xref: /linux-6.15/tools/include/linux/compiler.h (revision e58e871b)
1 #ifndef _TOOLS_LINUX_COMPILER_H_
2 #define _TOOLS_LINUX_COMPILER_H_
3 
4 #ifdef __GNUC__
5 #include <linux/compiler-gcc.h>
6 #endif
7 
8 #ifndef __compiletime_error
9 # define __compiletime_error(message)
10 #endif
11 
12 /* Optimization barrier */
13 /* The "volatile" is due to gcc bugs */
14 #define barrier() __asm__ __volatile__("": : :"memory")
15 
16 #ifndef __always_inline
17 # define __always_inline	inline __attribute__((always_inline))
18 #endif
19 
20 /* Are two types/vars the same type (ignoring qualifiers)? */
21 #ifndef __same_type
22 # define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b))
23 #endif
24 
25 #ifdef __ANDROID__
26 /*
27  * FIXME: Big hammer to get rid of tons of:
28  *   "warning: always_inline function might not be inlinable"
29  *
30  * At least on android-ndk-r12/platforms/android-24/arch-arm
31  */
32 #undef __always_inline
33 #define __always_inline	inline
34 #endif
35 
36 #define __user
37 #define __rcu
38 #define __read_mostly
39 
40 #ifndef __attribute_const__
41 # define __attribute_const__
42 #endif
43 
44 #ifndef __maybe_unused
45 # define __maybe_unused		__attribute__((unused))
46 #endif
47 
48 #ifndef __used
49 # define __used		__attribute__((__unused__))
50 #endif
51 
52 #ifndef __packed
53 # define __packed		__attribute__((__packed__))
54 #endif
55 
56 #ifndef __force
57 # define __force
58 #endif
59 
60 #ifndef __weak
61 # define __weak			__attribute__((weak))
62 #endif
63 
64 #ifndef likely
65 # define likely(x)		__builtin_expect(!!(x), 1)
66 #endif
67 
68 #ifndef unlikely
69 # define unlikely(x)		__builtin_expect(!!(x), 0)
70 #endif
71 
72 #ifndef __init
73 # define __init
74 #endif
75 
76 #ifndef noinline
77 # define noinline
78 #endif
79 
80 #define uninitialized_var(x) x = *(&(x))
81 
82 #define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
83 
84 #include <linux/types.h>
85 
86 /*
87  * Following functions are taken from kernel sources and
88  * break aliasing rules in their original form.
89  *
90  * While kernel is compiled with -fno-strict-aliasing,
91  * perf uses -Wstrict-aliasing=3 which makes build fail
92  * under gcc 4.4.
93  *
94  * Using extra __may_alias__ type to allow aliasing
95  * in this case.
96  */
97 typedef __u8  __attribute__((__may_alias__))  __u8_alias_t;
98 typedef __u16 __attribute__((__may_alias__)) __u16_alias_t;
99 typedef __u32 __attribute__((__may_alias__)) __u32_alias_t;
100 typedef __u64 __attribute__((__may_alias__)) __u64_alias_t;
101 
102 static __always_inline void __read_once_size(const volatile void *p, void *res, int size)
103 {
104 	switch (size) {
105 	case 1: *(__u8_alias_t  *) res = *(volatile __u8_alias_t  *) p; break;
106 	case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break;
107 	case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break;
108 	case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break;
109 	default:
110 		barrier();
111 		__builtin_memcpy((void *)res, (const void *)p, size);
112 		barrier();
113 	}
114 }
115 
116 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
117 {
118 	switch (size) {
119 	case 1: *(volatile  __u8_alias_t *) p = *(__u8_alias_t  *) res; break;
120 	case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break;
121 	case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break;
122 	case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break;
123 	default:
124 		barrier();
125 		__builtin_memcpy((void *)p, (const void *)res, size);
126 		barrier();
127 	}
128 }
129 
130 /*
131  * Prevent the compiler from merging or refetching reads or writes. The
132  * compiler is also forbidden from reordering successive instances of
133  * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
134  * compiler is aware of some particular ordering.  One way to make the
135  * compiler aware of ordering is to put the two invocations of READ_ONCE,
136  * WRITE_ONCE or ACCESS_ONCE() in different C statements.
137  *
138  * In contrast to ACCESS_ONCE these two macros will also work on aggregate
139  * data types like structs or unions. If the size of the accessed data
140  * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
141  * READ_ONCE() and WRITE_ONCE()  will fall back to memcpy and print a
142  * compile-time warning.
143  *
144  * Their two major use cases are: (1) Mediating communication between
145  * process-level code and irq/NMI handlers, all running on the same CPU,
146  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
147  * mutilate accesses that either do not require ordering or that interact
148  * with an explicit memory barrier or atomic instruction that provides the
149  * required ordering.
150  */
151 
152 #define READ_ONCE(x) \
153 	({ union { typeof(x) __val; char __c[1]; } __u; __read_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })
154 
155 #define WRITE_ONCE(x, val) \
156 	({ union { typeof(x) __val; char __c[1]; } __u = { .__val = (val) }; __write_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })
157 
158 
159 #ifndef __fallthrough
160 # define __fallthrough
161 #endif
162 
163 #endif /* _TOOLS_LINUX_COMPILER_H */
164