1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /*
3  * Performance events:
4  *
5  *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
7  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8  *
9  * Data type definitions, declarations, prototypes.
10  *
11  *    Started by: Thomas Gleixner and Ingo Molnar
12  *
13  * For licencing details see kernel-base/COPYING
14  */
15 #ifndef _UAPI_LINUX_PERF_EVENT_H
16 #define _UAPI_LINUX_PERF_EVENT_H
17 
18 #include <linux/types.h>
19 #include <linux/ioctl.h>
20 #include <asm/byteorder.h>
21 
22 /*
23  * User-space ABI bits:
24  */
25 
26 /*
27  * attr.type
28  */
29 enum perf_type_id {
30 	PERF_TYPE_HARDWARE			= 0,
31 	PERF_TYPE_SOFTWARE			= 1,
32 	PERF_TYPE_TRACEPOINT			= 2,
33 	PERF_TYPE_HW_CACHE			= 3,
34 	PERF_TYPE_RAW				= 4,
35 	PERF_TYPE_BREAKPOINT			= 5,
36 
37 	PERF_TYPE_MAX,				/* non-ABI */
38 };
39 
40 /*
41  * attr.config layout for type PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
42  * PERF_TYPE_HARDWARE:			0xEEEEEEEE000000AA
43  *					AA: hardware event ID
44  *					EEEEEEEE: PMU type ID
45  * PERF_TYPE_HW_CACHE:			0xEEEEEEEE00DDCCBB
46  *					BB: hardware cache ID
47  *					CC: hardware cache op ID
48  *					DD: hardware cache op result ID
49  *					EEEEEEEE: PMU type ID
50  * If the PMU type ID is 0, the PERF_TYPE_RAW will be applied.
51  */
52 #define PERF_PMU_TYPE_SHIFT		32
53 #define PERF_HW_EVENT_MASK		0xffffffff
54 
55 /*
56  * Generalized performance event event_id types, used by the
57  * attr.event_id parameter of the sys_perf_event_open()
58  * syscall:
59  */
60 enum perf_hw_id {
61 	/*
62 	 * Common hardware events, generalized by the kernel:
63 	 */
64 	PERF_COUNT_HW_CPU_CYCLES		= 0,
65 	PERF_COUNT_HW_INSTRUCTIONS		= 1,
66 	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
67 	PERF_COUNT_HW_CACHE_MISSES		= 3,
68 	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
69 	PERF_COUNT_HW_BRANCH_MISSES		= 5,
70 	PERF_COUNT_HW_BUS_CYCLES		= 6,
71 	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
72 	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
73 	PERF_COUNT_HW_REF_CPU_CYCLES		= 9,
74 
75 	PERF_COUNT_HW_MAX,			/* non-ABI */
76 };
77 
78 /*
79  * Generalized hardware cache events:
80  *
81  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
82  *       { read, write, prefetch } x
83  *       { accesses, misses }
84  */
85 enum perf_hw_cache_id {
86 	PERF_COUNT_HW_CACHE_L1D			= 0,
87 	PERF_COUNT_HW_CACHE_L1I			= 1,
88 	PERF_COUNT_HW_CACHE_LL			= 2,
89 	PERF_COUNT_HW_CACHE_DTLB		= 3,
90 	PERF_COUNT_HW_CACHE_ITLB		= 4,
91 	PERF_COUNT_HW_CACHE_BPU			= 5,
92 	PERF_COUNT_HW_CACHE_NODE		= 6,
93 
94 	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
95 };
96 
97 enum perf_hw_cache_op_id {
98 	PERF_COUNT_HW_CACHE_OP_READ		= 0,
99 	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
100 	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
101 
102 	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
103 };
104 
105 enum perf_hw_cache_op_result_id {
106 	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
107 	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
108 
109 	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
110 };
111 
112 /*
113  * Special "software" events provided by the kernel, even if the hardware
114  * does not support performance events. These events measure various
115  * physical and sw events of the kernel (and allow the profiling of them as
116  * well):
117  */
118 enum perf_sw_ids {
119 	PERF_COUNT_SW_CPU_CLOCK			= 0,
120 	PERF_COUNT_SW_TASK_CLOCK		= 1,
121 	PERF_COUNT_SW_PAGE_FAULTS		= 2,
122 	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
123 	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
124 	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
125 	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
126 	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
127 	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
128 	PERF_COUNT_SW_DUMMY			= 9,
129 	PERF_COUNT_SW_BPF_OUTPUT		= 10,
130 
131 	PERF_COUNT_SW_MAX,			/* non-ABI */
132 };
133 
134 /*
135  * Bits that can be set in attr.sample_type to request information
136  * in the overflow packets.
137  */
138 enum perf_event_sample_format {
139 	PERF_SAMPLE_IP				= 1U << 0,
140 	PERF_SAMPLE_TID				= 1U << 1,
141 	PERF_SAMPLE_TIME			= 1U << 2,
142 	PERF_SAMPLE_ADDR			= 1U << 3,
143 	PERF_SAMPLE_READ			= 1U << 4,
144 	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
145 	PERF_SAMPLE_ID				= 1U << 6,
146 	PERF_SAMPLE_CPU				= 1U << 7,
147 	PERF_SAMPLE_PERIOD			= 1U << 8,
148 	PERF_SAMPLE_STREAM_ID			= 1U << 9,
149 	PERF_SAMPLE_RAW				= 1U << 10,
150 	PERF_SAMPLE_BRANCH_STACK		= 1U << 11,
151 	PERF_SAMPLE_REGS_USER			= 1U << 12,
152 	PERF_SAMPLE_STACK_USER			= 1U << 13,
153 	PERF_SAMPLE_WEIGHT			= 1U << 14,
154 	PERF_SAMPLE_DATA_SRC			= 1U << 15,
155 	PERF_SAMPLE_IDENTIFIER			= 1U << 16,
156 	PERF_SAMPLE_TRANSACTION			= 1U << 17,
157 	PERF_SAMPLE_REGS_INTR			= 1U << 18,
158 	PERF_SAMPLE_PHYS_ADDR			= 1U << 19,
159 	PERF_SAMPLE_AUX				= 1U << 20,
160 	PERF_SAMPLE_CGROUP			= 1U << 21,
161 	PERF_SAMPLE_DATA_PAGE_SIZE		= 1U << 22,
162 	PERF_SAMPLE_CODE_PAGE_SIZE		= 1U << 23,
163 	PERF_SAMPLE_WEIGHT_STRUCT		= 1U << 24,
164 
165 	PERF_SAMPLE_MAX = 1U << 25,		/* non-ABI */
166 
167 	__PERF_SAMPLE_CALLCHAIN_EARLY		= 1ULL << 63, /* non-ABI; internal use */
168 };
169 
170 #define PERF_SAMPLE_WEIGHT_TYPE	(PERF_SAMPLE_WEIGHT | PERF_SAMPLE_WEIGHT_STRUCT)
171 /*
172  * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
173  *
174  * If the user does not pass priv level information via branch_sample_type,
175  * the kernel uses the event's priv level. Branch and event priv levels do
176  * not have to match. Branch priv level is checked for permissions.
177  *
178  * The branch types can be combined, however BRANCH_ANY covers all types
179  * of branches and therefore it supersedes all the other types.
180  */
181 enum perf_branch_sample_type_shift {
182 	PERF_SAMPLE_BRANCH_USER_SHIFT		= 0, /* user branches */
183 	PERF_SAMPLE_BRANCH_KERNEL_SHIFT		= 1, /* kernel branches */
184 	PERF_SAMPLE_BRANCH_HV_SHIFT		= 2, /* hypervisor branches */
185 
186 	PERF_SAMPLE_BRANCH_ANY_SHIFT		= 3, /* any branch types */
187 	PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT	= 4, /* any call branch */
188 	PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT	= 5, /* any return branch */
189 	PERF_SAMPLE_BRANCH_IND_CALL_SHIFT	= 6, /* indirect calls */
190 	PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT	= 7, /* transaction aborts */
191 	PERF_SAMPLE_BRANCH_IN_TX_SHIFT		= 8, /* in transaction */
192 	PERF_SAMPLE_BRANCH_NO_TX_SHIFT		= 9, /* not in transaction */
193 	PERF_SAMPLE_BRANCH_COND_SHIFT		= 10, /* conditional branches */
194 
195 	PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT	= 11, /* call/ret stack */
196 	PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT	= 12, /* indirect jumps */
197 	PERF_SAMPLE_BRANCH_CALL_SHIFT		= 13, /* direct call */
198 
199 	PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT	= 14, /* no flags */
200 	PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT	= 15, /* no cycles */
201 
202 	PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT	= 16, /* save branch type */
203 
204 	PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT	= 17, /* save low level index of raw branch records */
205 
206 	PERF_SAMPLE_BRANCH_MAX_SHIFT		/* non-ABI */
207 };
208 
209 enum perf_branch_sample_type {
210 	PERF_SAMPLE_BRANCH_USER		= 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
211 	PERF_SAMPLE_BRANCH_KERNEL	= 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
212 	PERF_SAMPLE_BRANCH_HV		= 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
213 
214 	PERF_SAMPLE_BRANCH_ANY		= 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
215 	PERF_SAMPLE_BRANCH_ANY_CALL	= 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
216 	PERF_SAMPLE_BRANCH_ANY_RETURN	= 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
217 	PERF_SAMPLE_BRANCH_IND_CALL	= 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
218 	PERF_SAMPLE_BRANCH_ABORT_TX	= 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
219 	PERF_SAMPLE_BRANCH_IN_TX	= 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
220 	PERF_SAMPLE_BRANCH_NO_TX	= 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
221 	PERF_SAMPLE_BRANCH_COND		= 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
222 
223 	PERF_SAMPLE_BRANCH_CALL_STACK	= 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
224 	PERF_SAMPLE_BRANCH_IND_JUMP	= 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
225 	PERF_SAMPLE_BRANCH_CALL		= 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
226 
227 	PERF_SAMPLE_BRANCH_NO_FLAGS	= 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
228 	PERF_SAMPLE_BRANCH_NO_CYCLES	= 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
229 
230 	PERF_SAMPLE_BRANCH_TYPE_SAVE	=
231 		1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
232 
233 	PERF_SAMPLE_BRANCH_HW_INDEX	= 1U << PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT,
234 
235 	PERF_SAMPLE_BRANCH_MAX		= 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
236 };
237 
238 /*
239  * Common flow change classification
240  */
241 enum {
242 	PERF_BR_UNKNOWN		= 0,	/* unknown */
243 	PERF_BR_COND		= 1,	/* conditional */
244 	PERF_BR_UNCOND		= 2,	/* unconditional  */
245 	PERF_BR_IND		= 3,	/* indirect */
246 	PERF_BR_CALL		= 4,	/* function call */
247 	PERF_BR_IND_CALL	= 5,	/* indirect function call */
248 	PERF_BR_RET		= 6,	/* function return */
249 	PERF_BR_SYSCALL		= 7,	/* syscall */
250 	PERF_BR_SYSRET		= 8,	/* syscall return */
251 	PERF_BR_COND_CALL	= 9,	/* conditional function call */
252 	PERF_BR_COND_RET	= 10,	/* conditional function return */
253 	PERF_BR_MAX,
254 };
255 
256 #define PERF_SAMPLE_BRANCH_PLM_ALL \
257 	(PERF_SAMPLE_BRANCH_USER|\
258 	 PERF_SAMPLE_BRANCH_KERNEL|\
259 	 PERF_SAMPLE_BRANCH_HV)
260 
261 /*
262  * Values to determine ABI of the registers dump.
263  */
264 enum perf_sample_regs_abi {
265 	PERF_SAMPLE_REGS_ABI_NONE	= 0,
266 	PERF_SAMPLE_REGS_ABI_32		= 1,
267 	PERF_SAMPLE_REGS_ABI_64		= 2,
268 };
269 
270 /*
271  * Values for the memory transaction event qualifier, mostly for
272  * abort events. Multiple bits can be set.
273  */
274 enum {
275 	PERF_TXN_ELISION        = (1 << 0), /* From elision */
276 	PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
277 	PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
278 	PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
279 	PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
280 	PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
281 	PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
282 	PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
283 
284 	PERF_TXN_MAX	        = (1 << 8), /* non-ABI */
285 
286 	/* bits 32..63 are reserved for the abort code */
287 
288 	PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
289 	PERF_TXN_ABORT_SHIFT = 32,
290 };
291 
292 /*
293  * The format of the data returned by read() on a perf event fd,
294  * as specified by attr.read_format:
295  *
296  * struct read_format {
297  *	{ u64		value;
298  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
299  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
300  *	  { u64		id;           } && PERF_FORMAT_ID
301  *	} && !PERF_FORMAT_GROUP
302  *
303  *	{ u64		nr;
304  *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
305  *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
306  *	  { u64		value;
307  *	    { u64	id;           } && PERF_FORMAT_ID
308  *	  }		cntr[nr];
309  *	} && PERF_FORMAT_GROUP
310  * };
311  */
312 enum perf_event_read_format {
313 	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
314 	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
315 	PERF_FORMAT_ID				= 1U << 2,
316 	PERF_FORMAT_GROUP			= 1U << 3,
317 
318 	PERF_FORMAT_MAX = 1U << 4,		/* non-ABI */
319 };
320 
321 #define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
322 #define PERF_ATTR_SIZE_VER1	72	/* add: config2 */
323 #define PERF_ATTR_SIZE_VER2	80	/* add: branch_sample_type */
324 #define PERF_ATTR_SIZE_VER3	96	/* add: sample_regs_user */
325 					/* add: sample_stack_user */
326 #define PERF_ATTR_SIZE_VER4	104	/* add: sample_regs_intr */
327 #define PERF_ATTR_SIZE_VER5	112	/* add: aux_watermark */
328 #define PERF_ATTR_SIZE_VER6	120	/* add: aux_sample_size */
329 
330 /*
331  * Hardware event_id to monitor via a performance monitoring event:
332  *
333  * @sample_max_stack: Max number of frame pointers in a callchain,
334  *		      should be < /proc/sys/kernel/perf_event_max_stack
335  */
336 struct perf_event_attr {
337 
338 	/*
339 	 * Major type: hardware/software/tracepoint/etc.
340 	 */
341 	__u32			type;
342 
343 	/*
344 	 * Size of the attr structure, for fwd/bwd compat.
345 	 */
346 	__u32			size;
347 
348 	/*
349 	 * Type specific configuration information.
350 	 */
351 	__u64			config;
352 
353 	union {
354 		__u64		sample_period;
355 		__u64		sample_freq;
356 	};
357 
358 	__u64			sample_type;
359 	__u64			read_format;
360 
361 	__u64			disabled       :  1, /* off by default        */
362 				inherit	       :  1, /* children inherit it   */
363 				pinned	       :  1, /* must always be on PMU */
364 				exclusive      :  1, /* only group on PMU     */
365 				exclude_user   :  1, /* don't count user      */
366 				exclude_kernel :  1, /* ditto kernel          */
367 				exclude_hv     :  1, /* ditto hypervisor      */
368 				exclude_idle   :  1, /* don't count when idle */
369 				mmap           :  1, /* include mmap data     */
370 				comm	       :  1, /* include comm data     */
371 				freq           :  1, /* use freq, not period  */
372 				inherit_stat   :  1, /* per task counts       */
373 				enable_on_exec :  1, /* next exec enables     */
374 				task           :  1, /* trace fork/exit       */
375 				watermark      :  1, /* wakeup_watermark      */
376 				/*
377 				 * precise_ip:
378 				 *
379 				 *  0 - SAMPLE_IP can have arbitrary skid
380 				 *  1 - SAMPLE_IP must have constant skid
381 				 *  2 - SAMPLE_IP requested to have 0 skid
382 				 *  3 - SAMPLE_IP must have 0 skid
383 				 *
384 				 *  See also PERF_RECORD_MISC_EXACT_IP
385 				 */
386 				precise_ip     :  2, /* skid constraint       */
387 				mmap_data      :  1, /* non-exec mmap data    */
388 				sample_id_all  :  1, /* sample_type all events */
389 
390 				exclude_host   :  1, /* don't count in host   */
391 				exclude_guest  :  1, /* don't count in guest  */
392 
393 				exclude_callchain_kernel : 1, /* exclude kernel callchains */
394 				exclude_callchain_user   : 1, /* exclude user callchains */
395 				mmap2          :  1, /* include mmap with inode data     */
396 				comm_exec      :  1, /* flag comm events that are due to an exec */
397 				use_clockid    :  1, /* use @clockid for time fields */
398 				context_switch :  1, /* context switch data */
399 				write_backward :  1, /* Write ring buffer from end to beginning */
400 				namespaces     :  1, /* include namespaces data */
401 				ksymbol        :  1, /* include ksymbol events */
402 				bpf_event      :  1, /* include bpf events */
403 				aux_output     :  1, /* generate AUX records instead of events */
404 				cgroup         :  1, /* include cgroup events */
405 				text_poke      :  1, /* include text poke events */
406 				build_id       :  1, /* use build id in mmap2 events */
407 				__reserved_1   : 29;
408 
409 	union {
410 		__u32		wakeup_events;	  /* wakeup every n events */
411 		__u32		wakeup_watermark; /* bytes before wakeup   */
412 	};
413 
414 	__u32			bp_type;
415 	union {
416 		__u64		bp_addr;
417 		__u64		kprobe_func; /* for perf_kprobe */
418 		__u64		uprobe_path; /* for perf_uprobe */
419 		__u64		config1; /* extension of config */
420 	};
421 	union {
422 		__u64		bp_len;
423 		__u64		kprobe_addr; /* when kprobe_func == NULL */
424 		__u64		probe_offset; /* for perf_[k,u]probe */
425 		__u64		config2; /* extension of config1 */
426 	};
427 	__u64	branch_sample_type; /* enum perf_branch_sample_type */
428 
429 	/*
430 	 * Defines set of user regs to dump on samples.
431 	 * See asm/perf_regs.h for details.
432 	 */
433 	__u64	sample_regs_user;
434 
435 	/*
436 	 * Defines size of the user stack to dump on samples.
437 	 */
438 	__u32	sample_stack_user;
439 
440 	__s32	clockid;
441 	/*
442 	 * Defines set of regs to dump for each sample
443 	 * state captured on:
444 	 *  - precise = 0: PMU interrupt
445 	 *  - precise > 0: sampled instruction
446 	 *
447 	 * See asm/perf_regs.h for details.
448 	 */
449 	__u64	sample_regs_intr;
450 
451 	/*
452 	 * Wakeup watermark for AUX area
453 	 */
454 	__u32	aux_watermark;
455 	__u16	sample_max_stack;
456 	__u16	__reserved_2;
457 	__u32	aux_sample_size;
458 	__u32	__reserved_3;
459 };
460 
461 /*
462  * Structure used by below PERF_EVENT_IOC_QUERY_BPF command
463  * to query bpf programs attached to the same perf tracepoint
464  * as the given perf event.
465  */
466 struct perf_event_query_bpf {
467 	/*
468 	 * The below ids array length
469 	 */
470 	__u32	ids_len;
471 	/*
472 	 * Set by the kernel to indicate the number of
473 	 * available programs
474 	 */
475 	__u32	prog_cnt;
476 	/*
477 	 * User provided buffer to store program ids
478 	 */
479 	__u32	ids[0];
480 };
481 
482 /*
483  * Ioctls that can be done on a perf event fd:
484  */
485 #define PERF_EVENT_IOC_ENABLE			_IO ('$', 0)
486 #define PERF_EVENT_IOC_DISABLE			_IO ('$', 1)
487 #define PERF_EVENT_IOC_REFRESH			_IO ('$', 2)
488 #define PERF_EVENT_IOC_RESET			_IO ('$', 3)
489 #define PERF_EVENT_IOC_PERIOD			_IOW('$', 4, __u64)
490 #define PERF_EVENT_IOC_SET_OUTPUT		_IO ('$', 5)
491 #define PERF_EVENT_IOC_SET_FILTER		_IOW('$', 6, char *)
492 #define PERF_EVENT_IOC_ID			_IOR('$', 7, __u64 *)
493 #define PERF_EVENT_IOC_SET_BPF			_IOW('$', 8, __u32)
494 #define PERF_EVENT_IOC_PAUSE_OUTPUT		_IOW('$', 9, __u32)
495 #define PERF_EVENT_IOC_QUERY_BPF		_IOWR('$', 10, struct perf_event_query_bpf *)
496 #define PERF_EVENT_IOC_MODIFY_ATTRIBUTES	_IOW('$', 11, struct perf_event_attr *)
497 
498 enum perf_event_ioc_flags {
499 	PERF_IOC_FLAG_GROUP		= 1U << 0,
500 };
501 
502 /*
503  * Structure of the page that can be mapped via mmap
504  */
505 struct perf_event_mmap_page {
506 	__u32	version;		/* version number of this structure */
507 	__u32	compat_version;		/* lowest version this is compat with */
508 
509 	/*
510 	 * Bits needed to read the hw events in user-space.
511 	 *
512 	 *   u32 seq, time_mult, time_shift, index, width;
513 	 *   u64 count, enabled, running;
514 	 *   u64 cyc, time_offset;
515 	 *   s64 pmc = 0;
516 	 *
517 	 *   do {
518 	 *     seq = pc->lock;
519 	 *     barrier()
520 	 *
521 	 *     enabled = pc->time_enabled;
522 	 *     running = pc->time_running;
523 	 *
524 	 *     if (pc->cap_usr_time && enabled != running) {
525 	 *       cyc = rdtsc();
526 	 *       time_offset = pc->time_offset;
527 	 *       time_mult   = pc->time_mult;
528 	 *       time_shift  = pc->time_shift;
529 	 *     }
530 	 *
531 	 *     index = pc->index;
532 	 *     count = pc->offset;
533 	 *     if (pc->cap_user_rdpmc && index) {
534 	 *       width = pc->pmc_width;
535 	 *       pmc = rdpmc(index - 1);
536 	 *     }
537 	 *
538 	 *     barrier();
539 	 *   } while (pc->lock != seq);
540 	 *
541 	 * NOTE: for obvious reason this only works on self-monitoring
542 	 *       processes.
543 	 */
544 	__u32	lock;			/* seqlock for synchronization */
545 	__u32	index;			/* hardware event identifier */
546 	__s64	offset;			/* add to hardware event value */
547 	__u64	time_enabled;		/* time event active */
548 	__u64	time_running;		/* time event on cpu */
549 	union {
550 		__u64	capabilities;
551 		struct {
552 			__u64	cap_bit0		: 1, /* Always 0, deprecated, see commit 860f085b74e9 */
553 				cap_bit0_is_deprecated	: 1, /* Always 1, signals that bit 0 is zero */
554 
555 				cap_user_rdpmc		: 1, /* The RDPMC instruction can be used to read counts */
556 				cap_user_time		: 1, /* The time_{shift,mult,offset} fields are used */
557 				cap_user_time_zero	: 1, /* The time_zero field is used */
558 				cap_user_time_short	: 1, /* the time_{cycle,mask} fields are used */
559 				cap_____res		: 58;
560 		};
561 	};
562 
563 	/*
564 	 * If cap_user_rdpmc this field provides the bit-width of the value
565 	 * read using the rdpmc() or equivalent instruction. This can be used
566 	 * to sign extend the result like:
567 	 *
568 	 *   pmc <<= 64 - width;
569 	 *   pmc >>= 64 - width; // signed shift right
570 	 *   count += pmc;
571 	 */
572 	__u16	pmc_width;
573 
574 	/*
575 	 * If cap_usr_time the below fields can be used to compute the time
576 	 * delta since time_enabled (in ns) using rdtsc or similar.
577 	 *
578 	 *   u64 quot, rem;
579 	 *   u64 delta;
580 	 *
581 	 *   quot = (cyc >> time_shift);
582 	 *   rem = cyc & (((u64)1 << time_shift) - 1);
583 	 *   delta = time_offset + quot * time_mult +
584 	 *              ((rem * time_mult) >> time_shift);
585 	 *
586 	 * Where time_offset,time_mult,time_shift and cyc are read in the
587 	 * seqcount loop described above. This delta can then be added to
588 	 * enabled and possible running (if index), improving the scaling:
589 	 *
590 	 *   enabled += delta;
591 	 *   if (index)
592 	 *     running += delta;
593 	 *
594 	 *   quot = count / running;
595 	 *   rem  = count % running;
596 	 *   count = quot * enabled + (rem * enabled) / running;
597 	 */
598 	__u16	time_shift;
599 	__u32	time_mult;
600 	__u64	time_offset;
601 	/*
602 	 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
603 	 * from sample timestamps.
604 	 *
605 	 *   time = timestamp - time_zero;
606 	 *   quot = time / time_mult;
607 	 *   rem  = time % time_mult;
608 	 *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
609 	 *
610 	 * And vice versa:
611 	 *
612 	 *   quot = cyc >> time_shift;
613 	 *   rem  = cyc & (((u64)1 << time_shift) - 1);
614 	 *   timestamp = time_zero + quot * time_mult +
615 	 *               ((rem * time_mult) >> time_shift);
616 	 */
617 	__u64	time_zero;
618 
619 	__u32	size;			/* Header size up to __reserved[] fields. */
620 	__u32	__reserved_1;
621 
622 	/*
623 	 * If cap_usr_time_short, the hardware clock is less than 64bit wide
624 	 * and we must compute the 'cyc' value, as used by cap_usr_time, as:
625 	 *
626 	 *   cyc = time_cycles + ((cyc - time_cycles) & time_mask)
627 	 *
628 	 * NOTE: this form is explicitly chosen such that cap_usr_time_short
629 	 *       is a correction on top of cap_usr_time, and code that doesn't
630 	 *       know about cap_usr_time_short still works under the assumption
631 	 *       the counter doesn't wrap.
632 	 */
633 	__u64	time_cycles;
634 	__u64	time_mask;
635 
636 		/*
637 		 * Hole for extension of the self monitor capabilities
638 		 */
639 
640 	__u8	__reserved[116*8];	/* align to 1k. */
641 
642 	/*
643 	 * Control data for the mmap() data buffer.
644 	 *
645 	 * User-space reading the @data_head value should issue an smp_rmb(),
646 	 * after reading this value.
647 	 *
648 	 * When the mapping is PROT_WRITE the @data_tail value should be
649 	 * written by userspace to reflect the last read data, after issueing
650 	 * an smp_mb() to separate the data read from the ->data_tail store.
651 	 * In this case the kernel will not over-write unread data.
652 	 *
653 	 * See perf_output_put_handle() for the data ordering.
654 	 *
655 	 * data_{offset,size} indicate the location and size of the perf record
656 	 * buffer within the mmapped area.
657 	 */
658 	__u64   data_head;		/* head in the data section */
659 	__u64	data_tail;		/* user-space written tail */
660 	__u64	data_offset;		/* where the buffer starts */
661 	__u64	data_size;		/* data buffer size */
662 
663 	/*
664 	 * AUX area is defined by aux_{offset,size} fields that should be set
665 	 * by the userspace, so that
666 	 *
667 	 *   aux_offset >= data_offset + data_size
668 	 *
669 	 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
670 	 *
671 	 * Ring buffer pointers aux_{head,tail} have the same semantics as
672 	 * data_{head,tail} and same ordering rules apply.
673 	 */
674 	__u64	aux_head;
675 	__u64	aux_tail;
676 	__u64	aux_offset;
677 	__u64	aux_size;
678 };
679 
680 /*
681  * The current state of perf_event_header::misc bits usage:
682  * ('|' used bit, '-' unused bit)
683  *
684  *  012         CDEF
685  *  |||---------||||
686  *
687  *  Where:
688  *    0-2     CPUMODE_MASK
689  *
690  *    C       PROC_MAP_PARSE_TIMEOUT
691  *    D       MMAP_DATA / COMM_EXEC / FORK_EXEC / SWITCH_OUT
692  *    E       MMAP_BUILD_ID / EXACT_IP / SCHED_OUT_PREEMPT
693  *    F       (reserved)
694  */
695 
696 #define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
697 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
698 #define PERF_RECORD_MISC_KERNEL			(1 << 0)
699 #define PERF_RECORD_MISC_USER			(2 << 0)
700 #define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
701 #define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
702 #define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
703 
704 /*
705  * Indicates that /proc/PID/maps parsing are truncated by time out.
706  */
707 #define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT	(1 << 12)
708 /*
709  * Following PERF_RECORD_MISC_* are used on different
710  * events, so can reuse the same bit position:
711  *
712  *   PERF_RECORD_MISC_MMAP_DATA  - PERF_RECORD_MMAP* events
713  *   PERF_RECORD_MISC_COMM_EXEC  - PERF_RECORD_COMM event
714  *   PERF_RECORD_MISC_FORK_EXEC  - PERF_RECORD_FORK event (perf internal)
715  *   PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events
716  */
717 #define PERF_RECORD_MISC_MMAP_DATA		(1 << 13)
718 #define PERF_RECORD_MISC_COMM_EXEC		(1 << 13)
719 #define PERF_RECORD_MISC_FORK_EXEC		(1 << 13)
720 #define PERF_RECORD_MISC_SWITCH_OUT		(1 << 13)
721 /*
722  * These PERF_RECORD_MISC_* flags below are safely reused
723  * for the following events:
724  *
725  *   PERF_RECORD_MISC_EXACT_IP           - PERF_RECORD_SAMPLE of precise events
726  *   PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events
727  *   PERF_RECORD_MISC_MMAP_BUILD_ID      - PERF_RECORD_MMAP2 event
728  *
729  *
730  * PERF_RECORD_MISC_EXACT_IP:
731  *   Indicates that the content of PERF_SAMPLE_IP points to
732  *   the actual instruction that triggered the event. See also
733  *   perf_event_attr::precise_ip.
734  *
735  * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT:
736  *   Indicates that thread was preempted in TASK_RUNNING state.
737  *
738  * PERF_RECORD_MISC_MMAP_BUILD_ID:
739  *   Indicates that mmap2 event carries build id data.
740  */
741 #define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
742 #define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT	(1 << 14)
743 #define PERF_RECORD_MISC_MMAP_BUILD_ID		(1 << 14)
744 /*
745  * Reserve the last bit to indicate some extended misc field
746  */
747 #define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
748 
749 struct perf_event_header {
750 	__u32	type;
751 	__u16	misc;
752 	__u16	size;
753 };
754 
755 struct perf_ns_link_info {
756 	__u64	dev;
757 	__u64	ino;
758 };
759 
760 enum {
761 	NET_NS_INDEX		= 0,
762 	UTS_NS_INDEX		= 1,
763 	IPC_NS_INDEX		= 2,
764 	PID_NS_INDEX		= 3,
765 	USER_NS_INDEX		= 4,
766 	MNT_NS_INDEX		= 5,
767 	CGROUP_NS_INDEX		= 6,
768 
769 	NR_NAMESPACES,		/* number of available namespaces */
770 };
771 
772 enum perf_event_type {
773 
774 	/*
775 	 * If perf_event_attr.sample_id_all is set then all event types will
776 	 * have the sample_type selected fields related to where/when
777 	 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
778 	 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
779 	 * just after the perf_event_header and the fields already present for
780 	 * the existing fields, i.e. at the end of the payload. That way a newer
781 	 * perf.data file will be supported by older perf tools, with these new
782 	 * optional fields being ignored.
783 	 *
784 	 * struct sample_id {
785 	 * 	{ u32			pid, tid; } && PERF_SAMPLE_TID
786 	 * 	{ u64			time;     } && PERF_SAMPLE_TIME
787 	 * 	{ u64			id;       } && PERF_SAMPLE_ID
788 	 * 	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
789 	 * 	{ u32			cpu, res; } && PERF_SAMPLE_CPU
790 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
791 	 * } && perf_event_attr::sample_id_all
792 	 *
793 	 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
794 	 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
795 	 * relative to header.size.
796 	 */
797 
798 	/*
799 	 * The MMAP events record the PROT_EXEC mappings so that we can
800 	 * correlate userspace IPs to code. They have the following structure:
801 	 *
802 	 * struct {
803 	 *	struct perf_event_header	header;
804 	 *
805 	 *	u32				pid, tid;
806 	 *	u64				addr;
807 	 *	u64				len;
808 	 *	u64				pgoff;
809 	 *	char				filename[];
810 	 * 	struct sample_id		sample_id;
811 	 * };
812 	 */
813 	PERF_RECORD_MMAP			= 1,
814 
815 	/*
816 	 * struct {
817 	 *	struct perf_event_header	header;
818 	 *	u64				id;
819 	 *	u64				lost;
820 	 * 	struct sample_id		sample_id;
821 	 * };
822 	 */
823 	PERF_RECORD_LOST			= 2,
824 
825 	/*
826 	 * struct {
827 	 *	struct perf_event_header	header;
828 	 *
829 	 *	u32				pid, tid;
830 	 *	char				comm[];
831 	 * 	struct sample_id		sample_id;
832 	 * };
833 	 */
834 	PERF_RECORD_COMM			= 3,
835 
836 	/*
837 	 * struct {
838 	 *	struct perf_event_header	header;
839 	 *	u32				pid, ppid;
840 	 *	u32				tid, ptid;
841 	 *	u64				time;
842 	 * 	struct sample_id		sample_id;
843 	 * };
844 	 */
845 	PERF_RECORD_EXIT			= 4,
846 
847 	/*
848 	 * struct {
849 	 *	struct perf_event_header	header;
850 	 *	u64				time;
851 	 *	u64				id;
852 	 *	u64				stream_id;
853 	 * 	struct sample_id		sample_id;
854 	 * };
855 	 */
856 	PERF_RECORD_THROTTLE			= 5,
857 	PERF_RECORD_UNTHROTTLE			= 6,
858 
859 	/*
860 	 * struct {
861 	 *	struct perf_event_header	header;
862 	 *	u32				pid, ppid;
863 	 *	u32				tid, ptid;
864 	 *	u64				time;
865 	 * 	struct sample_id		sample_id;
866 	 * };
867 	 */
868 	PERF_RECORD_FORK			= 7,
869 
870 	/*
871 	 * struct {
872 	 *	struct perf_event_header	header;
873 	 *	u32				pid, tid;
874 	 *
875 	 *	struct read_format		values;
876 	 * 	struct sample_id		sample_id;
877 	 * };
878 	 */
879 	PERF_RECORD_READ			= 8,
880 
881 	/*
882 	 * struct {
883 	 *	struct perf_event_header	header;
884 	 *
885 	 *	#
886 	 *	# Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
887 	 *	# The advantage of PERF_SAMPLE_IDENTIFIER is that its position
888 	 *	# is fixed relative to header.
889 	 *	#
890 	 *
891 	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
892 	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
893 	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
894 	 *	{ u64			time;     } && PERF_SAMPLE_TIME
895 	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
896 	 *	{ u64			id;	  } && PERF_SAMPLE_ID
897 	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
898 	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
899 	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
900 	 *
901 	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
902 	 *
903 	 *	{ u64			nr,
904 	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
905 	 *
906 	 *	#
907 	 *	# The RAW record below is opaque data wrt the ABI
908 	 *	#
909 	 *	# That is, the ABI doesn't make any promises wrt to
910 	 *	# the stability of its content, it may vary depending
911 	 *	# on event, hardware, kernel version and phase of
912 	 *	# the moon.
913 	 *	#
914 	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
915 	 *	#
916 	 *
917 	 *	{ u32			size;
918 	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
919 	 *
920 	 *	{ u64                   nr;
921 	 *	  { u64	hw_idx; } && PERF_SAMPLE_BRANCH_HW_INDEX
922 	 *        { u64 from, to, flags } lbr[nr];
923 	 *      } && PERF_SAMPLE_BRANCH_STACK
924 	 *
925 	 * 	{ u64			abi; # enum perf_sample_regs_abi
926 	 * 	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
927 	 *
928 	 * 	{ u64			size;
929 	 * 	  char			data[size];
930 	 * 	  u64			dyn_size; } && PERF_SAMPLE_STACK_USER
931 	 *
932 	 *	{ union perf_sample_weight
933 	 *	 {
934 	 *		u64		full; && PERF_SAMPLE_WEIGHT
935 	 *	#if defined(__LITTLE_ENDIAN_BITFIELD)
936 	 *		struct {
937 	 *			u32	var1_dw;
938 	 *			u16	var2_w;
939 	 *			u16	var3_w;
940 	 *		} && PERF_SAMPLE_WEIGHT_STRUCT
941 	 *	#elif defined(__BIG_ENDIAN_BITFIELD)
942 	 *		struct {
943 	 *			u16	var3_w;
944 	 *			u16	var2_w;
945 	 *			u32	var1_dw;
946 	 *		} && PERF_SAMPLE_WEIGHT_STRUCT
947 	 *	#endif
948 	 *	 }
949 	 *	}
950 	 *	{ u64			data_src; } && PERF_SAMPLE_DATA_SRC
951 	 *	{ u64			transaction; } && PERF_SAMPLE_TRANSACTION
952 	 *	{ u64			abi; # enum perf_sample_regs_abi
953 	 *	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
954 	 *	{ u64			phys_addr;} && PERF_SAMPLE_PHYS_ADDR
955 	 *	{ u64			size;
956 	 *	  char			data[size]; } && PERF_SAMPLE_AUX
957 	 *	{ u64			data_page_size;} && PERF_SAMPLE_DATA_PAGE_SIZE
958 	 *	{ u64			code_page_size;} && PERF_SAMPLE_CODE_PAGE_SIZE
959 	 * };
960 	 */
961 	PERF_RECORD_SAMPLE			= 9,
962 
963 	/*
964 	 * The MMAP2 records are an augmented version of MMAP, they add
965 	 * maj, min, ino numbers to be used to uniquely identify each mapping
966 	 *
967 	 * struct {
968 	 *	struct perf_event_header	header;
969 	 *
970 	 *	u32				pid, tid;
971 	 *	u64				addr;
972 	 *	u64				len;
973 	 *	u64				pgoff;
974 	 *	union {
975 	 *		struct {
976 	 *			u32		maj;
977 	 *			u32		min;
978 	 *			u64		ino;
979 	 *			u64		ino_generation;
980 	 *		};
981 	 *		struct {
982 	 *			u8		build_id_size;
983 	 *			u8		__reserved_1;
984 	 *			u16		__reserved_2;
985 	 *			u8		build_id[20];
986 	 *		};
987 	 *	};
988 	 *	u32				prot, flags;
989 	 *	char				filename[];
990 	 * 	struct sample_id		sample_id;
991 	 * };
992 	 */
993 	PERF_RECORD_MMAP2			= 10,
994 
995 	/*
996 	 * Records that new data landed in the AUX buffer part.
997 	 *
998 	 * struct {
999 	 * 	struct perf_event_header	header;
1000 	 *
1001 	 * 	u64				aux_offset;
1002 	 * 	u64				aux_size;
1003 	 *	u64				flags;
1004 	 * 	struct sample_id		sample_id;
1005 	 * };
1006 	 */
1007 	PERF_RECORD_AUX				= 11,
1008 
1009 	/*
1010 	 * Indicates that instruction trace has started
1011 	 *
1012 	 * struct {
1013 	 *	struct perf_event_header	header;
1014 	 *	u32				pid;
1015 	 *	u32				tid;
1016 	 *	struct sample_id		sample_id;
1017 	 * };
1018 	 */
1019 	PERF_RECORD_ITRACE_START		= 12,
1020 
1021 	/*
1022 	 * Records the dropped/lost sample number.
1023 	 *
1024 	 * struct {
1025 	 *	struct perf_event_header	header;
1026 	 *
1027 	 *	u64				lost;
1028 	 *	struct sample_id		sample_id;
1029 	 * };
1030 	 */
1031 	PERF_RECORD_LOST_SAMPLES		= 13,
1032 
1033 	/*
1034 	 * Records a context switch in or out (flagged by
1035 	 * PERF_RECORD_MISC_SWITCH_OUT). See also
1036 	 * PERF_RECORD_SWITCH_CPU_WIDE.
1037 	 *
1038 	 * struct {
1039 	 *	struct perf_event_header	header;
1040 	 *	struct sample_id		sample_id;
1041 	 * };
1042 	 */
1043 	PERF_RECORD_SWITCH			= 14,
1044 
1045 	/*
1046 	 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
1047 	 * next_prev_tid that are the next (switching out) or previous
1048 	 * (switching in) pid/tid.
1049 	 *
1050 	 * struct {
1051 	 *	struct perf_event_header	header;
1052 	 *	u32				next_prev_pid;
1053 	 *	u32				next_prev_tid;
1054 	 *	struct sample_id		sample_id;
1055 	 * };
1056 	 */
1057 	PERF_RECORD_SWITCH_CPU_WIDE		= 15,
1058 
1059 	/*
1060 	 * struct {
1061 	 *	struct perf_event_header	header;
1062 	 *	u32				pid;
1063 	 *	u32				tid;
1064 	 *	u64				nr_namespaces;
1065 	 *	{ u64				dev, inode; } [nr_namespaces];
1066 	 *	struct sample_id		sample_id;
1067 	 * };
1068 	 */
1069 	PERF_RECORD_NAMESPACES			= 16,
1070 
1071 	/*
1072 	 * Record ksymbol register/unregister events:
1073 	 *
1074 	 * struct {
1075 	 *	struct perf_event_header	header;
1076 	 *	u64				addr;
1077 	 *	u32				len;
1078 	 *	u16				ksym_type;
1079 	 *	u16				flags;
1080 	 *	char				name[];
1081 	 *	struct sample_id		sample_id;
1082 	 * };
1083 	 */
1084 	PERF_RECORD_KSYMBOL			= 17,
1085 
1086 	/*
1087 	 * Record bpf events:
1088 	 *  enum perf_bpf_event_type {
1089 	 *	PERF_BPF_EVENT_UNKNOWN		= 0,
1090 	 *	PERF_BPF_EVENT_PROG_LOAD	= 1,
1091 	 *	PERF_BPF_EVENT_PROG_UNLOAD	= 2,
1092 	 *  };
1093 	 *
1094 	 * struct {
1095 	 *	struct perf_event_header	header;
1096 	 *	u16				type;
1097 	 *	u16				flags;
1098 	 *	u32				id;
1099 	 *	u8				tag[BPF_TAG_SIZE];
1100 	 *	struct sample_id		sample_id;
1101 	 * };
1102 	 */
1103 	PERF_RECORD_BPF_EVENT			= 18,
1104 
1105 	/*
1106 	 * struct {
1107 	 *	struct perf_event_header	header;
1108 	 *	u64				id;
1109 	 *	char				path[];
1110 	 *	struct sample_id		sample_id;
1111 	 * };
1112 	 */
1113 	PERF_RECORD_CGROUP			= 19,
1114 
1115 	/*
1116 	 * Records changes to kernel text i.e. self-modified code. 'old_len' is
1117 	 * the number of old bytes, 'new_len' is the number of new bytes. Either
1118 	 * 'old_len' or 'new_len' may be zero to indicate, for example, the
1119 	 * addition or removal of a trampoline. 'bytes' contains the old bytes
1120 	 * followed immediately by the new bytes.
1121 	 *
1122 	 * struct {
1123 	 *	struct perf_event_header	header;
1124 	 *	u64				addr;
1125 	 *	u16				old_len;
1126 	 *	u16				new_len;
1127 	 *	u8				bytes[];
1128 	 *	struct sample_id		sample_id;
1129 	 * };
1130 	 */
1131 	PERF_RECORD_TEXT_POKE			= 20,
1132 
1133 	PERF_RECORD_MAX,			/* non-ABI */
1134 };
1135 
1136 enum perf_record_ksymbol_type {
1137 	PERF_RECORD_KSYMBOL_TYPE_UNKNOWN	= 0,
1138 	PERF_RECORD_KSYMBOL_TYPE_BPF		= 1,
1139 	/*
1140 	 * Out of line code such as kprobe-replaced instructions or optimized
1141 	 * kprobes or ftrace trampolines.
1142 	 */
1143 	PERF_RECORD_KSYMBOL_TYPE_OOL		= 2,
1144 	PERF_RECORD_KSYMBOL_TYPE_MAX		/* non-ABI */
1145 };
1146 
1147 #define PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER	(1 << 0)
1148 
1149 enum perf_bpf_event_type {
1150 	PERF_BPF_EVENT_UNKNOWN		= 0,
1151 	PERF_BPF_EVENT_PROG_LOAD	= 1,
1152 	PERF_BPF_EVENT_PROG_UNLOAD	= 2,
1153 	PERF_BPF_EVENT_MAX,		/* non-ABI */
1154 };
1155 
1156 #define PERF_MAX_STACK_DEPTH		127
1157 #define PERF_MAX_CONTEXTS_PER_STACK	  8
1158 
1159 enum perf_callchain_context {
1160 	PERF_CONTEXT_HV			= (__u64)-32,
1161 	PERF_CONTEXT_KERNEL		= (__u64)-128,
1162 	PERF_CONTEXT_USER		= (__u64)-512,
1163 
1164 	PERF_CONTEXT_GUEST		= (__u64)-2048,
1165 	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
1166 	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
1167 
1168 	PERF_CONTEXT_MAX		= (__u64)-4095,
1169 };
1170 
1171 /**
1172  * PERF_RECORD_AUX::flags bits
1173  */
1174 #define PERF_AUX_FLAG_TRUNCATED		0x01	/* record was truncated to fit */
1175 #define PERF_AUX_FLAG_OVERWRITE		0x02	/* snapshot from overwrite mode */
1176 #define PERF_AUX_FLAG_PARTIAL		0x04	/* record contains gaps */
1177 #define PERF_AUX_FLAG_COLLISION		0x08	/* sample collided with another */
1178 
1179 #define PERF_FLAG_FD_NO_GROUP		(1UL << 0)
1180 #define PERF_FLAG_FD_OUTPUT		(1UL << 1)
1181 #define PERF_FLAG_PID_CGROUP		(1UL << 2) /* pid=cgroup id, per-cpu mode only */
1182 #define PERF_FLAG_FD_CLOEXEC		(1UL << 3) /* O_CLOEXEC */
1183 
1184 #if defined(__LITTLE_ENDIAN_BITFIELD)
1185 union perf_mem_data_src {
1186 	__u64 val;
1187 	struct {
1188 		__u64   mem_op:5,	/* type of opcode */
1189 			mem_lvl:14,	/* memory hierarchy level */
1190 			mem_snoop:5,	/* snoop mode */
1191 			mem_lock:2,	/* lock instr */
1192 			mem_dtlb:7,	/* tlb access */
1193 			mem_lvl_num:4,	/* memory hierarchy level number */
1194 			mem_remote:1,   /* remote */
1195 			mem_snoopx:2,	/* snoop mode, ext */
1196 			mem_blk:3,	/* access blocked */
1197 			mem_rsvd:21;
1198 	};
1199 };
1200 #elif defined(__BIG_ENDIAN_BITFIELD)
1201 union perf_mem_data_src {
1202 	__u64 val;
1203 	struct {
1204 		__u64	mem_rsvd:21,
1205 			mem_blk:3,	/* access blocked */
1206 			mem_snoopx:2,	/* snoop mode, ext */
1207 			mem_remote:1,   /* remote */
1208 			mem_lvl_num:4,	/* memory hierarchy level number */
1209 			mem_dtlb:7,	/* tlb access */
1210 			mem_lock:2,	/* lock instr */
1211 			mem_snoop:5,	/* snoop mode */
1212 			mem_lvl:14,	/* memory hierarchy level */
1213 			mem_op:5;	/* type of opcode */
1214 	};
1215 };
1216 #else
1217 #error "Unknown endianness"
1218 #endif
1219 
1220 /* type of opcode (load/store/prefetch,code) */
1221 #define PERF_MEM_OP_NA		0x01 /* not available */
1222 #define PERF_MEM_OP_LOAD	0x02 /* load instruction */
1223 #define PERF_MEM_OP_STORE	0x04 /* store instruction */
1224 #define PERF_MEM_OP_PFETCH	0x08 /* prefetch */
1225 #define PERF_MEM_OP_EXEC	0x10 /* code (execution) */
1226 #define PERF_MEM_OP_SHIFT	0
1227 
1228 /* memory hierarchy (memory level, hit or miss) */
1229 #define PERF_MEM_LVL_NA		0x01  /* not available */
1230 #define PERF_MEM_LVL_HIT	0x02  /* hit level */
1231 #define PERF_MEM_LVL_MISS	0x04  /* miss level  */
1232 #define PERF_MEM_LVL_L1		0x08  /* L1 */
1233 #define PERF_MEM_LVL_LFB	0x10  /* Line Fill Buffer */
1234 #define PERF_MEM_LVL_L2		0x20  /* L2 */
1235 #define PERF_MEM_LVL_L3		0x40  /* L3 */
1236 #define PERF_MEM_LVL_LOC_RAM	0x80  /* Local DRAM */
1237 #define PERF_MEM_LVL_REM_RAM1	0x100 /* Remote DRAM (1 hop) */
1238 #define PERF_MEM_LVL_REM_RAM2	0x200 /* Remote DRAM (2 hops) */
1239 #define PERF_MEM_LVL_REM_CCE1	0x400 /* Remote Cache (1 hop) */
1240 #define PERF_MEM_LVL_REM_CCE2	0x800 /* Remote Cache (2 hops) */
1241 #define PERF_MEM_LVL_IO		0x1000 /* I/O memory */
1242 #define PERF_MEM_LVL_UNC	0x2000 /* Uncached memory */
1243 #define PERF_MEM_LVL_SHIFT	5
1244 
1245 #define PERF_MEM_REMOTE_REMOTE	0x01  /* Remote */
1246 #define PERF_MEM_REMOTE_SHIFT	37
1247 
1248 #define PERF_MEM_LVLNUM_L1	0x01 /* L1 */
1249 #define PERF_MEM_LVLNUM_L2	0x02 /* L2 */
1250 #define PERF_MEM_LVLNUM_L3	0x03 /* L3 */
1251 #define PERF_MEM_LVLNUM_L4	0x04 /* L4 */
1252 /* 5-0xa available */
1253 #define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */
1254 #define PERF_MEM_LVLNUM_LFB	0x0c /* LFB */
1255 #define PERF_MEM_LVLNUM_RAM	0x0d /* RAM */
1256 #define PERF_MEM_LVLNUM_PMEM	0x0e /* PMEM */
1257 #define PERF_MEM_LVLNUM_NA	0x0f /* N/A */
1258 
1259 #define PERF_MEM_LVLNUM_SHIFT	33
1260 
1261 /* snoop mode */
1262 #define PERF_MEM_SNOOP_NA	0x01 /* not available */
1263 #define PERF_MEM_SNOOP_NONE	0x02 /* no snoop */
1264 #define PERF_MEM_SNOOP_HIT	0x04 /* snoop hit */
1265 #define PERF_MEM_SNOOP_MISS	0x08 /* snoop miss */
1266 #define PERF_MEM_SNOOP_HITM	0x10 /* snoop hit modified */
1267 #define PERF_MEM_SNOOP_SHIFT	19
1268 
1269 #define PERF_MEM_SNOOPX_FWD	0x01 /* forward */
1270 /* 1 free */
1271 #define PERF_MEM_SNOOPX_SHIFT  38
1272 
1273 /* locked instruction */
1274 #define PERF_MEM_LOCK_NA	0x01 /* not available */
1275 #define PERF_MEM_LOCK_LOCKED	0x02 /* locked transaction */
1276 #define PERF_MEM_LOCK_SHIFT	24
1277 
1278 /* TLB access */
1279 #define PERF_MEM_TLB_NA		0x01 /* not available */
1280 #define PERF_MEM_TLB_HIT	0x02 /* hit level */
1281 #define PERF_MEM_TLB_MISS	0x04 /* miss level */
1282 #define PERF_MEM_TLB_L1		0x08 /* L1 */
1283 #define PERF_MEM_TLB_L2		0x10 /* L2 */
1284 #define PERF_MEM_TLB_WK		0x20 /* Hardware Walker*/
1285 #define PERF_MEM_TLB_OS		0x40 /* OS fault handler */
1286 #define PERF_MEM_TLB_SHIFT	26
1287 
1288 /* Access blocked */
1289 #define PERF_MEM_BLK_NA		0x01 /* not available */
1290 #define PERF_MEM_BLK_DATA	0x02 /* data could not be forwarded */
1291 #define PERF_MEM_BLK_ADDR	0x04 /* address conflict */
1292 #define PERF_MEM_BLK_SHIFT	40
1293 
1294 #define PERF_MEM_S(a, s) \
1295 	(((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
1296 
1297 /*
1298  * single taken branch record layout:
1299  *
1300  *      from: source instruction (may not always be a branch insn)
1301  *        to: branch target
1302  *   mispred: branch target was mispredicted
1303  * predicted: branch target was predicted
1304  *
1305  * support for mispred, predicted is optional. In case it
1306  * is not supported mispred = predicted = 0.
1307  *
1308  *     in_tx: running in a hardware transaction
1309  *     abort: aborting a hardware transaction
1310  *    cycles: cycles from last branch (or 0 if not supported)
1311  *      type: branch type
1312  */
1313 struct perf_branch_entry {
1314 	__u64	from;
1315 	__u64	to;
1316 	__u64	mispred:1,  /* target mispredicted */
1317 		predicted:1,/* target predicted */
1318 		in_tx:1,    /* in transaction */
1319 		abort:1,    /* transaction abort */
1320 		cycles:16,  /* cycle count to last branch */
1321 		type:4,     /* branch type */
1322 		reserved:40;
1323 };
1324 
1325 union perf_sample_weight {
1326 	__u64		full;
1327 #if defined(__LITTLE_ENDIAN_BITFIELD)
1328 	struct {
1329 		__u32	var1_dw;
1330 		__u16	var2_w;
1331 		__u16	var3_w;
1332 	};
1333 #elif defined(__BIG_ENDIAN_BITFIELD)
1334 	struct {
1335 		__u16	var3_w;
1336 		__u16	var2_w;
1337 		__u32	var1_dw;
1338 	};
1339 #else
1340 #error "Unknown endianness"
1341 #endif
1342 };
1343 
1344 #endif /* _UAPI_LINUX_PERF_EVENT_H */
1345