xref: /linux-6.15/security/security.c (revision d6bd12e8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <[email protected]>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <[email protected]>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]>
8  * Copyright (C) 2016 Mellanox Technologies
9  * Copyright (C) 2023 Microsoft Corporation <[email protected]>
10  */
11 
12 #define pr_fmt(fmt) "LSM: " fmt
13 
14 #include <linux/bpf.h>
15 #include <linux/capability.h>
16 #include <linux/dcache.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/fsnotify.h>
23 #include <linux/mman.h>
24 #include <linux/mount.h>
25 #include <linux/personality.h>
26 #include <linux/backing-dev.h>
27 #include <linux/string.h>
28 #include <linux/xattr.h>
29 #include <linux/msg.h>
30 #include <linux/overflow.h>
31 #include <linux/perf_event.h>
32 #include <linux/fs.h>
33 #include <net/flow.h>
34 #include <net/sock.h>
35 
36 #define SECURITY_HOOK_ACTIVE_KEY(HOOK, IDX) security_hook_active_##HOOK##_##IDX
37 
38 /*
39  * Identifier for the LSM static calls.
40  * HOOK is an LSM hook as defined in linux/lsm_hookdefs.h
41  * IDX is the index of the static call. 0 <= NUM < MAX_LSM_COUNT
42  */
43 #define LSM_STATIC_CALL(HOOK, IDX) lsm_static_call_##HOOK##_##IDX
44 
45 /*
46  * Call the macro M for each LSM hook MAX_LSM_COUNT times.
47  */
48 #define LSM_LOOP_UNROLL(M, ...) 		\
49 do {						\
50 	UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)	\
51 } while (0)
52 
53 #define LSM_DEFINE_UNROLL(M, ...) UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)
54 
55 /*
56  * These are descriptions of the reasons that can be passed to the
57  * security_locked_down() LSM hook. Placing this array here allows
58  * all security modules to use the same descriptions for auditing
59  * purposes.
60  */
61 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
62 	[LOCKDOWN_NONE] = "none",
63 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
64 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
65 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
66 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
67 	[LOCKDOWN_HIBERNATION] = "hibernation",
68 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
69 	[LOCKDOWN_IOPORT] = "raw io port access",
70 	[LOCKDOWN_MSR] = "raw MSR access",
71 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
72 	[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
73 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
74 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
75 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
76 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
77 	[LOCKDOWN_DEBUGFS] = "debugfs access",
78 	[LOCKDOWN_XMON_WR] = "xmon write access",
79 	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
80 	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
81 	[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
82 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
83 	[LOCKDOWN_KCORE] = "/proc/kcore access",
84 	[LOCKDOWN_KPROBES] = "use of kprobes",
85 	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
86 	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
87 	[LOCKDOWN_PERF] = "unsafe use of perf",
88 	[LOCKDOWN_TRACEFS] = "use of tracefs",
89 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
90 	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
91 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
92 };
93 
94 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
95 
96 static struct kmem_cache *lsm_file_cache;
97 static struct kmem_cache *lsm_inode_cache;
98 
99 char *lsm_names;
100 static struct lsm_blob_sizes blob_sizes __ro_after_init;
101 
102 /* Boot-time LSM user choice */
103 static __initdata const char *chosen_lsm_order;
104 static __initdata const char *chosen_major_lsm;
105 
106 static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
107 
108 /* Ordered list of LSMs to initialize. */
109 static __initdata struct lsm_info *ordered_lsms[MAX_LSM_COUNT + 1];
110 static __initdata struct lsm_info *exclusive;
111 
112 #ifdef CONFIG_HAVE_STATIC_CALL
113 #define LSM_HOOK_TRAMP(NAME, NUM) \
114 	&STATIC_CALL_TRAMP(LSM_STATIC_CALL(NAME, NUM))
115 #else
116 #define LSM_HOOK_TRAMP(NAME, NUM) NULL
117 #endif
118 
119 /*
120  * Define static calls and static keys for each LSM hook.
121  */
122 #define DEFINE_LSM_STATIC_CALL(NUM, NAME, RET, ...)			\
123 	DEFINE_STATIC_CALL_NULL(LSM_STATIC_CALL(NAME, NUM),		\
124 				*((RET(*)(__VA_ARGS__))NULL));		\
125 	DEFINE_STATIC_KEY_FALSE(SECURITY_HOOK_ACTIVE_KEY(NAME, NUM));
126 
127 #define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
128 	LSM_DEFINE_UNROLL(DEFINE_LSM_STATIC_CALL, NAME, RET, __VA_ARGS__)
129 #include <linux/lsm_hook_defs.h>
130 #undef LSM_HOOK
131 #undef DEFINE_LSM_STATIC_CALL
132 
133 /*
134  * Initialise a table of static calls for each LSM hook.
135  * DEFINE_STATIC_CALL_NULL invocation above generates a key (STATIC_CALL_KEY)
136  * and a trampoline (STATIC_CALL_TRAMP) which are used to call
137  * __static_call_update when updating the static call.
138  *
139  * The static calls table is used by early LSMs, some architectures can fault on
140  * unaligned accesses and the fault handling code may not be ready by then.
141  * Thus, the static calls table should be aligned to avoid any unhandled faults
142  * in early init.
143  */
144 struct lsm_static_calls_table
145 	static_calls_table __ro_after_init __aligned(sizeof(u64)) = {
146 #define INIT_LSM_STATIC_CALL(NUM, NAME)					\
147 	(struct lsm_static_call) {					\
148 		.key = &STATIC_CALL_KEY(LSM_STATIC_CALL(NAME, NUM)),	\
149 		.trampoline = LSM_HOOK_TRAMP(NAME, NUM),		\
150 		.active = &SECURITY_HOOK_ACTIVE_KEY(NAME, NUM),		\
151 	},
152 #define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
153 	.NAME = {							\
154 		LSM_DEFINE_UNROLL(INIT_LSM_STATIC_CALL, NAME)		\
155 	},
156 #include <linux/lsm_hook_defs.h>
157 #undef LSM_HOOK
158 #undef INIT_LSM_STATIC_CALL
159 	};
160 
161 static __initdata bool debug;
162 #define init_debug(...)						\
163 	do {							\
164 		if (debug)					\
165 			pr_info(__VA_ARGS__);			\
166 	} while (0)
167 
168 static bool __init is_enabled(struct lsm_info *lsm)
169 {
170 	if (!lsm->enabled)
171 		return false;
172 
173 	return *lsm->enabled;
174 }
175 
176 /* Mark an LSM's enabled flag. */
177 static int lsm_enabled_true __initdata = 1;
178 static int lsm_enabled_false __initdata = 0;
179 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
180 {
181 	/*
182 	 * When an LSM hasn't configured an enable variable, we can use
183 	 * a hard-coded location for storing the default enabled state.
184 	 */
185 	if (!lsm->enabled) {
186 		if (enabled)
187 			lsm->enabled = &lsm_enabled_true;
188 		else
189 			lsm->enabled = &lsm_enabled_false;
190 	} else if (lsm->enabled == &lsm_enabled_true) {
191 		if (!enabled)
192 			lsm->enabled = &lsm_enabled_false;
193 	} else if (lsm->enabled == &lsm_enabled_false) {
194 		if (enabled)
195 			lsm->enabled = &lsm_enabled_true;
196 	} else {
197 		*lsm->enabled = enabled;
198 	}
199 }
200 
201 /* Is an LSM already listed in the ordered LSMs list? */
202 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
203 {
204 	struct lsm_info **check;
205 
206 	for (check = ordered_lsms; *check; check++)
207 		if (*check == lsm)
208 			return true;
209 
210 	return false;
211 }
212 
213 /* Append an LSM to the list of ordered LSMs to initialize. */
214 static int last_lsm __initdata;
215 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
216 {
217 	/* Ignore duplicate selections. */
218 	if (exists_ordered_lsm(lsm))
219 		return;
220 
221 	if (WARN(last_lsm == MAX_LSM_COUNT, "%s: out of LSM static calls!?\n", from))
222 		return;
223 
224 	/* Enable this LSM, if it is not already set. */
225 	if (!lsm->enabled)
226 		lsm->enabled = &lsm_enabled_true;
227 	ordered_lsms[last_lsm++] = lsm;
228 
229 	init_debug("%s ordered: %s (%s)\n", from, lsm->name,
230 		   is_enabled(lsm) ? "enabled" : "disabled");
231 }
232 
233 /* Is an LSM allowed to be initialized? */
234 static bool __init lsm_allowed(struct lsm_info *lsm)
235 {
236 	/* Skip if the LSM is disabled. */
237 	if (!is_enabled(lsm))
238 		return false;
239 
240 	/* Not allowed if another exclusive LSM already initialized. */
241 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
242 		init_debug("exclusive disabled: %s\n", lsm->name);
243 		return false;
244 	}
245 
246 	return true;
247 }
248 
249 static void __init lsm_set_blob_size(int *need, int *lbs)
250 {
251 	int offset;
252 
253 	if (*need <= 0)
254 		return;
255 
256 	offset = ALIGN(*lbs, sizeof(void *));
257 	*lbs = offset + *need;
258 	*need = offset;
259 }
260 
261 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
262 {
263 	if (!needed)
264 		return;
265 
266 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
267 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
268 	lsm_set_blob_size(&needed->lbs_ib, &blob_sizes.lbs_ib);
269 	/*
270 	 * The inode blob gets an rcu_head in addition to
271 	 * what the modules might need.
272 	 */
273 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
274 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
275 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
276 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
277 	lsm_set_blob_size(&needed->lbs_key, &blob_sizes.lbs_key);
278 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
279 	lsm_set_blob_size(&needed->lbs_perf_event, &blob_sizes.lbs_perf_event);
280 	lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock);
281 	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
282 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
283 	lsm_set_blob_size(&needed->lbs_tun_dev, &blob_sizes.lbs_tun_dev);
284 	lsm_set_blob_size(&needed->lbs_xattr_count,
285 			  &blob_sizes.lbs_xattr_count);
286 	lsm_set_blob_size(&needed->lbs_bdev, &blob_sizes.lbs_bdev);
287 }
288 
289 /* Prepare LSM for initialization. */
290 static void __init prepare_lsm(struct lsm_info *lsm)
291 {
292 	int enabled = lsm_allowed(lsm);
293 
294 	/* Record enablement (to handle any following exclusive LSMs). */
295 	set_enabled(lsm, enabled);
296 
297 	/* If enabled, do pre-initialization work. */
298 	if (enabled) {
299 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
300 			exclusive = lsm;
301 			init_debug("exclusive chosen:   %s\n", lsm->name);
302 		}
303 
304 		lsm_set_blob_sizes(lsm->blobs);
305 	}
306 }
307 
308 /* Initialize a given LSM, if it is enabled. */
309 static void __init initialize_lsm(struct lsm_info *lsm)
310 {
311 	if (is_enabled(lsm)) {
312 		int ret;
313 
314 		init_debug("initializing %s\n", lsm->name);
315 		ret = lsm->init();
316 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
317 	}
318 }
319 
320 /*
321  * Current index to use while initializing the lsm id list.
322  */
323 u32 lsm_active_cnt __ro_after_init;
324 const struct lsm_id *lsm_idlist[MAX_LSM_COUNT];
325 
326 /* Populate ordered LSMs list from comma-separated LSM name list. */
327 static void __init ordered_lsm_parse(const char *order, const char *origin)
328 {
329 	struct lsm_info *lsm;
330 	char *sep, *name, *next;
331 
332 	/* LSM_ORDER_FIRST is always first. */
333 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
334 		if (lsm->order == LSM_ORDER_FIRST)
335 			append_ordered_lsm(lsm, "  first");
336 	}
337 
338 	/* Process "security=", if given. */
339 	if (chosen_major_lsm) {
340 		struct lsm_info *major;
341 
342 		/*
343 		 * To match the original "security=" behavior, this
344 		 * explicitly does NOT fallback to another Legacy Major
345 		 * if the selected one was separately disabled: disable
346 		 * all non-matching Legacy Major LSMs.
347 		 */
348 		for (major = __start_lsm_info; major < __end_lsm_info;
349 		     major++) {
350 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
351 			    strcmp(major->name, chosen_major_lsm) != 0) {
352 				set_enabled(major, false);
353 				init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
354 					   chosen_major_lsm, major->name);
355 			}
356 		}
357 	}
358 
359 	sep = kstrdup(order, GFP_KERNEL);
360 	next = sep;
361 	/* Walk the list, looking for matching LSMs. */
362 	while ((name = strsep(&next, ",")) != NULL) {
363 		bool found = false;
364 
365 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
366 			if (strcmp(lsm->name, name) == 0) {
367 				if (lsm->order == LSM_ORDER_MUTABLE)
368 					append_ordered_lsm(lsm, origin);
369 				found = true;
370 			}
371 		}
372 
373 		if (!found)
374 			init_debug("%s ignored: %s (not built into kernel)\n",
375 				   origin, name);
376 	}
377 
378 	/* Process "security=", if given. */
379 	if (chosen_major_lsm) {
380 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
381 			if (exists_ordered_lsm(lsm))
382 				continue;
383 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
384 				append_ordered_lsm(lsm, "security=");
385 		}
386 	}
387 
388 	/* LSM_ORDER_LAST is always last. */
389 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
390 		if (lsm->order == LSM_ORDER_LAST)
391 			append_ordered_lsm(lsm, "   last");
392 	}
393 
394 	/* Disable all LSMs not in the ordered list. */
395 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
396 		if (exists_ordered_lsm(lsm))
397 			continue;
398 		set_enabled(lsm, false);
399 		init_debug("%s skipped: %s (not in requested order)\n",
400 			   origin, lsm->name);
401 	}
402 
403 	kfree(sep);
404 }
405 
406 static void __init lsm_static_call_init(struct security_hook_list *hl)
407 {
408 	struct lsm_static_call *scall = hl->scalls;
409 	int i;
410 
411 	for (i = 0; i < MAX_LSM_COUNT; i++) {
412 		/* Update the first static call that is not used yet */
413 		if (!scall->hl) {
414 			__static_call_update(scall->key, scall->trampoline,
415 					     hl->hook.lsm_func_addr);
416 			scall->hl = hl;
417 			static_branch_enable(scall->active);
418 			return;
419 		}
420 		scall++;
421 	}
422 	panic("%s - Ran out of static slots.\n", __func__);
423 }
424 
425 static void __init lsm_early_cred(struct cred *cred);
426 static void __init lsm_early_task(struct task_struct *task);
427 
428 static int lsm_append(const char *new, char **result);
429 
430 static void __init report_lsm_order(void)
431 {
432 	struct lsm_info **lsm, *early;
433 	int first = 0;
434 
435 	pr_info("initializing lsm=");
436 
437 	/* Report each enabled LSM name, comma separated. */
438 	for (early = __start_early_lsm_info;
439 	     early < __end_early_lsm_info; early++)
440 		if (is_enabled(early))
441 			pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
442 	for (lsm = ordered_lsms; *lsm; lsm++)
443 		if (is_enabled(*lsm))
444 			pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
445 
446 	pr_cont("\n");
447 }
448 
449 static void __init ordered_lsm_init(void)
450 {
451 	struct lsm_info **lsm;
452 
453 	if (chosen_lsm_order) {
454 		if (chosen_major_lsm) {
455 			pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
456 				chosen_major_lsm, chosen_lsm_order);
457 			chosen_major_lsm = NULL;
458 		}
459 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
460 	} else
461 		ordered_lsm_parse(builtin_lsm_order, "builtin");
462 
463 	for (lsm = ordered_lsms; *lsm; lsm++)
464 		prepare_lsm(*lsm);
465 
466 	report_lsm_order();
467 
468 	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
469 	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
470 	init_debug("ib blob size         = %d\n", blob_sizes.lbs_ib);
471 	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
472 	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
473 #ifdef CONFIG_KEYS
474 	init_debug("key blob size        = %d\n", blob_sizes.lbs_key);
475 #endif /* CONFIG_KEYS */
476 	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
477 	init_debug("sock blob size       = %d\n", blob_sizes.lbs_sock);
478 	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
479 	init_debug("perf event blob size = %d\n", blob_sizes.lbs_perf_event);
480 	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
481 	init_debug("tun device blob size = %d\n", blob_sizes.lbs_tun_dev);
482 	init_debug("xattr slots          = %d\n", blob_sizes.lbs_xattr_count);
483 	init_debug("bdev blob size       = %d\n", blob_sizes.lbs_bdev);
484 
485 	/*
486 	 * Create any kmem_caches needed for blobs
487 	 */
488 	if (blob_sizes.lbs_file)
489 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
490 						   blob_sizes.lbs_file, 0,
491 						   SLAB_PANIC, NULL);
492 	if (blob_sizes.lbs_inode)
493 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
494 						    blob_sizes.lbs_inode, 0,
495 						    SLAB_PANIC, NULL);
496 
497 	lsm_early_cred((struct cred *) current->cred);
498 	lsm_early_task(current);
499 	for (lsm = ordered_lsms; *lsm; lsm++)
500 		initialize_lsm(*lsm);
501 }
502 
503 int __init early_security_init(void)
504 {
505 	struct lsm_info *lsm;
506 
507 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
508 		if (!lsm->enabled)
509 			lsm->enabled = &lsm_enabled_true;
510 		prepare_lsm(lsm);
511 		initialize_lsm(lsm);
512 	}
513 
514 	return 0;
515 }
516 
517 /**
518  * security_init - initializes the security framework
519  *
520  * This should be called early in the kernel initialization sequence.
521  */
522 int __init security_init(void)
523 {
524 	struct lsm_info *lsm;
525 
526 	init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
527 	init_debug("  CONFIG_LSM=%s\n", builtin_lsm_order);
528 	init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
529 
530 	/*
531 	 * Append the names of the early LSM modules now that kmalloc() is
532 	 * available
533 	 */
534 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
535 		init_debug("  early started: %s (%s)\n", lsm->name,
536 			   is_enabled(lsm) ? "enabled" : "disabled");
537 		if (lsm->enabled)
538 			lsm_append(lsm->name, &lsm_names);
539 	}
540 
541 	/* Load LSMs in specified order. */
542 	ordered_lsm_init();
543 
544 	return 0;
545 }
546 
547 /* Save user chosen LSM */
548 static int __init choose_major_lsm(char *str)
549 {
550 	chosen_major_lsm = str;
551 	return 1;
552 }
553 __setup("security=", choose_major_lsm);
554 
555 /* Explicitly choose LSM initialization order. */
556 static int __init choose_lsm_order(char *str)
557 {
558 	chosen_lsm_order = str;
559 	return 1;
560 }
561 __setup("lsm=", choose_lsm_order);
562 
563 /* Enable LSM order debugging. */
564 static int __init enable_debug(char *str)
565 {
566 	debug = true;
567 	return 1;
568 }
569 __setup("lsm.debug", enable_debug);
570 
571 static bool match_last_lsm(const char *list, const char *lsm)
572 {
573 	const char *last;
574 
575 	if (WARN_ON(!list || !lsm))
576 		return false;
577 	last = strrchr(list, ',');
578 	if (last)
579 		/* Pass the comma, strcmp() will check for '\0' */
580 		last++;
581 	else
582 		last = list;
583 	return !strcmp(last, lsm);
584 }
585 
586 static int lsm_append(const char *new, char **result)
587 {
588 	char *cp;
589 
590 	if (*result == NULL) {
591 		*result = kstrdup(new, GFP_KERNEL);
592 		if (*result == NULL)
593 			return -ENOMEM;
594 	} else {
595 		/* Check if it is the last registered name */
596 		if (match_last_lsm(*result, new))
597 			return 0;
598 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
599 		if (cp == NULL)
600 			return -ENOMEM;
601 		kfree(*result);
602 		*result = cp;
603 	}
604 	return 0;
605 }
606 
607 /**
608  * security_add_hooks - Add a modules hooks to the hook lists.
609  * @hooks: the hooks to add
610  * @count: the number of hooks to add
611  * @lsmid: the identification information for the security module
612  *
613  * Each LSM has to register its hooks with the infrastructure.
614  */
615 void __init security_add_hooks(struct security_hook_list *hooks, int count,
616 			       const struct lsm_id *lsmid)
617 {
618 	int i;
619 
620 	/*
621 	 * A security module may call security_add_hooks() more
622 	 * than once during initialization, and LSM initialization
623 	 * is serialized. Landlock is one such case.
624 	 * Look at the previous entry, if there is one, for duplication.
625 	 */
626 	if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
627 		if (lsm_active_cnt >= MAX_LSM_COUNT)
628 			panic("%s Too many LSMs registered.\n", __func__);
629 		lsm_idlist[lsm_active_cnt++] = lsmid;
630 	}
631 
632 	for (i = 0; i < count; i++) {
633 		hooks[i].lsmid = lsmid;
634 		lsm_static_call_init(&hooks[i]);
635 	}
636 
637 	/*
638 	 * Don't try to append during early_security_init(), we'll come back
639 	 * and fix this up afterwards.
640 	 */
641 	if (slab_is_available()) {
642 		if (lsm_append(lsmid->name, &lsm_names) < 0)
643 			panic("%s - Cannot get early memory.\n", __func__);
644 	}
645 }
646 
647 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
648 {
649 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
650 					    event, data);
651 }
652 EXPORT_SYMBOL(call_blocking_lsm_notifier);
653 
654 int register_blocking_lsm_notifier(struct notifier_block *nb)
655 {
656 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
657 						nb);
658 }
659 EXPORT_SYMBOL(register_blocking_lsm_notifier);
660 
661 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
662 {
663 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
664 						  nb);
665 }
666 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
667 
668 /**
669  * lsm_blob_alloc - allocate a composite blob
670  * @dest: the destination for the blob
671  * @size: the size of the blob
672  * @gfp: allocation type
673  *
674  * Allocate a blob for all the modules
675  *
676  * Returns 0, or -ENOMEM if memory can't be allocated.
677  */
678 static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp)
679 {
680 	if (size == 0) {
681 		*dest = NULL;
682 		return 0;
683 	}
684 
685 	*dest = kzalloc(size, gfp);
686 	if (*dest == NULL)
687 		return -ENOMEM;
688 	return 0;
689 }
690 
691 /**
692  * lsm_cred_alloc - allocate a composite cred blob
693  * @cred: the cred that needs a blob
694  * @gfp: allocation type
695  *
696  * Allocate the cred blob for all the modules
697  *
698  * Returns 0, or -ENOMEM if memory can't be allocated.
699  */
700 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
701 {
702 	return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp);
703 }
704 
705 /**
706  * lsm_early_cred - during initialization allocate a composite cred blob
707  * @cred: the cred that needs a blob
708  *
709  * Allocate the cred blob for all the modules
710  */
711 static void __init lsm_early_cred(struct cred *cred)
712 {
713 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
714 
715 	if (rc)
716 		panic("%s: Early cred alloc failed.\n", __func__);
717 }
718 
719 /**
720  * lsm_file_alloc - allocate a composite file blob
721  * @file: the file that needs a blob
722  *
723  * Allocate the file blob for all the modules
724  *
725  * Returns 0, or -ENOMEM if memory can't be allocated.
726  */
727 static int lsm_file_alloc(struct file *file)
728 {
729 	if (!lsm_file_cache) {
730 		file->f_security = NULL;
731 		return 0;
732 	}
733 
734 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
735 	if (file->f_security == NULL)
736 		return -ENOMEM;
737 	return 0;
738 }
739 
740 /**
741  * lsm_inode_alloc - allocate a composite inode blob
742  * @inode: the inode that needs a blob
743  *
744  * Allocate the inode blob for all the modules
745  *
746  * Returns 0, or -ENOMEM if memory can't be allocated.
747  */
748 static int lsm_inode_alloc(struct inode *inode)
749 {
750 	if (!lsm_inode_cache) {
751 		inode->i_security = NULL;
752 		return 0;
753 	}
754 
755 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
756 	if (inode->i_security == NULL)
757 		return -ENOMEM;
758 	return 0;
759 }
760 
761 /**
762  * lsm_task_alloc - allocate a composite task blob
763  * @task: the task that needs a blob
764  *
765  * Allocate the task blob for all the modules
766  *
767  * Returns 0, or -ENOMEM if memory can't be allocated.
768  */
769 static int lsm_task_alloc(struct task_struct *task)
770 {
771 	return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL);
772 }
773 
774 /**
775  * lsm_ipc_alloc - allocate a composite ipc blob
776  * @kip: the ipc that needs a blob
777  *
778  * Allocate the ipc blob for all the modules
779  *
780  * Returns 0, or -ENOMEM if memory can't be allocated.
781  */
782 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
783 {
784 	return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL);
785 }
786 
787 #ifdef CONFIG_KEYS
788 /**
789  * lsm_key_alloc - allocate a composite key blob
790  * @key: the key that needs a blob
791  *
792  * Allocate the key blob for all the modules
793  *
794  * Returns 0, or -ENOMEM if memory can't be allocated.
795  */
796 static int lsm_key_alloc(struct key *key)
797 {
798 	return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL);
799 }
800 #endif /* CONFIG_KEYS */
801 
802 /**
803  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
804  * @mp: the msg_msg that needs a blob
805  *
806  * Allocate the ipc blob for all the modules
807  *
808  * Returns 0, or -ENOMEM if memory can't be allocated.
809  */
810 static int lsm_msg_msg_alloc(struct msg_msg *mp)
811 {
812 	return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg,
813 			      GFP_KERNEL);
814 }
815 
816 /**
817  * lsm_bdev_alloc - allocate a composite block_device blob
818  * @bdev: the block_device that needs a blob
819  *
820  * Allocate the block_device blob for all the modules
821  *
822  * Returns 0, or -ENOMEM if memory can't be allocated.
823  */
824 static int lsm_bdev_alloc(struct block_device *bdev)
825 {
826 	if (blob_sizes.lbs_bdev == 0) {
827 		bdev->bd_security = NULL;
828 		return 0;
829 	}
830 
831 	bdev->bd_security = kzalloc(blob_sizes.lbs_bdev, GFP_KERNEL);
832 	if (!bdev->bd_security)
833 		return -ENOMEM;
834 
835 	return 0;
836 }
837 
838 /**
839  * lsm_early_task - during initialization allocate a composite task blob
840  * @task: the task that needs a blob
841  *
842  * Allocate the task blob for all the modules
843  */
844 static void __init lsm_early_task(struct task_struct *task)
845 {
846 	int rc = lsm_task_alloc(task);
847 
848 	if (rc)
849 		panic("%s: Early task alloc failed.\n", __func__);
850 }
851 
852 /**
853  * lsm_superblock_alloc - allocate a composite superblock blob
854  * @sb: the superblock that needs a blob
855  *
856  * Allocate the superblock blob for all the modules
857  *
858  * Returns 0, or -ENOMEM if memory can't be allocated.
859  */
860 static int lsm_superblock_alloc(struct super_block *sb)
861 {
862 	return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock,
863 			      GFP_KERNEL);
864 }
865 
866 /**
867  * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
868  * @uctx: a userspace LSM context to be filled
869  * @uctx_len: available uctx size (input), used uctx size (output)
870  * @val: the new LSM context value
871  * @val_len: the size of the new LSM context value
872  * @id: LSM id
873  * @flags: LSM defined flags
874  *
875  * Fill all of the fields in a userspace lsm_ctx structure.  If @uctx is NULL
876  * simply calculate the required size to output via @utc_len and return
877  * success.
878  *
879  * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
880  * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
881  */
882 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
883 		      void *val, size_t val_len,
884 		      u64 id, u64 flags)
885 {
886 	struct lsm_ctx *nctx = NULL;
887 	size_t nctx_len;
888 	int rc = 0;
889 
890 	nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
891 	if (nctx_len > *uctx_len) {
892 		rc = -E2BIG;
893 		goto out;
894 	}
895 
896 	/* no buffer - return success/0 and set @uctx_len to the req size */
897 	if (!uctx)
898 		goto out;
899 
900 	nctx = kzalloc(nctx_len, GFP_KERNEL);
901 	if (nctx == NULL) {
902 		rc = -ENOMEM;
903 		goto out;
904 	}
905 	nctx->id = id;
906 	nctx->flags = flags;
907 	nctx->len = nctx_len;
908 	nctx->ctx_len = val_len;
909 	memcpy(nctx->ctx, val, val_len);
910 
911 	if (copy_to_user(uctx, nctx, nctx_len))
912 		rc = -EFAULT;
913 
914 out:
915 	kfree(nctx);
916 	*uctx_len = nctx_len;
917 	return rc;
918 }
919 
920 /*
921  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
922  * can be accessed with:
923  *
924  *	LSM_RET_DEFAULT(<hook_name>)
925  *
926  * The macros below define static constants for the default value of each
927  * LSM hook.
928  */
929 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
930 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
931 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
932 	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
933 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
934 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
935 
936 #include <linux/lsm_hook_defs.h>
937 #undef LSM_HOOK
938 
939 /*
940  * Hook list operation macros.
941  *
942  * call_void_hook:
943  *	This is a hook that does not return a value.
944  *
945  * call_int_hook:
946  *	This is a hook that returns a value.
947  */
948 #define __CALL_STATIC_VOID(NUM, HOOK, ...)				     \
949 do {									     \
950 	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {    \
951 		static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);	     \
952 	}								     \
953 } while (0);
954 
955 #define call_void_hook(HOOK, ...)                                 \
956 	do {                                                      \
957 		LSM_LOOP_UNROLL(__CALL_STATIC_VOID, HOOK, __VA_ARGS__); \
958 	} while (0)
959 
960 
961 #define __CALL_STATIC_INT(NUM, R, HOOK, LABEL, ...)			     \
962 do {									     \
963 	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {  \
964 		R = static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);    \
965 		if (R != LSM_RET_DEFAULT(HOOK))				     \
966 			goto LABEL;					     \
967 	}								     \
968 } while (0);
969 
970 #define call_int_hook(HOOK, ...)					\
971 ({									\
972 	__label__ OUT;							\
973 	int RC = LSM_RET_DEFAULT(HOOK);					\
974 									\
975 	LSM_LOOP_UNROLL(__CALL_STATIC_INT, RC, HOOK, OUT, __VA_ARGS__);	\
976 OUT:									\
977 	RC;								\
978 })
979 
980 #define lsm_for_each_hook(scall, NAME)					\
981 	for (scall = static_calls_table.NAME;				\
982 	     scall - static_calls_table.NAME < MAX_LSM_COUNT; scall++)  \
983 		if (static_key_enabled(&scall->active->key))
984 
985 /* Security operations */
986 
987 /**
988  * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
989  * @mgr: task credentials of current binder process
990  *
991  * Check whether @mgr is allowed to be the binder context manager.
992  *
993  * Return: Return 0 if permission is granted.
994  */
995 int security_binder_set_context_mgr(const struct cred *mgr)
996 {
997 	return call_int_hook(binder_set_context_mgr, mgr);
998 }
999 
1000 /**
1001  * security_binder_transaction() - Check if a binder transaction is allowed
1002  * @from: sending process
1003  * @to: receiving process
1004  *
1005  * Check whether @from is allowed to invoke a binder transaction call to @to.
1006  *
1007  * Return: Returns 0 if permission is granted.
1008  */
1009 int security_binder_transaction(const struct cred *from,
1010 				const struct cred *to)
1011 {
1012 	return call_int_hook(binder_transaction, from, to);
1013 }
1014 
1015 /**
1016  * security_binder_transfer_binder() - Check if a binder transfer is allowed
1017  * @from: sending process
1018  * @to: receiving process
1019  *
1020  * Check whether @from is allowed to transfer a binder reference to @to.
1021  *
1022  * Return: Returns 0 if permission is granted.
1023  */
1024 int security_binder_transfer_binder(const struct cred *from,
1025 				    const struct cred *to)
1026 {
1027 	return call_int_hook(binder_transfer_binder, from, to);
1028 }
1029 
1030 /**
1031  * security_binder_transfer_file() - Check if a binder file xfer is allowed
1032  * @from: sending process
1033  * @to: receiving process
1034  * @file: file being transferred
1035  *
1036  * Check whether @from is allowed to transfer @file to @to.
1037  *
1038  * Return: Returns 0 if permission is granted.
1039  */
1040 int security_binder_transfer_file(const struct cred *from,
1041 				  const struct cred *to, const struct file *file)
1042 {
1043 	return call_int_hook(binder_transfer_file, from, to, file);
1044 }
1045 
1046 /**
1047  * security_ptrace_access_check() - Check if tracing is allowed
1048  * @child: target process
1049  * @mode: PTRACE_MODE flags
1050  *
1051  * Check permission before allowing the current process to trace the @child
1052  * process.  Security modules may also want to perform a process tracing check
1053  * during an execve in the set_security or apply_creds hooks of tracing check
1054  * during an execve in the bprm_set_creds hook of binprm_security_ops if the
1055  * process is being traced and its security attributes would be changed by the
1056  * execve.
1057  *
1058  * Return: Returns 0 if permission is granted.
1059  */
1060 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
1061 {
1062 	return call_int_hook(ptrace_access_check, child, mode);
1063 }
1064 
1065 /**
1066  * security_ptrace_traceme() - Check if tracing is allowed
1067  * @parent: tracing process
1068  *
1069  * Check that the @parent process has sufficient permission to trace the
1070  * current process before allowing the current process to present itself to the
1071  * @parent process for tracing.
1072  *
1073  * Return: Returns 0 if permission is granted.
1074  */
1075 int security_ptrace_traceme(struct task_struct *parent)
1076 {
1077 	return call_int_hook(ptrace_traceme, parent);
1078 }
1079 
1080 /**
1081  * security_capget() - Get the capability sets for a process
1082  * @target: target process
1083  * @effective: effective capability set
1084  * @inheritable: inheritable capability set
1085  * @permitted: permitted capability set
1086  *
1087  * Get the @effective, @inheritable, and @permitted capability sets for the
1088  * @target process.  The hook may also perform permission checking to determine
1089  * if the current process is allowed to see the capability sets of the @target
1090  * process.
1091  *
1092  * Return: Returns 0 if the capability sets were successfully obtained.
1093  */
1094 int security_capget(const struct task_struct *target,
1095 		    kernel_cap_t *effective,
1096 		    kernel_cap_t *inheritable,
1097 		    kernel_cap_t *permitted)
1098 {
1099 	return call_int_hook(capget, target, effective, inheritable, permitted);
1100 }
1101 
1102 /**
1103  * security_capset() - Set the capability sets for a process
1104  * @new: new credentials for the target process
1105  * @old: current credentials of the target process
1106  * @effective: effective capability set
1107  * @inheritable: inheritable capability set
1108  * @permitted: permitted capability set
1109  *
1110  * Set the @effective, @inheritable, and @permitted capability sets for the
1111  * current process.
1112  *
1113  * Return: Returns 0 and update @new if permission is granted.
1114  */
1115 int security_capset(struct cred *new, const struct cred *old,
1116 		    const kernel_cap_t *effective,
1117 		    const kernel_cap_t *inheritable,
1118 		    const kernel_cap_t *permitted)
1119 {
1120 	return call_int_hook(capset, new, old, effective, inheritable,
1121 			     permitted);
1122 }
1123 
1124 /**
1125  * security_capable() - Check if a process has the necessary capability
1126  * @cred: credentials to examine
1127  * @ns: user namespace
1128  * @cap: capability requested
1129  * @opts: capability check options
1130  *
1131  * Check whether the @tsk process has the @cap capability in the indicated
1132  * credentials.  @cap contains the capability <include/linux/capability.h>.
1133  * @opts contains options for the capable check <include/linux/security.h>.
1134  *
1135  * Return: Returns 0 if the capability is granted.
1136  */
1137 int security_capable(const struct cred *cred,
1138 		     struct user_namespace *ns,
1139 		     int cap,
1140 		     unsigned int opts)
1141 {
1142 	return call_int_hook(capable, cred, ns, cap, opts);
1143 }
1144 
1145 /**
1146  * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1147  * @cmds: commands
1148  * @type: type
1149  * @id: id
1150  * @sb: filesystem
1151  *
1152  * Check whether the quotactl syscall is allowed for this @sb.
1153  *
1154  * Return: Returns 0 if permission is granted.
1155  */
1156 int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1157 {
1158 	return call_int_hook(quotactl, cmds, type, id, sb);
1159 }
1160 
1161 /**
1162  * security_quota_on() - Check if QUOTAON is allowed for a dentry
1163  * @dentry: dentry
1164  *
1165  * Check whether QUOTAON is allowed for @dentry.
1166  *
1167  * Return: Returns 0 if permission is granted.
1168  */
1169 int security_quota_on(struct dentry *dentry)
1170 {
1171 	return call_int_hook(quota_on, dentry);
1172 }
1173 
1174 /**
1175  * security_syslog() - Check if accessing the kernel message ring is allowed
1176  * @type: SYSLOG_ACTION_* type
1177  *
1178  * Check permission before accessing the kernel message ring or changing
1179  * logging to the console.  See the syslog(2) manual page for an explanation of
1180  * the @type values.
1181  *
1182  * Return: Return 0 if permission is granted.
1183  */
1184 int security_syslog(int type)
1185 {
1186 	return call_int_hook(syslog, type);
1187 }
1188 
1189 /**
1190  * security_settime64() - Check if changing the system time is allowed
1191  * @ts: new time
1192  * @tz: timezone
1193  *
1194  * Check permission to change the system time, struct timespec64 is defined in
1195  * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1196  *
1197  * Return: Returns 0 if permission is granted.
1198  */
1199 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1200 {
1201 	return call_int_hook(settime, ts, tz);
1202 }
1203 
1204 /**
1205  * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1206  * @mm: mm struct
1207  * @pages: number of pages
1208  *
1209  * Check permissions for allocating a new virtual mapping.  If all LSMs return
1210  * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1211  * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1212  * called with cap_sys_admin cleared.
1213  *
1214  * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1215  *         caller.
1216  */
1217 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1218 {
1219 	struct lsm_static_call *scall;
1220 	int cap_sys_admin = 1;
1221 	int rc;
1222 
1223 	/*
1224 	 * The module will respond with 0 if it thinks the __vm_enough_memory()
1225 	 * call should be made with the cap_sys_admin set. If all of the modules
1226 	 * agree that it should be set it will. If any module thinks it should
1227 	 * not be set it won't.
1228 	 */
1229 	lsm_for_each_hook(scall, vm_enough_memory) {
1230 		rc = scall->hl->hook.vm_enough_memory(mm, pages);
1231 		if (rc < 0) {
1232 			cap_sys_admin = 0;
1233 			break;
1234 		}
1235 	}
1236 	return __vm_enough_memory(mm, pages, cap_sys_admin);
1237 }
1238 
1239 /**
1240  * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1241  * @bprm: binary program information
1242  *
1243  * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1244  * properly for executing @bprm->file, update the LSM's portion of
1245  * @bprm->cred->security to be what commit_creds needs to install for the new
1246  * program.  This hook may also optionally check permissions (e.g. for
1247  * transitions between security domains).  The hook must set @bprm->secureexec
1248  * to 1 if AT_SECURE should be set to request libc enable secure mode.  @bprm
1249  * contains the linux_binprm structure.
1250  *
1251  * Return: Returns 0 if the hook is successful and permission is granted.
1252  */
1253 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1254 {
1255 	return call_int_hook(bprm_creds_for_exec, bprm);
1256 }
1257 
1258 /**
1259  * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1260  * @bprm: binary program information
1261  * @file: associated file
1262  *
1263  * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1264  * exec, update @bprm->cred to reflect that change. This is called after
1265  * finding the binary that will be executed without an interpreter.  This
1266  * ensures that the credentials will not be derived from a script that the
1267  * binary will need to reopen, which when reopend may end up being a completely
1268  * different file.  This hook may also optionally check permissions (e.g. for
1269  * transitions between security domains).  The hook must set @bprm->secureexec
1270  * to 1 if AT_SECURE should be set to request libc enable secure mode.  The
1271  * hook must add to @bprm->per_clear any personality flags that should be
1272  * cleared from current->personality.  @bprm contains the linux_binprm
1273  * structure.
1274  *
1275  * Return: Returns 0 if the hook is successful and permission is granted.
1276  */
1277 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1278 {
1279 	return call_int_hook(bprm_creds_from_file, bprm, file);
1280 }
1281 
1282 /**
1283  * security_bprm_check() - Mediate binary handler search
1284  * @bprm: binary program information
1285  *
1286  * This hook mediates the point when a search for a binary handler will begin.
1287  * It allows a check against the @bprm->cred->security value which was set in
1288  * the preceding creds_for_exec call.  The argv list and envp list are reliably
1289  * available in @bprm.  This hook may be called multiple times during a single
1290  * execve.  @bprm contains the linux_binprm structure.
1291  *
1292  * Return: Returns 0 if the hook is successful and permission is granted.
1293  */
1294 int security_bprm_check(struct linux_binprm *bprm)
1295 {
1296 	return call_int_hook(bprm_check_security, bprm);
1297 }
1298 
1299 /**
1300  * security_bprm_committing_creds() - Install creds for a process during exec()
1301  * @bprm: binary program information
1302  *
1303  * Prepare to install the new security attributes of a process being
1304  * transformed by an execve operation, based on the old credentials pointed to
1305  * by @current->cred and the information set in @bprm->cred by the
1306  * bprm_creds_for_exec hook.  @bprm points to the linux_binprm structure.  This
1307  * hook is a good place to perform state changes on the process such as closing
1308  * open file descriptors to which access will no longer be granted when the
1309  * attributes are changed.  This is called immediately before commit_creds().
1310  */
1311 void security_bprm_committing_creds(const struct linux_binprm *bprm)
1312 {
1313 	call_void_hook(bprm_committing_creds, bprm);
1314 }
1315 
1316 /**
1317  * security_bprm_committed_creds() - Tidy up after cred install during exec()
1318  * @bprm: binary program information
1319  *
1320  * Tidy up after the installation of the new security attributes of a process
1321  * being transformed by an execve operation.  The new credentials have, by this
1322  * point, been set to @current->cred.  @bprm points to the linux_binprm
1323  * structure.  This hook is a good place to perform state changes on the
1324  * process such as clearing out non-inheritable signal state.  This is called
1325  * immediately after commit_creds().
1326  */
1327 void security_bprm_committed_creds(const struct linux_binprm *bprm)
1328 {
1329 	call_void_hook(bprm_committed_creds, bprm);
1330 }
1331 
1332 /**
1333  * security_fs_context_submount() - Initialise fc->security
1334  * @fc: new filesystem context
1335  * @reference: dentry reference for submount/remount
1336  *
1337  * Fill out the ->security field for a new fs_context.
1338  *
1339  * Return: Returns 0 on success or negative error code on failure.
1340  */
1341 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1342 {
1343 	return call_int_hook(fs_context_submount, fc, reference);
1344 }
1345 
1346 /**
1347  * security_fs_context_dup() - Duplicate a fs_context LSM blob
1348  * @fc: destination filesystem context
1349  * @src_fc: source filesystem context
1350  *
1351  * Allocate and attach a security structure to sc->security.  This pointer is
1352  * initialised to NULL by the caller.  @fc indicates the new filesystem context.
1353  * @src_fc indicates the original filesystem context.
1354  *
1355  * Return: Returns 0 on success or a negative error code on failure.
1356  */
1357 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1358 {
1359 	return call_int_hook(fs_context_dup, fc, src_fc);
1360 }
1361 
1362 /**
1363  * security_fs_context_parse_param() - Configure a filesystem context
1364  * @fc: filesystem context
1365  * @param: filesystem parameter
1366  *
1367  * Userspace provided a parameter to configure a superblock.  The LSM can
1368  * consume the parameter or return it to the caller for use elsewhere.
1369  *
1370  * Return: If the parameter is used by the LSM it should return 0, if it is
1371  *         returned to the caller -ENOPARAM is returned, otherwise a negative
1372  *         error code is returned.
1373  */
1374 int security_fs_context_parse_param(struct fs_context *fc,
1375 				    struct fs_parameter *param)
1376 {
1377 	struct lsm_static_call *scall;
1378 	int trc;
1379 	int rc = -ENOPARAM;
1380 
1381 	lsm_for_each_hook(scall, fs_context_parse_param) {
1382 		trc = scall->hl->hook.fs_context_parse_param(fc, param);
1383 		if (trc == 0)
1384 			rc = 0;
1385 		else if (trc != -ENOPARAM)
1386 			return trc;
1387 	}
1388 	return rc;
1389 }
1390 
1391 /**
1392  * security_sb_alloc() - Allocate a super_block LSM blob
1393  * @sb: filesystem superblock
1394  *
1395  * Allocate and attach a security structure to the sb->s_security field.  The
1396  * s_security field is initialized to NULL when the structure is allocated.
1397  * @sb contains the super_block structure to be modified.
1398  *
1399  * Return: Returns 0 if operation was successful.
1400  */
1401 int security_sb_alloc(struct super_block *sb)
1402 {
1403 	int rc = lsm_superblock_alloc(sb);
1404 
1405 	if (unlikely(rc))
1406 		return rc;
1407 	rc = call_int_hook(sb_alloc_security, sb);
1408 	if (unlikely(rc))
1409 		security_sb_free(sb);
1410 	return rc;
1411 }
1412 
1413 /**
1414  * security_sb_delete() - Release super_block LSM associated objects
1415  * @sb: filesystem superblock
1416  *
1417  * Release objects tied to a superblock (e.g. inodes).  @sb contains the
1418  * super_block structure being released.
1419  */
1420 void security_sb_delete(struct super_block *sb)
1421 {
1422 	call_void_hook(sb_delete, sb);
1423 }
1424 
1425 /**
1426  * security_sb_free() - Free a super_block LSM blob
1427  * @sb: filesystem superblock
1428  *
1429  * Deallocate and clear the sb->s_security field.  @sb contains the super_block
1430  * structure to be modified.
1431  */
1432 void security_sb_free(struct super_block *sb)
1433 {
1434 	call_void_hook(sb_free_security, sb);
1435 	kfree(sb->s_security);
1436 	sb->s_security = NULL;
1437 }
1438 
1439 /**
1440  * security_free_mnt_opts() - Free memory associated with mount options
1441  * @mnt_opts: LSM processed mount options
1442  *
1443  * Free memory associated with @mnt_ops.
1444  */
1445 void security_free_mnt_opts(void **mnt_opts)
1446 {
1447 	if (!*mnt_opts)
1448 		return;
1449 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
1450 	*mnt_opts = NULL;
1451 }
1452 EXPORT_SYMBOL(security_free_mnt_opts);
1453 
1454 /**
1455  * security_sb_eat_lsm_opts() - Consume LSM mount options
1456  * @options: mount options
1457  * @mnt_opts: LSM processed mount options
1458  *
1459  * Eat (scan @options) and save them in @mnt_opts.
1460  *
1461  * Return: Returns 0 on success, negative values on failure.
1462  */
1463 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1464 {
1465 	return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1466 }
1467 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1468 
1469 /**
1470  * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1471  * @sb: filesystem superblock
1472  * @mnt_opts: new mount options
1473  *
1474  * Determine if the new mount options in @mnt_opts are allowed given the
1475  * existing mounted filesystem at @sb.  @sb superblock being compared.
1476  *
1477  * Return: Returns 0 if options are compatible.
1478  */
1479 int security_sb_mnt_opts_compat(struct super_block *sb,
1480 				void *mnt_opts)
1481 {
1482 	return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1483 }
1484 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1485 
1486 /**
1487  * security_sb_remount() - Verify no incompatible mount changes during remount
1488  * @sb: filesystem superblock
1489  * @mnt_opts: (re)mount options
1490  *
1491  * Extracts security system specific mount options and verifies no changes are
1492  * being made to those options.
1493  *
1494  * Return: Returns 0 if permission is granted.
1495  */
1496 int security_sb_remount(struct super_block *sb,
1497 			void *mnt_opts)
1498 {
1499 	return call_int_hook(sb_remount, sb, mnt_opts);
1500 }
1501 EXPORT_SYMBOL(security_sb_remount);
1502 
1503 /**
1504  * security_sb_kern_mount() - Check if a kernel mount is allowed
1505  * @sb: filesystem superblock
1506  *
1507  * Mount this @sb if allowed by permissions.
1508  *
1509  * Return: Returns 0 if permission is granted.
1510  */
1511 int security_sb_kern_mount(const struct super_block *sb)
1512 {
1513 	return call_int_hook(sb_kern_mount, sb);
1514 }
1515 
1516 /**
1517  * security_sb_show_options() - Output the mount options for a superblock
1518  * @m: output file
1519  * @sb: filesystem superblock
1520  *
1521  * Show (print on @m) mount options for this @sb.
1522  *
1523  * Return: Returns 0 on success, negative values on failure.
1524  */
1525 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1526 {
1527 	return call_int_hook(sb_show_options, m, sb);
1528 }
1529 
1530 /**
1531  * security_sb_statfs() - Check if accessing fs stats is allowed
1532  * @dentry: superblock handle
1533  *
1534  * Check permission before obtaining filesystem statistics for the @mnt
1535  * mountpoint.  @dentry is a handle on the superblock for the filesystem.
1536  *
1537  * Return: Returns 0 if permission is granted.
1538  */
1539 int security_sb_statfs(struct dentry *dentry)
1540 {
1541 	return call_int_hook(sb_statfs, dentry);
1542 }
1543 
1544 /**
1545  * security_sb_mount() - Check permission for mounting a filesystem
1546  * @dev_name: filesystem backing device
1547  * @path: mount point
1548  * @type: filesystem type
1549  * @flags: mount flags
1550  * @data: filesystem specific data
1551  *
1552  * Check permission before an object specified by @dev_name is mounted on the
1553  * mount point named by @nd.  For an ordinary mount, @dev_name identifies a
1554  * device if the file system type requires a device.  For a remount
1555  * (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a loopback/bind mount
1556  * (@flags & MS_BIND), @dev_name identifies the	pathname of the object being
1557  * mounted.
1558  *
1559  * Return: Returns 0 if permission is granted.
1560  */
1561 int security_sb_mount(const char *dev_name, const struct path *path,
1562 		      const char *type, unsigned long flags, void *data)
1563 {
1564 	return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1565 }
1566 
1567 /**
1568  * security_sb_umount() - Check permission for unmounting a filesystem
1569  * @mnt: mounted filesystem
1570  * @flags: unmount flags
1571  *
1572  * Check permission before the @mnt file system is unmounted.
1573  *
1574  * Return: Returns 0 if permission is granted.
1575  */
1576 int security_sb_umount(struct vfsmount *mnt, int flags)
1577 {
1578 	return call_int_hook(sb_umount, mnt, flags);
1579 }
1580 
1581 /**
1582  * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1583  * @old_path: new location for current rootfs
1584  * @new_path: location of the new rootfs
1585  *
1586  * Check permission before pivoting the root filesystem.
1587  *
1588  * Return: Returns 0 if permission is granted.
1589  */
1590 int security_sb_pivotroot(const struct path *old_path,
1591 			  const struct path *new_path)
1592 {
1593 	return call_int_hook(sb_pivotroot, old_path, new_path);
1594 }
1595 
1596 /**
1597  * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1598  * @sb: filesystem superblock
1599  * @mnt_opts: binary mount options
1600  * @kern_flags: kernel flags (in)
1601  * @set_kern_flags: kernel flags (out)
1602  *
1603  * Set the security relevant mount options used for a superblock.
1604  *
1605  * Return: Returns 0 on success, error on failure.
1606  */
1607 int security_sb_set_mnt_opts(struct super_block *sb,
1608 			     void *mnt_opts,
1609 			     unsigned long kern_flags,
1610 			     unsigned long *set_kern_flags)
1611 {
1612 	struct lsm_static_call *scall;
1613 	int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1614 
1615 	lsm_for_each_hook(scall, sb_set_mnt_opts) {
1616 		rc = scall->hl->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1617 					      set_kern_flags);
1618 		if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1619 			break;
1620 	}
1621 	return rc;
1622 }
1623 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1624 
1625 /**
1626  * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1627  * @oldsb: source superblock
1628  * @newsb: destination superblock
1629  * @kern_flags: kernel flags (in)
1630  * @set_kern_flags: kernel flags (out)
1631  *
1632  * Copy all security options from a given superblock to another.
1633  *
1634  * Return: Returns 0 on success, error on failure.
1635  */
1636 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1637 			       struct super_block *newsb,
1638 			       unsigned long kern_flags,
1639 			       unsigned long *set_kern_flags)
1640 {
1641 	return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1642 			     kern_flags, set_kern_flags);
1643 }
1644 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1645 
1646 /**
1647  * security_move_mount() - Check permissions for moving a mount
1648  * @from_path: source mount point
1649  * @to_path: destination mount point
1650  *
1651  * Check permission before a mount is moved.
1652  *
1653  * Return: Returns 0 if permission is granted.
1654  */
1655 int security_move_mount(const struct path *from_path,
1656 			const struct path *to_path)
1657 {
1658 	return call_int_hook(move_mount, from_path, to_path);
1659 }
1660 
1661 /**
1662  * security_path_notify() - Check if setting a watch is allowed
1663  * @path: file path
1664  * @mask: event mask
1665  * @obj_type: file path type
1666  *
1667  * Check permissions before setting a watch on events as defined by @mask, on
1668  * an object at @path, whose type is defined by @obj_type.
1669  *
1670  * Return: Returns 0 if permission is granted.
1671  */
1672 int security_path_notify(const struct path *path, u64 mask,
1673 			 unsigned int obj_type)
1674 {
1675 	return call_int_hook(path_notify, path, mask, obj_type);
1676 }
1677 
1678 /**
1679  * security_inode_alloc() - Allocate an inode LSM blob
1680  * @inode: the inode
1681  *
1682  * Allocate and attach a security structure to @inode->i_security.  The
1683  * i_security field is initialized to NULL when the inode structure is
1684  * allocated.
1685  *
1686  * Return: Return 0 if operation was successful.
1687  */
1688 int security_inode_alloc(struct inode *inode)
1689 {
1690 	int rc = lsm_inode_alloc(inode);
1691 
1692 	if (unlikely(rc))
1693 		return rc;
1694 	rc = call_int_hook(inode_alloc_security, inode);
1695 	if (unlikely(rc))
1696 		security_inode_free(inode);
1697 	return rc;
1698 }
1699 
1700 static void inode_free_by_rcu(struct rcu_head *head)
1701 {
1702 	/* The rcu head is at the start of the inode blob */
1703 	call_void_hook(inode_free_security_rcu, head);
1704 	kmem_cache_free(lsm_inode_cache, head);
1705 }
1706 
1707 /**
1708  * security_inode_free() - Free an inode's LSM blob
1709  * @inode: the inode
1710  *
1711  * Release any LSM resources associated with @inode, although due to the
1712  * inode's RCU protections it is possible that the resources will not be
1713  * fully released until after the current RCU grace period has elapsed.
1714  *
1715  * It is important for LSMs to note that despite being present in a call to
1716  * security_inode_free(), @inode may still be referenced in a VFS path walk
1717  * and calls to security_inode_permission() may be made during, or after,
1718  * a call to security_inode_free().  For this reason the inode->i_security
1719  * field is released via a call_rcu() callback and any LSMs which need to
1720  * retain inode state for use in security_inode_permission() should only
1721  * release that state in the inode_free_security_rcu() LSM hook callback.
1722  */
1723 void security_inode_free(struct inode *inode)
1724 {
1725 	call_void_hook(inode_free_security, inode);
1726 	if (!inode->i_security)
1727 		return;
1728 	call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu);
1729 }
1730 
1731 /**
1732  * security_dentry_init_security() - Perform dentry initialization
1733  * @dentry: the dentry to initialize
1734  * @mode: mode used to determine resource type
1735  * @name: name of the last path component
1736  * @xattr_name: name of the security/LSM xattr
1737  * @ctx: pointer to the resulting LSM context
1738  * @ctxlen: length of @ctx
1739  *
1740  * Compute a context for a dentry as the inode is not yet available since NFSv4
1741  * has no label backed by an EA anyway.  It is important to note that
1742  * @xattr_name does not need to be free'd by the caller, it is a static string.
1743  *
1744  * Return: Returns 0 on success, negative values on failure.
1745  */
1746 int security_dentry_init_security(struct dentry *dentry, int mode,
1747 				  const struct qstr *name,
1748 				  const char **xattr_name, void **ctx,
1749 				  u32 *ctxlen)
1750 {
1751 	return call_int_hook(dentry_init_security, dentry, mode, name,
1752 			     xattr_name, ctx, ctxlen);
1753 }
1754 EXPORT_SYMBOL(security_dentry_init_security);
1755 
1756 /**
1757  * security_dentry_create_files_as() - Perform dentry initialization
1758  * @dentry: the dentry to initialize
1759  * @mode: mode used to determine resource type
1760  * @name: name of the last path component
1761  * @old: creds to use for LSM context calculations
1762  * @new: creds to modify
1763  *
1764  * Compute a context for a dentry as the inode is not yet available and set
1765  * that context in passed in creds so that new files are created using that
1766  * context. Context is calculated using the passed in creds and not the creds
1767  * of the caller.
1768  *
1769  * Return: Returns 0 on success, error on failure.
1770  */
1771 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1772 				    struct qstr *name,
1773 				    const struct cred *old, struct cred *new)
1774 {
1775 	return call_int_hook(dentry_create_files_as, dentry, mode,
1776 			     name, old, new);
1777 }
1778 EXPORT_SYMBOL(security_dentry_create_files_as);
1779 
1780 /**
1781  * security_inode_init_security() - Initialize an inode's LSM context
1782  * @inode: the inode
1783  * @dir: parent directory
1784  * @qstr: last component of the pathname
1785  * @initxattrs: callback function to write xattrs
1786  * @fs_data: filesystem specific data
1787  *
1788  * Obtain the security attribute name suffix and value to set on a newly
1789  * created inode and set up the incore security field for the new inode.  This
1790  * hook is called by the fs code as part of the inode creation transaction and
1791  * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1792  * hooks called by the VFS.
1793  *
1794  * The hook function is expected to populate the xattrs array, by calling
1795  * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1796  * with the lbs_xattr_count field of the lsm_blob_sizes structure.  For each
1797  * slot, the hook function should set ->name to the attribute name suffix
1798  * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1799  * to the attribute value, to set ->value_len to the length of the value.  If
1800  * the security module does not use security attributes or does not wish to put
1801  * a security attribute on this particular inode, then it should return
1802  * -EOPNOTSUPP to skip this processing.
1803  *
1804  * Return: Returns 0 if the LSM successfully initialized all of the inode
1805  *         security attributes that are required, negative values otherwise.
1806  */
1807 int security_inode_init_security(struct inode *inode, struct inode *dir,
1808 				 const struct qstr *qstr,
1809 				 const initxattrs initxattrs, void *fs_data)
1810 {
1811 	struct lsm_static_call *scall;
1812 	struct xattr *new_xattrs = NULL;
1813 	int ret = -EOPNOTSUPP, xattr_count = 0;
1814 
1815 	if (unlikely(IS_PRIVATE(inode)))
1816 		return 0;
1817 
1818 	if (!blob_sizes.lbs_xattr_count)
1819 		return 0;
1820 
1821 	if (initxattrs) {
1822 		/* Allocate +1 as terminator. */
1823 		new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1824 				     sizeof(*new_xattrs), GFP_NOFS);
1825 		if (!new_xattrs)
1826 			return -ENOMEM;
1827 	}
1828 
1829 	lsm_for_each_hook(scall, inode_init_security) {
1830 		ret = scall->hl->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1831 						  &xattr_count);
1832 		if (ret && ret != -EOPNOTSUPP)
1833 			goto out;
1834 		/*
1835 		 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1836 		 * means that the LSM is not willing to provide an xattr, not
1837 		 * that it wants to signal an error. Thus, continue to invoke
1838 		 * the remaining LSMs.
1839 		 */
1840 	}
1841 
1842 	/* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1843 	if (!xattr_count)
1844 		goto out;
1845 
1846 	ret = initxattrs(inode, new_xattrs, fs_data);
1847 out:
1848 	for (; xattr_count > 0; xattr_count--)
1849 		kfree(new_xattrs[xattr_count - 1].value);
1850 	kfree(new_xattrs);
1851 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1852 }
1853 EXPORT_SYMBOL(security_inode_init_security);
1854 
1855 /**
1856  * security_inode_init_security_anon() - Initialize an anonymous inode
1857  * @inode: the inode
1858  * @name: the anonymous inode class
1859  * @context_inode: an optional related inode
1860  *
1861  * Set up the incore security field for the new anonymous inode and return
1862  * whether the inode creation is permitted by the security module or not.
1863  *
1864  * Return: Returns 0 on success, -EACCES if the security module denies the
1865  * creation of this inode, or another -errno upon other errors.
1866  */
1867 int security_inode_init_security_anon(struct inode *inode,
1868 				      const struct qstr *name,
1869 				      const struct inode *context_inode)
1870 {
1871 	return call_int_hook(inode_init_security_anon, inode, name,
1872 			     context_inode);
1873 }
1874 
1875 #ifdef CONFIG_SECURITY_PATH
1876 /**
1877  * security_path_mknod() - Check if creating a special file is allowed
1878  * @dir: parent directory
1879  * @dentry: new file
1880  * @mode: new file mode
1881  * @dev: device number
1882  *
1883  * Check permissions when creating a file. Note that this hook is called even
1884  * if mknod operation is being done for a regular file.
1885  *
1886  * Return: Returns 0 if permission is granted.
1887  */
1888 int security_path_mknod(const struct path *dir, struct dentry *dentry,
1889 			umode_t mode, unsigned int dev)
1890 {
1891 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1892 		return 0;
1893 	return call_int_hook(path_mknod, dir, dentry, mode, dev);
1894 }
1895 EXPORT_SYMBOL(security_path_mknod);
1896 
1897 /**
1898  * security_path_post_mknod() - Update inode security after reg file creation
1899  * @idmap: idmap of the mount
1900  * @dentry: new file
1901  *
1902  * Update inode security field after a regular file has been created.
1903  */
1904 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1905 {
1906 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1907 		return;
1908 	call_void_hook(path_post_mknod, idmap, dentry);
1909 }
1910 
1911 /**
1912  * security_path_mkdir() - Check if creating a new directory is allowed
1913  * @dir: parent directory
1914  * @dentry: new directory
1915  * @mode: new directory mode
1916  *
1917  * Check permissions to create a new directory in the existing directory.
1918  *
1919  * Return: Returns 0 if permission is granted.
1920  */
1921 int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1922 			umode_t mode)
1923 {
1924 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1925 		return 0;
1926 	return call_int_hook(path_mkdir, dir, dentry, mode);
1927 }
1928 EXPORT_SYMBOL(security_path_mkdir);
1929 
1930 /**
1931  * security_path_rmdir() - Check if removing a directory is allowed
1932  * @dir: parent directory
1933  * @dentry: directory to remove
1934  *
1935  * Check the permission to remove a directory.
1936  *
1937  * Return: Returns 0 if permission is granted.
1938  */
1939 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1940 {
1941 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1942 		return 0;
1943 	return call_int_hook(path_rmdir, dir, dentry);
1944 }
1945 
1946 /**
1947  * security_path_unlink() - Check if removing a hard link is allowed
1948  * @dir: parent directory
1949  * @dentry: file
1950  *
1951  * Check the permission to remove a hard link to a file.
1952  *
1953  * Return: Returns 0 if permission is granted.
1954  */
1955 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1956 {
1957 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1958 		return 0;
1959 	return call_int_hook(path_unlink, dir, dentry);
1960 }
1961 EXPORT_SYMBOL(security_path_unlink);
1962 
1963 /**
1964  * security_path_symlink() - Check if creating a symbolic link is allowed
1965  * @dir: parent directory
1966  * @dentry: symbolic link
1967  * @old_name: file pathname
1968  *
1969  * Check the permission to create a symbolic link to a file.
1970  *
1971  * Return: Returns 0 if permission is granted.
1972  */
1973 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1974 			  const char *old_name)
1975 {
1976 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1977 		return 0;
1978 	return call_int_hook(path_symlink, dir, dentry, old_name);
1979 }
1980 
1981 /**
1982  * security_path_link - Check if creating a hard link is allowed
1983  * @old_dentry: existing file
1984  * @new_dir: new parent directory
1985  * @new_dentry: new link
1986  *
1987  * Check permission before creating a new hard link to a file.
1988  *
1989  * Return: Returns 0 if permission is granted.
1990  */
1991 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1992 		       struct dentry *new_dentry)
1993 {
1994 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1995 		return 0;
1996 	return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
1997 }
1998 
1999 /**
2000  * security_path_rename() - Check if renaming a file is allowed
2001  * @old_dir: parent directory of the old file
2002  * @old_dentry: the old file
2003  * @new_dir: parent directory of the new file
2004  * @new_dentry: the new file
2005  * @flags: flags
2006  *
2007  * Check for permission to rename a file or directory.
2008  *
2009  * Return: Returns 0 if permission is granted.
2010  */
2011 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
2012 			 const struct path *new_dir, struct dentry *new_dentry,
2013 			 unsigned int flags)
2014 {
2015 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2016 		     (d_is_positive(new_dentry) &&
2017 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2018 		return 0;
2019 
2020 	return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
2021 			     new_dentry, flags);
2022 }
2023 EXPORT_SYMBOL(security_path_rename);
2024 
2025 /**
2026  * security_path_truncate() - Check if truncating a file is allowed
2027  * @path: file
2028  *
2029  * Check permission before truncating the file indicated by path.  Note that
2030  * truncation permissions may also be checked based on already opened files,
2031  * using the security_file_truncate() hook.
2032  *
2033  * Return: Returns 0 if permission is granted.
2034  */
2035 int security_path_truncate(const struct path *path)
2036 {
2037 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2038 		return 0;
2039 	return call_int_hook(path_truncate, path);
2040 }
2041 
2042 /**
2043  * security_path_chmod() - Check if changing the file's mode is allowed
2044  * @path: file
2045  * @mode: new mode
2046  *
2047  * Check for permission to change a mode of the file @path. The new mode is
2048  * specified in @mode which is a bitmask of constants from
2049  * <include/uapi/linux/stat.h>.
2050  *
2051  * Return: Returns 0 if permission is granted.
2052  */
2053 int security_path_chmod(const struct path *path, umode_t mode)
2054 {
2055 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2056 		return 0;
2057 	return call_int_hook(path_chmod, path, mode);
2058 }
2059 
2060 /**
2061  * security_path_chown() - Check if changing the file's owner/group is allowed
2062  * @path: file
2063  * @uid: file owner
2064  * @gid: file group
2065  *
2066  * Check for permission to change owner/group of a file or directory.
2067  *
2068  * Return: Returns 0 if permission is granted.
2069  */
2070 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
2071 {
2072 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2073 		return 0;
2074 	return call_int_hook(path_chown, path, uid, gid);
2075 }
2076 
2077 /**
2078  * security_path_chroot() - Check if changing the root directory is allowed
2079  * @path: directory
2080  *
2081  * Check for permission to change root directory.
2082  *
2083  * Return: Returns 0 if permission is granted.
2084  */
2085 int security_path_chroot(const struct path *path)
2086 {
2087 	return call_int_hook(path_chroot, path);
2088 }
2089 #endif /* CONFIG_SECURITY_PATH */
2090 
2091 /**
2092  * security_inode_create() - Check if creating a file is allowed
2093  * @dir: the parent directory
2094  * @dentry: the file being created
2095  * @mode: requested file mode
2096  *
2097  * Check permission to create a regular file.
2098  *
2099  * Return: Returns 0 if permission is granted.
2100  */
2101 int security_inode_create(struct inode *dir, struct dentry *dentry,
2102 			  umode_t mode)
2103 {
2104 	if (unlikely(IS_PRIVATE(dir)))
2105 		return 0;
2106 	return call_int_hook(inode_create, dir, dentry, mode);
2107 }
2108 EXPORT_SYMBOL_GPL(security_inode_create);
2109 
2110 /**
2111  * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2112  * @idmap: idmap of the mount
2113  * @inode: inode of the new tmpfile
2114  *
2115  * Update inode security data after a tmpfile has been created.
2116  */
2117 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2118 					struct inode *inode)
2119 {
2120 	if (unlikely(IS_PRIVATE(inode)))
2121 		return;
2122 	call_void_hook(inode_post_create_tmpfile, idmap, inode);
2123 }
2124 
2125 /**
2126  * security_inode_link() - Check if creating a hard link is allowed
2127  * @old_dentry: existing file
2128  * @dir: new parent directory
2129  * @new_dentry: new link
2130  *
2131  * Check permission before creating a new hard link to a file.
2132  *
2133  * Return: Returns 0 if permission is granted.
2134  */
2135 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2136 			struct dentry *new_dentry)
2137 {
2138 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2139 		return 0;
2140 	return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2141 }
2142 
2143 /**
2144  * security_inode_unlink() - Check if removing a hard link is allowed
2145  * @dir: parent directory
2146  * @dentry: file
2147  *
2148  * Check the permission to remove a hard link to a file.
2149  *
2150  * Return: Returns 0 if permission is granted.
2151  */
2152 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2153 {
2154 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2155 		return 0;
2156 	return call_int_hook(inode_unlink, dir, dentry);
2157 }
2158 
2159 /**
2160  * security_inode_symlink() - Check if creating a symbolic link is allowed
2161  * @dir: parent directory
2162  * @dentry: symbolic link
2163  * @old_name: existing filename
2164  *
2165  * Check the permission to create a symbolic link to a file.
2166  *
2167  * Return: Returns 0 if permission is granted.
2168  */
2169 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2170 			   const char *old_name)
2171 {
2172 	if (unlikely(IS_PRIVATE(dir)))
2173 		return 0;
2174 	return call_int_hook(inode_symlink, dir, dentry, old_name);
2175 }
2176 
2177 /**
2178  * security_inode_mkdir() - Check if creation a new director is allowed
2179  * @dir: parent directory
2180  * @dentry: new directory
2181  * @mode: new directory mode
2182  *
2183  * Check permissions to create a new directory in the existing directory
2184  * associated with inode structure @dir.
2185  *
2186  * Return: Returns 0 if permission is granted.
2187  */
2188 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2189 {
2190 	if (unlikely(IS_PRIVATE(dir)))
2191 		return 0;
2192 	return call_int_hook(inode_mkdir, dir, dentry, mode);
2193 }
2194 EXPORT_SYMBOL_GPL(security_inode_mkdir);
2195 
2196 /**
2197  * security_inode_rmdir() - Check if removing a directory is allowed
2198  * @dir: parent directory
2199  * @dentry: directory to be removed
2200  *
2201  * Check the permission to remove a directory.
2202  *
2203  * Return: Returns 0 if permission is granted.
2204  */
2205 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2206 {
2207 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2208 		return 0;
2209 	return call_int_hook(inode_rmdir, dir, dentry);
2210 }
2211 
2212 /**
2213  * security_inode_mknod() - Check if creating a special file is allowed
2214  * @dir: parent directory
2215  * @dentry: new file
2216  * @mode: new file mode
2217  * @dev: device number
2218  *
2219  * Check permissions when creating a special file (or a socket or a fifo file
2220  * created via the mknod system call).  Note that if mknod operation is being
2221  * done for a regular file, then the create hook will be called and not this
2222  * hook.
2223  *
2224  * Return: Returns 0 if permission is granted.
2225  */
2226 int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2227 			 umode_t mode, dev_t dev)
2228 {
2229 	if (unlikely(IS_PRIVATE(dir)))
2230 		return 0;
2231 	return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2232 }
2233 
2234 /**
2235  * security_inode_rename() - Check if renaming a file is allowed
2236  * @old_dir: parent directory of the old file
2237  * @old_dentry: the old file
2238  * @new_dir: parent directory of the new file
2239  * @new_dentry: the new file
2240  * @flags: flags
2241  *
2242  * Check for permission to rename a file or directory.
2243  *
2244  * Return: Returns 0 if permission is granted.
2245  */
2246 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2247 			  struct inode *new_dir, struct dentry *new_dentry,
2248 			  unsigned int flags)
2249 {
2250 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2251 		     (d_is_positive(new_dentry) &&
2252 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2253 		return 0;
2254 
2255 	if (flags & RENAME_EXCHANGE) {
2256 		int err = call_int_hook(inode_rename, new_dir, new_dentry,
2257 					old_dir, old_dentry);
2258 		if (err)
2259 			return err;
2260 	}
2261 
2262 	return call_int_hook(inode_rename, old_dir, old_dentry,
2263 			     new_dir, new_dentry);
2264 }
2265 
2266 /**
2267  * security_inode_readlink() - Check if reading a symbolic link is allowed
2268  * @dentry: link
2269  *
2270  * Check the permission to read the symbolic link.
2271  *
2272  * Return: Returns 0 if permission is granted.
2273  */
2274 int security_inode_readlink(struct dentry *dentry)
2275 {
2276 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2277 		return 0;
2278 	return call_int_hook(inode_readlink, dentry);
2279 }
2280 
2281 /**
2282  * security_inode_follow_link() - Check if following a symbolic link is allowed
2283  * @dentry: link dentry
2284  * @inode: link inode
2285  * @rcu: true if in RCU-walk mode
2286  *
2287  * Check permission to follow a symbolic link when looking up a pathname.  If
2288  * @rcu is true, @inode is not stable.
2289  *
2290  * Return: Returns 0 if permission is granted.
2291  */
2292 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2293 			       bool rcu)
2294 {
2295 	if (unlikely(IS_PRIVATE(inode)))
2296 		return 0;
2297 	return call_int_hook(inode_follow_link, dentry, inode, rcu);
2298 }
2299 
2300 /**
2301  * security_inode_permission() - Check if accessing an inode is allowed
2302  * @inode: inode
2303  * @mask: access mask
2304  *
2305  * Check permission before accessing an inode.  This hook is called by the
2306  * existing Linux permission function, so a security module can use it to
2307  * provide additional checking for existing Linux permission checks.  Notice
2308  * that this hook is called when a file is opened (as well as many other
2309  * operations), whereas the file_security_ops permission hook is called when
2310  * the actual read/write operations are performed.
2311  *
2312  * Return: Returns 0 if permission is granted.
2313  */
2314 int security_inode_permission(struct inode *inode, int mask)
2315 {
2316 	if (unlikely(IS_PRIVATE(inode)))
2317 		return 0;
2318 	return call_int_hook(inode_permission, inode, mask);
2319 }
2320 
2321 /**
2322  * security_inode_setattr() - Check if setting file attributes is allowed
2323  * @idmap: idmap of the mount
2324  * @dentry: file
2325  * @attr: new attributes
2326  *
2327  * Check permission before setting file attributes.  Note that the kernel call
2328  * to notify_change is performed from several locations, whenever file
2329  * attributes change (such as when a file is truncated, chown/chmod operations,
2330  * transferring disk quotas, etc).
2331  *
2332  * Return: Returns 0 if permission is granted.
2333  */
2334 int security_inode_setattr(struct mnt_idmap *idmap,
2335 			   struct dentry *dentry, struct iattr *attr)
2336 {
2337 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2338 		return 0;
2339 	return call_int_hook(inode_setattr, idmap, dentry, attr);
2340 }
2341 EXPORT_SYMBOL_GPL(security_inode_setattr);
2342 
2343 /**
2344  * security_inode_post_setattr() - Update the inode after a setattr operation
2345  * @idmap: idmap of the mount
2346  * @dentry: file
2347  * @ia_valid: file attributes set
2348  *
2349  * Update inode security field after successful setting file attributes.
2350  */
2351 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2352 				 int ia_valid)
2353 {
2354 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2355 		return;
2356 	call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2357 }
2358 
2359 /**
2360  * security_inode_getattr() - Check if getting file attributes is allowed
2361  * @path: file
2362  *
2363  * Check permission before obtaining file attributes.
2364  *
2365  * Return: Returns 0 if permission is granted.
2366  */
2367 int security_inode_getattr(const struct path *path)
2368 {
2369 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2370 		return 0;
2371 	return call_int_hook(inode_getattr, path);
2372 }
2373 
2374 /**
2375  * security_inode_setxattr() - Check if setting file xattrs is allowed
2376  * @idmap: idmap of the mount
2377  * @dentry: file
2378  * @name: xattr name
2379  * @value: xattr value
2380  * @size: size of xattr value
2381  * @flags: flags
2382  *
2383  * This hook performs the desired permission checks before setting the extended
2384  * attributes (xattrs) on @dentry.  It is important to note that we have some
2385  * additional logic before the main LSM implementation calls to detect if we
2386  * need to perform an additional capability check at the LSM layer.
2387  *
2388  * Normally we enforce a capability check prior to executing the various LSM
2389  * hook implementations, but if a LSM wants to avoid this capability check,
2390  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2391  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2392  * responsible for enforcing the access control for the specific xattr.  If all
2393  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2394  * or return a 0 (the default return value), the capability check is still
2395  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2396  * check is performed.
2397  *
2398  * Return: Returns 0 if permission is granted.
2399  */
2400 int security_inode_setxattr(struct mnt_idmap *idmap,
2401 			    struct dentry *dentry, const char *name,
2402 			    const void *value, size_t size, int flags)
2403 {
2404 	int rc;
2405 
2406 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2407 		return 0;
2408 
2409 	/* enforce the capability checks at the lsm layer, if needed */
2410 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2411 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
2412 		if (rc)
2413 			return rc;
2414 	}
2415 
2416 	return call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2417 			     flags);
2418 }
2419 
2420 /**
2421  * security_inode_set_acl() - Check if setting posix acls is allowed
2422  * @idmap: idmap of the mount
2423  * @dentry: file
2424  * @acl_name: acl name
2425  * @kacl: acl struct
2426  *
2427  * Check permission before setting posix acls, the posix acls in @kacl are
2428  * identified by @acl_name.
2429  *
2430  * Return: Returns 0 if permission is granted.
2431  */
2432 int security_inode_set_acl(struct mnt_idmap *idmap,
2433 			   struct dentry *dentry, const char *acl_name,
2434 			   struct posix_acl *kacl)
2435 {
2436 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2437 		return 0;
2438 	return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2439 }
2440 
2441 /**
2442  * security_inode_post_set_acl() - Update inode security from posix acls set
2443  * @dentry: file
2444  * @acl_name: acl name
2445  * @kacl: acl struct
2446  *
2447  * Update inode security data after successfully setting posix acls on @dentry.
2448  * The posix acls in @kacl are identified by @acl_name.
2449  */
2450 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2451 				 struct posix_acl *kacl)
2452 {
2453 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2454 		return;
2455 	call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
2456 }
2457 
2458 /**
2459  * security_inode_get_acl() - Check if reading posix acls is allowed
2460  * @idmap: idmap of the mount
2461  * @dentry: file
2462  * @acl_name: acl name
2463  *
2464  * Check permission before getting osix acls, the posix acls are identified by
2465  * @acl_name.
2466  *
2467  * Return: Returns 0 if permission is granted.
2468  */
2469 int security_inode_get_acl(struct mnt_idmap *idmap,
2470 			   struct dentry *dentry, const char *acl_name)
2471 {
2472 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2473 		return 0;
2474 	return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2475 }
2476 
2477 /**
2478  * security_inode_remove_acl() - Check if removing a posix acl is allowed
2479  * @idmap: idmap of the mount
2480  * @dentry: file
2481  * @acl_name: acl name
2482  *
2483  * Check permission before removing posix acls, the posix acls are identified
2484  * by @acl_name.
2485  *
2486  * Return: Returns 0 if permission is granted.
2487  */
2488 int security_inode_remove_acl(struct mnt_idmap *idmap,
2489 			      struct dentry *dentry, const char *acl_name)
2490 {
2491 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2492 		return 0;
2493 	return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2494 }
2495 
2496 /**
2497  * security_inode_post_remove_acl() - Update inode security after rm posix acls
2498  * @idmap: idmap of the mount
2499  * @dentry: file
2500  * @acl_name: acl name
2501  *
2502  * Update inode security data after successfully removing posix acls on
2503  * @dentry in @idmap. The posix acls are identified by @acl_name.
2504  */
2505 void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2506 				    struct dentry *dentry, const char *acl_name)
2507 {
2508 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2509 		return;
2510 	call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2511 }
2512 
2513 /**
2514  * security_inode_post_setxattr() - Update the inode after a setxattr operation
2515  * @dentry: file
2516  * @name: xattr name
2517  * @value: xattr value
2518  * @size: xattr value size
2519  * @flags: flags
2520  *
2521  * Update inode security field after successful setxattr operation.
2522  */
2523 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2524 				  const void *value, size_t size, int flags)
2525 {
2526 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2527 		return;
2528 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2529 }
2530 
2531 /**
2532  * security_inode_getxattr() - Check if xattr access is allowed
2533  * @dentry: file
2534  * @name: xattr name
2535  *
2536  * Check permission before obtaining the extended attributes identified by
2537  * @name for @dentry.
2538  *
2539  * Return: Returns 0 if permission is granted.
2540  */
2541 int security_inode_getxattr(struct dentry *dentry, const char *name)
2542 {
2543 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2544 		return 0;
2545 	return call_int_hook(inode_getxattr, dentry, name);
2546 }
2547 
2548 /**
2549  * security_inode_listxattr() - Check if listing xattrs is allowed
2550  * @dentry: file
2551  *
2552  * Check permission before obtaining the list of extended attribute names for
2553  * @dentry.
2554  *
2555  * Return: Returns 0 if permission is granted.
2556  */
2557 int security_inode_listxattr(struct dentry *dentry)
2558 {
2559 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2560 		return 0;
2561 	return call_int_hook(inode_listxattr, dentry);
2562 }
2563 
2564 /**
2565  * security_inode_removexattr() - Check if removing an xattr is allowed
2566  * @idmap: idmap of the mount
2567  * @dentry: file
2568  * @name: xattr name
2569  *
2570  * This hook performs the desired permission checks before setting the extended
2571  * attributes (xattrs) on @dentry.  It is important to note that we have some
2572  * additional logic before the main LSM implementation calls to detect if we
2573  * need to perform an additional capability check at the LSM layer.
2574  *
2575  * Normally we enforce a capability check prior to executing the various LSM
2576  * hook implementations, but if a LSM wants to avoid this capability check,
2577  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2578  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2579  * responsible for enforcing the access control for the specific xattr.  If all
2580  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2581  * or return a 0 (the default return value), the capability check is still
2582  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2583  * check is performed.
2584  *
2585  * Return: Returns 0 if permission is granted.
2586  */
2587 int security_inode_removexattr(struct mnt_idmap *idmap,
2588 			       struct dentry *dentry, const char *name)
2589 {
2590 	int rc;
2591 
2592 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2593 		return 0;
2594 
2595 	/* enforce the capability checks at the lsm layer, if needed */
2596 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2597 		rc = cap_inode_removexattr(idmap, dentry, name);
2598 		if (rc)
2599 			return rc;
2600 	}
2601 
2602 	return call_int_hook(inode_removexattr, idmap, dentry, name);
2603 }
2604 
2605 /**
2606  * security_inode_post_removexattr() - Update the inode after a removexattr op
2607  * @dentry: file
2608  * @name: xattr name
2609  *
2610  * Update the inode after a successful removexattr operation.
2611  */
2612 void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2613 {
2614 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2615 		return;
2616 	call_void_hook(inode_post_removexattr, dentry, name);
2617 }
2618 
2619 /**
2620  * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2621  * @dentry: associated dentry
2622  *
2623  * Called when an inode has been changed to determine if
2624  * security_inode_killpriv() should be called.
2625  *
2626  * Return: Return <0 on error to abort the inode change operation, return 0 if
2627  *         security_inode_killpriv() does not need to be called, return >0 if
2628  *         security_inode_killpriv() does need to be called.
2629  */
2630 int security_inode_need_killpriv(struct dentry *dentry)
2631 {
2632 	return call_int_hook(inode_need_killpriv, dentry);
2633 }
2634 
2635 /**
2636  * security_inode_killpriv() - The setuid bit is removed, update LSM state
2637  * @idmap: idmap of the mount
2638  * @dentry: associated dentry
2639  *
2640  * The @dentry's setuid bit is being removed.  Remove similar security labels.
2641  * Called with the dentry->d_inode->i_mutex held.
2642  *
2643  * Return: Return 0 on success.  If error is returned, then the operation
2644  *         causing setuid bit removal is failed.
2645  */
2646 int security_inode_killpriv(struct mnt_idmap *idmap,
2647 			    struct dentry *dentry)
2648 {
2649 	return call_int_hook(inode_killpriv, idmap, dentry);
2650 }
2651 
2652 /**
2653  * security_inode_getsecurity() - Get the xattr security label of an inode
2654  * @idmap: idmap of the mount
2655  * @inode: inode
2656  * @name: xattr name
2657  * @buffer: security label buffer
2658  * @alloc: allocation flag
2659  *
2660  * Retrieve a copy of the extended attribute representation of the security
2661  * label associated with @name for @inode via @buffer.  Note that @name is the
2662  * remainder of the attribute name after the security prefix has been removed.
2663  * @alloc is used to specify if the call should return a value via the buffer
2664  * or just the value length.
2665  *
2666  * Return: Returns size of buffer on success.
2667  */
2668 int security_inode_getsecurity(struct mnt_idmap *idmap,
2669 			       struct inode *inode, const char *name,
2670 			       void **buffer, bool alloc)
2671 {
2672 	if (unlikely(IS_PRIVATE(inode)))
2673 		return LSM_RET_DEFAULT(inode_getsecurity);
2674 
2675 	return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2676 			     alloc);
2677 }
2678 
2679 /**
2680  * security_inode_setsecurity() - Set the xattr security label of an inode
2681  * @inode: inode
2682  * @name: xattr name
2683  * @value: security label
2684  * @size: length of security label
2685  * @flags: flags
2686  *
2687  * Set the security label associated with @name for @inode from the extended
2688  * attribute value @value.  @size indicates the size of the @value in bytes.
2689  * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2690  * remainder of the attribute name after the security. prefix has been removed.
2691  *
2692  * Return: Returns 0 on success.
2693  */
2694 int security_inode_setsecurity(struct inode *inode, const char *name,
2695 			       const void *value, size_t size, int flags)
2696 {
2697 	if (unlikely(IS_PRIVATE(inode)))
2698 		return LSM_RET_DEFAULT(inode_setsecurity);
2699 
2700 	return call_int_hook(inode_setsecurity, inode, name, value, size,
2701 			     flags);
2702 }
2703 
2704 /**
2705  * security_inode_listsecurity() - List the xattr security label names
2706  * @inode: inode
2707  * @buffer: buffer
2708  * @buffer_size: size of buffer
2709  *
2710  * Copy the extended attribute names for the security labels associated with
2711  * @inode into @buffer.  The maximum size of @buffer is specified by
2712  * @buffer_size.  @buffer may be NULL to request the size of the buffer
2713  * required.
2714  *
2715  * Return: Returns number of bytes used/required on success.
2716  */
2717 int security_inode_listsecurity(struct inode *inode,
2718 				char *buffer, size_t buffer_size)
2719 {
2720 	if (unlikely(IS_PRIVATE(inode)))
2721 		return 0;
2722 	return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2723 }
2724 EXPORT_SYMBOL(security_inode_listsecurity);
2725 
2726 /**
2727  * security_inode_getsecid() - Get an inode's secid
2728  * @inode: inode
2729  * @secid: secid to return
2730  *
2731  * Get the secid associated with the node.  In case of failure, @secid will be
2732  * set to zero.
2733  */
2734 void security_inode_getsecid(struct inode *inode, u32 *secid)
2735 {
2736 	call_void_hook(inode_getsecid, inode, secid);
2737 }
2738 
2739 /**
2740  * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2741  * @src: union dentry of copy-up file
2742  * @new: newly created creds
2743  *
2744  * A file is about to be copied up from lower layer to upper layer of overlay
2745  * filesystem. Security module can prepare a set of new creds and modify as
2746  * need be and return new creds. Caller will switch to new creds temporarily to
2747  * create new file and release newly allocated creds.
2748  *
2749  * Return: Returns 0 on success or a negative error code on error.
2750  */
2751 int security_inode_copy_up(struct dentry *src, struct cred **new)
2752 {
2753 	return call_int_hook(inode_copy_up, src, new);
2754 }
2755 EXPORT_SYMBOL(security_inode_copy_up);
2756 
2757 /**
2758  * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2759  * @src: union dentry of copy-up file
2760  * @name: xattr name
2761  *
2762  * Filter the xattrs being copied up when a unioned file is copied up from a
2763  * lower layer to the union/overlay layer.   The caller is responsible for
2764  * reading and writing the xattrs, this hook is merely a filter.
2765  *
2766  * Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr,
2767  *         -EOPNOTSUPP if the security module does not know about attribute,
2768  *         or a negative error code to abort the copy up.
2769  */
2770 int security_inode_copy_up_xattr(struct dentry *src, const char *name)
2771 {
2772 	int rc;
2773 
2774 	rc = call_int_hook(inode_copy_up_xattr, src, name);
2775 	if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2776 		return rc;
2777 
2778 	return LSM_RET_DEFAULT(inode_copy_up_xattr);
2779 }
2780 EXPORT_SYMBOL(security_inode_copy_up_xattr);
2781 
2782 /**
2783  * security_inode_setintegrity() - Set the inode's integrity data
2784  * @inode: inode
2785  * @type: type of integrity, e.g. hash digest, signature, etc
2786  * @value: the integrity value
2787  * @size: size of the integrity value
2788  *
2789  * Register a verified integrity measurement of a inode with LSMs.
2790  * LSMs should free the previously saved data if @value is NULL.
2791  *
2792  * Return: Returns 0 on success, negative values on failure.
2793  */
2794 int security_inode_setintegrity(const struct inode *inode,
2795 				enum lsm_integrity_type type, const void *value,
2796 				size_t size)
2797 {
2798 	return call_int_hook(inode_setintegrity, inode, type, value, size);
2799 }
2800 EXPORT_SYMBOL(security_inode_setintegrity);
2801 
2802 /**
2803  * security_kernfs_init_security() - Init LSM context for a kernfs node
2804  * @kn_dir: parent kernfs node
2805  * @kn: the kernfs node to initialize
2806  *
2807  * Initialize the security context of a newly created kernfs node based on its
2808  * own and its parent's attributes.
2809  *
2810  * Return: Returns 0 if permission is granted.
2811  */
2812 int security_kernfs_init_security(struct kernfs_node *kn_dir,
2813 				  struct kernfs_node *kn)
2814 {
2815 	return call_int_hook(kernfs_init_security, kn_dir, kn);
2816 }
2817 
2818 /**
2819  * security_file_permission() - Check file permissions
2820  * @file: file
2821  * @mask: requested permissions
2822  *
2823  * Check file permissions before accessing an open file.  This hook is called
2824  * by various operations that read or write files.  A security module can use
2825  * this hook to perform additional checking on these operations, e.g. to
2826  * revalidate permissions on use to support privilege bracketing or policy
2827  * changes.  Notice that this hook is used when the actual read/write
2828  * operations are performed, whereas the inode_security_ops hook is called when
2829  * a file is opened (as well as many other operations).  Although this hook can
2830  * be used to revalidate permissions for various system call operations that
2831  * read or write files, it does not address the revalidation of permissions for
2832  * memory-mapped files.  Security modules must handle this separately if they
2833  * need such revalidation.
2834  *
2835  * Return: Returns 0 if permission is granted.
2836  */
2837 int security_file_permission(struct file *file, int mask)
2838 {
2839 	return call_int_hook(file_permission, file, mask);
2840 }
2841 
2842 /**
2843  * security_file_alloc() - Allocate and init a file's LSM blob
2844  * @file: the file
2845  *
2846  * Allocate and attach a security structure to the file->f_security field.  The
2847  * security field is initialized to NULL when the structure is first created.
2848  *
2849  * Return: Return 0 if the hook is successful and permission is granted.
2850  */
2851 int security_file_alloc(struct file *file)
2852 {
2853 	int rc = lsm_file_alloc(file);
2854 
2855 	if (rc)
2856 		return rc;
2857 	rc = call_int_hook(file_alloc_security, file);
2858 	if (unlikely(rc))
2859 		security_file_free(file);
2860 	return rc;
2861 }
2862 
2863 /**
2864  * security_file_release() - Perform actions before releasing the file ref
2865  * @file: the file
2866  *
2867  * Perform actions before releasing the last reference to a file.
2868  */
2869 void security_file_release(struct file *file)
2870 {
2871 	call_void_hook(file_release, file);
2872 }
2873 
2874 /**
2875  * security_file_free() - Free a file's LSM blob
2876  * @file: the file
2877  *
2878  * Deallocate and free any security structures stored in file->f_security.
2879  */
2880 void security_file_free(struct file *file)
2881 {
2882 	void *blob;
2883 
2884 	call_void_hook(file_free_security, file);
2885 
2886 	blob = file->f_security;
2887 	if (blob) {
2888 		file->f_security = NULL;
2889 		kmem_cache_free(lsm_file_cache, blob);
2890 	}
2891 }
2892 
2893 /**
2894  * security_file_ioctl() - Check if an ioctl is allowed
2895  * @file: associated file
2896  * @cmd: ioctl cmd
2897  * @arg: ioctl arguments
2898  *
2899  * Check permission for an ioctl operation on @file.  Note that @arg sometimes
2900  * represents a user space pointer; in other cases, it may be a simple integer
2901  * value.  When @arg represents a user space pointer, it should never be used
2902  * by the security module.
2903  *
2904  * Return: Returns 0 if permission is granted.
2905  */
2906 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2907 {
2908 	return call_int_hook(file_ioctl, file, cmd, arg);
2909 }
2910 EXPORT_SYMBOL_GPL(security_file_ioctl);
2911 
2912 /**
2913  * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2914  * @file: associated file
2915  * @cmd: ioctl cmd
2916  * @arg: ioctl arguments
2917  *
2918  * Compat version of security_file_ioctl() that correctly handles 32-bit
2919  * processes running on 64-bit kernels.
2920  *
2921  * Return: Returns 0 if permission is granted.
2922  */
2923 int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2924 			       unsigned long arg)
2925 {
2926 	return call_int_hook(file_ioctl_compat, file, cmd, arg);
2927 }
2928 EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2929 
2930 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2931 {
2932 	/*
2933 	 * Does we have PROT_READ and does the application expect
2934 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
2935 	 */
2936 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2937 		return prot;
2938 	if (!(current->personality & READ_IMPLIES_EXEC))
2939 		return prot;
2940 	/*
2941 	 * if that's an anonymous mapping, let it.
2942 	 */
2943 	if (!file)
2944 		return prot | PROT_EXEC;
2945 	/*
2946 	 * ditto if it's not on noexec mount, except that on !MMU we need
2947 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2948 	 */
2949 	if (!path_noexec(&file->f_path)) {
2950 #ifndef CONFIG_MMU
2951 		if (file->f_op->mmap_capabilities) {
2952 			unsigned caps = file->f_op->mmap_capabilities(file);
2953 			if (!(caps & NOMMU_MAP_EXEC))
2954 				return prot;
2955 		}
2956 #endif
2957 		return prot | PROT_EXEC;
2958 	}
2959 	/* anything on noexec mount won't get PROT_EXEC */
2960 	return prot;
2961 }
2962 
2963 /**
2964  * security_mmap_file() - Check if mmap'ing a file is allowed
2965  * @file: file
2966  * @prot: protection applied by the kernel
2967  * @flags: flags
2968  *
2969  * Check permissions for a mmap operation.  The @file may be NULL, e.g. if
2970  * mapping anonymous memory.
2971  *
2972  * Return: Returns 0 if permission is granted.
2973  */
2974 int security_mmap_file(struct file *file, unsigned long prot,
2975 		       unsigned long flags)
2976 {
2977 	return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
2978 			     flags);
2979 }
2980 
2981 /**
2982  * security_mmap_addr() - Check if mmap'ing an address is allowed
2983  * @addr: address
2984  *
2985  * Check permissions for a mmap operation at @addr.
2986  *
2987  * Return: Returns 0 if permission is granted.
2988  */
2989 int security_mmap_addr(unsigned long addr)
2990 {
2991 	return call_int_hook(mmap_addr, addr);
2992 }
2993 
2994 /**
2995  * security_file_mprotect() - Check if changing memory protections is allowed
2996  * @vma: memory region
2997  * @reqprot: application requested protection
2998  * @prot: protection applied by the kernel
2999  *
3000  * Check permissions before changing memory access permissions.
3001  *
3002  * Return: Returns 0 if permission is granted.
3003  */
3004 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
3005 			   unsigned long prot)
3006 {
3007 	return call_int_hook(file_mprotect, vma, reqprot, prot);
3008 }
3009 
3010 /**
3011  * security_file_lock() - Check if a file lock is allowed
3012  * @file: file
3013  * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
3014  *
3015  * Check permission before performing file locking operations.  Note the hook
3016  * mediates both flock and fcntl style locks.
3017  *
3018  * Return: Returns 0 if permission is granted.
3019  */
3020 int security_file_lock(struct file *file, unsigned int cmd)
3021 {
3022 	return call_int_hook(file_lock, file, cmd);
3023 }
3024 
3025 /**
3026  * security_file_fcntl() - Check if fcntl() op is allowed
3027  * @file: file
3028  * @cmd: fcntl command
3029  * @arg: command argument
3030  *
3031  * Check permission before allowing the file operation specified by @cmd from
3032  * being performed on the file @file.  Note that @arg sometimes represents a
3033  * user space pointer; in other cases, it may be a simple integer value.  When
3034  * @arg represents a user space pointer, it should never be used by the
3035  * security module.
3036  *
3037  * Return: Returns 0 if permission is granted.
3038  */
3039 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
3040 {
3041 	return call_int_hook(file_fcntl, file, cmd, arg);
3042 }
3043 
3044 /**
3045  * security_file_set_fowner() - Set the file owner info in the LSM blob
3046  * @file: the file
3047  *
3048  * Save owner security information (typically from current->security) in
3049  * file->f_security for later use by the send_sigiotask hook.
3050  *
3051  * Return: Returns 0 on success.
3052  */
3053 void security_file_set_fowner(struct file *file)
3054 {
3055 	call_void_hook(file_set_fowner, file);
3056 }
3057 
3058 /**
3059  * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
3060  * @tsk: target task
3061  * @fown: signal sender
3062  * @sig: signal to be sent, SIGIO is sent if 0
3063  *
3064  * Check permission for the file owner @fown to send SIGIO or SIGURG to the
3065  * process @tsk.  Note that this hook is sometimes called from interrupt.  Note
3066  * that the fown_struct, @fown, is never outside the context of a struct file,
3067  * so the file structure (and associated security information) can always be
3068  * obtained: container_of(fown, struct file, f_owner).
3069  *
3070  * Return: Returns 0 if permission is granted.
3071  */
3072 int security_file_send_sigiotask(struct task_struct *tsk,
3073 				 struct fown_struct *fown, int sig)
3074 {
3075 	return call_int_hook(file_send_sigiotask, tsk, fown, sig);
3076 }
3077 
3078 /**
3079  * security_file_receive() - Check if receiving a file via IPC is allowed
3080  * @file: file being received
3081  *
3082  * This hook allows security modules to control the ability of a process to
3083  * receive an open file descriptor via socket IPC.
3084  *
3085  * Return: Returns 0 if permission is granted.
3086  */
3087 int security_file_receive(struct file *file)
3088 {
3089 	return call_int_hook(file_receive, file);
3090 }
3091 
3092 /**
3093  * security_file_open() - Save open() time state for late use by the LSM
3094  * @file:
3095  *
3096  * Save open-time permission checking state for later use upon file_permission,
3097  * and recheck access if anything has changed since inode_permission.
3098  *
3099  * Return: Returns 0 if permission is granted.
3100  */
3101 int security_file_open(struct file *file)
3102 {
3103 	int ret;
3104 
3105 	ret = call_int_hook(file_open, file);
3106 	if (ret)
3107 		return ret;
3108 
3109 	return fsnotify_open_perm(file);
3110 }
3111 
3112 /**
3113  * security_file_post_open() - Evaluate a file after it has been opened
3114  * @file: the file
3115  * @mask: access mask
3116  *
3117  * Evaluate an opened file and the access mask requested with open(). The hook
3118  * is useful for LSMs that require the file content to be available in order to
3119  * make decisions.
3120  *
3121  * Return: Returns 0 if permission is granted.
3122  */
3123 int security_file_post_open(struct file *file, int mask)
3124 {
3125 	return call_int_hook(file_post_open, file, mask);
3126 }
3127 EXPORT_SYMBOL_GPL(security_file_post_open);
3128 
3129 /**
3130  * security_file_truncate() - Check if truncating a file is allowed
3131  * @file: file
3132  *
3133  * Check permission before truncating a file, i.e. using ftruncate.  Note that
3134  * truncation permission may also be checked based on the path, using the
3135  * @path_truncate hook.
3136  *
3137  * Return: Returns 0 if permission is granted.
3138  */
3139 int security_file_truncate(struct file *file)
3140 {
3141 	return call_int_hook(file_truncate, file);
3142 }
3143 
3144 /**
3145  * security_task_alloc() - Allocate a task's LSM blob
3146  * @task: the task
3147  * @clone_flags: flags indicating what is being shared
3148  *
3149  * Handle allocation of task-related resources.
3150  *
3151  * Return: Returns a zero on success, negative values on failure.
3152  */
3153 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
3154 {
3155 	int rc = lsm_task_alloc(task);
3156 
3157 	if (rc)
3158 		return rc;
3159 	rc = call_int_hook(task_alloc, task, clone_flags);
3160 	if (unlikely(rc))
3161 		security_task_free(task);
3162 	return rc;
3163 }
3164 
3165 /**
3166  * security_task_free() - Free a task's LSM blob and related resources
3167  * @task: task
3168  *
3169  * Handle release of task-related resources.  Note that this can be called from
3170  * interrupt context.
3171  */
3172 void security_task_free(struct task_struct *task)
3173 {
3174 	call_void_hook(task_free, task);
3175 
3176 	kfree(task->security);
3177 	task->security = NULL;
3178 }
3179 
3180 /**
3181  * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3182  * @cred: credentials
3183  * @gfp: gfp flags
3184  *
3185  * Only allocate sufficient memory and attach to @cred such that
3186  * cred_transfer() will not get ENOMEM.
3187  *
3188  * Return: Returns 0 on success, negative values on failure.
3189  */
3190 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3191 {
3192 	int rc = lsm_cred_alloc(cred, gfp);
3193 
3194 	if (rc)
3195 		return rc;
3196 
3197 	rc = call_int_hook(cred_alloc_blank, cred, gfp);
3198 	if (unlikely(rc))
3199 		security_cred_free(cred);
3200 	return rc;
3201 }
3202 
3203 /**
3204  * security_cred_free() - Free the cred's LSM blob and associated resources
3205  * @cred: credentials
3206  *
3207  * Deallocate and clear the cred->security field in a set of credentials.
3208  */
3209 void security_cred_free(struct cred *cred)
3210 {
3211 	/*
3212 	 * There is a failure case in prepare_creds() that
3213 	 * may result in a call here with ->security being NULL.
3214 	 */
3215 	if (unlikely(cred->security == NULL))
3216 		return;
3217 
3218 	call_void_hook(cred_free, cred);
3219 
3220 	kfree(cred->security);
3221 	cred->security = NULL;
3222 }
3223 
3224 /**
3225  * security_prepare_creds() - Prepare a new set of credentials
3226  * @new: new credentials
3227  * @old: original credentials
3228  * @gfp: gfp flags
3229  *
3230  * Prepare a new set of credentials by copying the data from the old set.
3231  *
3232  * Return: Returns 0 on success, negative values on failure.
3233  */
3234 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3235 {
3236 	int rc = lsm_cred_alloc(new, gfp);
3237 
3238 	if (rc)
3239 		return rc;
3240 
3241 	rc = call_int_hook(cred_prepare, new, old, gfp);
3242 	if (unlikely(rc))
3243 		security_cred_free(new);
3244 	return rc;
3245 }
3246 
3247 /**
3248  * security_transfer_creds() - Transfer creds
3249  * @new: target credentials
3250  * @old: original credentials
3251  *
3252  * Transfer data from original creds to new creds.
3253  */
3254 void security_transfer_creds(struct cred *new, const struct cred *old)
3255 {
3256 	call_void_hook(cred_transfer, new, old);
3257 }
3258 
3259 /**
3260  * security_cred_getsecid() - Get the secid from a set of credentials
3261  * @c: credentials
3262  * @secid: secid value
3263  *
3264  * Retrieve the security identifier of the cred structure @c.  In case of
3265  * failure, @secid will be set to zero.
3266  */
3267 void security_cred_getsecid(const struct cred *c, u32 *secid)
3268 {
3269 	*secid = 0;
3270 	call_void_hook(cred_getsecid, c, secid);
3271 }
3272 EXPORT_SYMBOL(security_cred_getsecid);
3273 
3274 /**
3275  * security_kernel_act_as() - Set the kernel credentials to act as secid
3276  * @new: credentials
3277  * @secid: secid
3278  *
3279  * Set the credentials for a kernel service to act as (subjective context).
3280  * The current task must be the one that nominated @secid.
3281  *
3282  * Return: Returns 0 if successful.
3283  */
3284 int security_kernel_act_as(struct cred *new, u32 secid)
3285 {
3286 	return call_int_hook(kernel_act_as, new, secid);
3287 }
3288 
3289 /**
3290  * security_kernel_create_files_as() - Set file creation context using an inode
3291  * @new: target credentials
3292  * @inode: reference inode
3293  *
3294  * Set the file creation context in a set of credentials to be the same as the
3295  * objective context of the specified inode.  The current task must be the one
3296  * that nominated @inode.
3297  *
3298  * Return: Returns 0 if successful.
3299  */
3300 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3301 {
3302 	return call_int_hook(kernel_create_files_as, new, inode);
3303 }
3304 
3305 /**
3306  * security_kernel_module_request() - Check if loading a module is allowed
3307  * @kmod_name: module name
3308  *
3309  * Ability to trigger the kernel to automatically upcall to userspace for
3310  * userspace to load a kernel module with the given name.
3311  *
3312  * Return: Returns 0 if successful.
3313  */
3314 int security_kernel_module_request(char *kmod_name)
3315 {
3316 	return call_int_hook(kernel_module_request, kmod_name);
3317 }
3318 
3319 /**
3320  * security_kernel_read_file() - Read a file specified by userspace
3321  * @file: file
3322  * @id: file identifier
3323  * @contents: trust if security_kernel_post_read_file() will be called
3324  *
3325  * Read a file specified by userspace.
3326  *
3327  * Return: Returns 0 if permission is granted.
3328  */
3329 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3330 			      bool contents)
3331 {
3332 	return call_int_hook(kernel_read_file, file, id, contents);
3333 }
3334 EXPORT_SYMBOL_GPL(security_kernel_read_file);
3335 
3336 /**
3337  * security_kernel_post_read_file() - Read a file specified by userspace
3338  * @file: file
3339  * @buf: file contents
3340  * @size: size of file contents
3341  * @id: file identifier
3342  *
3343  * Read a file specified by userspace.  This must be paired with a prior call
3344  * to security_kernel_read_file() call that indicated this hook would also be
3345  * called, see security_kernel_read_file() for more information.
3346  *
3347  * Return: Returns 0 if permission is granted.
3348  */
3349 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3350 				   enum kernel_read_file_id id)
3351 {
3352 	return call_int_hook(kernel_post_read_file, file, buf, size, id);
3353 }
3354 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3355 
3356 /**
3357  * security_kernel_load_data() - Load data provided by userspace
3358  * @id: data identifier
3359  * @contents: true if security_kernel_post_load_data() will be called
3360  *
3361  * Load data provided by userspace.
3362  *
3363  * Return: Returns 0 if permission is granted.
3364  */
3365 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3366 {
3367 	return call_int_hook(kernel_load_data, id, contents);
3368 }
3369 EXPORT_SYMBOL_GPL(security_kernel_load_data);
3370 
3371 /**
3372  * security_kernel_post_load_data() - Load userspace data from a non-file source
3373  * @buf: data
3374  * @size: size of data
3375  * @id: data identifier
3376  * @description: text description of data, specific to the id value
3377  *
3378  * Load data provided by a non-file source (usually userspace buffer).  This
3379  * must be paired with a prior security_kernel_load_data() call that indicated
3380  * this hook would also be called, see security_kernel_load_data() for more
3381  * information.
3382  *
3383  * Return: Returns 0 if permission is granted.
3384  */
3385 int security_kernel_post_load_data(char *buf, loff_t size,
3386 				   enum kernel_load_data_id id,
3387 				   char *description)
3388 {
3389 	return call_int_hook(kernel_post_load_data, buf, size, id, description);
3390 }
3391 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3392 
3393 /**
3394  * security_task_fix_setuid() - Update LSM with new user id attributes
3395  * @new: updated credentials
3396  * @old: credentials being replaced
3397  * @flags: LSM_SETID_* flag values
3398  *
3399  * Update the module's state after setting one or more of the user identity
3400  * attributes of the current process.  The @flags parameter indicates which of
3401  * the set*uid system calls invoked this hook.  If @new is the set of
3402  * credentials that will be installed.  Modifications should be made to this
3403  * rather than to @current->cred.
3404  *
3405  * Return: Returns 0 on success.
3406  */
3407 int security_task_fix_setuid(struct cred *new, const struct cred *old,
3408 			     int flags)
3409 {
3410 	return call_int_hook(task_fix_setuid, new, old, flags);
3411 }
3412 
3413 /**
3414  * security_task_fix_setgid() - Update LSM with new group id attributes
3415  * @new: updated credentials
3416  * @old: credentials being replaced
3417  * @flags: LSM_SETID_* flag value
3418  *
3419  * Update the module's state after setting one or more of the group identity
3420  * attributes of the current process.  The @flags parameter indicates which of
3421  * the set*gid system calls invoked this hook.  @new is the set of credentials
3422  * that will be installed.  Modifications should be made to this rather than to
3423  * @current->cred.
3424  *
3425  * Return: Returns 0 on success.
3426  */
3427 int security_task_fix_setgid(struct cred *new, const struct cred *old,
3428 			     int flags)
3429 {
3430 	return call_int_hook(task_fix_setgid, new, old, flags);
3431 }
3432 
3433 /**
3434  * security_task_fix_setgroups() - Update LSM with new supplementary groups
3435  * @new: updated credentials
3436  * @old: credentials being replaced
3437  *
3438  * Update the module's state after setting the supplementary group identity
3439  * attributes of the current process.  @new is the set of credentials that will
3440  * be installed.  Modifications should be made to this rather than to
3441  * @current->cred.
3442  *
3443  * Return: Returns 0 on success.
3444  */
3445 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3446 {
3447 	return call_int_hook(task_fix_setgroups, new, old);
3448 }
3449 
3450 /**
3451  * security_task_setpgid() - Check if setting the pgid is allowed
3452  * @p: task being modified
3453  * @pgid: new pgid
3454  *
3455  * Check permission before setting the process group identifier of the process
3456  * @p to @pgid.
3457  *
3458  * Return: Returns 0 if permission is granted.
3459  */
3460 int security_task_setpgid(struct task_struct *p, pid_t pgid)
3461 {
3462 	return call_int_hook(task_setpgid, p, pgid);
3463 }
3464 
3465 /**
3466  * security_task_getpgid() - Check if getting the pgid is allowed
3467  * @p: task
3468  *
3469  * Check permission before getting the process group identifier of the process
3470  * @p.
3471  *
3472  * Return: Returns 0 if permission is granted.
3473  */
3474 int security_task_getpgid(struct task_struct *p)
3475 {
3476 	return call_int_hook(task_getpgid, p);
3477 }
3478 
3479 /**
3480  * security_task_getsid() - Check if getting the session id is allowed
3481  * @p: task
3482  *
3483  * Check permission before getting the session identifier of the process @p.
3484  *
3485  * Return: Returns 0 if permission is granted.
3486  */
3487 int security_task_getsid(struct task_struct *p)
3488 {
3489 	return call_int_hook(task_getsid, p);
3490 }
3491 
3492 /**
3493  * security_current_getsecid_subj() - Get the current task's subjective secid
3494  * @secid: secid value
3495  *
3496  * Retrieve the subjective security identifier of the current task and return
3497  * it in @secid.  In case of failure, @secid will be set to zero.
3498  */
3499 void security_current_getsecid_subj(u32 *secid)
3500 {
3501 	*secid = 0;
3502 	call_void_hook(current_getsecid_subj, secid);
3503 }
3504 EXPORT_SYMBOL(security_current_getsecid_subj);
3505 
3506 /**
3507  * security_task_getsecid_obj() - Get a task's objective secid
3508  * @p: target task
3509  * @secid: secid value
3510  *
3511  * Retrieve the objective security identifier of the task_struct in @p and
3512  * return it in @secid. In case of failure, @secid will be set to zero.
3513  */
3514 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
3515 {
3516 	*secid = 0;
3517 	call_void_hook(task_getsecid_obj, p, secid);
3518 }
3519 EXPORT_SYMBOL(security_task_getsecid_obj);
3520 
3521 /**
3522  * security_task_setnice() - Check if setting a task's nice value is allowed
3523  * @p: target task
3524  * @nice: nice value
3525  *
3526  * Check permission before setting the nice value of @p to @nice.
3527  *
3528  * Return: Returns 0 if permission is granted.
3529  */
3530 int security_task_setnice(struct task_struct *p, int nice)
3531 {
3532 	return call_int_hook(task_setnice, p, nice);
3533 }
3534 
3535 /**
3536  * security_task_setioprio() - Check if setting a task's ioprio is allowed
3537  * @p: target task
3538  * @ioprio: ioprio value
3539  *
3540  * Check permission before setting the ioprio value of @p to @ioprio.
3541  *
3542  * Return: Returns 0 if permission is granted.
3543  */
3544 int security_task_setioprio(struct task_struct *p, int ioprio)
3545 {
3546 	return call_int_hook(task_setioprio, p, ioprio);
3547 }
3548 
3549 /**
3550  * security_task_getioprio() - Check if getting a task's ioprio is allowed
3551  * @p: task
3552  *
3553  * Check permission before getting the ioprio value of @p.
3554  *
3555  * Return: Returns 0 if permission is granted.
3556  */
3557 int security_task_getioprio(struct task_struct *p)
3558 {
3559 	return call_int_hook(task_getioprio, p);
3560 }
3561 
3562 /**
3563  * security_task_prlimit() - Check if get/setting resources limits is allowed
3564  * @cred: current task credentials
3565  * @tcred: target task credentials
3566  * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3567  *
3568  * Check permission before getting and/or setting the resource limits of
3569  * another task.
3570  *
3571  * Return: Returns 0 if permission is granted.
3572  */
3573 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3574 			  unsigned int flags)
3575 {
3576 	return call_int_hook(task_prlimit, cred, tcred, flags);
3577 }
3578 
3579 /**
3580  * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3581  * @p: target task's group leader
3582  * @resource: resource whose limit is being set
3583  * @new_rlim: new resource limit
3584  *
3585  * Check permission before setting the resource limits of process @p for
3586  * @resource to @new_rlim.  The old resource limit values can be examined by
3587  * dereferencing (p->signal->rlim + resource).
3588  *
3589  * Return: Returns 0 if permission is granted.
3590  */
3591 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3592 			    struct rlimit *new_rlim)
3593 {
3594 	return call_int_hook(task_setrlimit, p, resource, new_rlim);
3595 }
3596 
3597 /**
3598  * security_task_setscheduler() - Check if setting sched policy/param is allowed
3599  * @p: target task
3600  *
3601  * Check permission before setting scheduling policy and/or parameters of
3602  * process @p.
3603  *
3604  * Return: Returns 0 if permission is granted.
3605  */
3606 int security_task_setscheduler(struct task_struct *p)
3607 {
3608 	return call_int_hook(task_setscheduler, p);
3609 }
3610 
3611 /**
3612  * security_task_getscheduler() - Check if getting scheduling info is allowed
3613  * @p: target task
3614  *
3615  * Check permission before obtaining scheduling information for process @p.
3616  *
3617  * Return: Returns 0 if permission is granted.
3618  */
3619 int security_task_getscheduler(struct task_struct *p)
3620 {
3621 	return call_int_hook(task_getscheduler, p);
3622 }
3623 
3624 /**
3625  * security_task_movememory() - Check if moving memory is allowed
3626  * @p: task
3627  *
3628  * Check permission before moving memory owned by process @p.
3629  *
3630  * Return: Returns 0 if permission is granted.
3631  */
3632 int security_task_movememory(struct task_struct *p)
3633 {
3634 	return call_int_hook(task_movememory, p);
3635 }
3636 
3637 /**
3638  * security_task_kill() - Check if sending a signal is allowed
3639  * @p: target process
3640  * @info: signal information
3641  * @sig: signal value
3642  * @cred: credentials of the signal sender, NULL if @current
3643  *
3644  * Check permission before sending signal @sig to @p.  @info can be NULL, the
3645  * constant 1, or a pointer to a kernel_siginfo structure.  If @info is 1 or
3646  * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3647  * the kernel and should typically be permitted.  SIGIO signals are handled
3648  * separately by the send_sigiotask hook in file_security_ops.
3649  *
3650  * Return: Returns 0 if permission is granted.
3651  */
3652 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3653 		       int sig, const struct cred *cred)
3654 {
3655 	return call_int_hook(task_kill, p, info, sig, cred);
3656 }
3657 
3658 /**
3659  * security_task_prctl() - Check if a prctl op is allowed
3660  * @option: operation
3661  * @arg2: argument
3662  * @arg3: argument
3663  * @arg4: argument
3664  * @arg5: argument
3665  *
3666  * Check permission before performing a process control operation on the
3667  * current process.
3668  *
3669  * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3670  *         to cause prctl() to return immediately with that value.
3671  */
3672 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3673 			unsigned long arg4, unsigned long arg5)
3674 {
3675 	int thisrc;
3676 	int rc = LSM_RET_DEFAULT(task_prctl);
3677 	struct lsm_static_call *scall;
3678 
3679 	lsm_for_each_hook(scall, task_prctl) {
3680 		thisrc = scall->hl->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3681 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3682 			rc = thisrc;
3683 			if (thisrc != 0)
3684 				break;
3685 		}
3686 	}
3687 	return rc;
3688 }
3689 
3690 /**
3691  * security_task_to_inode() - Set the security attributes of a task's inode
3692  * @p: task
3693  * @inode: inode
3694  *
3695  * Set the security attributes for an inode based on an associated task's
3696  * security attributes, e.g. for /proc/pid inodes.
3697  */
3698 void security_task_to_inode(struct task_struct *p, struct inode *inode)
3699 {
3700 	call_void_hook(task_to_inode, p, inode);
3701 }
3702 
3703 /**
3704  * security_create_user_ns() - Check if creating a new userns is allowed
3705  * @cred: prepared creds
3706  *
3707  * Check permission prior to creating a new user namespace.
3708  *
3709  * Return: Returns 0 if successful, otherwise < 0 error code.
3710  */
3711 int security_create_user_ns(const struct cred *cred)
3712 {
3713 	return call_int_hook(userns_create, cred);
3714 }
3715 
3716 /**
3717  * security_ipc_permission() - Check if sysv ipc access is allowed
3718  * @ipcp: ipc permission structure
3719  * @flag: requested permissions
3720  *
3721  * Check permissions for access to IPC.
3722  *
3723  * Return: Returns 0 if permission is granted.
3724  */
3725 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3726 {
3727 	return call_int_hook(ipc_permission, ipcp, flag);
3728 }
3729 
3730 /**
3731  * security_ipc_getsecid() - Get the sysv ipc object's secid
3732  * @ipcp: ipc permission structure
3733  * @secid: secid pointer
3734  *
3735  * Get the secid associated with the ipc object.  In case of failure, @secid
3736  * will be set to zero.
3737  */
3738 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
3739 {
3740 	*secid = 0;
3741 	call_void_hook(ipc_getsecid, ipcp, secid);
3742 }
3743 
3744 /**
3745  * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3746  * @msg: message structure
3747  *
3748  * Allocate and attach a security structure to the msg->security field.  The
3749  * security field is initialized to NULL when the structure is first created.
3750  *
3751  * Return: Return 0 if operation was successful and permission is granted.
3752  */
3753 int security_msg_msg_alloc(struct msg_msg *msg)
3754 {
3755 	int rc = lsm_msg_msg_alloc(msg);
3756 
3757 	if (unlikely(rc))
3758 		return rc;
3759 	rc = call_int_hook(msg_msg_alloc_security, msg);
3760 	if (unlikely(rc))
3761 		security_msg_msg_free(msg);
3762 	return rc;
3763 }
3764 
3765 /**
3766  * security_msg_msg_free() - Free a sysv ipc message LSM blob
3767  * @msg: message structure
3768  *
3769  * Deallocate the security structure for this message.
3770  */
3771 void security_msg_msg_free(struct msg_msg *msg)
3772 {
3773 	call_void_hook(msg_msg_free_security, msg);
3774 	kfree(msg->security);
3775 	msg->security = NULL;
3776 }
3777 
3778 /**
3779  * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3780  * @msq: sysv ipc permission structure
3781  *
3782  * Allocate and attach a security structure to @msg. The security field is
3783  * initialized to NULL when the structure is first created.
3784  *
3785  * Return: Returns 0 if operation was successful and permission is granted.
3786  */
3787 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3788 {
3789 	int rc = lsm_ipc_alloc(msq);
3790 
3791 	if (unlikely(rc))
3792 		return rc;
3793 	rc = call_int_hook(msg_queue_alloc_security, msq);
3794 	if (unlikely(rc))
3795 		security_msg_queue_free(msq);
3796 	return rc;
3797 }
3798 
3799 /**
3800  * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3801  * @msq: sysv ipc permission structure
3802  *
3803  * Deallocate security field @perm->security for the message queue.
3804  */
3805 void security_msg_queue_free(struct kern_ipc_perm *msq)
3806 {
3807 	call_void_hook(msg_queue_free_security, msq);
3808 	kfree(msq->security);
3809 	msq->security = NULL;
3810 }
3811 
3812 /**
3813  * security_msg_queue_associate() - Check if a msg queue operation is allowed
3814  * @msq: sysv ipc permission structure
3815  * @msqflg: operation flags
3816  *
3817  * Check permission when a message queue is requested through the msgget system
3818  * call. This hook is only called when returning the message queue identifier
3819  * for an existing message queue, not when a new message queue is created.
3820  *
3821  * Return: Return 0 if permission is granted.
3822  */
3823 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3824 {
3825 	return call_int_hook(msg_queue_associate, msq, msqflg);
3826 }
3827 
3828 /**
3829  * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3830  * @msq: sysv ipc permission structure
3831  * @cmd: operation
3832  *
3833  * Check permission when a message control operation specified by @cmd is to be
3834  * performed on the message queue with permissions.
3835  *
3836  * Return: Returns 0 if permission is granted.
3837  */
3838 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3839 {
3840 	return call_int_hook(msg_queue_msgctl, msq, cmd);
3841 }
3842 
3843 /**
3844  * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3845  * @msq: sysv ipc permission structure
3846  * @msg: message
3847  * @msqflg: operation flags
3848  *
3849  * Check permission before a message, @msg, is enqueued on the message queue
3850  * with permissions specified in @msq.
3851  *
3852  * Return: Returns 0 if permission is granted.
3853  */
3854 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3855 			      struct msg_msg *msg, int msqflg)
3856 {
3857 	return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3858 }
3859 
3860 /**
3861  * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3862  * @msq: sysv ipc permission structure
3863  * @msg: message
3864  * @target: target task
3865  * @type: type of message requested
3866  * @mode: operation flags
3867  *
3868  * Check permission before a message, @msg, is removed from the message	queue.
3869  * The @target task structure contains a pointer to the process that will be
3870  * receiving the message (not equal to the current process when inline receives
3871  * are being performed).
3872  *
3873  * Return: Returns 0 if permission is granted.
3874  */
3875 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3876 			      struct task_struct *target, long type, int mode)
3877 {
3878 	return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3879 }
3880 
3881 /**
3882  * security_shm_alloc() - Allocate a sysv shm LSM blob
3883  * @shp: sysv ipc permission structure
3884  *
3885  * Allocate and attach a security structure to the @shp security field.  The
3886  * security field is initialized to NULL when the structure is first created.
3887  *
3888  * Return: Returns 0 if operation was successful and permission is granted.
3889  */
3890 int security_shm_alloc(struct kern_ipc_perm *shp)
3891 {
3892 	int rc = lsm_ipc_alloc(shp);
3893 
3894 	if (unlikely(rc))
3895 		return rc;
3896 	rc = call_int_hook(shm_alloc_security, shp);
3897 	if (unlikely(rc))
3898 		security_shm_free(shp);
3899 	return rc;
3900 }
3901 
3902 /**
3903  * security_shm_free() - Free a sysv shm LSM blob
3904  * @shp: sysv ipc permission structure
3905  *
3906  * Deallocate the security structure @perm->security for the memory segment.
3907  */
3908 void security_shm_free(struct kern_ipc_perm *shp)
3909 {
3910 	call_void_hook(shm_free_security, shp);
3911 	kfree(shp->security);
3912 	shp->security = NULL;
3913 }
3914 
3915 /**
3916  * security_shm_associate() - Check if a sysv shm operation is allowed
3917  * @shp: sysv ipc permission structure
3918  * @shmflg: operation flags
3919  *
3920  * Check permission when a shared memory region is requested through the shmget
3921  * system call. This hook is only called when returning the shared memory
3922  * region identifier for an existing region, not when a new shared memory
3923  * region is created.
3924  *
3925  * Return: Returns 0 if permission is granted.
3926  */
3927 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3928 {
3929 	return call_int_hook(shm_associate, shp, shmflg);
3930 }
3931 
3932 /**
3933  * security_shm_shmctl() - Check if a sysv shm operation is allowed
3934  * @shp: sysv ipc permission structure
3935  * @cmd: operation
3936  *
3937  * Check permission when a shared memory control operation specified by @cmd is
3938  * to be performed on the shared memory region with permissions in @shp.
3939  *
3940  * Return: Return 0 if permission is granted.
3941  */
3942 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3943 {
3944 	return call_int_hook(shm_shmctl, shp, cmd);
3945 }
3946 
3947 /**
3948  * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3949  * @shp: sysv ipc permission structure
3950  * @shmaddr: address of memory region to attach
3951  * @shmflg: operation flags
3952  *
3953  * Check permissions prior to allowing the shmat system call to attach the
3954  * shared memory segment with permissions @shp to the data segment of the
3955  * calling process. The attaching address is specified by @shmaddr.
3956  *
3957  * Return: Returns 0 if permission is granted.
3958  */
3959 int security_shm_shmat(struct kern_ipc_perm *shp,
3960 		       char __user *shmaddr, int shmflg)
3961 {
3962 	return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
3963 }
3964 
3965 /**
3966  * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3967  * @sma: sysv ipc permission structure
3968  *
3969  * Allocate and attach a security structure to the @sma security field. The
3970  * security field is initialized to NULL when the structure is first created.
3971  *
3972  * Return: Returns 0 if operation was successful and permission is granted.
3973  */
3974 int security_sem_alloc(struct kern_ipc_perm *sma)
3975 {
3976 	int rc = lsm_ipc_alloc(sma);
3977 
3978 	if (unlikely(rc))
3979 		return rc;
3980 	rc = call_int_hook(sem_alloc_security, sma);
3981 	if (unlikely(rc))
3982 		security_sem_free(sma);
3983 	return rc;
3984 }
3985 
3986 /**
3987  * security_sem_free() - Free a sysv semaphore LSM blob
3988  * @sma: sysv ipc permission structure
3989  *
3990  * Deallocate security structure @sma->security for the semaphore.
3991  */
3992 void security_sem_free(struct kern_ipc_perm *sma)
3993 {
3994 	call_void_hook(sem_free_security, sma);
3995 	kfree(sma->security);
3996 	sma->security = NULL;
3997 }
3998 
3999 /**
4000  * security_sem_associate() - Check if a sysv semaphore operation is allowed
4001  * @sma: sysv ipc permission structure
4002  * @semflg: operation flags
4003  *
4004  * Check permission when a semaphore is requested through the semget system
4005  * call. This hook is only called when returning the semaphore identifier for
4006  * an existing semaphore, not when a new one must be created.
4007  *
4008  * Return: Returns 0 if permission is granted.
4009  */
4010 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
4011 {
4012 	return call_int_hook(sem_associate, sma, semflg);
4013 }
4014 
4015 /**
4016  * security_sem_semctl() - Check if a sysv semaphore operation is allowed
4017  * @sma: sysv ipc permission structure
4018  * @cmd: operation
4019  *
4020  * Check permission when a semaphore operation specified by @cmd is to be
4021  * performed on the semaphore.
4022  *
4023  * Return: Returns 0 if permission is granted.
4024  */
4025 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
4026 {
4027 	return call_int_hook(sem_semctl, sma, cmd);
4028 }
4029 
4030 /**
4031  * security_sem_semop() - Check if a sysv semaphore operation is allowed
4032  * @sma: sysv ipc permission structure
4033  * @sops: operations to perform
4034  * @nsops: number of operations
4035  * @alter: flag indicating changes will be made
4036  *
4037  * Check permissions before performing operations on members of the semaphore
4038  * set. If the @alter flag is nonzero, the semaphore set may be modified.
4039  *
4040  * Return: Returns 0 if permission is granted.
4041  */
4042 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
4043 		       unsigned nsops, int alter)
4044 {
4045 	return call_int_hook(sem_semop, sma, sops, nsops, alter);
4046 }
4047 
4048 /**
4049  * security_d_instantiate() - Populate an inode's LSM state based on a dentry
4050  * @dentry: dentry
4051  * @inode: inode
4052  *
4053  * Fill in @inode security information for a @dentry if allowed.
4054  */
4055 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
4056 {
4057 	if (unlikely(inode && IS_PRIVATE(inode)))
4058 		return;
4059 	call_void_hook(d_instantiate, dentry, inode);
4060 }
4061 EXPORT_SYMBOL(security_d_instantiate);
4062 
4063 /*
4064  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4065  */
4066 
4067 /**
4068  * security_getselfattr - Read an LSM attribute of the current process.
4069  * @attr: which attribute to return
4070  * @uctx: the user-space destination for the information, or NULL
4071  * @size: pointer to the size of space available to receive the data
4072  * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
4073  * attributes associated with the LSM identified in the passed @ctx be
4074  * reported.
4075  *
4076  * A NULL value for @uctx can be used to get both the number of attributes
4077  * and the size of the data.
4078  *
4079  * Returns the number of attributes found on success, negative value
4080  * on error. @size is reset to the total size of the data.
4081  * If @size is insufficient to contain the data -E2BIG is returned.
4082  */
4083 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4084 			 u32 __user *size, u32 flags)
4085 {
4086 	struct lsm_static_call *scall;
4087 	struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
4088 	u8 __user *base = (u8 __user *)uctx;
4089 	u32 entrysize;
4090 	u32 total = 0;
4091 	u32 left;
4092 	bool toobig = false;
4093 	bool single = false;
4094 	int count = 0;
4095 	int rc;
4096 
4097 	if (attr == LSM_ATTR_UNDEF)
4098 		return -EINVAL;
4099 	if (size == NULL)
4100 		return -EINVAL;
4101 	if (get_user(left, size))
4102 		return -EFAULT;
4103 
4104 	if (flags) {
4105 		/*
4106 		 * Only flag supported is LSM_FLAG_SINGLE
4107 		 */
4108 		if (flags != LSM_FLAG_SINGLE || !uctx)
4109 			return -EINVAL;
4110 		if (copy_from_user(&lctx, uctx, sizeof(lctx)))
4111 			return -EFAULT;
4112 		/*
4113 		 * If the LSM ID isn't specified it is an error.
4114 		 */
4115 		if (lctx.id == LSM_ID_UNDEF)
4116 			return -EINVAL;
4117 		single = true;
4118 	}
4119 
4120 	/*
4121 	 * In the usual case gather all the data from the LSMs.
4122 	 * In the single case only get the data from the LSM specified.
4123 	 */
4124 	lsm_for_each_hook(scall, getselfattr) {
4125 		if (single && lctx.id != scall->hl->lsmid->id)
4126 			continue;
4127 		entrysize = left;
4128 		if (base)
4129 			uctx = (struct lsm_ctx __user *)(base + total);
4130 		rc = scall->hl->hook.getselfattr(attr, uctx, &entrysize, flags);
4131 		if (rc == -EOPNOTSUPP) {
4132 			rc = 0;
4133 			continue;
4134 		}
4135 		if (rc == -E2BIG) {
4136 			rc = 0;
4137 			left = 0;
4138 			toobig = true;
4139 		} else if (rc < 0)
4140 			return rc;
4141 		else
4142 			left -= entrysize;
4143 
4144 		total += entrysize;
4145 		count += rc;
4146 		if (single)
4147 			break;
4148 	}
4149 	if (put_user(total, size))
4150 		return -EFAULT;
4151 	if (toobig)
4152 		return -E2BIG;
4153 	if (count == 0)
4154 		return LSM_RET_DEFAULT(getselfattr);
4155 	return count;
4156 }
4157 
4158 /*
4159  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4160  */
4161 
4162 /**
4163  * security_setselfattr - Set an LSM attribute on the current process.
4164  * @attr: which attribute to set
4165  * @uctx: the user-space source for the information
4166  * @size: the size of the data
4167  * @flags: reserved for future use, must be 0
4168  *
4169  * Set an LSM attribute for the current process. The LSM, attribute
4170  * and new value are included in @uctx.
4171  *
4172  * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4173  * if the user buffer is inaccessible, E2BIG if size is too big, or an
4174  * LSM specific failure.
4175  */
4176 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4177 			 u32 size, u32 flags)
4178 {
4179 	struct lsm_static_call *scall;
4180 	struct lsm_ctx *lctx;
4181 	int rc = LSM_RET_DEFAULT(setselfattr);
4182 	u64 required_len;
4183 
4184 	if (flags)
4185 		return -EINVAL;
4186 	if (size < sizeof(*lctx))
4187 		return -EINVAL;
4188 	if (size > PAGE_SIZE)
4189 		return -E2BIG;
4190 
4191 	lctx = memdup_user(uctx, size);
4192 	if (IS_ERR(lctx))
4193 		return PTR_ERR(lctx);
4194 
4195 	if (size < lctx->len ||
4196 	    check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4197 	    lctx->len < required_len) {
4198 		rc = -EINVAL;
4199 		goto free_out;
4200 	}
4201 
4202 	lsm_for_each_hook(scall, setselfattr)
4203 		if ((scall->hl->lsmid->id) == lctx->id) {
4204 			rc = scall->hl->hook.setselfattr(attr, lctx, size, flags);
4205 			break;
4206 		}
4207 
4208 free_out:
4209 	kfree(lctx);
4210 	return rc;
4211 }
4212 
4213 /**
4214  * security_getprocattr() - Read an attribute for a task
4215  * @p: the task
4216  * @lsmid: LSM identification
4217  * @name: attribute name
4218  * @value: attribute value
4219  *
4220  * Read attribute @name for task @p and store it into @value if allowed.
4221  *
4222  * Return: Returns the length of @value on success, a negative value otherwise.
4223  */
4224 int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4225 			 char **value)
4226 {
4227 	struct lsm_static_call *scall;
4228 
4229 	lsm_for_each_hook(scall, getprocattr) {
4230 		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4231 			continue;
4232 		return scall->hl->hook.getprocattr(p, name, value);
4233 	}
4234 	return LSM_RET_DEFAULT(getprocattr);
4235 }
4236 
4237 /**
4238  * security_setprocattr() - Set an attribute for a task
4239  * @lsmid: LSM identification
4240  * @name: attribute name
4241  * @value: attribute value
4242  * @size: attribute value size
4243  *
4244  * Write (set) the current task's attribute @name to @value, size @size if
4245  * allowed.
4246  *
4247  * Return: Returns bytes written on success, a negative value otherwise.
4248  */
4249 int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4250 {
4251 	struct lsm_static_call *scall;
4252 
4253 	lsm_for_each_hook(scall, setprocattr) {
4254 		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4255 			continue;
4256 		return scall->hl->hook.setprocattr(name, value, size);
4257 	}
4258 	return LSM_RET_DEFAULT(setprocattr);
4259 }
4260 
4261 /**
4262  * security_netlink_send() - Save info and check if netlink sending is allowed
4263  * @sk: sending socket
4264  * @skb: netlink message
4265  *
4266  * Save security information for a netlink message so that permission checking
4267  * can be performed when the message is processed.  The security information
4268  * can be saved using the eff_cap field of the netlink_skb_parms structure.
4269  * Also may be used to provide fine grained control over message transmission.
4270  *
4271  * Return: Returns 0 if the information was successfully saved and message is
4272  *         allowed to be transmitted.
4273  */
4274 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4275 {
4276 	return call_int_hook(netlink_send, sk, skb);
4277 }
4278 
4279 /**
4280  * security_ismaclabel() - Check if the named attribute is a MAC label
4281  * @name: full extended attribute name
4282  *
4283  * Check if the extended attribute specified by @name represents a MAC label.
4284  *
4285  * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4286  */
4287 int security_ismaclabel(const char *name)
4288 {
4289 	return call_int_hook(ismaclabel, name);
4290 }
4291 EXPORT_SYMBOL(security_ismaclabel);
4292 
4293 /**
4294  * security_secid_to_secctx() - Convert a secid to a secctx
4295  * @secid: secid
4296  * @secdata: secctx
4297  * @seclen: secctx length
4298  *
4299  * Convert secid to security context.  If @secdata is NULL the length of the
4300  * result will be returned in @seclen, but no @secdata will be returned.  This
4301  * does mean that the length could change between calls to check the length and
4302  * the next call which actually allocates and returns the @secdata.
4303  *
4304  * Return: Return 0 on success, error on failure.
4305  */
4306 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4307 {
4308 	return call_int_hook(secid_to_secctx, secid, secdata, seclen);
4309 }
4310 EXPORT_SYMBOL(security_secid_to_secctx);
4311 
4312 /**
4313  * security_secctx_to_secid() - Convert a secctx to a secid
4314  * @secdata: secctx
4315  * @seclen: length of secctx
4316  * @secid: secid
4317  *
4318  * Convert security context to secid.
4319  *
4320  * Return: Returns 0 on success, error on failure.
4321  */
4322 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4323 {
4324 	*secid = 0;
4325 	return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4326 }
4327 EXPORT_SYMBOL(security_secctx_to_secid);
4328 
4329 /**
4330  * security_release_secctx() - Free a secctx buffer
4331  * @secdata: secctx
4332  * @seclen: length of secctx
4333  *
4334  * Release the security context.
4335  */
4336 void security_release_secctx(char *secdata, u32 seclen)
4337 {
4338 	call_void_hook(release_secctx, secdata, seclen);
4339 }
4340 EXPORT_SYMBOL(security_release_secctx);
4341 
4342 /**
4343  * security_inode_invalidate_secctx() - Invalidate an inode's security label
4344  * @inode: inode
4345  *
4346  * Notify the security module that it must revalidate the security context of
4347  * an inode.
4348  */
4349 void security_inode_invalidate_secctx(struct inode *inode)
4350 {
4351 	call_void_hook(inode_invalidate_secctx, inode);
4352 }
4353 EXPORT_SYMBOL(security_inode_invalidate_secctx);
4354 
4355 /**
4356  * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4357  * @inode: inode
4358  * @ctx: secctx
4359  * @ctxlen: length of secctx
4360  *
4361  * Notify the security module of what the security context of an inode should
4362  * be.  Initializes the incore security context managed by the security module
4363  * for this inode.  Example usage: NFS client invokes this hook to initialize
4364  * the security context in its incore inode to the value provided by the server
4365  * for the file when the server returned the file's attributes to the client.
4366  * Must be called with inode->i_mutex locked.
4367  *
4368  * Return: Returns 0 on success, error on failure.
4369  */
4370 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4371 {
4372 	return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4373 }
4374 EXPORT_SYMBOL(security_inode_notifysecctx);
4375 
4376 /**
4377  * security_inode_setsecctx() - Change the security label of an inode
4378  * @dentry: inode
4379  * @ctx: secctx
4380  * @ctxlen: length of secctx
4381  *
4382  * Change the security context of an inode.  Updates the incore security
4383  * context managed by the security module and invokes the fs code as needed
4384  * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4385  * context.  Example usage: NFS server invokes this hook to change the security
4386  * context in its incore inode and on the backing filesystem to a value
4387  * provided by the client on a SETATTR operation.  Must be called with
4388  * inode->i_mutex locked.
4389  *
4390  * Return: Returns 0 on success, error on failure.
4391  */
4392 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4393 {
4394 	return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4395 }
4396 EXPORT_SYMBOL(security_inode_setsecctx);
4397 
4398 /**
4399  * security_inode_getsecctx() - Get the security label of an inode
4400  * @inode: inode
4401  * @ctx: secctx
4402  * @ctxlen: length of secctx
4403  *
4404  * On success, returns 0 and fills out @ctx and @ctxlen with the security
4405  * context for the given @inode.
4406  *
4407  * Return: Returns 0 on success, error on failure.
4408  */
4409 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
4410 {
4411 	return call_int_hook(inode_getsecctx, inode, ctx, ctxlen);
4412 }
4413 EXPORT_SYMBOL(security_inode_getsecctx);
4414 
4415 #ifdef CONFIG_WATCH_QUEUE
4416 /**
4417  * security_post_notification() - Check if a watch notification can be posted
4418  * @w_cred: credentials of the task that set the watch
4419  * @cred: credentials of the task which triggered the watch
4420  * @n: the notification
4421  *
4422  * Check to see if a watch notification can be posted to a particular queue.
4423  *
4424  * Return: Returns 0 if permission is granted.
4425  */
4426 int security_post_notification(const struct cred *w_cred,
4427 			       const struct cred *cred,
4428 			       struct watch_notification *n)
4429 {
4430 	return call_int_hook(post_notification, w_cred, cred, n);
4431 }
4432 #endif /* CONFIG_WATCH_QUEUE */
4433 
4434 #ifdef CONFIG_KEY_NOTIFICATIONS
4435 /**
4436  * security_watch_key() - Check if a task is allowed to watch for key events
4437  * @key: the key to watch
4438  *
4439  * Check to see if a process is allowed to watch for event notifications from
4440  * a key or keyring.
4441  *
4442  * Return: Returns 0 if permission is granted.
4443  */
4444 int security_watch_key(struct key *key)
4445 {
4446 	return call_int_hook(watch_key, key);
4447 }
4448 #endif /* CONFIG_KEY_NOTIFICATIONS */
4449 
4450 #ifdef CONFIG_SECURITY_NETWORK
4451 /**
4452  * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4453  * @sock: originating sock
4454  * @other: peer sock
4455  * @newsk: new sock
4456  *
4457  * Check permissions before establishing a Unix domain stream connection
4458  * between @sock and @other.
4459  *
4460  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4461  * Linux provides an alternative to the conventional file name space for Unix
4462  * domain sockets.  Whereas binding and connecting to sockets in the file name
4463  * space is mediated by the typical file permissions (and caught by the mknod
4464  * and permission hooks in inode_security_ops), binding and connecting to
4465  * sockets in the abstract name space is completely unmediated.  Sufficient
4466  * control of Unix domain sockets in the abstract name space isn't possible
4467  * using only the socket layer hooks, since we need to know the actual target
4468  * socket, which is not looked up until we are inside the af_unix code.
4469  *
4470  * Return: Returns 0 if permission is granted.
4471  */
4472 int security_unix_stream_connect(struct sock *sock, struct sock *other,
4473 				 struct sock *newsk)
4474 {
4475 	return call_int_hook(unix_stream_connect, sock, other, newsk);
4476 }
4477 EXPORT_SYMBOL(security_unix_stream_connect);
4478 
4479 /**
4480  * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4481  * @sock: originating sock
4482  * @other: peer sock
4483  *
4484  * Check permissions before connecting or sending datagrams from @sock to
4485  * @other.
4486  *
4487  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4488  * Linux provides an alternative to the conventional file name space for Unix
4489  * domain sockets.  Whereas binding and connecting to sockets in the file name
4490  * space is mediated by the typical file permissions (and caught by the mknod
4491  * and permission hooks in inode_security_ops), binding and connecting to
4492  * sockets in the abstract name space is completely unmediated.  Sufficient
4493  * control of Unix domain sockets in the abstract name space isn't possible
4494  * using only the socket layer hooks, since we need to know the actual target
4495  * socket, which is not looked up until we are inside the af_unix code.
4496  *
4497  * Return: Returns 0 if permission is granted.
4498  */
4499 int security_unix_may_send(struct socket *sock,  struct socket *other)
4500 {
4501 	return call_int_hook(unix_may_send, sock, other);
4502 }
4503 EXPORT_SYMBOL(security_unix_may_send);
4504 
4505 /**
4506  * security_socket_create() - Check if creating a new socket is allowed
4507  * @family: protocol family
4508  * @type: communications type
4509  * @protocol: requested protocol
4510  * @kern: set to 1 if a kernel socket is requested
4511  *
4512  * Check permissions prior to creating a new socket.
4513  *
4514  * Return: Returns 0 if permission is granted.
4515  */
4516 int security_socket_create(int family, int type, int protocol, int kern)
4517 {
4518 	return call_int_hook(socket_create, family, type, protocol, kern);
4519 }
4520 
4521 /**
4522  * security_socket_post_create() - Initialize a newly created socket
4523  * @sock: socket
4524  * @family: protocol family
4525  * @type: communications type
4526  * @protocol: requested protocol
4527  * @kern: set to 1 if a kernel socket is requested
4528  *
4529  * This hook allows a module to update or allocate a per-socket security
4530  * structure. Note that the security field was not added directly to the socket
4531  * structure, but rather, the socket security information is stored in the
4532  * associated inode.  Typically, the inode alloc_security hook will allocate
4533  * and attach security information to SOCK_INODE(sock)->i_security.  This hook
4534  * may be used to update the SOCK_INODE(sock)->i_security field with additional
4535  * information that wasn't available when the inode was allocated.
4536  *
4537  * Return: Returns 0 if permission is granted.
4538  */
4539 int security_socket_post_create(struct socket *sock, int family,
4540 				int type, int protocol, int kern)
4541 {
4542 	return call_int_hook(socket_post_create, sock, family, type,
4543 			     protocol, kern);
4544 }
4545 
4546 /**
4547  * security_socket_socketpair() - Check if creating a socketpair is allowed
4548  * @socka: first socket
4549  * @sockb: second socket
4550  *
4551  * Check permissions before creating a fresh pair of sockets.
4552  *
4553  * Return: Returns 0 if permission is granted and the connection was
4554  *         established.
4555  */
4556 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4557 {
4558 	return call_int_hook(socket_socketpair, socka, sockb);
4559 }
4560 EXPORT_SYMBOL(security_socket_socketpair);
4561 
4562 /**
4563  * security_socket_bind() - Check if a socket bind operation is allowed
4564  * @sock: socket
4565  * @address: requested bind address
4566  * @addrlen: length of address
4567  *
4568  * Check permission before socket protocol layer bind operation is performed
4569  * and the socket @sock is bound to the address specified in the @address
4570  * parameter.
4571  *
4572  * Return: Returns 0 if permission is granted.
4573  */
4574 int security_socket_bind(struct socket *sock,
4575 			 struct sockaddr *address, int addrlen)
4576 {
4577 	return call_int_hook(socket_bind, sock, address, addrlen);
4578 }
4579 
4580 /**
4581  * security_socket_connect() - Check if a socket connect operation is allowed
4582  * @sock: socket
4583  * @address: address of remote connection point
4584  * @addrlen: length of address
4585  *
4586  * Check permission before socket protocol layer connect operation attempts to
4587  * connect socket @sock to a remote address, @address.
4588  *
4589  * Return: Returns 0 if permission is granted.
4590  */
4591 int security_socket_connect(struct socket *sock,
4592 			    struct sockaddr *address, int addrlen)
4593 {
4594 	return call_int_hook(socket_connect, sock, address, addrlen);
4595 }
4596 
4597 /**
4598  * security_socket_listen() - Check if a socket is allowed to listen
4599  * @sock: socket
4600  * @backlog: connection queue size
4601  *
4602  * Check permission before socket protocol layer listen operation.
4603  *
4604  * Return: Returns 0 if permission is granted.
4605  */
4606 int security_socket_listen(struct socket *sock, int backlog)
4607 {
4608 	return call_int_hook(socket_listen, sock, backlog);
4609 }
4610 
4611 /**
4612  * security_socket_accept() - Check if a socket is allowed to accept connections
4613  * @sock: listening socket
4614  * @newsock: newly creation connection socket
4615  *
4616  * Check permission before accepting a new connection.  Note that the new
4617  * socket, @newsock, has been created and some information copied to it, but
4618  * the accept operation has not actually been performed.
4619  *
4620  * Return: Returns 0 if permission is granted.
4621  */
4622 int security_socket_accept(struct socket *sock, struct socket *newsock)
4623 {
4624 	return call_int_hook(socket_accept, sock, newsock);
4625 }
4626 
4627 /**
4628  * security_socket_sendmsg() - Check if sending a message is allowed
4629  * @sock: sending socket
4630  * @msg: message to send
4631  * @size: size of message
4632  *
4633  * Check permission before transmitting a message to another socket.
4634  *
4635  * Return: Returns 0 if permission is granted.
4636  */
4637 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4638 {
4639 	return call_int_hook(socket_sendmsg, sock, msg, size);
4640 }
4641 
4642 /**
4643  * security_socket_recvmsg() - Check if receiving a message is allowed
4644  * @sock: receiving socket
4645  * @msg: message to receive
4646  * @size: size of message
4647  * @flags: operational flags
4648  *
4649  * Check permission before receiving a message from a socket.
4650  *
4651  * Return: Returns 0 if permission is granted.
4652  */
4653 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4654 			    int size, int flags)
4655 {
4656 	return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4657 }
4658 
4659 /**
4660  * security_socket_getsockname() - Check if reading the socket addr is allowed
4661  * @sock: socket
4662  *
4663  * Check permission before reading the local address (name) of the socket
4664  * object.
4665  *
4666  * Return: Returns 0 if permission is granted.
4667  */
4668 int security_socket_getsockname(struct socket *sock)
4669 {
4670 	return call_int_hook(socket_getsockname, sock);
4671 }
4672 
4673 /**
4674  * security_socket_getpeername() - Check if reading the peer's addr is allowed
4675  * @sock: socket
4676  *
4677  * Check permission before the remote address (name) of a socket object.
4678  *
4679  * Return: Returns 0 if permission is granted.
4680  */
4681 int security_socket_getpeername(struct socket *sock)
4682 {
4683 	return call_int_hook(socket_getpeername, sock);
4684 }
4685 
4686 /**
4687  * security_socket_getsockopt() - Check if reading a socket option is allowed
4688  * @sock: socket
4689  * @level: option's protocol level
4690  * @optname: option name
4691  *
4692  * Check permissions before retrieving the options associated with socket
4693  * @sock.
4694  *
4695  * Return: Returns 0 if permission is granted.
4696  */
4697 int security_socket_getsockopt(struct socket *sock, int level, int optname)
4698 {
4699 	return call_int_hook(socket_getsockopt, sock, level, optname);
4700 }
4701 
4702 /**
4703  * security_socket_setsockopt() - Check if setting a socket option is allowed
4704  * @sock: socket
4705  * @level: option's protocol level
4706  * @optname: option name
4707  *
4708  * Check permissions before setting the options associated with socket @sock.
4709  *
4710  * Return: Returns 0 if permission is granted.
4711  */
4712 int security_socket_setsockopt(struct socket *sock, int level, int optname)
4713 {
4714 	return call_int_hook(socket_setsockopt, sock, level, optname);
4715 }
4716 
4717 /**
4718  * security_socket_shutdown() - Checks if shutting down the socket is allowed
4719  * @sock: socket
4720  * @how: flag indicating how sends and receives are handled
4721  *
4722  * Checks permission before all or part of a connection on the socket @sock is
4723  * shut down.
4724  *
4725  * Return: Returns 0 if permission is granted.
4726  */
4727 int security_socket_shutdown(struct socket *sock, int how)
4728 {
4729 	return call_int_hook(socket_shutdown, sock, how);
4730 }
4731 
4732 /**
4733  * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4734  * @sk: destination sock
4735  * @skb: incoming packet
4736  *
4737  * Check permissions on incoming network packets.  This hook is distinct from
4738  * Netfilter's IP input hooks since it is the first time that the incoming
4739  * sk_buff @skb has been associated with a particular socket, @sk.  Must not
4740  * sleep inside this hook because some callers hold spinlocks.
4741  *
4742  * Return: Returns 0 if permission is granted.
4743  */
4744 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4745 {
4746 	return call_int_hook(socket_sock_rcv_skb, sk, skb);
4747 }
4748 EXPORT_SYMBOL(security_sock_rcv_skb);
4749 
4750 /**
4751  * security_socket_getpeersec_stream() - Get the remote peer label
4752  * @sock: socket
4753  * @optval: destination buffer
4754  * @optlen: size of peer label copied into the buffer
4755  * @len: maximum size of the destination buffer
4756  *
4757  * This hook allows the security module to provide peer socket security state
4758  * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4759  * For tcp sockets this can be meaningful if the socket is associated with an
4760  * ipsec SA.
4761  *
4762  * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4763  *         values.
4764  */
4765 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4766 				      sockptr_t optlen, unsigned int len)
4767 {
4768 	return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4769 			     len);
4770 }
4771 
4772 /**
4773  * security_socket_getpeersec_dgram() - Get the remote peer label
4774  * @sock: socket
4775  * @skb: datagram packet
4776  * @secid: remote peer label secid
4777  *
4778  * This hook allows the security module to provide peer socket security state
4779  * for udp sockets on a per-packet basis to userspace via getsockopt
4780  * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4781  * option via getsockopt. It can then retrieve the security state returned by
4782  * this hook for a packet via the SCM_SECURITY ancillary message type.
4783  *
4784  * Return: Returns 0 on success, error on failure.
4785  */
4786 int security_socket_getpeersec_dgram(struct socket *sock,
4787 				     struct sk_buff *skb, u32 *secid)
4788 {
4789 	return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4790 }
4791 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4792 
4793 /**
4794  * lsm_sock_alloc - allocate a composite sock blob
4795  * @sock: the sock that needs a blob
4796  * @gfp: allocation mode
4797  *
4798  * Allocate the sock blob for all the modules
4799  *
4800  * Returns 0, or -ENOMEM if memory can't be allocated.
4801  */
4802 static int lsm_sock_alloc(struct sock *sock, gfp_t gfp)
4803 {
4804 	return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp);
4805 }
4806 
4807 /**
4808  * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4809  * @sk: sock
4810  * @family: protocol family
4811  * @priority: gfp flags
4812  *
4813  * Allocate and attach a security structure to the sk->sk_security field, which
4814  * is used to copy security attributes between local stream sockets.
4815  *
4816  * Return: Returns 0 on success, error on failure.
4817  */
4818 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4819 {
4820 	int rc = lsm_sock_alloc(sk, priority);
4821 
4822 	if (unlikely(rc))
4823 		return rc;
4824 	rc = call_int_hook(sk_alloc_security, sk, family, priority);
4825 	if (unlikely(rc))
4826 		security_sk_free(sk);
4827 	return rc;
4828 }
4829 
4830 /**
4831  * security_sk_free() - Free the sock's LSM blob
4832  * @sk: sock
4833  *
4834  * Deallocate security structure.
4835  */
4836 void security_sk_free(struct sock *sk)
4837 {
4838 	call_void_hook(sk_free_security, sk);
4839 	kfree(sk->sk_security);
4840 	sk->sk_security = NULL;
4841 }
4842 
4843 /**
4844  * security_sk_clone() - Clone a sock's LSM state
4845  * @sk: original sock
4846  * @newsk: target sock
4847  *
4848  * Clone/copy security structure.
4849  */
4850 void security_sk_clone(const struct sock *sk, struct sock *newsk)
4851 {
4852 	call_void_hook(sk_clone_security, sk, newsk);
4853 }
4854 EXPORT_SYMBOL(security_sk_clone);
4855 
4856 /**
4857  * security_sk_classify_flow() - Set a flow's secid based on socket
4858  * @sk: original socket
4859  * @flic: target flow
4860  *
4861  * Set the target flow's secid to socket's secid.
4862  */
4863 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4864 {
4865 	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4866 }
4867 EXPORT_SYMBOL(security_sk_classify_flow);
4868 
4869 /**
4870  * security_req_classify_flow() - Set a flow's secid based on request_sock
4871  * @req: request_sock
4872  * @flic: target flow
4873  *
4874  * Sets @flic's secid to @req's secid.
4875  */
4876 void security_req_classify_flow(const struct request_sock *req,
4877 				struct flowi_common *flic)
4878 {
4879 	call_void_hook(req_classify_flow, req, flic);
4880 }
4881 EXPORT_SYMBOL(security_req_classify_flow);
4882 
4883 /**
4884  * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4885  * @sk: sock being grafted
4886  * @parent: target parent socket
4887  *
4888  * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4889  * LSM state from @parent.
4890  */
4891 void security_sock_graft(struct sock *sk, struct socket *parent)
4892 {
4893 	call_void_hook(sock_graft, sk, parent);
4894 }
4895 EXPORT_SYMBOL(security_sock_graft);
4896 
4897 /**
4898  * security_inet_conn_request() - Set request_sock state using incoming connect
4899  * @sk: parent listening sock
4900  * @skb: incoming connection
4901  * @req: new request_sock
4902  *
4903  * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4904  *
4905  * Return: Returns 0 if permission is granted.
4906  */
4907 int security_inet_conn_request(const struct sock *sk,
4908 			       struct sk_buff *skb, struct request_sock *req)
4909 {
4910 	return call_int_hook(inet_conn_request, sk, skb, req);
4911 }
4912 EXPORT_SYMBOL(security_inet_conn_request);
4913 
4914 /**
4915  * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4916  * @newsk: new sock
4917  * @req: connection request_sock
4918  *
4919  * Set that LSM state of @sock using the LSM state from @req.
4920  */
4921 void security_inet_csk_clone(struct sock *newsk,
4922 			     const struct request_sock *req)
4923 {
4924 	call_void_hook(inet_csk_clone, newsk, req);
4925 }
4926 
4927 /**
4928  * security_inet_conn_established() - Update sock's LSM state with connection
4929  * @sk: sock
4930  * @skb: connection packet
4931  *
4932  * Update @sock's LSM state to represent a new connection from @skb.
4933  */
4934 void security_inet_conn_established(struct sock *sk,
4935 				    struct sk_buff *skb)
4936 {
4937 	call_void_hook(inet_conn_established, sk, skb);
4938 }
4939 EXPORT_SYMBOL(security_inet_conn_established);
4940 
4941 /**
4942  * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4943  * @secid: new secmark value
4944  *
4945  * Check if the process should be allowed to relabel packets to @secid.
4946  *
4947  * Return: Returns 0 if permission is granted.
4948  */
4949 int security_secmark_relabel_packet(u32 secid)
4950 {
4951 	return call_int_hook(secmark_relabel_packet, secid);
4952 }
4953 EXPORT_SYMBOL(security_secmark_relabel_packet);
4954 
4955 /**
4956  * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4957  *
4958  * Tells the LSM to increment the number of secmark labeling rules loaded.
4959  */
4960 void security_secmark_refcount_inc(void)
4961 {
4962 	call_void_hook(secmark_refcount_inc);
4963 }
4964 EXPORT_SYMBOL(security_secmark_refcount_inc);
4965 
4966 /**
4967  * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
4968  *
4969  * Tells the LSM to decrement the number of secmark labeling rules loaded.
4970  */
4971 void security_secmark_refcount_dec(void)
4972 {
4973 	call_void_hook(secmark_refcount_dec);
4974 }
4975 EXPORT_SYMBOL(security_secmark_refcount_dec);
4976 
4977 /**
4978  * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
4979  * @security: pointer to the LSM blob
4980  *
4981  * This hook allows a module to allocate a security structure for a TUN	device,
4982  * returning the pointer in @security.
4983  *
4984  * Return: Returns a zero on success, negative values on failure.
4985  */
4986 int security_tun_dev_alloc_security(void **security)
4987 {
4988 	int rc;
4989 
4990 	rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL);
4991 	if (rc)
4992 		return rc;
4993 
4994 	rc = call_int_hook(tun_dev_alloc_security, *security);
4995 	if (rc) {
4996 		kfree(*security);
4997 		*security = NULL;
4998 	}
4999 	return rc;
5000 }
5001 EXPORT_SYMBOL(security_tun_dev_alloc_security);
5002 
5003 /**
5004  * security_tun_dev_free_security() - Free a TUN device LSM blob
5005  * @security: LSM blob
5006  *
5007  * This hook allows a module to free the security structure for a TUN device.
5008  */
5009 void security_tun_dev_free_security(void *security)
5010 {
5011 	kfree(security);
5012 }
5013 EXPORT_SYMBOL(security_tun_dev_free_security);
5014 
5015 /**
5016  * security_tun_dev_create() - Check if creating a TUN device is allowed
5017  *
5018  * Check permissions prior to creating a new TUN device.
5019  *
5020  * Return: Returns 0 if permission is granted.
5021  */
5022 int security_tun_dev_create(void)
5023 {
5024 	return call_int_hook(tun_dev_create);
5025 }
5026 EXPORT_SYMBOL(security_tun_dev_create);
5027 
5028 /**
5029  * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
5030  * @security: TUN device LSM blob
5031  *
5032  * Check permissions prior to attaching to a TUN device queue.
5033  *
5034  * Return: Returns 0 if permission is granted.
5035  */
5036 int security_tun_dev_attach_queue(void *security)
5037 {
5038 	return call_int_hook(tun_dev_attach_queue, security);
5039 }
5040 EXPORT_SYMBOL(security_tun_dev_attach_queue);
5041 
5042 /**
5043  * security_tun_dev_attach() - Update TUN device LSM state on attach
5044  * @sk: associated sock
5045  * @security: TUN device LSM blob
5046  *
5047  * This hook can be used by the module to update any security state associated
5048  * with the TUN device's sock structure.
5049  *
5050  * Return: Returns 0 if permission is granted.
5051  */
5052 int security_tun_dev_attach(struct sock *sk, void *security)
5053 {
5054 	return call_int_hook(tun_dev_attach, sk, security);
5055 }
5056 EXPORT_SYMBOL(security_tun_dev_attach);
5057 
5058 /**
5059  * security_tun_dev_open() - Update TUN device LSM state on open
5060  * @security: TUN device LSM blob
5061  *
5062  * This hook can be used by the module to update any security state associated
5063  * with the TUN device's security structure.
5064  *
5065  * Return: Returns 0 if permission is granted.
5066  */
5067 int security_tun_dev_open(void *security)
5068 {
5069 	return call_int_hook(tun_dev_open, security);
5070 }
5071 EXPORT_SYMBOL(security_tun_dev_open);
5072 
5073 /**
5074  * security_sctp_assoc_request() - Update the LSM on a SCTP association req
5075  * @asoc: SCTP association
5076  * @skb: packet requesting the association
5077  *
5078  * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
5079  *
5080  * Return: Returns 0 on success, error on failure.
5081  */
5082 int security_sctp_assoc_request(struct sctp_association *asoc,
5083 				struct sk_buff *skb)
5084 {
5085 	return call_int_hook(sctp_assoc_request, asoc, skb);
5086 }
5087 EXPORT_SYMBOL(security_sctp_assoc_request);
5088 
5089 /**
5090  * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
5091  * @sk: socket
5092  * @optname: SCTP option to validate
5093  * @address: list of IP addresses to validate
5094  * @addrlen: length of the address list
5095  *
5096  * Validiate permissions required for each address associated with sock	@sk.
5097  * Depending on @optname, the addresses will be treated as either a connect or
5098  * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
5099  * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
5100  *
5101  * Return: Returns 0 on success, error on failure.
5102  */
5103 int security_sctp_bind_connect(struct sock *sk, int optname,
5104 			       struct sockaddr *address, int addrlen)
5105 {
5106 	return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
5107 }
5108 EXPORT_SYMBOL(security_sctp_bind_connect);
5109 
5110 /**
5111  * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
5112  * @asoc: SCTP association
5113  * @sk: original sock
5114  * @newsk: target sock
5115  *
5116  * Called whenever a new socket is created by accept(2) (i.e. a TCP style
5117  * socket) or when a socket is 'peeled off' e.g userspace calls
5118  * sctp_peeloff(3).
5119  */
5120 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5121 			    struct sock *newsk)
5122 {
5123 	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
5124 }
5125 EXPORT_SYMBOL(security_sctp_sk_clone);
5126 
5127 /**
5128  * security_sctp_assoc_established() - Update LSM state when assoc established
5129  * @asoc: SCTP association
5130  * @skb: packet establishing the association
5131  *
5132  * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
5133  * security module.
5134  *
5135  * Return: Returns 0 if permission is granted.
5136  */
5137 int security_sctp_assoc_established(struct sctp_association *asoc,
5138 				    struct sk_buff *skb)
5139 {
5140 	return call_int_hook(sctp_assoc_established, asoc, skb);
5141 }
5142 EXPORT_SYMBOL(security_sctp_assoc_established);
5143 
5144 /**
5145  * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
5146  * @sk: the owning MPTCP socket
5147  * @ssk: the new subflow
5148  *
5149  * Update the labeling for the given MPTCP subflow, to match the one of the
5150  * owning MPTCP socket. This hook has to be called after the socket creation and
5151  * initialization via the security_socket_create() and
5152  * security_socket_post_create() LSM hooks.
5153  *
5154  * Return: Returns 0 on success or a negative error code on failure.
5155  */
5156 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5157 {
5158 	return call_int_hook(mptcp_add_subflow, sk, ssk);
5159 }
5160 
5161 #endif	/* CONFIG_SECURITY_NETWORK */
5162 
5163 #ifdef CONFIG_SECURITY_INFINIBAND
5164 /**
5165  * security_ib_pkey_access() - Check if access to an IB pkey is allowed
5166  * @sec: LSM blob
5167  * @subnet_prefix: subnet prefix of the port
5168  * @pkey: IB pkey
5169  *
5170  * Check permission to access a pkey when modifying a QP.
5171  *
5172  * Return: Returns 0 if permission is granted.
5173  */
5174 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
5175 {
5176 	return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
5177 }
5178 EXPORT_SYMBOL(security_ib_pkey_access);
5179 
5180 /**
5181  * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5182  * @sec: LSM blob
5183  * @dev_name: IB device name
5184  * @port_num: port number
5185  *
5186  * Check permissions to send and receive SMPs on a end port.
5187  *
5188  * Return: Returns 0 if permission is granted.
5189  */
5190 int security_ib_endport_manage_subnet(void *sec,
5191 				      const char *dev_name, u8 port_num)
5192 {
5193 	return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
5194 }
5195 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5196 
5197 /**
5198  * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5199  * @sec: LSM blob
5200  *
5201  * Allocate a security structure for Infiniband objects.
5202  *
5203  * Return: Returns 0 on success, non-zero on failure.
5204  */
5205 int security_ib_alloc_security(void **sec)
5206 {
5207 	int rc;
5208 
5209 	rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL);
5210 	if (rc)
5211 		return rc;
5212 
5213 	rc = call_int_hook(ib_alloc_security, *sec);
5214 	if (rc) {
5215 		kfree(*sec);
5216 		*sec = NULL;
5217 	}
5218 	return rc;
5219 }
5220 EXPORT_SYMBOL(security_ib_alloc_security);
5221 
5222 /**
5223  * security_ib_free_security() - Free an Infiniband LSM blob
5224  * @sec: LSM blob
5225  *
5226  * Deallocate an Infiniband security structure.
5227  */
5228 void security_ib_free_security(void *sec)
5229 {
5230 	kfree(sec);
5231 }
5232 EXPORT_SYMBOL(security_ib_free_security);
5233 #endif	/* CONFIG_SECURITY_INFINIBAND */
5234 
5235 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5236 /**
5237  * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5238  * @ctxp: xfrm security context being added to the SPD
5239  * @sec_ctx: security label provided by userspace
5240  * @gfp: gfp flags
5241  *
5242  * Allocate a security structure to the xp->security field; the security field
5243  * is initialized to NULL when the xfrm_policy is allocated.
5244  *
5245  * Return:  Return 0 if operation was successful.
5246  */
5247 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5248 			       struct xfrm_user_sec_ctx *sec_ctx,
5249 			       gfp_t gfp)
5250 {
5251 	return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5252 }
5253 EXPORT_SYMBOL(security_xfrm_policy_alloc);
5254 
5255 /**
5256  * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5257  * @old_ctx: xfrm security context
5258  * @new_ctxp: target xfrm security context
5259  *
5260  * Allocate a security structure in new_ctxp that contains the information from
5261  * the old_ctx structure.
5262  *
5263  * Return: Return 0 if operation was successful.
5264  */
5265 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5266 			       struct xfrm_sec_ctx **new_ctxp)
5267 {
5268 	return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5269 }
5270 
5271 /**
5272  * security_xfrm_policy_free() - Free a xfrm security context
5273  * @ctx: xfrm security context
5274  *
5275  * Free LSM resources associated with @ctx.
5276  */
5277 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5278 {
5279 	call_void_hook(xfrm_policy_free_security, ctx);
5280 }
5281 EXPORT_SYMBOL(security_xfrm_policy_free);
5282 
5283 /**
5284  * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5285  * @ctx: xfrm security context
5286  *
5287  * Authorize deletion of a SPD entry.
5288  *
5289  * Return: Returns 0 if permission is granted.
5290  */
5291 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5292 {
5293 	return call_int_hook(xfrm_policy_delete_security, ctx);
5294 }
5295 
5296 /**
5297  * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5298  * @x: xfrm state being added to the SAD
5299  * @sec_ctx: security label provided by userspace
5300  *
5301  * Allocate a security structure to the @x->security field; the security field
5302  * is initialized to NULL when the xfrm_state is allocated. Set the context to
5303  * correspond to @sec_ctx.
5304  *
5305  * Return: Return 0 if operation was successful.
5306  */
5307 int security_xfrm_state_alloc(struct xfrm_state *x,
5308 			      struct xfrm_user_sec_ctx *sec_ctx)
5309 {
5310 	return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5311 }
5312 EXPORT_SYMBOL(security_xfrm_state_alloc);
5313 
5314 /**
5315  * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5316  * @x: xfrm state being added to the SAD
5317  * @polsec: associated policy's security context
5318  * @secid: secid from the flow
5319  *
5320  * Allocate a security structure to the x->security field; the security field
5321  * is initialized to NULL when the xfrm_state is allocated.  Set the context to
5322  * correspond to secid.
5323  *
5324  * Return: Returns 0 if operation was successful.
5325  */
5326 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5327 				      struct xfrm_sec_ctx *polsec, u32 secid)
5328 {
5329 	return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5330 }
5331 
5332 /**
5333  * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5334  * @x: xfrm state
5335  *
5336  * Authorize deletion of x->security.
5337  *
5338  * Return: Returns 0 if permission is granted.
5339  */
5340 int security_xfrm_state_delete(struct xfrm_state *x)
5341 {
5342 	return call_int_hook(xfrm_state_delete_security, x);
5343 }
5344 EXPORT_SYMBOL(security_xfrm_state_delete);
5345 
5346 /**
5347  * security_xfrm_state_free() - Free a xfrm state
5348  * @x: xfrm state
5349  *
5350  * Deallocate x->security.
5351  */
5352 void security_xfrm_state_free(struct xfrm_state *x)
5353 {
5354 	call_void_hook(xfrm_state_free_security, x);
5355 }
5356 
5357 /**
5358  * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5359  * @ctx: target xfrm security context
5360  * @fl_secid: flow secid used to authorize access
5361  *
5362  * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5363  * packet.  The hook is called when selecting either a per-socket policy or a
5364  * generic xfrm policy.
5365  *
5366  * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5367  *         other errors.
5368  */
5369 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5370 {
5371 	return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5372 }
5373 
5374 /**
5375  * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5376  * @x: xfrm state to match
5377  * @xp: xfrm policy to check for a match
5378  * @flic: flow to check for a match.
5379  *
5380  * Check @xp and @flic for a match with @x.
5381  *
5382  * Return: Returns 1 if there is a match.
5383  */
5384 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5385 				       struct xfrm_policy *xp,
5386 				       const struct flowi_common *flic)
5387 {
5388 	struct lsm_static_call *scall;
5389 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5390 
5391 	/*
5392 	 * Since this function is expected to return 0 or 1, the judgment
5393 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
5394 	 * we can use the first LSM's judgment because currently only SELinux
5395 	 * supplies this call.
5396 	 *
5397 	 * For speed optimization, we explicitly break the loop rather than
5398 	 * using the macro
5399 	 */
5400 	lsm_for_each_hook(scall, xfrm_state_pol_flow_match) {
5401 		rc = scall->hl->hook.xfrm_state_pol_flow_match(x, xp, flic);
5402 		break;
5403 	}
5404 	return rc;
5405 }
5406 
5407 /**
5408  * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5409  * @skb: xfrm packet
5410  * @secid: secid
5411  *
5412  * Decode the packet in @skb and return the security label in @secid.
5413  *
5414  * Return: Return 0 if all xfrms used have the same secid.
5415  */
5416 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5417 {
5418 	return call_int_hook(xfrm_decode_session, skb, secid, 1);
5419 }
5420 
5421 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5422 {
5423 	int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5424 			       0);
5425 
5426 	BUG_ON(rc);
5427 }
5428 EXPORT_SYMBOL(security_skb_classify_flow);
5429 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
5430 
5431 #ifdef CONFIG_KEYS
5432 /**
5433  * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5434  * @key: key
5435  * @cred: credentials
5436  * @flags: allocation flags
5437  *
5438  * Permit allocation of a key and assign security data. Note that key does not
5439  * have a serial number assigned at this point.
5440  *
5441  * Return: Return 0 if permission is granted, -ve error otherwise.
5442  */
5443 int security_key_alloc(struct key *key, const struct cred *cred,
5444 		       unsigned long flags)
5445 {
5446 	int rc = lsm_key_alloc(key);
5447 
5448 	if (unlikely(rc))
5449 		return rc;
5450 	rc = call_int_hook(key_alloc, key, cred, flags);
5451 	if (unlikely(rc))
5452 		security_key_free(key);
5453 	return rc;
5454 }
5455 
5456 /**
5457  * security_key_free() - Free a kernel key LSM blob
5458  * @key: key
5459  *
5460  * Notification of destruction; free security data.
5461  */
5462 void security_key_free(struct key *key)
5463 {
5464 	kfree(key->security);
5465 	key->security = NULL;
5466 }
5467 
5468 /**
5469  * security_key_permission() - Check if a kernel key operation is allowed
5470  * @key_ref: key reference
5471  * @cred: credentials of actor requesting access
5472  * @need_perm: requested permissions
5473  *
5474  * See whether a specific operational right is granted to a process on a key.
5475  *
5476  * Return: Return 0 if permission is granted, -ve error otherwise.
5477  */
5478 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5479 			    enum key_need_perm need_perm)
5480 {
5481 	return call_int_hook(key_permission, key_ref, cred, need_perm);
5482 }
5483 
5484 /**
5485  * security_key_getsecurity() - Get the key's security label
5486  * @key: key
5487  * @buffer: security label buffer
5488  *
5489  * Get a textual representation of the security context attached to a key for
5490  * the purposes of honouring KEYCTL_GETSECURITY.  This function allocates the
5491  * storage for the NUL-terminated string and the caller should free it.
5492  *
5493  * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5494  *         an error occurs.  May also return 0 (and a NULL buffer pointer) if
5495  *         there is no security label assigned to the key.
5496  */
5497 int security_key_getsecurity(struct key *key, char **buffer)
5498 {
5499 	*buffer = NULL;
5500 	return call_int_hook(key_getsecurity, key, buffer);
5501 }
5502 
5503 /**
5504  * security_key_post_create_or_update() - Notification of key create or update
5505  * @keyring: keyring to which the key is linked to
5506  * @key: created or updated key
5507  * @payload: data used to instantiate or update the key
5508  * @payload_len: length of payload
5509  * @flags: key flags
5510  * @create: flag indicating whether the key was created or updated
5511  *
5512  * Notify the caller of a key creation or update.
5513  */
5514 void security_key_post_create_or_update(struct key *keyring, struct key *key,
5515 					const void *payload, size_t payload_len,
5516 					unsigned long flags, bool create)
5517 {
5518 	call_void_hook(key_post_create_or_update, keyring, key, payload,
5519 		       payload_len, flags, create);
5520 }
5521 #endif	/* CONFIG_KEYS */
5522 
5523 #ifdef CONFIG_AUDIT
5524 /**
5525  * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5526  * @field: audit action
5527  * @op: rule operator
5528  * @rulestr: rule context
5529  * @lsmrule: receive buffer for audit rule struct
5530  * @gfp: GFP flag used for kmalloc
5531  *
5532  * Allocate and initialize an LSM audit rule structure.
5533  *
5534  * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5535  *         an invalid rule.
5536  */
5537 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
5538 			     gfp_t gfp)
5539 {
5540 	return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp);
5541 }
5542 
5543 /**
5544  * security_audit_rule_known() - Check if an audit rule contains LSM fields
5545  * @krule: audit rule
5546  *
5547  * Specifies whether given @krule contains any fields related to the current
5548  * LSM.
5549  *
5550  * Return: Returns 1 in case of relation found, 0 otherwise.
5551  */
5552 int security_audit_rule_known(struct audit_krule *krule)
5553 {
5554 	return call_int_hook(audit_rule_known, krule);
5555 }
5556 
5557 /**
5558  * security_audit_rule_free() - Free an LSM audit rule struct
5559  * @lsmrule: audit rule struct
5560  *
5561  * Deallocate the LSM audit rule structure previously allocated by
5562  * audit_rule_init().
5563  */
5564 void security_audit_rule_free(void *lsmrule)
5565 {
5566 	call_void_hook(audit_rule_free, lsmrule);
5567 }
5568 
5569 /**
5570  * security_audit_rule_match() - Check if a label matches an audit rule
5571  * @secid: security label
5572  * @field: LSM audit field
5573  * @op: matching operator
5574  * @lsmrule: audit rule
5575  *
5576  * Determine if given @secid matches a rule previously approved by
5577  * security_audit_rule_known().
5578  *
5579  * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5580  *         failure.
5581  */
5582 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
5583 {
5584 	return call_int_hook(audit_rule_match, secid, field, op, lsmrule);
5585 }
5586 #endif /* CONFIG_AUDIT */
5587 
5588 #ifdef CONFIG_BPF_SYSCALL
5589 /**
5590  * security_bpf() - Check if the bpf syscall operation is allowed
5591  * @cmd: command
5592  * @attr: bpf attribute
5593  * @size: size
5594  *
5595  * Do a initial check for all bpf syscalls after the attribute is copied into
5596  * the kernel. The actual security module can implement their own rules to
5597  * check the specific cmd they need.
5598  *
5599  * Return: Returns 0 if permission is granted.
5600  */
5601 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5602 {
5603 	return call_int_hook(bpf, cmd, attr, size);
5604 }
5605 
5606 /**
5607  * security_bpf_map() - Check if access to a bpf map is allowed
5608  * @map: bpf map
5609  * @fmode: mode
5610  *
5611  * Do a check when the kernel generates and returns a file descriptor for eBPF
5612  * maps.
5613  *
5614  * Return: Returns 0 if permission is granted.
5615  */
5616 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5617 {
5618 	return call_int_hook(bpf_map, map, fmode);
5619 }
5620 
5621 /**
5622  * security_bpf_prog() - Check if access to a bpf program is allowed
5623  * @prog: bpf program
5624  *
5625  * Do a check when the kernel generates and returns a file descriptor for eBPF
5626  * programs.
5627  *
5628  * Return: Returns 0 if permission is granted.
5629  */
5630 int security_bpf_prog(struct bpf_prog *prog)
5631 {
5632 	return call_int_hook(bpf_prog, prog);
5633 }
5634 
5635 /**
5636  * security_bpf_map_create() - Check if BPF map creation is allowed
5637  * @map: BPF map object
5638  * @attr: BPF syscall attributes used to create BPF map
5639  * @token: BPF token used to grant user access
5640  *
5641  * Do a check when the kernel creates a new BPF map. This is also the
5642  * point where LSM blob is allocated for LSMs that need them.
5643  *
5644  * Return: Returns 0 on success, error on failure.
5645  */
5646 int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5647 			    struct bpf_token *token)
5648 {
5649 	return call_int_hook(bpf_map_create, map, attr, token);
5650 }
5651 
5652 /**
5653  * security_bpf_prog_load() - Check if loading of BPF program is allowed
5654  * @prog: BPF program object
5655  * @attr: BPF syscall attributes used to create BPF program
5656  * @token: BPF token used to grant user access to BPF subsystem
5657  *
5658  * Perform an access control check when the kernel loads a BPF program and
5659  * allocates associated BPF program object. This hook is also responsible for
5660  * allocating any required LSM state for the BPF program.
5661  *
5662  * Return: Returns 0 on success, error on failure.
5663  */
5664 int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5665 			   struct bpf_token *token)
5666 {
5667 	return call_int_hook(bpf_prog_load, prog, attr, token);
5668 }
5669 
5670 /**
5671  * security_bpf_token_create() - Check if creating of BPF token is allowed
5672  * @token: BPF token object
5673  * @attr: BPF syscall attributes used to create BPF token
5674  * @path: path pointing to BPF FS mount point from which BPF token is created
5675  *
5676  * Do a check when the kernel instantiates a new BPF token object from BPF FS
5677  * instance. This is also the point where LSM blob can be allocated for LSMs.
5678  *
5679  * Return: Returns 0 on success, error on failure.
5680  */
5681 int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5682 			      struct path *path)
5683 {
5684 	return call_int_hook(bpf_token_create, token, attr, path);
5685 }
5686 
5687 /**
5688  * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5689  * requested BPF syscall command
5690  * @token: BPF token object
5691  * @cmd: BPF syscall command requested to be delegated by BPF token
5692  *
5693  * Do a check when the kernel decides whether provided BPF token should allow
5694  * delegation of requested BPF syscall command.
5695  *
5696  * Return: Returns 0 on success, error on failure.
5697  */
5698 int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5699 {
5700 	return call_int_hook(bpf_token_cmd, token, cmd);
5701 }
5702 
5703 /**
5704  * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5705  * requested BPF-related capability
5706  * @token: BPF token object
5707  * @cap: capabilities requested to be delegated by BPF token
5708  *
5709  * Do a check when the kernel decides whether provided BPF token should allow
5710  * delegation of requested BPF-related capabilities.
5711  *
5712  * Return: Returns 0 on success, error on failure.
5713  */
5714 int security_bpf_token_capable(const struct bpf_token *token, int cap)
5715 {
5716 	return call_int_hook(bpf_token_capable, token, cap);
5717 }
5718 
5719 /**
5720  * security_bpf_map_free() - Free a bpf map's LSM blob
5721  * @map: bpf map
5722  *
5723  * Clean up the security information stored inside bpf map.
5724  */
5725 void security_bpf_map_free(struct bpf_map *map)
5726 {
5727 	call_void_hook(bpf_map_free, map);
5728 }
5729 
5730 /**
5731  * security_bpf_prog_free() - Free a BPF program's LSM blob
5732  * @prog: BPF program struct
5733  *
5734  * Clean up the security information stored inside BPF program.
5735  */
5736 void security_bpf_prog_free(struct bpf_prog *prog)
5737 {
5738 	call_void_hook(bpf_prog_free, prog);
5739 }
5740 
5741 /**
5742  * security_bpf_token_free() - Free a BPF token's LSM blob
5743  * @token: BPF token struct
5744  *
5745  * Clean up the security information stored inside BPF token.
5746  */
5747 void security_bpf_token_free(struct bpf_token *token)
5748 {
5749 	call_void_hook(bpf_token_free, token);
5750 }
5751 #endif /* CONFIG_BPF_SYSCALL */
5752 
5753 /**
5754  * security_locked_down() - Check if a kernel feature is allowed
5755  * @what: requested kernel feature
5756  *
5757  * Determine whether a kernel feature that potentially enables arbitrary code
5758  * execution in kernel space should be permitted.
5759  *
5760  * Return: Returns 0 if permission is granted.
5761  */
5762 int security_locked_down(enum lockdown_reason what)
5763 {
5764 	return call_int_hook(locked_down, what);
5765 }
5766 EXPORT_SYMBOL(security_locked_down);
5767 
5768 /**
5769  * security_bdev_alloc() - Allocate a block device LSM blob
5770  * @bdev: block device
5771  *
5772  * Allocate and attach a security structure to @bdev->bd_security.  The
5773  * security field is initialized to NULL when the bdev structure is
5774  * allocated.
5775  *
5776  * Return: Return 0 if operation was successful.
5777  */
5778 int security_bdev_alloc(struct block_device *bdev)
5779 {
5780 	int rc = 0;
5781 
5782 	rc = lsm_bdev_alloc(bdev);
5783 	if (unlikely(rc))
5784 		return rc;
5785 
5786 	rc = call_int_hook(bdev_alloc_security, bdev);
5787 	if (unlikely(rc))
5788 		security_bdev_free(bdev);
5789 
5790 	return rc;
5791 }
5792 EXPORT_SYMBOL(security_bdev_alloc);
5793 
5794 /**
5795  * security_bdev_free() - Free a block device's LSM blob
5796  * @bdev: block device
5797  *
5798  * Deallocate the bdev security structure and set @bdev->bd_security to NULL.
5799  */
5800 void security_bdev_free(struct block_device *bdev)
5801 {
5802 	if (!bdev->bd_security)
5803 		return;
5804 
5805 	call_void_hook(bdev_free_security, bdev);
5806 
5807 	kfree(bdev->bd_security);
5808 	bdev->bd_security = NULL;
5809 }
5810 EXPORT_SYMBOL(security_bdev_free);
5811 
5812 /**
5813  * security_bdev_setintegrity() - Set the device's integrity data
5814  * @bdev: block device
5815  * @type: type of integrity, e.g. hash digest, signature, etc
5816  * @value: the integrity value
5817  * @size: size of the integrity value
5818  *
5819  * Register a verified integrity measurement of a bdev with LSMs.
5820  * LSMs should free the previously saved data if @value is NULL.
5821  * Please note that the new hook should be invoked every time the security
5822  * information is updated to keep these data current. For example, in dm-verity,
5823  * if the mapping table is reloaded and configured to use a different dm-verity
5824  * target with a new roothash and signing information, the previously stored
5825  * data in the LSM blob will become obsolete. It is crucial to re-invoke the
5826  * hook to refresh these data and ensure they are up to date. This necessity
5827  * arises from the design of device-mapper, where a device-mapper device is
5828  * first created, and then targets are subsequently loaded into it. These
5829  * targets can be modified multiple times during the device's lifetime.
5830  * Therefore, while the LSM blob is allocated during the creation of the block
5831  * device, its actual contents are not initialized at this stage and can change
5832  * substantially over time. This includes alterations from data that the LSMs
5833  * 'trusts' to those they do not, making it essential to handle these changes
5834  * correctly. Failure to address this dynamic aspect could potentially allow
5835  * for bypassing LSM checks.
5836  *
5837  * Return: Returns 0 on success, negative values on failure.
5838  */
5839 int security_bdev_setintegrity(struct block_device *bdev,
5840 			       enum lsm_integrity_type type, const void *value,
5841 			       size_t size)
5842 {
5843 	return call_int_hook(bdev_setintegrity, bdev, type, value, size);
5844 }
5845 EXPORT_SYMBOL(security_bdev_setintegrity);
5846 
5847 #ifdef CONFIG_PERF_EVENTS
5848 /**
5849  * security_perf_event_open() - Check if a perf event open is allowed
5850  * @attr: perf event attribute
5851  * @type: type of event
5852  *
5853  * Check whether the @type of perf_event_open syscall is allowed.
5854  *
5855  * Return: Returns 0 if permission is granted.
5856  */
5857 int security_perf_event_open(struct perf_event_attr *attr, int type)
5858 {
5859 	return call_int_hook(perf_event_open, attr, type);
5860 }
5861 
5862 /**
5863  * security_perf_event_alloc() - Allocate a perf event LSM blob
5864  * @event: perf event
5865  *
5866  * Allocate and save perf_event security info.
5867  *
5868  * Return: Returns 0 on success, error on failure.
5869  */
5870 int security_perf_event_alloc(struct perf_event *event)
5871 {
5872 	int rc;
5873 
5874 	rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event,
5875 			    GFP_KERNEL);
5876 	if (rc)
5877 		return rc;
5878 
5879 	rc = call_int_hook(perf_event_alloc, event);
5880 	if (rc) {
5881 		kfree(event->security);
5882 		event->security = NULL;
5883 	}
5884 	return rc;
5885 }
5886 
5887 /**
5888  * security_perf_event_free() - Free a perf event LSM blob
5889  * @event: perf event
5890  *
5891  * Release (free) perf_event security info.
5892  */
5893 void security_perf_event_free(struct perf_event *event)
5894 {
5895 	kfree(event->security);
5896 	event->security = NULL;
5897 }
5898 
5899 /**
5900  * security_perf_event_read() - Check if reading a perf event label is allowed
5901  * @event: perf event
5902  *
5903  * Read perf_event security info if allowed.
5904  *
5905  * Return: Returns 0 if permission is granted.
5906  */
5907 int security_perf_event_read(struct perf_event *event)
5908 {
5909 	return call_int_hook(perf_event_read, event);
5910 }
5911 
5912 /**
5913  * security_perf_event_write() - Check if writing a perf event label is allowed
5914  * @event: perf event
5915  *
5916  * Write perf_event security info if allowed.
5917  *
5918  * Return: Returns 0 if permission is granted.
5919  */
5920 int security_perf_event_write(struct perf_event *event)
5921 {
5922 	return call_int_hook(perf_event_write, event);
5923 }
5924 #endif /* CONFIG_PERF_EVENTS */
5925 
5926 #ifdef CONFIG_IO_URING
5927 /**
5928  * security_uring_override_creds() - Check if overriding creds is allowed
5929  * @new: new credentials
5930  *
5931  * Check if the current task, executing an io_uring operation, is allowed to
5932  * override it's credentials with @new.
5933  *
5934  * Return: Returns 0 if permission is granted.
5935  */
5936 int security_uring_override_creds(const struct cred *new)
5937 {
5938 	return call_int_hook(uring_override_creds, new);
5939 }
5940 
5941 /**
5942  * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5943  *
5944  * Check whether the current task is allowed to spawn a io_uring polling thread
5945  * (IORING_SETUP_SQPOLL).
5946  *
5947  * Return: Returns 0 if permission is granted.
5948  */
5949 int security_uring_sqpoll(void)
5950 {
5951 	return call_int_hook(uring_sqpoll);
5952 }
5953 
5954 /**
5955  * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5956  * @ioucmd: command
5957  *
5958  * Check whether the file_operations uring_cmd is allowed to run.
5959  *
5960  * Return: Returns 0 if permission is granted.
5961  */
5962 int security_uring_cmd(struct io_uring_cmd *ioucmd)
5963 {
5964 	return call_int_hook(uring_cmd, ioucmd);
5965 }
5966 #endif /* CONFIG_IO_URING */
5967 
5968 /**
5969  * security_initramfs_populated() - Notify LSMs that initramfs has been loaded
5970  *
5971  * Tells the LSMs the initramfs has been unpacked into the rootfs.
5972  */
5973 void security_initramfs_populated(void)
5974 {
5975 	call_void_hook(initramfs_populated);
5976 }
5977