xref: /linux-6.15/security/security.c (revision e67f88dd)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <[email protected]>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <[email protected]>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20 
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23 	CONFIG_DEFAULT_SECURITY;
24 
25 /* things that live in capability.c */
26 extern void __init security_fixup_ops(struct security_operations *ops);
27 
28 static struct security_operations *security_ops;
29 static struct security_operations default_security_ops = {
30 	.name	= "default",
31 };
32 
33 static inline int __init verify(struct security_operations *ops)
34 {
35 	/* verify the security_operations structure exists */
36 	if (!ops)
37 		return -EINVAL;
38 	security_fixup_ops(ops);
39 	return 0;
40 }
41 
42 static void __init do_security_initcalls(void)
43 {
44 	initcall_t *call;
45 	call = __security_initcall_start;
46 	while (call < __security_initcall_end) {
47 		(*call) ();
48 		call++;
49 	}
50 }
51 
52 /**
53  * security_init - initializes the security framework
54  *
55  * This should be called early in the kernel initialization sequence.
56  */
57 int __init security_init(void)
58 {
59 	printk(KERN_INFO "Security Framework initialized\n");
60 
61 	security_fixup_ops(&default_security_ops);
62 	security_ops = &default_security_ops;
63 	do_security_initcalls();
64 
65 	return 0;
66 }
67 
68 void reset_security_ops(void)
69 {
70 	security_ops = &default_security_ops;
71 }
72 
73 /* Save user chosen LSM */
74 static int __init choose_lsm(char *str)
75 {
76 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77 	return 1;
78 }
79 __setup("security=", choose_lsm);
80 
81 /**
82  * security_module_enable - Load given security module on boot ?
83  * @ops: a pointer to the struct security_operations that is to be checked.
84  *
85  * Each LSM must pass this method before registering its own operations
86  * to avoid security registration races. This method may also be used
87  * to check if your LSM is currently loaded during kernel initialization.
88  *
89  * Return true if:
90  *	-The passed LSM is the one chosen by user at boot time,
91  *	-or the passed LSM is configured as the default and the user did not
92  *	 choose an alternate LSM at boot time.
93  * Otherwise, return false.
94  */
95 int __init security_module_enable(struct security_operations *ops)
96 {
97 	return !strcmp(ops->name, chosen_lsm);
98 }
99 
100 /**
101  * register_security - registers a security framework with the kernel
102  * @ops: a pointer to the struct security_options that is to be registered
103  *
104  * This function allows a security module to register itself with the
105  * kernel security subsystem.  Some rudimentary checking is done on the @ops
106  * value passed to this function. You'll need to check first if your LSM
107  * is allowed to register its @ops by calling security_module_enable(@ops).
108  *
109  * If there is already a security module registered with the kernel,
110  * an error will be returned.  Otherwise %0 is returned on success.
111  */
112 int __init register_security(struct security_operations *ops)
113 {
114 	if (verify(ops)) {
115 		printk(KERN_DEBUG "%s could not verify "
116 		       "security_operations structure.\n", __func__);
117 		return -EINVAL;
118 	}
119 
120 	if (security_ops != &default_security_ops)
121 		return -EAGAIN;
122 
123 	security_ops = ops;
124 
125 	return 0;
126 }
127 
128 /* Security operations */
129 
130 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
131 {
132 	return security_ops->ptrace_access_check(child, mode);
133 }
134 
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137 	return security_ops->ptrace_traceme(parent);
138 }
139 
140 int security_capget(struct task_struct *target,
141 		     kernel_cap_t *effective,
142 		     kernel_cap_t *inheritable,
143 		     kernel_cap_t *permitted)
144 {
145 	return security_ops->capget(target, effective, inheritable, permitted);
146 }
147 
148 int security_capset(struct cred *new, const struct cred *old,
149 		    const kernel_cap_t *effective,
150 		    const kernel_cap_t *inheritable,
151 		    const kernel_cap_t *permitted)
152 {
153 	return security_ops->capset(new, old,
154 				    effective, inheritable, permitted);
155 }
156 
157 int security_capable(struct user_namespace *ns, const struct cred *cred,
158 		     int cap)
159 {
160 	return security_ops->capable(current, cred, ns, cap,
161 				     SECURITY_CAP_AUDIT);
162 }
163 
164 int security_real_capable(struct task_struct *tsk, struct user_namespace *ns,
165 			  int cap)
166 {
167 	const struct cred *cred;
168 	int ret;
169 
170 	cred = get_task_cred(tsk);
171 	ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_AUDIT);
172 	put_cred(cred);
173 	return ret;
174 }
175 
176 int security_real_capable_noaudit(struct task_struct *tsk,
177 				  struct user_namespace *ns, int cap)
178 {
179 	const struct cred *cred;
180 	int ret;
181 
182 	cred = get_task_cred(tsk);
183 	ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_NOAUDIT);
184 	put_cred(cred);
185 	return ret;
186 }
187 
188 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
189 {
190 	return security_ops->quotactl(cmds, type, id, sb);
191 }
192 
193 int security_quota_on(struct dentry *dentry)
194 {
195 	return security_ops->quota_on(dentry);
196 }
197 
198 int security_syslog(int type)
199 {
200 	return security_ops->syslog(type);
201 }
202 
203 int security_settime(const struct timespec *ts, const struct timezone *tz)
204 {
205 	return security_ops->settime(ts, tz);
206 }
207 
208 int security_vm_enough_memory(long pages)
209 {
210 	WARN_ON(current->mm == NULL);
211 	return security_ops->vm_enough_memory(current->mm, pages);
212 }
213 
214 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
215 {
216 	WARN_ON(mm == NULL);
217 	return security_ops->vm_enough_memory(mm, pages);
218 }
219 
220 int security_vm_enough_memory_kern(long pages)
221 {
222 	/* If current->mm is a kernel thread then we will pass NULL,
223 	   for this specific case that is fine */
224 	return security_ops->vm_enough_memory(current->mm, pages);
225 }
226 
227 int security_bprm_set_creds(struct linux_binprm *bprm)
228 {
229 	return security_ops->bprm_set_creds(bprm);
230 }
231 
232 int security_bprm_check(struct linux_binprm *bprm)
233 {
234 	int ret;
235 
236 	ret = security_ops->bprm_check_security(bprm);
237 	if (ret)
238 		return ret;
239 	return ima_bprm_check(bprm);
240 }
241 
242 void security_bprm_committing_creds(struct linux_binprm *bprm)
243 {
244 	security_ops->bprm_committing_creds(bprm);
245 }
246 
247 void security_bprm_committed_creds(struct linux_binprm *bprm)
248 {
249 	security_ops->bprm_committed_creds(bprm);
250 }
251 
252 int security_bprm_secureexec(struct linux_binprm *bprm)
253 {
254 	return security_ops->bprm_secureexec(bprm);
255 }
256 
257 int security_sb_alloc(struct super_block *sb)
258 {
259 	return security_ops->sb_alloc_security(sb);
260 }
261 
262 void security_sb_free(struct super_block *sb)
263 {
264 	security_ops->sb_free_security(sb);
265 }
266 
267 int security_sb_copy_data(char *orig, char *copy)
268 {
269 	return security_ops->sb_copy_data(orig, copy);
270 }
271 EXPORT_SYMBOL(security_sb_copy_data);
272 
273 int security_sb_remount(struct super_block *sb, void *data)
274 {
275 	return security_ops->sb_remount(sb, data);
276 }
277 
278 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
279 {
280 	return security_ops->sb_kern_mount(sb, flags, data);
281 }
282 
283 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
284 {
285 	return security_ops->sb_show_options(m, sb);
286 }
287 
288 int security_sb_statfs(struct dentry *dentry)
289 {
290 	return security_ops->sb_statfs(dentry);
291 }
292 
293 int security_sb_mount(char *dev_name, struct path *path,
294                        char *type, unsigned long flags, void *data)
295 {
296 	return security_ops->sb_mount(dev_name, path, type, flags, data);
297 }
298 
299 int security_sb_umount(struct vfsmount *mnt, int flags)
300 {
301 	return security_ops->sb_umount(mnt, flags);
302 }
303 
304 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
305 {
306 	return security_ops->sb_pivotroot(old_path, new_path);
307 }
308 
309 int security_sb_set_mnt_opts(struct super_block *sb,
310 				struct security_mnt_opts *opts)
311 {
312 	return security_ops->sb_set_mnt_opts(sb, opts);
313 }
314 EXPORT_SYMBOL(security_sb_set_mnt_opts);
315 
316 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
317 				struct super_block *newsb)
318 {
319 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
320 }
321 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
322 
323 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
324 {
325 	return security_ops->sb_parse_opts_str(options, opts);
326 }
327 EXPORT_SYMBOL(security_sb_parse_opts_str);
328 
329 int security_inode_alloc(struct inode *inode)
330 {
331 	inode->i_security = NULL;
332 	return security_ops->inode_alloc_security(inode);
333 }
334 
335 void security_inode_free(struct inode *inode)
336 {
337 	ima_inode_free(inode);
338 	security_ops->inode_free_security(inode);
339 }
340 
341 int security_inode_init_security(struct inode *inode, struct inode *dir,
342 				 const struct qstr *qstr, char **name,
343 				 void **value, size_t *len)
344 {
345 	if (unlikely(IS_PRIVATE(inode)))
346 		return -EOPNOTSUPP;
347 	return security_ops->inode_init_security(inode, dir, qstr, name, value,
348 						 len);
349 }
350 EXPORT_SYMBOL(security_inode_init_security);
351 
352 #ifdef CONFIG_SECURITY_PATH
353 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
354 			unsigned int dev)
355 {
356 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
357 		return 0;
358 	return security_ops->path_mknod(dir, dentry, mode, dev);
359 }
360 EXPORT_SYMBOL(security_path_mknod);
361 
362 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
363 {
364 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
365 		return 0;
366 	return security_ops->path_mkdir(dir, dentry, mode);
367 }
368 EXPORT_SYMBOL(security_path_mkdir);
369 
370 int security_path_rmdir(struct path *dir, struct dentry *dentry)
371 {
372 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
373 		return 0;
374 	return security_ops->path_rmdir(dir, dentry);
375 }
376 
377 int security_path_unlink(struct path *dir, struct dentry *dentry)
378 {
379 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
380 		return 0;
381 	return security_ops->path_unlink(dir, dentry);
382 }
383 EXPORT_SYMBOL(security_path_unlink);
384 
385 int security_path_symlink(struct path *dir, struct dentry *dentry,
386 			  const char *old_name)
387 {
388 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
389 		return 0;
390 	return security_ops->path_symlink(dir, dentry, old_name);
391 }
392 
393 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
394 		       struct dentry *new_dentry)
395 {
396 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
397 		return 0;
398 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
399 }
400 
401 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
402 			 struct path *new_dir, struct dentry *new_dentry)
403 {
404 	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
405 		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
406 		return 0;
407 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
408 					 new_dentry);
409 }
410 EXPORT_SYMBOL(security_path_rename);
411 
412 int security_path_truncate(struct path *path)
413 {
414 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
415 		return 0;
416 	return security_ops->path_truncate(path);
417 }
418 
419 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
420 			mode_t mode)
421 {
422 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
423 		return 0;
424 	return security_ops->path_chmod(dentry, mnt, mode);
425 }
426 
427 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
428 {
429 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
430 		return 0;
431 	return security_ops->path_chown(path, uid, gid);
432 }
433 
434 int security_path_chroot(struct path *path)
435 {
436 	return security_ops->path_chroot(path);
437 }
438 #endif
439 
440 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
441 {
442 	if (unlikely(IS_PRIVATE(dir)))
443 		return 0;
444 	return security_ops->inode_create(dir, dentry, mode);
445 }
446 EXPORT_SYMBOL_GPL(security_inode_create);
447 
448 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
449 			 struct dentry *new_dentry)
450 {
451 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
452 		return 0;
453 	return security_ops->inode_link(old_dentry, dir, new_dentry);
454 }
455 
456 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
457 {
458 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
459 		return 0;
460 	return security_ops->inode_unlink(dir, dentry);
461 }
462 
463 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
464 			    const char *old_name)
465 {
466 	if (unlikely(IS_PRIVATE(dir)))
467 		return 0;
468 	return security_ops->inode_symlink(dir, dentry, old_name);
469 }
470 
471 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
472 {
473 	if (unlikely(IS_PRIVATE(dir)))
474 		return 0;
475 	return security_ops->inode_mkdir(dir, dentry, mode);
476 }
477 EXPORT_SYMBOL_GPL(security_inode_mkdir);
478 
479 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
480 {
481 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
482 		return 0;
483 	return security_ops->inode_rmdir(dir, dentry);
484 }
485 
486 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
487 {
488 	if (unlikely(IS_PRIVATE(dir)))
489 		return 0;
490 	return security_ops->inode_mknod(dir, dentry, mode, dev);
491 }
492 
493 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
494 			   struct inode *new_dir, struct dentry *new_dentry)
495 {
496         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
497             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
498 		return 0;
499 	return security_ops->inode_rename(old_dir, old_dentry,
500 					   new_dir, new_dentry);
501 }
502 
503 int security_inode_readlink(struct dentry *dentry)
504 {
505 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
506 		return 0;
507 	return security_ops->inode_readlink(dentry);
508 }
509 
510 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
511 {
512 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
513 		return 0;
514 	return security_ops->inode_follow_link(dentry, nd);
515 }
516 
517 int security_inode_permission(struct inode *inode, int mask)
518 {
519 	if (unlikely(IS_PRIVATE(inode)))
520 		return 0;
521 	return security_ops->inode_permission(inode, mask);
522 }
523 
524 int security_inode_exec_permission(struct inode *inode, unsigned int flags)
525 {
526 	if (unlikely(IS_PRIVATE(inode)))
527 		return 0;
528 	if (flags)
529 		return -ECHILD;
530 	return security_ops->inode_permission(inode, MAY_EXEC);
531 }
532 
533 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
534 {
535 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
536 		return 0;
537 	return security_ops->inode_setattr(dentry, attr);
538 }
539 EXPORT_SYMBOL_GPL(security_inode_setattr);
540 
541 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
542 {
543 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
544 		return 0;
545 	return security_ops->inode_getattr(mnt, dentry);
546 }
547 
548 int security_inode_setxattr(struct dentry *dentry, const char *name,
549 			    const void *value, size_t size, int flags)
550 {
551 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
552 		return 0;
553 	return security_ops->inode_setxattr(dentry, name, value, size, flags);
554 }
555 
556 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
557 				  const void *value, size_t size, int flags)
558 {
559 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
560 		return;
561 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
562 }
563 
564 int security_inode_getxattr(struct dentry *dentry, const char *name)
565 {
566 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
567 		return 0;
568 	return security_ops->inode_getxattr(dentry, name);
569 }
570 
571 int security_inode_listxattr(struct dentry *dentry)
572 {
573 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
574 		return 0;
575 	return security_ops->inode_listxattr(dentry);
576 }
577 
578 int security_inode_removexattr(struct dentry *dentry, const char *name)
579 {
580 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
581 		return 0;
582 	return security_ops->inode_removexattr(dentry, name);
583 }
584 
585 int security_inode_need_killpriv(struct dentry *dentry)
586 {
587 	return security_ops->inode_need_killpriv(dentry);
588 }
589 
590 int security_inode_killpriv(struct dentry *dentry)
591 {
592 	return security_ops->inode_killpriv(dentry);
593 }
594 
595 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
596 {
597 	if (unlikely(IS_PRIVATE(inode)))
598 		return -EOPNOTSUPP;
599 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
600 }
601 
602 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
603 {
604 	if (unlikely(IS_PRIVATE(inode)))
605 		return -EOPNOTSUPP;
606 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
607 }
608 
609 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
610 {
611 	if (unlikely(IS_PRIVATE(inode)))
612 		return 0;
613 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
614 }
615 
616 void security_inode_getsecid(const struct inode *inode, u32 *secid)
617 {
618 	security_ops->inode_getsecid(inode, secid);
619 }
620 
621 int security_file_permission(struct file *file, int mask)
622 {
623 	int ret;
624 
625 	ret = security_ops->file_permission(file, mask);
626 	if (ret)
627 		return ret;
628 
629 	return fsnotify_perm(file, mask);
630 }
631 
632 int security_file_alloc(struct file *file)
633 {
634 	return security_ops->file_alloc_security(file);
635 }
636 
637 void security_file_free(struct file *file)
638 {
639 	security_ops->file_free_security(file);
640 }
641 
642 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
643 {
644 	return security_ops->file_ioctl(file, cmd, arg);
645 }
646 
647 int security_file_mmap(struct file *file, unsigned long reqprot,
648 			unsigned long prot, unsigned long flags,
649 			unsigned long addr, unsigned long addr_only)
650 {
651 	int ret;
652 
653 	ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
654 	if (ret)
655 		return ret;
656 	return ima_file_mmap(file, prot);
657 }
658 
659 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
660 			    unsigned long prot)
661 {
662 	return security_ops->file_mprotect(vma, reqprot, prot);
663 }
664 
665 int security_file_lock(struct file *file, unsigned int cmd)
666 {
667 	return security_ops->file_lock(file, cmd);
668 }
669 
670 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
671 {
672 	return security_ops->file_fcntl(file, cmd, arg);
673 }
674 
675 int security_file_set_fowner(struct file *file)
676 {
677 	return security_ops->file_set_fowner(file);
678 }
679 
680 int security_file_send_sigiotask(struct task_struct *tsk,
681 				  struct fown_struct *fown, int sig)
682 {
683 	return security_ops->file_send_sigiotask(tsk, fown, sig);
684 }
685 
686 int security_file_receive(struct file *file)
687 {
688 	return security_ops->file_receive(file);
689 }
690 
691 int security_dentry_open(struct file *file, const struct cred *cred)
692 {
693 	int ret;
694 
695 	ret = security_ops->dentry_open(file, cred);
696 	if (ret)
697 		return ret;
698 
699 	return fsnotify_perm(file, MAY_OPEN);
700 }
701 
702 int security_task_create(unsigned long clone_flags)
703 {
704 	return security_ops->task_create(clone_flags);
705 }
706 
707 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
708 {
709 	return security_ops->cred_alloc_blank(cred, gfp);
710 }
711 
712 void security_cred_free(struct cred *cred)
713 {
714 	security_ops->cred_free(cred);
715 }
716 
717 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
718 {
719 	return security_ops->cred_prepare(new, old, gfp);
720 }
721 
722 void security_transfer_creds(struct cred *new, const struct cred *old)
723 {
724 	security_ops->cred_transfer(new, old);
725 }
726 
727 int security_kernel_act_as(struct cred *new, u32 secid)
728 {
729 	return security_ops->kernel_act_as(new, secid);
730 }
731 
732 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
733 {
734 	return security_ops->kernel_create_files_as(new, inode);
735 }
736 
737 int security_kernel_module_request(char *kmod_name)
738 {
739 	return security_ops->kernel_module_request(kmod_name);
740 }
741 
742 int security_task_fix_setuid(struct cred *new, const struct cred *old,
743 			     int flags)
744 {
745 	return security_ops->task_fix_setuid(new, old, flags);
746 }
747 
748 int security_task_setpgid(struct task_struct *p, pid_t pgid)
749 {
750 	return security_ops->task_setpgid(p, pgid);
751 }
752 
753 int security_task_getpgid(struct task_struct *p)
754 {
755 	return security_ops->task_getpgid(p);
756 }
757 
758 int security_task_getsid(struct task_struct *p)
759 {
760 	return security_ops->task_getsid(p);
761 }
762 
763 void security_task_getsecid(struct task_struct *p, u32 *secid)
764 {
765 	security_ops->task_getsecid(p, secid);
766 }
767 EXPORT_SYMBOL(security_task_getsecid);
768 
769 int security_task_setnice(struct task_struct *p, int nice)
770 {
771 	return security_ops->task_setnice(p, nice);
772 }
773 
774 int security_task_setioprio(struct task_struct *p, int ioprio)
775 {
776 	return security_ops->task_setioprio(p, ioprio);
777 }
778 
779 int security_task_getioprio(struct task_struct *p)
780 {
781 	return security_ops->task_getioprio(p);
782 }
783 
784 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
785 		struct rlimit *new_rlim)
786 {
787 	return security_ops->task_setrlimit(p, resource, new_rlim);
788 }
789 
790 int security_task_setscheduler(struct task_struct *p)
791 {
792 	return security_ops->task_setscheduler(p);
793 }
794 
795 int security_task_getscheduler(struct task_struct *p)
796 {
797 	return security_ops->task_getscheduler(p);
798 }
799 
800 int security_task_movememory(struct task_struct *p)
801 {
802 	return security_ops->task_movememory(p);
803 }
804 
805 int security_task_kill(struct task_struct *p, struct siginfo *info,
806 			int sig, u32 secid)
807 {
808 	return security_ops->task_kill(p, info, sig, secid);
809 }
810 
811 int security_task_wait(struct task_struct *p)
812 {
813 	return security_ops->task_wait(p);
814 }
815 
816 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
817 			 unsigned long arg4, unsigned long arg5)
818 {
819 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
820 }
821 
822 void security_task_to_inode(struct task_struct *p, struct inode *inode)
823 {
824 	security_ops->task_to_inode(p, inode);
825 }
826 
827 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
828 {
829 	return security_ops->ipc_permission(ipcp, flag);
830 }
831 
832 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
833 {
834 	security_ops->ipc_getsecid(ipcp, secid);
835 }
836 
837 int security_msg_msg_alloc(struct msg_msg *msg)
838 {
839 	return security_ops->msg_msg_alloc_security(msg);
840 }
841 
842 void security_msg_msg_free(struct msg_msg *msg)
843 {
844 	security_ops->msg_msg_free_security(msg);
845 }
846 
847 int security_msg_queue_alloc(struct msg_queue *msq)
848 {
849 	return security_ops->msg_queue_alloc_security(msq);
850 }
851 
852 void security_msg_queue_free(struct msg_queue *msq)
853 {
854 	security_ops->msg_queue_free_security(msq);
855 }
856 
857 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
858 {
859 	return security_ops->msg_queue_associate(msq, msqflg);
860 }
861 
862 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
863 {
864 	return security_ops->msg_queue_msgctl(msq, cmd);
865 }
866 
867 int security_msg_queue_msgsnd(struct msg_queue *msq,
868 			       struct msg_msg *msg, int msqflg)
869 {
870 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
871 }
872 
873 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
874 			       struct task_struct *target, long type, int mode)
875 {
876 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
877 }
878 
879 int security_shm_alloc(struct shmid_kernel *shp)
880 {
881 	return security_ops->shm_alloc_security(shp);
882 }
883 
884 void security_shm_free(struct shmid_kernel *shp)
885 {
886 	security_ops->shm_free_security(shp);
887 }
888 
889 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
890 {
891 	return security_ops->shm_associate(shp, shmflg);
892 }
893 
894 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
895 {
896 	return security_ops->shm_shmctl(shp, cmd);
897 }
898 
899 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
900 {
901 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
902 }
903 
904 int security_sem_alloc(struct sem_array *sma)
905 {
906 	return security_ops->sem_alloc_security(sma);
907 }
908 
909 void security_sem_free(struct sem_array *sma)
910 {
911 	security_ops->sem_free_security(sma);
912 }
913 
914 int security_sem_associate(struct sem_array *sma, int semflg)
915 {
916 	return security_ops->sem_associate(sma, semflg);
917 }
918 
919 int security_sem_semctl(struct sem_array *sma, int cmd)
920 {
921 	return security_ops->sem_semctl(sma, cmd);
922 }
923 
924 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
925 			unsigned nsops, int alter)
926 {
927 	return security_ops->sem_semop(sma, sops, nsops, alter);
928 }
929 
930 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
931 {
932 	if (unlikely(inode && IS_PRIVATE(inode)))
933 		return;
934 	security_ops->d_instantiate(dentry, inode);
935 }
936 EXPORT_SYMBOL(security_d_instantiate);
937 
938 int security_getprocattr(struct task_struct *p, char *name, char **value)
939 {
940 	return security_ops->getprocattr(p, name, value);
941 }
942 
943 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
944 {
945 	return security_ops->setprocattr(p, name, value, size);
946 }
947 
948 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
949 {
950 	return security_ops->netlink_send(sk, skb);
951 }
952 
953 int security_netlink_recv(struct sk_buff *skb, int cap)
954 {
955 	return security_ops->netlink_recv(skb, cap);
956 }
957 EXPORT_SYMBOL(security_netlink_recv);
958 
959 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
960 {
961 	return security_ops->secid_to_secctx(secid, secdata, seclen);
962 }
963 EXPORT_SYMBOL(security_secid_to_secctx);
964 
965 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
966 {
967 	return security_ops->secctx_to_secid(secdata, seclen, secid);
968 }
969 EXPORT_SYMBOL(security_secctx_to_secid);
970 
971 void security_release_secctx(char *secdata, u32 seclen)
972 {
973 	security_ops->release_secctx(secdata, seclen);
974 }
975 EXPORT_SYMBOL(security_release_secctx);
976 
977 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
978 {
979 	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
980 }
981 EXPORT_SYMBOL(security_inode_notifysecctx);
982 
983 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
984 {
985 	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
986 }
987 EXPORT_SYMBOL(security_inode_setsecctx);
988 
989 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
990 {
991 	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
992 }
993 EXPORT_SYMBOL(security_inode_getsecctx);
994 
995 #ifdef CONFIG_SECURITY_NETWORK
996 
997 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
998 {
999 	return security_ops->unix_stream_connect(sock, other, newsk);
1000 }
1001 EXPORT_SYMBOL(security_unix_stream_connect);
1002 
1003 int security_unix_may_send(struct socket *sock,  struct socket *other)
1004 {
1005 	return security_ops->unix_may_send(sock, other);
1006 }
1007 EXPORT_SYMBOL(security_unix_may_send);
1008 
1009 int security_socket_create(int family, int type, int protocol, int kern)
1010 {
1011 	return security_ops->socket_create(family, type, protocol, kern);
1012 }
1013 
1014 int security_socket_post_create(struct socket *sock, int family,
1015 				int type, int protocol, int kern)
1016 {
1017 	return security_ops->socket_post_create(sock, family, type,
1018 						protocol, kern);
1019 }
1020 
1021 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1022 {
1023 	return security_ops->socket_bind(sock, address, addrlen);
1024 }
1025 
1026 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1027 {
1028 	return security_ops->socket_connect(sock, address, addrlen);
1029 }
1030 
1031 int security_socket_listen(struct socket *sock, int backlog)
1032 {
1033 	return security_ops->socket_listen(sock, backlog);
1034 }
1035 
1036 int security_socket_accept(struct socket *sock, struct socket *newsock)
1037 {
1038 	return security_ops->socket_accept(sock, newsock);
1039 }
1040 
1041 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1042 {
1043 	return security_ops->socket_sendmsg(sock, msg, size);
1044 }
1045 
1046 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1047 			    int size, int flags)
1048 {
1049 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1050 }
1051 
1052 int security_socket_getsockname(struct socket *sock)
1053 {
1054 	return security_ops->socket_getsockname(sock);
1055 }
1056 
1057 int security_socket_getpeername(struct socket *sock)
1058 {
1059 	return security_ops->socket_getpeername(sock);
1060 }
1061 
1062 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1063 {
1064 	return security_ops->socket_getsockopt(sock, level, optname);
1065 }
1066 
1067 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1068 {
1069 	return security_ops->socket_setsockopt(sock, level, optname);
1070 }
1071 
1072 int security_socket_shutdown(struct socket *sock, int how)
1073 {
1074 	return security_ops->socket_shutdown(sock, how);
1075 }
1076 
1077 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1078 {
1079 	return security_ops->socket_sock_rcv_skb(sk, skb);
1080 }
1081 EXPORT_SYMBOL(security_sock_rcv_skb);
1082 
1083 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1084 				      int __user *optlen, unsigned len)
1085 {
1086 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1087 }
1088 
1089 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1090 {
1091 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1092 }
1093 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1094 
1095 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1096 {
1097 	return security_ops->sk_alloc_security(sk, family, priority);
1098 }
1099 
1100 void security_sk_free(struct sock *sk)
1101 {
1102 	security_ops->sk_free_security(sk);
1103 }
1104 
1105 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1106 {
1107 	security_ops->sk_clone_security(sk, newsk);
1108 }
1109 
1110 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1111 {
1112 	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1113 }
1114 EXPORT_SYMBOL(security_sk_classify_flow);
1115 
1116 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1117 {
1118 	security_ops->req_classify_flow(req, fl);
1119 }
1120 EXPORT_SYMBOL(security_req_classify_flow);
1121 
1122 void security_sock_graft(struct sock *sk, struct socket *parent)
1123 {
1124 	security_ops->sock_graft(sk, parent);
1125 }
1126 EXPORT_SYMBOL(security_sock_graft);
1127 
1128 int security_inet_conn_request(struct sock *sk,
1129 			struct sk_buff *skb, struct request_sock *req)
1130 {
1131 	return security_ops->inet_conn_request(sk, skb, req);
1132 }
1133 EXPORT_SYMBOL(security_inet_conn_request);
1134 
1135 void security_inet_csk_clone(struct sock *newsk,
1136 			const struct request_sock *req)
1137 {
1138 	security_ops->inet_csk_clone(newsk, req);
1139 }
1140 
1141 void security_inet_conn_established(struct sock *sk,
1142 			struct sk_buff *skb)
1143 {
1144 	security_ops->inet_conn_established(sk, skb);
1145 }
1146 
1147 int security_secmark_relabel_packet(u32 secid)
1148 {
1149 	return security_ops->secmark_relabel_packet(secid);
1150 }
1151 EXPORT_SYMBOL(security_secmark_relabel_packet);
1152 
1153 void security_secmark_refcount_inc(void)
1154 {
1155 	security_ops->secmark_refcount_inc();
1156 }
1157 EXPORT_SYMBOL(security_secmark_refcount_inc);
1158 
1159 void security_secmark_refcount_dec(void)
1160 {
1161 	security_ops->secmark_refcount_dec();
1162 }
1163 EXPORT_SYMBOL(security_secmark_refcount_dec);
1164 
1165 int security_tun_dev_create(void)
1166 {
1167 	return security_ops->tun_dev_create();
1168 }
1169 EXPORT_SYMBOL(security_tun_dev_create);
1170 
1171 void security_tun_dev_post_create(struct sock *sk)
1172 {
1173 	return security_ops->tun_dev_post_create(sk);
1174 }
1175 EXPORT_SYMBOL(security_tun_dev_post_create);
1176 
1177 int security_tun_dev_attach(struct sock *sk)
1178 {
1179 	return security_ops->tun_dev_attach(sk);
1180 }
1181 EXPORT_SYMBOL(security_tun_dev_attach);
1182 
1183 #endif	/* CONFIG_SECURITY_NETWORK */
1184 
1185 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1186 
1187 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1188 {
1189 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1190 }
1191 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1192 
1193 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1194 			      struct xfrm_sec_ctx **new_ctxp)
1195 {
1196 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1197 }
1198 
1199 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1200 {
1201 	security_ops->xfrm_policy_free_security(ctx);
1202 }
1203 EXPORT_SYMBOL(security_xfrm_policy_free);
1204 
1205 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1206 {
1207 	return security_ops->xfrm_policy_delete_security(ctx);
1208 }
1209 
1210 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1211 {
1212 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1213 }
1214 EXPORT_SYMBOL(security_xfrm_state_alloc);
1215 
1216 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1217 				      struct xfrm_sec_ctx *polsec, u32 secid)
1218 {
1219 	if (!polsec)
1220 		return 0;
1221 	/*
1222 	 * We want the context to be taken from secid which is usually
1223 	 * from the sock.
1224 	 */
1225 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1226 }
1227 
1228 int security_xfrm_state_delete(struct xfrm_state *x)
1229 {
1230 	return security_ops->xfrm_state_delete_security(x);
1231 }
1232 EXPORT_SYMBOL(security_xfrm_state_delete);
1233 
1234 void security_xfrm_state_free(struct xfrm_state *x)
1235 {
1236 	security_ops->xfrm_state_free_security(x);
1237 }
1238 
1239 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1240 {
1241 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1242 }
1243 
1244 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1245 				       struct xfrm_policy *xp,
1246 				       const struct flowi *fl)
1247 {
1248 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1249 }
1250 
1251 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1252 {
1253 	return security_ops->xfrm_decode_session(skb, secid, 1);
1254 }
1255 
1256 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1257 {
1258 	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1259 
1260 	BUG_ON(rc);
1261 }
1262 EXPORT_SYMBOL(security_skb_classify_flow);
1263 
1264 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1265 
1266 #ifdef CONFIG_KEYS
1267 
1268 int security_key_alloc(struct key *key, const struct cred *cred,
1269 		       unsigned long flags)
1270 {
1271 	return security_ops->key_alloc(key, cred, flags);
1272 }
1273 
1274 void security_key_free(struct key *key)
1275 {
1276 	security_ops->key_free(key);
1277 }
1278 
1279 int security_key_permission(key_ref_t key_ref,
1280 			    const struct cred *cred, key_perm_t perm)
1281 {
1282 	return security_ops->key_permission(key_ref, cred, perm);
1283 }
1284 
1285 int security_key_getsecurity(struct key *key, char **_buffer)
1286 {
1287 	return security_ops->key_getsecurity(key, _buffer);
1288 }
1289 
1290 #endif	/* CONFIG_KEYS */
1291 
1292 #ifdef CONFIG_AUDIT
1293 
1294 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1295 {
1296 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1297 }
1298 
1299 int security_audit_rule_known(struct audit_krule *krule)
1300 {
1301 	return security_ops->audit_rule_known(krule);
1302 }
1303 
1304 void security_audit_rule_free(void *lsmrule)
1305 {
1306 	security_ops->audit_rule_free(lsmrule);
1307 }
1308 
1309 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1310 			      struct audit_context *actx)
1311 {
1312 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1313 }
1314 
1315 #endif /* CONFIG_AUDIT */
1316