xref: /linux-6.15/security/security.c (revision faeb9197)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <[email protected]>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <[email protected]>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10 
11 #define pr_fmt(fmt) "LSM: " fmt
12 
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32 
33 #define MAX_LSM_EVM_XATTR	2
34 
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37 
38 /*
39  * These are descriptions of the reasons that can be passed to the
40  * security_locked_down() LSM hook. Placing this array here allows
41  * all security modules to use the same descriptions for auditing
42  * purposes.
43  */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 	[LOCKDOWN_NONE] = "none",
46 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 	[LOCKDOWN_HIBERNATION] = "hibernation",
51 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 	[LOCKDOWN_IOPORT] = "raw io port access",
53 	[LOCKDOWN_MSR] = "raw MSR access",
54 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 	[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
56 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
57 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
58 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
59 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
60 	[LOCKDOWN_DEBUGFS] = "debugfs access",
61 	[LOCKDOWN_XMON_WR] = "xmon write access",
62 	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
63 	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
64 	[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
65 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
66 	[LOCKDOWN_KCORE] = "/proc/kcore access",
67 	[LOCKDOWN_KPROBES] = "use of kprobes",
68 	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
69 	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
70 	[LOCKDOWN_PERF] = "unsafe use of perf",
71 	[LOCKDOWN_TRACEFS] = "use of tracefs",
72 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
73 	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
74 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
75 };
76 
77 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
78 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
79 
80 static struct kmem_cache *lsm_file_cache;
81 static struct kmem_cache *lsm_inode_cache;
82 
83 char *lsm_names;
84 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
85 
86 /* Boot-time LSM user choice */
87 static __initdata const char *chosen_lsm_order;
88 static __initdata const char *chosen_major_lsm;
89 
90 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
91 
92 /* Ordered list of LSMs to initialize. */
93 static __initdata struct lsm_info **ordered_lsms;
94 static __initdata struct lsm_info *exclusive;
95 
96 static __initdata bool debug;
97 #define init_debug(...)						\
98 	do {							\
99 		if (debug)					\
100 			pr_info(__VA_ARGS__);			\
101 	} while (0)
102 
103 static bool __init is_enabled(struct lsm_info *lsm)
104 {
105 	if (!lsm->enabled)
106 		return false;
107 
108 	return *lsm->enabled;
109 }
110 
111 /* Mark an LSM's enabled flag. */
112 static int lsm_enabled_true __initdata = 1;
113 static int lsm_enabled_false __initdata = 0;
114 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
115 {
116 	/*
117 	 * When an LSM hasn't configured an enable variable, we can use
118 	 * a hard-coded location for storing the default enabled state.
119 	 */
120 	if (!lsm->enabled) {
121 		if (enabled)
122 			lsm->enabled = &lsm_enabled_true;
123 		else
124 			lsm->enabled = &lsm_enabled_false;
125 	} else if (lsm->enabled == &lsm_enabled_true) {
126 		if (!enabled)
127 			lsm->enabled = &lsm_enabled_false;
128 	} else if (lsm->enabled == &lsm_enabled_false) {
129 		if (enabled)
130 			lsm->enabled = &lsm_enabled_true;
131 	} else {
132 		*lsm->enabled = enabled;
133 	}
134 }
135 
136 /* Is an LSM already listed in the ordered LSMs list? */
137 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
138 {
139 	struct lsm_info **check;
140 
141 	for (check = ordered_lsms; *check; check++)
142 		if (*check == lsm)
143 			return true;
144 
145 	return false;
146 }
147 
148 /* Append an LSM to the list of ordered LSMs to initialize. */
149 static int last_lsm __initdata;
150 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
151 {
152 	/* Ignore duplicate selections. */
153 	if (exists_ordered_lsm(lsm))
154 		return;
155 
156 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
157 		return;
158 
159 	/* Enable this LSM, if it is not already set. */
160 	if (!lsm->enabled)
161 		lsm->enabled = &lsm_enabled_true;
162 	ordered_lsms[last_lsm++] = lsm;
163 
164 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
165 		   is_enabled(lsm) ? "en" : "dis");
166 }
167 
168 /* Is an LSM allowed to be initialized? */
169 static bool __init lsm_allowed(struct lsm_info *lsm)
170 {
171 	/* Skip if the LSM is disabled. */
172 	if (!is_enabled(lsm))
173 		return false;
174 
175 	/* Not allowed if another exclusive LSM already initialized. */
176 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
177 		init_debug("exclusive disabled: %s\n", lsm->name);
178 		return false;
179 	}
180 
181 	return true;
182 }
183 
184 static void __init lsm_set_blob_size(int *need, int *lbs)
185 {
186 	int offset;
187 
188 	if (*need <= 0)
189 		return;
190 
191 	offset = ALIGN(*lbs, sizeof(void *));
192 	*lbs = offset + *need;
193 	*need = offset;
194 }
195 
196 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
197 {
198 	if (!needed)
199 		return;
200 
201 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
202 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
203 	/*
204 	 * The inode blob gets an rcu_head in addition to
205 	 * what the modules might need.
206 	 */
207 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
208 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
209 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
210 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
211 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
212 	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
213 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
214 }
215 
216 /* Prepare LSM for initialization. */
217 static void __init prepare_lsm(struct lsm_info *lsm)
218 {
219 	int enabled = lsm_allowed(lsm);
220 
221 	/* Record enablement (to handle any following exclusive LSMs). */
222 	set_enabled(lsm, enabled);
223 
224 	/* If enabled, do pre-initialization work. */
225 	if (enabled) {
226 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
227 			exclusive = lsm;
228 			init_debug("exclusive chosen: %s\n", lsm->name);
229 		}
230 
231 		lsm_set_blob_sizes(lsm->blobs);
232 	}
233 }
234 
235 /* Initialize a given LSM, if it is enabled. */
236 static void __init initialize_lsm(struct lsm_info *lsm)
237 {
238 	if (is_enabled(lsm)) {
239 		int ret;
240 
241 		init_debug("initializing %s\n", lsm->name);
242 		ret = lsm->init();
243 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
244 	}
245 }
246 
247 /* Populate ordered LSMs list from comma-separated LSM name list. */
248 static void __init ordered_lsm_parse(const char *order, const char *origin)
249 {
250 	struct lsm_info *lsm;
251 	char *sep, *name, *next;
252 
253 	/* LSM_ORDER_FIRST is always first. */
254 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
255 		if (lsm->order == LSM_ORDER_FIRST)
256 			append_ordered_lsm(lsm, "first");
257 	}
258 
259 	/* Process "security=", if given. */
260 	if (chosen_major_lsm) {
261 		struct lsm_info *major;
262 
263 		/*
264 		 * To match the original "security=" behavior, this
265 		 * explicitly does NOT fallback to another Legacy Major
266 		 * if the selected one was separately disabled: disable
267 		 * all non-matching Legacy Major LSMs.
268 		 */
269 		for (major = __start_lsm_info; major < __end_lsm_info;
270 		     major++) {
271 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
272 			    strcmp(major->name, chosen_major_lsm) != 0) {
273 				set_enabled(major, false);
274 				init_debug("security=%s disabled: %s\n",
275 					   chosen_major_lsm, major->name);
276 			}
277 		}
278 	}
279 
280 	sep = kstrdup(order, GFP_KERNEL);
281 	next = sep;
282 	/* Walk the list, looking for matching LSMs. */
283 	while ((name = strsep(&next, ",")) != NULL) {
284 		bool found = false;
285 
286 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
287 			if (lsm->order == LSM_ORDER_MUTABLE &&
288 			    strcmp(lsm->name, name) == 0) {
289 				append_ordered_lsm(lsm, origin);
290 				found = true;
291 			}
292 		}
293 
294 		if (!found)
295 			init_debug("%s ignored: %s\n", origin, name);
296 	}
297 
298 	/* Process "security=", if given. */
299 	if (chosen_major_lsm) {
300 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
301 			if (exists_ordered_lsm(lsm))
302 				continue;
303 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
304 				append_ordered_lsm(lsm, "security=");
305 		}
306 	}
307 
308 	/* Disable all LSMs not in the ordered list. */
309 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
310 		if (exists_ordered_lsm(lsm))
311 			continue;
312 		set_enabled(lsm, false);
313 		init_debug("%s disabled: %s\n", origin, lsm->name);
314 	}
315 
316 	kfree(sep);
317 }
318 
319 static void __init lsm_early_cred(struct cred *cred);
320 static void __init lsm_early_task(struct task_struct *task);
321 
322 static int lsm_append(const char *new, char **result);
323 
324 static void __init ordered_lsm_init(void)
325 {
326 	struct lsm_info **lsm;
327 
328 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
329 				GFP_KERNEL);
330 
331 	if (chosen_lsm_order) {
332 		if (chosen_major_lsm) {
333 			pr_info("security= is ignored because it is superseded by lsm=\n");
334 			chosen_major_lsm = NULL;
335 		}
336 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
337 	} else
338 		ordered_lsm_parse(builtin_lsm_order, "builtin");
339 
340 	for (lsm = ordered_lsms; *lsm; lsm++)
341 		prepare_lsm(*lsm);
342 
343 	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
344 	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
345 	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
346 	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
347 	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
348 	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
349 	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
350 
351 	/*
352 	 * Create any kmem_caches needed for blobs
353 	 */
354 	if (blob_sizes.lbs_file)
355 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
356 						   blob_sizes.lbs_file, 0,
357 						   SLAB_PANIC, NULL);
358 	if (blob_sizes.lbs_inode)
359 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
360 						    blob_sizes.lbs_inode, 0,
361 						    SLAB_PANIC, NULL);
362 
363 	lsm_early_cred((struct cred *) current->cred);
364 	lsm_early_task(current);
365 	for (lsm = ordered_lsms; *lsm; lsm++)
366 		initialize_lsm(*lsm);
367 
368 	kfree(ordered_lsms);
369 }
370 
371 int __init early_security_init(void)
372 {
373 	struct lsm_info *lsm;
374 
375 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
376 	INIT_HLIST_HEAD(&security_hook_heads.NAME);
377 #include "linux/lsm_hook_defs.h"
378 #undef LSM_HOOK
379 
380 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
381 		if (!lsm->enabled)
382 			lsm->enabled = &lsm_enabled_true;
383 		prepare_lsm(lsm);
384 		initialize_lsm(lsm);
385 	}
386 
387 	return 0;
388 }
389 
390 /**
391  * security_init - initializes the security framework
392  *
393  * This should be called early in the kernel initialization sequence.
394  */
395 int __init security_init(void)
396 {
397 	struct lsm_info *lsm;
398 
399 	pr_info("Security Framework initializing\n");
400 
401 	/*
402 	 * Append the names of the early LSM modules now that kmalloc() is
403 	 * available
404 	 */
405 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
406 		if (lsm->enabled)
407 			lsm_append(lsm->name, &lsm_names);
408 	}
409 
410 	/* Load LSMs in specified order. */
411 	ordered_lsm_init();
412 
413 	return 0;
414 }
415 
416 /* Save user chosen LSM */
417 static int __init choose_major_lsm(char *str)
418 {
419 	chosen_major_lsm = str;
420 	return 1;
421 }
422 __setup("security=", choose_major_lsm);
423 
424 /* Explicitly choose LSM initialization order. */
425 static int __init choose_lsm_order(char *str)
426 {
427 	chosen_lsm_order = str;
428 	return 1;
429 }
430 __setup("lsm=", choose_lsm_order);
431 
432 /* Enable LSM order debugging. */
433 static int __init enable_debug(char *str)
434 {
435 	debug = true;
436 	return 1;
437 }
438 __setup("lsm.debug", enable_debug);
439 
440 static bool match_last_lsm(const char *list, const char *lsm)
441 {
442 	const char *last;
443 
444 	if (WARN_ON(!list || !lsm))
445 		return false;
446 	last = strrchr(list, ',');
447 	if (last)
448 		/* Pass the comma, strcmp() will check for '\0' */
449 		last++;
450 	else
451 		last = list;
452 	return !strcmp(last, lsm);
453 }
454 
455 static int lsm_append(const char *new, char **result)
456 {
457 	char *cp;
458 
459 	if (*result == NULL) {
460 		*result = kstrdup(new, GFP_KERNEL);
461 		if (*result == NULL)
462 			return -ENOMEM;
463 	} else {
464 		/* Check if it is the last registered name */
465 		if (match_last_lsm(*result, new))
466 			return 0;
467 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
468 		if (cp == NULL)
469 			return -ENOMEM;
470 		kfree(*result);
471 		*result = cp;
472 	}
473 	return 0;
474 }
475 
476 /**
477  * security_add_hooks - Add a modules hooks to the hook lists.
478  * @hooks: the hooks to add
479  * @count: the number of hooks to add
480  * @lsm: the name of the security module
481  *
482  * Each LSM has to register its hooks with the infrastructure.
483  */
484 void __init security_add_hooks(struct security_hook_list *hooks, int count,
485 				const char *lsm)
486 {
487 	int i;
488 
489 	for (i = 0; i < count; i++) {
490 		hooks[i].lsm = lsm;
491 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
492 	}
493 
494 	/*
495 	 * Don't try to append during early_security_init(), we'll come back
496 	 * and fix this up afterwards.
497 	 */
498 	if (slab_is_available()) {
499 		if (lsm_append(lsm, &lsm_names) < 0)
500 			panic("%s - Cannot get early memory.\n", __func__);
501 	}
502 }
503 
504 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
505 {
506 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
507 					    event, data);
508 }
509 EXPORT_SYMBOL(call_blocking_lsm_notifier);
510 
511 int register_blocking_lsm_notifier(struct notifier_block *nb)
512 {
513 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
514 						nb);
515 }
516 EXPORT_SYMBOL(register_blocking_lsm_notifier);
517 
518 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
519 {
520 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
521 						  nb);
522 }
523 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
524 
525 /**
526  * lsm_cred_alloc - allocate a composite cred blob
527  * @cred: the cred that needs a blob
528  * @gfp: allocation type
529  *
530  * Allocate the cred blob for all the modules
531  *
532  * Returns 0, or -ENOMEM if memory can't be allocated.
533  */
534 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
535 {
536 	if (blob_sizes.lbs_cred == 0) {
537 		cred->security = NULL;
538 		return 0;
539 	}
540 
541 	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
542 	if (cred->security == NULL)
543 		return -ENOMEM;
544 	return 0;
545 }
546 
547 /**
548  * lsm_early_cred - during initialization allocate a composite cred blob
549  * @cred: the cred that needs a blob
550  *
551  * Allocate the cred blob for all the modules
552  */
553 static void __init lsm_early_cred(struct cred *cred)
554 {
555 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
556 
557 	if (rc)
558 		panic("%s: Early cred alloc failed.\n", __func__);
559 }
560 
561 /**
562  * lsm_file_alloc - allocate a composite file blob
563  * @file: the file that needs a blob
564  *
565  * Allocate the file blob for all the modules
566  *
567  * Returns 0, or -ENOMEM if memory can't be allocated.
568  */
569 static int lsm_file_alloc(struct file *file)
570 {
571 	if (!lsm_file_cache) {
572 		file->f_security = NULL;
573 		return 0;
574 	}
575 
576 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
577 	if (file->f_security == NULL)
578 		return -ENOMEM;
579 	return 0;
580 }
581 
582 /**
583  * lsm_inode_alloc - allocate a composite inode blob
584  * @inode: the inode that needs a blob
585  *
586  * Allocate the inode blob for all the modules
587  *
588  * Returns 0, or -ENOMEM if memory can't be allocated.
589  */
590 int lsm_inode_alloc(struct inode *inode)
591 {
592 	if (!lsm_inode_cache) {
593 		inode->i_security = NULL;
594 		return 0;
595 	}
596 
597 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
598 	if (inode->i_security == NULL)
599 		return -ENOMEM;
600 	return 0;
601 }
602 
603 /**
604  * lsm_task_alloc - allocate a composite task blob
605  * @task: the task that needs a blob
606  *
607  * Allocate the task blob for all the modules
608  *
609  * Returns 0, or -ENOMEM if memory can't be allocated.
610  */
611 static int lsm_task_alloc(struct task_struct *task)
612 {
613 	if (blob_sizes.lbs_task == 0) {
614 		task->security = NULL;
615 		return 0;
616 	}
617 
618 	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
619 	if (task->security == NULL)
620 		return -ENOMEM;
621 	return 0;
622 }
623 
624 /**
625  * lsm_ipc_alloc - allocate a composite ipc blob
626  * @kip: the ipc that needs a blob
627  *
628  * Allocate the ipc blob for all the modules
629  *
630  * Returns 0, or -ENOMEM if memory can't be allocated.
631  */
632 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
633 {
634 	if (blob_sizes.lbs_ipc == 0) {
635 		kip->security = NULL;
636 		return 0;
637 	}
638 
639 	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
640 	if (kip->security == NULL)
641 		return -ENOMEM;
642 	return 0;
643 }
644 
645 /**
646  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
647  * @mp: the msg_msg that needs a blob
648  *
649  * Allocate the ipc blob for all the modules
650  *
651  * Returns 0, or -ENOMEM if memory can't be allocated.
652  */
653 static int lsm_msg_msg_alloc(struct msg_msg *mp)
654 {
655 	if (blob_sizes.lbs_msg_msg == 0) {
656 		mp->security = NULL;
657 		return 0;
658 	}
659 
660 	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
661 	if (mp->security == NULL)
662 		return -ENOMEM;
663 	return 0;
664 }
665 
666 /**
667  * lsm_early_task - during initialization allocate a composite task blob
668  * @task: the task that needs a blob
669  *
670  * Allocate the task blob for all the modules
671  */
672 static void __init lsm_early_task(struct task_struct *task)
673 {
674 	int rc = lsm_task_alloc(task);
675 
676 	if (rc)
677 		panic("%s: Early task alloc failed.\n", __func__);
678 }
679 
680 /**
681  * lsm_superblock_alloc - allocate a composite superblock blob
682  * @sb: the superblock that needs a blob
683  *
684  * Allocate the superblock blob for all the modules
685  *
686  * Returns 0, or -ENOMEM if memory can't be allocated.
687  */
688 static int lsm_superblock_alloc(struct super_block *sb)
689 {
690 	if (blob_sizes.lbs_superblock == 0) {
691 		sb->s_security = NULL;
692 		return 0;
693 	}
694 
695 	sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
696 	if (sb->s_security == NULL)
697 		return -ENOMEM;
698 	return 0;
699 }
700 
701 /*
702  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
703  * can be accessed with:
704  *
705  *	LSM_RET_DEFAULT(<hook_name>)
706  *
707  * The macros below define static constants for the default value of each
708  * LSM hook.
709  */
710 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
711 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
712 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
713 	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
714 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
715 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
716 
717 #include <linux/lsm_hook_defs.h>
718 #undef LSM_HOOK
719 
720 /*
721  * Hook list operation macros.
722  *
723  * call_void_hook:
724  *	This is a hook that does not return a value.
725  *
726  * call_int_hook:
727  *	This is a hook that returns a value.
728  */
729 
730 #define call_void_hook(FUNC, ...)				\
731 	do {							\
732 		struct security_hook_list *P;			\
733 								\
734 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
735 			P->hook.FUNC(__VA_ARGS__);		\
736 	} while (0)
737 
738 #define call_int_hook(FUNC, IRC, ...) ({			\
739 	int RC = IRC;						\
740 	do {							\
741 		struct security_hook_list *P;			\
742 								\
743 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
744 			RC = P->hook.FUNC(__VA_ARGS__);		\
745 			if (RC != 0)				\
746 				break;				\
747 		}						\
748 	} while (0);						\
749 	RC;							\
750 })
751 
752 /* Security operations */
753 
754 int security_binder_set_context_mgr(const struct cred *mgr)
755 {
756 	return call_int_hook(binder_set_context_mgr, 0, mgr);
757 }
758 
759 int security_binder_transaction(const struct cred *from,
760 				const struct cred *to)
761 {
762 	return call_int_hook(binder_transaction, 0, from, to);
763 }
764 
765 int security_binder_transfer_binder(const struct cred *from,
766 				    const struct cred *to)
767 {
768 	return call_int_hook(binder_transfer_binder, 0, from, to);
769 }
770 
771 int security_binder_transfer_file(const struct cred *from,
772 				  const struct cred *to, struct file *file)
773 {
774 	return call_int_hook(binder_transfer_file, 0, from, to, file);
775 }
776 
777 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
778 {
779 	return call_int_hook(ptrace_access_check, 0, child, mode);
780 }
781 
782 int security_ptrace_traceme(struct task_struct *parent)
783 {
784 	return call_int_hook(ptrace_traceme, 0, parent);
785 }
786 
787 int security_capget(struct task_struct *target,
788 		     kernel_cap_t *effective,
789 		     kernel_cap_t *inheritable,
790 		     kernel_cap_t *permitted)
791 {
792 	return call_int_hook(capget, 0, target,
793 				effective, inheritable, permitted);
794 }
795 
796 int security_capset(struct cred *new, const struct cred *old,
797 		    const kernel_cap_t *effective,
798 		    const kernel_cap_t *inheritable,
799 		    const kernel_cap_t *permitted)
800 {
801 	return call_int_hook(capset, 0, new, old,
802 				effective, inheritable, permitted);
803 }
804 
805 int security_capable(const struct cred *cred,
806 		     struct user_namespace *ns,
807 		     int cap,
808 		     unsigned int opts)
809 {
810 	return call_int_hook(capable, 0, cred, ns, cap, opts);
811 }
812 
813 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
814 {
815 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
816 }
817 
818 int security_quota_on(struct dentry *dentry)
819 {
820 	return call_int_hook(quota_on, 0, dentry);
821 }
822 
823 int security_syslog(int type)
824 {
825 	return call_int_hook(syslog, 0, type);
826 }
827 
828 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
829 {
830 	return call_int_hook(settime, 0, ts, tz);
831 }
832 
833 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
834 {
835 	struct security_hook_list *hp;
836 	int cap_sys_admin = 1;
837 	int rc;
838 
839 	/*
840 	 * The module will respond with a positive value if
841 	 * it thinks the __vm_enough_memory() call should be
842 	 * made with the cap_sys_admin set. If all of the modules
843 	 * agree that it should be set it will. If any module
844 	 * thinks it should not be set it won't.
845 	 */
846 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
847 		rc = hp->hook.vm_enough_memory(mm, pages);
848 		if (rc <= 0) {
849 			cap_sys_admin = 0;
850 			break;
851 		}
852 	}
853 	return __vm_enough_memory(mm, pages, cap_sys_admin);
854 }
855 
856 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
857 {
858 	return call_int_hook(bprm_creds_for_exec, 0, bprm);
859 }
860 
861 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
862 {
863 	return call_int_hook(bprm_creds_from_file, 0, bprm, file);
864 }
865 
866 int security_bprm_check(struct linux_binprm *bprm)
867 {
868 	int ret;
869 
870 	ret = call_int_hook(bprm_check_security, 0, bprm);
871 	if (ret)
872 		return ret;
873 	return ima_bprm_check(bprm);
874 }
875 
876 void security_bprm_committing_creds(struct linux_binprm *bprm)
877 {
878 	call_void_hook(bprm_committing_creds, bprm);
879 }
880 
881 void security_bprm_committed_creds(struct linux_binprm *bprm)
882 {
883 	call_void_hook(bprm_committed_creds, bprm);
884 }
885 
886 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
887 {
888 	return call_int_hook(fs_context_dup, 0, fc, src_fc);
889 }
890 
891 int security_fs_context_parse_param(struct fs_context *fc,
892 				    struct fs_parameter *param)
893 {
894 	struct security_hook_list *hp;
895 	int trc;
896 	int rc = -ENOPARAM;
897 
898 	hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
899 			     list) {
900 		trc = hp->hook.fs_context_parse_param(fc, param);
901 		if (trc == 0)
902 			rc = 0;
903 		else if (trc != -ENOPARAM)
904 			return trc;
905 	}
906 	return rc;
907 }
908 
909 int security_sb_alloc(struct super_block *sb)
910 {
911 	int rc = lsm_superblock_alloc(sb);
912 
913 	if (unlikely(rc))
914 		return rc;
915 	rc = call_int_hook(sb_alloc_security, 0, sb);
916 	if (unlikely(rc))
917 		security_sb_free(sb);
918 	return rc;
919 }
920 
921 void security_sb_delete(struct super_block *sb)
922 {
923 	call_void_hook(sb_delete, sb);
924 }
925 
926 void security_sb_free(struct super_block *sb)
927 {
928 	call_void_hook(sb_free_security, sb);
929 	kfree(sb->s_security);
930 	sb->s_security = NULL;
931 }
932 
933 void security_free_mnt_opts(void **mnt_opts)
934 {
935 	if (!*mnt_opts)
936 		return;
937 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
938 	*mnt_opts = NULL;
939 }
940 EXPORT_SYMBOL(security_free_mnt_opts);
941 
942 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
943 {
944 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
945 }
946 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
947 
948 int security_sb_mnt_opts_compat(struct super_block *sb,
949 				void *mnt_opts)
950 {
951 	return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
952 }
953 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
954 
955 int security_sb_remount(struct super_block *sb,
956 			void *mnt_opts)
957 {
958 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
959 }
960 EXPORT_SYMBOL(security_sb_remount);
961 
962 int security_sb_kern_mount(struct super_block *sb)
963 {
964 	return call_int_hook(sb_kern_mount, 0, sb);
965 }
966 
967 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
968 {
969 	return call_int_hook(sb_show_options, 0, m, sb);
970 }
971 
972 int security_sb_statfs(struct dentry *dentry)
973 {
974 	return call_int_hook(sb_statfs, 0, dentry);
975 }
976 
977 int security_sb_mount(const char *dev_name, const struct path *path,
978                        const char *type, unsigned long flags, void *data)
979 {
980 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
981 }
982 
983 int security_sb_umount(struct vfsmount *mnt, int flags)
984 {
985 	return call_int_hook(sb_umount, 0, mnt, flags);
986 }
987 
988 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
989 {
990 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
991 }
992 
993 int security_sb_set_mnt_opts(struct super_block *sb,
994 				void *mnt_opts,
995 				unsigned long kern_flags,
996 				unsigned long *set_kern_flags)
997 {
998 	return call_int_hook(sb_set_mnt_opts,
999 				mnt_opts ? -EOPNOTSUPP : 0, sb,
1000 				mnt_opts, kern_flags, set_kern_flags);
1001 }
1002 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1003 
1004 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1005 				struct super_block *newsb,
1006 				unsigned long kern_flags,
1007 				unsigned long *set_kern_flags)
1008 {
1009 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
1010 				kern_flags, set_kern_flags);
1011 }
1012 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1013 
1014 int security_move_mount(const struct path *from_path, const struct path *to_path)
1015 {
1016 	return call_int_hook(move_mount, 0, from_path, to_path);
1017 }
1018 
1019 int security_path_notify(const struct path *path, u64 mask,
1020 				unsigned int obj_type)
1021 {
1022 	return call_int_hook(path_notify, 0, path, mask, obj_type);
1023 }
1024 
1025 int security_inode_alloc(struct inode *inode)
1026 {
1027 	int rc = lsm_inode_alloc(inode);
1028 
1029 	if (unlikely(rc))
1030 		return rc;
1031 	rc = call_int_hook(inode_alloc_security, 0, inode);
1032 	if (unlikely(rc))
1033 		security_inode_free(inode);
1034 	return rc;
1035 }
1036 
1037 static void inode_free_by_rcu(struct rcu_head *head)
1038 {
1039 	/*
1040 	 * The rcu head is at the start of the inode blob
1041 	 */
1042 	kmem_cache_free(lsm_inode_cache, head);
1043 }
1044 
1045 void security_inode_free(struct inode *inode)
1046 {
1047 	integrity_inode_free(inode);
1048 	call_void_hook(inode_free_security, inode);
1049 	/*
1050 	 * The inode may still be referenced in a path walk and
1051 	 * a call to security_inode_permission() can be made
1052 	 * after inode_free_security() is called. Ideally, the VFS
1053 	 * wouldn't do this, but fixing that is a much harder
1054 	 * job. For now, simply free the i_security via RCU, and
1055 	 * leave the current inode->i_security pointer intact.
1056 	 * The inode will be freed after the RCU grace period too.
1057 	 */
1058 	if (inode->i_security)
1059 		call_rcu((struct rcu_head *)inode->i_security,
1060 				inode_free_by_rcu);
1061 }
1062 
1063 int security_dentry_init_security(struct dentry *dentry, int mode,
1064 				  const struct qstr *name,
1065 				  const char **xattr_name, void **ctx,
1066 				  u32 *ctxlen)
1067 {
1068 	struct security_hook_list *hp;
1069 	int rc;
1070 
1071 	/*
1072 	 * Only one module will provide a security context.
1073 	 */
1074 	hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) {
1075 		rc = hp->hook.dentry_init_security(dentry, mode, name,
1076 						   xattr_name, ctx, ctxlen);
1077 		if (rc != LSM_RET_DEFAULT(dentry_init_security))
1078 			return rc;
1079 	}
1080 	return LSM_RET_DEFAULT(dentry_init_security);
1081 }
1082 EXPORT_SYMBOL(security_dentry_init_security);
1083 
1084 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1085 				    struct qstr *name,
1086 				    const struct cred *old, struct cred *new)
1087 {
1088 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1089 				name, old, new);
1090 }
1091 EXPORT_SYMBOL(security_dentry_create_files_as);
1092 
1093 int security_inode_init_security(struct inode *inode, struct inode *dir,
1094 				 const struct qstr *qstr,
1095 				 const initxattrs initxattrs, void *fs_data)
1096 {
1097 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1098 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
1099 	int ret;
1100 
1101 	if (unlikely(IS_PRIVATE(inode)))
1102 		return 0;
1103 
1104 	if (!initxattrs)
1105 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1106 				     dir, qstr, NULL, NULL, NULL);
1107 	memset(new_xattrs, 0, sizeof(new_xattrs));
1108 	lsm_xattr = new_xattrs;
1109 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1110 						&lsm_xattr->name,
1111 						&lsm_xattr->value,
1112 						&lsm_xattr->value_len);
1113 	if (ret)
1114 		goto out;
1115 
1116 	evm_xattr = lsm_xattr + 1;
1117 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1118 	if (ret)
1119 		goto out;
1120 	ret = initxattrs(inode, new_xattrs, fs_data);
1121 out:
1122 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1123 		kfree(xattr->value);
1124 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1125 }
1126 EXPORT_SYMBOL(security_inode_init_security);
1127 
1128 int security_inode_init_security_anon(struct inode *inode,
1129 				      const struct qstr *name,
1130 				      const struct inode *context_inode)
1131 {
1132 	return call_int_hook(inode_init_security_anon, 0, inode, name,
1133 			     context_inode);
1134 }
1135 
1136 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1137 				     const struct qstr *qstr, const char **name,
1138 				     void **value, size_t *len)
1139 {
1140 	if (unlikely(IS_PRIVATE(inode)))
1141 		return -EOPNOTSUPP;
1142 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1143 			     qstr, name, value, len);
1144 }
1145 EXPORT_SYMBOL(security_old_inode_init_security);
1146 
1147 #ifdef CONFIG_SECURITY_PATH
1148 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1149 			unsigned int dev)
1150 {
1151 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1152 		return 0;
1153 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1154 }
1155 EXPORT_SYMBOL(security_path_mknod);
1156 
1157 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1158 {
1159 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1160 		return 0;
1161 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1162 }
1163 EXPORT_SYMBOL(security_path_mkdir);
1164 
1165 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1166 {
1167 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1168 		return 0;
1169 	return call_int_hook(path_rmdir, 0, dir, dentry);
1170 }
1171 
1172 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1173 {
1174 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1175 		return 0;
1176 	return call_int_hook(path_unlink, 0, dir, dentry);
1177 }
1178 EXPORT_SYMBOL(security_path_unlink);
1179 
1180 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1181 			  const char *old_name)
1182 {
1183 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1184 		return 0;
1185 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1186 }
1187 
1188 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1189 		       struct dentry *new_dentry)
1190 {
1191 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1192 		return 0;
1193 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1194 }
1195 
1196 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1197 			 const struct path *new_dir, struct dentry *new_dentry,
1198 			 unsigned int flags)
1199 {
1200 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1201 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1202 		return 0;
1203 
1204 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1205 				new_dentry, flags);
1206 }
1207 EXPORT_SYMBOL(security_path_rename);
1208 
1209 int security_path_truncate(const struct path *path)
1210 {
1211 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1212 		return 0;
1213 	return call_int_hook(path_truncate, 0, path);
1214 }
1215 
1216 int security_path_chmod(const struct path *path, umode_t mode)
1217 {
1218 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1219 		return 0;
1220 	return call_int_hook(path_chmod, 0, path, mode);
1221 }
1222 
1223 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1224 {
1225 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1226 		return 0;
1227 	return call_int_hook(path_chown, 0, path, uid, gid);
1228 }
1229 
1230 int security_path_chroot(const struct path *path)
1231 {
1232 	return call_int_hook(path_chroot, 0, path);
1233 }
1234 #endif
1235 
1236 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1237 {
1238 	if (unlikely(IS_PRIVATE(dir)))
1239 		return 0;
1240 	return call_int_hook(inode_create, 0, dir, dentry, mode);
1241 }
1242 EXPORT_SYMBOL_GPL(security_inode_create);
1243 
1244 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1245 			 struct dentry *new_dentry)
1246 {
1247 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1248 		return 0;
1249 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1250 }
1251 
1252 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1253 {
1254 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1255 		return 0;
1256 	return call_int_hook(inode_unlink, 0, dir, dentry);
1257 }
1258 
1259 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1260 			    const char *old_name)
1261 {
1262 	if (unlikely(IS_PRIVATE(dir)))
1263 		return 0;
1264 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1265 }
1266 
1267 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1268 {
1269 	if (unlikely(IS_PRIVATE(dir)))
1270 		return 0;
1271 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1272 }
1273 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1274 
1275 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1276 {
1277 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1278 		return 0;
1279 	return call_int_hook(inode_rmdir, 0, dir, dentry);
1280 }
1281 
1282 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1283 {
1284 	if (unlikely(IS_PRIVATE(dir)))
1285 		return 0;
1286 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1287 }
1288 
1289 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1290 			   struct inode *new_dir, struct dentry *new_dentry,
1291 			   unsigned int flags)
1292 {
1293         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1294             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1295 		return 0;
1296 
1297 	if (flags & RENAME_EXCHANGE) {
1298 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1299 						     old_dir, old_dentry);
1300 		if (err)
1301 			return err;
1302 	}
1303 
1304 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1305 					   new_dir, new_dentry);
1306 }
1307 
1308 int security_inode_readlink(struct dentry *dentry)
1309 {
1310 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1311 		return 0;
1312 	return call_int_hook(inode_readlink, 0, dentry);
1313 }
1314 
1315 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1316 			       bool rcu)
1317 {
1318 	if (unlikely(IS_PRIVATE(inode)))
1319 		return 0;
1320 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1321 }
1322 
1323 int security_inode_permission(struct inode *inode, int mask)
1324 {
1325 	if (unlikely(IS_PRIVATE(inode)))
1326 		return 0;
1327 	return call_int_hook(inode_permission, 0, inode, mask);
1328 }
1329 
1330 int security_inode_setattr(struct user_namespace *mnt_userns,
1331 			   struct dentry *dentry, struct iattr *attr)
1332 {
1333 	int ret;
1334 
1335 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1336 		return 0;
1337 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1338 	if (ret)
1339 		return ret;
1340 	return evm_inode_setattr(mnt_userns, dentry, attr);
1341 }
1342 EXPORT_SYMBOL_GPL(security_inode_setattr);
1343 
1344 int security_inode_getattr(const struct path *path)
1345 {
1346 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1347 		return 0;
1348 	return call_int_hook(inode_getattr, 0, path);
1349 }
1350 
1351 int security_inode_setxattr(struct user_namespace *mnt_userns,
1352 			    struct dentry *dentry, const char *name,
1353 			    const void *value, size_t size, int flags)
1354 {
1355 	int ret;
1356 
1357 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1358 		return 0;
1359 	/*
1360 	 * SELinux and Smack integrate the cap call,
1361 	 * so assume that all LSMs supplying this call do so.
1362 	 */
1363 	ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1364 			    size, flags);
1365 
1366 	if (ret == 1)
1367 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1368 	if (ret)
1369 		return ret;
1370 	ret = ima_inode_setxattr(dentry, name, value, size);
1371 	if (ret)
1372 		return ret;
1373 	return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1374 }
1375 
1376 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1377 				  const void *value, size_t size, int flags)
1378 {
1379 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1380 		return;
1381 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1382 	evm_inode_post_setxattr(dentry, name, value, size);
1383 }
1384 
1385 int security_inode_getxattr(struct dentry *dentry, const char *name)
1386 {
1387 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1388 		return 0;
1389 	return call_int_hook(inode_getxattr, 0, dentry, name);
1390 }
1391 
1392 int security_inode_listxattr(struct dentry *dentry)
1393 {
1394 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1395 		return 0;
1396 	return call_int_hook(inode_listxattr, 0, dentry);
1397 }
1398 
1399 int security_inode_removexattr(struct user_namespace *mnt_userns,
1400 			       struct dentry *dentry, const char *name)
1401 {
1402 	int ret;
1403 
1404 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1405 		return 0;
1406 	/*
1407 	 * SELinux and Smack integrate the cap call,
1408 	 * so assume that all LSMs supplying this call do so.
1409 	 */
1410 	ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1411 	if (ret == 1)
1412 		ret = cap_inode_removexattr(mnt_userns, dentry, name);
1413 	if (ret)
1414 		return ret;
1415 	ret = ima_inode_removexattr(dentry, name);
1416 	if (ret)
1417 		return ret;
1418 	return evm_inode_removexattr(mnt_userns, dentry, name);
1419 }
1420 
1421 int security_inode_need_killpriv(struct dentry *dentry)
1422 {
1423 	return call_int_hook(inode_need_killpriv, 0, dentry);
1424 }
1425 
1426 int security_inode_killpriv(struct user_namespace *mnt_userns,
1427 			    struct dentry *dentry)
1428 {
1429 	return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1430 }
1431 
1432 int security_inode_getsecurity(struct user_namespace *mnt_userns,
1433 			       struct inode *inode, const char *name,
1434 			       void **buffer, bool alloc)
1435 {
1436 	struct security_hook_list *hp;
1437 	int rc;
1438 
1439 	if (unlikely(IS_PRIVATE(inode)))
1440 		return LSM_RET_DEFAULT(inode_getsecurity);
1441 	/*
1442 	 * Only one module will provide an attribute with a given name.
1443 	 */
1444 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1445 		rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1446 		if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1447 			return rc;
1448 	}
1449 	return LSM_RET_DEFAULT(inode_getsecurity);
1450 }
1451 
1452 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1453 {
1454 	struct security_hook_list *hp;
1455 	int rc;
1456 
1457 	if (unlikely(IS_PRIVATE(inode)))
1458 		return LSM_RET_DEFAULT(inode_setsecurity);
1459 	/*
1460 	 * Only one module will provide an attribute with a given name.
1461 	 */
1462 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1463 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1464 								flags);
1465 		if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1466 			return rc;
1467 	}
1468 	return LSM_RET_DEFAULT(inode_setsecurity);
1469 }
1470 
1471 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1472 {
1473 	if (unlikely(IS_PRIVATE(inode)))
1474 		return 0;
1475 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1476 }
1477 EXPORT_SYMBOL(security_inode_listsecurity);
1478 
1479 void security_inode_getsecid(struct inode *inode, u32 *secid)
1480 {
1481 	call_void_hook(inode_getsecid, inode, secid);
1482 }
1483 
1484 int security_inode_copy_up(struct dentry *src, struct cred **new)
1485 {
1486 	return call_int_hook(inode_copy_up, 0, src, new);
1487 }
1488 EXPORT_SYMBOL(security_inode_copy_up);
1489 
1490 int security_inode_copy_up_xattr(const char *name)
1491 {
1492 	struct security_hook_list *hp;
1493 	int rc;
1494 
1495 	/*
1496 	 * The implementation can return 0 (accept the xattr), 1 (discard the
1497 	 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1498 	 * any other error code incase of an error.
1499 	 */
1500 	hlist_for_each_entry(hp,
1501 		&security_hook_heads.inode_copy_up_xattr, list) {
1502 		rc = hp->hook.inode_copy_up_xattr(name);
1503 		if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1504 			return rc;
1505 	}
1506 
1507 	return LSM_RET_DEFAULT(inode_copy_up_xattr);
1508 }
1509 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1510 
1511 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1512 				  struct kernfs_node *kn)
1513 {
1514 	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1515 }
1516 
1517 int security_file_permission(struct file *file, int mask)
1518 {
1519 	int ret;
1520 
1521 	ret = call_int_hook(file_permission, 0, file, mask);
1522 	if (ret)
1523 		return ret;
1524 
1525 	return fsnotify_perm(file, mask);
1526 }
1527 
1528 int security_file_alloc(struct file *file)
1529 {
1530 	int rc = lsm_file_alloc(file);
1531 
1532 	if (rc)
1533 		return rc;
1534 	rc = call_int_hook(file_alloc_security, 0, file);
1535 	if (unlikely(rc))
1536 		security_file_free(file);
1537 	return rc;
1538 }
1539 
1540 void security_file_free(struct file *file)
1541 {
1542 	void *blob;
1543 
1544 	call_void_hook(file_free_security, file);
1545 
1546 	blob = file->f_security;
1547 	if (blob) {
1548 		file->f_security = NULL;
1549 		kmem_cache_free(lsm_file_cache, blob);
1550 	}
1551 }
1552 
1553 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1554 {
1555 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1556 }
1557 EXPORT_SYMBOL_GPL(security_file_ioctl);
1558 
1559 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1560 {
1561 	/*
1562 	 * Does we have PROT_READ and does the application expect
1563 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1564 	 */
1565 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1566 		return prot;
1567 	if (!(current->personality & READ_IMPLIES_EXEC))
1568 		return prot;
1569 	/*
1570 	 * if that's an anonymous mapping, let it.
1571 	 */
1572 	if (!file)
1573 		return prot | PROT_EXEC;
1574 	/*
1575 	 * ditto if it's not on noexec mount, except that on !MMU we need
1576 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1577 	 */
1578 	if (!path_noexec(&file->f_path)) {
1579 #ifndef CONFIG_MMU
1580 		if (file->f_op->mmap_capabilities) {
1581 			unsigned caps = file->f_op->mmap_capabilities(file);
1582 			if (!(caps & NOMMU_MAP_EXEC))
1583 				return prot;
1584 		}
1585 #endif
1586 		return prot | PROT_EXEC;
1587 	}
1588 	/* anything on noexec mount won't get PROT_EXEC */
1589 	return prot;
1590 }
1591 
1592 int security_mmap_file(struct file *file, unsigned long prot,
1593 			unsigned long flags)
1594 {
1595 	int ret;
1596 	ret = call_int_hook(mmap_file, 0, file, prot,
1597 					mmap_prot(file, prot), flags);
1598 	if (ret)
1599 		return ret;
1600 	return ima_file_mmap(file, prot);
1601 }
1602 
1603 int security_mmap_addr(unsigned long addr)
1604 {
1605 	return call_int_hook(mmap_addr, 0, addr);
1606 }
1607 
1608 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1609 			    unsigned long prot)
1610 {
1611 	int ret;
1612 
1613 	ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1614 	if (ret)
1615 		return ret;
1616 	return ima_file_mprotect(vma, prot);
1617 }
1618 
1619 int security_file_lock(struct file *file, unsigned int cmd)
1620 {
1621 	return call_int_hook(file_lock, 0, file, cmd);
1622 }
1623 
1624 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1625 {
1626 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1627 }
1628 
1629 void security_file_set_fowner(struct file *file)
1630 {
1631 	call_void_hook(file_set_fowner, file);
1632 }
1633 
1634 int security_file_send_sigiotask(struct task_struct *tsk,
1635 				  struct fown_struct *fown, int sig)
1636 {
1637 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1638 }
1639 
1640 int security_file_receive(struct file *file)
1641 {
1642 	return call_int_hook(file_receive, 0, file);
1643 }
1644 
1645 int security_file_open(struct file *file)
1646 {
1647 	int ret;
1648 
1649 	ret = call_int_hook(file_open, 0, file);
1650 	if (ret)
1651 		return ret;
1652 
1653 	return fsnotify_perm(file, MAY_OPEN);
1654 }
1655 
1656 int security_file_truncate(struct file *file)
1657 {
1658 	return call_int_hook(file_truncate, 0, file);
1659 }
1660 
1661 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1662 {
1663 	int rc = lsm_task_alloc(task);
1664 
1665 	if (rc)
1666 		return rc;
1667 	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1668 	if (unlikely(rc))
1669 		security_task_free(task);
1670 	return rc;
1671 }
1672 
1673 void security_task_free(struct task_struct *task)
1674 {
1675 	call_void_hook(task_free, task);
1676 
1677 	kfree(task->security);
1678 	task->security = NULL;
1679 }
1680 
1681 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1682 {
1683 	int rc = lsm_cred_alloc(cred, gfp);
1684 
1685 	if (rc)
1686 		return rc;
1687 
1688 	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1689 	if (unlikely(rc))
1690 		security_cred_free(cred);
1691 	return rc;
1692 }
1693 
1694 void security_cred_free(struct cred *cred)
1695 {
1696 	/*
1697 	 * There is a failure case in prepare_creds() that
1698 	 * may result in a call here with ->security being NULL.
1699 	 */
1700 	if (unlikely(cred->security == NULL))
1701 		return;
1702 
1703 	call_void_hook(cred_free, cred);
1704 
1705 	kfree(cred->security);
1706 	cred->security = NULL;
1707 }
1708 
1709 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1710 {
1711 	int rc = lsm_cred_alloc(new, gfp);
1712 
1713 	if (rc)
1714 		return rc;
1715 
1716 	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1717 	if (unlikely(rc))
1718 		security_cred_free(new);
1719 	return rc;
1720 }
1721 
1722 void security_transfer_creds(struct cred *new, const struct cred *old)
1723 {
1724 	call_void_hook(cred_transfer, new, old);
1725 }
1726 
1727 void security_cred_getsecid(const struct cred *c, u32 *secid)
1728 {
1729 	*secid = 0;
1730 	call_void_hook(cred_getsecid, c, secid);
1731 }
1732 EXPORT_SYMBOL(security_cred_getsecid);
1733 
1734 int security_kernel_act_as(struct cred *new, u32 secid)
1735 {
1736 	return call_int_hook(kernel_act_as, 0, new, secid);
1737 }
1738 
1739 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1740 {
1741 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1742 }
1743 
1744 int security_kernel_module_request(char *kmod_name)
1745 {
1746 	int ret;
1747 
1748 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1749 	if (ret)
1750 		return ret;
1751 	return integrity_kernel_module_request(kmod_name);
1752 }
1753 
1754 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1755 			      bool contents)
1756 {
1757 	int ret;
1758 
1759 	ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1760 	if (ret)
1761 		return ret;
1762 	return ima_read_file(file, id, contents);
1763 }
1764 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1765 
1766 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1767 				   enum kernel_read_file_id id)
1768 {
1769 	int ret;
1770 
1771 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1772 	if (ret)
1773 		return ret;
1774 	return ima_post_read_file(file, buf, size, id);
1775 }
1776 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1777 
1778 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1779 {
1780 	int ret;
1781 
1782 	ret = call_int_hook(kernel_load_data, 0, id, contents);
1783 	if (ret)
1784 		return ret;
1785 	return ima_load_data(id, contents);
1786 }
1787 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1788 
1789 int security_kernel_post_load_data(char *buf, loff_t size,
1790 				   enum kernel_load_data_id id,
1791 				   char *description)
1792 {
1793 	int ret;
1794 
1795 	ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1796 			    description);
1797 	if (ret)
1798 		return ret;
1799 	return ima_post_load_data(buf, size, id, description);
1800 }
1801 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1802 
1803 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1804 			     int flags)
1805 {
1806 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1807 }
1808 
1809 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1810 				 int flags)
1811 {
1812 	return call_int_hook(task_fix_setgid, 0, new, old, flags);
1813 }
1814 
1815 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
1816 {
1817 	return call_int_hook(task_fix_setgroups, 0, new, old);
1818 }
1819 
1820 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1821 {
1822 	return call_int_hook(task_setpgid, 0, p, pgid);
1823 }
1824 
1825 int security_task_getpgid(struct task_struct *p)
1826 {
1827 	return call_int_hook(task_getpgid, 0, p);
1828 }
1829 
1830 int security_task_getsid(struct task_struct *p)
1831 {
1832 	return call_int_hook(task_getsid, 0, p);
1833 }
1834 
1835 void security_current_getsecid_subj(u32 *secid)
1836 {
1837 	*secid = 0;
1838 	call_void_hook(current_getsecid_subj, secid);
1839 }
1840 EXPORT_SYMBOL(security_current_getsecid_subj);
1841 
1842 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1843 {
1844 	*secid = 0;
1845 	call_void_hook(task_getsecid_obj, p, secid);
1846 }
1847 EXPORT_SYMBOL(security_task_getsecid_obj);
1848 
1849 int security_task_setnice(struct task_struct *p, int nice)
1850 {
1851 	return call_int_hook(task_setnice, 0, p, nice);
1852 }
1853 
1854 int security_task_setioprio(struct task_struct *p, int ioprio)
1855 {
1856 	return call_int_hook(task_setioprio, 0, p, ioprio);
1857 }
1858 
1859 int security_task_getioprio(struct task_struct *p)
1860 {
1861 	return call_int_hook(task_getioprio, 0, p);
1862 }
1863 
1864 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1865 			  unsigned int flags)
1866 {
1867 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1868 }
1869 
1870 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1871 		struct rlimit *new_rlim)
1872 {
1873 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1874 }
1875 
1876 int security_task_setscheduler(struct task_struct *p)
1877 {
1878 	return call_int_hook(task_setscheduler, 0, p);
1879 }
1880 
1881 int security_task_getscheduler(struct task_struct *p)
1882 {
1883 	return call_int_hook(task_getscheduler, 0, p);
1884 }
1885 
1886 int security_task_movememory(struct task_struct *p)
1887 {
1888 	return call_int_hook(task_movememory, 0, p);
1889 }
1890 
1891 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1892 			int sig, const struct cred *cred)
1893 {
1894 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1895 }
1896 
1897 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1898 			 unsigned long arg4, unsigned long arg5)
1899 {
1900 	int thisrc;
1901 	int rc = LSM_RET_DEFAULT(task_prctl);
1902 	struct security_hook_list *hp;
1903 
1904 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1905 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1906 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1907 			rc = thisrc;
1908 			if (thisrc != 0)
1909 				break;
1910 		}
1911 	}
1912 	return rc;
1913 }
1914 
1915 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1916 {
1917 	call_void_hook(task_to_inode, p, inode);
1918 }
1919 
1920 int security_create_user_ns(const struct cred *cred)
1921 {
1922 	return call_int_hook(userns_create, 0, cred);
1923 }
1924 
1925 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1926 {
1927 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1928 }
1929 
1930 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1931 {
1932 	*secid = 0;
1933 	call_void_hook(ipc_getsecid, ipcp, secid);
1934 }
1935 
1936 int security_msg_msg_alloc(struct msg_msg *msg)
1937 {
1938 	int rc = lsm_msg_msg_alloc(msg);
1939 
1940 	if (unlikely(rc))
1941 		return rc;
1942 	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1943 	if (unlikely(rc))
1944 		security_msg_msg_free(msg);
1945 	return rc;
1946 }
1947 
1948 void security_msg_msg_free(struct msg_msg *msg)
1949 {
1950 	call_void_hook(msg_msg_free_security, msg);
1951 	kfree(msg->security);
1952 	msg->security = NULL;
1953 }
1954 
1955 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1956 {
1957 	int rc = lsm_ipc_alloc(msq);
1958 
1959 	if (unlikely(rc))
1960 		return rc;
1961 	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1962 	if (unlikely(rc))
1963 		security_msg_queue_free(msq);
1964 	return rc;
1965 }
1966 
1967 void security_msg_queue_free(struct kern_ipc_perm *msq)
1968 {
1969 	call_void_hook(msg_queue_free_security, msq);
1970 	kfree(msq->security);
1971 	msq->security = NULL;
1972 }
1973 
1974 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1975 {
1976 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1977 }
1978 
1979 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1980 {
1981 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1982 }
1983 
1984 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1985 			       struct msg_msg *msg, int msqflg)
1986 {
1987 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1988 }
1989 
1990 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1991 			       struct task_struct *target, long type, int mode)
1992 {
1993 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1994 }
1995 
1996 int security_shm_alloc(struct kern_ipc_perm *shp)
1997 {
1998 	int rc = lsm_ipc_alloc(shp);
1999 
2000 	if (unlikely(rc))
2001 		return rc;
2002 	rc = call_int_hook(shm_alloc_security, 0, shp);
2003 	if (unlikely(rc))
2004 		security_shm_free(shp);
2005 	return rc;
2006 }
2007 
2008 void security_shm_free(struct kern_ipc_perm *shp)
2009 {
2010 	call_void_hook(shm_free_security, shp);
2011 	kfree(shp->security);
2012 	shp->security = NULL;
2013 }
2014 
2015 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
2016 {
2017 	return call_int_hook(shm_associate, 0, shp, shmflg);
2018 }
2019 
2020 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
2021 {
2022 	return call_int_hook(shm_shmctl, 0, shp, cmd);
2023 }
2024 
2025 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
2026 {
2027 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
2028 }
2029 
2030 int security_sem_alloc(struct kern_ipc_perm *sma)
2031 {
2032 	int rc = lsm_ipc_alloc(sma);
2033 
2034 	if (unlikely(rc))
2035 		return rc;
2036 	rc = call_int_hook(sem_alloc_security, 0, sma);
2037 	if (unlikely(rc))
2038 		security_sem_free(sma);
2039 	return rc;
2040 }
2041 
2042 void security_sem_free(struct kern_ipc_perm *sma)
2043 {
2044 	call_void_hook(sem_free_security, sma);
2045 	kfree(sma->security);
2046 	sma->security = NULL;
2047 }
2048 
2049 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2050 {
2051 	return call_int_hook(sem_associate, 0, sma, semflg);
2052 }
2053 
2054 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2055 {
2056 	return call_int_hook(sem_semctl, 0, sma, cmd);
2057 }
2058 
2059 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2060 			unsigned nsops, int alter)
2061 {
2062 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2063 }
2064 
2065 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2066 {
2067 	if (unlikely(inode && IS_PRIVATE(inode)))
2068 		return;
2069 	call_void_hook(d_instantiate, dentry, inode);
2070 }
2071 EXPORT_SYMBOL(security_d_instantiate);
2072 
2073 int security_getprocattr(struct task_struct *p, const char *lsm,
2074 			 const char *name, char **value)
2075 {
2076 	struct security_hook_list *hp;
2077 
2078 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2079 		if (lsm != NULL && strcmp(lsm, hp->lsm))
2080 			continue;
2081 		return hp->hook.getprocattr(p, name, value);
2082 	}
2083 	return LSM_RET_DEFAULT(getprocattr);
2084 }
2085 
2086 int security_setprocattr(const char *lsm, const char *name, void *value,
2087 			 size_t size)
2088 {
2089 	struct security_hook_list *hp;
2090 
2091 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2092 		if (lsm != NULL && strcmp(lsm, hp->lsm))
2093 			continue;
2094 		return hp->hook.setprocattr(name, value, size);
2095 	}
2096 	return LSM_RET_DEFAULT(setprocattr);
2097 }
2098 
2099 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2100 {
2101 	return call_int_hook(netlink_send, 0, sk, skb);
2102 }
2103 
2104 int security_ismaclabel(const char *name)
2105 {
2106 	return call_int_hook(ismaclabel, 0, name);
2107 }
2108 EXPORT_SYMBOL(security_ismaclabel);
2109 
2110 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2111 {
2112 	struct security_hook_list *hp;
2113 	int rc;
2114 
2115 	/*
2116 	 * Currently, only one LSM can implement secid_to_secctx (i.e this
2117 	 * LSM hook is not "stackable").
2118 	 */
2119 	hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2120 		rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2121 		if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2122 			return rc;
2123 	}
2124 
2125 	return LSM_RET_DEFAULT(secid_to_secctx);
2126 }
2127 EXPORT_SYMBOL(security_secid_to_secctx);
2128 
2129 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2130 {
2131 	*secid = 0;
2132 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2133 }
2134 EXPORT_SYMBOL(security_secctx_to_secid);
2135 
2136 void security_release_secctx(char *secdata, u32 seclen)
2137 {
2138 	call_void_hook(release_secctx, secdata, seclen);
2139 }
2140 EXPORT_SYMBOL(security_release_secctx);
2141 
2142 void security_inode_invalidate_secctx(struct inode *inode)
2143 {
2144 	call_void_hook(inode_invalidate_secctx, inode);
2145 }
2146 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2147 
2148 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2149 {
2150 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2151 }
2152 EXPORT_SYMBOL(security_inode_notifysecctx);
2153 
2154 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2155 {
2156 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2157 }
2158 EXPORT_SYMBOL(security_inode_setsecctx);
2159 
2160 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2161 {
2162 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2163 }
2164 EXPORT_SYMBOL(security_inode_getsecctx);
2165 
2166 #ifdef CONFIG_WATCH_QUEUE
2167 int security_post_notification(const struct cred *w_cred,
2168 			       const struct cred *cred,
2169 			       struct watch_notification *n)
2170 {
2171 	return call_int_hook(post_notification, 0, w_cred, cred, n);
2172 }
2173 #endif /* CONFIG_WATCH_QUEUE */
2174 
2175 #ifdef CONFIG_KEY_NOTIFICATIONS
2176 int security_watch_key(struct key *key)
2177 {
2178 	return call_int_hook(watch_key, 0, key);
2179 }
2180 #endif
2181 
2182 #ifdef CONFIG_SECURITY_NETWORK
2183 
2184 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2185 {
2186 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2187 }
2188 EXPORT_SYMBOL(security_unix_stream_connect);
2189 
2190 int security_unix_may_send(struct socket *sock,  struct socket *other)
2191 {
2192 	return call_int_hook(unix_may_send, 0, sock, other);
2193 }
2194 EXPORT_SYMBOL(security_unix_may_send);
2195 
2196 int security_socket_create(int family, int type, int protocol, int kern)
2197 {
2198 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
2199 }
2200 
2201 int security_socket_post_create(struct socket *sock, int family,
2202 				int type, int protocol, int kern)
2203 {
2204 	return call_int_hook(socket_post_create, 0, sock, family, type,
2205 						protocol, kern);
2206 }
2207 
2208 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2209 {
2210 	return call_int_hook(socket_socketpair, 0, socka, sockb);
2211 }
2212 EXPORT_SYMBOL(security_socket_socketpair);
2213 
2214 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2215 {
2216 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
2217 }
2218 
2219 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2220 {
2221 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
2222 }
2223 
2224 int security_socket_listen(struct socket *sock, int backlog)
2225 {
2226 	return call_int_hook(socket_listen, 0, sock, backlog);
2227 }
2228 
2229 int security_socket_accept(struct socket *sock, struct socket *newsock)
2230 {
2231 	return call_int_hook(socket_accept, 0, sock, newsock);
2232 }
2233 
2234 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2235 {
2236 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2237 }
2238 
2239 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2240 			    int size, int flags)
2241 {
2242 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2243 }
2244 
2245 int security_socket_getsockname(struct socket *sock)
2246 {
2247 	return call_int_hook(socket_getsockname, 0, sock);
2248 }
2249 
2250 int security_socket_getpeername(struct socket *sock)
2251 {
2252 	return call_int_hook(socket_getpeername, 0, sock);
2253 }
2254 
2255 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2256 {
2257 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2258 }
2259 
2260 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2261 {
2262 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2263 }
2264 
2265 int security_socket_shutdown(struct socket *sock, int how)
2266 {
2267 	return call_int_hook(socket_shutdown, 0, sock, how);
2268 }
2269 
2270 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2271 {
2272 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2273 }
2274 EXPORT_SYMBOL(security_sock_rcv_skb);
2275 
2276 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2277 				      int __user *optlen, unsigned len)
2278 {
2279 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2280 				optval, optlen, len);
2281 }
2282 
2283 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2284 {
2285 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2286 			     skb, secid);
2287 }
2288 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2289 
2290 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2291 {
2292 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2293 }
2294 
2295 void security_sk_free(struct sock *sk)
2296 {
2297 	call_void_hook(sk_free_security, sk);
2298 }
2299 
2300 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2301 {
2302 	call_void_hook(sk_clone_security, sk, newsk);
2303 }
2304 EXPORT_SYMBOL(security_sk_clone);
2305 
2306 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2307 {
2308 	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2309 }
2310 EXPORT_SYMBOL(security_sk_classify_flow);
2311 
2312 void security_req_classify_flow(const struct request_sock *req,
2313 				struct flowi_common *flic)
2314 {
2315 	call_void_hook(req_classify_flow, req, flic);
2316 }
2317 EXPORT_SYMBOL(security_req_classify_flow);
2318 
2319 void security_sock_graft(struct sock *sk, struct socket *parent)
2320 {
2321 	call_void_hook(sock_graft, sk, parent);
2322 }
2323 EXPORT_SYMBOL(security_sock_graft);
2324 
2325 int security_inet_conn_request(const struct sock *sk,
2326 			struct sk_buff *skb, struct request_sock *req)
2327 {
2328 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2329 }
2330 EXPORT_SYMBOL(security_inet_conn_request);
2331 
2332 void security_inet_csk_clone(struct sock *newsk,
2333 			const struct request_sock *req)
2334 {
2335 	call_void_hook(inet_csk_clone, newsk, req);
2336 }
2337 
2338 void security_inet_conn_established(struct sock *sk,
2339 			struct sk_buff *skb)
2340 {
2341 	call_void_hook(inet_conn_established, sk, skb);
2342 }
2343 EXPORT_SYMBOL(security_inet_conn_established);
2344 
2345 int security_secmark_relabel_packet(u32 secid)
2346 {
2347 	return call_int_hook(secmark_relabel_packet, 0, secid);
2348 }
2349 EXPORT_SYMBOL(security_secmark_relabel_packet);
2350 
2351 void security_secmark_refcount_inc(void)
2352 {
2353 	call_void_hook(secmark_refcount_inc);
2354 }
2355 EXPORT_SYMBOL(security_secmark_refcount_inc);
2356 
2357 void security_secmark_refcount_dec(void)
2358 {
2359 	call_void_hook(secmark_refcount_dec);
2360 }
2361 EXPORT_SYMBOL(security_secmark_refcount_dec);
2362 
2363 int security_tun_dev_alloc_security(void **security)
2364 {
2365 	return call_int_hook(tun_dev_alloc_security, 0, security);
2366 }
2367 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2368 
2369 void security_tun_dev_free_security(void *security)
2370 {
2371 	call_void_hook(tun_dev_free_security, security);
2372 }
2373 EXPORT_SYMBOL(security_tun_dev_free_security);
2374 
2375 int security_tun_dev_create(void)
2376 {
2377 	return call_int_hook(tun_dev_create, 0);
2378 }
2379 EXPORT_SYMBOL(security_tun_dev_create);
2380 
2381 int security_tun_dev_attach_queue(void *security)
2382 {
2383 	return call_int_hook(tun_dev_attach_queue, 0, security);
2384 }
2385 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2386 
2387 int security_tun_dev_attach(struct sock *sk, void *security)
2388 {
2389 	return call_int_hook(tun_dev_attach, 0, sk, security);
2390 }
2391 EXPORT_SYMBOL(security_tun_dev_attach);
2392 
2393 int security_tun_dev_open(void *security)
2394 {
2395 	return call_int_hook(tun_dev_open, 0, security);
2396 }
2397 EXPORT_SYMBOL(security_tun_dev_open);
2398 
2399 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb)
2400 {
2401 	return call_int_hook(sctp_assoc_request, 0, asoc, skb);
2402 }
2403 EXPORT_SYMBOL(security_sctp_assoc_request);
2404 
2405 int security_sctp_bind_connect(struct sock *sk, int optname,
2406 			       struct sockaddr *address, int addrlen)
2407 {
2408 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2409 			     address, addrlen);
2410 }
2411 EXPORT_SYMBOL(security_sctp_bind_connect);
2412 
2413 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
2414 			    struct sock *newsk)
2415 {
2416 	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
2417 }
2418 EXPORT_SYMBOL(security_sctp_sk_clone);
2419 
2420 int security_sctp_assoc_established(struct sctp_association *asoc,
2421 				    struct sk_buff *skb)
2422 {
2423 	return call_int_hook(sctp_assoc_established, 0, asoc, skb);
2424 }
2425 EXPORT_SYMBOL(security_sctp_assoc_established);
2426 
2427 #endif	/* CONFIG_SECURITY_NETWORK */
2428 
2429 #ifdef CONFIG_SECURITY_INFINIBAND
2430 
2431 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2432 {
2433 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2434 }
2435 EXPORT_SYMBOL(security_ib_pkey_access);
2436 
2437 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2438 {
2439 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2440 }
2441 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2442 
2443 int security_ib_alloc_security(void **sec)
2444 {
2445 	return call_int_hook(ib_alloc_security, 0, sec);
2446 }
2447 EXPORT_SYMBOL(security_ib_alloc_security);
2448 
2449 void security_ib_free_security(void *sec)
2450 {
2451 	call_void_hook(ib_free_security, sec);
2452 }
2453 EXPORT_SYMBOL(security_ib_free_security);
2454 #endif	/* CONFIG_SECURITY_INFINIBAND */
2455 
2456 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2457 
2458 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2459 			       struct xfrm_user_sec_ctx *sec_ctx,
2460 			       gfp_t gfp)
2461 {
2462 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2463 }
2464 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2465 
2466 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2467 			      struct xfrm_sec_ctx **new_ctxp)
2468 {
2469 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2470 }
2471 
2472 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2473 {
2474 	call_void_hook(xfrm_policy_free_security, ctx);
2475 }
2476 EXPORT_SYMBOL(security_xfrm_policy_free);
2477 
2478 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2479 {
2480 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2481 }
2482 
2483 int security_xfrm_state_alloc(struct xfrm_state *x,
2484 			      struct xfrm_user_sec_ctx *sec_ctx)
2485 {
2486 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2487 }
2488 EXPORT_SYMBOL(security_xfrm_state_alloc);
2489 
2490 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2491 				      struct xfrm_sec_ctx *polsec, u32 secid)
2492 {
2493 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2494 }
2495 
2496 int security_xfrm_state_delete(struct xfrm_state *x)
2497 {
2498 	return call_int_hook(xfrm_state_delete_security, 0, x);
2499 }
2500 EXPORT_SYMBOL(security_xfrm_state_delete);
2501 
2502 void security_xfrm_state_free(struct xfrm_state *x)
2503 {
2504 	call_void_hook(xfrm_state_free_security, x);
2505 }
2506 
2507 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2508 {
2509 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2510 }
2511 
2512 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2513 				       struct xfrm_policy *xp,
2514 				       const struct flowi_common *flic)
2515 {
2516 	struct security_hook_list *hp;
2517 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2518 
2519 	/*
2520 	 * Since this function is expected to return 0 or 1, the judgment
2521 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2522 	 * we can use the first LSM's judgment because currently only SELinux
2523 	 * supplies this call.
2524 	 *
2525 	 * For speed optimization, we explicitly break the loop rather than
2526 	 * using the macro
2527 	 */
2528 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2529 				list) {
2530 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2531 		break;
2532 	}
2533 	return rc;
2534 }
2535 
2536 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2537 {
2538 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2539 }
2540 
2541 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2542 {
2543 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2544 				0);
2545 
2546 	BUG_ON(rc);
2547 }
2548 EXPORT_SYMBOL(security_skb_classify_flow);
2549 
2550 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2551 
2552 #ifdef CONFIG_KEYS
2553 
2554 int security_key_alloc(struct key *key, const struct cred *cred,
2555 		       unsigned long flags)
2556 {
2557 	return call_int_hook(key_alloc, 0, key, cred, flags);
2558 }
2559 
2560 void security_key_free(struct key *key)
2561 {
2562 	call_void_hook(key_free, key);
2563 }
2564 
2565 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2566 			    enum key_need_perm need_perm)
2567 {
2568 	return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2569 }
2570 
2571 int security_key_getsecurity(struct key *key, char **_buffer)
2572 {
2573 	*_buffer = NULL;
2574 	return call_int_hook(key_getsecurity, 0, key, _buffer);
2575 }
2576 
2577 #endif	/* CONFIG_KEYS */
2578 
2579 #ifdef CONFIG_AUDIT
2580 
2581 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2582 {
2583 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2584 }
2585 
2586 int security_audit_rule_known(struct audit_krule *krule)
2587 {
2588 	return call_int_hook(audit_rule_known, 0, krule);
2589 }
2590 
2591 void security_audit_rule_free(void *lsmrule)
2592 {
2593 	call_void_hook(audit_rule_free, lsmrule);
2594 }
2595 
2596 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2597 {
2598 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2599 }
2600 #endif /* CONFIG_AUDIT */
2601 
2602 #ifdef CONFIG_BPF_SYSCALL
2603 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2604 {
2605 	return call_int_hook(bpf, 0, cmd, attr, size);
2606 }
2607 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2608 {
2609 	return call_int_hook(bpf_map, 0, map, fmode);
2610 }
2611 int security_bpf_prog(struct bpf_prog *prog)
2612 {
2613 	return call_int_hook(bpf_prog, 0, prog);
2614 }
2615 int security_bpf_map_alloc(struct bpf_map *map)
2616 {
2617 	return call_int_hook(bpf_map_alloc_security, 0, map);
2618 }
2619 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2620 {
2621 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2622 }
2623 void security_bpf_map_free(struct bpf_map *map)
2624 {
2625 	call_void_hook(bpf_map_free_security, map);
2626 }
2627 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2628 {
2629 	call_void_hook(bpf_prog_free_security, aux);
2630 }
2631 #endif /* CONFIG_BPF_SYSCALL */
2632 
2633 int security_locked_down(enum lockdown_reason what)
2634 {
2635 	return call_int_hook(locked_down, 0, what);
2636 }
2637 EXPORT_SYMBOL(security_locked_down);
2638 
2639 #ifdef CONFIG_PERF_EVENTS
2640 int security_perf_event_open(struct perf_event_attr *attr, int type)
2641 {
2642 	return call_int_hook(perf_event_open, 0, attr, type);
2643 }
2644 
2645 int security_perf_event_alloc(struct perf_event *event)
2646 {
2647 	return call_int_hook(perf_event_alloc, 0, event);
2648 }
2649 
2650 void security_perf_event_free(struct perf_event *event)
2651 {
2652 	call_void_hook(perf_event_free, event);
2653 }
2654 
2655 int security_perf_event_read(struct perf_event *event)
2656 {
2657 	return call_int_hook(perf_event_read, 0, event);
2658 }
2659 
2660 int security_perf_event_write(struct perf_event *event)
2661 {
2662 	return call_int_hook(perf_event_write, 0, event);
2663 }
2664 #endif /* CONFIG_PERF_EVENTS */
2665 
2666 #ifdef CONFIG_IO_URING
2667 int security_uring_override_creds(const struct cred *new)
2668 {
2669 	return call_int_hook(uring_override_creds, 0, new);
2670 }
2671 
2672 int security_uring_sqpoll(void)
2673 {
2674 	return call_int_hook(uring_sqpoll, 0);
2675 }
2676 int security_uring_cmd(struct io_uring_cmd *ioucmd)
2677 {
2678 	return call_int_hook(uring_cmd, 0, ioucmd);
2679 }
2680 #endif /* CONFIG_IO_URING */
2681