xref: /linux-6.15/tools/include/uapi/linux/bpf.h (revision cd65cd95)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  */
8 #ifndef _UAPI__LINUX_BPF_H__
9 #define _UAPI__LINUX_BPF_H__
10 
11 #include <linux/types.h>
12 #include <linux/bpf_common.h>
13 
14 /* Extended instruction set based on top of classic BPF */
15 
16 /* instruction classes */
17 #define BPF_ALU64	0x07	/* alu mode in double word width */
18 
19 /* ld/ldx fields */
20 #define BPF_DW		0x18	/* double word (64-bit) */
21 #define BPF_XADD	0xc0	/* exclusive add */
22 
23 /* alu/jmp fields */
24 #define BPF_MOV		0xb0	/* mov reg to reg */
25 #define BPF_ARSH	0xc0	/* sign extending arithmetic shift right */
26 
27 /* change endianness of a register */
28 #define BPF_END		0xd0	/* flags for endianness conversion: */
29 #define BPF_TO_LE	0x00	/* convert to little-endian */
30 #define BPF_TO_BE	0x08	/* convert to big-endian */
31 #define BPF_FROM_LE	BPF_TO_LE
32 #define BPF_FROM_BE	BPF_TO_BE
33 
34 /* jmp encodings */
35 #define BPF_JNE		0x50	/* jump != */
36 #define BPF_JLT		0xa0	/* LT is unsigned, '<' */
37 #define BPF_JLE		0xb0	/* LE is unsigned, '<=' */
38 #define BPF_JSGT	0x60	/* SGT is signed '>', GT in x86 */
39 #define BPF_JSGE	0x70	/* SGE is signed '>=', GE in x86 */
40 #define BPF_JSLT	0xc0	/* SLT is signed, '<' */
41 #define BPF_JSLE	0xd0	/* SLE is signed, '<=' */
42 #define BPF_CALL	0x80	/* function call */
43 #define BPF_EXIT	0x90	/* function return */
44 
45 /* Register numbers */
46 enum {
47 	BPF_REG_0 = 0,
48 	BPF_REG_1,
49 	BPF_REG_2,
50 	BPF_REG_3,
51 	BPF_REG_4,
52 	BPF_REG_5,
53 	BPF_REG_6,
54 	BPF_REG_7,
55 	BPF_REG_8,
56 	BPF_REG_9,
57 	BPF_REG_10,
58 	__MAX_BPF_REG,
59 };
60 
61 /* BPF has 10 general purpose 64-bit registers and stack frame. */
62 #define MAX_BPF_REG	__MAX_BPF_REG
63 
64 struct bpf_insn {
65 	__u8	code;		/* opcode */
66 	__u8	dst_reg:4;	/* dest register */
67 	__u8	src_reg:4;	/* source register */
68 	__s16	off;		/* signed offset */
69 	__s32	imm;		/* signed immediate constant */
70 };
71 
72 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
73 struct bpf_lpm_trie_key {
74 	__u32	prefixlen;	/* up to 32 for AF_INET, 128 for AF_INET6 */
75 	__u8	data[0];	/* Arbitrary size */
76 };
77 
78 /* BPF syscall commands, see bpf(2) man-page for details. */
79 enum bpf_cmd {
80 	BPF_MAP_CREATE,
81 	BPF_MAP_LOOKUP_ELEM,
82 	BPF_MAP_UPDATE_ELEM,
83 	BPF_MAP_DELETE_ELEM,
84 	BPF_MAP_GET_NEXT_KEY,
85 	BPF_PROG_LOAD,
86 	BPF_OBJ_PIN,
87 	BPF_OBJ_GET,
88 	BPF_PROG_ATTACH,
89 	BPF_PROG_DETACH,
90 	BPF_PROG_TEST_RUN,
91 	BPF_PROG_GET_NEXT_ID,
92 	BPF_MAP_GET_NEXT_ID,
93 	BPF_PROG_GET_FD_BY_ID,
94 	BPF_MAP_GET_FD_BY_ID,
95 	BPF_OBJ_GET_INFO_BY_FD,
96 	BPF_PROG_QUERY,
97 	BPF_RAW_TRACEPOINT_OPEN,
98 	BPF_BTF_LOAD,
99 	BPF_BTF_GET_FD_BY_ID,
100 };
101 
102 enum bpf_map_type {
103 	BPF_MAP_TYPE_UNSPEC,
104 	BPF_MAP_TYPE_HASH,
105 	BPF_MAP_TYPE_ARRAY,
106 	BPF_MAP_TYPE_PROG_ARRAY,
107 	BPF_MAP_TYPE_PERF_EVENT_ARRAY,
108 	BPF_MAP_TYPE_PERCPU_HASH,
109 	BPF_MAP_TYPE_PERCPU_ARRAY,
110 	BPF_MAP_TYPE_STACK_TRACE,
111 	BPF_MAP_TYPE_CGROUP_ARRAY,
112 	BPF_MAP_TYPE_LRU_HASH,
113 	BPF_MAP_TYPE_LRU_PERCPU_HASH,
114 	BPF_MAP_TYPE_LPM_TRIE,
115 	BPF_MAP_TYPE_ARRAY_OF_MAPS,
116 	BPF_MAP_TYPE_HASH_OF_MAPS,
117 	BPF_MAP_TYPE_DEVMAP,
118 	BPF_MAP_TYPE_SOCKMAP,
119 	BPF_MAP_TYPE_CPUMAP,
120 };
121 
122 enum bpf_prog_type {
123 	BPF_PROG_TYPE_UNSPEC,
124 	BPF_PROG_TYPE_SOCKET_FILTER,
125 	BPF_PROG_TYPE_KPROBE,
126 	BPF_PROG_TYPE_SCHED_CLS,
127 	BPF_PROG_TYPE_SCHED_ACT,
128 	BPF_PROG_TYPE_TRACEPOINT,
129 	BPF_PROG_TYPE_XDP,
130 	BPF_PROG_TYPE_PERF_EVENT,
131 	BPF_PROG_TYPE_CGROUP_SKB,
132 	BPF_PROG_TYPE_CGROUP_SOCK,
133 	BPF_PROG_TYPE_LWT_IN,
134 	BPF_PROG_TYPE_LWT_OUT,
135 	BPF_PROG_TYPE_LWT_XMIT,
136 	BPF_PROG_TYPE_SOCK_OPS,
137 	BPF_PROG_TYPE_SK_SKB,
138 	BPF_PROG_TYPE_CGROUP_DEVICE,
139 	BPF_PROG_TYPE_SK_MSG,
140 	BPF_PROG_TYPE_RAW_TRACEPOINT,
141 	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
142 };
143 
144 enum bpf_attach_type {
145 	BPF_CGROUP_INET_INGRESS,
146 	BPF_CGROUP_INET_EGRESS,
147 	BPF_CGROUP_INET_SOCK_CREATE,
148 	BPF_CGROUP_SOCK_OPS,
149 	BPF_SK_SKB_STREAM_PARSER,
150 	BPF_SK_SKB_STREAM_VERDICT,
151 	BPF_CGROUP_DEVICE,
152 	BPF_SK_MSG_VERDICT,
153 	BPF_CGROUP_INET4_BIND,
154 	BPF_CGROUP_INET6_BIND,
155 	BPF_CGROUP_INET4_CONNECT,
156 	BPF_CGROUP_INET6_CONNECT,
157 	BPF_CGROUP_INET4_POST_BIND,
158 	BPF_CGROUP_INET6_POST_BIND,
159 	__MAX_BPF_ATTACH_TYPE
160 };
161 
162 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
163 
164 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
165  *
166  * NONE(default): No further bpf programs allowed in the subtree.
167  *
168  * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
169  * the program in this cgroup yields to sub-cgroup program.
170  *
171  * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
172  * that cgroup program gets run in addition to the program in this cgroup.
173  *
174  * Only one program is allowed to be attached to a cgroup with
175  * NONE or BPF_F_ALLOW_OVERRIDE flag.
176  * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
177  * release old program and attach the new one. Attach flags has to match.
178  *
179  * Multiple programs are allowed to be attached to a cgroup with
180  * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
181  * (those that were attached first, run first)
182  * The programs of sub-cgroup are executed first, then programs of
183  * this cgroup and then programs of parent cgroup.
184  * When children program makes decision (like picking TCP CA or sock bind)
185  * parent program has a chance to override it.
186  *
187  * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
188  * A cgroup with NONE doesn't allow any programs in sub-cgroups.
189  * Ex1:
190  * cgrp1 (MULTI progs A, B) ->
191  *    cgrp2 (OVERRIDE prog C) ->
192  *      cgrp3 (MULTI prog D) ->
193  *        cgrp4 (OVERRIDE prog E) ->
194  *          cgrp5 (NONE prog F)
195  * the event in cgrp5 triggers execution of F,D,A,B in that order.
196  * if prog F is detached, the execution is E,D,A,B
197  * if prog F and D are detached, the execution is E,A,B
198  * if prog F, E and D are detached, the execution is C,A,B
199  *
200  * All eligible programs are executed regardless of return code from
201  * earlier programs.
202  */
203 #define BPF_F_ALLOW_OVERRIDE	(1U << 0)
204 #define BPF_F_ALLOW_MULTI	(1U << 1)
205 
206 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
207  * verifier will perform strict alignment checking as if the kernel
208  * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
209  * and NET_IP_ALIGN defined to 2.
210  */
211 #define BPF_F_STRICT_ALIGNMENT	(1U << 0)
212 
213 /* when bpf_ldimm64->src_reg == BPF_PSEUDO_MAP_FD, bpf_ldimm64->imm == fd */
214 #define BPF_PSEUDO_MAP_FD	1
215 
216 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
217  * offset to another bpf function
218  */
219 #define BPF_PSEUDO_CALL		1
220 
221 /* flags for BPF_MAP_UPDATE_ELEM command */
222 #define BPF_ANY		0 /* create new element or update existing */
223 #define BPF_NOEXIST	1 /* create new element if it didn't exist */
224 #define BPF_EXIST	2 /* update existing element */
225 
226 /* flags for BPF_MAP_CREATE command */
227 #define BPF_F_NO_PREALLOC	(1U << 0)
228 /* Instead of having one common LRU list in the
229  * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
230  * which can scale and perform better.
231  * Note, the LRU nodes (including free nodes) cannot be moved
232  * across different LRU lists.
233  */
234 #define BPF_F_NO_COMMON_LRU	(1U << 1)
235 /* Specify numa node during map creation */
236 #define BPF_F_NUMA_NODE		(1U << 2)
237 
238 /* flags for BPF_PROG_QUERY */
239 #define BPF_F_QUERY_EFFECTIVE	(1U << 0)
240 
241 #define BPF_OBJ_NAME_LEN 16U
242 
243 /* Flags for accessing BPF object */
244 #define BPF_F_RDONLY		(1U << 3)
245 #define BPF_F_WRONLY		(1U << 4)
246 
247 /* Flag for stack_map, store build_id+offset instead of pointer */
248 #define BPF_F_STACK_BUILD_ID	(1U << 5)
249 
250 enum bpf_stack_build_id_status {
251 	/* user space need an empty entry to identify end of a trace */
252 	BPF_STACK_BUILD_ID_EMPTY = 0,
253 	/* with valid build_id and offset */
254 	BPF_STACK_BUILD_ID_VALID = 1,
255 	/* couldn't get build_id, fallback to ip */
256 	BPF_STACK_BUILD_ID_IP = 2,
257 };
258 
259 #define BPF_BUILD_ID_SIZE 20
260 struct bpf_stack_build_id {
261 	__s32		status;
262 	unsigned char	build_id[BPF_BUILD_ID_SIZE];
263 	union {
264 		__u64	offset;
265 		__u64	ip;
266 	};
267 };
268 
269 union bpf_attr {
270 	struct { /* anonymous struct used by BPF_MAP_CREATE command */
271 		__u32	map_type;	/* one of enum bpf_map_type */
272 		__u32	key_size;	/* size of key in bytes */
273 		__u32	value_size;	/* size of value in bytes */
274 		__u32	max_entries;	/* max number of entries in a map */
275 		__u32	map_flags;	/* BPF_MAP_CREATE related
276 					 * flags defined above.
277 					 */
278 		__u32	inner_map_fd;	/* fd pointing to the inner map */
279 		__u32	numa_node;	/* numa node (effective only if
280 					 * BPF_F_NUMA_NODE is set).
281 					 */
282 		char	map_name[BPF_OBJ_NAME_LEN];
283 		__u32	map_ifindex;	/* ifindex of netdev to create on */
284 		__u32	btf_fd;		/* fd pointing to a BTF type data */
285 		__u32	btf_key_id;	/* BTF type_id of the key */
286 		__u32	btf_value_id;	/* BTF type_id of the value */
287 	};
288 
289 	struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
290 		__u32		map_fd;
291 		__aligned_u64	key;
292 		union {
293 			__aligned_u64 value;
294 			__aligned_u64 next_key;
295 		};
296 		__u64		flags;
297 	};
298 
299 	struct { /* anonymous struct used by BPF_PROG_LOAD command */
300 		__u32		prog_type;	/* one of enum bpf_prog_type */
301 		__u32		insn_cnt;
302 		__aligned_u64	insns;
303 		__aligned_u64	license;
304 		__u32		log_level;	/* verbosity level of verifier */
305 		__u32		log_size;	/* size of user buffer */
306 		__aligned_u64	log_buf;	/* user supplied buffer */
307 		__u32		kern_version;	/* checked when prog_type=kprobe */
308 		__u32		prog_flags;
309 		char		prog_name[BPF_OBJ_NAME_LEN];
310 		__u32		prog_ifindex;	/* ifindex of netdev to prep for */
311 		/* For some prog types expected attach type must be known at
312 		 * load time to verify attach type specific parts of prog
313 		 * (context accesses, allowed helpers, etc).
314 		 */
315 		__u32		expected_attach_type;
316 	};
317 
318 	struct { /* anonymous struct used by BPF_OBJ_* commands */
319 		__aligned_u64	pathname;
320 		__u32		bpf_fd;
321 		__u32		file_flags;
322 	};
323 
324 	struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
325 		__u32		target_fd;	/* container object to attach to */
326 		__u32		attach_bpf_fd;	/* eBPF program to attach */
327 		__u32		attach_type;
328 		__u32		attach_flags;
329 	};
330 
331 	struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
332 		__u32		prog_fd;
333 		__u32		retval;
334 		__u32		data_size_in;
335 		__u32		data_size_out;
336 		__aligned_u64	data_in;
337 		__aligned_u64	data_out;
338 		__u32		repeat;
339 		__u32		duration;
340 	} test;
341 
342 	struct { /* anonymous struct used by BPF_*_GET_*_ID */
343 		union {
344 			__u32		start_id;
345 			__u32		prog_id;
346 			__u32		map_id;
347 			__u32		btf_id;
348 		};
349 		__u32		next_id;
350 		__u32		open_flags;
351 	};
352 
353 	struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
354 		__u32		bpf_fd;
355 		__u32		info_len;
356 		__aligned_u64	info;
357 	} info;
358 
359 	struct { /* anonymous struct used by BPF_PROG_QUERY command */
360 		__u32		target_fd;	/* container object to query */
361 		__u32		attach_type;
362 		__u32		query_flags;
363 		__u32		attach_flags;
364 		__aligned_u64	prog_ids;
365 		__u32		prog_cnt;
366 	} query;
367 
368 	struct {
369 		__u64 name;
370 		__u32 prog_fd;
371 	} raw_tracepoint;
372 
373 	struct { /* anonymous struct for BPF_BTF_LOAD */
374 		__aligned_u64	btf;
375 		__aligned_u64	btf_log_buf;
376 		__u32		btf_size;
377 		__u32		btf_log_size;
378 		__u32		btf_log_level;
379 	};
380 } __attribute__((aligned(8)));
381 
382 /* The description below is an attempt at providing documentation to eBPF
383  * developers about the multiple available eBPF helper functions. It can be
384  * parsed and used to produce a manual page. The workflow is the following,
385  * and requires the rst2man utility:
386  *
387  *     $ ./scripts/bpf_helpers_doc.py \
388  *             --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
389  *     $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
390  *     $ man /tmp/bpf-helpers.7
391  *
392  * Note that in order to produce this external documentation, some RST
393  * formatting is used in the descriptions to get "bold" and "italics" in
394  * manual pages. Also note that the few trailing white spaces are
395  * intentional, removing them would break paragraphs for rst2man.
396  *
397  * Start of BPF helper function descriptions:
398  *
399  * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
400  * 	Description
401  * 		Perform a lookup in *map* for an entry associated to *key*.
402  * 	Return
403  * 		Map value associated to *key*, or **NULL** if no entry was
404  * 		found.
405  *
406  * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
407  * 	Description
408  * 		Add or update the value of the entry associated to *key* in
409  * 		*map* with *value*. *flags* is one of:
410  *
411  * 		**BPF_NOEXIST**
412  * 			The entry for *key* must not exist in the map.
413  * 		**BPF_EXIST**
414  * 			The entry for *key* must already exist in the map.
415  * 		**BPF_ANY**
416  * 			No condition on the existence of the entry for *key*.
417  *
418  * 		Flag value **BPF_NOEXIST** cannot be used for maps of types
419  * 		**BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY**  (all
420  * 		elements always exist), the helper would return an error.
421  * 	Return
422  * 		0 on success, or a negative error in case of failure.
423  *
424  * int bpf_map_delete_elem(struct bpf_map *map, const void *key)
425  * 	Description
426  * 		Delete entry with *key* from *map*.
427  * 	Return
428  * 		0 on success, or a negative error in case of failure.
429  *
430  * int bpf_probe_read(void *dst, u32 size, const void *src)
431  * 	Description
432  * 		For tracing programs, safely attempt to read *size* bytes from
433  * 		address *src* and store the data in *dst*.
434  * 	Return
435  * 		0 on success, or a negative error in case of failure.
436  *
437  * u64 bpf_ktime_get_ns(void)
438  * 	Description
439  * 		Return the time elapsed since system boot, in nanoseconds.
440  * 	Return
441  * 		Current *ktime*.
442  *
443  * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
444  * 	Description
445  * 		This helper is a "printk()-like" facility for debugging. It
446  * 		prints a message defined by format *fmt* (of size *fmt_size*)
447  * 		to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
448  * 		available. It can take up to three additional **u64**
449  * 		arguments (as an eBPF helpers, the total number of arguments is
450  * 		limited to five).
451  *
452  * 		Each time the helper is called, it appends a line to the trace.
453  * 		The format of the trace is customizable, and the exact output
454  * 		one will get depends on the options set in
455  * 		*\/sys/kernel/debug/tracing/trace_options* (see also the
456  * 		*README* file under the same directory). However, it usually
457  * 		defaults to something like:
458  *
459  * 		::
460  *
461  * 			telnet-470   [001] .N.. 419421.045894: 0x00000001: <formatted msg>
462  *
463  * 		In the above:
464  *
465  * 			* ``telnet`` is the name of the current task.
466  * 			* ``470`` is the PID of the current task.
467  * 			* ``001`` is the CPU number on which the task is
468  * 			  running.
469  * 			* In ``.N..``, each character refers to a set of
470  * 			  options (whether irqs are enabled, scheduling
471  * 			  options, whether hard/softirqs are running, level of
472  * 			  preempt_disabled respectively). **N** means that
473  * 			  **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
474  * 			  are set.
475  * 			* ``419421.045894`` is a timestamp.
476  * 			* ``0x00000001`` is a fake value used by BPF for the
477  * 			  instruction pointer register.
478  * 			* ``<formatted msg>`` is the message formatted with
479  * 			  *fmt*.
480  *
481  * 		The conversion specifiers supported by *fmt* are similar, but
482  * 		more limited than for printk(). They are **%d**, **%i**,
483  * 		**%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
484  * 		**%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
485  * 		of field, padding with zeroes, etc.) is available, and the
486  * 		helper will return **-EINVAL** (but print nothing) if it
487  * 		encounters an unknown specifier.
488  *
489  * 		Also, note that **bpf_trace_printk**\ () is slow, and should
490  * 		only be used for debugging purposes. For this reason, a notice
491  * 		bloc (spanning several lines) is printed to kernel logs and
492  * 		states that the helper should not be used "for production use"
493  * 		the first time this helper is used (or more precisely, when
494  * 		**trace_printk**\ () buffers are allocated). For passing values
495  * 		to user space, perf events should be preferred.
496  * 	Return
497  * 		The number of bytes written to the buffer, or a negative error
498  * 		in case of failure.
499  *
500  * u32 bpf_get_prandom_u32(void)
501  * 	Description
502  * 		Get a pseudo-random number.
503  *
504  * 		From a security point of view, this helper uses its own
505  * 		pseudo-random internal state, and cannot be used to infer the
506  * 		seed of other random functions in the kernel. However, it is
507  * 		essential to note that the generator used by the helper is not
508  * 		cryptographically secure.
509  * 	Return
510  * 		A random 32-bit unsigned value.
511  *
512  * u32 bpf_get_smp_processor_id(void)
513  * 	Description
514  * 		Get the SMP (symmetric multiprocessing) processor id. Note that
515  * 		all programs run with preemption disabled, which means that the
516  * 		SMP processor id is stable during all the execution of the
517  * 		program.
518  * 	Return
519  * 		The SMP id of the processor running the program.
520  *
521  * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
522  * 	Description
523  * 		Store *len* bytes from address *from* into the packet
524  * 		associated to *skb*, at *offset*. *flags* are a combination of
525  * 		**BPF_F_RECOMPUTE_CSUM** (automatically recompute the
526  * 		checksum for the packet after storing the bytes) and
527  * 		**BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
528  * 		**->swhash** and *skb*\ **->l4hash** to 0).
529  *
530  * 		A call to this helper is susceptible to change the underlaying
531  * 		packet buffer. Therefore, at load time, all checks on pointers
532  * 		previously done by the verifier are invalidated and must be
533  * 		performed again, if the helper is used in combination with
534  * 		direct packet access.
535  * 	Return
536  * 		0 on success, or a negative error in case of failure.
537  *
538  * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
539  * 	Description
540  * 		Recompute the layer 3 (e.g. IP) checksum for the packet
541  * 		associated to *skb*. Computation is incremental, so the helper
542  * 		must know the former value of the header field that was
543  * 		modified (*from*), the new value of this field (*to*), and the
544  * 		number of bytes (2 or 4) for this field, stored in *size*.
545  * 		Alternatively, it is possible to store the difference between
546  * 		the previous and the new values of the header field in *to*, by
547  * 		setting *from* and *size* to 0. For both methods, *offset*
548  * 		indicates the location of the IP checksum within the packet.
549  *
550  * 		This helper works in combination with **bpf_csum_diff**\ (),
551  * 		which does not update the checksum in-place, but offers more
552  * 		flexibility and can handle sizes larger than 2 or 4 for the
553  * 		checksum to update.
554  *
555  * 		A call to this helper is susceptible to change the underlaying
556  * 		packet buffer. Therefore, at load time, all checks on pointers
557  * 		previously done by the verifier are invalidated and must be
558  * 		performed again, if the helper is used in combination with
559  * 		direct packet access.
560  * 	Return
561  * 		0 on success, or a negative error in case of failure.
562  *
563  * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
564  * 	Description
565  * 		Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
566  * 		packet associated to *skb*. Computation is incremental, so the
567  * 		helper must know the former value of the header field that was
568  * 		modified (*from*), the new value of this field (*to*), and the
569  * 		number of bytes (2 or 4) for this field, stored on the lowest
570  * 		four bits of *flags*. Alternatively, it is possible to store
571  * 		the difference between the previous and the new values of the
572  * 		header field in *to*, by setting *from* and the four lowest
573  * 		bits of *flags* to 0. For both methods, *offset* indicates the
574  * 		location of the IP checksum within the packet. In addition to
575  * 		the size of the field, *flags* can be added (bitwise OR) actual
576  * 		flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
577  * 		untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
578  * 		for updates resulting in a null checksum the value is set to
579  * 		**CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
580  * 		the checksum is to be computed against a pseudo-header.
581  *
582  * 		This helper works in combination with **bpf_csum_diff**\ (),
583  * 		which does not update the checksum in-place, but offers more
584  * 		flexibility and can handle sizes larger than 2 or 4 for the
585  * 		checksum to update.
586  *
587  * 		A call to this helper is susceptible to change the underlaying
588  * 		packet buffer. Therefore, at load time, all checks on pointers
589  * 		previously done by the verifier are invalidated and must be
590  * 		performed again, if the helper is used in combination with
591  * 		direct packet access.
592  * 	Return
593  * 		0 on success, or a negative error in case of failure.
594  *
595  * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
596  * 	Description
597  * 		This special helper is used to trigger a "tail call", or in
598  * 		other words, to jump into another eBPF program. The same stack
599  * 		frame is used (but values on stack and in registers for the
600  * 		caller are not accessible to the callee). This mechanism allows
601  * 		for program chaining, either for raising the maximum number of
602  * 		available eBPF instructions, or to execute given programs in
603  * 		conditional blocks. For security reasons, there is an upper
604  * 		limit to the number of successive tail calls that can be
605  * 		performed.
606  *
607  * 		Upon call of this helper, the program attempts to jump into a
608  * 		program referenced at index *index* in *prog_array_map*, a
609  * 		special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
610  * 		*ctx*, a pointer to the context.
611  *
612  * 		If the call succeeds, the kernel immediately runs the first
613  * 		instruction of the new program. This is not a function call,
614  * 		and it never returns to the previous program. If the call
615  * 		fails, then the helper has no effect, and the caller continues
616  * 		to run its subsequent instructions. A call can fail if the
617  * 		destination program for the jump does not exist (i.e. *index*
618  * 		is superior to the number of entries in *prog_array_map*), or
619  * 		if the maximum number of tail calls has been reached for this
620  * 		chain of programs. This limit is defined in the kernel by the
621  * 		macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
622  * 		which is currently set to 32.
623  * 	Return
624  * 		0 on success, or a negative error in case of failure.
625  *
626  * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
627  * 	Description
628  * 		Clone and redirect the packet associated to *skb* to another
629  * 		net device of index *ifindex*. Both ingress and egress
630  * 		interfaces can be used for redirection. The **BPF_F_INGRESS**
631  * 		value in *flags* is used to make the distinction (ingress path
632  * 		is selected if the flag is present, egress path otherwise).
633  * 		This is the only flag supported for now.
634  *
635  * 		In comparison with **bpf_redirect**\ () helper,
636  * 		**bpf_clone_redirect**\ () has the associated cost of
637  * 		duplicating the packet buffer, but this can be executed out of
638  * 		the eBPF program. Conversely, **bpf_redirect**\ () is more
639  * 		efficient, but it is handled through an action code where the
640  * 		redirection happens only after the eBPF program has returned.
641  *
642  * 		A call to this helper is susceptible to change the underlaying
643  * 		packet buffer. Therefore, at load time, all checks on pointers
644  * 		previously done by the verifier are invalidated and must be
645  * 		performed again, if the helper is used in combination with
646  * 		direct packet access.
647  * 	Return
648  * 		0 on success, or a negative error in case of failure.
649  *
650  * u64 bpf_get_current_pid_tgid(void)
651  * 	Return
652  * 		A 64-bit integer containing the current tgid and pid, and
653  * 		created as such:
654  * 		*current_task*\ **->tgid << 32 \|**
655  * 		*current_task*\ **->pid**.
656  *
657  * u64 bpf_get_current_uid_gid(void)
658  * 	Return
659  * 		A 64-bit integer containing the current GID and UID, and
660  * 		created as such: *current_gid* **<< 32 \|** *current_uid*.
661  *
662  * int bpf_get_current_comm(char *buf, u32 size_of_buf)
663  * 	Description
664  * 		Copy the **comm** attribute of the current task into *buf* of
665  * 		*size_of_buf*. The **comm** attribute contains the name of
666  * 		the executable (excluding the path) for the current task. The
667  * 		*size_of_buf* must be strictly positive. On success, the
668  * 		helper makes sure that the *buf* is NUL-terminated. On failure,
669  * 		it is filled with zeroes.
670  * 	Return
671  * 		0 on success, or a negative error in case of failure.
672  *
673  * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
674  * 	Description
675  * 		Retrieve the classid for the current task, i.e. for the net_cls
676  * 		cgroup to which *skb* belongs.
677  *
678  * 		This helper can be used on TC egress path, but not on ingress.
679  *
680  * 		The net_cls cgroup provides an interface to tag network packets
681  * 		based on a user-provided identifier for all traffic coming from
682  * 		the tasks belonging to the related cgroup. See also the related
683  * 		kernel documentation, available from the Linux sources in file
684  * 		*Documentation/cgroup-v1/net_cls.txt*.
685  *
686  * 		The Linux kernel has two versions for cgroups: there are
687  * 		cgroups v1 and cgroups v2. Both are available to users, who can
688  * 		use a mixture of them, but note that the net_cls cgroup is for
689  * 		cgroup v1 only. This makes it incompatible with BPF programs
690  * 		run on cgroups, which is a cgroup-v2-only feature (a socket can
691  * 		only hold data for one version of cgroups at a time).
692  *
693  * 		This helper is only available is the kernel was compiled with
694  * 		the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
695  * 		"**y**" or to "**m**".
696  * 	Return
697  * 		The classid, or 0 for the default unconfigured classid.
698  *
699  * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
700  * 	Description
701  * 		Push a *vlan_tci* (VLAN tag control information) of protocol
702  * 		*vlan_proto* to the packet associated to *skb*, then update
703  * 		the checksum. Note that if *vlan_proto* is different from
704  * 		**ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
705  * 		be **ETH_P_8021Q**.
706  *
707  * 		A call to this helper is susceptible to change the underlaying
708  * 		packet buffer. Therefore, at load time, all checks on pointers
709  * 		previously done by the verifier are invalidated and must be
710  * 		performed again, if the helper is used in combination with
711  * 		direct packet access.
712  * 	Return
713  * 		0 on success, or a negative error in case of failure.
714  *
715  * int bpf_skb_vlan_pop(struct sk_buff *skb)
716  * 	Description
717  * 		Pop a VLAN header from the packet associated to *skb*.
718  *
719  * 		A call to this helper is susceptible to change the underlaying
720  * 		packet buffer. Therefore, at load time, all checks on pointers
721  * 		previously done by the verifier are invalidated and must be
722  * 		performed again, if the helper is used in combination with
723  * 		direct packet access.
724  * 	Return
725  * 		0 on success, or a negative error in case of failure.
726  *
727  * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
728  * 	Description
729  * 		Get tunnel metadata. This helper takes a pointer *key* to an
730  * 		empty **struct bpf_tunnel_key** of **size**, that will be
731  * 		filled with tunnel metadata for the packet associated to *skb*.
732  * 		The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
733  * 		indicates that the tunnel is based on IPv6 protocol instead of
734  * 		IPv4.
735  *
736  * 		The **struct bpf_tunnel_key** is an object that generalizes the
737  * 		principal parameters used by various tunneling protocols into a
738  * 		single struct. This way, it can be used to easily make a
739  * 		decision based on the contents of the encapsulation header,
740  * 		"summarized" in this struct. In particular, it holds the IP
741  * 		address of the remote end (IPv4 or IPv6, depending on the case)
742  * 		in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
743  * 		this struct exposes the *key*\ **->tunnel_id**, which is
744  * 		generally mapped to a VNI (Virtual Network Identifier), making
745  * 		it programmable together with the **bpf_skb_set_tunnel_key**\
746  * 		() helper.
747  *
748  * 		Let's imagine that the following code is part of a program
749  * 		attached to the TC ingress interface, on one end of a GRE
750  * 		tunnel, and is supposed to filter out all messages coming from
751  * 		remote ends with IPv4 address other than 10.0.0.1:
752  *
753  * 		::
754  *
755  * 			int ret;
756  * 			struct bpf_tunnel_key key = {};
757  *
758  * 			ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
759  * 			if (ret < 0)
760  * 				return TC_ACT_SHOT;	// drop packet
761  *
762  * 			if (key.remote_ipv4 != 0x0a000001)
763  * 				return TC_ACT_SHOT;	// drop packet
764  *
765  * 			return TC_ACT_OK;		// accept packet
766  *
767  * 		This interface can also be used with all encapsulation devices
768  * 		that can operate in "collect metadata" mode: instead of having
769  * 		one network device per specific configuration, the "collect
770  * 		metadata" mode only requires a single device where the
771  * 		configuration can be extracted from this helper.
772  *
773  * 		This can be used together with various tunnels such as VXLan,
774  * 		Geneve, GRE or IP in IP (IPIP).
775  * 	Return
776  * 		0 on success, or a negative error in case of failure.
777  *
778  * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
779  * 	Description
780  * 		Populate tunnel metadata for packet associated to *skb.* The
781  * 		tunnel metadata is set to the contents of *key*, of *size*. The
782  * 		*flags* can be set to a combination of the following values:
783  *
784  * 		**BPF_F_TUNINFO_IPV6**
785  * 			Indicate that the tunnel is based on IPv6 protocol
786  * 			instead of IPv4.
787  * 		**BPF_F_ZERO_CSUM_TX**
788  * 			For IPv4 packets, add a flag to tunnel metadata
789  * 			indicating that checksum computation should be skipped
790  * 			and checksum set to zeroes.
791  * 		**BPF_F_DONT_FRAGMENT**
792  * 			Add a flag to tunnel metadata indicating that the
793  * 			packet should not be fragmented.
794  * 		**BPF_F_SEQ_NUMBER**
795  * 			Add a flag to tunnel metadata indicating that a
796  * 			sequence number should be added to tunnel header before
797  * 			sending the packet. This flag was added for GRE
798  * 			encapsulation, but might be used with other protocols
799  * 			as well in the future.
800  *
801  * 		Here is a typical usage on the transmit path:
802  *
803  * 		::
804  *
805  * 			struct bpf_tunnel_key key;
806  * 			     populate key ...
807  * 			bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
808  * 			bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
809  *
810  * 		See also the description of the **bpf_skb_get_tunnel_key**\ ()
811  * 		helper for additional information.
812  * 	Return
813  * 		0 on success, or a negative error in case of failure.
814  *
815  * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
816  * 	Description
817  * 		Read the value of a perf event counter. This helper relies on a
818  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
819  * 		the perf event counter is selected when *map* is updated with
820  * 		perf event file descriptors. The *map* is an array whose size
821  * 		is the number of available CPUs, and each cell contains a value
822  * 		relative to one CPU. The value to retrieve is indicated by
823  * 		*flags*, that contains the index of the CPU to look up, masked
824  * 		with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
825  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
826  * 		current CPU should be retrieved.
827  *
828  * 		Note that before Linux 4.13, only hardware perf event can be
829  * 		retrieved.
830  *
831  * 		Also, be aware that the newer helper
832  * 		**bpf_perf_event_read_value**\ () is recommended over
833  * 		**bpf_perf_event_read**\ () in general. The latter has some ABI
834  * 		quirks where error and counter value are used as a return code
835  * 		(which is wrong to do since ranges may overlap). This issue is
836  * 		fixed with **bpf_perf_event_read_value**\ (), which at the same
837  * 		time provides more features over the **bpf_perf_event_read**\
838  * 		() interface. Please refer to the description of
839  * 		**bpf_perf_event_read_value**\ () for details.
840  * 	Return
841  * 		The value of the perf event counter read from the map, or a
842  * 		negative error code in case of failure.
843  *
844  * int bpf_redirect(u32 ifindex, u64 flags)
845  * 	Description
846  * 		Redirect the packet to another net device of index *ifindex*.
847  * 		This helper is somewhat similar to **bpf_clone_redirect**\
848  * 		(), except that the packet is not cloned, which provides
849  * 		increased performance.
850  *
851  * 		Except for XDP, both ingress and egress interfaces can be used
852  * 		for redirection. The **BPF_F_INGRESS** value in *flags* is used
853  * 		to make the distinction (ingress path is selected if the flag
854  * 		is present, egress path otherwise). Currently, XDP only
855  * 		supports redirection to the egress interface, and accepts no
856  * 		flag at all.
857  *
858  * 		The same effect can be attained with the more generic
859  * 		**bpf_redirect_map**\ (), which requires specific maps to be
860  * 		used but offers better performance.
861  * 	Return
862  * 		For XDP, the helper returns **XDP_REDIRECT** on success or
863  * 		**XDP_ABORTED** on error. For other program types, the values
864  * 		are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
865  * 		error.
866  *
867  * u32 bpf_get_route_realm(struct sk_buff *skb)
868  * 	Description
869  * 		Retrieve the realm or the route, that is to say the
870  * 		**tclassid** field of the destination for the *skb*. The
871  * 		indentifier retrieved is a user-provided tag, similar to the
872  * 		one used with the net_cls cgroup (see description for
873  * 		**bpf_get_cgroup_classid**\ () helper), but here this tag is
874  * 		held by a route (a destination entry), not by a task.
875  *
876  * 		Retrieving this identifier works with the clsact TC egress hook
877  * 		(see also **tc-bpf(8)**), or alternatively on conventional
878  * 		classful egress qdiscs, but not on TC ingress path. In case of
879  * 		clsact TC egress hook, this has the advantage that, internally,
880  * 		the destination entry has not been dropped yet in the transmit
881  * 		path. Therefore, the destination entry does not need to be
882  * 		artificially held via **netif_keep_dst**\ () for a classful
883  * 		qdisc until the *skb* is freed.
884  *
885  * 		This helper is available only if the kernel was compiled with
886  * 		**CONFIG_IP_ROUTE_CLASSID** configuration option.
887  * 	Return
888  * 		The realm of the route for the packet associated to *skb*, or 0
889  * 		if none was found.
890  *
891  * int bpf_perf_event_output(struct pt_reg *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
892  * 	Description
893  * 		Write raw *data* blob into a special BPF perf event held by
894  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
895  * 		event must have the following attributes: **PERF_SAMPLE_RAW**
896  * 		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
897  * 		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
898  *
899  * 		The *flags* are used to indicate the index in *map* for which
900  * 		the value must be put, masked with **BPF_F_INDEX_MASK**.
901  * 		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
902  * 		to indicate that the index of the current CPU core should be
903  * 		used.
904  *
905  * 		The value to write, of *size*, is passed through eBPF stack and
906  * 		pointed by *data*.
907  *
908  * 		The context of the program *ctx* needs also be passed to the
909  * 		helper.
910  *
911  * 		On user space, a program willing to read the values needs to
912  * 		call **perf_event_open**\ () on the perf event (either for
913  * 		one or for all CPUs) and to store the file descriptor into the
914  * 		*map*. This must be done before the eBPF program can send data
915  * 		into it. An example is available in file
916  * 		*samples/bpf/trace_output_user.c* in the Linux kernel source
917  * 		tree (the eBPF program counterpart is in
918  * 		*samples/bpf/trace_output_kern.c*).
919  *
920  * 		**bpf_perf_event_output**\ () achieves better performance
921  * 		than **bpf_trace_printk**\ () for sharing data with user
922  * 		space, and is much better suitable for streaming data from eBPF
923  * 		programs.
924  *
925  * 		Note that this helper is not restricted to tracing use cases
926  * 		and can be used with programs attached to TC or XDP as well,
927  * 		where it allows for passing data to user space listeners. Data
928  * 		can be:
929  *
930  * 		* Only custom structs,
931  * 		* Only the packet payload, or
932  * 		* A combination of both.
933  * 	Return
934  * 		0 on success, or a negative error in case of failure.
935  *
936  * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
937  * 	Description
938  * 		This helper was provided as an easy way to load data from a
939  * 		packet. It can be used to load *len* bytes from *offset* from
940  * 		the packet associated to *skb*, into the buffer pointed by
941  * 		*to*.
942  *
943  * 		Since Linux 4.7, usage of this helper has mostly been replaced
944  * 		by "direct packet access", enabling packet data to be
945  * 		manipulated with *skb*\ **->data** and *skb*\ **->data_end**
946  * 		pointing respectively to the first byte of packet data and to
947  * 		the byte after the last byte of packet data. However, it
948  * 		remains useful if one wishes to read large quantities of data
949  * 		at once from a packet into the eBPF stack.
950  * 	Return
951  * 		0 on success, or a negative error in case of failure.
952  *
953  * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags)
954  * 	Description
955  * 		Walk a user or a kernel stack and return its id. To achieve
956  * 		this, the helper needs *ctx*, which is a pointer to the context
957  * 		on which the tracing program is executed, and a pointer to a
958  * 		*map* of type **BPF_MAP_TYPE_STACK_TRACE**.
959  *
960  * 		The last argument, *flags*, holds the number of stack frames to
961  * 		skip (from 0 to 255), masked with
962  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
963  * 		a combination of the following flags:
964  *
965  * 		**BPF_F_USER_STACK**
966  * 			Collect a user space stack instead of a kernel stack.
967  * 		**BPF_F_FAST_STACK_CMP**
968  * 			Compare stacks by hash only.
969  * 		**BPF_F_REUSE_STACKID**
970  * 			If two different stacks hash into the same *stackid*,
971  * 			discard the old one.
972  *
973  * 		The stack id retrieved is a 32 bit long integer handle which
974  * 		can be further combined with other data (including other stack
975  * 		ids) and used as a key into maps. This can be useful for
976  * 		generating a variety of graphs (such as flame graphs or off-cpu
977  * 		graphs).
978  *
979  * 		For walking a stack, this helper is an improvement over
980  * 		**bpf_probe_read**\ (), which can be used with unrolled loops
981  * 		but is not efficient and consumes a lot of eBPF instructions.
982  * 		Instead, **bpf_get_stackid**\ () can collect up to
983  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
984  * 		this limit can be controlled with the **sysctl** program, and
985  * 		that it should be manually increased in order to profile long
986  * 		user stacks (such as stacks for Java programs). To do so, use:
987  *
988  * 		::
989  *
990  * 			# sysctl kernel.perf_event_max_stack=<new value>
991  *
992  * 	Return
993  * 		The positive or null stack id on success, or a negative error
994  * 		in case of failure.
995  *
996  * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
997  * 	Description
998  * 		Compute a checksum difference, from the raw buffer pointed by
999  * 		*from*, of length *from_size* (that must be a multiple of 4),
1000  * 		towards the raw buffer pointed by *to*, of size *to_size*
1001  * 		(same remark). An optional *seed* can be added to the value
1002  * 		(this can be cascaded, the seed may come from a previous call
1003  * 		to the helper).
1004  *
1005  * 		This is flexible enough to be used in several ways:
1006  *
1007  * 		* With *from_size* == 0, *to_size* > 0 and *seed* set to
1008  * 		  checksum, it can be used when pushing new data.
1009  * 		* With *from_size* > 0, *to_size* == 0 and *seed* set to
1010  * 		  checksum, it can be used when removing data from a packet.
1011  * 		* With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
1012  * 		  can be used to compute a diff. Note that *from_size* and
1013  * 		  *to_size* do not need to be equal.
1014  *
1015  * 		This helper can be used in combination with
1016  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
1017  * 		which one can feed in the difference computed with
1018  * 		**bpf_csum_diff**\ ().
1019  * 	Return
1020  * 		The checksum result, or a negative error code in case of
1021  * 		failure.
1022  *
1023  * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
1024  * 	Description
1025  * 		Retrieve tunnel options metadata for the packet associated to
1026  * 		*skb*, and store the raw tunnel option data to the buffer *opt*
1027  * 		of *size*.
1028  *
1029  * 		This helper can be used with encapsulation devices that can
1030  * 		operate in "collect metadata" mode (please refer to the related
1031  * 		note in the description of **bpf_skb_get_tunnel_key**\ () for
1032  * 		more details). A particular example where this can be used is
1033  * 		in combination with the Geneve encapsulation protocol, where it
1034  * 		allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
1035  * 		and retrieving arbitrary TLVs (Type-Length-Value headers) from
1036  * 		the eBPF program. This allows for full customization of these
1037  * 		headers.
1038  * 	Return
1039  * 		The size of the option data retrieved.
1040  *
1041  * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
1042  * 	Description
1043  * 		Set tunnel options metadata for the packet associated to *skb*
1044  * 		to the option data contained in the raw buffer *opt* of *size*.
1045  *
1046  * 		See also the description of the **bpf_skb_get_tunnel_opt**\ ()
1047  * 		helper for additional information.
1048  * 	Return
1049  * 		0 on success, or a negative error in case of failure.
1050  *
1051  * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
1052  * 	Description
1053  * 		Change the protocol of the *skb* to *proto*. Currently
1054  * 		supported are transition from IPv4 to IPv6, and from IPv6 to
1055  * 		IPv4. The helper takes care of the groundwork for the
1056  * 		transition, including resizing the socket buffer. The eBPF
1057  * 		program is expected to fill the new headers, if any, via
1058  * 		**skb_store_bytes**\ () and to recompute the checksums with
1059  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
1060  * 		(). The main case for this helper is to perform NAT64
1061  * 		operations out of an eBPF program.
1062  *
1063  * 		Internally, the GSO type is marked as dodgy so that headers are
1064  * 		checked and segments are recalculated by the GSO/GRO engine.
1065  * 		The size for GSO target is adapted as well.
1066  *
1067  * 		All values for *flags* are reserved for future usage, and must
1068  * 		be left at zero.
1069  *
1070  * 		A call to this helper is susceptible to change the underlaying
1071  * 		packet buffer. Therefore, at load time, all checks on pointers
1072  * 		previously done by the verifier are invalidated and must be
1073  * 		performed again, if the helper is used in combination with
1074  * 		direct packet access.
1075  * 	Return
1076  * 		0 on success, or a negative error in case of failure.
1077  *
1078  * int bpf_skb_change_type(struct sk_buff *skb, u32 type)
1079  * 	Description
1080  * 		Change the packet type for the packet associated to *skb*. This
1081  * 		comes down to setting *skb*\ **->pkt_type** to *type*, except
1082  * 		the eBPF program does not have a write access to *skb*\
1083  * 		**->pkt_type** beside this helper. Using a helper here allows
1084  * 		for graceful handling of errors.
1085  *
1086  * 		The major use case is to change incoming *skb*s to
1087  * 		**PACKET_HOST** in a programmatic way instead of having to
1088  * 		recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
1089  * 		example.
1090  *
1091  * 		Note that *type* only allows certain values. At this time, they
1092  * 		are:
1093  *
1094  * 		**PACKET_HOST**
1095  * 			Packet is for us.
1096  * 		**PACKET_BROADCAST**
1097  * 			Send packet to all.
1098  * 		**PACKET_MULTICAST**
1099  * 			Send packet to group.
1100  * 		**PACKET_OTHERHOST**
1101  * 			Send packet to someone else.
1102  * 	Return
1103  * 		0 on success, or a negative error in case of failure.
1104  *
1105  * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
1106  * 	Description
1107  * 		Check whether *skb* is a descendant of the cgroup2 held by
1108  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1109  * 	Return
1110  * 		The return value depends on the result of the test, and can be:
1111  *
1112  * 		* 0, if the *skb* failed the cgroup2 descendant test.
1113  * 		* 1, if the *skb* succeeded the cgroup2 descendant test.
1114  * 		* A negative error code, if an error occurred.
1115  *
1116  * u32 bpf_get_hash_recalc(struct sk_buff *skb)
1117  * 	Description
1118  * 		Retrieve the hash of the packet, *skb*\ **->hash**. If it is
1119  * 		not set, in particular if the hash was cleared due to mangling,
1120  * 		recompute this hash. Later accesses to the hash can be done
1121  * 		directly with *skb*\ **->hash**.
1122  *
1123  * 		Calling **bpf_set_hash_invalid**\ (), changing a packet
1124  * 		prototype with **bpf_skb_change_proto**\ (), or calling
1125  * 		**bpf_skb_store_bytes**\ () with the
1126  * 		**BPF_F_INVALIDATE_HASH** are actions susceptible to clear
1127  * 		the hash and to trigger a new computation for the next call to
1128  * 		**bpf_get_hash_recalc**\ ().
1129  * 	Return
1130  * 		The 32-bit hash.
1131  *
1132  * u64 bpf_get_current_task(void)
1133  * 	Return
1134  * 		A pointer to the current task struct.
1135  *
1136  * int bpf_probe_write_user(void *dst, const void *src, u32 len)
1137  * 	Description
1138  * 		Attempt in a safe way to write *len* bytes from the buffer
1139  * 		*src* to *dst* in memory. It only works for threads that are in
1140  * 		user context, and *dst* must be a valid user space address.
1141  *
1142  * 		This helper should not be used to implement any kind of
1143  * 		security mechanism because of TOC-TOU attacks, but rather to
1144  * 		debug, divert, and manipulate execution of semi-cooperative
1145  * 		processes.
1146  *
1147  * 		Keep in mind that this feature is meant for experiments, and it
1148  * 		has a risk of crashing the system and running programs.
1149  * 		Therefore, when an eBPF program using this helper is attached,
1150  * 		a warning including PID and process name is printed to kernel
1151  * 		logs.
1152  * 	Return
1153  * 		0 on success, or a negative error in case of failure.
1154  *
1155  * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
1156  * 	Description
1157  * 		Check whether the probe is being run is the context of a given
1158  * 		subset of the cgroup2 hierarchy. The cgroup2 to test is held by
1159  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1160  * 	Return
1161  * 		The return value depends on the result of the test, and can be:
1162  *
1163  * 		* 0, if the *skb* task belongs to the cgroup2.
1164  * 		* 1, if the *skb* task does not belong to the cgroup2.
1165  * 		* A negative error code, if an error occurred.
1166  *
1167  * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
1168  * 	Description
1169  * 		Resize (trim or grow) the packet associated to *skb* to the
1170  * 		new *len*. The *flags* are reserved for future usage, and must
1171  * 		be left at zero.
1172  *
1173  * 		The basic idea is that the helper performs the needed work to
1174  * 		change the size of the packet, then the eBPF program rewrites
1175  * 		the rest via helpers like **bpf_skb_store_bytes**\ (),
1176  * 		**bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
1177  * 		and others. This helper is a slow path utility intended for
1178  * 		replies with control messages. And because it is targeted for
1179  * 		slow path, the helper itself can afford to be slow: it
1180  * 		implicitly linearizes, unclones and drops offloads from the
1181  * 		*skb*.
1182  *
1183  * 		A call to this helper is susceptible to change the underlaying
1184  * 		packet buffer. Therefore, at load time, all checks on pointers
1185  * 		previously done by the verifier are invalidated and must be
1186  * 		performed again, if the helper is used in combination with
1187  * 		direct packet access.
1188  * 	Return
1189  * 		0 on success, or a negative error in case of failure.
1190  *
1191  * int bpf_skb_pull_data(struct sk_buff *skb, u32 len)
1192  * 	Description
1193  * 		Pull in non-linear data in case the *skb* is non-linear and not
1194  * 		all of *len* are part of the linear section. Make *len* bytes
1195  * 		from *skb* readable and writable. If a zero value is passed for
1196  * 		*len*, then the whole length of the *skb* is pulled.
1197  *
1198  * 		This helper is only needed for reading and writing with direct
1199  * 		packet access.
1200  *
1201  * 		For direct packet access, testing that offsets to access
1202  * 		are within packet boundaries (test on *skb*\ **->data_end**) is
1203  * 		susceptible to fail if offsets are invalid, or if the requested
1204  * 		data is in non-linear parts of the *skb*. On failure the
1205  * 		program can just bail out, or in the case of a non-linear
1206  * 		buffer, use a helper to make the data available. The
1207  * 		**bpf_skb_load_bytes**\ () helper is a first solution to access
1208  * 		the data. Another one consists in using **bpf_skb_pull_data**
1209  * 		to pull in once the non-linear parts, then retesting and
1210  * 		eventually access the data.
1211  *
1212  * 		At the same time, this also makes sure the *skb* is uncloned,
1213  * 		which is a necessary condition for direct write. As this needs
1214  * 		to be an invariant for the write part only, the verifier
1215  * 		detects writes and adds a prologue that is calling
1216  * 		**bpf_skb_pull_data()** to effectively unclone the *skb* from
1217  * 		the very beginning in case it is indeed cloned.
1218  *
1219  * 		A call to this helper is susceptible to change the underlaying
1220  * 		packet buffer. Therefore, at load time, all checks on pointers
1221  * 		previously done by the verifier are invalidated and must be
1222  * 		performed again, if the helper is used in combination with
1223  * 		direct packet access.
1224  * 	Return
1225  * 		0 on success, or a negative error in case of failure.
1226  *
1227  * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
1228  * 	Description
1229  * 		Add the checksum *csum* into *skb*\ **->csum** in case the
1230  * 		driver has supplied a checksum for the entire packet into that
1231  * 		field. Return an error otherwise. This helper is intended to be
1232  * 		used in combination with **bpf_csum_diff**\ (), in particular
1233  * 		when the checksum needs to be updated after data has been
1234  * 		written into the packet through direct packet access.
1235  * 	Return
1236  * 		The checksum on success, or a negative error code in case of
1237  * 		failure.
1238  *
1239  * void bpf_set_hash_invalid(struct sk_buff *skb)
1240  * 	Description
1241  * 		Invalidate the current *skb*\ **->hash**. It can be used after
1242  * 		mangling on headers through direct packet access, in order to
1243  * 		indicate that the hash is outdated and to trigger a
1244  * 		recalculation the next time the kernel tries to access this
1245  * 		hash or when the **bpf_get_hash_recalc**\ () helper is called.
1246  *
1247  * int bpf_get_numa_node_id(void)
1248  * 	Description
1249  * 		Return the id of the current NUMA node. The primary use case
1250  * 		for this helper is the selection of sockets for the local NUMA
1251  * 		node, when the program is attached to sockets using the
1252  * 		**SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
1253  * 		but the helper is also available to other eBPF program types,
1254  * 		similarly to **bpf_get_smp_processor_id**\ ().
1255  * 	Return
1256  * 		The id of current NUMA node.
1257  *
1258  * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
1259  * 	Description
1260  * 		Grows headroom of packet associated to *skb* and adjusts the
1261  * 		offset of the MAC header accordingly, adding *len* bytes of
1262  * 		space. It automatically extends and reallocates memory as
1263  * 		required.
1264  *
1265  * 		This helper can be used on a layer 3 *skb* to push a MAC header
1266  * 		for redirection into a layer 2 device.
1267  *
1268  * 		All values for *flags* are reserved for future usage, and must
1269  * 		be left at zero.
1270  *
1271  * 		A call to this helper is susceptible to change the underlaying
1272  * 		packet buffer. Therefore, at load time, all checks on pointers
1273  * 		previously done by the verifier are invalidated and must be
1274  * 		performed again, if the helper is used in combination with
1275  * 		direct packet access.
1276  * 	Return
1277  * 		0 on success, or a negative error in case of failure.
1278  *
1279  * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
1280  * 	Description
1281  * 		Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
1282  * 		it is possible to use a negative value for *delta*. This helper
1283  * 		can be used to prepare the packet for pushing or popping
1284  * 		headers.
1285  *
1286  * 		A call to this helper is susceptible to change the underlaying
1287  * 		packet buffer. Therefore, at load time, all checks on pointers
1288  * 		previously done by the verifier are invalidated and must be
1289  * 		performed again, if the helper is used in combination with
1290  * 		direct packet access.
1291  * 	Return
1292  * 		0 on success, or a negative error in case of failure.
1293  *
1294  * int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr)
1295  * 	Description
1296  * 		Copy a NUL terminated string from an unsafe address
1297  * 		*unsafe_ptr* to *dst*. The *size* should include the
1298  * 		terminating NUL byte. In case the string length is smaller than
1299  * 		*size*, the target is not padded with further NUL bytes. If the
1300  * 		string length is larger than *size*, just *size*-1 bytes are
1301  * 		copied and the last byte is set to NUL.
1302  *
1303  * 		On success, the length of the copied string is returned. This
1304  * 		makes this helper useful in tracing programs for reading
1305  * 		strings, and more importantly to get its length at runtime. See
1306  * 		the following snippet:
1307  *
1308  * 		::
1309  *
1310  * 			SEC("kprobe/sys_open")
1311  * 			void bpf_sys_open(struct pt_regs *ctx)
1312  * 			{
1313  * 			        char buf[PATHLEN]; // PATHLEN is defined to 256
1314  * 			        int res = bpf_probe_read_str(buf, sizeof(buf),
1315  * 				                             ctx->di);
1316  *
1317  * 				// Consume buf, for example push it to
1318  * 				// userspace via bpf_perf_event_output(); we
1319  * 				// can use res (the string length) as event
1320  * 				// size, after checking its boundaries.
1321  * 			}
1322  *
1323  * 		In comparison, using **bpf_probe_read()** helper here instead
1324  * 		to read the string would require to estimate the length at
1325  * 		compile time, and would often result in copying more memory
1326  * 		than necessary.
1327  *
1328  * 		Another useful use case is when parsing individual process
1329  * 		arguments or individual environment variables navigating
1330  * 		*current*\ **->mm->arg_start** and *current*\
1331  * 		**->mm->env_start**: using this helper and the return value,
1332  * 		one can quickly iterate at the right offset of the memory area.
1333  * 	Return
1334  * 		On success, the strictly positive length of the string,
1335  * 		including the trailing NUL character. On error, a negative
1336  * 		value.
1337  *
1338  * u64 bpf_get_socket_cookie(struct sk_buff *skb)
1339  * 	Description
1340  * 		If the **struct sk_buff** pointed by *skb* has a known socket,
1341  * 		retrieve the cookie (generated by the kernel) of this socket.
1342  * 		If no cookie has been set yet, generate a new cookie. Once
1343  * 		generated, the socket cookie remains stable for the life of the
1344  * 		socket. This helper can be useful for monitoring per socket
1345  * 		networking traffic statistics as it provides a unique socket
1346  * 		identifier per namespace.
1347  * 	Return
1348  * 		A 8-byte long non-decreasing number on success, or 0 if the
1349  * 		socket field is missing inside *skb*.
1350  *
1351  * u32 bpf_get_socket_uid(struct sk_buff *skb)
1352  * 	Return
1353  * 		The owner UID of the socket associated to *skb*. If the socket
1354  * 		is **NULL**, or if it is not a full socket (i.e. if it is a
1355  * 		time-wait or a request socket instead), **overflowuid** value
1356  * 		is returned (note that **overflowuid** might also be the actual
1357  * 		UID value for the socket).
1358  *
1359  * u32 bpf_set_hash(struct sk_buff *skb, u32 hash)
1360  * 	Description
1361  * 		Set the full hash for *skb* (set the field *skb*\ **->hash**)
1362  * 		to value *hash*.
1363  * 	Return
1364  * 		0
1365  *
1366  * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen)
1367  * 	Description
1368  * 		Emulate a call to **setsockopt()** on the socket associated to
1369  * 		*bpf_socket*, which must be a full socket. The *level* at
1370  * 		which the option resides and the name *optname* of the option
1371  * 		must be specified, see **setsockopt(2)** for more information.
1372  * 		The option value of length *optlen* is pointed by *optval*.
1373  *
1374  * 		This helper actually implements a subset of **setsockopt()**.
1375  * 		It supports the following *level*\ s:
1376  *
1377  * 		* **SOL_SOCKET**, which supports the following *optname*\ s:
1378  * 		  **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
1379  * 		  **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**.
1380  * 		* **IPPROTO_TCP**, which supports the following *optname*\ s:
1381  * 		  **TCP_CONGESTION**, **TCP_BPF_IW**,
1382  * 		  **TCP_BPF_SNDCWND_CLAMP**.
1383  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1384  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1385  * 	Return
1386  * 		0 on success, or a negative error in case of failure.
1387  *
1388  * int bpf_skb_adjust_room(struct sk_buff *skb, u32 len_diff, u32 mode, u64 flags)
1389  * 	Description
1390  * 		Grow or shrink the room for data in the packet associated to
1391  * 		*skb* by *len_diff*, and according to the selected *mode*.
1392  *
1393  * 		There is a single supported mode at this time:
1394  *
1395  * 		* **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
1396  * 		  (room space is added or removed below the layer 3 header).
1397  *
1398  * 		All values for *flags* are reserved for future usage, and must
1399  * 		be left at zero.
1400  *
1401  * 		A call to this helper is susceptible to change the underlaying
1402  * 		packet buffer. Therefore, at load time, all checks on pointers
1403  * 		previously done by the verifier are invalidated and must be
1404  * 		performed again, if the helper is used in combination with
1405  * 		direct packet access.
1406  * 	Return
1407  * 		0 on success, or a negative error in case of failure.
1408  *
1409  * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1410  * 	Description
1411  * 		Redirect the packet to the endpoint referenced by *map* at
1412  * 		index *key*. Depending on its type, this *map* can contain
1413  * 		references to net devices (for forwarding packets through other
1414  * 		ports), or to CPUs (for redirecting XDP frames to another CPU;
1415  * 		but this is only implemented for native XDP (with driver
1416  * 		support) as of this writing).
1417  *
1418  * 		All values for *flags* are reserved for future usage, and must
1419  * 		be left at zero.
1420  *
1421  * 		When used to redirect packets to net devices, this helper
1422  * 		provides a high performance increase over **bpf_redirect**\ ().
1423  * 		This is due to various implementation details of the underlying
1424  * 		mechanisms, one of which is the fact that **bpf_redirect_map**\
1425  * 		() tries to send packet as a "bulk" to the device.
1426  * 	Return
1427  * 		**XDP_REDIRECT** on success, or **XDP_ABORTED** on error.
1428  *
1429  * int bpf_sk_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1430  * 	Description
1431  * 		Redirect the packet to the socket referenced by *map* (of type
1432  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1433  * 		egress interfaces can be used for redirection. The
1434  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1435  * 		distinction (ingress path is selected if the flag is present,
1436  * 		egress path otherwise). This is the only flag supported for now.
1437  * 	Return
1438  * 		**SK_PASS** on success, or **SK_DROP** on error.
1439  *
1440  * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
1441  * 	Description
1442  * 		Add an entry to, or update a *map* referencing sockets. The
1443  * 		*skops* is used as a new value for the entry associated to
1444  * 		*key*. *flags* is one of:
1445  *
1446  * 		**BPF_NOEXIST**
1447  * 			The entry for *key* must not exist in the map.
1448  * 		**BPF_EXIST**
1449  * 			The entry for *key* must already exist in the map.
1450  * 		**BPF_ANY**
1451  * 			No condition on the existence of the entry for *key*.
1452  *
1453  * 		If the *map* has eBPF programs (parser and verdict), those will
1454  * 		be inherited by the socket being added. If the socket is
1455  * 		already attached to eBPF programs, this results in an error.
1456  * 	Return
1457  * 		0 on success, or a negative error in case of failure.
1458  *
1459  * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
1460  * 	Description
1461  * 		Adjust the address pointed by *xdp_md*\ **->data_meta** by
1462  * 		*delta* (which can be positive or negative). Note that this
1463  * 		operation modifies the address stored in *xdp_md*\ **->data**,
1464  * 		so the latter must be loaded only after the helper has been
1465  * 		called.
1466  *
1467  * 		The use of *xdp_md*\ **->data_meta** is optional and programs
1468  * 		are not required to use it. The rationale is that when the
1469  * 		packet is processed with XDP (e.g. as DoS filter), it is
1470  * 		possible to push further meta data along with it before passing
1471  * 		to the stack, and to give the guarantee that an ingress eBPF
1472  * 		program attached as a TC classifier on the same device can pick
1473  * 		this up for further post-processing. Since TC works with socket
1474  * 		buffers, it remains possible to set from XDP the **mark** or
1475  * 		**priority** pointers, or other pointers for the socket buffer.
1476  * 		Having this scratch space generic and programmable allows for
1477  * 		more flexibility as the user is free to store whatever meta
1478  * 		data they need.
1479  *
1480  * 		A call to this helper is susceptible to change the underlaying
1481  * 		packet buffer. Therefore, at load time, all checks on pointers
1482  * 		previously done by the verifier are invalidated and must be
1483  * 		performed again, if the helper is used in combination with
1484  * 		direct packet access.
1485  * 	Return
1486  * 		0 on success, or a negative error in case of failure.
1487  *
1488  * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
1489  * 	Description
1490  * 		Read the value of a perf event counter, and store it into *buf*
1491  * 		of size *buf_size*. This helper relies on a *map* of type
1492  * 		**BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
1493  * 		counter is selected when *map* is updated with perf event file
1494  * 		descriptors. The *map* is an array whose size is the number of
1495  * 		available CPUs, and each cell contains a value relative to one
1496  * 		CPU. The value to retrieve is indicated by *flags*, that
1497  * 		contains the index of the CPU to look up, masked with
1498  * 		**BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1499  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
1500  * 		current CPU should be retrieved.
1501  *
1502  * 		This helper behaves in a way close to
1503  * 		**bpf_perf_event_read**\ () helper, save that instead of
1504  * 		just returning the value observed, it fills the *buf*
1505  * 		structure. This allows for additional data to be retrieved: in
1506  * 		particular, the enabled and running times (in *buf*\
1507  * 		**->enabled** and *buf*\ **->running**, respectively) are
1508  * 		copied. In general, **bpf_perf_event_read_value**\ () is
1509  * 		recommended over **bpf_perf_event_read**\ (), which has some
1510  * 		ABI issues and provides fewer functionalities.
1511  *
1512  * 		These values are interesting, because hardware PMU (Performance
1513  * 		Monitoring Unit) counters are limited resources. When there are
1514  * 		more PMU based perf events opened than available counters,
1515  * 		kernel will multiplex these events so each event gets certain
1516  * 		percentage (but not all) of the PMU time. In case that
1517  * 		multiplexing happens, the number of samples or counter value
1518  * 		will not reflect the case compared to when no multiplexing
1519  * 		occurs. This makes comparison between different runs difficult.
1520  * 		Typically, the counter value should be normalized before
1521  * 		comparing to other experiments. The usual normalization is done
1522  * 		as follows.
1523  *
1524  * 		::
1525  *
1526  * 			normalized_counter = counter * t_enabled / t_running
1527  *
1528  * 		Where t_enabled is the time enabled for event and t_running is
1529  * 		the time running for event since last normalization. The
1530  * 		enabled and running times are accumulated since the perf event
1531  * 		open. To achieve scaling factor between two invocations of an
1532  * 		eBPF program, users can can use CPU id as the key (which is
1533  * 		typical for perf array usage model) to remember the previous
1534  * 		value and do the calculation inside the eBPF program.
1535  * 	Return
1536  * 		0 on success, or a negative error in case of failure.
1537  *
1538  * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
1539  * 	Description
1540  * 		For en eBPF program attached to a perf event, retrieve the
1541  * 		value of the event counter associated to *ctx* and store it in
1542  * 		the structure pointed by *buf* and of size *buf_size*. Enabled
1543  * 		and running times are also stored in the structure (see
1544  * 		description of helper **bpf_perf_event_read_value**\ () for
1545  * 		more details).
1546  * 	Return
1547  * 		0 on success, or a negative error in case of failure.
1548  *
1549  * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen)
1550  * 	Description
1551  * 		Emulate a call to **getsockopt()** on the socket associated to
1552  * 		*bpf_socket*, which must be a full socket. The *level* at
1553  * 		which the option resides and the name *optname* of the option
1554  * 		must be specified, see **getsockopt(2)** for more information.
1555  * 		The retrieved value is stored in the structure pointed by
1556  * 		*opval* and of length *optlen*.
1557  *
1558  * 		This helper actually implements a subset of **getsockopt()**.
1559  * 		It supports the following *level*\ s:
1560  *
1561  * 		* **IPPROTO_TCP**, which supports *optname*
1562  * 		  **TCP_CONGESTION**.
1563  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1564  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1565  * 	Return
1566  * 		0 on success, or a negative error in case of failure.
1567  *
1568  * int bpf_override_return(struct pt_reg *regs, u64 rc)
1569  * 	Description
1570  * 		Used for error injection, this helper uses kprobes to override
1571  * 		the return value of the probed function, and to set it to *rc*.
1572  * 		The first argument is the context *regs* on which the kprobe
1573  * 		works.
1574  *
1575  * 		This helper works by setting setting the PC (program counter)
1576  * 		to an override function which is run in place of the original
1577  * 		probed function. This means the probed function is not run at
1578  * 		all. The replacement function just returns with the required
1579  * 		value.
1580  *
1581  * 		This helper has security implications, and thus is subject to
1582  * 		restrictions. It is only available if the kernel was compiled
1583  * 		with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
1584  * 		option, and in this case it only works on functions tagged with
1585  * 		**ALLOW_ERROR_INJECTION** in the kernel code.
1586  *
1587  * 		Also, the helper is only available for the architectures having
1588  * 		the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
1589  * 		x86 architecture is the only one to support this feature.
1590  * 	Return
1591  * 		0
1592  *
1593  * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
1594  * 	Description
1595  * 		Attempt to set the value of the **bpf_sock_ops_cb_flags** field
1596  * 		for the full TCP socket associated to *bpf_sock_ops* to
1597  * 		*argval*.
1598  *
1599  * 		The primary use of this field is to determine if there should
1600  * 		be calls to eBPF programs of type
1601  * 		**BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
1602  * 		code. A program of the same type can change its value, per
1603  * 		connection and as necessary, when the connection is
1604  * 		established. This field is directly accessible for reading, but
1605  * 		this helper must be used for updates in order to return an
1606  * 		error if an eBPF program tries to set a callback that is not
1607  * 		supported in the current kernel.
1608  *
1609  * 		The supported callback values that *argval* can combine are:
1610  *
1611  * 		* **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
1612  * 		* **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
1613  * 		* **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
1614  *
1615  * 		Here are some examples of where one could call such eBPF
1616  * 		program:
1617  *
1618  * 		* When RTO fires.
1619  * 		* When a packet is retransmitted.
1620  * 		* When the connection terminates.
1621  * 		* When a packet is sent.
1622  * 		* When a packet is received.
1623  * 	Return
1624  * 		Code **-EINVAL** if the socket is not a full TCP socket;
1625  * 		otherwise, a positive number containing the bits that could not
1626  * 		be set is returned (which comes down to 0 if all bits were set
1627  * 		as required).
1628  *
1629  * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
1630  * 	Description
1631  * 		This helper is used in programs implementing policies at the
1632  * 		socket level. If the message *msg* is allowed to pass (i.e. if
1633  * 		the verdict eBPF program returns **SK_PASS**), redirect it to
1634  * 		the socket referenced by *map* (of type
1635  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1636  * 		egress interfaces can be used for redirection. The
1637  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1638  * 		distinction (ingress path is selected if the flag is present,
1639  * 		egress path otherwise). This is the only flag supported for now.
1640  * 	Return
1641  * 		**SK_PASS** on success, or **SK_DROP** on error.
1642  *
1643  * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
1644  * 	Description
1645  * 		For socket policies, apply the verdict of the eBPF program to
1646  * 		the next *bytes* (number of bytes) of message *msg*.
1647  *
1648  * 		For example, this helper can be used in the following cases:
1649  *
1650  * 		* A single **sendmsg**\ () or **sendfile**\ () system call
1651  * 		  contains multiple logical messages that the eBPF program is
1652  * 		  supposed to read and for which it should apply a verdict.
1653  * 		* An eBPF program only cares to read the first *bytes* of a
1654  * 		  *msg*. If the message has a large payload, then setting up
1655  * 		  and calling the eBPF program repeatedly for all bytes, even
1656  * 		  though the verdict is already known, would create unnecessary
1657  * 		  overhead.
1658  *
1659  * 		When called from within an eBPF program, the helper sets a
1660  * 		counter internal to the BPF infrastructure, that is used to
1661  * 		apply the last verdict to the next *bytes*. If *bytes* is
1662  * 		smaller than the current data being processed from a
1663  * 		**sendmsg**\ () or **sendfile**\ () system call, the first
1664  * 		*bytes* will be sent and the eBPF program will be re-run with
1665  * 		the pointer for start of data pointing to byte number *bytes*
1666  * 		**+ 1**. If *bytes* is larger than the current data being
1667  * 		processed, then the eBPF verdict will be applied to multiple
1668  * 		**sendmsg**\ () or **sendfile**\ () calls until *bytes* are
1669  * 		consumed.
1670  *
1671  * 		Note that if a socket closes with the internal counter holding
1672  * 		a non-zero value, this is not a problem because data is not
1673  * 		being buffered for *bytes* and is sent as it is received.
1674  * 	Return
1675  * 		0
1676  *
1677  * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
1678  * 	Description
1679  * 		For socket policies, prevent the execution of the verdict eBPF
1680  * 		program for message *msg* until *bytes* (byte number) have been
1681  * 		accumulated.
1682  *
1683  * 		This can be used when one needs a specific number of bytes
1684  * 		before a verdict can be assigned, even if the data spans
1685  * 		multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
1686  * 		case would be a user calling **sendmsg**\ () repeatedly with
1687  * 		1-byte long message segments. Obviously, this is bad for
1688  * 		performance, but it is still valid. If the eBPF program needs
1689  * 		*bytes* bytes to validate a header, this helper can be used to
1690  * 		prevent the eBPF program to be called again until *bytes* have
1691  * 		been accumulated.
1692  * 	Return
1693  * 		0
1694  *
1695  * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
1696  * 	Description
1697  * 		For socket policies, pull in non-linear data from user space
1698  * 		for *msg* and set pointers *msg*\ **->data** and *msg*\
1699  * 		**->data_end** to *start* and *end* bytes offsets into *msg*,
1700  * 		respectively.
1701  *
1702  * 		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
1703  * 		*msg* it can only parse data that the (**data**, **data_end**)
1704  * 		pointers have already consumed. For **sendmsg**\ () hooks this
1705  * 		is likely the first scatterlist element. But for calls relying
1706  * 		on the **sendpage** handler (e.g. **sendfile**\ ()) this will
1707  * 		be the range (**0**, **0**) because the data is shared with
1708  * 		user space and by default the objective is to avoid allowing
1709  * 		user space to modify data while (or after) eBPF verdict is
1710  * 		being decided. This helper can be used to pull in data and to
1711  * 		set the start and end pointer to given values. Data will be
1712  * 		copied if necessary (i.e. if data was not linear and if start
1713  * 		and end pointers do not point to the same chunk).
1714  *
1715  * 		A call to this helper is susceptible to change the underlaying
1716  * 		packet buffer. Therefore, at load time, all checks on pointers
1717  * 		previously done by the verifier are invalidated and must be
1718  * 		performed again, if the helper is used in combination with
1719  * 		direct packet access.
1720  *
1721  * 		All values for *flags* are reserved for future usage, and must
1722  * 		be left at zero.
1723  * 	Return
1724  * 		0 on success, or a negative error in case of failure.
1725  *
1726  * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
1727  * 	Description
1728  * 		Bind the socket associated to *ctx* to the address pointed by
1729  * 		*addr*, of length *addr_len*. This allows for making outgoing
1730  * 		connection from the desired IP address, which can be useful for
1731  * 		example when all processes inside a cgroup should use one
1732  * 		single IP address on a host that has multiple IP configured.
1733  *
1734  * 		This helper works for IPv4 and IPv6, TCP and UDP sockets. The
1735  * 		domain (*addr*\ **->sa_family**) must be **AF_INET** (or
1736  * 		**AF_INET6**). Looking for a free port to bind to can be
1737  * 		expensive, therefore binding to port is not permitted by the
1738  * 		helper: *addr*\ **->sin_port** (or **sin6_port**, respectively)
1739  * 		must be set to zero.
1740  * 	Return
1741  * 		0 on success, or a negative error in case of failure.
1742  *
1743  * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
1744  * 	Description
1745  * 		Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
1746  * 		only possible to shrink the packet as of this writing,
1747  * 		therefore *delta* must be a negative integer.
1748  *
1749  * 		A call to this helper is susceptible to change the underlaying
1750  * 		packet buffer. Therefore, at load time, all checks on pointers
1751  * 		previously done by the verifier are invalidated and must be
1752  * 		performed again, if the helper is used in combination with
1753  * 		direct packet access.
1754  * 	Return
1755  * 		0 on success, or a negative error in case of failure.
1756  *
1757  * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
1758  * 	Description
1759  * 		Retrieve the XFRM state (IP transform framework, see also
1760  * 		**ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
1761  *
1762  * 		The retrieved value is stored in the **struct bpf_xfrm_state**
1763  * 		pointed by *xfrm_state* and of length *size*.
1764  *
1765  * 		All values for *flags* are reserved for future usage, and must
1766  * 		be left at zero.
1767  *
1768  * 		This helper is available only if the kernel was compiled with
1769  * 		**CONFIG_XFRM** configuration option.
1770  * 	Return
1771  * 		0 on success, or a negative error in case of failure.
1772  *
1773  * int bpf_get_stack(struct pt_regs *regs, void *buf, u32 size, u64 flags)
1774  * 	Description
1775  * 		Return a user or a kernel stack in bpf program provided buffer.
1776  * 		To achieve this, the helper needs *ctx*, which is a pointer
1777  * 		to the context on which the tracing program is executed.
1778  * 		To store the stacktrace, the bpf program provides *buf* with
1779  * 		a nonnegative *size*.
1780  *
1781  * 		The last argument, *flags*, holds the number of stack frames to
1782  * 		skip (from 0 to 255), masked with
1783  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1784  * 		the following flags:
1785  *
1786  * 		**BPF_F_USER_STACK**
1787  * 			Collect a user space stack instead of a kernel stack.
1788  * 		**BPF_F_USER_BUILD_ID**
1789  * 			Collect buildid+offset instead of ips for user stack,
1790  * 			only valid if **BPF_F_USER_STACK** is also specified.
1791  *
1792  * 		**bpf_get_stack**\ () can collect up to
1793  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
1794  * 		to sufficient large buffer size. Note that
1795  * 		this limit can be controlled with the **sysctl** program, and
1796  * 		that it should be manually increased in order to profile long
1797  * 		user stacks (such as stacks for Java programs). To do so, use:
1798  *
1799  * 		::
1800  *
1801  * 			# sysctl kernel.perf_event_max_stack=<new value>
1802  *
1803  * 	Return
1804  * 		a non-negative value equal to or less than size on success, or
1805  * 		a negative error in case of failure.
1806  *
1807  * int skb_load_bytes_relative(const struct sk_buff *skb, u32 offset, void *to, u32 len, u32 start_header)
1808  * 	Description
1809  * 		This helper is similar to **bpf_skb_load_bytes**\ () in that
1810  * 		it provides an easy way to load *len* bytes from *offset*
1811  * 		from the packet associated to *skb*, into the buffer pointed
1812  * 		by *to*. The difference to **bpf_skb_load_bytes**\ () is that
1813  * 		a fifth argument *start_header* exists in order to select a
1814  * 		base offset to start from. *start_header* can be one of:
1815  *
1816  * 		**BPF_HDR_START_MAC**
1817  * 			Base offset to load data from is *skb*'s mac header.
1818  * 		**BPF_HDR_START_NET**
1819  * 			Base offset to load data from is *skb*'s network header.
1820  *
1821  * 		In general, "direct packet access" is the preferred method to
1822  * 		access packet data, however, this helper is in particular useful
1823  * 		in socket filters where *skb*\ **->data** does not always point
1824  * 		to the start of the mac header and where "direct packet access"
1825  * 		is not available.
1826  *
1827  * 	Return
1828  * 		0 on success, or a negative error in case of failure.
1829  *
1830  */
1831 #define __BPF_FUNC_MAPPER(FN)		\
1832 	FN(unspec),			\
1833 	FN(map_lookup_elem),		\
1834 	FN(map_update_elem),		\
1835 	FN(map_delete_elem),		\
1836 	FN(probe_read),			\
1837 	FN(ktime_get_ns),		\
1838 	FN(trace_printk),		\
1839 	FN(get_prandom_u32),		\
1840 	FN(get_smp_processor_id),	\
1841 	FN(skb_store_bytes),		\
1842 	FN(l3_csum_replace),		\
1843 	FN(l4_csum_replace),		\
1844 	FN(tail_call),			\
1845 	FN(clone_redirect),		\
1846 	FN(get_current_pid_tgid),	\
1847 	FN(get_current_uid_gid),	\
1848 	FN(get_current_comm),		\
1849 	FN(get_cgroup_classid),		\
1850 	FN(skb_vlan_push),		\
1851 	FN(skb_vlan_pop),		\
1852 	FN(skb_get_tunnel_key),		\
1853 	FN(skb_set_tunnel_key),		\
1854 	FN(perf_event_read),		\
1855 	FN(redirect),			\
1856 	FN(get_route_realm),		\
1857 	FN(perf_event_output),		\
1858 	FN(skb_load_bytes),		\
1859 	FN(get_stackid),		\
1860 	FN(csum_diff),			\
1861 	FN(skb_get_tunnel_opt),		\
1862 	FN(skb_set_tunnel_opt),		\
1863 	FN(skb_change_proto),		\
1864 	FN(skb_change_type),		\
1865 	FN(skb_under_cgroup),		\
1866 	FN(get_hash_recalc),		\
1867 	FN(get_current_task),		\
1868 	FN(probe_write_user),		\
1869 	FN(current_task_under_cgroup),	\
1870 	FN(skb_change_tail),		\
1871 	FN(skb_pull_data),		\
1872 	FN(csum_update),		\
1873 	FN(set_hash_invalid),		\
1874 	FN(get_numa_node_id),		\
1875 	FN(skb_change_head),		\
1876 	FN(xdp_adjust_head),		\
1877 	FN(probe_read_str),		\
1878 	FN(get_socket_cookie),		\
1879 	FN(get_socket_uid),		\
1880 	FN(set_hash),			\
1881 	FN(setsockopt),			\
1882 	FN(skb_adjust_room),		\
1883 	FN(redirect_map),		\
1884 	FN(sk_redirect_map),		\
1885 	FN(sock_map_update),		\
1886 	FN(xdp_adjust_meta),		\
1887 	FN(perf_event_read_value),	\
1888 	FN(perf_prog_read_value),	\
1889 	FN(getsockopt),			\
1890 	FN(override_return),		\
1891 	FN(sock_ops_cb_flags_set),	\
1892 	FN(msg_redirect_map),		\
1893 	FN(msg_apply_bytes),		\
1894 	FN(msg_cork_bytes),		\
1895 	FN(msg_pull_data),		\
1896 	FN(bind),			\
1897 	FN(xdp_adjust_tail),		\
1898 	FN(skb_get_xfrm_state),		\
1899 	FN(get_stack),			\
1900 	FN(skb_load_bytes_relative),
1901 
1902 /* integer value in 'imm' field of BPF_CALL instruction selects which helper
1903  * function eBPF program intends to call
1904  */
1905 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
1906 enum bpf_func_id {
1907 	__BPF_FUNC_MAPPER(__BPF_ENUM_FN)
1908 	__BPF_FUNC_MAX_ID,
1909 };
1910 #undef __BPF_ENUM_FN
1911 
1912 /* All flags used by eBPF helper functions, placed here. */
1913 
1914 /* BPF_FUNC_skb_store_bytes flags. */
1915 #define BPF_F_RECOMPUTE_CSUM		(1ULL << 0)
1916 #define BPF_F_INVALIDATE_HASH		(1ULL << 1)
1917 
1918 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
1919  * First 4 bits are for passing the header field size.
1920  */
1921 #define BPF_F_HDR_FIELD_MASK		0xfULL
1922 
1923 /* BPF_FUNC_l4_csum_replace flags. */
1924 #define BPF_F_PSEUDO_HDR		(1ULL << 4)
1925 #define BPF_F_MARK_MANGLED_0		(1ULL << 5)
1926 #define BPF_F_MARK_ENFORCE		(1ULL << 6)
1927 
1928 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
1929 #define BPF_F_INGRESS			(1ULL << 0)
1930 
1931 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
1932 #define BPF_F_TUNINFO_IPV6		(1ULL << 0)
1933 
1934 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
1935 #define BPF_F_SKIP_FIELD_MASK		0xffULL
1936 #define BPF_F_USER_STACK		(1ULL << 8)
1937 /* flags used by BPF_FUNC_get_stackid only. */
1938 #define BPF_F_FAST_STACK_CMP		(1ULL << 9)
1939 #define BPF_F_REUSE_STACKID		(1ULL << 10)
1940 /* flags used by BPF_FUNC_get_stack only. */
1941 #define BPF_F_USER_BUILD_ID		(1ULL << 11)
1942 
1943 /* BPF_FUNC_skb_set_tunnel_key flags. */
1944 #define BPF_F_ZERO_CSUM_TX		(1ULL << 1)
1945 #define BPF_F_DONT_FRAGMENT		(1ULL << 2)
1946 #define BPF_F_SEQ_NUMBER		(1ULL << 3)
1947 
1948 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
1949  * BPF_FUNC_perf_event_read_value flags.
1950  */
1951 #define BPF_F_INDEX_MASK		0xffffffffULL
1952 #define BPF_F_CURRENT_CPU		BPF_F_INDEX_MASK
1953 /* BPF_FUNC_perf_event_output for sk_buff input context. */
1954 #define BPF_F_CTXLEN_MASK		(0xfffffULL << 32)
1955 
1956 /* Mode for BPF_FUNC_skb_adjust_room helper. */
1957 enum bpf_adj_room_mode {
1958 	BPF_ADJ_ROOM_NET,
1959 };
1960 
1961 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
1962 enum bpf_hdr_start_off {
1963 	BPF_HDR_START_MAC,
1964 	BPF_HDR_START_NET,
1965 };
1966 
1967 /* user accessible mirror of in-kernel sk_buff.
1968  * new fields can only be added to the end of this structure
1969  */
1970 struct __sk_buff {
1971 	__u32 len;
1972 	__u32 pkt_type;
1973 	__u32 mark;
1974 	__u32 queue_mapping;
1975 	__u32 protocol;
1976 	__u32 vlan_present;
1977 	__u32 vlan_tci;
1978 	__u32 vlan_proto;
1979 	__u32 priority;
1980 	__u32 ingress_ifindex;
1981 	__u32 ifindex;
1982 	__u32 tc_index;
1983 	__u32 cb[5];
1984 	__u32 hash;
1985 	__u32 tc_classid;
1986 	__u32 data;
1987 	__u32 data_end;
1988 	__u32 napi_id;
1989 
1990 	/* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
1991 	__u32 family;
1992 	__u32 remote_ip4;	/* Stored in network byte order */
1993 	__u32 local_ip4;	/* Stored in network byte order */
1994 	__u32 remote_ip6[4];	/* Stored in network byte order */
1995 	__u32 local_ip6[4];	/* Stored in network byte order */
1996 	__u32 remote_port;	/* Stored in network byte order */
1997 	__u32 local_port;	/* stored in host byte order */
1998 	/* ... here. */
1999 
2000 	__u32 data_meta;
2001 };
2002 
2003 struct bpf_tunnel_key {
2004 	__u32 tunnel_id;
2005 	union {
2006 		__u32 remote_ipv4;
2007 		__u32 remote_ipv6[4];
2008 	};
2009 	__u8 tunnel_tos;
2010 	__u8 tunnel_ttl;
2011 	__u16 tunnel_ext;
2012 	__u32 tunnel_label;
2013 };
2014 
2015 /* user accessible mirror of in-kernel xfrm_state.
2016  * new fields can only be added to the end of this structure
2017  */
2018 struct bpf_xfrm_state {
2019 	__u32 reqid;
2020 	__u32 spi;	/* Stored in network byte order */
2021 	__u16 family;
2022 	union {
2023 		__u32 remote_ipv4;	/* Stored in network byte order */
2024 		__u32 remote_ipv6[4];	/* Stored in network byte order */
2025 	};
2026 };
2027 
2028 /* Generic BPF return codes which all BPF program types may support.
2029  * The values are binary compatible with their TC_ACT_* counter-part to
2030  * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
2031  * programs.
2032  *
2033  * XDP is handled seprately, see XDP_*.
2034  */
2035 enum bpf_ret_code {
2036 	BPF_OK = 0,
2037 	/* 1 reserved */
2038 	BPF_DROP = 2,
2039 	/* 3-6 reserved */
2040 	BPF_REDIRECT = 7,
2041 	/* >127 are reserved for prog type specific return codes */
2042 };
2043 
2044 struct bpf_sock {
2045 	__u32 bound_dev_if;
2046 	__u32 family;
2047 	__u32 type;
2048 	__u32 protocol;
2049 	__u32 mark;
2050 	__u32 priority;
2051 	__u32 src_ip4;		/* Allows 1,2,4-byte read.
2052 				 * Stored in network byte order.
2053 				 */
2054 	__u32 src_ip6[4];	/* Allows 1,2,4-byte read.
2055 				 * Stored in network byte order.
2056 				 */
2057 	__u32 src_port;		/* Allows 4-byte read.
2058 				 * Stored in host byte order
2059 				 */
2060 };
2061 
2062 #define XDP_PACKET_HEADROOM 256
2063 
2064 /* User return codes for XDP prog type.
2065  * A valid XDP program must return one of these defined values. All other
2066  * return codes are reserved for future use. Unknown return codes will
2067  * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
2068  */
2069 enum xdp_action {
2070 	XDP_ABORTED = 0,
2071 	XDP_DROP,
2072 	XDP_PASS,
2073 	XDP_TX,
2074 	XDP_REDIRECT,
2075 };
2076 
2077 /* user accessible metadata for XDP packet hook
2078  * new fields must be added to the end of this structure
2079  */
2080 struct xdp_md {
2081 	__u32 data;
2082 	__u32 data_end;
2083 	__u32 data_meta;
2084 	/* Below access go through struct xdp_rxq_info */
2085 	__u32 ingress_ifindex; /* rxq->dev->ifindex */
2086 	__u32 rx_queue_index;  /* rxq->queue_index  */
2087 };
2088 
2089 enum sk_action {
2090 	SK_DROP = 0,
2091 	SK_PASS,
2092 };
2093 
2094 /* user accessible metadata for SK_MSG packet hook, new fields must
2095  * be added to the end of this structure
2096  */
2097 struct sk_msg_md {
2098 	void *data;
2099 	void *data_end;
2100 };
2101 
2102 #define BPF_TAG_SIZE	8
2103 
2104 struct bpf_prog_info {
2105 	__u32 type;
2106 	__u32 id;
2107 	__u8  tag[BPF_TAG_SIZE];
2108 	__u32 jited_prog_len;
2109 	__u32 xlated_prog_len;
2110 	__aligned_u64 jited_prog_insns;
2111 	__aligned_u64 xlated_prog_insns;
2112 	__u64 load_time;	/* ns since boottime */
2113 	__u32 created_by_uid;
2114 	__u32 nr_map_ids;
2115 	__aligned_u64 map_ids;
2116 	char name[BPF_OBJ_NAME_LEN];
2117 	__u32 ifindex;
2118 	__u32 gpl_compatible:1;
2119 	__u64 netns_dev;
2120 	__u64 netns_ino;
2121 } __attribute__((aligned(8)));
2122 
2123 struct bpf_map_info {
2124 	__u32 type;
2125 	__u32 id;
2126 	__u32 key_size;
2127 	__u32 value_size;
2128 	__u32 max_entries;
2129 	__u32 map_flags;
2130 	char  name[BPF_OBJ_NAME_LEN];
2131 	__u32 ifindex;
2132 	__u64 netns_dev;
2133 	__u64 netns_ino;
2134 	__u32 btf_id;
2135 	__u32 btf_key_id;
2136 	__u32 btf_value_id;
2137 } __attribute__((aligned(8)));
2138 
2139 struct bpf_btf_info {
2140 	__aligned_u64 btf;
2141 	__u32 btf_size;
2142 	__u32 id;
2143 } __attribute__((aligned(8)));
2144 
2145 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
2146  * by user and intended to be used by socket (e.g. to bind to, depends on
2147  * attach attach type).
2148  */
2149 struct bpf_sock_addr {
2150 	__u32 user_family;	/* Allows 4-byte read, but no write. */
2151 	__u32 user_ip4;		/* Allows 1,2,4-byte read and 4-byte write.
2152 				 * Stored in network byte order.
2153 				 */
2154 	__u32 user_ip6[4];	/* Allows 1,2,4-byte read an 4-byte write.
2155 				 * Stored in network byte order.
2156 				 */
2157 	__u32 user_port;	/* Allows 4-byte read and write.
2158 				 * Stored in network byte order
2159 				 */
2160 	__u32 family;		/* Allows 4-byte read, but no write */
2161 	__u32 type;		/* Allows 4-byte read, but no write */
2162 	__u32 protocol;		/* Allows 4-byte read, but no write */
2163 };
2164 
2165 /* User bpf_sock_ops struct to access socket values and specify request ops
2166  * and their replies.
2167  * Some of this fields are in network (bigendian) byte order and may need
2168  * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
2169  * New fields can only be added at the end of this structure
2170  */
2171 struct bpf_sock_ops {
2172 	__u32 op;
2173 	union {
2174 		__u32 args[4];		/* Optionally passed to bpf program */
2175 		__u32 reply;		/* Returned by bpf program	    */
2176 		__u32 replylong[4];	/* Optionally returned by bpf prog  */
2177 	};
2178 	__u32 family;
2179 	__u32 remote_ip4;	/* Stored in network byte order */
2180 	__u32 local_ip4;	/* Stored in network byte order */
2181 	__u32 remote_ip6[4];	/* Stored in network byte order */
2182 	__u32 local_ip6[4];	/* Stored in network byte order */
2183 	__u32 remote_port;	/* Stored in network byte order */
2184 	__u32 local_port;	/* stored in host byte order */
2185 	__u32 is_fullsock;	/* Some TCP fields are only valid if
2186 				 * there is a full socket. If not, the
2187 				 * fields read as zero.
2188 				 */
2189 	__u32 snd_cwnd;
2190 	__u32 srtt_us;		/* Averaged RTT << 3 in usecs */
2191 	__u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
2192 	__u32 state;
2193 	__u32 rtt_min;
2194 	__u32 snd_ssthresh;
2195 	__u32 rcv_nxt;
2196 	__u32 snd_nxt;
2197 	__u32 snd_una;
2198 	__u32 mss_cache;
2199 	__u32 ecn_flags;
2200 	__u32 rate_delivered;
2201 	__u32 rate_interval_us;
2202 	__u32 packets_out;
2203 	__u32 retrans_out;
2204 	__u32 total_retrans;
2205 	__u32 segs_in;
2206 	__u32 data_segs_in;
2207 	__u32 segs_out;
2208 	__u32 data_segs_out;
2209 	__u32 lost_out;
2210 	__u32 sacked_out;
2211 	__u32 sk_txhash;
2212 	__u64 bytes_received;
2213 	__u64 bytes_acked;
2214 };
2215 
2216 /* Definitions for bpf_sock_ops_cb_flags */
2217 #define BPF_SOCK_OPS_RTO_CB_FLAG	(1<<0)
2218 #define BPF_SOCK_OPS_RETRANS_CB_FLAG	(1<<1)
2219 #define BPF_SOCK_OPS_STATE_CB_FLAG	(1<<2)
2220 #define BPF_SOCK_OPS_ALL_CB_FLAGS       0x7		/* Mask of all currently
2221 							 * supported cb flags
2222 							 */
2223 
2224 /* List of known BPF sock_ops operators.
2225  * New entries can only be added at the end
2226  */
2227 enum {
2228 	BPF_SOCK_OPS_VOID,
2229 	BPF_SOCK_OPS_TIMEOUT_INIT,	/* Should return SYN-RTO value to use or
2230 					 * -1 if default value should be used
2231 					 */
2232 	BPF_SOCK_OPS_RWND_INIT,		/* Should return initial advertized
2233 					 * window (in packets) or -1 if default
2234 					 * value should be used
2235 					 */
2236 	BPF_SOCK_OPS_TCP_CONNECT_CB,	/* Calls BPF program right before an
2237 					 * active connection is initialized
2238 					 */
2239 	BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB,	/* Calls BPF program when an
2240 						 * active connection is
2241 						 * established
2242 						 */
2243 	BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,	/* Calls BPF program when a
2244 						 * passive connection is
2245 						 * established
2246 						 */
2247 	BPF_SOCK_OPS_NEEDS_ECN,		/* If connection's congestion control
2248 					 * needs ECN
2249 					 */
2250 	BPF_SOCK_OPS_BASE_RTT,		/* Get base RTT. The correct value is
2251 					 * based on the path and may be
2252 					 * dependent on the congestion control
2253 					 * algorithm. In general it indicates
2254 					 * a congestion threshold. RTTs above
2255 					 * this indicate congestion
2256 					 */
2257 	BPF_SOCK_OPS_RTO_CB,		/* Called when an RTO has triggered.
2258 					 * Arg1: value of icsk_retransmits
2259 					 * Arg2: value of icsk_rto
2260 					 * Arg3: whether RTO has expired
2261 					 */
2262 	BPF_SOCK_OPS_RETRANS_CB,	/* Called when skb is retransmitted.
2263 					 * Arg1: sequence number of 1st byte
2264 					 * Arg2: # segments
2265 					 * Arg3: return value of
2266 					 *       tcp_transmit_skb (0 => success)
2267 					 */
2268 	BPF_SOCK_OPS_STATE_CB,		/* Called when TCP changes state.
2269 					 * Arg1: old_state
2270 					 * Arg2: new_state
2271 					 */
2272 };
2273 
2274 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
2275  * changes between the TCP and BPF versions. Ideally this should never happen.
2276  * If it does, we need to add code to convert them before calling
2277  * the BPF sock_ops function.
2278  */
2279 enum {
2280 	BPF_TCP_ESTABLISHED = 1,
2281 	BPF_TCP_SYN_SENT,
2282 	BPF_TCP_SYN_RECV,
2283 	BPF_TCP_FIN_WAIT1,
2284 	BPF_TCP_FIN_WAIT2,
2285 	BPF_TCP_TIME_WAIT,
2286 	BPF_TCP_CLOSE,
2287 	BPF_TCP_CLOSE_WAIT,
2288 	BPF_TCP_LAST_ACK,
2289 	BPF_TCP_LISTEN,
2290 	BPF_TCP_CLOSING,	/* Now a valid state */
2291 	BPF_TCP_NEW_SYN_RECV,
2292 
2293 	BPF_TCP_MAX_STATES	/* Leave at the end! */
2294 };
2295 
2296 #define TCP_BPF_IW		1001	/* Set TCP initial congestion window */
2297 #define TCP_BPF_SNDCWND_CLAMP	1002	/* Set sndcwnd_clamp */
2298 
2299 struct bpf_perf_event_value {
2300 	__u64 counter;
2301 	__u64 enabled;
2302 	__u64 running;
2303 };
2304 
2305 #define BPF_DEVCG_ACC_MKNOD	(1ULL << 0)
2306 #define BPF_DEVCG_ACC_READ	(1ULL << 1)
2307 #define BPF_DEVCG_ACC_WRITE	(1ULL << 2)
2308 
2309 #define BPF_DEVCG_DEV_BLOCK	(1ULL << 0)
2310 #define BPF_DEVCG_DEV_CHAR	(1ULL << 1)
2311 
2312 struct bpf_cgroup_dev_ctx {
2313 	/* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
2314 	__u32 access_type;
2315 	__u32 major;
2316 	__u32 minor;
2317 };
2318 
2319 struct bpf_raw_tracepoint_args {
2320 	__u64 args[0];
2321 };
2322 
2323 #endif /* _UAPI__LINUX_BPF_H__ */
2324