf_program__name(prog), err); 13787 return libbpf_err(err); 13788 } 13789 13790 /* It's possible that for some SEC() definitions auto-attach 13791 * is supported in some cases (e.g., if definition completely 13792 * specifies target information), but is not in other cases. 13793 * SEC("uprobe") is one such case. If user specified target 13794 * binary and function name, such BPF program can be 13795 * auto-attached. But if not, it shouldn't trigger skeleton's 13796 * attach to fail. It should just be skipped. 13797 * attach_fn signals such case with returning 0 (no error) and 13798 * setting link to NULL. 13799 */ 13800 } 13801 13802 return 0; 13803 } 13804 13805 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 13806 { 13807 int i; 13808 13809 for (i = 0; i < s->prog_cnt; i++) { 13810 struct bpf_link **link = s->progs[i].link; 13811 13812 bpf_link__destroy(*link); 13813 *link = NULL; 13814 } 13815 } 13816 13817 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 13818 { 13819 if (!s) 13820 return; 13821 13822 if (s->progs) 13823 bpf_object__detach_skeleton(s); 13824 if (s->obj) 13825 bpf_object__close(*s->obj); 13826 free(s->maps); 13827 free(s->progs); 13828 free(s); 13829 } 13830