1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <[email protected]> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <[email protected]> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11 #define pr_fmt(fmt) "LSM: " fmt 12 13 #include <linux/bpf.h> 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/kernel_read_file.h> 20 #include <linux/lsm_hooks.h> 21 #include <linux/integrity.h> 22 #include <linux/ima.h> 23 #include <linux/evm.h> 24 #include <linux/fsnotify.h> 25 #include <linux/mman.h> 26 #include <linux/mount.h> 27 #include <linux/personality.h> 28 #include <linux/backing-dev.h> 29 #include <linux/string.h> 30 #include <linux/msg.h> 31 #include <net/flow.h> 32 33 #define MAX_LSM_EVM_XATTR 2 34 35 /* How many LSMs were built into the kernel? */ 36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 37 38 /* 39 * These are descriptions of the reasons that can be passed to the 40 * security_locked_down() LSM hook. Placing this array here allows 41 * all security modules to use the same descriptions for auditing 42 * purposes. 43 */ 44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = { 45 [LOCKDOWN_NONE] = "none", 46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 49 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 50 [LOCKDOWN_HIBERNATION] = "hibernation", 51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 52 [LOCKDOWN_IOPORT] = "raw io port access", 53 [LOCKDOWN_MSR] = "raw MSR access", 54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 59 [LOCKDOWN_DEBUGFS] = "debugfs access", 60 [LOCKDOWN_XMON_WR] = "xmon write access", 61 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 62 [LOCKDOWN_KCORE] = "/proc/kcore access", 63 [LOCKDOWN_KPROBES] = "use of kprobes", 64 [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM", 65 [LOCKDOWN_PERF] = "unsafe use of perf", 66 [LOCKDOWN_TRACEFS] = "use of tracefs", 67 [LOCKDOWN_XMON_RW] = "xmon read and write access", 68 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 69 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 70 }; 71 72 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 73 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 74 75 static struct kmem_cache *lsm_file_cache; 76 static struct kmem_cache *lsm_inode_cache; 77 78 char *lsm_names; 79 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 80 81 /* Boot-time LSM user choice */ 82 static __initdata const char *chosen_lsm_order; 83 static __initdata const char *chosen_major_lsm; 84 85 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 86 87 /* Ordered list of LSMs to initialize. */ 88 static __initdata struct lsm_info **ordered_lsms; 89 static __initdata struct lsm_info *exclusive; 90 91 static __initdata bool debug; 92 #define init_debug(...) \ 93 do { \ 94 if (debug) \ 95 pr_info(__VA_ARGS__); \ 96 } while (0) 97 98 static bool __init is_enabled(struct lsm_info *lsm) 99 { 100 if (!lsm->enabled) 101 return false; 102 103 return *lsm->enabled; 104 } 105 106 /* Mark an LSM's enabled flag. */ 107 static int lsm_enabled_true __initdata = 1; 108 static int lsm_enabled_false __initdata = 0; 109 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 110 { 111 /* 112 * When an LSM hasn't configured an enable variable, we can use 113 * a hard-coded location for storing the default enabled state. 114 */ 115 if (!lsm->enabled) { 116 if (enabled) 117 lsm->enabled = &lsm_enabled_true; 118 else 119 lsm->enabled = &lsm_enabled_false; 120 } else if (lsm->enabled == &lsm_enabled_true) { 121 if (!enabled) 122 lsm->enabled = &lsm_enabled_false; 123 } else if (lsm->enabled == &lsm_enabled_false) { 124 if (enabled) 125 lsm->enabled = &lsm_enabled_true; 126 } else { 127 *lsm->enabled = enabled; 128 } 129 } 130 131 /* Is an LSM already listed in the ordered LSMs list? */ 132 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 133 { 134 struct lsm_info **check; 135 136 for (check = ordered_lsms; *check; check++) 137 if (*check == lsm) 138 return true; 139 140 return false; 141 } 142 143 /* Append an LSM to the list of ordered LSMs to initialize. */ 144 static int last_lsm __initdata; 145 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 146 { 147 /* Ignore duplicate selections. */ 148 if (exists_ordered_lsm(lsm)) 149 return; 150 151 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 152 return; 153 154 /* Enable this LSM, if it is not already set. */ 155 if (!lsm->enabled) 156 lsm->enabled = &lsm_enabled_true; 157 ordered_lsms[last_lsm++] = lsm; 158 159 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 160 is_enabled(lsm) ? "en" : "dis"); 161 } 162 163 /* Is an LSM allowed to be initialized? */ 164 static bool __init lsm_allowed(struct lsm_info *lsm) 165 { 166 /* Skip if the LSM is disabled. */ 167 if (!is_enabled(lsm)) 168 return false; 169 170 /* Not allowed if another exclusive LSM already initialized. */ 171 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 172 init_debug("exclusive disabled: %s\n", lsm->name); 173 return false; 174 } 175 176 return true; 177 } 178 179 static void __init lsm_set_blob_size(int *need, int *lbs) 180 { 181 int offset; 182 183 if (*need > 0) { 184 offset = *lbs; 185 *lbs += *need; 186 *need = offset; 187 } 188 } 189 190 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 191 { 192 if (!needed) 193 return; 194 195 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 196 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 197 /* 198 * The inode blob gets an rcu_head in addition to 199 * what the modules might need. 200 */ 201 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 202 blob_sizes.lbs_inode = sizeof(struct rcu_head); 203 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 204 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 205 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 206 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 207 } 208 209 /* Prepare LSM for initialization. */ 210 static void __init prepare_lsm(struct lsm_info *lsm) 211 { 212 int enabled = lsm_allowed(lsm); 213 214 /* Record enablement (to handle any following exclusive LSMs). */ 215 set_enabled(lsm, enabled); 216 217 /* If enabled, do pre-initialization work. */ 218 if (enabled) { 219 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 220 exclusive = lsm; 221 init_debug("exclusive chosen: %s\n", lsm->name); 222 } 223 224 lsm_set_blob_sizes(lsm->blobs); 225 } 226 } 227 228 /* Initialize a given LSM, if it is enabled. */ 229 static void __init initialize_lsm(struct lsm_info *lsm) 230 { 231 if (is_enabled(lsm)) { 232 int ret; 233 234 init_debug("initializing %s\n", lsm->name); 235 ret = lsm->init(); 236 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 237 } 238 } 239 240 /* Populate ordered LSMs list from comma-separated LSM name list. */ 241 static void __init ordered_lsm_parse(const char *order, const char *origin) 242 { 243 struct lsm_info *lsm; 244 char *sep, *name, *next; 245 246 /* LSM_ORDER_FIRST is always first. */ 247 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 248 if (lsm->order == LSM_ORDER_FIRST) 249 append_ordered_lsm(lsm, "first"); 250 } 251 252 /* Process "security=", if given. */ 253 if (chosen_major_lsm) { 254 struct lsm_info *major; 255 256 /* 257 * To match the original "security=" behavior, this 258 * explicitly does NOT fallback to another Legacy Major 259 * if the selected one was separately disabled: disable 260 * all non-matching Legacy Major LSMs. 261 */ 262 for (major = __start_lsm_info; major < __end_lsm_info; 263 major++) { 264 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 265 strcmp(major->name, chosen_major_lsm) != 0) { 266 set_enabled(major, false); 267 init_debug("security=%s disabled: %s\n", 268 chosen_major_lsm, major->name); 269 } 270 } 271 } 272 273 sep = kstrdup(order, GFP_KERNEL); 274 next = sep; 275 /* Walk the list, looking for matching LSMs. */ 276 while ((name = strsep(&next, ",")) != NULL) { 277 bool found = false; 278 279 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 280 if (lsm->order == LSM_ORDER_MUTABLE && 281 strcmp(lsm->name, name) == 0) { 282 append_ordered_lsm(lsm, origin); 283 found = true; 284 } 285 } 286 287 if (!found) 288 init_debug("%s ignored: %s\n", origin, name); 289 } 290 291 /* Process "security=", if given. */ 292 if (chosen_major_lsm) { 293 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 294 if (exists_ordered_lsm(lsm)) 295 continue; 296 if (strcmp(lsm->name, chosen_major_lsm) == 0) 297 append_ordered_lsm(lsm, "security="); 298 } 299 } 300 301 /* Disable all LSMs not in the ordered list. */ 302 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 303 if (exists_ordered_lsm(lsm)) 304 continue; 305 set_enabled(lsm, false); 306 init_debug("%s disabled: %s\n", origin, lsm->name); 307 } 308 309 kfree(sep); 310 } 311 312 static void __init lsm_early_cred(struct cred *cred); 313 static void __init lsm_early_task(struct task_struct *task); 314 315 static int lsm_append(const char *new, char **result); 316 317 static void __init ordered_lsm_init(void) 318 { 319 struct lsm_info **lsm; 320 321 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 322 GFP_KERNEL); 323 324 if (chosen_lsm_order) { 325 if (chosen_major_lsm) { 326 pr_info("security= is ignored because it is superseded by lsm=\n"); 327 chosen_major_lsm = NULL; 328 } 329 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 330 } else 331 ordered_lsm_parse(builtin_lsm_order, "builtin"); 332 333 for (lsm = ordered_lsms; *lsm; lsm++) 334 prepare_lsm(*lsm); 335 336 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 337 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 338 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 339 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 340 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 341 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 342 343 /* 344 * Create any kmem_caches needed for blobs 345 */ 346 if (blob_sizes.lbs_file) 347 lsm_file_cache = kmem_cache_create("lsm_file_cache", 348 blob_sizes.lbs_file, 0, 349 SLAB_PANIC, NULL); 350 if (blob_sizes.lbs_inode) 351 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 352 blob_sizes.lbs_inode, 0, 353 SLAB_PANIC, NULL); 354 355 lsm_early_cred((struct cred *) current->cred); 356 lsm_early_task(current); 357 for (lsm = ordered_lsms; *lsm; lsm++) 358 initialize_lsm(*lsm); 359 360 kfree(ordered_lsms); 361 } 362 363 int __init early_security_init(void) 364 { 365 int i; 366 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 367 struct lsm_info *lsm; 368 369 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 370 i++) 371 INIT_HLIST_HEAD(&list[i]); 372 373 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 374 if (!lsm->enabled) 375 lsm->enabled = &lsm_enabled_true; 376 prepare_lsm(lsm); 377 initialize_lsm(lsm); 378 } 379 380 return 0; 381 } 382 383 /** 384 * security_init - initializes the security framework 385 * 386 * This should be called early in the kernel initialization sequence. 387 */ 388 int __init security_init(void) 389 { 390 struct lsm_info *lsm; 391 392 pr_info("Security Framework initializing\n"); 393 394 /* 395 * Append the names of the early LSM modules now that kmalloc() is 396 * available 397 */ 398 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 399 if (lsm->enabled) 400 lsm_append(lsm->name, &lsm_names); 401 } 402 403 /* Load LSMs in specified order. */ 404 ordered_lsm_init(); 405 406 return 0; 407 } 408 409 /* Save user chosen LSM */ 410 static int __init choose_major_lsm(char *str) 411 { 412 chosen_major_lsm = str; 413 return 1; 414 } 415 __setup("security=", choose_major_lsm); 416 417 /* Explicitly choose LSM initialization order. */ 418 static int __init choose_lsm_order(char *str) 419 { 420 chosen_lsm_order = str; 421 return 1; 422 } 423 __setup("lsm=", choose_lsm_order); 424 425 /* Enable LSM order debugging. */ 426 static int __init enable_debug(char *str) 427 { 428 debug = true; 429 return 1; 430 } 431 __setup("lsm.debug", enable_debug); 432 433 static bool match_last_lsm(const char *list, const char *lsm) 434 { 435 const char *last; 436 437 if (WARN_ON(!list || !lsm)) 438 return false; 439 last = strrchr(list, ','); 440 if (last) 441 /* Pass the comma, strcmp() will check for '\0' */ 442 last++; 443 else 444 last = list; 445 return !strcmp(last, lsm); 446 } 447 448 static int lsm_append(const char *new, char **result) 449 { 450 char *cp; 451 452 if (*result == NULL) { 453 *result = kstrdup(new, GFP_KERNEL); 454 if (*result == NULL) 455 return -ENOMEM; 456 } else { 457 /* Check if it is the last registered name */ 458 if (match_last_lsm(*result, new)) 459 return 0; 460 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 461 if (cp == NULL) 462 return -ENOMEM; 463 kfree(*result); 464 *result = cp; 465 } 466 return 0; 467 } 468 469 /** 470 * security_add_hooks - Add a modules hooks to the hook lists. 471 * @hooks: the hooks to add 472 * @count: the number of hooks to add 473 * @lsm: the name of the security module 474 * 475 * Each LSM has to register its hooks with the infrastructure. 476 */ 477 void __init security_add_hooks(struct security_hook_list *hooks, int count, 478 char *lsm) 479 { 480 int i; 481 482 for (i = 0; i < count; i++) { 483 hooks[i].lsm = lsm; 484 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 485 } 486 487 /* 488 * Don't try to append during early_security_init(), we'll come back 489 * and fix this up afterwards. 490 */ 491 if (slab_is_available()) { 492 if (lsm_append(lsm, &lsm_names) < 0) 493 panic("%s - Cannot get early memory.\n", __func__); 494 } 495 } 496 497 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 498 { 499 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 500 event, data); 501 } 502 EXPORT_SYMBOL(call_blocking_lsm_notifier); 503 504 int register_blocking_lsm_notifier(struct notifier_block *nb) 505 { 506 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 507 nb); 508 } 509 EXPORT_SYMBOL(register_blocking_lsm_notifier); 510 511 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 512 { 513 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 514 nb); 515 } 516 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 517 518 /** 519 * lsm_cred_alloc - allocate a composite cred blob 520 * @cred: the cred that needs a blob 521 * @gfp: allocation type 522 * 523 * Allocate the cred blob for all the modules 524 * 525 * Returns 0, or -ENOMEM if memory can't be allocated. 526 */ 527 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 528 { 529 if (blob_sizes.lbs_cred == 0) { 530 cred->security = NULL; 531 return 0; 532 } 533 534 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 535 if (cred->security == NULL) 536 return -ENOMEM; 537 return 0; 538 } 539 540 /** 541 * lsm_early_cred - during initialization allocate a composite cred blob 542 * @cred: the cred that needs a blob 543 * 544 * Allocate the cred blob for all the modules 545 */ 546 static void __init lsm_early_cred(struct cred *cred) 547 { 548 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 549 550 if (rc) 551 panic("%s: Early cred alloc failed.\n", __func__); 552 } 553 554 /** 555 * lsm_file_alloc - allocate a composite file blob 556 * @file: the file that needs a blob 557 * 558 * Allocate the file blob for all the modules 559 * 560 * Returns 0, or -ENOMEM if memory can't be allocated. 561 */ 562 static int lsm_file_alloc(struct file *file) 563 { 564 if (!lsm_file_cache) { 565 file->f_security = NULL; 566 return 0; 567 } 568 569 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 570 if (file->f_security == NULL) 571 return -ENOMEM; 572 return 0; 573 } 574 575 /** 576 * lsm_inode_alloc - allocate a composite inode blob 577 * @inode: the inode that needs a blob 578 * 579 * Allocate the inode blob for all the modules 580 * 581 * Returns 0, or -ENOMEM if memory can't be allocated. 582 */ 583 int lsm_inode_alloc(struct inode *inode) 584 { 585 if (!lsm_inode_cache) { 586 inode->i_security = NULL; 587 return 0; 588 } 589 590 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 591 if (inode->i_security == NULL) 592 return -ENOMEM; 593 return 0; 594 } 595 596 /** 597 * lsm_task_alloc - allocate a composite task blob 598 * @task: the task that needs a blob 599 * 600 * Allocate the task blob for all the modules 601 * 602 * Returns 0, or -ENOMEM if memory can't be allocated. 603 */ 604 static int lsm_task_alloc(struct task_struct *task) 605 { 606 if (blob_sizes.lbs_task == 0) { 607 task->security = NULL; 608 return 0; 609 } 610 611 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 612 if (task->security == NULL) 613 return -ENOMEM; 614 return 0; 615 } 616 617 /** 618 * lsm_ipc_alloc - allocate a composite ipc blob 619 * @kip: the ipc that needs a blob 620 * 621 * Allocate the ipc blob for all the modules 622 * 623 * Returns 0, or -ENOMEM if memory can't be allocated. 624 */ 625 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 626 { 627 if (blob_sizes.lbs_ipc == 0) { 628 kip->security = NULL; 629 return 0; 630 } 631 632 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 633 if (kip->security == NULL) 634 return -ENOMEM; 635 return 0; 636 } 637 638 /** 639 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 640 * @mp: the msg_msg that needs a blob 641 * 642 * Allocate the ipc blob for all the modules 643 * 644 * Returns 0, or -ENOMEM if memory can't be allocated. 645 */ 646 static int lsm_msg_msg_alloc(struct msg_msg *mp) 647 { 648 if (blob_sizes.lbs_msg_msg == 0) { 649 mp->security = NULL; 650 return 0; 651 } 652 653 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 654 if (mp->security == NULL) 655 return -ENOMEM; 656 return 0; 657 } 658 659 /** 660 * lsm_early_task - during initialization allocate a composite task blob 661 * @task: the task that needs a blob 662 * 663 * Allocate the task blob for all the modules 664 */ 665 static void __init lsm_early_task(struct task_struct *task) 666 { 667 int rc = lsm_task_alloc(task); 668 669 if (rc) 670 panic("%s: Early task alloc failed.\n", __func__); 671 } 672 673 /* 674 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 675 * can be accessed with: 676 * 677 * LSM_RET_DEFAULT(<hook_name>) 678 * 679 * The macros below define static constants for the default value of each 680 * LSM hook. 681 */ 682 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 683 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 684 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 685 static const int LSM_RET_DEFAULT(NAME) = (DEFAULT); 686 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 687 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 688 689 #include <linux/lsm_hook_defs.h> 690 #undef LSM_HOOK 691 692 /* 693 * Hook list operation macros. 694 * 695 * call_void_hook: 696 * This is a hook that does not return a value. 697 * 698 * call_int_hook: 699 * This is a hook that returns a value. 700 */ 701 702 #define call_void_hook(FUNC, ...) \ 703 do { \ 704 struct security_hook_list *P; \ 705 \ 706 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 707 P->hook.FUNC(__VA_ARGS__); \ 708 } while (0) 709 710 #define call_int_hook(FUNC, IRC, ...) ({ \ 711 int RC = IRC; \ 712 do { \ 713 struct security_hook_list *P; \ 714 \ 715 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 716 RC = P->hook.FUNC(__VA_ARGS__); \ 717 if (RC != 0) \ 718 break; \ 719 } \ 720 } while (0); \ 721 RC; \ 722 }) 723 724 /* Security operations */ 725 726 int security_binder_set_context_mgr(struct task_struct *mgr) 727 { 728 return call_int_hook(binder_set_context_mgr, 0, mgr); 729 } 730 731 int security_binder_transaction(struct task_struct *from, 732 struct task_struct *to) 733 { 734 return call_int_hook(binder_transaction, 0, from, to); 735 } 736 737 int security_binder_transfer_binder(struct task_struct *from, 738 struct task_struct *to) 739 { 740 return call_int_hook(binder_transfer_binder, 0, from, to); 741 } 742 743 int security_binder_transfer_file(struct task_struct *from, 744 struct task_struct *to, struct file *file) 745 { 746 return call_int_hook(binder_transfer_file, 0, from, to, file); 747 } 748 749 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 750 { 751 return call_int_hook(ptrace_access_check, 0, child, mode); 752 } 753 754 int security_ptrace_traceme(struct task_struct *parent) 755 { 756 return call_int_hook(ptrace_traceme, 0, parent); 757 } 758 759 int security_capget(struct task_struct *target, 760 kernel_cap_t *effective, 761 kernel_cap_t *inheritable, 762 kernel_cap_t *permitted) 763 { 764 return call_int_hook(capget, 0, target, 765 effective, inheritable, permitted); 766 } 767 768 int security_capset(struct cred *new, const struct cred *old, 769 const kernel_cap_t *effective, 770 const kernel_cap_t *inheritable, 771 const kernel_cap_t *permitted) 772 { 773 return call_int_hook(capset, 0, new, old, 774 effective, inheritable, permitted); 775 } 776 777 int security_capable(const struct cred *cred, 778 struct user_namespace *ns, 779 int cap, 780 unsigned int opts) 781 { 782 return call_int_hook(capable, 0, cred, ns, cap, opts); 783 } 784 785 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 786 { 787 return call_int_hook(quotactl, 0, cmds, type, id, sb); 788 } 789 790 int security_quota_on(struct dentry *dentry) 791 { 792 return call_int_hook(quota_on, 0, dentry); 793 } 794 795 int security_syslog(int type) 796 { 797 return call_int_hook(syslog, 0, type); 798 } 799 800 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 801 { 802 return call_int_hook(settime, 0, ts, tz); 803 } 804 805 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 806 { 807 struct security_hook_list *hp; 808 int cap_sys_admin = 1; 809 int rc; 810 811 /* 812 * The module will respond with a positive value if 813 * it thinks the __vm_enough_memory() call should be 814 * made with the cap_sys_admin set. If all of the modules 815 * agree that it should be set it will. If any module 816 * thinks it should not be set it won't. 817 */ 818 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 819 rc = hp->hook.vm_enough_memory(mm, pages); 820 if (rc <= 0) { 821 cap_sys_admin = 0; 822 break; 823 } 824 } 825 return __vm_enough_memory(mm, pages, cap_sys_admin); 826 } 827 828 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 829 { 830 return call_int_hook(bprm_creds_for_exec, 0, bprm); 831 } 832 833 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file) 834 { 835 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 836 } 837 838 int security_bprm_check(struct linux_binprm *bprm) 839 { 840 int ret; 841 842 ret = call_int_hook(bprm_check_security, 0, bprm); 843 if (ret) 844 return ret; 845 return ima_bprm_check(bprm); 846 } 847 848 void security_bprm_committing_creds(struct linux_binprm *bprm) 849 { 850 call_void_hook(bprm_committing_creds, bprm); 851 } 852 853 void security_bprm_committed_creds(struct linux_binprm *bprm) 854 { 855 call_void_hook(bprm_committed_creds, bprm); 856 } 857 858 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 859 { 860 return call_int_hook(fs_context_dup, 0, fc, src_fc); 861 } 862 863 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) 864 { 865 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param); 866 } 867 868 int security_sb_alloc(struct super_block *sb) 869 { 870 return call_int_hook(sb_alloc_security, 0, sb); 871 } 872 873 void security_sb_free(struct super_block *sb) 874 { 875 call_void_hook(sb_free_security, sb); 876 } 877 878 void security_free_mnt_opts(void **mnt_opts) 879 { 880 if (!*mnt_opts) 881 return; 882 call_void_hook(sb_free_mnt_opts, *mnt_opts); 883 *mnt_opts = NULL; 884 } 885 EXPORT_SYMBOL(security_free_mnt_opts); 886 887 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 888 { 889 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 890 } 891 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 892 893 int security_sb_remount(struct super_block *sb, 894 void *mnt_opts) 895 { 896 return call_int_hook(sb_remount, 0, sb, mnt_opts); 897 } 898 EXPORT_SYMBOL(security_sb_remount); 899 900 int security_sb_kern_mount(struct super_block *sb) 901 { 902 return call_int_hook(sb_kern_mount, 0, sb); 903 } 904 905 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 906 { 907 return call_int_hook(sb_show_options, 0, m, sb); 908 } 909 910 int security_sb_statfs(struct dentry *dentry) 911 { 912 return call_int_hook(sb_statfs, 0, dentry); 913 } 914 915 int security_sb_mount(const char *dev_name, const struct path *path, 916 const char *type, unsigned long flags, void *data) 917 { 918 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 919 } 920 921 int security_sb_umount(struct vfsmount *mnt, int flags) 922 { 923 return call_int_hook(sb_umount, 0, mnt, flags); 924 } 925 926 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 927 { 928 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 929 } 930 931 int security_sb_set_mnt_opts(struct super_block *sb, 932 void *mnt_opts, 933 unsigned long kern_flags, 934 unsigned long *set_kern_flags) 935 { 936 return call_int_hook(sb_set_mnt_opts, 937 mnt_opts ? -EOPNOTSUPP : 0, sb, 938 mnt_opts, kern_flags, set_kern_flags); 939 } 940 EXPORT_SYMBOL(security_sb_set_mnt_opts); 941 942 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 943 struct super_block *newsb, 944 unsigned long kern_flags, 945 unsigned long *set_kern_flags) 946 { 947 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 948 kern_flags, set_kern_flags); 949 } 950 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 951 952 int security_add_mnt_opt(const char *option, const char *val, int len, 953 void **mnt_opts) 954 { 955 return call_int_hook(sb_add_mnt_opt, -EINVAL, 956 option, val, len, mnt_opts); 957 } 958 EXPORT_SYMBOL(security_add_mnt_opt); 959 960 int security_move_mount(const struct path *from_path, const struct path *to_path) 961 { 962 return call_int_hook(move_mount, 0, from_path, to_path); 963 } 964 965 int security_path_notify(const struct path *path, u64 mask, 966 unsigned int obj_type) 967 { 968 return call_int_hook(path_notify, 0, path, mask, obj_type); 969 } 970 971 int security_inode_alloc(struct inode *inode) 972 { 973 int rc = lsm_inode_alloc(inode); 974 975 if (unlikely(rc)) 976 return rc; 977 rc = call_int_hook(inode_alloc_security, 0, inode); 978 if (unlikely(rc)) 979 security_inode_free(inode); 980 return rc; 981 } 982 983 static void inode_free_by_rcu(struct rcu_head *head) 984 { 985 /* 986 * The rcu head is at the start of the inode blob 987 */ 988 kmem_cache_free(lsm_inode_cache, head); 989 } 990 991 void security_inode_free(struct inode *inode) 992 { 993 integrity_inode_free(inode); 994 call_void_hook(inode_free_security, inode); 995 /* 996 * The inode may still be referenced in a path walk and 997 * a call to security_inode_permission() can be made 998 * after inode_free_security() is called. Ideally, the VFS 999 * wouldn't do this, but fixing that is a much harder 1000 * job. For now, simply free the i_security via RCU, and 1001 * leave the current inode->i_security pointer intact. 1002 * The inode will be freed after the RCU grace period too. 1003 */ 1004 if (inode->i_security) 1005 call_rcu((struct rcu_head *)inode->i_security, 1006 inode_free_by_rcu); 1007 } 1008 1009 int security_dentry_init_security(struct dentry *dentry, int mode, 1010 const struct qstr *name, void **ctx, 1011 u32 *ctxlen) 1012 { 1013 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 1014 name, ctx, ctxlen); 1015 } 1016 EXPORT_SYMBOL(security_dentry_init_security); 1017 1018 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1019 struct qstr *name, 1020 const struct cred *old, struct cred *new) 1021 { 1022 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1023 name, old, new); 1024 } 1025 EXPORT_SYMBOL(security_dentry_create_files_as); 1026 1027 int security_inode_init_security(struct inode *inode, struct inode *dir, 1028 const struct qstr *qstr, 1029 const initxattrs initxattrs, void *fs_data) 1030 { 1031 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 1032 struct xattr *lsm_xattr, *evm_xattr, *xattr; 1033 int ret; 1034 1035 if (unlikely(IS_PRIVATE(inode))) 1036 return 0; 1037 1038 if (!initxattrs) 1039 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 1040 dir, qstr, NULL, NULL, NULL); 1041 memset(new_xattrs, 0, sizeof(new_xattrs)); 1042 lsm_xattr = new_xattrs; 1043 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 1044 &lsm_xattr->name, 1045 &lsm_xattr->value, 1046 &lsm_xattr->value_len); 1047 if (ret) 1048 goto out; 1049 1050 evm_xattr = lsm_xattr + 1; 1051 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 1052 if (ret) 1053 goto out; 1054 ret = initxattrs(inode, new_xattrs, fs_data); 1055 out: 1056 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 1057 kfree(xattr->value); 1058 return (ret == -EOPNOTSUPP) ? 0 : ret; 1059 } 1060 EXPORT_SYMBOL(security_inode_init_security); 1061 1062 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1063 const struct qstr *qstr, const char **name, 1064 void **value, size_t *len) 1065 { 1066 if (unlikely(IS_PRIVATE(inode))) 1067 return -EOPNOTSUPP; 1068 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 1069 qstr, name, value, len); 1070 } 1071 EXPORT_SYMBOL(security_old_inode_init_security); 1072 1073 #ifdef CONFIG_SECURITY_PATH 1074 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 1075 unsigned int dev) 1076 { 1077 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1078 return 0; 1079 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1080 } 1081 EXPORT_SYMBOL(security_path_mknod); 1082 1083 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 1084 { 1085 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1086 return 0; 1087 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1088 } 1089 EXPORT_SYMBOL(security_path_mkdir); 1090 1091 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1092 { 1093 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1094 return 0; 1095 return call_int_hook(path_rmdir, 0, dir, dentry); 1096 } 1097 1098 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1099 { 1100 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1101 return 0; 1102 return call_int_hook(path_unlink, 0, dir, dentry); 1103 } 1104 EXPORT_SYMBOL(security_path_unlink); 1105 1106 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1107 const char *old_name) 1108 { 1109 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1110 return 0; 1111 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1112 } 1113 1114 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1115 struct dentry *new_dentry) 1116 { 1117 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1118 return 0; 1119 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1120 } 1121 1122 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1123 const struct path *new_dir, struct dentry *new_dentry, 1124 unsigned int flags) 1125 { 1126 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1127 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1128 return 0; 1129 1130 if (flags & RENAME_EXCHANGE) { 1131 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 1132 old_dir, old_dentry); 1133 if (err) 1134 return err; 1135 } 1136 1137 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1138 new_dentry); 1139 } 1140 EXPORT_SYMBOL(security_path_rename); 1141 1142 int security_path_truncate(const struct path *path) 1143 { 1144 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1145 return 0; 1146 return call_int_hook(path_truncate, 0, path); 1147 } 1148 1149 int security_path_chmod(const struct path *path, umode_t mode) 1150 { 1151 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1152 return 0; 1153 return call_int_hook(path_chmod, 0, path, mode); 1154 } 1155 1156 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1157 { 1158 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1159 return 0; 1160 return call_int_hook(path_chown, 0, path, uid, gid); 1161 } 1162 1163 int security_path_chroot(const struct path *path) 1164 { 1165 return call_int_hook(path_chroot, 0, path); 1166 } 1167 #endif 1168 1169 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1170 { 1171 if (unlikely(IS_PRIVATE(dir))) 1172 return 0; 1173 return call_int_hook(inode_create, 0, dir, dentry, mode); 1174 } 1175 EXPORT_SYMBOL_GPL(security_inode_create); 1176 1177 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1178 struct dentry *new_dentry) 1179 { 1180 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1181 return 0; 1182 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1183 } 1184 1185 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1186 { 1187 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1188 return 0; 1189 return call_int_hook(inode_unlink, 0, dir, dentry); 1190 } 1191 1192 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1193 const char *old_name) 1194 { 1195 if (unlikely(IS_PRIVATE(dir))) 1196 return 0; 1197 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1198 } 1199 1200 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1201 { 1202 if (unlikely(IS_PRIVATE(dir))) 1203 return 0; 1204 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1205 } 1206 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1207 1208 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1209 { 1210 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1211 return 0; 1212 return call_int_hook(inode_rmdir, 0, dir, dentry); 1213 } 1214 1215 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1216 { 1217 if (unlikely(IS_PRIVATE(dir))) 1218 return 0; 1219 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1220 } 1221 1222 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1223 struct inode *new_dir, struct dentry *new_dentry, 1224 unsigned int flags) 1225 { 1226 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1227 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1228 return 0; 1229 1230 if (flags & RENAME_EXCHANGE) { 1231 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1232 old_dir, old_dentry); 1233 if (err) 1234 return err; 1235 } 1236 1237 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1238 new_dir, new_dentry); 1239 } 1240 1241 int security_inode_readlink(struct dentry *dentry) 1242 { 1243 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1244 return 0; 1245 return call_int_hook(inode_readlink, 0, dentry); 1246 } 1247 1248 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1249 bool rcu) 1250 { 1251 if (unlikely(IS_PRIVATE(inode))) 1252 return 0; 1253 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1254 } 1255 1256 int security_inode_permission(struct inode *inode, int mask) 1257 { 1258 if (unlikely(IS_PRIVATE(inode))) 1259 return 0; 1260 return call_int_hook(inode_permission, 0, inode, mask); 1261 } 1262 1263 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1264 { 1265 int ret; 1266 1267 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1268 return 0; 1269 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1270 if (ret) 1271 return ret; 1272 return evm_inode_setattr(dentry, attr); 1273 } 1274 EXPORT_SYMBOL_GPL(security_inode_setattr); 1275 1276 int security_inode_getattr(const struct path *path) 1277 { 1278 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1279 return 0; 1280 return call_int_hook(inode_getattr, 0, path); 1281 } 1282 1283 int security_inode_setxattr(struct user_namespace *mnt_userns, 1284 struct dentry *dentry, const char *name, 1285 const void *value, size_t size, int flags) 1286 { 1287 int ret; 1288 1289 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1290 return 0; 1291 /* 1292 * SELinux and Smack integrate the cap call, 1293 * so assume that all LSMs supplying this call do so. 1294 */ 1295 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value, 1296 size, flags); 1297 1298 if (ret == 1) 1299 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1300 if (ret) 1301 return ret; 1302 ret = ima_inode_setxattr(dentry, name, value, size); 1303 if (ret) 1304 return ret; 1305 return evm_inode_setxattr(dentry, name, value, size); 1306 } 1307 1308 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1309 const void *value, size_t size, int flags) 1310 { 1311 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1312 return; 1313 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1314 evm_inode_post_setxattr(dentry, name, value, size); 1315 } 1316 1317 int security_inode_getxattr(struct dentry *dentry, const char *name) 1318 { 1319 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1320 return 0; 1321 return call_int_hook(inode_getxattr, 0, dentry, name); 1322 } 1323 1324 int security_inode_listxattr(struct dentry *dentry) 1325 { 1326 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1327 return 0; 1328 return call_int_hook(inode_listxattr, 0, dentry); 1329 } 1330 1331 int security_inode_removexattr(struct user_namespace *mnt_userns, 1332 struct dentry *dentry, const char *name) 1333 { 1334 int ret; 1335 1336 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1337 return 0; 1338 /* 1339 * SELinux and Smack integrate the cap call, 1340 * so assume that all LSMs supplying this call do so. 1341 */ 1342 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name); 1343 if (ret == 1) 1344 ret = cap_inode_removexattr(mnt_userns, dentry, name); 1345 if (ret) 1346 return ret; 1347 ret = ima_inode_removexattr(dentry, name); 1348 if (ret) 1349 return ret; 1350 return evm_inode_removexattr(dentry, name); 1351 } 1352 1353 int security_inode_need_killpriv(struct dentry *dentry) 1354 { 1355 return call_int_hook(inode_need_killpriv, 0, dentry); 1356 } 1357 1358 int security_inode_killpriv(struct user_namespace *mnt_userns, 1359 struct dentry *dentry) 1360 { 1361 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry); 1362 } 1363 1364 int security_inode_getsecurity(struct user_namespace *mnt_userns, 1365 struct inode *inode, const char *name, 1366 void **buffer, bool alloc) 1367 { 1368 struct security_hook_list *hp; 1369 int rc; 1370 1371 if (unlikely(IS_PRIVATE(inode))) 1372 return LSM_RET_DEFAULT(inode_getsecurity); 1373 /* 1374 * Only one module will provide an attribute with a given name. 1375 */ 1376 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1377 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc); 1378 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 1379 return rc; 1380 } 1381 return LSM_RET_DEFAULT(inode_getsecurity); 1382 } 1383 1384 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1385 { 1386 struct security_hook_list *hp; 1387 int rc; 1388 1389 if (unlikely(IS_PRIVATE(inode))) 1390 return LSM_RET_DEFAULT(inode_setsecurity); 1391 /* 1392 * Only one module will provide an attribute with a given name. 1393 */ 1394 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1395 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1396 flags); 1397 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 1398 return rc; 1399 } 1400 return LSM_RET_DEFAULT(inode_setsecurity); 1401 } 1402 1403 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1404 { 1405 if (unlikely(IS_PRIVATE(inode))) 1406 return 0; 1407 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1408 } 1409 EXPORT_SYMBOL(security_inode_listsecurity); 1410 1411 void security_inode_getsecid(struct inode *inode, u32 *secid) 1412 { 1413 call_void_hook(inode_getsecid, inode, secid); 1414 } 1415 1416 int security_inode_copy_up(struct dentry *src, struct cred **new) 1417 { 1418 return call_int_hook(inode_copy_up, 0, src, new); 1419 } 1420 EXPORT_SYMBOL(security_inode_copy_up); 1421 1422 int security_inode_copy_up_xattr(const char *name) 1423 { 1424 struct security_hook_list *hp; 1425 int rc; 1426 1427 /* 1428 * The implementation can return 0 (accept the xattr), 1 (discard the 1429 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 1430 * any other error code incase of an error. 1431 */ 1432 hlist_for_each_entry(hp, 1433 &security_hook_heads.inode_copy_up_xattr, list) { 1434 rc = hp->hook.inode_copy_up_xattr(name); 1435 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 1436 return rc; 1437 } 1438 1439 return LSM_RET_DEFAULT(inode_copy_up_xattr); 1440 } 1441 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1442 1443 int security_kernfs_init_security(struct kernfs_node *kn_dir, 1444 struct kernfs_node *kn) 1445 { 1446 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1447 } 1448 1449 int security_file_permission(struct file *file, int mask) 1450 { 1451 int ret; 1452 1453 ret = call_int_hook(file_permission, 0, file, mask); 1454 if (ret) 1455 return ret; 1456 1457 return fsnotify_perm(file, mask); 1458 } 1459 1460 int security_file_alloc(struct file *file) 1461 { 1462 int rc = lsm_file_alloc(file); 1463 1464 if (rc) 1465 return rc; 1466 rc = call_int_hook(file_alloc_security, 0, file); 1467 if (unlikely(rc)) 1468 security_file_free(file); 1469 return rc; 1470 } 1471 1472 void security_file_free(struct file *file) 1473 { 1474 void *blob; 1475 1476 call_void_hook(file_free_security, file); 1477 1478 blob = file->f_security; 1479 if (blob) { 1480 file->f_security = NULL; 1481 kmem_cache_free(lsm_file_cache, blob); 1482 } 1483 } 1484 1485 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1486 { 1487 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1488 } 1489 EXPORT_SYMBOL_GPL(security_file_ioctl); 1490 1491 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1492 { 1493 /* 1494 * Does we have PROT_READ and does the application expect 1495 * it to imply PROT_EXEC? If not, nothing to talk about... 1496 */ 1497 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1498 return prot; 1499 if (!(current->personality & READ_IMPLIES_EXEC)) 1500 return prot; 1501 /* 1502 * if that's an anonymous mapping, let it. 1503 */ 1504 if (!file) 1505 return prot | PROT_EXEC; 1506 /* 1507 * ditto if it's not on noexec mount, except that on !MMU we need 1508 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1509 */ 1510 if (!path_noexec(&file->f_path)) { 1511 #ifndef CONFIG_MMU 1512 if (file->f_op->mmap_capabilities) { 1513 unsigned caps = file->f_op->mmap_capabilities(file); 1514 if (!(caps & NOMMU_MAP_EXEC)) 1515 return prot; 1516 } 1517 #endif 1518 return prot | PROT_EXEC; 1519 } 1520 /* anything on noexec mount won't get PROT_EXEC */ 1521 return prot; 1522 } 1523 1524 int security_mmap_file(struct file *file, unsigned long prot, 1525 unsigned long flags) 1526 { 1527 int ret; 1528 ret = call_int_hook(mmap_file, 0, file, prot, 1529 mmap_prot(file, prot), flags); 1530 if (ret) 1531 return ret; 1532 return ima_file_mmap(file, prot); 1533 } 1534 1535 int security_mmap_addr(unsigned long addr) 1536 { 1537 return call_int_hook(mmap_addr, 0, addr); 1538 } 1539 1540 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1541 unsigned long prot) 1542 { 1543 int ret; 1544 1545 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1546 if (ret) 1547 return ret; 1548 return ima_file_mprotect(vma, prot); 1549 } 1550 1551 int security_file_lock(struct file *file, unsigned int cmd) 1552 { 1553 return call_int_hook(file_lock, 0, file, cmd); 1554 } 1555 1556 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1557 { 1558 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1559 } 1560 1561 void security_file_set_fowner(struct file *file) 1562 { 1563 call_void_hook(file_set_fowner, file); 1564 } 1565 1566 int security_file_send_sigiotask(struct task_struct *tsk, 1567 struct fown_struct *fown, int sig) 1568 { 1569 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1570 } 1571 1572 int security_file_receive(struct file *file) 1573 { 1574 return call_int_hook(file_receive, 0, file); 1575 } 1576 1577 int security_file_open(struct file *file) 1578 { 1579 int ret; 1580 1581 ret = call_int_hook(file_open, 0, file); 1582 if (ret) 1583 return ret; 1584 1585 return fsnotify_perm(file, MAY_OPEN); 1586 } 1587 1588 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1589 { 1590 int rc = lsm_task_alloc(task); 1591 1592 if (rc) 1593 return rc; 1594 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1595 if (unlikely(rc)) 1596 security_task_free(task); 1597 return rc; 1598 } 1599 1600 void security_task_free(struct task_struct *task) 1601 { 1602 call_void_hook(task_free, task); 1603 1604 kfree(task->security); 1605 task->security = NULL; 1606 } 1607 1608 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1609 { 1610 int rc = lsm_cred_alloc(cred, gfp); 1611 1612 if (rc) 1613 return rc; 1614 1615 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1616 if (unlikely(rc)) 1617 security_cred_free(cred); 1618 return rc; 1619 } 1620 1621 void security_cred_free(struct cred *cred) 1622 { 1623 /* 1624 * There is a failure case in prepare_creds() that 1625 * may result in a call here with ->security being NULL. 1626 */ 1627 if (unlikely(cred->security == NULL)) 1628 return; 1629 1630 call_void_hook(cred_free, cred); 1631 1632 kfree(cred->security); 1633 cred->security = NULL; 1634 } 1635 1636 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1637 { 1638 int rc = lsm_cred_alloc(new, gfp); 1639 1640 if (rc) 1641 return rc; 1642 1643 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1644 if (unlikely(rc)) 1645 security_cred_free(new); 1646 return rc; 1647 } 1648 1649 void security_transfer_creds(struct cred *new, const struct cred *old) 1650 { 1651 call_void_hook(cred_transfer, new, old); 1652 } 1653 1654 void security_cred_getsecid(const struct cred *c, u32 *secid) 1655 { 1656 *secid = 0; 1657 call_void_hook(cred_getsecid, c, secid); 1658 } 1659 EXPORT_SYMBOL(security_cred_getsecid); 1660 1661 int security_kernel_act_as(struct cred *new, u32 secid) 1662 { 1663 return call_int_hook(kernel_act_as, 0, new, secid); 1664 } 1665 1666 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1667 { 1668 return call_int_hook(kernel_create_files_as, 0, new, inode); 1669 } 1670 1671 int security_kernel_module_request(char *kmod_name) 1672 { 1673 int ret; 1674 1675 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1676 if (ret) 1677 return ret; 1678 return integrity_kernel_module_request(kmod_name); 1679 } 1680 1681 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 1682 bool contents) 1683 { 1684 int ret; 1685 1686 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 1687 if (ret) 1688 return ret; 1689 return ima_read_file(file, id, contents); 1690 } 1691 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1692 1693 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1694 enum kernel_read_file_id id) 1695 { 1696 int ret; 1697 1698 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1699 if (ret) 1700 return ret; 1701 return ima_post_read_file(file, buf, size, id); 1702 } 1703 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1704 1705 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 1706 { 1707 int ret; 1708 1709 ret = call_int_hook(kernel_load_data, 0, id, contents); 1710 if (ret) 1711 return ret; 1712 return ima_load_data(id, contents); 1713 } 1714 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1715 1716 int security_kernel_post_load_data(char *buf, loff_t size, 1717 enum kernel_load_data_id id, 1718 char *description) 1719 { 1720 int ret; 1721 1722 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 1723 description); 1724 if (ret) 1725 return ret; 1726 return ima_post_load_data(buf, size, id, description); 1727 } 1728 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 1729 1730 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1731 int flags) 1732 { 1733 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1734 } 1735 1736 int security_task_fix_setgid(struct cred *new, const struct cred *old, 1737 int flags) 1738 { 1739 return call_int_hook(task_fix_setgid, 0, new, old, flags); 1740 } 1741 1742 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1743 { 1744 return call_int_hook(task_setpgid, 0, p, pgid); 1745 } 1746 1747 int security_task_getpgid(struct task_struct *p) 1748 { 1749 return call_int_hook(task_getpgid, 0, p); 1750 } 1751 1752 int security_task_getsid(struct task_struct *p) 1753 { 1754 return call_int_hook(task_getsid, 0, p); 1755 } 1756 1757 void security_task_getsecid(struct task_struct *p, u32 *secid) 1758 { 1759 *secid = 0; 1760 call_void_hook(task_getsecid, p, secid); 1761 } 1762 EXPORT_SYMBOL(security_task_getsecid); 1763 1764 int security_task_setnice(struct task_struct *p, int nice) 1765 { 1766 return call_int_hook(task_setnice, 0, p, nice); 1767 } 1768 1769 int security_task_setioprio(struct task_struct *p, int ioprio) 1770 { 1771 return call_int_hook(task_setioprio, 0, p, ioprio); 1772 } 1773 1774 int security_task_getioprio(struct task_struct *p) 1775 { 1776 return call_int_hook(task_getioprio, 0, p); 1777 } 1778 1779 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1780 unsigned int flags) 1781 { 1782 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1783 } 1784 1785 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1786 struct rlimit *new_rlim) 1787 { 1788 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1789 } 1790 1791 int security_task_setscheduler(struct task_struct *p) 1792 { 1793 return call_int_hook(task_setscheduler, 0, p); 1794 } 1795 1796 int security_task_getscheduler(struct task_struct *p) 1797 { 1798 return call_int_hook(task_getscheduler, 0, p); 1799 } 1800 1801 int security_task_movememory(struct task_struct *p) 1802 { 1803 return call_int_hook(task_movememory, 0, p); 1804 } 1805 1806 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1807 int sig, const struct cred *cred) 1808 { 1809 return call_int_hook(task_kill, 0, p, info, sig, cred); 1810 } 1811 1812 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1813 unsigned long arg4, unsigned long arg5) 1814 { 1815 int thisrc; 1816 int rc = LSM_RET_DEFAULT(task_prctl); 1817 struct security_hook_list *hp; 1818 1819 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1820 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1821 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 1822 rc = thisrc; 1823 if (thisrc != 0) 1824 break; 1825 } 1826 } 1827 return rc; 1828 } 1829 1830 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1831 { 1832 call_void_hook(task_to_inode, p, inode); 1833 } 1834 1835 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1836 { 1837 return call_int_hook(ipc_permission, 0, ipcp, flag); 1838 } 1839 1840 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1841 { 1842 *secid = 0; 1843 call_void_hook(ipc_getsecid, ipcp, secid); 1844 } 1845 1846 int security_msg_msg_alloc(struct msg_msg *msg) 1847 { 1848 int rc = lsm_msg_msg_alloc(msg); 1849 1850 if (unlikely(rc)) 1851 return rc; 1852 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1853 if (unlikely(rc)) 1854 security_msg_msg_free(msg); 1855 return rc; 1856 } 1857 1858 void security_msg_msg_free(struct msg_msg *msg) 1859 { 1860 call_void_hook(msg_msg_free_security, msg); 1861 kfree(msg->security); 1862 msg->security = NULL; 1863 } 1864 1865 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1866 { 1867 int rc = lsm_ipc_alloc(msq); 1868 1869 if (unlikely(rc)) 1870 return rc; 1871 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1872 if (unlikely(rc)) 1873 security_msg_queue_free(msq); 1874 return rc; 1875 } 1876 1877 void security_msg_queue_free(struct kern_ipc_perm *msq) 1878 { 1879 call_void_hook(msg_queue_free_security, msq); 1880 kfree(msq->security); 1881 msq->security = NULL; 1882 } 1883 1884 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1885 { 1886 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1887 } 1888 1889 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1890 { 1891 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1892 } 1893 1894 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1895 struct msg_msg *msg, int msqflg) 1896 { 1897 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1898 } 1899 1900 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1901 struct task_struct *target, long type, int mode) 1902 { 1903 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1904 } 1905 1906 int security_shm_alloc(struct kern_ipc_perm *shp) 1907 { 1908 int rc = lsm_ipc_alloc(shp); 1909 1910 if (unlikely(rc)) 1911 return rc; 1912 rc = call_int_hook(shm_alloc_security, 0, shp); 1913 if (unlikely(rc)) 1914 security_shm_free(shp); 1915 return rc; 1916 } 1917 1918 void security_shm_free(struct kern_ipc_perm *shp) 1919 { 1920 call_void_hook(shm_free_security, shp); 1921 kfree(shp->security); 1922 shp->security = NULL; 1923 } 1924 1925 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1926 { 1927 return call_int_hook(shm_associate, 0, shp, shmflg); 1928 } 1929 1930 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1931 { 1932 return call_int_hook(shm_shmctl, 0, shp, cmd); 1933 } 1934 1935 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1936 { 1937 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1938 } 1939 1940 int security_sem_alloc(struct kern_ipc_perm *sma) 1941 { 1942 int rc = lsm_ipc_alloc(sma); 1943 1944 if (unlikely(rc)) 1945 return rc; 1946 rc = call_int_hook(sem_alloc_security, 0, sma); 1947 if (unlikely(rc)) 1948 security_sem_free(sma); 1949 return rc; 1950 } 1951 1952 void security_sem_free(struct kern_ipc_perm *sma) 1953 { 1954 call_void_hook(sem_free_security, sma); 1955 kfree(sma->security); 1956 sma->security = NULL; 1957 } 1958 1959 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 1960 { 1961 return call_int_hook(sem_associate, 0, sma, semflg); 1962 } 1963 1964 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 1965 { 1966 return call_int_hook(sem_semctl, 0, sma, cmd); 1967 } 1968 1969 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 1970 unsigned nsops, int alter) 1971 { 1972 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 1973 } 1974 1975 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1976 { 1977 if (unlikely(inode && IS_PRIVATE(inode))) 1978 return; 1979 call_void_hook(d_instantiate, dentry, inode); 1980 } 1981 EXPORT_SYMBOL(security_d_instantiate); 1982 1983 int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 1984 char **value) 1985 { 1986 struct security_hook_list *hp; 1987 1988 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 1989 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1990 continue; 1991 return hp->hook.getprocattr(p, name, value); 1992 } 1993 return LSM_RET_DEFAULT(getprocattr); 1994 } 1995 1996 int security_setprocattr(const char *lsm, const char *name, void *value, 1997 size_t size) 1998 { 1999 struct security_hook_list *hp; 2000 2001 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 2002 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2003 continue; 2004 return hp->hook.setprocattr(name, value, size); 2005 } 2006 return LSM_RET_DEFAULT(setprocattr); 2007 } 2008 2009 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 2010 { 2011 return call_int_hook(netlink_send, 0, sk, skb); 2012 } 2013 2014 int security_ismaclabel(const char *name) 2015 { 2016 return call_int_hook(ismaclabel, 0, name); 2017 } 2018 EXPORT_SYMBOL(security_ismaclabel); 2019 2020 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2021 { 2022 struct security_hook_list *hp; 2023 int rc; 2024 2025 /* 2026 * Currently, only one LSM can implement secid_to_secctx (i.e this 2027 * LSM hook is not "stackable"). 2028 */ 2029 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 2030 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 2031 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 2032 return rc; 2033 } 2034 2035 return LSM_RET_DEFAULT(secid_to_secctx); 2036 } 2037 EXPORT_SYMBOL(security_secid_to_secctx); 2038 2039 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 2040 { 2041 *secid = 0; 2042 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 2043 } 2044 EXPORT_SYMBOL(security_secctx_to_secid); 2045 2046 void security_release_secctx(char *secdata, u32 seclen) 2047 { 2048 call_void_hook(release_secctx, secdata, seclen); 2049 } 2050 EXPORT_SYMBOL(security_release_secctx); 2051 2052 void security_inode_invalidate_secctx(struct inode *inode) 2053 { 2054 call_void_hook(inode_invalidate_secctx, inode); 2055 } 2056 EXPORT_SYMBOL(security_inode_invalidate_secctx); 2057 2058 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 2059 { 2060 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 2061 } 2062 EXPORT_SYMBOL(security_inode_notifysecctx); 2063 2064 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 2065 { 2066 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 2067 } 2068 EXPORT_SYMBOL(security_inode_setsecctx); 2069 2070 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 2071 { 2072 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 2073 } 2074 EXPORT_SYMBOL(security_inode_getsecctx); 2075 2076 #ifdef CONFIG_WATCH_QUEUE 2077 int security_post_notification(const struct cred *w_cred, 2078 const struct cred *cred, 2079 struct watch_notification *n) 2080 { 2081 return call_int_hook(post_notification, 0, w_cred, cred, n); 2082 } 2083 #endif /* CONFIG_WATCH_QUEUE */ 2084 2085 #ifdef CONFIG_KEY_NOTIFICATIONS 2086 int security_watch_key(struct key *key) 2087 { 2088 return call_int_hook(watch_key, 0, key); 2089 } 2090 #endif 2091 2092 #ifdef CONFIG_SECURITY_NETWORK 2093 2094 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 2095 { 2096 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 2097 } 2098 EXPORT_SYMBOL(security_unix_stream_connect); 2099 2100 int security_unix_may_send(struct socket *sock, struct socket *other) 2101 { 2102 return call_int_hook(unix_may_send, 0, sock, other); 2103 } 2104 EXPORT_SYMBOL(security_unix_may_send); 2105 2106 int security_socket_create(int family, int type, int protocol, int kern) 2107 { 2108 return call_int_hook(socket_create, 0, family, type, protocol, kern); 2109 } 2110 2111 int security_socket_post_create(struct socket *sock, int family, 2112 int type, int protocol, int kern) 2113 { 2114 return call_int_hook(socket_post_create, 0, sock, family, type, 2115 protocol, kern); 2116 } 2117 2118 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 2119 { 2120 return call_int_hook(socket_socketpair, 0, socka, sockb); 2121 } 2122 EXPORT_SYMBOL(security_socket_socketpair); 2123 2124 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 2125 { 2126 return call_int_hook(socket_bind, 0, sock, address, addrlen); 2127 } 2128 2129 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 2130 { 2131 return call_int_hook(socket_connect, 0, sock, address, addrlen); 2132 } 2133 2134 int security_socket_listen(struct socket *sock, int backlog) 2135 { 2136 return call_int_hook(socket_listen, 0, sock, backlog); 2137 } 2138 2139 int security_socket_accept(struct socket *sock, struct socket *newsock) 2140 { 2141 return call_int_hook(socket_accept, 0, sock, newsock); 2142 } 2143 2144 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 2145 { 2146 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 2147 } 2148 2149 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2150 int size, int flags) 2151 { 2152 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 2153 } 2154 2155 int security_socket_getsockname(struct socket *sock) 2156 { 2157 return call_int_hook(socket_getsockname, 0, sock); 2158 } 2159 2160 int security_socket_getpeername(struct socket *sock) 2161 { 2162 return call_int_hook(socket_getpeername, 0, sock); 2163 } 2164 2165 int security_socket_getsockopt(struct socket *sock, int level, int optname) 2166 { 2167 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2168 } 2169 2170 int security_socket_setsockopt(struct socket *sock, int level, int optname) 2171 { 2172 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2173 } 2174 2175 int security_socket_shutdown(struct socket *sock, int how) 2176 { 2177 return call_int_hook(socket_shutdown, 0, sock, how); 2178 } 2179 2180 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2181 { 2182 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2183 } 2184 EXPORT_SYMBOL(security_sock_rcv_skb); 2185 2186 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2187 int __user *optlen, unsigned len) 2188 { 2189 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2190 optval, optlen, len); 2191 } 2192 2193 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2194 { 2195 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2196 skb, secid); 2197 } 2198 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2199 2200 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2201 { 2202 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2203 } 2204 2205 void security_sk_free(struct sock *sk) 2206 { 2207 call_void_hook(sk_free_security, sk); 2208 } 2209 2210 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2211 { 2212 call_void_hook(sk_clone_security, sk, newsk); 2213 } 2214 EXPORT_SYMBOL(security_sk_clone); 2215 2216 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic) 2217 { 2218 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 2219 } 2220 EXPORT_SYMBOL(security_sk_classify_flow); 2221 2222 void security_req_classify_flow(const struct request_sock *req, 2223 struct flowi_common *flic) 2224 { 2225 call_void_hook(req_classify_flow, req, flic); 2226 } 2227 EXPORT_SYMBOL(security_req_classify_flow); 2228 2229 void security_sock_graft(struct sock *sk, struct socket *parent) 2230 { 2231 call_void_hook(sock_graft, sk, parent); 2232 } 2233 EXPORT_SYMBOL(security_sock_graft); 2234 2235 int security_inet_conn_request(const struct sock *sk, 2236 struct sk_buff *skb, struct request_sock *req) 2237 { 2238 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2239 } 2240 EXPORT_SYMBOL(security_inet_conn_request); 2241 2242 void security_inet_csk_clone(struct sock *newsk, 2243 const struct request_sock *req) 2244 { 2245 call_void_hook(inet_csk_clone, newsk, req); 2246 } 2247 2248 void security_inet_conn_established(struct sock *sk, 2249 struct sk_buff *skb) 2250 { 2251 call_void_hook(inet_conn_established, sk, skb); 2252 } 2253 EXPORT_SYMBOL(security_inet_conn_established); 2254 2255 int security_secmark_relabel_packet(u32 secid) 2256 { 2257 return call_int_hook(secmark_relabel_packet, 0, secid); 2258 } 2259 EXPORT_SYMBOL(security_secmark_relabel_packet); 2260 2261 void security_secmark_refcount_inc(void) 2262 { 2263 call_void_hook(secmark_refcount_inc); 2264 } 2265 EXPORT_SYMBOL(security_secmark_refcount_inc); 2266 2267 void security_secmark_refcount_dec(void) 2268 { 2269 call_void_hook(secmark_refcount_dec); 2270 } 2271 EXPORT_SYMBOL(security_secmark_refcount_dec); 2272 2273 int security_tun_dev_alloc_security(void **security) 2274 { 2275 return call_int_hook(tun_dev_alloc_security, 0, security); 2276 } 2277 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2278 2279 void security_tun_dev_free_security(void *security) 2280 { 2281 call_void_hook(tun_dev_free_security, security); 2282 } 2283 EXPORT_SYMBOL(security_tun_dev_free_security); 2284 2285 int security_tun_dev_create(void) 2286 { 2287 return call_int_hook(tun_dev_create, 0); 2288 } 2289 EXPORT_SYMBOL(security_tun_dev_create); 2290 2291 int security_tun_dev_attach_queue(void *security) 2292 { 2293 return call_int_hook(tun_dev_attach_queue, 0, security); 2294 } 2295 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2296 2297 int security_tun_dev_attach(struct sock *sk, void *security) 2298 { 2299 return call_int_hook(tun_dev_attach, 0, sk, security); 2300 } 2301 EXPORT_SYMBOL(security_tun_dev_attach); 2302 2303 int security_tun_dev_open(void *security) 2304 { 2305 return call_int_hook(tun_dev_open, 0, security); 2306 } 2307 EXPORT_SYMBOL(security_tun_dev_open); 2308 2309 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 2310 { 2311 return call_int_hook(sctp_assoc_request, 0, ep, skb); 2312 } 2313 EXPORT_SYMBOL(security_sctp_assoc_request); 2314 2315 int security_sctp_bind_connect(struct sock *sk, int optname, 2316 struct sockaddr *address, int addrlen) 2317 { 2318 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2319 address, addrlen); 2320 } 2321 EXPORT_SYMBOL(security_sctp_bind_connect); 2322 2323 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 2324 struct sock *newsk) 2325 { 2326 call_void_hook(sctp_sk_clone, ep, sk, newsk); 2327 } 2328 EXPORT_SYMBOL(security_sctp_sk_clone); 2329 2330 #endif /* CONFIG_SECURITY_NETWORK */ 2331 2332 #ifdef CONFIG_SECURITY_INFINIBAND 2333 2334 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2335 { 2336 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2337 } 2338 EXPORT_SYMBOL(security_ib_pkey_access); 2339 2340 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2341 { 2342 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2343 } 2344 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2345 2346 int security_ib_alloc_security(void **sec) 2347 { 2348 return call_int_hook(ib_alloc_security, 0, sec); 2349 } 2350 EXPORT_SYMBOL(security_ib_alloc_security); 2351 2352 void security_ib_free_security(void *sec) 2353 { 2354 call_void_hook(ib_free_security, sec); 2355 } 2356 EXPORT_SYMBOL(security_ib_free_security); 2357 #endif /* CONFIG_SECURITY_INFINIBAND */ 2358 2359 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2360 2361 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2362 struct xfrm_user_sec_ctx *sec_ctx, 2363 gfp_t gfp) 2364 { 2365 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2366 } 2367 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2368 2369 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2370 struct xfrm_sec_ctx **new_ctxp) 2371 { 2372 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2373 } 2374 2375 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2376 { 2377 call_void_hook(xfrm_policy_free_security, ctx); 2378 } 2379 EXPORT_SYMBOL(security_xfrm_policy_free); 2380 2381 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2382 { 2383 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2384 } 2385 2386 int security_xfrm_state_alloc(struct xfrm_state *x, 2387 struct xfrm_user_sec_ctx *sec_ctx) 2388 { 2389 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2390 } 2391 EXPORT_SYMBOL(security_xfrm_state_alloc); 2392 2393 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2394 struct xfrm_sec_ctx *polsec, u32 secid) 2395 { 2396 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2397 } 2398 2399 int security_xfrm_state_delete(struct xfrm_state *x) 2400 { 2401 return call_int_hook(xfrm_state_delete_security, 0, x); 2402 } 2403 EXPORT_SYMBOL(security_xfrm_state_delete); 2404 2405 void security_xfrm_state_free(struct xfrm_state *x) 2406 { 2407 call_void_hook(xfrm_state_free_security, x); 2408 } 2409 2410 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 2411 { 2412 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); 2413 } 2414 2415 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2416 struct xfrm_policy *xp, 2417 const struct flowi_common *flic) 2418 { 2419 struct security_hook_list *hp; 2420 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 2421 2422 /* 2423 * Since this function is expected to return 0 or 1, the judgment 2424 * becomes difficult if multiple LSMs supply this call. Fortunately, 2425 * we can use the first LSM's judgment because currently only SELinux 2426 * supplies this call. 2427 * 2428 * For speed optimization, we explicitly break the loop rather than 2429 * using the macro 2430 */ 2431 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2432 list) { 2433 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 2434 break; 2435 } 2436 return rc; 2437 } 2438 2439 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2440 { 2441 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2442 } 2443 2444 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 2445 { 2446 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 2447 0); 2448 2449 BUG_ON(rc); 2450 } 2451 EXPORT_SYMBOL(security_skb_classify_flow); 2452 2453 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2454 2455 #ifdef CONFIG_KEYS 2456 2457 int security_key_alloc(struct key *key, const struct cred *cred, 2458 unsigned long flags) 2459 { 2460 return call_int_hook(key_alloc, 0, key, cred, flags); 2461 } 2462 2463 void security_key_free(struct key *key) 2464 { 2465 call_void_hook(key_free, key); 2466 } 2467 2468 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 2469 enum key_need_perm need_perm) 2470 { 2471 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 2472 } 2473 2474 int security_key_getsecurity(struct key *key, char **_buffer) 2475 { 2476 *_buffer = NULL; 2477 return call_int_hook(key_getsecurity, 0, key, _buffer); 2478 } 2479 2480 #endif /* CONFIG_KEYS */ 2481 2482 #ifdef CONFIG_AUDIT 2483 2484 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2485 { 2486 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2487 } 2488 2489 int security_audit_rule_known(struct audit_krule *krule) 2490 { 2491 return call_int_hook(audit_rule_known, 0, krule); 2492 } 2493 2494 void security_audit_rule_free(void *lsmrule) 2495 { 2496 call_void_hook(audit_rule_free, lsmrule); 2497 } 2498 2499 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2500 { 2501 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2502 } 2503 #endif /* CONFIG_AUDIT */ 2504 2505 #ifdef CONFIG_BPF_SYSCALL 2506 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2507 { 2508 return call_int_hook(bpf, 0, cmd, attr, size); 2509 } 2510 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2511 { 2512 return call_int_hook(bpf_map, 0, map, fmode); 2513 } 2514 int security_bpf_prog(struct bpf_prog *prog) 2515 { 2516 return call_int_hook(bpf_prog, 0, prog); 2517 } 2518 int security_bpf_map_alloc(struct bpf_map *map) 2519 { 2520 return call_int_hook(bpf_map_alloc_security, 0, map); 2521 } 2522 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2523 { 2524 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2525 } 2526 void security_bpf_map_free(struct bpf_map *map) 2527 { 2528 call_void_hook(bpf_map_free_security, map); 2529 } 2530 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2531 { 2532 call_void_hook(bpf_prog_free_security, aux); 2533 } 2534 #endif /* CONFIG_BPF_SYSCALL */ 2535 2536 int security_locked_down(enum lockdown_reason what) 2537 { 2538 return call_int_hook(locked_down, 0, what); 2539 } 2540 EXPORT_SYMBOL(security_locked_down); 2541 2542 #ifdef CONFIG_PERF_EVENTS 2543 int security_perf_event_open(struct perf_event_attr *attr, int type) 2544 { 2545 return call_int_hook(perf_event_open, 0, attr, type); 2546 } 2547 2548 int security_perf_event_alloc(struct perf_event *event) 2549 { 2550 return call_int_hook(perf_event_alloc, 0, event); 2551 } 2552 2553 void security_perf_event_free(struct perf_event *event) 2554 { 2555 call_void_hook(perf_event_free, event); 2556 } 2557 2558 int security_perf_event_read(struct perf_event *event) 2559 { 2560 return call_int_hook(perf_event_read, 0, event); 2561 } 2562 2563 int security_perf_event_write(struct perf_event *event) 2564 { 2565 return call_int_hook(perf_event_write, 0, event); 2566 } 2567 #endif /* CONFIG_PERF_EVENTS */ 2568