xref: /linux-6.15/security/security.c (revision ed5edd5a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <[email protected]>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <[email protected]>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10 
11 #define pr_fmt(fmt) "LSM: " fmt
12 
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32 
33 #define MAX_LSM_EVM_XATTR	2
34 
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37 
38 /*
39  * These are descriptions of the reasons that can be passed to the
40  * security_locked_down() LSM hook. Placing this array here allows
41  * all security modules to use the same descriptions for auditing
42  * purposes.
43  */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 	[LOCKDOWN_NONE] = "none",
46 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 	[LOCKDOWN_HIBERNATION] = "hibernation",
51 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 	[LOCKDOWN_IOPORT] = "raw io port access",
53 	[LOCKDOWN_MSR] = "raw MSR access",
54 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59 	[LOCKDOWN_DEBUGFS] = "debugfs access",
60 	[LOCKDOWN_XMON_WR] = "xmon write access",
61 	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
63 	[LOCKDOWN_KCORE] = "/proc/kcore access",
64 	[LOCKDOWN_KPROBES] = "use of kprobes",
65 	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
66 	[LOCKDOWN_PERF] = "unsafe use of perf",
67 	[LOCKDOWN_TRACEFS] = "use of tracefs",
68 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
69 	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
70 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
71 };
72 
73 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
74 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
75 
76 static struct kmem_cache *lsm_file_cache;
77 static struct kmem_cache *lsm_inode_cache;
78 
79 char *lsm_names;
80 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
81 
82 /* Boot-time LSM user choice */
83 static __initdata const char *chosen_lsm_order;
84 static __initdata const char *chosen_major_lsm;
85 
86 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
87 
88 /* Ordered list of LSMs to initialize. */
89 static __initdata struct lsm_info **ordered_lsms;
90 static __initdata struct lsm_info *exclusive;
91 
92 static __initdata bool debug;
93 #define init_debug(...)						\
94 	do {							\
95 		if (debug)					\
96 			pr_info(__VA_ARGS__);			\
97 	} while (0)
98 
99 static bool __init is_enabled(struct lsm_info *lsm)
100 {
101 	if (!lsm->enabled)
102 		return false;
103 
104 	return *lsm->enabled;
105 }
106 
107 /* Mark an LSM's enabled flag. */
108 static int lsm_enabled_true __initdata = 1;
109 static int lsm_enabled_false __initdata = 0;
110 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
111 {
112 	/*
113 	 * When an LSM hasn't configured an enable variable, we can use
114 	 * a hard-coded location for storing the default enabled state.
115 	 */
116 	if (!lsm->enabled) {
117 		if (enabled)
118 			lsm->enabled = &lsm_enabled_true;
119 		else
120 			lsm->enabled = &lsm_enabled_false;
121 	} else if (lsm->enabled == &lsm_enabled_true) {
122 		if (!enabled)
123 			lsm->enabled = &lsm_enabled_false;
124 	} else if (lsm->enabled == &lsm_enabled_false) {
125 		if (enabled)
126 			lsm->enabled = &lsm_enabled_true;
127 	} else {
128 		*lsm->enabled = enabled;
129 	}
130 }
131 
132 /* Is an LSM already listed in the ordered LSMs list? */
133 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
134 {
135 	struct lsm_info **check;
136 
137 	for (check = ordered_lsms; *check; check++)
138 		if (*check == lsm)
139 			return true;
140 
141 	return false;
142 }
143 
144 /* Append an LSM to the list of ordered LSMs to initialize. */
145 static int last_lsm __initdata;
146 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
147 {
148 	/* Ignore duplicate selections. */
149 	if (exists_ordered_lsm(lsm))
150 		return;
151 
152 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
153 		return;
154 
155 	/* Enable this LSM, if it is not already set. */
156 	if (!lsm->enabled)
157 		lsm->enabled = &lsm_enabled_true;
158 	ordered_lsms[last_lsm++] = lsm;
159 
160 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
161 		   is_enabled(lsm) ? "en" : "dis");
162 }
163 
164 /* Is an LSM allowed to be initialized? */
165 static bool __init lsm_allowed(struct lsm_info *lsm)
166 {
167 	/* Skip if the LSM is disabled. */
168 	if (!is_enabled(lsm))
169 		return false;
170 
171 	/* Not allowed if another exclusive LSM already initialized. */
172 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
173 		init_debug("exclusive disabled: %s\n", lsm->name);
174 		return false;
175 	}
176 
177 	return true;
178 }
179 
180 static void __init lsm_set_blob_size(int *need, int *lbs)
181 {
182 	int offset;
183 
184 	if (*need > 0) {
185 		offset = *lbs;
186 		*lbs += *need;
187 		*need = offset;
188 	}
189 }
190 
191 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
192 {
193 	if (!needed)
194 		return;
195 
196 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
197 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
198 	/*
199 	 * The inode blob gets an rcu_head in addition to
200 	 * what the modules might need.
201 	 */
202 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
203 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
204 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
205 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
206 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
207 	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
208 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
209 }
210 
211 /* Prepare LSM for initialization. */
212 static void __init prepare_lsm(struct lsm_info *lsm)
213 {
214 	int enabled = lsm_allowed(lsm);
215 
216 	/* Record enablement (to handle any following exclusive LSMs). */
217 	set_enabled(lsm, enabled);
218 
219 	/* If enabled, do pre-initialization work. */
220 	if (enabled) {
221 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
222 			exclusive = lsm;
223 			init_debug("exclusive chosen: %s\n", lsm->name);
224 		}
225 
226 		lsm_set_blob_sizes(lsm->blobs);
227 	}
228 }
229 
230 /* Initialize a given LSM, if it is enabled. */
231 static void __init initialize_lsm(struct lsm_info *lsm)
232 {
233 	if (is_enabled(lsm)) {
234 		int ret;
235 
236 		init_debug("initializing %s\n", lsm->name);
237 		ret = lsm->init();
238 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
239 	}
240 }
241 
242 /* Populate ordered LSMs list from comma-separated LSM name list. */
243 static void __init ordered_lsm_parse(const char *order, const char *origin)
244 {
245 	struct lsm_info *lsm;
246 	char *sep, *name, *next;
247 
248 	/* LSM_ORDER_FIRST is always first. */
249 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
250 		if (lsm->order == LSM_ORDER_FIRST)
251 			append_ordered_lsm(lsm, "first");
252 	}
253 
254 	/* Process "security=", if given. */
255 	if (chosen_major_lsm) {
256 		struct lsm_info *major;
257 
258 		/*
259 		 * To match the original "security=" behavior, this
260 		 * explicitly does NOT fallback to another Legacy Major
261 		 * if the selected one was separately disabled: disable
262 		 * all non-matching Legacy Major LSMs.
263 		 */
264 		for (major = __start_lsm_info; major < __end_lsm_info;
265 		     major++) {
266 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
267 			    strcmp(major->name, chosen_major_lsm) != 0) {
268 				set_enabled(major, false);
269 				init_debug("security=%s disabled: %s\n",
270 					   chosen_major_lsm, major->name);
271 			}
272 		}
273 	}
274 
275 	sep = kstrdup(order, GFP_KERNEL);
276 	next = sep;
277 	/* Walk the list, looking for matching LSMs. */
278 	while ((name = strsep(&next, ",")) != NULL) {
279 		bool found = false;
280 
281 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
282 			if (lsm->order == LSM_ORDER_MUTABLE &&
283 			    strcmp(lsm->name, name) == 0) {
284 				append_ordered_lsm(lsm, origin);
285 				found = true;
286 			}
287 		}
288 
289 		if (!found)
290 			init_debug("%s ignored: %s\n", origin, name);
291 	}
292 
293 	/* Process "security=", if given. */
294 	if (chosen_major_lsm) {
295 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
296 			if (exists_ordered_lsm(lsm))
297 				continue;
298 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
299 				append_ordered_lsm(lsm, "security=");
300 		}
301 	}
302 
303 	/* Disable all LSMs not in the ordered list. */
304 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
305 		if (exists_ordered_lsm(lsm))
306 			continue;
307 		set_enabled(lsm, false);
308 		init_debug("%s disabled: %s\n", origin, lsm->name);
309 	}
310 
311 	kfree(sep);
312 }
313 
314 static void __init lsm_early_cred(struct cred *cred);
315 static void __init lsm_early_task(struct task_struct *task);
316 
317 static int lsm_append(const char *new, char **result);
318 
319 static void __init ordered_lsm_init(void)
320 {
321 	struct lsm_info **lsm;
322 
323 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
324 				GFP_KERNEL);
325 
326 	if (chosen_lsm_order) {
327 		if (chosen_major_lsm) {
328 			pr_info("security= is ignored because it is superseded by lsm=\n");
329 			chosen_major_lsm = NULL;
330 		}
331 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
332 	} else
333 		ordered_lsm_parse(builtin_lsm_order, "builtin");
334 
335 	for (lsm = ordered_lsms; *lsm; lsm++)
336 		prepare_lsm(*lsm);
337 
338 	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
339 	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
340 	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
341 	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
342 	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
343 	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
344 	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
345 
346 	/*
347 	 * Create any kmem_caches needed for blobs
348 	 */
349 	if (blob_sizes.lbs_file)
350 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
351 						   blob_sizes.lbs_file, 0,
352 						   SLAB_PANIC, NULL);
353 	if (blob_sizes.lbs_inode)
354 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
355 						    blob_sizes.lbs_inode, 0,
356 						    SLAB_PANIC, NULL);
357 
358 	lsm_early_cred((struct cred *) current->cred);
359 	lsm_early_task(current);
360 	for (lsm = ordered_lsms; *lsm; lsm++)
361 		initialize_lsm(*lsm);
362 
363 	kfree(ordered_lsms);
364 }
365 
366 int __init early_security_init(void)
367 {
368 	struct lsm_info *lsm;
369 
370 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
371 	INIT_HLIST_HEAD(&security_hook_heads.NAME);
372 #include "linux/lsm_hook_defs.h"
373 #undef LSM_HOOK
374 
375 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
376 		if (!lsm->enabled)
377 			lsm->enabled = &lsm_enabled_true;
378 		prepare_lsm(lsm);
379 		initialize_lsm(lsm);
380 	}
381 
382 	return 0;
383 }
384 
385 /**
386  * security_init - initializes the security framework
387  *
388  * This should be called early in the kernel initialization sequence.
389  */
390 int __init security_init(void)
391 {
392 	struct lsm_info *lsm;
393 
394 	pr_info("Security Framework initializing\n");
395 
396 	/*
397 	 * Append the names of the early LSM modules now that kmalloc() is
398 	 * available
399 	 */
400 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
401 		if (lsm->enabled)
402 			lsm_append(lsm->name, &lsm_names);
403 	}
404 
405 	/* Load LSMs in specified order. */
406 	ordered_lsm_init();
407 
408 	return 0;
409 }
410 
411 /* Save user chosen LSM */
412 static int __init choose_major_lsm(char *str)
413 {
414 	chosen_major_lsm = str;
415 	return 1;
416 }
417 __setup("security=", choose_major_lsm);
418 
419 /* Explicitly choose LSM initialization order. */
420 static int __init choose_lsm_order(char *str)
421 {
422 	chosen_lsm_order = str;
423 	return 1;
424 }
425 __setup("lsm=", choose_lsm_order);
426 
427 /* Enable LSM order debugging. */
428 static int __init enable_debug(char *str)
429 {
430 	debug = true;
431 	return 1;
432 }
433 __setup("lsm.debug", enable_debug);
434 
435 static bool match_last_lsm(const char *list, const char *lsm)
436 {
437 	const char *last;
438 
439 	if (WARN_ON(!list || !lsm))
440 		return false;
441 	last = strrchr(list, ',');
442 	if (last)
443 		/* Pass the comma, strcmp() will check for '\0' */
444 		last++;
445 	else
446 		last = list;
447 	return !strcmp(last, lsm);
448 }
449 
450 static int lsm_append(const char *new, char **result)
451 {
452 	char *cp;
453 
454 	if (*result == NULL) {
455 		*result = kstrdup(new, GFP_KERNEL);
456 		if (*result == NULL)
457 			return -ENOMEM;
458 	} else {
459 		/* Check if it is the last registered name */
460 		if (match_last_lsm(*result, new))
461 			return 0;
462 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
463 		if (cp == NULL)
464 			return -ENOMEM;
465 		kfree(*result);
466 		*result = cp;
467 	}
468 	return 0;
469 }
470 
471 /**
472  * security_add_hooks - Add a modules hooks to the hook lists.
473  * @hooks: the hooks to add
474  * @count: the number of hooks to add
475  * @lsm: the name of the security module
476  *
477  * Each LSM has to register its hooks with the infrastructure.
478  */
479 void __init security_add_hooks(struct security_hook_list *hooks, int count,
480 				char *lsm)
481 {
482 	int i;
483 
484 	for (i = 0; i < count; i++) {
485 		hooks[i].lsm = lsm;
486 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
487 	}
488 
489 	/*
490 	 * Don't try to append during early_security_init(), we'll come back
491 	 * and fix this up afterwards.
492 	 */
493 	if (slab_is_available()) {
494 		if (lsm_append(lsm, &lsm_names) < 0)
495 			panic("%s - Cannot get early memory.\n", __func__);
496 	}
497 }
498 
499 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
500 {
501 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
502 					    event, data);
503 }
504 EXPORT_SYMBOL(call_blocking_lsm_notifier);
505 
506 int register_blocking_lsm_notifier(struct notifier_block *nb)
507 {
508 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
509 						nb);
510 }
511 EXPORT_SYMBOL(register_blocking_lsm_notifier);
512 
513 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
514 {
515 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
516 						  nb);
517 }
518 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
519 
520 /**
521  * lsm_cred_alloc - allocate a composite cred blob
522  * @cred: the cred that needs a blob
523  * @gfp: allocation type
524  *
525  * Allocate the cred blob for all the modules
526  *
527  * Returns 0, or -ENOMEM if memory can't be allocated.
528  */
529 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
530 {
531 	if (blob_sizes.lbs_cred == 0) {
532 		cred->security = NULL;
533 		return 0;
534 	}
535 
536 	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
537 	if (cred->security == NULL)
538 		return -ENOMEM;
539 	return 0;
540 }
541 
542 /**
543  * lsm_early_cred - during initialization allocate a composite cred blob
544  * @cred: the cred that needs a blob
545  *
546  * Allocate the cred blob for all the modules
547  */
548 static void __init lsm_early_cred(struct cred *cred)
549 {
550 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
551 
552 	if (rc)
553 		panic("%s: Early cred alloc failed.\n", __func__);
554 }
555 
556 /**
557  * lsm_file_alloc - allocate a composite file blob
558  * @file: the file that needs a blob
559  *
560  * Allocate the file blob for all the modules
561  *
562  * Returns 0, or -ENOMEM if memory can't be allocated.
563  */
564 static int lsm_file_alloc(struct file *file)
565 {
566 	if (!lsm_file_cache) {
567 		file->f_security = NULL;
568 		return 0;
569 	}
570 
571 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
572 	if (file->f_security == NULL)
573 		return -ENOMEM;
574 	return 0;
575 }
576 
577 /**
578  * lsm_inode_alloc - allocate a composite inode blob
579  * @inode: the inode that needs a blob
580  *
581  * Allocate the inode blob for all the modules
582  *
583  * Returns 0, or -ENOMEM if memory can't be allocated.
584  */
585 int lsm_inode_alloc(struct inode *inode)
586 {
587 	if (!lsm_inode_cache) {
588 		inode->i_security = NULL;
589 		return 0;
590 	}
591 
592 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
593 	if (inode->i_security == NULL)
594 		return -ENOMEM;
595 	return 0;
596 }
597 
598 /**
599  * lsm_task_alloc - allocate a composite task blob
600  * @task: the task that needs a blob
601  *
602  * Allocate the task blob for all the modules
603  *
604  * Returns 0, or -ENOMEM if memory can't be allocated.
605  */
606 static int lsm_task_alloc(struct task_struct *task)
607 {
608 	if (blob_sizes.lbs_task == 0) {
609 		task->security = NULL;
610 		return 0;
611 	}
612 
613 	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
614 	if (task->security == NULL)
615 		return -ENOMEM;
616 	return 0;
617 }
618 
619 /**
620  * lsm_ipc_alloc - allocate a composite ipc blob
621  * @kip: the ipc that needs a blob
622  *
623  * Allocate the ipc blob for all the modules
624  *
625  * Returns 0, or -ENOMEM if memory can't be allocated.
626  */
627 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
628 {
629 	if (blob_sizes.lbs_ipc == 0) {
630 		kip->security = NULL;
631 		return 0;
632 	}
633 
634 	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
635 	if (kip->security == NULL)
636 		return -ENOMEM;
637 	return 0;
638 }
639 
640 /**
641  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
642  * @mp: the msg_msg that needs a blob
643  *
644  * Allocate the ipc blob for all the modules
645  *
646  * Returns 0, or -ENOMEM if memory can't be allocated.
647  */
648 static int lsm_msg_msg_alloc(struct msg_msg *mp)
649 {
650 	if (blob_sizes.lbs_msg_msg == 0) {
651 		mp->security = NULL;
652 		return 0;
653 	}
654 
655 	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
656 	if (mp->security == NULL)
657 		return -ENOMEM;
658 	return 0;
659 }
660 
661 /**
662  * lsm_early_task - during initialization allocate a composite task blob
663  * @task: the task that needs a blob
664  *
665  * Allocate the task blob for all the modules
666  */
667 static void __init lsm_early_task(struct task_struct *task)
668 {
669 	int rc = lsm_task_alloc(task);
670 
671 	if (rc)
672 		panic("%s: Early task alloc failed.\n", __func__);
673 }
674 
675 /**
676  * lsm_superblock_alloc - allocate a composite superblock blob
677  * @sb: the superblock that needs a blob
678  *
679  * Allocate the superblock blob for all the modules
680  *
681  * Returns 0, or -ENOMEM if memory can't be allocated.
682  */
683 static int lsm_superblock_alloc(struct super_block *sb)
684 {
685 	if (blob_sizes.lbs_superblock == 0) {
686 		sb->s_security = NULL;
687 		return 0;
688 	}
689 
690 	sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
691 	if (sb->s_security == NULL)
692 		return -ENOMEM;
693 	return 0;
694 }
695 
696 /*
697  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
698  * can be accessed with:
699  *
700  *	LSM_RET_DEFAULT(<hook_name>)
701  *
702  * The macros below define static constants for the default value of each
703  * LSM hook.
704  */
705 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
706 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
707 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
708 	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
709 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
710 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
711 
712 #include <linux/lsm_hook_defs.h>
713 #undef LSM_HOOK
714 
715 /*
716  * Hook list operation macros.
717  *
718  * call_void_hook:
719  *	This is a hook that does not return a value.
720  *
721  * call_int_hook:
722  *	This is a hook that returns a value.
723  */
724 
725 #define call_void_hook(FUNC, ...)				\
726 	do {							\
727 		struct security_hook_list *P;			\
728 								\
729 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
730 			P->hook.FUNC(__VA_ARGS__);		\
731 	} while (0)
732 
733 #define call_int_hook(FUNC, IRC, ...) ({			\
734 	int RC = IRC;						\
735 	do {							\
736 		struct security_hook_list *P;			\
737 								\
738 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
739 			RC = P->hook.FUNC(__VA_ARGS__);		\
740 			if (RC != 0)				\
741 				break;				\
742 		}						\
743 	} while (0);						\
744 	RC;							\
745 })
746 
747 /* Security operations */
748 
749 int security_binder_set_context_mgr(const struct cred *mgr)
750 {
751 	return call_int_hook(binder_set_context_mgr, 0, mgr);
752 }
753 
754 int security_binder_transaction(const struct cred *from,
755 				const struct cred *to)
756 {
757 	return call_int_hook(binder_transaction, 0, from, to);
758 }
759 
760 int security_binder_transfer_binder(const struct cred *from,
761 				    const struct cred *to)
762 {
763 	return call_int_hook(binder_transfer_binder, 0, from, to);
764 }
765 
766 int security_binder_transfer_file(const struct cred *from,
767 				  const struct cred *to, struct file *file)
768 {
769 	return call_int_hook(binder_transfer_file, 0, from, to, file);
770 }
771 
772 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
773 {
774 	return call_int_hook(ptrace_access_check, 0, child, mode);
775 }
776 
777 int security_ptrace_traceme(struct task_struct *parent)
778 {
779 	return call_int_hook(ptrace_traceme, 0, parent);
780 }
781 
782 int security_capget(struct task_struct *target,
783 		     kernel_cap_t *effective,
784 		     kernel_cap_t *inheritable,
785 		     kernel_cap_t *permitted)
786 {
787 	return call_int_hook(capget, 0, target,
788 				effective, inheritable, permitted);
789 }
790 
791 int security_capset(struct cred *new, const struct cred *old,
792 		    const kernel_cap_t *effective,
793 		    const kernel_cap_t *inheritable,
794 		    const kernel_cap_t *permitted)
795 {
796 	return call_int_hook(capset, 0, new, old,
797 				effective, inheritable, permitted);
798 }
799 
800 int security_capable(const struct cred *cred,
801 		     struct user_namespace *ns,
802 		     int cap,
803 		     unsigned int opts)
804 {
805 	return call_int_hook(capable, 0, cred, ns, cap, opts);
806 }
807 
808 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
809 {
810 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
811 }
812 
813 int security_quota_on(struct dentry *dentry)
814 {
815 	return call_int_hook(quota_on, 0, dentry);
816 }
817 
818 int security_syslog(int type)
819 {
820 	return call_int_hook(syslog, 0, type);
821 }
822 
823 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
824 {
825 	return call_int_hook(settime, 0, ts, tz);
826 }
827 
828 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
829 {
830 	struct security_hook_list *hp;
831 	int cap_sys_admin = 1;
832 	int rc;
833 
834 	/*
835 	 * The module will respond with a positive value if
836 	 * it thinks the __vm_enough_memory() call should be
837 	 * made with the cap_sys_admin set. If all of the modules
838 	 * agree that it should be set it will. If any module
839 	 * thinks it should not be set it won't.
840 	 */
841 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
842 		rc = hp->hook.vm_enough_memory(mm, pages);
843 		if (rc <= 0) {
844 			cap_sys_admin = 0;
845 			break;
846 		}
847 	}
848 	return __vm_enough_memory(mm, pages, cap_sys_admin);
849 }
850 
851 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
852 {
853 	return call_int_hook(bprm_creds_for_exec, 0, bprm);
854 }
855 
856 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
857 {
858 	return call_int_hook(bprm_creds_from_file, 0, bprm, file);
859 }
860 
861 int security_bprm_check(struct linux_binprm *bprm)
862 {
863 	int ret;
864 
865 	ret = call_int_hook(bprm_check_security, 0, bprm);
866 	if (ret)
867 		return ret;
868 	return ima_bprm_check(bprm);
869 }
870 
871 void security_bprm_committing_creds(struct linux_binprm *bprm)
872 {
873 	call_void_hook(bprm_committing_creds, bprm);
874 }
875 
876 void security_bprm_committed_creds(struct linux_binprm *bprm)
877 {
878 	call_void_hook(bprm_committed_creds, bprm);
879 }
880 
881 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
882 {
883 	return call_int_hook(fs_context_dup, 0, fc, src_fc);
884 }
885 
886 int security_fs_context_parse_param(struct fs_context *fc,
887 				    struct fs_parameter *param)
888 {
889 	struct security_hook_list *hp;
890 	int trc;
891 	int rc = -ENOPARAM;
892 
893 	hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
894 			     list) {
895 		trc = hp->hook.fs_context_parse_param(fc, param);
896 		if (trc == 0)
897 			rc = 0;
898 		else if (trc != -ENOPARAM)
899 			return trc;
900 	}
901 	return rc;
902 }
903 
904 int security_sb_alloc(struct super_block *sb)
905 {
906 	int rc = lsm_superblock_alloc(sb);
907 
908 	if (unlikely(rc))
909 		return rc;
910 	rc = call_int_hook(sb_alloc_security, 0, sb);
911 	if (unlikely(rc))
912 		security_sb_free(sb);
913 	return rc;
914 }
915 
916 void security_sb_delete(struct super_block *sb)
917 {
918 	call_void_hook(sb_delete, sb);
919 }
920 
921 void security_sb_free(struct super_block *sb)
922 {
923 	call_void_hook(sb_free_security, sb);
924 	kfree(sb->s_security);
925 	sb->s_security = NULL;
926 }
927 
928 void security_free_mnt_opts(void **mnt_opts)
929 {
930 	if (!*mnt_opts)
931 		return;
932 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
933 	*mnt_opts = NULL;
934 }
935 EXPORT_SYMBOL(security_free_mnt_opts);
936 
937 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
938 {
939 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
940 }
941 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
942 
943 int security_sb_mnt_opts_compat(struct super_block *sb,
944 				void *mnt_opts)
945 {
946 	return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
947 }
948 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
949 
950 int security_sb_remount(struct super_block *sb,
951 			void *mnt_opts)
952 {
953 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
954 }
955 EXPORT_SYMBOL(security_sb_remount);
956 
957 int security_sb_kern_mount(struct super_block *sb)
958 {
959 	return call_int_hook(sb_kern_mount, 0, sb);
960 }
961 
962 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
963 {
964 	return call_int_hook(sb_show_options, 0, m, sb);
965 }
966 
967 int security_sb_statfs(struct dentry *dentry)
968 {
969 	return call_int_hook(sb_statfs, 0, dentry);
970 }
971 
972 int security_sb_mount(const char *dev_name, const struct path *path,
973                        const char *type, unsigned long flags, void *data)
974 {
975 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
976 }
977 
978 int security_sb_umount(struct vfsmount *mnt, int flags)
979 {
980 	return call_int_hook(sb_umount, 0, mnt, flags);
981 }
982 
983 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
984 {
985 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
986 }
987 
988 int security_sb_set_mnt_opts(struct super_block *sb,
989 				void *mnt_opts,
990 				unsigned long kern_flags,
991 				unsigned long *set_kern_flags)
992 {
993 	return call_int_hook(sb_set_mnt_opts,
994 				mnt_opts ? -EOPNOTSUPP : 0, sb,
995 				mnt_opts, kern_flags, set_kern_flags);
996 }
997 EXPORT_SYMBOL(security_sb_set_mnt_opts);
998 
999 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1000 				struct super_block *newsb,
1001 				unsigned long kern_flags,
1002 				unsigned long *set_kern_flags)
1003 {
1004 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
1005 				kern_flags, set_kern_flags);
1006 }
1007 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1008 
1009 int security_move_mount(const struct path *from_path, const struct path *to_path)
1010 {
1011 	return call_int_hook(move_mount, 0, from_path, to_path);
1012 }
1013 
1014 int security_path_notify(const struct path *path, u64 mask,
1015 				unsigned int obj_type)
1016 {
1017 	return call_int_hook(path_notify, 0, path, mask, obj_type);
1018 }
1019 
1020 int security_inode_alloc(struct inode *inode)
1021 {
1022 	int rc = lsm_inode_alloc(inode);
1023 
1024 	if (unlikely(rc))
1025 		return rc;
1026 	rc = call_int_hook(inode_alloc_security, 0, inode);
1027 	if (unlikely(rc))
1028 		security_inode_free(inode);
1029 	return rc;
1030 }
1031 
1032 static void inode_free_by_rcu(struct rcu_head *head)
1033 {
1034 	/*
1035 	 * The rcu head is at the start of the inode blob
1036 	 */
1037 	kmem_cache_free(lsm_inode_cache, head);
1038 }
1039 
1040 void security_inode_free(struct inode *inode)
1041 {
1042 	integrity_inode_free(inode);
1043 	call_void_hook(inode_free_security, inode);
1044 	/*
1045 	 * The inode may still be referenced in a path walk and
1046 	 * a call to security_inode_permission() can be made
1047 	 * after inode_free_security() is called. Ideally, the VFS
1048 	 * wouldn't do this, but fixing that is a much harder
1049 	 * job. For now, simply free the i_security via RCU, and
1050 	 * leave the current inode->i_security pointer intact.
1051 	 * The inode will be freed after the RCU grace period too.
1052 	 */
1053 	if (inode->i_security)
1054 		call_rcu((struct rcu_head *)inode->i_security,
1055 				inode_free_by_rcu);
1056 }
1057 
1058 int security_dentry_init_security(struct dentry *dentry, int mode,
1059 				  const struct qstr *name,
1060 				  const char **xattr_name, void **ctx,
1061 				  u32 *ctxlen)
1062 {
1063 	struct security_hook_list *hp;
1064 	int rc;
1065 
1066 	/*
1067 	 * Only one module will provide a security context.
1068 	 */
1069 	hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) {
1070 		rc = hp->hook.dentry_init_security(dentry, mode, name,
1071 						   xattr_name, ctx, ctxlen);
1072 		if (rc != LSM_RET_DEFAULT(dentry_init_security))
1073 			return rc;
1074 	}
1075 	return LSM_RET_DEFAULT(dentry_init_security);
1076 }
1077 EXPORT_SYMBOL(security_dentry_init_security);
1078 
1079 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1080 				    struct qstr *name,
1081 				    const struct cred *old, struct cred *new)
1082 {
1083 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1084 				name, old, new);
1085 }
1086 EXPORT_SYMBOL(security_dentry_create_files_as);
1087 
1088 int security_inode_init_security(struct inode *inode, struct inode *dir,
1089 				 const struct qstr *qstr,
1090 				 const initxattrs initxattrs, void *fs_data)
1091 {
1092 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1093 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
1094 	int ret;
1095 
1096 	if (unlikely(IS_PRIVATE(inode)))
1097 		return 0;
1098 
1099 	if (!initxattrs)
1100 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1101 				     dir, qstr, NULL, NULL, NULL);
1102 	memset(new_xattrs, 0, sizeof(new_xattrs));
1103 	lsm_xattr = new_xattrs;
1104 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1105 						&lsm_xattr->name,
1106 						&lsm_xattr->value,
1107 						&lsm_xattr->value_len);
1108 	if (ret)
1109 		goto out;
1110 
1111 	evm_xattr = lsm_xattr + 1;
1112 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1113 	if (ret)
1114 		goto out;
1115 	ret = initxattrs(inode, new_xattrs, fs_data);
1116 out:
1117 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1118 		kfree(xattr->value);
1119 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1120 }
1121 EXPORT_SYMBOL(security_inode_init_security);
1122 
1123 int security_inode_init_security_anon(struct inode *inode,
1124 				      const struct qstr *name,
1125 				      const struct inode *context_inode)
1126 {
1127 	return call_int_hook(inode_init_security_anon, 0, inode, name,
1128 			     context_inode);
1129 }
1130 
1131 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1132 				     const struct qstr *qstr, const char **name,
1133 				     void **value, size_t *len)
1134 {
1135 	if (unlikely(IS_PRIVATE(inode)))
1136 		return -EOPNOTSUPP;
1137 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1138 			     qstr, name, value, len);
1139 }
1140 EXPORT_SYMBOL(security_old_inode_init_security);
1141 
1142 #ifdef CONFIG_SECURITY_PATH
1143 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1144 			unsigned int dev)
1145 {
1146 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1147 		return 0;
1148 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1149 }
1150 EXPORT_SYMBOL(security_path_mknod);
1151 
1152 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1153 {
1154 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1155 		return 0;
1156 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1157 }
1158 EXPORT_SYMBOL(security_path_mkdir);
1159 
1160 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1161 {
1162 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1163 		return 0;
1164 	return call_int_hook(path_rmdir, 0, dir, dentry);
1165 }
1166 
1167 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1168 {
1169 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1170 		return 0;
1171 	return call_int_hook(path_unlink, 0, dir, dentry);
1172 }
1173 EXPORT_SYMBOL(security_path_unlink);
1174 
1175 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1176 			  const char *old_name)
1177 {
1178 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1179 		return 0;
1180 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1181 }
1182 
1183 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1184 		       struct dentry *new_dentry)
1185 {
1186 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1187 		return 0;
1188 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1189 }
1190 
1191 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1192 			 const struct path *new_dir, struct dentry *new_dentry,
1193 			 unsigned int flags)
1194 {
1195 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1196 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1197 		return 0;
1198 
1199 	if (flags & RENAME_EXCHANGE) {
1200 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1201 					old_dir, old_dentry);
1202 		if (err)
1203 			return err;
1204 	}
1205 
1206 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1207 				new_dentry);
1208 }
1209 EXPORT_SYMBOL(security_path_rename);
1210 
1211 int security_path_truncate(const struct path *path)
1212 {
1213 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1214 		return 0;
1215 	return call_int_hook(path_truncate, 0, path);
1216 }
1217 
1218 int security_path_chmod(const struct path *path, umode_t mode)
1219 {
1220 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1221 		return 0;
1222 	return call_int_hook(path_chmod, 0, path, mode);
1223 }
1224 
1225 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1226 {
1227 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1228 		return 0;
1229 	return call_int_hook(path_chown, 0, path, uid, gid);
1230 }
1231 
1232 int security_path_chroot(const struct path *path)
1233 {
1234 	return call_int_hook(path_chroot, 0, path);
1235 }
1236 #endif
1237 
1238 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1239 {
1240 	if (unlikely(IS_PRIVATE(dir)))
1241 		return 0;
1242 	return call_int_hook(inode_create, 0, dir, dentry, mode);
1243 }
1244 EXPORT_SYMBOL_GPL(security_inode_create);
1245 
1246 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1247 			 struct dentry *new_dentry)
1248 {
1249 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1250 		return 0;
1251 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1252 }
1253 
1254 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1255 {
1256 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1257 		return 0;
1258 	return call_int_hook(inode_unlink, 0, dir, dentry);
1259 }
1260 
1261 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1262 			    const char *old_name)
1263 {
1264 	if (unlikely(IS_PRIVATE(dir)))
1265 		return 0;
1266 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1267 }
1268 
1269 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1270 {
1271 	if (unlikely(IS_PRIVATE(dir)))
1272 		return 0;
1273 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1274 }
1275 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1276 
1277 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1278 {
1279 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1280 		return 0;
1281 	return call_int_hook(inode_rmdir, 0, dir, dentry);
1282 }
1283 
1284 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1285 {
1286 	if (unlikely(IS_PRIVATE(dir)))
1287 		return 0;
1288 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1289 }
1290 
1291 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1292 			   struct inode *new_dir, struct dentry *new_dentry,
1293 			   unsigned int flags)
1294 {
1295         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1296             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1297 		return 0;
1298 
1299 	if (flags & RENAME_EXCHANGE) {
1300 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1301 						     old_dir, old_dentry);
1302 		if (err)
1303 			return err;
1304 	}
1305 
1306 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1307 					   new_dir, new_dentry);
1308 }
1309 
1310 int security_inode_readlink(struct dentry *dentry)
1311 {
1312 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1313 		return 0;
1314 	return call_int_hook(inode_readlink, 0, dentry);
1315 }
1316 
1317 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1318 			       bool rcu)
1319 {
1320 	if (unlikely(IS_PRIVATE(inode)))
1321 		return 0;
1322 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1323 }
1324 
1325 int security_inode_permission(struct inode *inode, int mask)
1326 {
1327 	if (unlikely(IS_PRIVATE(inode)))
1328 		return 0;
1329 	return call_int_hook(inode_permission, 0, inode, mask);
1330 }
1331 
1332 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1333 {
1334 	int ret;
1335 
1336 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1337 		return 0;
1338 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1339 	if (ret)
1340 		return ret;
1341 	return evm_inode_setattr(dentry, attr);
1342 }
1343 EXPORT_SYMBOL_GPL(security_inode_setattr);
1344 
1345 int security_inode_getattr(const struct path *path)
1346 {
1347 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1348 		return 0;
1349 	return call_int_hook(inode_getattr, 0, path);
1350 }
1351 
1352 int security_inode_setxattr(struct user_namespace *mnt_userns,
1353 			    struct dentry *dentry, const char *name,
1354 			    const void *value, size_t size, int flags)
1355 {
1356 	int ret;
1357 
1358 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1359 		return 0;
1360 	/*
1361 	 * SELinux and Smack integrate the cap call,
1362 	 * so assume that all LSMs supplying this call do so.
1363 	 */
1364 	ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1365 			    size, flags);
1366 
1367 	if (ret == 1)
1368 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1369 	if (ret)
1370 		return ret;
1371 	ret = ima_inode_setxattr(dentry, name, value, size);
1372 	if (ret)
1373 		return ret;
1374 	return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1375 }
1376 
1377 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1378 				  const void *value, size_t size, int flags)
1379 {
1380 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1381 		return;
1382 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1383 	evm_inode_post_setxattr(dentry, name, value, size);
1384 }
1385 
1386 int security_inode_getxattr(struct dentry *dentry, const char *name)
1387 {
1388 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1389 		return 0;
1390 	return call_int_hook(inode_getxattr, 0, dentry, name);
1391 }
1392 
1393 int security_inode_listxattr(struct dentry *dentry)
1394 {
1395 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1396 		return 0;
1397 	return call_int_hook(inode_listxattr, 0, dentry);
1398 }
1399 
1400 int security_inode_removexattr(struct user_namespace *mnt_userns,
1401 			       struct dentry *dentry, const char *name)
1402 {
1403 	int ret;
1404 
1405 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1406 		return 0;
1407 	/*
1408 	 * SELinux and Smack integrate the cap call,
1409 	 * so assume that all LSMs supplying this call do so.
1410 	 */
1411 	ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1412 	if (ret == 1)
1413 		ret = cap_inode_removexattr(mnt_userns, dentry, name);
1414 	if (ret)
1415 		return ret;
1416 	ret = ima_inode_removexattr(dentry, name);
1417 	if (ret)
1418 		return ret;
1419 	return evm_inode_removexattr(mnt_userns, dentry, name);
1420 }
1421 
1422 int security_inode_need_killpriv(struct dentry *dentry)
1423 {
1424 	return call_int_hook(inode_need_killpriv, 0, dentry);
1425 }
1426 
1427 int security_inode_killpriv(struct user_namespace *mnt_userns,
1428 			    struct dentry *dentry)
1429 {
1430 	return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1431 }
1432 
1433 int security_inode_getsecurity(struct user_namespace *mnt_userns,
1434 			       struct inode *inode, const char *name,
1435 			       void **buffer, bool alloc)
1436 {
1437 	struct security_hook_list *hp;
1438 	int rc;
1439 
1440 	if (unlikely(IS_PRIVATE(inode)))
1441 		return LSM_RET_DEFAULT(inode_getsecurity);
1442 	/*
1443 	 * Only one module will provide an attribute with a given name.
1444 	 */
1445 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1446 		rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1447 		if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1448 			return rc;
1449 	}
1450 	return LSM_RET_DEFAULT(inode_getsecurity);
1451 }
1452 
1453 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1454 {
1455 	struct security_hook_list *hp;
1456 	int rc;
1457 
1458 	if (unlikely(IS_PRIVATE(inode)))
1459 		return LSM_RET_DEFAULT(inode_setsecurity);
1460 	/*
1461 	 * Only one module will provide an attribute with a given name.
1462 	 */
1463 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1464 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1465 								flags);
1466 		if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1467 			return rc;
1468 	}
1469 	return LSM_RET_DEFAULT(inode_setsecurity);
1470 }
1471 
1472 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1473 {
1474 	if (unlikely(IS_PRIVATE(inode)))
1475 		return 0;
1476 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1477 }
1478 EXPORT_SYMBOL(security_inode_listsecurity);
1479 
1480 void security_inode_getsecid(struct inode *inode, u32 *secid)
1481 {
1482 	call_void_hook(inode_getsecid, inode, secid);
1483 }
1484 
1485 int security_inode_copy_up(struct dentry *src, struct cred **new)
1486 {
1487 	return call_int_hook(inode_copy_up, 0, src, new);
1488 }
1489 EXPORT_SYMBOL(security_inode_copy_up);
1490 
1491 int security_inode_copy_up_xattr(const char *name)
1492 {
1493 	struct security_hook_list *hp;
1494 	int rc;
1495 
1496 	/*
1497 	 * The implementation can return 0 (accept the xattr), 1 (discard the
1498 	 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1499 	 * any other error code incase of an error.
1500 	 */
1501 	hlist_for_each_entry(hp,
1502 		&security_hook_heads.inode_copy_up_xattr, list) {
1503 		rc = hp->hook.inode_copy_up_xattr(name);
1504 		if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1505 			return rc;
1506 	}
1507 
1508 	return LSM_RET_DEFAULT(inode_copy_up_xattr);
1509 }
1510 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1511 
1512 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1513 				  struct kernfs_node *kn)
1514 {
1515 	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1516 }
1517 
1518 int security_file_permission(struct file *file, int mask)
1519 {
1520 	int ret;
1521 
1522 	ret = call_int_hook(file_permission, 0, file, mask);
1523 	if (ret)
1524 		return ret;
1525 
1526 	return fsnotify_perm(file, mask);
1527 }
1528 
1529 int security_file_alloc(struct file *file)
1530 {
1531 	int rc = lsm_file_alloc(file);
1532 
1533 	if (rc)
1534 		return rc;
1535 	rc = call_int_hook(file_alloc_security, 0, file);
1536 	if (unlikely(rc))
1537 		security_file_free(file);
1538 	return rc;
1539 }
1540 
1541 void security_file_free(struct file *file)
1542 {
1543 	void *blob;
1544 
1545 	call_void_hook(file_free_security, file);
1546 
1547 	blob = file->f_security;
1548 	if (blob) {
1549 		file->f_security = NULL;
1550 		kmem_cache_free(lsm_file_cache, blob);
1551 	}
1552 }
1553 
1554 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1555 {
1556 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1557 }
1558 EXPORT_SYMBOL_GPL(security_file_ioctl);
1559 
1560 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1561 {
1562 	/*
1563 	 * Does we have PROT_READ and does the application expect
1564 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1565 	 */
1566 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1567 		return prot;
1568 	if (!(current->personality & READ_IMPLIES_EXEC))
1569 		return prot;
1570 	/*
1571 	 * if that's an anonymous mapping, let it.
1572 	 */
1573 	if (!file)
1574 		return prot | PROT_EXEC;
1575 	/*
1576 	 * ditto if it's not on noexec mount, except that on !MMU we need
1577 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1578 	 */
1579 	if (!path_noexec(&file->f_path)) {
1580 #ifndef CONFIG_MMU
1581 		if (file->f_op->mmap_capabilities) {
1582 			unsigned caps = file->f_op->mmap_capabilities(file);
1583 			if (!(caps & NOMMU_MAP_EXEC))
1584 				return prot;
1585 		}
1586 #endif
1587 		return prot | PROT_EXEC;
1588 	}
1589 	/* anything on noexec mount won't get PROT_EXEC */
1590 	return prot;
1591 }
1592 
1593 int security_mmap_file(struct file *file, unsigned long prot,
1594 			unsigned long flags)
1595 {
1596 	int ret;
1597 	ret = call_int_hook(mmap_file, 0, file, prot,
1598 					mmap_prot(file, prot), flags);
1599 	if (ret)
1600 		return ret;
1601 	return ima_file_mmap(file, prot);
1602 }
1603 
1604 int security_mmap_addr(unsigned long addr)
1605 {
1606 	return call_int_hook(mmap_addr, 0, addr);
1607 }
1608 
1609 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1610 			    unsigned long prot)
1611 {
1612 	int ret;
1613 
1614 	ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1615 	if (ret)
1616 		return ret;
1617 	return ima_file_mprotect(vma, prot);
1618 }
1619 
1620 int security_file_lock(struct file *file, unsigned int cmd)
1621 {
1622 	return call_int_hook(file_lock, 0, file, cmd);
1623 }
1624 
1625 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1626 {
1627 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1628 }
1629 
1630 void security_file_set_fowner(struct file *file)
1631 {
1632 	call_void_hook(file_set_fowner, file);
1633 }
1634 
1635 int security_file_send_sigiotask(struct task_struct *tsk,
1636 				  struct fown_struct *fown, int sig)
1637 {
1638 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1639 }
1640 
1641 int security_file_receive(struct file *file)
1642 {
1643 	return call_int_hook(file_receive, 0, file);
1644 }
1645 
1646 int security_file_open(struct file *file)
1647 {
1648 	int ret;
1649 
1650 	ret = call_int_hook(file_open, 0, file);
1651 	if (ret)
1652 		return ret;
1653 
1654 	return fsnotify_perm(file, MAY_OPEN);
1655 }
1656 
1657 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1658 {
1659 	int rc = lsm_task_alloc(task);
1660 
1661 	if (rc)
1662 		return rc;
1663 	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1664 	if (unlikely(rc))
1665 		security_task_free(task);
1666 	return rc;
1667 }
1668 
1669 void security_task_free(struct task_struct *task)
1670 {
1671 	call_void_hook(task_free, task);
1672 
1673 	kfree(task->security);
1674 	task->security = NULL;
1675 }
1676 
1677 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1678 {
1679 	int rc = lsm_cred_alloc(cred, gfp);
1680 
1681 	if (rc)
1682 		return rc;
1683 
1684 	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1685 	if (unlikely(rc))
1686 		security_cred_free(cred);
1687 	return rc;
1688 }
1689 
1690 void security_cred_free(struct cred *cred)
1691 {
1692 	/*
1693 	 * There is a failure case in prepare_creds() that
1694 	 * may result in a call here with ->security being NULL.
1695 	 */
1696 	if (unlikely(cred->security == NULL))
1697 		return;
1698 
1699 	call_void_hook(cred_free, cred);
1700 
1701 	kfree(cred->security);
1702 	cred->security = NULL;
1703 }
1704 
1705 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1706 {
1707 	int rc = lsm_cred_alloc(new, gfp);
1708 
1709 	if (rc)
1710 		return rc;
1711 
1712 	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1713 	if (unlikely(rc))
1714 		security_cred_free(new);
1715 	return rc;
1716 }
1717 
1718 void security_transfer_creds(struct cred *new, const struct cred *old)
1719 {
1720 	call_void_hook(cred_transfer, new, old);
1721 }
1722 
1723 void security_cred_getsecid(const struct cred *c, u32 *secid)
1724 {
1725 	*secid = 0;
1726 	call_void_hook(cred_getsecid, c, secid);
1727 }
1728 EXPORT_SYMBOL(security_cred_getsecid);
1729 
1730 int security_kernel_act_as(struct cred *new, u32 secid)
1731 {
1732 	return call_int_hook(kernel_act_as, 0, new, secid);
1733 }
1734 
1735 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1736 {
1737 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1738 }
1739 
1740 int security_kernel_module_request(char *kmod_name)
1741 {
1742 	int ret;
1743 
1744 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1745 	if (ret)
1746 		return ret;
1747 	return integrity_kernel_module_request(kmod_name);
1748 }
1749 
1750 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1751 			      bool contents)
1752 {
1753 	int ret;
1754 
1755 	ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1756 	if (ret)
1757 		return ret;
1758 	return ima_read_file(file, id, contents);
1759 }
1760 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1761 
1762 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1763 				   enum kernel_read_file_id id)
1764 {
1765 	int ret;
1766 
1767 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1768 	if (ret)
1769 		return ret;
1770 	return ima_post_read_file(file, buf, size, id);
1771 }
1772 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1773 
1774 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1775 {
1776 	int ret;
1777 
1778 	ret = call_int_hook(kernel_load_data, 0, id, contents);
1779 	if (ret)
1780 		return ret;
1781 	return ima_load_data(id, contents);
1782 }
1783 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1784 
1785 int security_kernel_post_load_data(char *buf, loff_t size,
1786 				   enum kernel_load_data_id id,
1787 				   char *description)
1788 {
1789 	int ret;
1790 
1791 	ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1792 			    description);
1793 	if (ret)
1794 		return ret;
1795 	return ima_post_load_data(buf, size, id, description);
1796 }
1797 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1798 
1799 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1800 			     int flags)
1801 {
1802 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1803 }
1804 
1805 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1806 				 int flags)
1807 {
1808 	return call_int_hook(task_fix_setgid, 0, new, old, flags);
1809 }
1810 
1811 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1812 {
1813 	return call_int_hook(task_setpgid, 0, p, pgid);
1814 }
1815 
1816 int security_task_getpgid(struct task_struct *p)
1817 {
1818 	return call_int_hook(task_getpgid, 0, p);
1819 }
1820 
1821 int security_task_getsid(struct task_struct *p)
1822 {
1823 	return call_int_hook(task_getsid, 0, p);
1824 }
1825 
1826 void security_current_getsecid_subj(u32 *secid)
1827 {
1828 	*secid = 0;
1829 	call_void_hook(current_getsecid_subj, secid);
1830 }
1831 EXPORT_SYMBOL(security_current_getsecid_subj);
1832 
1833 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1834 {
1835 	*secid = 0;
1836 	call_void_hook(task_getsecid_obj, p, secid);
1837 }
1838 EXPORT_SYMBOL(security_task_getsecid_obj);
1839 
1840 int security_task_setnice(struct task_struct *p, int nice)
1841 {
1842 	return call_int_hook(task_setnice, 0, p, nice);
1843 }
1844 
1845 int security_task_setioprio(struct task_struct *p, int ioprio)
1846 {
1847 	return call_int_hook(task_setioprio, 0, p, ioprio);
1848 }
1849 
1850 int security_task_getioprio(struct task_struct *p)
1851 {
1852 	return call_int_hook(task_getioprio, 0, p);
1853 }
1854 
1855 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1856 			  unsigned int flags)
1857 {
1858 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1859 }
1860 
1861 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1862 		struct rlimit *new_rlim)
1863 {
1864 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1865 }
1866 
1867 int security_task_setscheduler(struct task_struct *p)
1868 {
1869 	return call_int_hook(task_setscheduler, 0, p);
1870 }
1871 
1872 int security_task_getscheduler(struct task_struct *p)
1873 {
1874 	return call_int_hook(task_getscheduler, 0, p);
1875 }
1876 
1877 int security_task_movememory(struct task_struct *p)
1878 {
1879 	return call_int_hook(task_movememory, 0, p);
1880 }
1881 
1882 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1883 			int sig, const struct cred *cred)
1884 {
1885 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1886 }
1887 
1888 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1889 			 unsigned long arg4, unsigned long arg5)
1890 {
1891 	int thisrc;
1892 	int rc = LSM_RET_DEFAULT(task_prctl);
1893 	struct security_hook_list *hp;
1894 
1895 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1896 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1897 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1898 			rc = thisrc;
1899 			if (thisrc != 0)
1900 				break;
1901 		}
1902 	}
1903 	return rc;
1904 }
1905 
1906 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1907 {
1908 	call_void_hook(task_to_inode, p, inode);
1909 }
1910 
1911 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1912 {
1913 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1914 }
1915 
1916 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1917 {
1918 	*secid = 0;
1919 	call_void_hook(ipc_getsecid, ipcp, secid);
1920 }
1921 
1922 int security_msg_msg_alloc(struct msg_msg *msg)
1923 {
1924 	int rc = lsm_msg_msg_alloc(msg);
1925 
1926 	if (unlikely(rc))
1927 		return rc;
1928 	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1929 	if (unlikely(rc))
1930 		security_msg_msg_free(msg);
1931 	return rc;
1932 }
1933 
1934 void security_msg_msg_free(struct msg_msg *msg)
1935 {
1936 	call_void_hook(msg_msg_free_security, msg);
1937 	kfree(msg->security);
1938 	msg->security = NULL;
1939 }
1940 
1941 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1942 {
1943 	int rc = lsm_ipc_alloc(msq);
1944 
1945 	if (unlikely(rc))
1946 		return rc;
1947 	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1948 	if (unlikely(rc))
1949 		security_msg_queue_free(msq);
1950 	return rc;
1951 }
1952 
1953 void security_msg_queue_free(struct kern_ipc_perm *msq)
1954 {
1955 	call_void_hook(msg_queue_free_security, msq);
1956 	kfree(msq->security);
1957 	msq->security = NULL;
1958 }
1959 
1960 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1961 {
1962 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1963 }
1964 
1965 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1966 {
1967 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1968 }
1969 
1970 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1971 			       struct msg_msg *msg, int msqflg)
1972 {
1973 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1974 }
1975 
1976 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1977 			       struct task_struct *target, long type, int mode)
1978 {
1979 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1980 }
1981 
1982 int security_shm_alloc(struct kern_ipc_perm *shp)
1983 {
1984 	int rc = lsm_ipc_alloc(shp);
1985 
1986 	if (unlikely(rc))
1987 		return rc;
1988 	rc = call_int_hook(shm_alloc_security, 0, shp);
1989 	if (unlikely(rc))
1990 		security_shm_free(shp);
1991 	return rc;
1992 }
1993 
1994 void security_shm_free(struct kern_ipc_perm *shp)
1995 {
1996 	call_void_hook(shm_free_security, shp);
1997 	kfree(shp->security);
1998 	shp->security = NULL;
1999 }
2000 
2001 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
2002 {
2003 	return call_int_hook(shm_associate, 0, shp, shmflg);
2004 }
2005 
2006 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
2007 {
2008 	return call_int_hook(shm_shmctl, 0, shp, cmd);
2009 }
2010 
2011 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
2012 {
2013 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
2014 }
2015 
2016 int security_sem_alloc(struct kern_ipc_perm *sma)
2017 {
2018 	int rc = lsm_ipc_alloc(sma);
2019 
2020 	if (unlikely(rc))
2021 		return rc;
2022 	rc = call_int_hook(sem_alloc_security, 0, sma);
2023 	if (unlikely(rc))
2024 		security_sem_free(sma);
2025 	return rc;
2026 }
2027 
2028 void security_sem_free(struct kern_ipc_perm *sma)
2029 {
2030 	call_void_hook(sem_free_security, sma);
2031 	kfree(sma->security);
2032 	sma->security = NULL;
2033 }
2034 
2035 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2036 {
2037 	return call_int_hook(sem_associate, 0, sma, semflg);
2038 }
2039 
2040 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2041 {
2042 	return call_int_hook(sem_semctl, 0, sma, cmd);
2043 }
2044 
2045 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2046 			unsigned nsops, int alter)
2047 {
2048 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2049 }
2050 
2051 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2052 {
2053 	if (unlikely(inode && IS_PRIVATE(inode)))
2054 		return;
2055 	call_void_hook(d_instantiate, dentry, inode);
2056 }
2057 EXPORT_SYMBOL(security_d_instantiate);
2058 
2059 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2060 				char **value)
2061 {
2062 	struct security_hook_list *hp;
2063 
2064 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2065 		if (lsm != NULL && strcmp(lsm, hp->lsm))
2066 			continue;
2067 		return hp->hook.getprocattr(p, name, value);
2068 	}
2069 	return LSM_RET_DEFAULT(getprocattr);
2070 }
2071 
2072 int security_setprocattr(const char *lsm, const char *name, void *value,
2073 			 size_t size)
2074 {
2075 	struct security_hook_list *hp;
2076 
2077 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2078 		if (lsm != NULL && strcmp(lsm, hp->lsm))
2079 			continue;
2080 		return hp->hook.setprocattr(name, value, size);
2081 	}
2082 	return LSM_RET_DEFAULT(setprocattr);
2083 }
2084 
2085 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2086 {
2087 	return call_int_hook(netlink_send, 0, sk, skb);
2088 }
2089 
2090 int security_ismaclabel(const char *name)
2091 {
2092 	return call_int_hook(ismaclabel, 0, name);
2093 }
2094 EXPORT_SYMBOL(security_ismaclabel);
2095 
2096 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2097 {
2098 	struct security_hook_list *hp;
2099 	int rc;
2100 
2101 	/*
2102 	 * Currently, only one LSM can implement secid_to_secctx (i.e this
2103 	 * LSM hook is not "stackable").
2104 	 */
2105 	hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2106 		rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2107 		if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2108 			return rc;
2109 	}
2110 
2111 	return LSM_RET_DEFAULT(secid_to_secctx);
2112 }
2113 EXPORT_SYMBOL(security_secid_to_secctx);
2114 
2115 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2116 {
2117 	*secid = 0;
2118 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2119 }
2120 EXPORT_SYMBOL(security_secctx_to_secid);
2121 
2122 void security_release_secctx(char *secdata, u32 seclen)
2123 {
2124 	call_void_hook(release_secctx, secdata, seclen);
2125 }
2126 EXPORT_SYMBOL(security_release_secctx);
2127 
2128 void security_inode_invalidate_secctx(struct inode *inode)
2129 {
2130 	call_void_hook(inode_invalidate_secctx, inode);
2131 }
2132 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2133 
2134 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2135 {
2136 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2137 }
2138 EXPORT_SYMBOL(security_inode_notifysecctx);
2139 
2140 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2141 {
2142 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2143 }
2144 EXPORT_SYMBOL(security_inode_setsecctx);
2145 
2146 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2147 {
2148 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2149 }
2150 EXPORT_SYMBOL(security_inode_getsecctx);
2151 
2152 #ifdef CONFIG_WATCH_QUEUE
2153 int security_post_notification(const struct cred *w_cred,
2154 			       const struct cred *cred,
2155 			       struct watch_notification *n)
2156 {
2157 	return call_int_hook(post_notification, 0, w_cred, cred, n);
2158 }
2159 #endif /* CONFIG_WATCH_QUEUE */
2160 
2161 #ifdef CONFIG_KEY_NOTIFICATIONS
2162 int security_watch_key(struct key *key)
2163 {
2164 	return call_int_hook(watch_key, 0, key);
2165 }
2166 #endif
2167 
2168 #ifdef CONFIG_SECURITY_NETWORK
2169 
2170 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2171 {
2172 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2173 }
2174 EXPORT_SYMBOL(security_unix_stream_connect);
2175 
2176 int security_unix_may_send(struct socket *sock,  struct socket *other)
2177 {
2178 	return call_int_hook(unix_may_send, 0, sock, other);
2179 }
2180 EXPORT_SYMBOL(security_unix_may_send);
2181 
2182 int security_socket_create(int family, int type, int protocol, int kern)
2183 {
2184 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
2185 }
2186 
2187 int security_socket_post_create(struct socket *sock, int family,
2188 				int type, int protocol, int kern)
2189 {
2190 	return call_int_hook(socket_post_create, 0, sock, family, type,
2191 						protocol, kern);
2192 }
2193 
2194 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2195 {
2196 	return call_int_hook(socket_socketpair, 0, socka, sockb);
2197 }
2198 EXPORT_SYMBOL(security_socket_socketpair);
2199 
2200 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2201 {
2202 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
2203 }
2204 
2205 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2206 {
2207 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
2208 }
2209 
2210 int security_socket_listen(struct socket *sock, int backlog)
2211 {
2212 	return call_int_hook(socket_listen, 0, sock, backlog);
2213 }
2214 
2215 int security_socket_accept(struct socket *sock, struct socket *newsock)
2216 {
2217 	return call_int_hook(socket_accept, 0, sock, newsock);
2218 }
2219 
2220 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2221 {
2222 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2223 }
2224 
2225 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2226 			    int size, int flags)
2227 {
2228 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2229 }
2230 
2231 int security_socket_getsockname(struct socket *sock)
2232 {
2233 	return call_int_hook(socket_getsockname, 0, sock);
2234 }
2235 
2236 int security_socket_getpeername(struct socket *sock)
2237 {
2238 	return call_int_hook(socket_getpeername, 0, sock);
2239 }
2240 
2241 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2242 {
2243 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2244 }
2245 
2246 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2247 {
2248 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2249 }
2250 
2251 int security_socket_shutdown(struct socket *sock, int how)
2252 {
2253 	return call_int_hook(socket_shutdown, 0, sock, how);
2254 }
2255 
2256 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2257 {
2258 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2259 }
2260 EXPORT_SYMBOL(security_sock_rcv_skb);
2261 
2262 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2263 				      int __user *optlen, unsigned len)
2264 {
2265 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2266 				optval, optlen, len);
2267 }
2268 
2269 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2270 {
2271 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2272 			     skb, secid);
2273 }
2274 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2275 
2276 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2277 {
2278 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2279 }
2280 
2281 void security_sk_free(struct sock *sk)
2282 {
2283 	call_void_hook(sk_free_security, sk);
2284 }
2285 
2286 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2287 {
2288 	call_void_hook(sk_clone_security, sk, newsk);
2289 }
2290 EXPORT_SYMBOL(security_sk_clone);
2291 
2292 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2293 {
2294 	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2295 }
2296 EXPORT_SYMBOL(security_sk_classify_flow);
2297 
2298 void security_req_classify_flow(const struct request_sock *req,
2299 				struct flowi_common *flic)
2300 {
2301 	call_void_hook(req_classify_flow, req, flic);
2302 }
2303 EXPORT_SYMBOL(security_req_classify_flow);
2304 
2305 void security_sock_graft(struct sock *sk, struct socket *parent)
2306 {
2307 	call_void_hook(sock_graft, sk, parent);
2308 }
2309 EXPORT_SYMBOL(security_sock_graft);
2310 
2311 int security_inet_conn_request(const struct sock *sk,
2312 			struct sk_buff *skb, struct request_sock *req)
2313 {
2314 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2315 }
2316 EXPORT_SYMBOL(security_inet_conn_request);
2317 
2318 void security_inet_csk_clone(struct sock *newsk,
2319 			const struct request_sock *req)
2320 {
2321 	call_void_hook(inet_csk_clone, newsk, req);
2322 }
2323 
2324 void security_inet_conn_established(struct sock *sk,
2325 			struct sk_buff *skb)
2326 {
2327 	call_void_hook(inet_conn_established, sk, skb);
2328 }
2329 EXPORT_SYMBOL(security_inet_conn_established);
2330 
2331 int security_secmark_relabel_packet(u32 secid)
2332 {
2333 	return call_int_hook(secmark_relabel_packet, 0, secid);
2334 }
2335 EXPORT_SYMBOL(security_secmark_relabel_packet);
2336 
2337 void security_secmark_refcount_inc(void)
2338 {
2339 	call_void_hook(secmark_refcount_inc);
2340 }
2341 EXPORT_SYMBOL(security_secmark_refcount_inc);
2342 
2343 void security_secmark_refcount_dec(void)
2344 {
2345 	call_void_hook(secmark_refcount_dec);
2346 }
2347 EXPORT_SYMBOL(security_secmark_refcount_dec);
2348 
2349 int security_tun_dev_alloc_security(void **security)
2350 {
2351 	return call_int_hook(tun_dev_alloc_security, 0, security);
2352 }
2353 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2354 
2355 void security_tun_dev_free_security(void *security)
2356 {
2357 	call_void_hook(tun_dev_free_security, security);
2358 }
2359 EXPORT_SYMBOL(security_tun_dev_free_security);
2360 
2361 int security_tun_dev_create(void)
2362 {
2363 	return call_int_hook(tun_dev_create, 0);
2364 }
2365 EXPORT_SYMBOL(security_tun_dev_create);
2366 
2367 int security_tun_dev_attach_queue(void *security)
2368 {
2369 	return call_int_hook(tun_dev_attach_queue, 0, security);
2370 }
2371 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2372 
2373 int security_tun_dev_attach(struct sock *sk, void *security)
2374 {
2375 	return call_int_hook(tun_dev_attach, 0, sk, security);
2376 }
2377 EXPORT_SYMBOL(security_tun_dev_attach);
2378 
2379 int security_tun_dev_open(void *security)
2380 {
2381 	return call_int_hook(tun_dev_open, 0, security);
2382 }
2383 EXPORT_SYMBOL(security_tun_dev_open);
2384 
2385 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb)
2386 {
2387 	return call_int_hook(sctp_assoc_request, 0, asoc, skb);
2388 }
2389 EXPORT_SYMBOL(security_sctp_assoc_request);
2390 
2391 int security_sctp_bind_connect(struct sock *sk, int optname,
2392 			       struct sockaddr *address, int addrlen)
2393 {
2394 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2395 			     address, addrlen);
2396 }
2397 EXPORT_SYMBOL(security_sctp_bind_connect);
2398 
2399 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
2400 			    struct sock *newsk)
2401 {
2402 	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
2403 }
2404 EXPORT_SYMBOL(security_sctp_sk_clone);
2405 
2406 int security_sctp_assoc_established(struct sctp_association *asoc,
2407 				    struct sk_buff *skb)
2408 {
2409 	return call_int_hook(sctp_assoc_established, 0, asoc, skb);
2410 }
2411 EXPORT_SYMBOL(security_sctp_assoc_established);
2412 
2413 #endif	/* CONFIG_SECURITY_NETWORK */
2414 
2415 #ifdef CONFIG_SECURITY_INFINIBAND
2416 
2417 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2418 {
2419 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2420 }
2421 EXPORT_SYMBOL(security_ib_pkey_access);
2422 
2423 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2424 {
2425 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2426 }
2427 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2428 
2429 int security_ib_alloc_security(void **sec)
2430 {
2431 	return call_int_hook(ib_alloc_security, 0, sec);
2432 }
2433 EXPORT_SYMBOL(security_ib_alloc_security);
2434 
2435 void security_ib_free_security(void *sec)
2436 {
2437 	call_void_hook(ib_free_security, sec);
2438 }
2439 EXPORT_SYMBOL(security_ib_free_security);
2440 #endif	/* CONFIG_SECURITY_INFINIBAND */
2441 
2442 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2443 
2444 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2445 			       struct xfrm_user_sec_ctx *sec_ctx,
2446 			       gfp_t gfp)
2447 {
2448 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2449 }
2450 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2451 
2452 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2453 			      struct xfrm_sec_ctx **new_ctxp)
2454 {
2455 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2456 }
2457 
2458 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2459 {
2460 	call_void_hook(xfrm_policy_free_security, ctx);
2461 }
2462 EXPORT_SYMBOL(security_xfrm_policy_free);
2463 
2464 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2465 {
2466 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2467 }
2468 
2469 int security_xfrm_state_alloc(struct xfrm_state *x,
2470 			      struct xfrm_user_sec_ctx *sec_ctx)
2471 {
2472 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2473 }
2474 EXPORT_SYMBOL(security_xfrm_state_alloc);
2475 
2476 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2477 				      struct xfrm_sec_ctx *polsec, u32 secid)
2478 {
2479 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2480 }
2481 
2482 int security_xfrm_state_delete(struct xfrm_state *x)
2483 {
2484 	return call_int_hook(xfrm_state_delete_security, 0, x);
2485 }
2486 EXPORT_SYMBOL(security_xfrm_state_delete);
2487 
2488 void security_xfrm_state_free(struct xfrm_state *x)
2489 {
2490 	call_void_hook(xfrm_state_free_security, x);
2491 }
2492 
2493 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2494 {
2495 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2496 }
2497 
2498 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2499 				       struct xfrm_policy *xp,
2500 				       const struct flowi_common *flic)
2501 {
2502 	struct security_hook_list *hp;
2503 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2504 
2505 	/*
2506 	 * Since this function is expected to return 0 or 1, the judgment
2507 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2508 	 * we can use the first LSM's judgment because currently only SELinux
2509 	 * supplies this call.
2510 	 *
2511 	 * For speed optimization, we explicitly break the loop rather than
2512 	 * using the macro
2513 	 */
2514 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2515 				list) {
2516 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2517 		break;
2518 	}
2519 	return rc;
2520 }
2521 
2522 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2523 {
2524 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2525 }
2526 
2527 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2528 {
2529 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2530 				0);
2531 
2532 	BUG_ON(rc);
2533 }
2534 EXPORT_SYMBOL(security_skb_classify_flow);
2535 
2536 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2537 
2538 #ifdef CONFIG_KEYS
2539 
2540 int security_key_alloc(struct key *key, const struct cred *cred,
2541 		       unsigned long flags)
2542 {
2543 	return call_int_hook(key_alloc, 0, key, cred, flags);
2544 }
2545 
2546 void security_key_free(struct key *key)
2547 {
2548 	call_void_hook(key_free, key);
2549 }
2550 
2551 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2552 			    enum key_need_perm need_perm)
2553 {
2554 	return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2555 }
2556 
2557 int security_key_getsecurity(struct key *key, char **_buffer)
2558 {
2559 	*_buffer = NULL;
2560 	return call_int_hook(key_getsecurity, 0, key, _buffer);
2561 }
2562 
2563 #endif	/* CONFIG_KEYS */
2564 
2565 #ifdef CONFIG_AUDIT
2566 
2567 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2568 {
2569 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2570 }
2571 
2572 int security_audit_rule_known(struct audit_krule *krule)
2573 {
2574 	return call_int_hook(audit_rule_known, 0, krule);
2575 }
2576 
2577 void security_audit_rule_free(void *lsmrule)
2578 {
2579 	call_void_hook(audit_rule_free, lsmrule);
2580 }
2581 
2582 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2583 {
2584 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2585 }
2586 #endif /* CONFIG_AUDIT */
2587 
2588 #ifdef CONFIG_BPF_SYSCALL
2589 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2590 {
2591 	return call_int_hook(bpf, 0, cmd, attr, size);
2592 }
2593 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2594 {
2595 	return call_int_hook(bpf_map, 0, map, fmode);
2596 }
2597 int security_bpf_prog(struct bpf_prog *prog)
2598 {
2599 	return call_int_hook(bpf_prog, 0, prog);
2600 }
2601 int security_bpf_map_alloc(struct bpf_map *map)
2602 {
2603 	return call_int_hook(bpf_map_alloc_security, 0, map);
2604 }
2605 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2606 {
2607 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2608 }
2609 void security_bpf_map_free(struct bpf_map *map)
2610 {
2611 	call_void_hook(bpf_map_free_security, map);
2612 }
2613 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2614 {
2615 	call_void_hook(bpf_prog_free_security, aux);
2616 }
2617 #endif /* CONFIG_BPF_SYSCALL */
2618 
2619 int security_locked_down(enum lockdown_reason what)
2620 {
2621 	return call_int_hook(locked_down, 0, what);
2622 }
2623 EXPORT_SYMBOL(security_locked_down);
2624 
2625 #ifdef CONFIG_PERF_EVENTS
2626 int security_perf_event_open(struct perf_event_attr *attr, int type)
2627 {
2628 	return call_int_hook(perf_event_open, 0, attr, type);
2629 }
2630 
2631 int security_perf_event_alloc(struct perf_event *event)
2632 {
2633 	return call_int_hook(perf_event_alloc, 0, event);
2634 }
2635 
2636 void security_perf_event_free(struct perf_event *event)
2637 {
2638 	call_void_hook(perf_event_free, event);
2639 }
2640 
2641 int security_perf_event_read(struct perf_event *event)
2642 {
2643 	return call_int_hook(perf_event_read, 0, event);
2644 }
2645 
2646 int security_perf_event_write(struct perf_event *event)
2647 {
2648 	return call_int_hook(perf_event_write, 0, event);
2649 }
2650 #endif /* CONFIG_PERF_EVENTS */
2651 
2652 #ifdef CONFIG_IO_URING
2653 int security_uring_override_creds(const struct cred *new)
2654 {
2655 	return call_int_hook(uring_override_creds, 0, new);
2656 }
2657 
2658 int security_uring_sqpoll(void)
2659 {
2660 	return call_int_hook(uring_sqpoll, 0);
2661 }
2662 #endif /* CONFIG_IO_URING */
2663