xref: /linux-6.15/security/security.c (revision d6aed64b)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <[email protected]>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <[email protected]>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]>
7  * Copyright (C) 2016 Mellanox Technologies
8  *
9  *	This program is free software; you can redistribute it and/or modify
10  *	it under the terms of the GNU General Public License as published by
11  *	the Free Software Foundation; either version 2 of the License, or
12  *	(at your option) any later version.
13  */
14 
15 #define pr_fmt(fmt) "LSM: " fmt
16 
17 #include <linux/bpf.h>
18 #include <linux/capability.h>
19 #include <linux/dcache.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/lsm_hooks.h>
24 #include <linux/integrity.h>
25 #include <linux/ima.h>
26 #include <linux/evm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/mman.h>
29 #include <linux/mount.h>
30 #include <linux/personality.h>
31 #include <linux/backing-dev.h>
32 #include <linux/string.h>
33 #include <net/flow.h>
34 
35 #define MAX_LSM_EVM_XATTR	2
36 
37 /* How many LSMs were built into the kernel? */
38 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
39 
40 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
41 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
42 
43 char *lsm_names;
44 /* Boot-time LSM user choice */
45 static __initdata const char *chosen_lsm_order;
46 static __initdata const char *chosen_major_lsm;
47 
48 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
49 
50 /* Ordered list of LSMs to initialize. */
51 static __initdata struct lsm_info **ordered_lsms;
52 static __initdata struct lsm_info *exclusive;
53 
54 static __initdata bool debug;
55 #define init_debug(...)						\
56 	do {							\
57 		if (debug)					\
58 			pr_info(__VA_ARGS__);			\
59 	} while (0)
60 
61 static bool __init is_enabled(struct lsm_info *lsm)
62 {
63 	if (!lsm->enabled)
64 		return false;
65 
66 	return *lsm->enabled;
67 }
68 
69 /* Mark an LSM's enabled flag. */
70 static int lsm_enabled_true __initdata = 1;
71 static int lsm_enabled_false __initdata = 0;
72 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
73 {
74 	/*
75 	 * When an LSM hasn't configured an enable variable, we can use
76 	 * a hard-coded location for storing the default enabled state.
77 	 */
78 	if (!lsm->enabled) {
79 		if (enabled)
80 			lsm->enabled = &lsm_enabled_true;
81 		else
82 			lsm->enabled = &lsm_enabled_false;
83 	} else if (lsm->enabled == &lsm_enabled_true) {
84 		if (!enabled)
85 			lsm->enabled = &lsm_enabled_false;
86 	} else if (lsm->enabled == &lsm_enabled_false) {
87 		if (enabled)
88 			lsm->enabled = &lsm_enabled_true;
89 	} else {
90 		*lsm->enabled = enabled;
91 	}
92 }
93 
94 /* Is an LSM already listed in the ordered LSMs list? */
95 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
96 {
97 	struct lsm_info **check;
98 
99 	for (check = ordered_lsms; *check; check++)
100 		if (*check == lsm)
101 			return true;
102 
103 	return false;
104 }
105 
106 /* Append an LSM to the list of ordered LSMs to initialize. */
107 static int last_lsm __initdata;
108 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
109 {
110 	/* Ignore duplicate selections. */
111 	if (exists_ordered_lsm(lsm))
112 		return;
113 
114 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
115 		return;
116 
117 	/* Enable this LSM, if it is not already set. */
118 	if (!lsm->enabled)
119 		lsm->enabled = &lsm_enabled_true;
120 	ordered_lsms[last_lsm++] = lsm;
121 
122 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
123 		   is_enabled(lsm) ? "en" : "dis");
124 }
125 
126 /* Is an LSM allowed to be initialized? */
127 static bool __init lsm_allowed(struct lsm_info *lsm)
128 {
129 	/* Skip if the LSM is disabled. */
130 	if (!is_enabled(lsm))
131 		return false;
132 
133 	/* Not allowed if another exclusive LSM already initialized. */
134 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
135 		init_debug("exclusive disabled: %s\n", lsm->name);
136 		return false;
137 	}
138 
139 	return true;
140 }
141 
142 /* Prepare LSM for initialization. */
143 static void __init prepare_lsm(struct lsm_info *lsm)
144 {
145 	int enabled = lsm_allowed(lsm);
146 
147 	/* Record enablement (to handle any following exclusive LSMs). */
148 	set_enabled(lsm, enabled);
149 
150 	/* If enabled, do pre-initialization work. */
151 	if (enabled) {
152 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
153 			exclusive = lsm;
154 			init_debug("exclusive chosen: %s\n", lsm->name);
155 		}
156 	}
157 }
158 
159 /* Initialize a given LSM, if it is enabled. */
160 static void __init initialize_lsm(struct lsm_info *lsm)
161 {
162 	if (is_enabled(lsm)) {
163 		int ret;
164 
165 		init_debug("initializing %s\n", lsm->name);
166 		ret = lsm->init();
167 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
168 	}
169 }
170 
171 /* Populate ordered LSMs list from comma-separated LSM name list. */
172 static void __init ordered_lsm_parse(const char *order, const char *origin)
173 {
174 	struct lsm_info *lsm;
175 	char *sep, *name, *next;
176 
177 	/* Process "security=", if given. */
178 	if (chosen_major_lsm) {
179 		struct lsm_info *major;
180 
181 		/*
182 		 * To match the original "security=" behavior, this
183 		 * explicitly does NOT fallback to another Legacy Major
184 		 * if the selected one was separately disabled: disable
185 		 * all non-matching Legacy Major LSMs.
186 		 */
187 		for (major = __start_lsm_info; major < __end_lsm_info;
188 		     major++) {
189 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
190 			    strcmp(major->name, chosen_major_lsm) != 0) {
191 				set_enabled(major, false);
192 				init_debug("security=%s disabled: %s\n",
193 					   chosen_major_lsm, major->name);
194 			}
195 		}
196 	}
197 
198 	sep = kstrdup(order, GFP_KERNEL);
199 	next = sep;
200 	/* Walk the list, looking for matching LSMs. */
201 	while ((name = strsep(&next, ",")) != NULL) {
202 		bool found = false;
203 
204 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
205 			if (strcmp(lsm->name, name) == 0) {
206 				append_ordered_lsm(lsm, origin);
207 				found = true;
208 			}
209 		}
210 
211 		if (!found)
212 			init_debug("%s ignored: %s\n", origin, name);
213 	}
214 
215 	/* Process "security=", if given. */
216 	if (chosen_major_lsm) {
217 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
218 			if (exists_ordered_lsm(lsm))
219 				continue;
220 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
221 				append_ordered_lsm(lsm, "security=");
222 		}
223 	}
224 
225 	/* Disable all LSMs not in the ordered list. */
226 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
227 		if (exists_ordered_lsm(lsm))
228 			continue;
229 		set_enabled(lsm, false);
230 		init_debug("%s disabled: %s\n", origin, lsm->name);
231 	}
232 
233 	kfree(sep);
234 }
235 
236 static void __init ordered_lsm_init(void)
237 {
238 	struct lsm_info **lsm;
239 
240 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
241 				GFP_KERNEL);
242 
243 	if (chosen_lsm_order)
244 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
245 	else
246 		ordered_lsm_parse(builtin_lsm_order, "builtin");
247 
248 	for (lsm = ordered_lsms; *lsm; lsm++)
249 		prepare_lsm(*lsm);
250 
251 	for (lsm = ordered_lsms; *lsm; lsm++)
252 		initialize_lsm(*lsm);
253 
254 	kfree(ordered_lsms);
255 }
256 
257 /**
258  * security_init - initializes the security framework
259  *
260  * This should be called early in the kernel initialization sequence.
261  */
262 int __init security_init(void)
263 {
264 	int i;
265 	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
266 
267 	pr_info("Security Framework initializing\n");
268 
269 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
270 	     i++)
271 		INIT_HLIST_HEAD(&list[i]);
272 
273 	/*
274 	 * Load minor LSMs, with the capability module always first.
275 	 */
276 	capability_add_hooks();
277 
278 	/* Load LSMs in specified order. */
279 	ordered_lsm_init();
280 
281 	return 0;
282 }
283 
284 /* Save user chosen LSM */
285 static int __init choose_major_lsm(char *str)
286 {
287 	chosen_major_lsm = str;
288 	return 1;
289 }
290 __setup("security=", choose_major_lsm);
291 
292 /* Explicitly choose LSM initialization order. */
293 static int __init choose_lsm_order(char *str)
294 {
295 	chosen_lsm_order = str;
296 	return 1;
297 }
298 __setup("lsm=", choose_lsm_order);
299 
300 /* Enable LSM order debugging. */
301 static int __init enable_debug(char *str)
302 {
303 	debug = true;
304 	return 1;
305 }
306 __setup("lsm.debug", enable_debug);
307 
308 static bool match_last_lsm(const char *list, const char *lsm)
309 {
310 	const char *last;
311 
312 	if (WARN_ON(!list || !lsm))
313 		return false;
314 	last = strrchr(list, ',');
315 	if (last)
316 		/* Pass the comma, strcmp() will check for '\0' */
317 		last++;
318 	else
319 		last = list;
320 	return !strcmp(last, lsm);
321 }
322 
323 static int lsm_append(char *new, char **result)
324 {
325 	char *cp;
326 
327 	if (*result == NULL) {
328 		*result = kstrdup(new, GFP_KERNEL);
329 		if (*result == NULL)
330 			return -ENOMEM;
331 	} else {
332 		/* Check if it is the last registered name */
333 		if (match_last_lsm(*result, new))
334 			return 0;
335 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
336 		if (cp == NULL)
337 			return -ENOMEM;
338 		kfree(*result);
339 		*result = cp;
340 	}
341 	return 0;
342 }
343 
344 /**
345  * security_add_hooks - Add a modules hooks to the hook lists.
346  * @hooks: the hooks to add
347  * @count: the number of hooks to add
348  * @lsm: the name of the security module
349  *
350  * Each LSM has to register its hooks with the infrastructure.
351  */
352 void __init security_add_hooks(struct security_hook_list *hooks, int count,
353 				char *lsm)
354 {
355 	int i;
356 
357 	for (i = 0; i < count; i++) {
358 		hooks[i].lsm = lsm;
359 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
360 	}
361 	if (lsm_append(lsm, &lsm_names) < 0)
362 		panic("%s - Cannot get early memory.\n", __func__);
363 }
364 
365 int call_lsm_notifier(enum lsm_event event, void *data)
366 {
367 	return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
368 }
369 EXPORT_SYMBOL(call_lsm_notifier);
370 
371 int register_lsm_notifier(struct notifier_block *nb)
372 {
373 	return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
374 }
375 EXPORT_SYMBOL(register_lsm_notifier);
376 
377 int unregister_lsm_notifier(struct notifier_block *nb)
378 {
379 	return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
380 }
381 EXPORT_SYMBOL(unregister_lsm_notifier);
382 
383 /*
384  * Hook list operation macros.
385  *
386  * call_void_hook:
387  *	This is a hook that does not return a value.
388  *
389  * call_int_hook:
390  *	This is a hook that returns a value.
391  */
392 
393 #define call_void_hook(FUNC, ...)				\
394 	do {							\
395 		struct security_hook_list *P;			\
396 								\
397 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
398 			P->hook.FUNC(__VA_ARGS__);		\
399 	} while (0)
400 
401 #define call_int_hook(FUNC, IRC, ...) ({			\
402 	int RC = IRC;						\
403 	do {							\
404 		struct security_hook_list *P;			\
405 								\
406 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
407 			RC = P->hook.FUNC(__VA_ARGS__);		\
408 			if (RC != 0)				\
409 				break;				\
410 		}						\
411 	} while (0);						\
412 	RC;							\
413 })
414 
415 /* Security operations */
416 
417 int security_binder_set_context_mgr(struct task_struct *mgr)
418 {
419 	return call_int_hook(binder_set_context_mgr, 0, mgr);
420 }
421 
422 int security_binder_transaction(struct task_struct *from,
423 				struct task_struct *to)
424 {
425 	return call_int_hook(binder_transaction, 0, from, to);
426 }
427 
428 int security_binder_transfer_binder(struct task_struct *from,
429 				    struct task_struct *to)
430 {
431 	return call_int_hook(binder_transfer_binder, 0, from, to);
432 }
433 
434 int security_binder_transfer_file(struct task_struct *from,
435 				  struct task_struct *to, struct file *file)
436 {
437 	return call_int_hook(binder_transfer_file, 0, from, to, file);
438 }
439 
440 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
441 {
442 	return call_int_hook(ptrace_access_check, 0, child, mode);
443 }
444 
445 int security_ptrace_traceme(struct task_struct *parent)
446 {
447 	return call_int_hook(ptrace_traceme, 0, parent);
448 }
449 
450 int security_capget(struct task_struct *target,
451 		     kernel_cap_t *effective,
452 		     kernel_cap_t *inheritable,
453 		     kernel_cap_t *permitted)
454 {
455 	return call_int_hook(capget, 0, target,
456 				effective, inheritable, permitted);
457 }
458 
459 int security_capset(struct cred *new, const struct cred *old,
460 		    const kernel_cap_t *effective,
461 		    const kernel_cap_t *inheritable,
462 		    const kernel_cap_t *permitted)
463 {
464 	return call_int_hook(capset, 0, new, old,
465 				effective, inheritable, permitted);
466 }
467 
468 int security_capable(const struct cred *cred, struct user_namespace *ns,
469 		     int cap)
470 {
471 	return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT);
472 }
473 
474 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
475 			     int cap)
476 {
477 	return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT);
478 }
479 
480 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
481 {
482 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
483 }
484 
485 int security_quota_on(struct dentry *dentry)
486 {
487 	return call_int_hook(quota_on, 0, dentry);
488 }
489 
490 int security_syslog(int type)
491 {
492 	return call_int_hook(syslog, 0, type);
493 }
494 
495 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
496 {
497 	return call_int_hook(settime, 0, ts, tz);
498 }
499 
500 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
501 {
502 	struct security_hook_list *hp;
503 	int cap_sys_admin = 1;
504 	int rc;
505 
506 	/*
507 	 * The module will respond with a positive value if
508 	 * it thinks the __vm_enough_memory() call should be
509 	 * made with the cap_sys_admin set. If all of the modules
510 	 * agree that it should be set it will. If any module
511 	 * thinks it should not be set it won't.
512 	 */
513 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
514 		rc = hp->hook.vm_enough_memory(mm, pages);
515 		if (rc <= 0) {
516 			cap_sys_admin = 0;
517 			break;
518 		}
519 	}
520 	return __vm_enough_memory(mm, pages, cap_sys_admin);
521 }
522 
523 int security_bprm_set_creds(struct linux_binprm *bprm)
524 {
525 	return call_int_hook(bprm_set_creds, 0, bprm);
526 }
527 
528 int security_bprm_check(struct linux_binprm *bprm)
529 {
530 	int ret;
531 
532 	ret = call_int_hook(bprm_check_security, 0, bprm);
533 	if (ret)
534 		return ret;
535 	return ima_bprm_check(bprm);
536 }
537 
538 void security_bprm_committing_creds(struct linux_binprm *bprm)
539 {
540 	call_void_hook(bprm_committing_creds, bprm);
541 }
542 
543 void security_bprm_committed_creds(struct linux_binprm *bprm)
544 {
545 	call_void_hook(bprm_committed_creds, bprm);
546 }
547 
548 int security_sb_alloc(struct super_block *sb)
549 {
550 	return call_int_hook(sb_alloc_security, 0, sb);
551 }
552 
553 void security_sb_free(struct super_block *sb)
554 {
555 	call_void_hook(sb_free_security, sb);
556 }
557 
558 void security_free_mnt_opts(void **mnt_opts)
559 {
560 	if (!*mnt_opts)
561 		return;
562 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
563 	*mnt_opts = NULL;
564 }
565 EXPORT_SYMBOL(security_free_mnt_opts);
566 
567 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
568 {
569 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
570 }
571 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
572 
573 int security_sb_remount(struct super_block *sb,
574 			void *mnt_opts)
575 {
576 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
577 }
578 EXPORT_SYMBOL(security_sb_remount);
579 
580 int security_sb_kern_mount(struct super_block *sb)
581 {
582 	return call_int_hook(sb_kern_mount, 0, sb);
583 }
584 
585 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
586 {
587 	return call_int_hook(sb_show_options, 0, m, sb);
588 }
589 
590 int security_sb_statfs(struct dentry *dentry)
591 {
592 	return call_int_hook(sb_statfs, 0, dentry);
593 }
594 
595 int security_sb_mount(const char *dev_name, const struct path *path,
596                        const char *type, unsigned long flags, void *data)
597 {
598 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
599 }
600 
601 int security_sb_umount(struct vfsmount *mnt, int flags)
602 {
603 	return call_int_hook(sb_umount, 0, mnt, flags);
604 }
605 
606 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
607 {
608 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
609 }
610 
611 int security_sb_set_mnt_opts(struct super_block *sb,
612 				void *mnt_opts,
613 				unsigned long kern_flags,
614 				unsigned long *set_kern_flags)
615 {
616 	return call_int_hook(sb_set_mnt_opts,
617 				mnt_opts ? -EOPNOTSUPP : 0, sb,
618 				mnt_opts, kern_flags, set_kern_flags);
619 }
620 EXPORT_SYMBOL(security_sb_set_mnt_opts);
621 
622 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
623 				struct super_block *newsb,
624 				unsigned long kern_flags,
625 				unsigned long *set_kern_flags)
626 {
627 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
628 				kern_flags, set_kern_flags);
629 }
630 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
631 
632 int security_add_mnt_opt(const char *option, const char *val, int len,
633 			 void **mnt_opts)
634 {
635 	return call_int_hook(sb_add_mnt_opt, -EINVAL,
636 					option, val, len, mnt_opts);
637 }
638 EXPORT_SYMBOL(security_add_mnt_opt);
639 
640 int security_inode_alloc(struct inode *inode)
641 {
642 	inode->i_security = NULL;
643 	return call_int_hook(inode_alloc_security, 0, inode);
644 }
645 
646 void security_inode_free(struct inode *inode)
647 {
648 	integrity_inode_free(inode);
649 	call_void_hook(inode_free_security, inode);
650 }
651 
652 int security_dentry_init_security(struct dentry *dentry, int mode,
653 					const struct qstr *name, void **ctx,
654 					u32 *ctxlen)
655 {
656 	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
657 				name, ctx, ctxlen);
658 }
659 EXPORT_SYMBOL(security_dentry_init_security);
660 
661 int security_dentry_create_files_as(struct dentry *dentry, int mode,
662 				    struct qstr *name,
663 				    const struct cred *old, struct cred *new)
664 {
665 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
666 				name, old, new);
667 }
668 EXPORT_SYMBOL(security_dentry_create_files_as);
669 
670 int security_inode_init_security(struct inode *inode, struct inode *dir,
671 				 const struct qstr *qstr,
672 				 const initxattrs initxattrs, void *fs_data)
673 {
674 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
675 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
676 	int ret;
677 
678 	if (unlikely(IS_PRIVATE(inode)))
679 		return 0;
680 
681 	if (!initxattrs)
682 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
683 				     dir, qstr, NULL, NULL, NULL);
684 	memset(new_xattrs, 0, sizeof(new_xattrs));
685 	lsm_xattr = new_xattrs;
686 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
687 						&lsm_xattr->name,
688 						&lsm_xattr->value,
689 						&lsm_xattr->value_len);
690 	if (ret)
691 		goto out;
692 
693 	evm_xattr = lsm_xattr + 1;
694 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
695 	if (ret)
696 		goto out;
697 	ret = initxattrs(inode, new_xattrs, fs_data);
698 out:
699 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
700 		kfree(xattr->value);
701 	return (ret == -EOPNOTSUPP) ? 0 : ret;
702 }
703 EXPORT_SYMBOL(security_inode_init_security);
704 
705 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
706 				     const struct qstr *qstr, const char **name,
707 				     void **value, size_t *len)
708 {
709 	if (unlikely(IS_PRIVATE(inode)))
710 		return -EOPNOTSUPP;
711 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
712 			     qstr, name, value, len);
713 }
714 EXPORT_SYMBOL(security_old_inode_init_security);
715 
716 #ifdef CONFIG_SECURITY_PATH
717 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
718 			unsigned int dev)
719 {
720 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
721 		return 0;
722 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
723 }
724 EXPORT_SYMBOL(security_path_mknod);
725 
726 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
727 {
728 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
729 		return 0;
730 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
731 }
732 EXPORT_SYMBOL(security_path_mkdir);
733 
734 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
735 {
736 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
737 		return 0;
738 	return call_int_hook(path_rmdir, 0, dir, dentry);
739 }
740 
741 int security_path_unlink(const struct path *dir, struct dentry *dentry)
742 {
743 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
744 		return 0;
745 	return call_int_hook(path_unlink, 0, dir, dentry);
746 }
747 EXPORT_SYMBOL(security_path_unlink);
748 
749 int security_path_symlink(const struct path *dir, struct dentry *dentry,
750 			  const char *old_name)
751 {
752 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
753 		return 0;
754 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
755 }
756 
757 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
758 		       struct dentry *new_dentry)
759 {
760 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
761 		return 0;
762 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
763 }
764 
765 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
766 			 const struct path *new_dir, struct dentry *new_dentry,
767 			 unsigned int flags)
768 {
769 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
770 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
771 		return 0;
772 
773 	if (flags & RENAME_EXCHANGE) {
774 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
775 					old_dir, old_dentry);
776 		if (err)
777 			return err;
778 	}
779 
780 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
781 				new_dentry);
782 }
783 EXPORT_SYMBOL(security_path_rename);
784 
785 int security_path_truncate(const struct path *path)
786 {
787 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
788 		return 0;
789 	return call_int_hook(path_truncate, 0, path);
790 }
791 
792 int security_path_chmod(const struct path *path, umode_t mode)
793 {
794 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
795 		return 0;
796 	return call_int_hook(path_chmod, 0, path, mode);
797 }
798 
799 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
800 {
801 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
802 		return 0;
803 	return call_int_hook(path_chown, 0, path, uid, gid);
804 }
805 
806 int security_path_chroot(const struct path *path)
807 {
808 	return call_int_hook(path_chroot, 0, path);
809 }
810 #endif
811 
812 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
813 {
814 	if (unlikely(IS_PRIVATE(dir)))
815 		return 0;
816 	return call_int_hook(inode_create, 0, dir, dentry, mode);
817 }
818 EXPORT_SYMBOL_GPL(security_inode_create);
819 
820 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
821 			 struct dentry *new_dentry)
822 {
823 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
824 		return 0;
825 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
826 }
827 
828 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
829 {
830 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
831 		return 0;
832 	return call_int_hook(inode_unlink, 0, dir, dentry);
833 }
834 
835 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
836 			    const char *old_name)
837 {
838 	if (unlikely(IS_PRIVATE(dir)))
839 		return 0;
840 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
841 }
842 
843 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
844 {
845 	if (unlikely(IS_PRIVATE(dir)))
846 		return 0;
847 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
848 }
849 EXPORT_SYMBOL_GPL(security_inode_mkdir);
850 
851 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
852 {
853 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
854 		return 0;
855 	return call_int_hook(inode_rmdir, 0, dir, dentry);
856 }
857 
858 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
859 {
860 	if (unlikely(IS_PRIVATE(dir)))
861 		return 0;
862 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
863 }
864 
865 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
866 			   struct inode *new_dir, struct dentry *new_dentry,
867 			   unsigned int flags)
868 {
869         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
870             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
871 		return 0;
872 
873 	if (flags & RENAME_EXCHANGE) {
874 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
875 						     old_dir, old_dentry);
876 		if (err)
877 			return err;
878 	}
879 
880 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
881 					   new_dir, new_dentry);
882 }
883 
884 int security_inode_readlink(struct dentry *dentry)
885 {
886 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
887 		return 0;
888 	return call_int_hook(inode_readlink, 0, dentry);
889 }
890 
891 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
892 			       bool rcu)
893 {
894 	if (unlikely(IS_PRIVATE(inode)))
895 		return 0;
896 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
897 }
898 
899 int security_inode_permission(struct inode *inode, int mask)
900 {
901 	if (unlikely(IS_PRIVATE(inode)))
902 		return 0;
903 	return call_int_hook(inode_permission, 0, inode, mask);
904 }
905 
906 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
907 {
908 	int ret;
909 
910 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
911 		return 0;
912 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
913 	if (ret)
914 		return ret;
915 	return evm_inode_setattr(dentry, attr);
916 }
917 EXPORT_SYMBOL_GPL(security_inode_setattr);
918 
919 int security_inode_getattr(const struct path *path)
920 {
921 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
922 		return 0;
923 	return call_int_hook(inode_getattr, 0, path);
924 }
925 
926 int security_inode_setxattr(struct dentry *dentry, const char *name,
927 			    const void *value, size_t size, int flags)
928 {
929 	int ret;
930 
931 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
932 		return 0;
933 	/*
934 	 * SELinux and Smack integrate the cap call,
935 	 * so assume that all LSMs supplying this call do so.
936 	 */
937 	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
938 				flags);
939 
940 	if (ret == 1)
941 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
942 	if (ret)
943 		return ret;
944 	ret = ima_inode_setxattr(dentry, name, value, size);
945 	if (ret)
946 		return ret;
947 	return evm_inode_setxattr(dentry, name, value, size);
948 }
949 
950 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
951 				  const void *value, size_t size, int flags)
952 {
953 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
954 		return;
955 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
956 	evm_inode_post_setxattr(dentry, name, value, size);
957 }
958 
959 int security_inode_getxattr(struct dentry *dentry, const char *name)
960 {
961 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
962 		return 0;
963 	return call_int_hook(inode_getxattr, 0, dentry, name);
964 }
965 
966 int security_inode_listxattr(struct dentry *dentry)
967 {
968 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
969 		return 0;
970 	return call_int_hook(inode_listxattr, 0, dentry);
971 }
972 
973 int security_inode_removexattr(struct dentry *dentry, const char *name)
974 {
975 	int ret;
976 
977 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
978 		return 0;
979 	/*
980 	 * SELinux and Smack integrate the cap call,
981 	 * so assume that all LSMs supplying this call do so.
982 	 */
983 	ret = call_int_hook(inode_removexattr, 1, dentry, name);
984 	if (ret == 1)
985 		ret = cap_inode_removexattr(dentry, name);
986 	if (ret)
987 		return ret;
988 	ret = ima_inode_removexattr(dentry, name);
989 	if (ret)
990 		return ret;
991 	return evm_inode_removexattr(dentry, name);
992 }
993 
994 int security_inode_need_killpriv(struct dentry *dentry)
995 {
996 	return call_int_hook(inode_need_killpriv, 0, dentry);
997 }
998 
999 int security_inode_killpriv(struct dentry *dentry)
1000 {
1001 	return call_int_hook(inode_killpriv, 0, dentry);
1002 }
1003 
1004 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1005 {
1006 	struct security_hook_list *hp;
1007 	int rc;
1008 
1009 	if (unlikely(IS_PRIVATE(inode)))
1010 		return -EOPNOTSUPP;
1011 	/*
1012 	 * Only one module will provide an attribute with a given name.
1013 	 */
1014 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1015 		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1016 		if (rc != -EOPNOTSUPP)
1017 			return rc;
1018 	}
1019 	return -EOPNOTSUPP;
1020 }
1021 
1022 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1023 {
1024 	struct security_hook_list *hp;
1025 	int rc;
1026 
1027 	if (unlikely(IS_PRIVATE(inode)))
1028 		return -EOPNOTSUPP;
1029 	/*
1030 	 * Only one module will provide an attribute with a given name.
1031 	 */
1032 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1033 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1034 								flags);
1035 		if (rc != -EOPNOTSUPP)
1036 			return rc;
1037 	}
1038 	return -EOPNOTSUPP;
1039 }
1040 
1041 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1042 {
1043 	if (unlikely(IS_PRIVATE(inode)))
1044 		return 0;
1045 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1046 }
1047 EXPORT_SYMBOL(security_inode_listsecurity);
1048 
1049 void security_inode_getsecid(struct inode *inode, u32 *secid)
1050 {
1051 	call_void_hook(inode_getsecid, inode, secid);
1052 }
1053 
1054 int security_inode_copy_up(struct dentry *src, struct cred **new)
1055 {
1056 	return call_int_hook(inode_copy_up, 0, src, new);
1057 }
1058 EXPORT_SYMBOL(security_inode_copy_up);
1059 
1060 int security_inode_copy_up_xattr(const char *name)
1061 {
1062 	return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1063 }
1064 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1065 
1066 int security_file_permission(struct file *file, int mask)
1067 {
1068 	int ret;
1069 
1070 	ret = call_int_hook(file_permission, 0, file, mask);
1071 	if (ret)
1072 		return ret;
1073 
1074 	return fsnotify_perm(file, mask);
1075 }
1076 
1077 int security_file_alloc(struct file *file)
1078 {
1079 	return call_int_hook(file_alloc_security, 0, file);
1080 }
1081 
1082 void security_file_free(struct file *file)
1083 {
1084 	call_void_hook(file_free_security, file);
1085 }
1086 
1087 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1088 {
1089 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1090 }
1091 
1092 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1093 {
1094 	/*
1095 	 * Does we have PROT_READ and does the application expect
1096 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1097 	 */
1098 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1099 		return prot;
1100 	if (!(current->personality & READ_IMPLIES_EXEC))
1101 		return prot;
1102 	/*
1103 	 * if that's an anonymous mapping, let it.
1104 	 */
1105 	if (!file)
1106 		return prot | PROT_EXEC;
1107 	/*
1108 	 * ditto if it's not on noexec mount, except that on !MMU we need
1109 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1110 	 */
1111 	if (!path_noexec(&file->f_path)) {
1112 #ifndef CONFIG_MMU
1113 		if (file->f_op->mmap_capabilities) {
1114 			unsigned caps = file->f_op->mmap_capabilities(file);
1115 			if (!(caps & NOMMU_MAP_EXEC))
1116 				return prot;
1117 		}
1118 #endif
1119 		return prot | PROT_EXEC;
1120 	}
1121 	/* anything on noexec mount won't get PROT_EXEC */
1122 	return prot;
1123 }
1124 
1125 int security_mmap_file(struct file *file, unsigned long prot,
1126 			unsigned long flags)
1127 {
1128 	int ret;
1129 	ret = call_int_hook(mmap_file, 0, file, prot,
1130 					mmap_prot(file, prot), flags);
1131 	if (ret)
1132 		return ret;
1133 	return ima_file_mmap(file, prot);
1134 }
1135 
1136 int security_mmap_addr(unsigned long addr)
1137 {
1138 	return call_int_hook(mmap_addr, 0, addr);
1139 }
1140 
1141 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1142 			    unsigned long prot)
1143 {
1144 	return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1145 }
1146 
1147 int security_file_lock(struct file *file, unsigned int cmd)
1148 {
1149 	return call_int_hook(file_lock, 0, file, cmd);
1150 }
1151 
1152 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1153 {
1154 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1155 }
1156 
1157 void security_file_set_fowner(struct file *file)
1158 {
1159 	call_void_hook(file_set_fowner, file);
1160 }
1161 
1162 int security_file_send_sigiotask(struct task_struct *tsk,
1163 				  struct fown_struct *fown, int sig)
1164 {
1165 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1166 }
1167 
1168 int security_file_receive(struct file *file)
1169 {
1170 	return call_int_hook(file_receive, 0, file);
1171 }
1172 
1173 int security_file_open(struct file *file)
1174 {
1175 	int ret;
1176 
1177 	ret = call_int_hook(file_open, 0, file);
1178 	if (ret)
1179 		return ret;
1180 
1181 	return fsnotify_perm(file, MAY_OPEN);
1182 }
1183 
1184 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1185 {
1186 	return call_int_hook(task_alloc, 0, task, clone_flags);
1187 }
1188 
1189 void security_task_free(struct task_struct *task)
1190 {
1191 	call_void_hook(task_free, task);
1192 }
1193 
1194 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1195 {
1196 	return call_int_hook(cred_alloc_blank, 0, cred, gfp);
1197 }
1198 
1199 void security_cred_free(struct cred *cred)
1200 {
1201 	call_void_hook(cred_free, cred);
1202 }
1203 
1204 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1205 {
1206 	return call_int_hook(cred_prepare, 0, new, old, gfp);
1207 }
1208 
1209 void security_transfer_creds(struct cred *new, const struct cred *old)
1210 {
1211 	call_void_hook(cred_transfer, new, old);
1212 }
1213 
1214 void security_cred_getsecid(const struct cred *c, u32 *secid)
1215 {
1216 	*secid = 0;
1217 	call_void_hook(cred_getsecid, c, secid);
1218 }
1219 EXPORT_SYMBOL(security_cred_getsecid);
1220 
1221 int security_kernel_act_as(struct cred *new, u32 secid)
1222 {
1223 	return call_int_hook(kernel_act_as, 0, new, secid);
1224 }
1225 
1226 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1227 {
1228 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1229 }
1230 
1231 int security_kernel_module_request(char *kmod_name)
1232 {
1233 	int ret;
1234 
1235 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1236 	if (ret)
1237 		return ret;
1238 	return integrity_kernel_module_request(kmod_name);
1239 }
1240 
1241 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1242 {
1243 	int ret;
1244 
1245 	ret = call_int_hook(kernel_read_file, 0, file, id);
1246 	if (ret)
1247 		return ret;
1248 	return ima_read_file(file, id);
1249 }
1250 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1251 
1252 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1253 				   enum kernel_read_file_id id)
1254 {
1255 	int ret;
1256 
1257 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1258 	if (ret)
1259 		return ret;
1260 	return ima_post_read_file(file, buf, size, id);
1261 }
1262 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1263 
1264 int security_kernel_load_data(enum kernel_load_data_id id)
1265 {
1266 	int ret;
1267 
1268 	ret = call_int_hook(kernel_load_data, 0, id);
1269 	if (ret)
1270 		return ret;
1271 	return ima_load_data(id);
1272 }
1273 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1274 
1275 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1276 			     int flags)
1277 {
1278 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1279 }
1280 
1281 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1282 {
1283 	return call_int_hook(task_setpgid, 0, p, pgid);
1284 }
1285 
1286 int security_task_getpgid(struct task_struct *p)
1287 {
1288 	return call_int_hook(task_getpgid, 0, p);
1289 }
1290 
1291 int security_task_getsid(struct task_struct *p)
1292 {
1293 	return call_int_hook(task_getsid, 0, p);
1294 }
1295 
1296 void security_task_getsecid(struct task_struct *p, u32 *secid)
1297 {
1298 	*secid = 0;
1299 	call_void_hook(task_getsecid, p, secid);
1300 }
1301 EXPORT_SYMBOL(security_task_getsecid);
1302 
1303 int security_task_setnice(struct task_struct *p, int nice)
1304 {
1305 	return call_int_hook(task_setnice, 0, p, nice);
1306 }
1307 
1308 int security_task_setioprio(struct task_struct *p, int ioprio)
1309 {
1310 	return call_int_hook(task_setioprio, 0, p, ioprio);
1311 }
1312 
1313 int security_task_getioprio(struct task_struct *p)
1314 {
1315 	return call_int_hook(task_getioprio, 0, p);
1316 }
1317 
1318 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1319 			  unsigned int flags)
1320 {
1321 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1322 }
1323 
1324 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1325 		struct rlimit *new_rlim)
1326 {
1327 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1328 }
1329 
1330 int security_task_setscheduler(struct task_struct *p)
1331 {
1332 	return call_int_hook(task_setscheduler, 0, p);
1333 }
1334 
1335 int security_task_getscheduler(struct task_struct *p)
1336 {
1337 	return call_int_hook(task_getscheduler, 0, p);
1338 }
1339 
1340 int security_task_movememory(struct task_struct *p)
1341 {
1342 	return call_int_hook(task_movememory, 0, p);
1343 }
1344 
1345 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1346 			int sig, const struct cred *cred)
1347 {
1348 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1349 }
1350 
1351 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1352 			 unsigned long arg4, unsigned long arg5)
1353 {
1354 	int thisrc;
1355 	int rc = -ENOSYS;
1356 	struct security_hook_list *hp;
1357 
1358 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1359 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1360 		if (thisrc != -ENOSYS) {
1361 			rc = thisrc;
1362 			if (thisrc != 0)
1363 				break;
1364 		}
1365 	}
1366 	return rc;
1367 }
1368 
1369 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1370 {
1371 	call_void_hook(task_to_inode, p, inode);
1372 }
1373 
1374 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1375 {
1376 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1377 }
1378 
1379 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1380 {
1381 	*secid = 0;
1382 	call_void_hook(ipc_getsecid, ipcp, secid);
1383 }
1384 
1385 int security_msg_msg_alloc(struct msg_msg *msg)
1386 {
1387 	return call_int_hook(msg_msg_alloc_security, 0, msg);
1388 }
1389 
1390 void security_msg_msg_free(struct msg_msg *msg)
1391 {
1392 	call_void_hook(msg_msg_free_security, msg);
1393 }
1394 
1395 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1396 {
1397 	return call_int_hook(msg_queue_alloc_security, 0, msq);
1398 }
1399 
1400 void security_msg_queue_free(struct kern_ipc_perm *msq)
1401 {
1402 	call_void_hook(msg_queue_free_security, msq);
1403 }
1404 
1405 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1406 {
1407 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1408 }
1409 
1410 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1411 {
1412 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1413 }
1414 
1415 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1416 			       struct msg_msg *msg, int msqflg)
1417 {
1418 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1419 }
1420 
1421 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1422 			       struct task_struct *target, long type, int mode)
1423 {
1424 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1425 }
1426 
1427 int security_shm_alloc(struct kern_ipc_perm *shp)
1428 {
1429 	return call_int_hook(shm_alloc_security, 0, shp);
1430 }
1431 
1432 void security_shm_free(struct kern_ipc_perm *shp)
1433 {
1434 	call_void_hook(shm_free_security, shp);
1435 }
1436 
1437 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1438 {
1439 	return call_int_hook(shm_associate, 0, shp, shmflg);
1440 }
1441 
1442 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1443 {
1444 	return call_int_hook(shm_shmctl, 0, shp, cmd);
1445 }
1446 
1447 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1448 {
1449 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1450 }
1451 
1452 int security_sem_alloc(struct kern_ipc_perm *sma)
1453 {
1454 	return call_int_hook(sem_alloc_security, 0, sma);
1455 }
1456 
1457 void security_sem_free(struct kern_ipc_perm *sma)
1458 {
1459 	call_void_hook(sem_free_security, sma);
1460 }
1461 
1462 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1463 {
1464 	return call_int_hook(sem_associate, 0, sma, semflg);
1465 }
1466 
1467 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1468 {
1469 	return call_int_hook(sem_semctl, 0, sma, cmd);
1470 }
1471 
1472 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1473 			unsigned nsops, int alter)
1474 {
1475 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1476 }
1477 
1478 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1479 {
1480 	if (unlikely(inode && IS_PRIVATE(inode)))
1481 		return;
1482 	call_void_hook(d_instantiate, dentry, inode);
1483 }
1484 EXPORT_SYMBOL(security_d_instantiate);
1485 
1486 int security_getprocattr(struct task_struct *p, char *name, char **value)
1487 {
1488 	return call_int_hook(getprocattr, -EINVAL, p, name, value);
1489 }
1490 
1491 int security_setprocattr(const char *name, void *value, size_t size)
1492 {
1493 	return call_int_hook(setprocattr, -EINVAL, name, value, size);
1494 }
1495 
1496 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1497 {
1498 	return call_int_hook(netlink_send, 0, sk, skb);
1499 }
1500 
1501 int security_ismaclabel(const char *name)
1502 {
1503 	return call_int_hook(ismaclabel, 0, name);
1504 }
1505 EXPORT_SYMBOL(security_ismaclabel);
1506 
1507 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1508 {
1509 	return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1510 				seclen);
1511 }
1512 EXPORT_SYMBOL(security_secid_to_secctx);
1513 
1514 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1515 {
1516 	*secid = 0;
1517 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1518 }
1519 EXPORT_SYMBOL(security_secctx_to_secid);
1520 
1521 void security_release_secctx(char *secdata, u32 seclen)
1522 {
1523 	call_void_hook(release_secctx, secdata, seclen);
1524 }
1525 EXPORT_SYMBOL(security_release_secctx);
1526 
1527 void security_inode_invalidate_secctx(struct inode *inode)
1528 {
1529 	call_void_hook(inode_invalidate_secctx, inode);
1530 }
1531 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1532 
1533 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1534 {
1535 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1536 }
1537 EXPORT_SYMBOL(security_inode_notifysecctx);
1538 
1539 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1540 {
1541 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1542 }
1543 EXPORT_SYMBOL(security_inode_setsecctx);
1544 
1545 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1546 {
1547 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1548 }
1549 EXPORT_SYMBOL(security_inode_getsecctx);
1550 
1551 #ifdef CONFIG_SECURITY_NETWORK
1552 
1553 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1554 {
1555 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1556 }
1557 EXPORT_SYMBOL(security_unix_stream_connect);
1558 
1559 int security_unix_may_send(struct socket *sock,  struct socket *other)
1560 {
1561 	return call_int_hook(unix_may_send, 0, sock, other);
1562 }
1563 EXPORT_SYMBOL(security_unix_may_send);
1564 
1565 int security_socket_create(int family, int type, int protocol, int kern)
1566 {
1567 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
1568 }
1569 
1570 int security_socket_post_create(struct socket *sock, int family,
1571 				int type, int protocol, int kern)
1572 {
1573 	return call_int_hook(socket_post_create, 0, sock, family, type,
1574 						protocol, kern);
1575 }
1576 
1577 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1578 {
1579 	return call_int_hook(socket_socketpair, 0, socka, sockb);
1580 }
1581 EXPORT_SYMBOL(security_socket_socketpair);
1582 
1583 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1584 {
1585 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
1586 }
1587 
1588 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1589 {
1590 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
1591 }
1592 
1593 int security_socket_listen(struct socket *sock, int backlog)
1594 {
1595 	return call_int_hook(socket_listen, 0, sock, backlog);
1596 }
1597 
1598 int security_socket_accept(struct socket *sock, struct socket *newsock)
1599 {
1600 	return call_int_hook(socket_accept, 0, sock, newsock);
1601 }
1602 
1603 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1604 {
1605 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1606 }
1607 
1608 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1609 			    int size, int flags)
1610 {
1611 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1612 }
1613 
1614 int security_socket_getsockname(struct socket *sock)
1615 {
1616 	return call_int_hook(socket_getsockname, 0, sock);
1617 }
1618 
1619 int security_socket_getpeername(struct socket *sock)
1620 {
1621 	return call_int_hook(socket_getpeername, 0, sock);
1622 }
1623 
1624 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1625 {
1626 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1627 }
1628 
1629 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1630 {
1631 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1632 }
1633 
1634 int security_socket_shutdown(struct socket *sock, int how)
1635 {
1636 	return call_int_hook(socket_shutdown, 0, sock, how);
1637 }
1638 
1639 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1640 {
1641 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
1642 }
1643 EXPORT_SYMBOL(security_sock_rcv_skb);
1644 
1645 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1646 				      int __user *optlen, unsigned len)
1647 {
1648 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
1649 				optval, optlen, len);
1650 }
1651 
1652 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1653 {
1654 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
1655 			     skb, secid);
1656 }
1657 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1658 
1659 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1660 {
1661 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
1662 }
1663 
1664 void security_sk_free(struct sock *sk)
1665 {
1666 	call_void_hook(sk_free_security, sk);
1667 }
1668 
1669 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1670 {
1671 	call_void_hook(sk_clone_security, sk, newsk);
1672 }
1673 EXPORT_SYMBOL(security_sk_clone);
1674 
1675 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1676 {
1677 	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
1678 }
1679 EXPORT_SYMBOL(security_sk_classify_flow);
1680 
1681 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1682 {
1683 	call_void_hook(req_classify_flow, req, fl);
1684 }
1685 EXPORT_SYMBOL(security_req_classify_flow);
1686 
1687 void security_sock_graft(struct sock *sk, struct socket *parent)
1688 {
1689 	call_void_hook(sock_graft, sk, parent);
1690 }
1691 EXPORT_SYMBOL(security_sock_graft);
1692 
1693 int security_inet_conn_request(struct sock *sk,
1694 			struct sk_buff *skb, struct request_sock *req)
1695 {
1696 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
1697 }
1698 EXPORT_SYMBOL(security_inet_conn_request);
1699 
1700 void security_inet_csk_clone(struct sock *newsk,
1701 			const struct request_sock *req)
1702 {
1703 	call_void_hook(inet_csk_clone, newsk, req);
1704 }
1705 
1706 void security_inet_conn_established(struct sock *sk,
1707 			struct sk_buff *skb)
1708 {
1709 	call_void_hook(inet_conn_established, sk, skb);
1710 }
1711 EXPORT_SYMBOL(security_inet_conn_established);
1712 
1713 int security_secmark_relabel_packet(u32 secid)
1714 {
1715 	return call_int_hook(secmark_relabel_packet, 0, secid);
1716 }
1717 EXPORT_SYMBOL(security_secmark_relabel_packet);
1718 
1719 void security_secmark_refcount_inc(void)
1720 {
1721 	call_void_hook(secmark_refcount_inc);
1722 }
1723 EXPORT_SYMBOL(security_secmark_refcount_inc);
1724 
1725 void security_secmark_refcount_dec(void)
1726 {
1727 	call_void_hook(secmark_refcount_dec);
1728 }
1729 EXPORT_SYMBOL(security_secmark_refcount_dec);
1730 
1731 int security_tun_dev_alloc_security(void **security)
1732 {
1733 	return call_int_hook(tun_dev_alloc_security, 0, security);
1734 }
1735 EXPORT_SYMBOL(security_tun_dev_alloc_security);
1736 
1737 void security_tun_dev_free_security(void *security)
1738 {
1739 	call_void_hook(tun_dev_free_security, security);
1740 }
1741 EXPORT_SYMBOL(security_tun_dev_free_security);
1742 
1743 int security_tun_dev_create(void)
1744 {
1745 	return call_int_hook(tun_dev_create, 0);
1746 }
1747 EXPORT_SYMBOL(security_tun_dev_create);
1748 
1749 int security_tun_dev_attach_queue(void *security)
1750 {
1751 	return call_int_hook(tun_dev_attach_queue, 0, security);
1752 }
1753 EXPORT_SYMBOL(security_tun_dev_attach_queue);
1754 
1755 int security_tun_dev_attach(struct sock *sk, void *security)
1756 {
1757 	return call_int_hook(tun_dev_attach, 0, sk, security);
1758 }
1759 EXPORT_SYMBOL(security_tun_dev_attach);
1760 
1761 int security_tun_dev_open(void *security)
1762 {
1763 	return call_int_hook(tun_dev_open, 0, security);
1764 }
1765 EXPORT_SYMBOL(security_tun_dev_open);
1766 
1767 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
1768 {
1769 	return call_int_hook(sctp_assoc_request, 0, ep, skb);
1770 }
1771 EXPORT_SYMBOL(security_sctp_assoc_request);
1772 
1773 int security_sctp_bind_connect(struct sock *sk, int optname,
1774 			       struct sockaddr *address, int addrlen)
1775 {
1776 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
1777 			     address, addrlen);
1778 }
1779 EXPORT_SYMBOL(security_sctp_bind_connect);
1780 
1781 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
1782 			    struct sock *newsk)
1783 {
1784 	call_void_hook(sctp_sk_clone, ep, sk, newsk);
1785 }
1786 EXPORT_SYMBOL(security_sctp_sk_clone);
1787 
1788 #endif	/* CONFIG_SECURITY_NETWORK */
1789 
1790 #ifdef CONFIG_SECURITY_INFINIBAND
1791 
1792 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
1793 {
1794 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
1795 }
1796 EXPORT_SYMBOL(security_ib_pkey_access);
1797 
1798 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
1799 {
1800 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
1801 }
1802 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
1803 
1804 int security_ib_alloc_security(void **sec)
1805 {
1806 	return call_int_hook(ib_alloc_security, 0, sec);
1807 }
1808 EXPORT_SYMBOL(security_ib_alloc_security);
1809 
1810 void security_ib_free_security(void *sec)
1811 {
1812 	call_void_hook(ib_free_security, sec);
1813 }
1814 EXPORT_SYMBOL(security_ib_free_security);
1815 #endif	/* CONFIG_SECURITY_INFINIBAND */
1816 
1817 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1818 
1819 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1820 			       struct xfrm_user_sec_ctx *sec_ctx,
1821 			       gfp_t gfp)
1822 {
1823 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
1824 }
1825 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1826 
1827 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1828 			      struct xfrm_sec_ctx **new_ctxp)
1829 {
1830 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
1831 }
1832 
1833 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1834 {
1835 	call_void_hook(xfrm_policy_free_security, ctx);
1836 }
1837 EXPORT_SYMBOL(security_xfrm_policy_free);
1838 
1839 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1840 {
1841 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
1842 }
1843 
1844 int security_xfrm_state_alloc(struct xfrm_state *x,
1845 			      struct xfrm_user_sec_ctx *sec_ctx)
1846 {
1847 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
1848 }
1849 EXPORT_SYMBOL(security_xfrm_state_alloc);
1850 
1851 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1852 				      struct xfrm_sec_ctx *polsec, u32 secid)
1853 {
1854 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
1855 }
1856 
1857 int security_xfrm_state_delete(struct xfrm_state *x)
1858 {
1859 	return call_int_hook(xfrm_state_delete_security, 0, x);
1860 }
1861 EXPORT_SYMBOL(security_xfrm_state_delete);
1862 
1863 void security_xfrm_state_free(struct xfrm_state *x)
1864 {
1865 	call_void_hook(xfrm_state_free_security, x);
1866 }
1867 
1868 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1869 {
1870 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
1871 }
1872 
1873 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1874 				       struct xfrm_policy *xp,
1875 				       const struct flowi *fl)
1876 {
1877 	struct security_hook_list *hp;
1878 	int rc = 1;
1879 
1880 	/*
1881 	 * Since this function is expected to return 0 or 1, the judgment
1882 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
1883 	 * we can use the first LSM's judgment because currently only SELinux
1884 	 * supplies this call.
1885 	 *
1886 	 * For speed optimization, we explicitly break the loop rather than
1887 	 * using the macro
1888 	 */
1889 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
1890 				list) {
1891 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
1892 		break;
1893 	}
1894 	return rc;
1895 }
1896 
1897 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1898 {
1899 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
1900 }
1901 
1902 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1903 {
1904 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
1905 				0);
1906 
1907 	BUG_ON(rc);
1908 }
1909 EXPORT_SYMBOL(security_skb_classify_flow);
1910 
1911 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1912 
1913 #ifdef CONFIG_KEYS
1914 
1915 int security_key_alloc(struct key *key, const struct cred *cred,
1916 		       unsigned long flags)
1917 {
1918 	return call_int_hook(key_alloc, 0, key, cred, flags);
1919 }
1920 
1921 void security_key_free(struct key *key)
1922 {
1923 	call_void_hook(key_free, key);
1924 }
1925 
1926 int security_key_permission(key_ref_t key_ref,
1927 			    const struct cred *cred, unsigned perm)
1928 {
1929 	return call_int_hook(key_permission, 0, key_ref, cred, perm);
1930 }
1931 
1932 int security_key_getsecurity(struct key *key, char **_buffer)
1933 {
1934 	*_buffer = NULL;
1935 	return call_int_hook(key_getsecurity, 0, key, _buffer);
1936 }
1937 
1938 #endif	/* CONFIG_KEYS */
1939 
1940 #ifdef CONFIG_AUDIT
1941 
1942 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1943 {
1944 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
1945 }
1946 
1947 int security_audit_rule_known(struct audit_krule *krule)
1948 {
1949 	return call_int_hook(audit_rule_known, 0, krule);
1950 }
1951 
1952 void security_audit_rule_free(void *lsmrule)
1953 {
1954 	call_void_hook(audit_rule_free, lsmrule);
1955 }
1956 
1957 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1958 			      struct audit_context *actx)
1959 {
1960 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule,
1961 				actx);
1962 }
1963 #endif /* CONFIG_AUDIT */
1964 
1965 #ifdef CONFIG_BPF_SYSCALL
1966 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
1967 {
1968 	return call_int_hook(bpf, 0, cmd, attr, size);
1969 }
1970 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
1971 {
1972 	return call_int_hook(bpf_map, 0, map, fmode);
1973 }
1974 int security_bpf_prog(struct bpf_prog *prog)
1975 {
1976 	return call_int_hook(bpf_prog, 0, prog);
1977 }
1978 int security_bpf_map_alloc(struct bpf_map *map)
1979 {
1980 	return call_int_hook(bpf_map_alloc_security, 0, map);
1981 }
1982 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
1983 {
1984 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
1985 }
1986 void security_bpf_map_free(struct bpf_map *map)
1987 {
1988 	call_void_hook(bpf_map_free_security, map);
1989 }
1990 void security_bpf_prog_free(struct bpf_prog_aux *aux)
1991 {
1992 	call_void_hook(bpf_prog_free_security, aux);
1993 }
1994 #endif /* CONFIG_BPF_SYSCALL */
1995