1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <[email protected]> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <[email protected]> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11 #define pr_fmt(fmt) "LSM: " fmt 12 13 #include <linux/bpf.h> 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/kernel_read_file.h> 20 #include <linux/lsm_hooks.h> 21 #include <linux/integrity.h> 22 #include <linux/ima.h> 23 #include <linux/evm.h> 24 #include <linux/fsnotify.h> 25 #include <linux/mman.h> 26 #include <linux/mount.h> 27 #include <linux/personality.h> 28 #include <linux/backing-dev.h> 29 #include <linux/string.h> 30 #include <linux/msg.h> 31 #include <net/flow.h> 32 33 #define MAX_LSM_EVM_XATTR 2 34 35 /* How many LSMs were built into the kernel? */ 36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 37 38 /* 39 * These are descriptions of the reasons that can be passed to the 40 * security_locked_down() LSM hook. Placing this array here allows 41 * all security modules to use the same descriptions for auditing 42 * purposes. 43 */ 44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = { 45 [LOCKDOWN_NONE] = "none", 46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 49 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 50 [LOCKDOWN_HIBERNATION] = "hibernation", 51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 52 [LOCKDOWN_IOPORT] = "raw io port access", 53 [LOCKDOWN_MSR] = "raw MSR access", 54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 55 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents", 56 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 57 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 58 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 59 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 60 [LOCKDOWN_DEBUGFS] = "debugfs access", 61 [LOCKDOWN_XMON_WR] = "xmon write access", 62 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 63 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", 64 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection", 65 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 66 [LOCKDOWN_KCORE] = "/proc/kcore access", 67 [LOCKDOWN_KPROBES] = "use of kprobes", 68 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 69 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", 70 [LOCKDOWN_PERF] = "unsafe use of perf", 71 [LOCKDOWN_TRACEFS] = "use of tracefs", 72 [LOCKDOWN_XMON_RW] = "xmon read and write access", 73 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 74 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 75 }; 76 77 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 78 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 79 80 static struct kmem_cache *lsm_file_cache; 81 static struct kmem_cache *lsm_inode_cache; 82 83 char *lsm_names; 84 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 85 86 /* Boot-time LSM user choice */ 87 static __initdata const char *chosen_lsm_order; 88 static __initdata const char *chosen_major_lsm; 89 90 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 91 92 /* Ordered list of LSMs to initialize. */ 93 static __initdata struct lsm_info **ordered_lsms; 94 static __initdata struct lsm_info *exclusive; 95 96 static __initdata bool debug; 97 #define init_debug(...) \ 98 do { \ 99 if (debug) \ 100 pr_info(__VA_ARGS__); \ 101 } while (0) 102 103 static bool __init is_enabled(struct lsm_info *lsm) 104 { 105 if (!lsm->enabled) 106 return false; 107 108 return *lsm->enabled; 109 } 110 111 /* Mark an LSM's enabled flag. */ 112 static int lsm_enabled_true __initdata = 1; 113 static int lsm_enabled_false __initdata = 0; 114 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 115 { 116 /* 117 * When an LSM hasn't configured an enable variable, we can use 118 * a hard-coded location for storing the default enabled state. 119 */ 120 if (!lsm->enabled) { 121 if (enabled) 122 lsm->enabled = &lsm_enabled_true; 123 else 124 lsm->enabled = &lsm_enabled_false; 125 } else if (lsm->enabled == &lsm_enabled_true) { 126 if (!enabled) 127 lsm->enabled = &lsm_enabled_false; 128 } else if (lsm->enabled == &lsm_enabled_false) { 129 if (enabled) 130 lsm->enabled = &lsm_enabled_true; 131 } else { 132 *lsm->enabled = enabled; 133 } 134 } 135 136 /* Is an LSM already listed in the ordered LSMs list? */ 137 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 138 { 139 struct lsm_info **check; 140 141 for (check = ordered_lsms; *check; check++) 142 if (*check == lsm) 143 return true; 144 145 return false; 146 } 147 148 /* Append an LSM to the list of ordered LSMs to initialize. */ 149 static int last_lsm __initdata; 150 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 151 { 152 /* Ignore duplicate selections. */ 153 if (exists_ordered_lsm(lsm)) 154 return; 155 156 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 157 return; 158 159 /* Enable this LSM, if it is not already set. */ 160 if (!lsm->enabled) 161 lsm->enabled = &lsm_enabled_true; 162 ordered_lsms[last_lsm++] = lsm; 163 164 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 165 is_enabled(lsm) ? "en" : "dis"); 166 } 167 168 /* Is an LSM allowed to be initialized? */ 169 static bool __init lsm_allowed(struct lsm_info *lsm) 170 { 171 /* Skip if the LSM is disabled. */ 172 if (!is_enabled(lsm)) 173 return false; 174 175 /* Not allowed if another exclusive LSM already initialized. */ 176 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 177 init_debug("exclusive disabled: %s\n", lsm->name); 178 return false; 179 } 180 181 return true; 182 } 183 184 static void __init lsm_set_blob_size(int *need, int *lbs) 185 { 186 int offset; 187 188 if (*need <= 0) 189 return; 190 191 offset = ALIGN(*lbs, sizeof(void *)); 192 *lbs = offset + *need; 193 *need = offset; 194 } 195 196 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 197 { 198 if (!needed) 199 return; 200 201 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 202 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 203 /* 204 * The inode blob gets an rcu_head in addition to 205 * what the modules might need. 206 */ 207 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 208 blob_sizes.lbs_inode = sizeof(struct rcu_head); 209 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 210 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 211 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 212 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 213 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 214 } 215 216 /* Prepare LSM for initialization. */ 217 static void __init prepare_lsm(struct lsm_info *lsm) 218 { 219 int enabled = lsm_allowed(lsm); 220 221 /* Record enablement (to handle any following exclusive LSMs). */ 222 set_enabled(lsm, enabled); 223 224 /* If enabled, do pre-initialization work. */ 225 if (enabled) { 226 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 227 exclusive = lsm; 228 init_debug("exclusive chosen: %s\n", lsm->name); 229 } 230 231 lsm_set_blob_sizes(lsm->blobs); 232 } 233 } 234 235 /* Initialize a given LSM, if it is enabled. */ 236 static void __init initialize_lsm(struct lsm_info *lsm) 237 { 238 if (is_enabled(lsm)) { 239 int ret; 240 241 init_debug("initializing %s\n", lsm->name); 242 ret = lsm->init(); 243 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 244 } 245 } 246 247 /* Populate ordered LSMs list from comma-separated LSM name list. */ 248 static void __init ordered_lsm_parse(const char *order, const char *origin) 249 { 250 struct lsm_info *lsm; 251 char *sep, *name, *next; 252 253 /* LSM_ORDER_FIRST is always first. */ 254 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 255 if (lsm->order == LSM_ORDER_FIRST) 256 append_ordered_lsm(lsm, "first"); 257 } 258 259 /* Process "security=", if given. */ 260 if (chosen_major_lsm) { 261 struct lsm_info *major; 262 263 /* 264 * To match the original "security=" behavior, this 265 * explicitly does NOT fallback to another Legacy Major 266 * if the selected one was separately disabled: disable 267 * all non-matching Legacy Major LSMs. 268 */ 269 for (major = __start_lsm_info; major < __end_lsm_info; 270 major++) { 271 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 272 strcmp(major->name, chosen_major_lsm) != 0) { 273 set_enabled(major, false); 274 init_debug("security=%s disabled: %s\n", 275 chosen_major_lsm, major->name); 276 } 277 } 278 } 279 280 sep = kstrdup(order, GFP_KERNEL); 281 next = sep; 282 /* Walk the list, looking for matching LSMs. */ 283 while ((name = strsep(&next, ",")) != NULL) { 284 bool found = false; 285 286 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 287 if (lsm->order == LSM_ORDER_MUTABLE && 288 strcmp(lsm->name, name) == 0) { 289 append_ordered_lsm(lsm, origin); 290 found = true; 291 } 292 } 293 294 if (!found) 295 init_debug("%s ignored: %s\n", origin, name); 296 } 297 298 /* Process "security=", if given. */ 299 if (chosen_major_lsm) { 300 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 301 if (exists_ordered_lsm(lsm)) 302 continue; 303 if (strcmp(lsm->name, chosen_major_lsm) == 0) 304 append_ordered_lsm(lsm, "security="); 305 } 306 } 307 308 /* Disable all LSMs not in the ordered list. */ 309 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 310 if (exists_ordered_lsm(lsm)) 311 continue; 312 set_enabled(lsm, false); 313 init_debug("%s disabled: %s\n", origin, lsm->name); 314 } 315 316 kfree(sep); 317 } 318 319 static void __init lsm_early_cred(struct cred *cred); 320 static void __init lsm_early_task(struct task_struct *task); 321 322 static int lsm_append(const char *new, char **result); 323 324 static void __init ordered_lsm_init(void) 325 { 326 struct lsm_info **lsm; 327 328 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 329 GFP_KERNEL); 330 331 if (chosen_lsm_order) { 332 if (chosen_major_lsm) { 333 pr_info("security= is ignored because it is superseded by lsm=\n"); 334 chosen_major_lsm = NULL; 335 } 336 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 337 } else 338 ordered_lsm_parse(builtin_lsm_order, "builtin"); 339 340 for (lsm = ordered_lsms; *lsm; lsm++) 341 prepare_lsm(*lsm); 342 343 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 344 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 345 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 346 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 347 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 348 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 349 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 350 351 /* 352 * Create any kmem_caches needed for blobs 353 */ 354 if (blob_sizes.lbs_file) 355 lsm_file_cache = kmem_cache_create("lsm_file_cache", 356 blob_sizes.lbs_file, 0, 357 SLAB_PANIC, NULL); 358 if (blob_sizes.lbs_inode) 359 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 360 blob_sizes.lbs_inode, 0, 361 SLAB_PANIC, NULL); 362 363 lsm_early_cred((struct cred *) current->cred); 364 lsm_early_task(current); 365 for (lsm = ordered_lsms; *lsm; lsm++) 366 initialize_lsm(*lsm); 367 368 kfree(ordered_lsms); 369 } 370 371 int __init early_security_init(void) 372 { 373 struct lsm_info *lsm; 374 375 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 376 INIT_HLIST_HEAD(&security_hook_heads.NAME); 377 #include "linux/lsm_hook_defs.h" 378 #undef LSM_HOOK 379 380 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 381 if (!lsm->enabled) 382 lsm->enabled = &lsm_enabled_true; 383 prepare_lsm(lsm); 384 initialize_lsm(lsm); 385 } 386 387 return 0; 388 } 389 390 /** 391 * security_init - initializes the security framework 392 * 393 * This should be called early in the kernel initialization sequence. 394 */ 395 int __init security_init(void) 396 { 397 struct lsm_info *lsm; 398 399 pr_info("Security Framework initializing\n"); 400 401 /* 402 * Append the names of the early LSM modules now that kmalloc() is 403 * available 404 */ 405 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 406 if (lsm->enabled) 407 lsm_append(lsm->name, &lsm_names); 408 } 409 410 /* Load LSMs in specified order. */ 411 ordered_lsm_init(); 412 413 return 0; 414 } 415 416 /* Save user chosen LSM */ 417 static int __init choose_major_lsm(char *str) 418 { 419 chosen_major_lsm = str; 420 return 1; 421 } 422 __setup("security=", choose_major_lsm); 423 424 /* Explicitly choose LSM initialization order. */ 425 static int __init choose_lsm_order(char *str) 426 { 427 chosen_lsm_order = str; 428 return 1; 429 } 430 __setup("lsm=", choose_lsm_order); 431 432 /* Enable LSM order debugging. */ 433 static int __init enable_debug(char *str) 434 { 435 debug = true; 436 return 1; 437 } 438 __setup("lsm.debug", enable_debug); 439 440 static bool match_last_lsm(const char *list, const char *lsm) 441 { 442 const char *last; 443 444 if (WARN_ON(!list || !lsm)) 445 return false; 446 last = strrchr(list, ','); 447 if (last) 448 /* Pass the comma, strcmp() will check for '\0' */ 449 last++; 450 else 451 last = list; 452 return !strcmp(last, lsm); 453 } 454 455 static int lsm_append(const char *new, char **result) 456 { 457 char *cp; 458 459 if (*result == NULL) { 460 *result = kstrdup(new, GFP_KERNEL); 461 if (*result == NULL) 462 return -ENOMEM; 463 } else { 464 /* Check if it is the last registered name */ 465 if (match_last_lsm(*result, new)) 466 return 0; 467 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 468 if (cp == NULL) 469 return -ENOMEM; 470 kfree(*result); 471 *result = cp; 472 } 473 return 0; 474 } 475 476 /** 477 * security_add_hooks - Add a modules hooks to the hook lists. 478 * @hooks: the hooks to add 479 * @count: the number of hooks to add 480 * @lsm: the name of the security module 481 * 482 * Each LSM has to register its hooks with the infrastructure. 483 */ 484 void __init security_add_hooks(struct security_hook_list *hooks, int count, 485 const char *lsm) 486 { 487 int i; 488 489 for (i = 0; i < count; i++) { 490 hooks[i].lsm = lsm; 491 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 492 } 493 494 /* 495 * Don't try to append during early_security_init(), we'll come back 496 * and fix this up afterwards. 497 */ 498 if (slab_is_available()) { 499 if (lsm_append(lsm, &lsm_names) < 0) 500 panic("%s - Cannot get early memory.\n", __func__); 501 } 502 } 503 504 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 505 { 506 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 507 event, data); 508 } 509 EXPORT_SYMBOL(call_blocking_lsm_notifier); 510 511 int register_blocking_lsm_notifier(struct notifier_block *nb) 512 { 513 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 514 nb); 515 } 516 EXPORT_SYMBOL(register_blocking_lsm_notifier); 517 518 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 519 { 520 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 521 nb); 522 } 523 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 524 525 /** 526 * lsm_cred_alloc - allocate a composite cred blob 527 * @cred: the cred that needs a blob 528 * @gfp: allocation type 529 * 530 * Allocate the cred blob for all the modules 531 * 532 * Returns 0, or -ENOMEM if memory can't be allocated. 533 */ 534 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 535 { 536 if (blob_sizes.lbs_cred == 0) { 537 cred->security = NULL; 538 return 0; 539 } 540 541 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 542 if (cred->security == NULL) 543 return -ENOMEM; 544 return 0; 545 } 546 547 /** 548 * lsm_early_cred - during initialization allocate a composite cred blob 549 * @cred: the cred that needs a blob 550 * 551 * Allocate the cred blob for all the modules 552 */ 553 static void __init lsm_early_cred(struct cred *cred) 554 { 555 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 556 557 if (rc) 558 panic("%s: Early cred alloc failed.\n", __func__); 559 } 560 561 /** 562 * lsm_file_alloc - allocate a composite file blob 563 * @file: the file that needs a blob 564 * 565 * Allocate the file blob for all the modules 566 * 567 * Returns 0, or -ENOMEM if memory can't be allocated. 568 */ 569 static int lsm_file_alloc(struct file *file) 570 { 571 if (!lsm_file_cache) { 572 file->f_security = NULL; 573 return 0; 574 } 575 576 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 577 if (file->f_security == NULL) 578 return -ENOMEM; 579 return 0; 580 } 581 582 /** 583 * lsm_inode_alloc - allocate a composite inode blob 584 * @inode: the inode that needs a blob 585 * 586 * Allocate the inode blob for all the modules 587 * 588 * Returns 0, or -ENOMEM if memory can't be allocated. 589 */ 590 int lsm_inode_alloc(struct inode *inode) 591 { 592 if (!lsm_inode_cache) { 593 inode->i_security = NULL; 594 return 0; 595 } 596 597 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 598 if (inode->i_security == NULL) 599 return -ENOMEM; 600 return 0; 601 } 602 603 /** 604 * lsm_task_alloc - allocate a composite task blob 605 * @task: the task that needs a blob 606 * 607 * Allocate the task blob for all the modules 608 * 609 * Returns 0, or -ENOMEM if memory can't be allocated. 610 */ 611 static int lsm_task_alloc(struct task_struct *task) 612 { 613 if (blob_sizes.lbs_task == 0) { 614 task->security = NULL; 615 return 0; 616 } 617 618 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 619 if (task->security == NULL) 620 return -ENOMEM; 621 return 0; 622 } 623 624 /** 625 * lsm_ipc_alloc - allocate a composite ipc blob 626 * @kip: the ipc that needs a blob 627 * 628 * Allocate the ipc blob for all the modules 629 * 630 * Returns 0, or -ENOMEM if memory can't be allocated. 631 */ 632 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 633 { 634 if (blob_sizes.lbs_ipc == 0) { 635 kip->security = NULL; 636 return 0; 637 } 638 639 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 640 if (kip->security == NULL) 641 return -ENOMEM; 642 return 0; 643 } 644 645 /** 646 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 647 * @mp: the msg_msg that needs a blob 648 * 649 * Allocate the ipc blob for all the modules 650 * 651 * Returns 0, or -ENOMEM if memory can't be allocated. 652 */ 653 static int lsm_msg_msg_alloc(struct msg_msg *mp) 654 { 655 if (blob_sizes.lbs_msg_msg == 0) { 656 mp->security = NULL; 657 return 0; 658 } 659 660 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 661 if (mp->security == NULL) 662 return -ENOMEM; 663 return 0; 664 } 665 666 /** 667 * lsm_early_task - during initialization allocate a composite task blob 668 * @task: the task that needs a blob 669 * 670 * Allocate the task blob for all the modules 671 */ 672 static void __init lsm_early_task(struct task_struct *task) 673 { 674 int rc = lsm_task_alloc(task); 675 676 if (rc) 677 panic("%s: Early task alloc failed.\n", __func__); 678 } 679 680 /** 681 * lsm_superblock_alloc - allocate a composite superblock blob 682 * @sb: the superblock that needs a blob 683 * 684 * Allocate the superblock blob for all the modules 685 * 686 * Returns 0, or -ENOMEM if memory can't be allocated. 687 */ 688 static int lsm_superblock_alloc(struct super_block *sb) 689 { 690 if (blob_sizes.lbs_superblock == 0) { 691 sb->s_security = NULL; 692 return 0; 693 } 694 695 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 696 if (sb->s_security == NULL) 697 return -ENOMEM; 698 return 0; 699 } 700 701 /* 702 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 703 * can be accessed with: 704 * 705 * LSM_RET_DEFAULT(<hook_name>) 706 * 707 * The macros below define static constants for the default value of each 708 * LSM hook. 709 */ 710 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 711 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 712 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 713 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 714 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 715 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 716 717 #include <linux/lsm_hook_defs.h> 718 #undef LSM_HOOK 719 720 /* 721 * Hook list operation macros. 722 * 723 * call_void_hook: 724 * This is a hook that does not return a value. 725 * 726 * call_int_hook: 727 * This is a hook that returns a value. 728 */ 729 730 #define call_void_hook(FUNC, ...) \ 731 do { \ 732 struct security_hook_list *P; \ 733 \ 734 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 735 P->hook.FUNC(__VA_ARGS__); \ 736 } while (0) 737 738 #define call_int_hook(FUNC, IRC, ...) ({ \ 739 int RC = IRC; \ 740 do { \ 741 struct security_hook_list *P; \ 742 \ 743 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 744 RC = P->hook.FUNC(__VA_ARGS__); \ 745 if (RC != 0) \ 746 break; \ 747 } \ 748 } while (0); \ 749 RC; \ 750 }) 751 752 /* Security operations */ 753 754 int security_binder_set_context_mgr(const struct cred *mgr) 755 { 756 return call_int_hook(binder_set_context_mgr, 0, mgr); 757 } 758 759 int security_binder_transaction(const struct cred *from, 760 const struct cred *to) 761 { 762 return call_int_hook(binder_transaction, 0, from, to); 763 } 764 765 int security_binder_transfer_binder(const struct cred *from, 766 const struct cred *to) 767 { 768 return call_int_hook(binder_transfer_binder, 0, from, to); 769 } 770 771 int security_binder_transfer_file(const struct cred *from, 772 const struct cred *to, struct file *file) 773 { 774 return call_int_hook(binder_transfer_file, 0, from, to, file); 775 } 776 777 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 778 { 779 return call_int_hook(ptrace_access_check, 0, child, mode); 780 } 781 782 int security_ptrace_traceme(struct task_struct *parent) 783 { 784 return call_int_hook(ptrace_traceme, 0, parent); 785 } 786 787 int security_capget(struct task_struct *target, 788 kernel_cap_t *effective, 789 kernel_cap_t *inheritable, 790 kernel_cap_t *permitted) 791 { 792 return call_int_hook(capget, 0, target, 793 effective, inheritable, permitted); 794 } 795 796 int security_capset(struct cred *new, const struct cred *old, 797 const kernel_cap_t *effective, 798 const kernel_cap_t *inheritable, 799 const kernel_cap_t *permitted) 800 { 801 return call_int_hook(capset, 0, new, old, 802 effective, inheritable, permitted); 803 } 804 805 int security_capable(const struct cred *cred, 806 struct user_namespace *ns, 807 int cap, 808 unsigned int opts) 809 { 810 return call_int_hook(capable, 0, cred, ns, cap, opts); 811 } 812 813 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 814 { 815 return call_int_hook(quotactl, 0, cmds, type, id, sb); 816 } 817 818 int security_quota_on(struct dentry *dentry) 819 { 820 return call_int_hook(quota_on, 0, dentry); 821 } 822 823 int security_syslog(int type) 824 { 825 return call_int_hook(syslog, 0, type); 826 } 827 828 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 829 { 830 return call_int_hook(settime, 0, ts, tz); 831 } 832 833 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 834 { 835 struct security_hook_list *hp; 836 int cap_sys_admin = 1; 837 int rc; 838 839 /* 840 * The module will respond with a positive value if 841 * it thinks the __vm_enough_memory() call should be 842 * made with the cap_sys_admin set. If all of the modules 843 * agree that it should be set it will. If any module 844 * thinks it should not be set it won't. 845 */ 846 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 847 rc = hp->hook.vm_enough_memory(mm, pages); 848 if (rc <= 0) { 849 cap_sys_admin = 0; 850 break; 851 } 852 } 853 return __vm_enough_memory(mm, pages, cap_sys_admin); 854 } 855 856 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 857 { 858 return call_int_hook(bprm_creds_for_exec, 0, bprm); 859 } 860 861 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file) 862 { 863 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 864 } 865 866 int security_bprm_check(struct linux_binprm *bprm) 867 { 868 int ret; 869 870 ret = call_int_hook(bprm_check_security, 0, bprm); 871 if (ret) 872 return ret; 873 return ima_bprm_check(bprm); 874 } 875 876 void security_bprm_committing_creds(struct linux_binprm *bprm) 877 { 878 call_void_hook(bprm_committing_creds, bprm); 879 } 880 881 void security_bprm_committed_creds(struct linux_binprm *bprm) 882 { 883 call_void_hook(bprm_committed_creds, bprm); 884 } 885 886 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 887 { 888 return call_int_hook(fs_context_dup, 0, fc, src_fc); 889 } 890 891 int security_fs_context_parse_param(struct fs_context *fc, 892 struct fs_parameter *param) 893 { 894 struct security_hook_list *hp; 895 int trc; 896 int rc = -ENOPARAM; 897 898 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param, 899 list) { 900 trc = hp->hook.fs_context_parse_param(fc, param); 901 if (trc == 0) 902 rc = 0; 903 else if (trc != -ENOPARAM) 904 return trc; 905 } 906 return rc; 907 } 908 909 int security_sb_alloc(struct super_block *sb) 910 { 911 int rc = lsm_superblock_alloc(sb); 912 913 if (unlikely(rc)) 914 return rc; 915 rc = call_int_hook(sb_alloc_security, 0, sb); 916 if (unlikely(rc)) 917 security_sb_free(sb); 918 return rc; 919 } 920 921 void security_sb_delete(struct super_block *sb) 922 { 923 call_void_hook(sb_delete, sb); 924 } 925 926 void security_sb_free(struct super_block *sb) 927 { 928 call_void_hook(sb_free_security, sb); 929 kfree(sb->s_security); 930 sb->s_security = NULL; 931 } 932 933 void security_free_mnt_opts(void **mnt_opts) 934 { 935 if (!*mnt_opts) 936 return; 937 call_void_hook(sb_free_mnt_opts, *mnt_opts); 938 *mnt_opts = NULL; 939 } 940 EXPORT_SYMBOL(security_free_mnt_opts); 941 942 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 943 { 944 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 945 } 946 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 947 948 int security_sb_mnt_opts_compat(struct super_block *sb, 949 void *mnt_opts) 950 { 951 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts); 952 } 953 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 954 955 int security_sb_remount(struct super_block *sb, 956 void *mnt_opts) 957 { 958 return call_int_hook(sb_remount, 0, sb, mnt_opts); 959 } 960 EXPORT_SYMBOL(security_sb_remount); 961 962 int security_sb_kern_mount(struct super_block *sb) 963 { 964 return call_int_hook(sb_kern_mount, 0, sb); 965 } 966 967 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 968 { 969 return call_int_hook(sb_show_options, 0, m, sb); 970 } 971 972 int security_sb_statfs(struct dentry *dentry) 973 { 974 return call_int_hook(sb_statfs, 0, dentry); 975 } 976 977 int security_sb_mount(const char *dev_name, const struct path *path, 978 const char *type, unsigned long flags, void *data) 979 { 980 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 981 } 982 983 int security_sb_umount(struct vfsmount *mnt, int flags) 984 { 985 return call_int_hook(sb_umount, 0, mnt, flags); 986 } 987 988 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 989 { 990 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 991 } 992 993 int security_sb_set_mnt_opts(struct super_block *sb, 994 void *mnt_opts, 995 unsigned long kern_flags, 996 unsigned long *set_kern_flags) 997 { 998 return call_int_hook(sb_set_mnt_opts, 999 mnt_opts ? -EOPNOTSUPP : 0, sb, 1000 mnt_opts, kern_flags, set_kern_flags); 1001 } 1002 EXPORT_SYMBOL(security_sb_set_mnt_opts); 1003 1004 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1005 struct super_block *newsb, 1006 unsigned long kern_flags, 1007 unsigned long *set_kern_flags) 1008 { 1009 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 1010 kern_flags, set_kern_flags); 1011 } 1012 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 1013 1014 int security_move_mount(const struct path *from_path, const struct path *to_path) 1015 { 1016 return call_int_hook(move_mount, 0, from_path, to_path); 1017 } 1018 1019 int security_path_notify(const struct path *path, u64 mask, 1020 unsigned int obj_type) 1021 { 1022 return call_int_hook(path_notify, 0, path, mask, obj_type); 1023 } 1024 1025 int security_inode_alloc(struct inode *inode) 1026 { 1027 int rc = lsm_inode_alloc(inode); 1028 1029 if (unlikely(rc)) 1030 return rc; 1031 rc = call_int_hook(inode_alloc_security, 0, inode); 1032 if (unlikely(rc)) 1033 security_inode_free(inode); 1034 return rc; 1035 } 1036 1037 static void inode_free_by_rcu(struct rcu_head *head) 1038 { 1039 /* 1040 * The rcu head is at the start of the inode blob 1041 */ 1042 kmem_cache_free(lsm_inode_cache, head); 1043 } 1044 1045 void security_inode_free(struct inode *inode) 1046 { 1047 integrity_inode_free(inode); 1048 call_void_hook(inode_free_security, inode); 1049 /* 1050 * The inode may still be referenced in a path walk and 1051 * a call to security_inode_permission() can be made 1052 * after inode_free_security() is called. Ideally, the VFS 1053 * wouldn't do this, but fixing that is a much harder 1054 * job. For now, simply free the i_security via RCU, and 1055 * leave the current inode->i_security pointer intact. 1056 * The inode will be freed after the RCU grace period too. 1057 */ 1058 if (inode->i_security) 1059 call_rcu((struct rcu_head *)inode->i_security, 1060 inode_free_by_rcu); 1061 } 1062 1063 int security_dentry_init_security(struct dentry *dentry, int mode, 1064 const struct qstr *name, 1065 const char **xattr_name, void **ctx, 1066 u32 *ctxlen) 1067 { 1068 struct security_hook_list *hp; 1069 int rc; 1070 1071 /* 1072 * Only one module will provide a security context. 1073 */ 1074 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) { 1075 rc = hp->hook.dentry_init_security(dentry, mode, name, 1076 xattr_name, ctx, ctxlen); 1077 if (rc != LSM_RET_DEFAULT(dentry_init_security)) 1078 return rc; 1079 } 1080 return LSM_RET_DEFAULT(dentry_init_security); 1081 } 1082 EXPORT_SYMBOL(security_dentry_init_security); 1083 1084 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1085 struct qstr *name, 1086 const struct cred *old, struct cred *new) 1087 { 1088 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1089 name, old, new); 1090 } 1091 EXPORT_SYMBOL(security_dentry_create_files_as); 1092 1093 int security_inode_init_security(struct inode *inode, struct inode *dir, 1094 const struct qstr *qstr, 1095 const initxattrs initxattrs, void *fs_data) 1096 { 1097 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 1098 struct xattr *lsm_xattr, *evm_xattr, *xattr; 1099 int ret; 1100 1101 if (unlikely(IS_PRIVATE(inode))) 1102 return 0; 1103 1104 if (!initxattrs) 1105 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 1106 dir, qstr, NULL, NULL, NULL); 1107 memset(new_xattrs, 0, sizeof(new_xattrs)); 1108 lsm_xattr = new_xattrs; 1109 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 1110 &lsm_xattr->name, 1111 &lsm_xattr->value, 1112 &lsm_xattr->value_len); 1113 if (ret) 1114 goto out; 1115 1116 evm_xattr = lsm_xattr + 1; 1117 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 1118 if (ret) 1119 goto out; 1120 ret = initxattrs(inode, new_xattrs, fs_data); 1121 out: 1122 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 1123 kfree(xattr->value); 1124 return (ret == -EOPNOTSUPP) ? 0 : ret; 1125 } 1126 EXPORT_SYMBOL(security_inode_init_security); 1127 1128 int security_inode_init_security_anon(struct inode *inode, 1129 const struct qstr *name, 1130 const struct inode *context_inode) 1131 { 1132 return call_int_hook(inode_init_security_anon, 0, inode, name, 1133 context_inode); 1134 } 1135 1136 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1137 const struct qstr *qstr, const char **name, 1138 void **value, size_t *len) 1139 { 1140 if (unlikely(IS_PRIVATE(inode))) 1141 return -EOPNOTSUPP; 1142 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 1143 qstr, name, value, len); 1144 } 1145 EXPORT_SYMBOL(security_old_inode_init_security); 1146 1147 #ifdef CONFIG_SECURITY_PATH 1148 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 1149 unsigned int dev) 1150 { 1151 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1152 return 0; 1153 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1154 } 1155 EXPORT_SYMBOL(security_path_mknod); 1156 1157 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 1158 { 1159 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1160 return 0; 1161 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1162 } 1163 EXPORT_SYMBOL(security_path_mkdir); 1164 1165 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1166 { 1167 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1168 return 0; 1169 return call_int_hook(path_rmdir, 0, dir, dentry); 1170 } 1171 1172 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1173 { 1174 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1175 return 0; 1176 return call_int_hook(path_unlink, 0, dir, dentry); 1177 } 1178 EXPORT_SYMBOL(security_path_unlink); 1179 1180 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1181 const char *old_name) 1182 { 1183 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1184 return 0; 1185 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1186 } 1187 1188 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1189 struct dentry *new_dentry) 1190 { 1191 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1192 return 0; 1193 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1194 } 1195 1196 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1197 const struct path *new_dir, struct dentry *new_dentry, 1198 unsigned int flags) 1199 { 1200 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1201 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1202 return 0; 1203 1204 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1205 new_dentry, flags); 1206 } 1207 EXPORT_SYMBOL(security_path_rename); 1208 1209 int security_path_truncate(const struct path *path) 1210 { 1211 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1212 return 0; 1213 return call_int_hook(path_truncate, 0, path); 1214 } 1215 1216 int security_path_chmod(const struct path *path, umode_t mode) 1217 { 1218 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1219 return 0; 1220 return call_int_hook(path_chmod, 0, path, mode); 1221 } 1222 1223 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1224 { 1225 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1226 return 0; 1227 return call_int_hook(path_chown, 0, path, uid, gid); 1228 } 1229 1230 int security_path_chroot(const struct path *path) 1231 { 1232 return call_int_hook(path_chroot, 0, path); 1233 } 1234 #endif 1235 1236 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1237 { 1238 if (unlikely(IS_PRIVATE(dir))) 1239 return 0; 1240 return call_int_hook(inode_create, 0, dir, dentry, mode); 1241 } 1242 EXPORT_SYMBOL_GPL(security_inode_create); 1243 1244 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1245 struct dentry *new_dentry) 1246 { 1247 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1248 return 0; 1249 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1250 } 1251 1252 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1253 { 1254 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1255 return 0; 1256 return call_int_hook(inode_unlink, 0, dir, dentry); 1257 } 1258 1259 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1260 const char *old_name) 1261 { 1262 if (unlikely(IS_PRIVATE(dir))) 1263 return 0; 1264 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1265 } 1266 1267 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1268 { 1269 if (unlikely(IS_PRIVATE(dir))) 1270 return 0; 1271 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1272 } 1273 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1274 1275 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1276 { 1277 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1278 return 0; 1279 return call_int_hook(inode_rmdir, 0, dir, dentry); 1280 } 1281 1282 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1283 { 1284 if (unlikely(IS_PRIVATE(dir))) 1285 return 0; 1286 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1287 } 1288 1289 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1290 struct inode *new_dir, struct dentry *new_dentry, 1291 unsigned int flags) 1292 { 1293 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1294 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1295 return 0; 1296 1297 if (flags & RENAME_EXCHANGE) { 1298 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1299 old_dir, old_dentry); 1300 if (err) 1301 return err; 1302 } 1303 1304 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1305 new_dir, new_dentry); 1306 } 1307 1308 int security_inode_readlink(struct dentry *dentry) 1309 { 1310 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1311 return 0; 1312 return call_int_hook(inode_readlink, 0, dentry); 1313 } 1314 1315 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1316 bool rcu) 1317 { 1318 if (unlikely(IS_PRIVATE(inode))) 1319 return 0; 1320 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1321 } 1322 1323 int security_inode_permission(struct inode *inode, int mask) 1324 { 1325 if (unlikely(IS_PRIVATE(inode))) 1326 return 0; 1327 return call_int_hook(inode_permission, 0, inode, mask); 1328 } 1329 1330 int security_inode_setattr(struct user_namespace *mnt_userns, 1331 struct dentry *dentry, struct iattr *attr) 1332 { 1333 int ret; 1334 1335 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1336 return 0; 1337 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1338 if (ret) 1339 return ret; 1340 return evm_inode_setattr(mnt_userns, dentry, attr); 1341 } 1342 EXPORT_SYMBOL_GPL(security_inode_setattr); 1343 1344 int security_inode_getattr(const struct path *path) 1345 { 1346 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1347 return 0; 1348 return call_int_hook(inode_getattr, 0, path); 1349 } 1350 1351 int security_inode_setxattr(struct user_namespace *mnt_userns, 1352 struct dentry *dentry, const char *name, 1353 const void *value, size_t size, int flags) 1354 { 1355 int ret; 1356 1357 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1358 return 0; 1359 /* 1360 * SELinux and Smack integrate the cap call, 1361 * so assume that all LSMs supplying this call do so. 1362 */ 1363 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value, 1364 size, flags); 1365 1366 if (ret == 1) 1367 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1368 if (ret) 1369 return ret; 1370 ret = ima_inode_setxattr(dentry, name, value, size); 1371 if (ret) 1372 return ret; 1373 return evm_inode_setxattr(mnt_userns, dentry, name, value, size); 1374 } 1375 1376 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1377 const void *value, size_t size, int flags) 1378 { 1379 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1380 return; 1381 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1382 evm_inode_post_setxattr(dentry, name, value, size); 1383 } 1384 1385 int security_inode_getxattr(struct dentry *dentry, const char *name) 1386 { 1387 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1388 return 0; 1389 return call_int_hook(inode_getxattr, 0, dentry, name); 1390 } 1391 1392 int security_inode_listxattr(struct dentry *dentry) 1393 { 1394 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1395 return 0; 1396 return call_int_hook(inode_listxattr, 0, dentry); 1397 } 1398 1399 int security_inode_removexattr(struct user_namespace *mnt_userns, 1400 struct dentry *dentry, const char *name) 1401 { 1402 int ret; 1403 1404 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1405 return 0; 1406 /* 1407 * SELinux and Smack integrate the cap call, 1408 * so assume that all LSMs supplying this call do so. 1409 */ 1410 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name); 1411 if (ret == 1) 1412 ret = cap_inode_removexattr(mnt_userns, dentry, name); 1413 if (ret) 1414 return ret; 1415 ret = ima_inode_removexattr(dentry, name); 1416 if (ret) 1417 return ret; 1418 return evm_inode_removexattr(mnt_userns, dentry, name); 1419 } 1420 1421 int security_inode_need_killpriv(struct dentry *dentry) 1422 { 1423 return call_int_hook(inode_need_killpriv, 0, dentry); 1424 } 1425 1426 int security_inode_killpriv(struct user_namespace *mnt_userns, 1427 struct dentry *dentry) 1428 { 1429 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry); 1430 } 1431 1432 int security_inode_getsecurity(struct user_namespace *mnt_userns, 1433 struct inode *inode, const char *name, 1434 void **buffer, bool alloc) 1435 { 1436 struct security_hook_list *hp; 1437 int rc; 1438 1439 if (unlikely(IS_PRIVATE(inode))) 1440 return LSM_RET_DEFAULT(inode_getsecurity); 1441 /* 1442 * Only one module will provide an attribute with a given name. 1443 */ 1444 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1445 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc); 1446 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 1447 return rc; 1448 } 1449 return LSM_RET_DEFAULT(inode_getsecurity); 1450 } 1451 1452 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1453 { 1454 struct security_hook_list *hp; 1455 int rc; 1456 1457 if (unlikely(IS_PRIVATE(inode))) 1458 return LSM_RET_DEFAULT(inode_setsecurity); 1459 /* 1460 * Only one module will provide an attribute with a given name. 1461 */ 1462 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1463 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1464 flags); 1465 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 1466 return rc; 1467 } 1468 return LSM_RET_DEFAULT(inode_setsecurity); 1469 } 1470 1471 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1472 { 1473 if (unlikely(IS_PRIVATE(inode))) 1474 return 0; 1475 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1476 } 1477 EXPORT_SYMBOL(security_inode_listsecurity); 1478 1479 void security_inode_getsecid(struct inode *inode, u32 *secid) 1480 { 1481 call_void_hook(inode_getsecid, inode, secid); 1482 } 1483 1484 int security_inode_copy_up(struct dentry *src, struct cred **new) 1485 { 1486 return call_int_hook(inode_copy_up, 0, src, new); 1487 } 1488 EXPORT_SYMBOL(security_inode_copy_up); 1489 1490 int security_inode_copy_up_xattr(const char *name) 1491 { 1492 struct security_hook_list *hp; 1493 int rc; 1494 1495 /* 1496 * The implementation can return 0 (accept the xattr), 1 (discard the 1497 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 1498 * any other error code incase of an error. 1499 */ 1500 hlist_for_each_entry(hp, 1501 &security_hook_heads.inode_copy_up_xattr, list) { 1502 rc = hp->hook.inode_copy_up_xattr(name); 1503 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 1504 return rc; 1505 } 1506 1507 return LSM_RET_DEFAULT(inode_copy_up_xattr); 1508 } 1509 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1510 1511 int security_kernfs_init_security(struct kernfs_node *kn_dir, 1512 struct kernfs_node *kn) 1513 { 1514 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1515 } 1516 1517 int security_file_permission(struct file *file, int mask) 1518 { 1519 int ret; 1520 1521 ret = call_int_hook(file_permission, 0, file, mask); 1522 if (ret) 1523 return ret; 1524 1525 return fsnotify_perm(file, mask); 1526 } 1527 1528 int security_file_alloc(struct file *file) 1529 { 1530 int rc = lsm_file_alloc(file); 1531 1532 if (rc) 1533 return rc; 1534 rc = call_int_hook(file_alloc_security, 0, file); 1535 if (unlikely(rc)) 1536 security_file_free(file); 1537 return rc; 1538 } 1539 1540 void security_file_free(struct file *file) 1541 { 1542 void *blob; 1543 1544 call_void_hook(file_free_security, file); 1545 1546 blob = file->f_security; 1547 if (blob) { 1548 file->f_security = NULL; 1549 kmem_cache_free(lsm_file_cache, blob); 1550 } 1551 } 1552 1553 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1554 { 1555 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1556 } 1557 EXPORT_SYMBOL_GPL(security_file_ioctl); 1558 1559 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1560 { 1561 /* 1562 * Does we have PROT_READ and does the application expect 1563 * it to imply PROT_EXEC? If not, nothing to talk about... 1564 */ 1565 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1566 return prot; 1567 if (!(current->personality & READ_IMPLIES_EXEC)) 1568 return prot; 1569 /* 1570 * if that's an anonymous mapping, let it. 1571 */ 1572 if (!file) 1573 return prot | PROT_EXEC; 1574 /* 1575 * ditto if it's not on noexec mount, except that on !MMU we need 1576 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1577 */ 1578 if (!path_noexec(&file->f_path)) { 1579 #ifndef CONFIG_MMU 1580 if (file->f_op->mmap_capabilities) { 1581 unsigned caps = file->f_op->mmap_capabilities(file); 1582 if (!(caps & NOMMU_MAP_EXEC)) 1583 return prot; 1584 } 1585 #endif 1586 return prot | PROT_EXEC; 1587 } 1588 /* anything on noexec mount won't get PROT_EXEC */ 1589 return prot; 1590 } 1591 1592 int security_mmap_file(struct file *file, unsigned long prot, 1593 unsigned long flags) 1594 { 1595 int ret; 1596 ret = call_int_hook(mmap_file, 0, file, prot, 1597 mmap_prot(file, prot), flags); 1598 if (ret) 1599 return ret; 1600 return ima_file_mmap(file, prot); 1601 } 1602 1603 int security_mmap_addr(unsigned long addr) 1604 { 1605 return call_int_hook(mmap_addr, 0, addr); 1606 } 1607 1608 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1609 unsigned long prot) 1610 { 1611 int ret; 1612 1613 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1614 if (ret) 1615 return ret; 1616 return ima_file_mprotect(vma, prot); 1617 } 1618 1619 int security_file_lock(struct file *file, unsigned int cmd) 1620 { 1621 return call_int_hook(file_lock, 0, file, cmd); 1622 } 1623 1624 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1625 { 1626 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1627 } 1628 1629 void security_file_set_fowner(struct file *file) 1630 { 1631 call_void_hook(file_set_fowner, file); 1632 } 1633 1634 int security_file_send_sigiotask(struct task_struct *tsk, 1635 struct fown_struct *fown, int sig) 1636 { 1637 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1638 } 1639 1640 int security_file_receive(struct file *file) 1641 { 1642 return call_int_hook(file_receive, 0, file); 1643 } 1644 1645 int security_file_open(struct file *file) 1646 { 1647 int ret; 1648 1649 ret = call_int_hook(file_open, 0, file); 1650 if (ret) 1651 return ret; 1652 1653 return fsnotify_perm(file, MAY_OPEN); 1654 } 1655 1656 int security_file_truncate(struct file *file) 1657 { 1658 return call_int_hook(file_truncate, 0, file); 1659 } 1660 1661 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1662 { 1663 int rc = lsm_task_alloc(task); 1664 1665 if (rc) 1666 return rc; 1667 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1668 if (unlikely(rc)) 1669 security_task_free(task); 1670 return rc; 1671 } 1672 1673 void security_task_free(struct task_struct *task) 1674 { 1675 call_void_hook(task_free, task); 1676 1677 kfree(task->security); 1678 task->security = NULL; 1679 } 1680 1681 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1682 { 1683 int rc = lsm_cred_alloc(cred, gfp); 1684 1685 if (rc) 1686 return rc; 1687 1688 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1689 if (unlikely(rc)) 1690 security_cred_free(cred); 1691 return rc; 1692 } 1693 1694 void security_cred_free(struct cred *cred) 1695 { 1696 /* 1697 * There is a failure case in prepare_creds() that 1698 * may result in a call here with ->security being NULL. 1699 */ 1700 if (unlikely(cred->security == NULL)) 1701 return; 1702 1703 call_void_hook(cred_free, cred); 1704 1705 kfree(cred->security); 1706 cred->security = NULL; 1707 } 1708 1709 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1710 { 1711 int rc = lsm_cred_alloc(new, gfp); 1712 1713 if (rc) 1714 return rc; 1715 1716 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1717 if (unlikely(rc)) 1718 security_cred_free(new); 1719 return rc; 1720 } 1721 1722 void security_transfer_creds(struct cred *new, const struct cred *old) 1723 { 1724 call_void_hook(cred_transfer, new, old); 1725 } 1726 1727 void security_cred_getsecid(const struct cred *c, u32 *secid) 1728 { 1729 *secid = 0; 1730 call_void_hook(cred_getsecid, c, secid); 1731 } 1732 EXPORT_SYMBOL(security_cred_getsecid); 1733 1734 int security_kernel_act_as(struct cred *new, u32 secid) 1735 { 1736 return call_int_hook(kernel_act_as, 0, new, secid); 1737 } 1738 1739 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1740 { 1741 return call_int_hook(kernel_create_files_as, 0, new, inode); 1742 } 1743 1744 int security_kernel_module_request(char *kmod_name) 1745 { 1746 int ret; 1747 1748 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1749 if (ret) 1750 return ret; 1751 return integrity_kernel_module_request(kmod_name); 1752 } 1753 1754 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 1755 bool contents) 1756 { 1757 int ret; 1758 1759 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 1760 if (ret) 1761 return ret; 1762 return ima_read_file(file, id, contents); 1763 } 1764 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1765 1766 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1767 enum kernel_read_file_id id) 1768 { 1769 int ret; 1770 1771 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1772 if (ret) 1773 return ret; 1774 return ima_post_read_file(file, buf, size, id); 1775 } 1776 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1777 1778 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 1779 { 1780 int ret; 1781 1782 ret = call_int_hook(kernel_load_data, 0, id, contents); 1783 if (ret) 1784 return ret; 1785 return ima_load_data(id, contents); 1786 } 1787 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1788 1789 int security_kernel_post_load_data(char *buf, loff_t size, 1790 enum kernel_load_data_id id, 1791 char *description) 1792 { 1793 int ret; 1794 1795 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 1796 description); 1797 if (ret) 1798 return ret; 1799 return ima_post_load_data(buf, size, id, description); 1800 } 1801 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 1802 1803 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1804 int flags) 1805 { 1806 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1807 } 1808 1809 int security_task_fix_setgid(struct cred *new, const struct cred *old, 1810 int flags) 1811 { 1812 return call_int_hook(task_fix_setgid, 0, new, old, flags); 1813 } 1814 1815 int security_task_fix_setgroups(struct cred *new, const struct cred *old) 1816 { 1817 return call_int_hook(task_fix_setgroups, 0, new, old); 1818 } 1819 1820 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1821 { 1822 return call_int_hook(task_setpgid, 0, p, pgid); 1823 } 1824 1825 int security_task_getpgid(struct task_struct *p) 1826 { 1827 return call_int_hook(task_getpgid, 0, p); 1828 } 1829 1830 int security_task_getsid(struct task_struct *p) 1831 { 1832 return call_int_hook(task_getsid, 0, p); 1833 } 1834 1835 void security_current_getsecid_subj(u32 *secid) 1836 { 1837 *secid = 0; 1838 call_void_hook(current_getsecid_subj, secid); 1839 } 1840 EXPORT_SYMBOL(security_current_getsecid_subj); 1841 1842 void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 1843 { 1844 *secid = 0; 1845 call_void_hook(task_getsecid_obj, p, secid); 1846 } 1847 EXPORT_SYMBOL(security_task_getsecid_obj); 1848 1849 int security_task_setnice(struct task_struct *p, int nice) 1850 { 1851 return call_int_hook(task_setnice, 0, p, nice); 1852 } 1853 1854 int security_task_setioprio(struct task_struct *p, int ioprio) 1855 { 1856 return call_int_hook(task_setioprio, 0, p, ioprio); 1857 } 1858 1859 int security_task_getioprio(struct task_struct *p) 1860 { 1861 return call_int_hook(task_getioprio, 0, p); 1862 } 1863 1864 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1865 unsigned int flags) 1866 { 1867 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1868 } 1869 1870 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1871 struct rlimit *new_rlim) 1872 { 1873 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1874 } 1875 1876 int security_task_setscheduler(struct task_struct *p) 1877 { 1878 return call_int_hook(task_setscheduler, 0, p); 1879 } 1880 1881 int security_task_getscheduler(struct task_struct *p) 1882 { 1883 return call_int_hook(task_getscheduler, 0, p); 1884 } 1885 1886 int security_task_movememory(struct task_struct *p) 1887 { 1888 return call_int_hook(task_movememory, 0, p); 1889 } 1890 1891 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1892 int sig, const struct cred *cred) 1893 { 1894 return call_int_hook(task_kill, 0, p, info, sig, cred); 1895 } 1896 1897 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1898 unsigned long arg4, unsigned long arg5) 1899 { 1900 int thisrc; 1901 int rc = LSM_RET_DEFAULT(task_prctl); 1902 struct security_hook_list *hp; 1903 1904 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1905 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1906 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 1907 rc = thisrc; 1908 if (thisrc != 0) 1909 break; 1910 } 1911 } 1912 return rc; 1913 } 1914 1915 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1916 { 1917 call_void_hook(task_to_inode, p, inode); 1918 } 1919 1920 int security_create_user_ns(const struct cred *cred) 1921 { 1922 return call_int_hook(userns_create, 0, cred); 1923 } 1924 1925 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1926 { 1927 return call_int_hook(ipc_permission, 0, ipcp, flag); 1928 } 1929 1930 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1931 { 1932 *secid = 0; 1933 call_void_hook(ipc_getsecid, ipcp, secid); 1934 } 1935 1936 int security_msg_msg_alloc(struct msg_msg *msg) 1937 { 1938 int rc = lsm_msg_msg_alloc(msg); 1939 1940 if (unlikely(rc)) 1941 return rc; 1942 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1943 if (unlikely(rc)) 1944 security_msg_msg_free(msg); 1945 return rc; 1946 } 1947 1948 void security_msg_msg_free(struct msg_msg *msg) 1949 { 1950 call_void_hook(msg_msg_free_security, msg); 1951 kfree(msg->security); 1952 msg->security = NULL; 1953 } 1954 1955 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1956 { 1957 int rc = lsm_ipc_alloc(msq); 1958 1959 if (unlikely(rc)) 1960 return rc; 1961 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1962 if (unlikely(rc)) 1963 security_msg_queue_free(msq); 1964 return rc; 1965 } 1966 1967 void security_msg_queue_free(struct kern_ipc_perm *msq) 1968 { 1969 call_void_hook(msg_queue_free_security, msq); 1970 kfree(msq->security); 1971 msq->security = NULL; 1972 } 1973 1974 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1975 { 1976 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1977 } 1978 1979 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1980 { 1981 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1982 } 1983 1984 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1985 struct msg_msg *msg, int msqflg) 1986 { 1987 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1988 } 1989 1990 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1991 struct task_struct *target, long type, int mode) 1992 { 1993 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1994 } 1995 1996 int security_shm_alloc(struct kern_ipc_perm *shp) 1997 { 1998 int rc = lsm_ipc_alloc(shp); 1999 2000 if (unlikely(rc)) 2001 return rc; 2002 rc = call_int_hook(shm_alloc_security, 0, shp); 2003 if (unlikely(rc)) 2004 security_shm_free(shp); 2005 return rc; 2006 } 2007 2008 void security_shm_free(struct kern_ipc_perm *shp) 2009 { 2010 call_void_hook(shm_free_security, shp); 2011 kfree(shp->security); 2012 shp->security = NULL; 2013 } 2014 2015 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 2016 { 2017 return call_int_hook(shm_associate, 0, shp, shmflg); 2018 } 2019 2020 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 2021 { 2022 return call_int_hook(shm_shmctl, 0, shp, cmd); 2023 } 2024 2025 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 2026 { 2027 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 2028 } 2029 2030 int security_sem_alloc(struct kern_ipc_perm *sma) 2031 { 2032 int rc = lsm_ipc_alloc(sma); 2033 2034 if (unlikely(rc)) 2035 return rc; 2036 rc = call_int_hook(sem_alloc_security, 0, sma); 2037 if (unlikely(rc)) 2038 security_sem_free(sma); 2039 return rc; 2040 } 2041 2042 void security_sem_free(struct kern_ipc_perm *sma) 2043 { 2044 call_void_hook(sem_free_security, sma); 2045 kfree(sma->security); 2046 sma->security = NULL; 2047 } 2048 2049 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 2050 { 2051 return call_int_hook(sem_associate, 0, sma, semflg); 2052 } 2053 2054 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 2055 { 2056 return call_int_hook(sem_semctl, 0, sma, cmd); 2057 } 2058 2059 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 2060 unsigned nsops, int alter) 2061 { 2062 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 2063 } 2064 2065 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 2066 { 2067 if (unlikely(inode && IS_PRIVATE(inode))) 2068 return; 2069 call_void_hook(d_instantiate, dentry, inode); 2070 } 2071 EXPORT_SYMBOL(security_d_instantiate); 2072 2073 int security_getprocattr(struct task_struct *p, const char *lsm, 2074 const char *name, char **value) 2075 { 2076 struct security_hook_list *hp; 2077 2078 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 2079 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2080 continue; 2081 return hp->hook.getprocattr(p, name, value); 2082 } 2083 return LSM_RET_DEFAULT(getprocattr); 2084 } 2085 2086 int security_setprocattr(const char *lsm, const char *name, void *value, 2087 size_t size) 2088 { 2089 struct security_hook_list *hp; 2090 2091 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 2092 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2093 continue; 2094 return hp->hook.setprocattr(name, value, size); 2095 } 2096 return LSM_RET_DEFAULT(setprocattr); 2097 } 2098 2099 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 2100 { 2101 return call_int_hook(netlink_send, 0, sk, skb); 2102 } 2103 2104 int security_ismaclabel(const char *name) 2105 { 2106 return call_int_hook(ismaclabel, 0, name); 2107 } 2108 EXPORT_SYMBOL(security_ismaclabel); 2109 2110 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2111 { 2112 struct security_hook_list *hp; 2113 int rc; 2114 2115 /* 2116 * Currently, only one LSM can implement secid_to_secctx (i.e this 2117 * LSM hook is not "stackable"). 2118 */ 2119 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 2120 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 2121 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 2122 return rc; 2123 } 2124 2125 return LSM_RET_DEFAULT(secid_to_secctx); 2126 } 2127 EXPORT_SYMBOL(security_secid_to_secctx); 2128 2129 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 2130 { 2131 *secid = 0; 2132 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 2133 } 2134 EXPORT_SYMBOL(security_secctx_to_secid); 2135 2136 void security_release_secctx(char *secdata, u32 seclen) 2137 { 2138 call_void_hook(release_secctx, secdata, seclen); 2139 } 2140 EXPORT_SYMBOL(security_release_secctx); 2141 2142 void security_inode_invalidate_secctx(struct inode *inode) 2143 { 2144 call_void_hook(inode_invalidate_secctx, inode); 2145 } 2146 EXPORT_SYMBOL(security_inode_invalidate_secctx); 2147 2148 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 2149 { 2150 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 2151 } 2152 EXPORT_SYMBOL(security_inode_notifysecctx); 2153 2154 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 2155 { 2156 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 2157 } 2158 EXPORT_SYMBOL(security_inode_setsecctx); 2159 2160 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 2161 { 2162 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 2163 } 2164 EXPORT_SYMBOL(security_inode_getsecctx); 2165 2166 #ifdef CONFIG_WATCH_QUEUE 2167 int security_post_notification(const struct cred *w_cred, 2168 const struct cred *cred, 2169 struct watch_notification *n) 2170 { 2171 return call_int_hook(post_notification, 0, w_cred, cred, n); 2172 } 2173 #endif /* CONFIG_WATCH_QUEUE */ 2174 2175 #ifdef CONFIG_KEY_NOTIFICATIONS 2176 int security_watch_key(struct key *key) 2177 { 2178 return call_int_hook(watch_key, 0, key); 2179 } 2180 #endif 2181 2182 #ifdef CONFIG_SECURITY_NETWORK 2183 2184 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 2185 { 2186 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 2187 } 2188 EXPORT_SYMBOL(security_unix_stream_connect); 2189 2190 int security_unix_may_send(struct socket *sock, struct socket *other) 2191 { 2192 return call_int_hook(unix_may_send, 0, sock, other); 2193 } 2194 EXPORT_SYMBOL(security_unix_may_send); 2195 2196 int security_socket_create(int family, int type, int protocol, int kern) 2197 { 2198 return call_int_hook(socket_create, 0, family, type, protocol, kern); 2199 } 2200 2201 int security_socket_post_create(struct socket *sock, int family, 2202 int type, int protocol, int kern) 2203 { 2204 return call_int_hook(socket_post_create, 0, sock, family, type, 2205 protocol, kern); 2206 } 2207 2208 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 2209 { 2210 return call_int_hook(socket_socketpair, 0, socka, sockb); 2211 } 2212 EXPORT_SYMBOL(security_socket_socketpair); 2213 2214 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 2215 { 2216 return call_int_hook(socket_bind, 0, sock, address, addrlen); 2217 } 2218 2219 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 2220 { 2221 return call_int_hook(socket_connect, 0, sock, address, addrlen); 2222 } 2223 2224 int security_socket_listen(struct socket *sock, int backlog) 2225 { 2226 return call_int_hook(socket_listen, 0, sock, backlog); 2227 } 2228 2229 int security_socket_accept(struct socket *sock, struct socket *newsock) 2230 { 2231 return call_int_hook(socket_accept, 0, sock, newsock); 2232 } 2233 2234 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 2235 { 2236 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 2237 } 2238 2239 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2240 int size, int flags) 2241 { 2242 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 2243 } 2244 2245 int security_socket_getsockname(struct socket *sock) 2246 { 2247 return call_int_hook(socket_getsockname, 0, sock); 2248 } 2249 2250 int security_socket_getpeername(struct socket *sock) 2251 { 2252 return call_int_hook(socket_getpeername, 0, sock); 2253 } 2254 2255 int security_socket_getsockopt(struct socket *sock, int level, int optname) 2256 { 2257 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2258 } 2259 2260 int security_socket_setsockopt(struct socket *sock, int level, int optname) 2261 { 2262 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2263 } 2264 2265 int security_socket_shutdown(struct socket *sock, int how) 2266 { 2267 return call_int_hook(socket_shutdown, 0, sock, how); 2268 } 2269 2270 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2271 { 2272 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2273 } 2274 EXPORT_SYMBOL(security_sock_rcv_skb); 2275 2276 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2277 int __user *optlen, unsigned len) 2278 { 2279 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2280 optval, optlen, len); 2281 } 2282 2283 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2284 { 2285 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2286 skb, secid); 2287 } 2288 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2289 2290 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2291 { 2292 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2293 } 2294 2295 void security_sk_free(struct sock *sk) 2296 { 2297 call_void_hook(sk_free_security, sk); 2298 } 2299 2300 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2301 { 2302 call_void_hook(sk_clone_security, sk, newsk); 2303 } 2304 EXPORT_SYMBOL(security_sk_clone); 2305 2306 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic) 2307 { 2308 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 2309 } 2310 EXPORT_SYMBOL(security_sk_classify_flow); 2311 2312 void security_req_classify_flow(const struct request_sock *req, 2313 struct flowi_common *flic) 2314 { 2315 call_void_hook(req_classify_flow, req, flic); 2316 } 2317 EXPORT_SYMBOL(security_req_classify_flow); 2318 2319 void security_sock_graft(struct sock *sk, struct socket *parent) 2320 { 2321 call_void_hook(sock_graft, sk, parent); 2322 } 2323 EXPORT_SYMBOL(security_sock_graft); 2324 2325 int security_inet_conn_request(const struct sock *sk, 2326 struct sk_buff *skb, struct request_sock *req) 2327 { 2328 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2329 } 2330 EXPORT_SYMBOL(security_inet_conn_request); 2331 2332 void security_inet_csk_clone(struct sock *newsk, 2333 const struct request_sock *req) 2334 { 2335 call_void_hook(inet_csk_clone, newsk, req); 2336 } 2337 2338 void security_inet_conn_established(struct sock *sk, 2339 struct sk_buff *skb) 2340 { 2341 call_void_hook(inet_conn_established, sk, skb); 2342 } 2343 EXPORT_SYMBOL(security_inet_conn_established); 2344 2345 int security_secmark_relabel_packet(u32 secid) 2346 { 2347 return call_int_hook(secmark_relabel_packet, 0, secid); 2348 } 2349 EXPORT_SYMBOL(security_secmark_relabel_packet); 2350 2351 void security_secmark_refcount_inc(void) 2352 { 2353 call_void_hook(secmark_refcount_inc); 2354 } 2355 EXPORT_SYMBOL(security_secmark_refcount_inc); 2356 2357 void security_secmark_refcount_dec(void) 2358 { 2359 call_void_hook(secmark_refcount_dec); 2360 } 2361 EXPORT_SYMBOL(security_secmark_refcount_dec); 2362 2363 int security_tun_dev_alloc_security(void **security) 2364 { 2365 return call_int_hook(tun_dev_alloc_security, 0, security); 2366 } 2367 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2368 2369 void security_tun_dev_free_security(void *security) 2370 { 2371 call_void_hook(tun_dev_free_security, security); 2372 } 2373 EXPORT_SYMBOL(security_tun_dev_free_security); 2374 2375 int security_tun_dev_create(void) 2376 { 2377 return call_int_hook(tun_dev_create, 0); 2378 } 2379 EXPORT_SYMBOL(security_tun_dev_create); 2380 2381 int security_tun_dev_attach_queue(void *security) 2382 { 2383 return call_int_hook(tun_dev_attach_queue, 0, security); 2384 } 2385 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2386 2387 int security_tun_dev_attach(struct sock *sk, void *security) 2388 { 2389 return call_int_hook(tun_dev_attach, 0, sk, security); 2390 } 2391 EXPORT_SYMBOL(security_tun_dev_attach); 2392 2393 int security_tun_dev_open(void *security) 2394 { 2395 return call_int_hook(tun_dev_open, 0, security); 2396 } 2397 EXPORT_SYMBOL(security_tun_dev_open); 2398 2399 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb) 2400 { 2401 return call_int_hook(sctp_assoc_request, 0, asoc, skb); 2402 } 2403 EXPORT_SYMBOL(security_sctp_assoc_request); 2404 2405 int security_sctp_bind_connect(struct sock *sk, int optname, 2406 struct sockaddr *address, int addrlen) 2407 { 2408 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2409 address, addrlen); 2410 } 2411 EXPORT_SYMBOL(security_sctp_bind_connect); 2412 2413 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 2414 struct sock *newsk) 2415 { 2416 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 2417 } 2418 EXPORT_SYMBOL(security_sctp_sk_clone); 2419 2420 int security_sctp_assoc_established(struct sctp_association *asoc, 2421 struct sk_buff *skb) 2422 { 2423 return call_int_hook(sctp_assoc_established, 0, asoc, skb); 2424 } 2425 EXPORT_SYMBOL(security_sctp_assoc_established); 2426 2427 #endif /* CONFIG_SECURITY_NETWORK */ 2428 2429 #ifdef CONFIG_SECURITY_INFINIBAND 2430 2431 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2432 { 2433 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2434 } 2435 EXPORT_SYMBOL(security_ib_pkey_access); 2436 2437 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2438 { 2439 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2440 } 2441 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2442 2443 int security_ib_alloc_security(void **sec) 2444 { 2445 return call_int_hook(ib_alloc_security, 0, sec); 2446 } 2447 EXPORT_SYMBOL(security_ib_alloc_security); 2448 2449 void security_ib_free_security(void *sec) 2450 { 2451 call_void_hook(ib_free_security, sec); 2452 } 2453 EXPORT_SYMBOL(security_ib_free_security); 2454 #endif /* CONFIG_SECURITY_INFINIBAND */ 2455 2456 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2457 2458 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2459 struct xfrm_user_sec_ctx *sec_ctx, 2460 gfp_t gfp) 2461 { 2462 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2463 } 2464 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2465 2466 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2467 struct xfrm_sec_ctx **new_ctxp) 2468 { 2469 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2470 } 2471 2472 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2473 { 2474 call_void_hook(xfrm_policy_free_security, ctx); 2475 } 2476 EXPORT_SYMBOL(security_xfrm_policy_free); 2477 2478 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2479 { 2480 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2481 } 2482 2483 int security_xfrm_state_alloc(struct xfrm_state *x, 2484 struct xfrm_user_sec_ctx *sec_ctx) 2485 { 2486 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2487 } 2488 EXPORT_SYMBOL(security_xfrm_state_alloc); 2489 2490 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2491 struct xfrm_sec_ctx *polsec, u32 secid) 2492 { 2493 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2494 } 2495 2496 int security_xfrm_state_delete(struct xfrm_state *x) 2497 { 2498 return call_int_hook(xfrm_state_delete_security, 0, x); 2499 } 2500 EXPORT_SYMBOL(security_xfrm_state_delete); 2501 2502 void security_xfrm_state_free(struct xfrm_state *x) 2503 { 2504 call_void_hook(xfrm_state_free_security, x); 2505 } 2506 2507 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 2508 { 2509 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid); 2510 } 2511 2512 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2513 struct xfrm_policy *xp, 2514 const struct flowi_common *flic) 2515 { 2516 struct security_hook_list *hp; 2517 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 2518 2519 /* 2520 * Since this function is expected to return 0 or 1, the judgment 2521 * becomes difficult if multiple LSMs supply this call. Fortunately, 2522 * we can use the first LSM's judgment because currently only SELinux 2523 * supplies this call. 2524 * 2525 * For speed optimization, we explicitly break the loop rather than 2526 * using the macro 2527 */ 2528 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2529 list) { 2530 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 2531 break; 2532 } 2533 return rc; 2534 } 2535 2536 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2537 { 2538 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2539 } 2540 2541 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 2542 { 2543 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 2544 0); 2545 2546 BUG_ON(rc); 2547 } 2548 EXPORT_SYMBOL(security_skb_classify_flow); 2549 2550 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2551 2552 #ifdef CONFIG_KEYS 2553 2554 int security_key_alloc(struct key *key, const struct cred *cred, 2555 unsigned long flags) 2556 { 2557 return call_int_hook(key_alloc, 0, key, cred, flags); 2558 } 2559 2560 void security_key_free(struct key *key) 2561 { 2562 call_void_hook(key_free, key); 2563 } 2564 2565 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 2566 enum key_need_perm need_perm) 2567 { 2568 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 2569 } 2570 2571 int security_key_getsecurity(struct key *key, char **_buffer) 2572 { 2573 *_buffer = NULL; 2574 return call_int_hook(key_getsecurity, 0, key, _buffer); 2575 } 2576 2577 #endif /* CONFIG_KEYS */ 2578 2579 #ifdef CONFIG_AUDIT 2580 2581 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2582 { 2583 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2584 } 2585 2586 int security_audit_rule_known(struct audit_krule *krule) 2587 { 2588 return call_int_hook(audit_rule_known, 0, krule); 2589 } 2590 2591 void security_audit_rule_free(void *lsmrule) 2592 { 2593 call_void_hook(audit_rule_free, lsmrule); 2594 } 2595 2596 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2597 { 2598 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2599 } 2600 #endif /* CONFIG_AUDIT */ 2601 2602 #ifdef CONFIG_BPF_SYSCALL 2603 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2604 { 2605 return call_int_hook(bpf, 0, cmd, attr, size); 2606 } 2607 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2608 { 2609 return call_int_hook(bpf_map, 0, map, fmode); 2610 } 2611 int security_bpf_prog(struct bpf_prog *prog) 2612 { 2613 return call_int_hook(bpf_prog, 0, prog); 2614 } 2615 int security_bpf_map_alloc(struct bpf_map *map) 2616 { 2617 return call_int_hook(bpf_map_alloc_security, 0, map); 2618 } 2619 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2620 { 2621 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2622 } 2623 void security_bpf_map_free(struct bpf_map *map) 2624 { 2625 call_void_hook(bpf_map_free_security, map); 2626 } 2627 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2628 { 2629 call_void_hook(bpf_prog_free_security, aux); 2630 } 2631 #endif /* CONFIG_BPF_SYSCALL */ 2632 2633 int security_locked_down(enum lockdown_reason what) 2634 { 2635 return call_int_hook(locked_down, 0, what); 2636 } 2637 EXPORT_SYMBOL(security_locked_down); 2638 2639 #ifdef CONFIG_PERF_EVENTS 2640 int security_perf_event_open(struct perf_event_attr *attr, int type) 2641 { 2642 return call_int_hook(perf_event_open, 0, attr, type); 2643 } 2644 2645 int security_perf_event_alloc(struct perf_event *event) 2646 { 2647 return call_int_hook(perf_event_alloc, 0, event); 2648 } 2649 2650 void security_perf_event_free(struct perf_event *event) 2651 { 2652 call_void_hook(perf_event_free, event); 2653 } 2654 2655 int security_perf_event_read(struct perf_event *event) 2656 { 2657 return call_int_hook(perf_event_read, 0, event); 2658 } 2659 2660 int security_perf_event_write(struct perf_event *event) 2661 { 2662 return call_int_hook(perf_event_write, 0, event); 2663 } 2664 #endif /* CONFIG_PERF_EVENTS */ 2665 2666 #ifdef CONFIG_IO_URING 2667 int security_uring_override_creds(const struct cred *new) 2668 { 2669 return call_int_hook(uring_override_creds, 0, new); 2670 } 2671 2672 int security_uring_sqpoll(void) 2673 { 2674 return call_int_hook(uring_sqpoll, 0); 2675 } 2676 int security_uring_cmd(struct io_uring_cmd *ioucmd) 2677 { 2678 return call_int_hook(uring_cmd, 0, ioucmd); 2679 } 2680 #endif /* CONFIG_IO_URING */ 2681