xref: /linux-6.15/tools/include/linux/compiler.h (revision 9dd4ca47)
1 #ifndef _TOOLS_LINUX_COMPILER_H_
2 #define _TOOLS_LINUX_COMPILER_H_
3 
4 #ifdef __GNUC__
5 #include <linux/compiler-gcc.h>
6 #endif
7 
8 #ifndef __compiletime_error
9 # define __compiletime_error(message)
10 #endif
11 
12 /* Optimization barrier */
13 /* The "volatile" is due to gcc bugs */
14 #define barrier() __asm__ __volatile__("": : :"memory")
15 
16 #ifndef __always_inline
17 # define __always_inline	inline __attribute__((always_inline))
18 #endif
19 
20 #ifndef noinline
21 #define noinline
22 #endif
23 
24 /* Are two types/vars the same type (ignoring qualifiers)? */
25 #ifndef __same_type
26 # define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b))
27 #endif
28 
29 #ifdef __ANDROID__
30 /*
31  * FIXME: Big hammer to get rid of tons of:
32  *   "warning: always_inline function might not be inlinable"
33  *
34  * At least on android-ndk-r12/platforms/android-24/arch-arm
35  */
36 #undef __always_inline
37 #define __always_inline	inline
38 #endif
39 
40 #define __user
41 #define __rcu
42 #define __read_mostly
43 
44 #ifndef __attribute_const__
45 # define __attribute_const__
46 #endif
47 
48 #ifndef __maybe_unused
49 # define __maybe_unused		__attribute__((unused))
50 #endif
51 
52 #ifndef __packed
53 # define __packed		__attribute__((__packed__))
54 #endif
55 
56 #ifndef __force
57 # define __force
58 #endif
59 
60 #ifndef __weak
61 # define __weak			__attribute__((weak))
62 #endif
63 
64 #ifndef likely
65 # define likely(x)		__builtin_expect(!!(x), 1)
66 #endif
67 
68 #ifndef unlikely
69 # define unlikely(x)		__builtin_expect(!!(x), 0)
70 #endif
71 
72 #define uninitialized_var(x) x = *(&(x))
73 
74 #define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
75 
76 #include <linux/types.h>
77 
78 /*
79  * Following functions are taken from kernel sources and
80  * break aliasing rules in their original form.
81  *
82  * While kernel is compiled with -fno-strict-aliasing,
83  * perf uses -Wstrict-aliasing=3 which makes build fail
84  * under gcc 4.4.
85  *
86  * Using extra __may_alias__ type to allow aliasing
87  * in this case.
88  */
89 typedef __u8  __attribute__((__may_alias__))  __u8_alias_t;
90 typedef __u16 __attribute__((__may_alias__)) __u16_alias_t;
91 typedef __u32 __attribute__((__may_alias__)) __u32_alias_t;
92 typedef __u64 __attribute__((__may_alias__)) __u64_alias_t;
93 
94 static __always_inline void __read_once_size(const volatile void *p, void *res, int size)
95 {
96 	switch (size) {
97 	case 1: *(__u8_alias_t  *) res = *(volatile __u8_alias_t  *) p; break;
98 	case 2: *(__u16_alias_t *) res = *(volatile __u16_alias_t *) p; break;
99 	case 4: *(__u32_alias_t *) res = *(volatile __u32_alias_t *) p; break;
100 	case 8: *(__u64_alias_t *) res = *(volatile __u64_alias_t *) p; break;
101 	default:
102 		barrier();
103 		__builtin_memcpy((void *)res, (const void *)p, size);
104 		barrier();
105 	}
106 }
107 
108 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
109 {
110 	switch (size) {
111 	case 1: *(volatile  __u8_alias_t *) p = *(__u8_alias_t  *) res; break;
112 	case 2: *(volatile __u16_alias_t *) p = *(__u16_alias_t *) res; break;
113 	case 4: *(volatile __u32_alias_t *) p = *(__u32_alias_t *) res; break;
114 	case 8: *(volatile __u64_alias_t *) p = *(__u64_alias_t *) res; break;
115 	default:
116 		barrier();
117 		__builtin_memcpy((void *)p, (const void *)res, size);
118 		barrier();
119 	}
120 }
121 
122 /*
123  * Prevent the compiler from merging or refetching reads or writes. The
124  * compiler is also forbidden from reordering successive instances of
125  * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
126  * compiler is aware of some particular ordering.  One way to make the
127  * compiler aware of ordering is to put the two invocations of READ_ONCE,
128  * WRITE_ONCE or ACCESS_ONCE() in different C statements.
129  *
130  * In contrast to ACCESS_ONCE these two macros will also work on aggregate
131  * data types like structs or unions. If the size of the accessed data
132  * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
133  * READ_ONCE() and WRITE_ONCE()  will fall back to memcpy and print a
134  * compile-time warning.
135  *
136  * Their two major use cases are: (1) Mediating communication between
137  * process-level code and irq/NMI handlers, all running on the same CPU,
138  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
139  * mutilate accesses that either do not require ordering or that interact
140  * with an explicit memory barrier or atomic instruction that provides the
141  * required ordering.
142  */
143 
144 #define READ_ONCE(x) \
145 	({ union { typeof(x) __val; char __c[1]; } __u; __read_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })
146 
147 #define WRITE_ONCE(x, val) \
148 	({ union { typeof(x) __val; char __c[1]; } __u = { .__val = (val) }; __write_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })
149 
150 
151 #ifndef __fallthrough
152 # define __fallthrough
153 #endif
154 
155 #endif /* _TOOLS_LINUX_COMPILER_H */
156