xref: /linux-6.15/rust/pin-init/src/lib.rs (revision c2ddbdbb)
1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2 
3 //! API to safely and fallibly initialize pinned `struct`s using in-place constructors.
4 //!
5 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack
6 //! overflow.
7 //!
8 //! # Overview
9 //!
10 //! To initialize a `struct` with an in-place constructor you will need two things:
11 //! - an in-place constructor,
12 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
13 //!   [`UniqueArc<T>`], [`KBox<T>`] or any other smart pointer that implements [`InPlaceInit`]).
14 //!
15 //! To get an in-place constructor there are generally three options:
16 //! - directly creating an in-place constructor using the [`pin_init!`] macro,
17 //! - a custom function/macro returning an in-place constructor provided by someone else,
18 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
19 //!
20 //! Aside from pinned initialization, this API also supports in-place construction without pinning,
21 //! the macros/types/functions are generally named like the pinned variants without the `pin`
22 //! prefix.
23 //!
24 //! # Examples
25 //!
26 //! ## Using the [`pin_init!`] macro
27 //!
28 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with
29 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
30 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
31 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
32 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
33 //!
34 //! ```rust,ignore
35 //! # #![expect(clippy::disallowed_names)]
36 //! # #![feature(allocator_api)]
37 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
38 //! # use core::pin::Pin;
39 //! use pin_init::*;
40 //!
41 //! #[pin_data]
42 //! struct Foo {
43 //!     #[pin]
44 //!     a: CMutex<usize>,
45 //!     b: u32,
46 //! }
47 //!
48 //! let foo = pin_init!(Foo {
49 //!     a <- CMutex::new(42),
50 //!     b: 24,
51 //! });
52 //! # let _ = Box::pin_init(foo);
53 //! ```
54 //!
55 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
56 //! (or just the stack) to actually initialize a `Foo`:
57 //!
58 //! ```rust,ignore
59 //! # #![expect(clippy::disallowed_names)]
60 //! # #![feature(allocator_api)]
61 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
62 //! # use core::{alloc::AllocError, pin::Pin};
63 //! # use pin_init::*;
64 //! #
65 //! # #[pin_data]
66 //! # struct Foo {
67 //! #     #[pin]
68 //! #     a: CMutex<usize>,
69 //! #     b: u32,
70 //! # }
71 //! #
72 //! # let foo = pin_init!(Foo {
73 //! #     a <- CMutex::new(42),
74 //! #     b: 24,
75 //! # });
76 //! let foo: Result<Pin<Box<Foo>>, AllocError> = Box::pin_init(foo);
77 //! ```
78 //!
79 //! For more information see the [`pin_init!`] macro.
80 //!
81 //! ## Using a custom function/macro that returns an initializer
82 //!
83 //! Many types from the kernel supply a function/macro that returns an initializer, because the
84 //! above method only works for types where you can access the fields.
85 //!
86 //! ```rust,ignore
87 //! # #![feature(allocator_api)]
88 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
89 //! # use pin_init::*;
90 //! # use std::sync::Arc;
91 //! # use core::pin::Pin;
92 //! let mtx: Result<Pin<Arc<CMutex<usize>>>, _> = Arc::pin_init(CMutex::new(42));
93 //! ```
94 //!
95 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
96 //!
97 //! ```rust,ignore
98 //! # #![feature(allocator_api)]
99 //! # use pin_init::*;
100 //! # #[path = "../examples/error.rs"] mod error; use error::Error;
101 //! # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
102 //! #[pin_data]
103 //! struct DriverData {
104 //!     #[pin]
105 //!     status: CMutex<i32>,
106 //!     buffer: Box<[u8; 1_000_000]>,
107 //! }
108 //!
109 //! impl DriverData {
110 //!     fn new() -> impl PinInit<Self, Error> {
111 //!         try_pin_init!(Self {
112 //!             status <- CMutex::new(0),
113 //!             buffer: Box::init(pin_init::zeroed())?,
114 //!         }? Error)
115 //!     }
116 //! }
117 //! ```
118 //!
119 //! ## Manual creation of an initializer
120 //!
121 //! Often when working with primitives the previous approaches are not sufficient. That is where
122 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
123 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
124 //! actually does the initialization in the correct way. Here are the things to look out for
125 //! (we are calling the parameter to the closure `slot`):
126 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so
127 //!   `slot` now contains a valid bit pattern for the type `T`,
128 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
129 //!   you need to take care to clean up anything if your initialization fails mid-way,
130 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of
131 //!   `slot` gets called.
132 //!
133 //! ```rust,ignore
134 //! # #![feature(extern_types)]
135 //! use pin_init::*;
136 //! use core::{
137 //!     ptr::addr_of_mut,
138 //!     marker::PhantomPinned,
139 //!     cell::UnsafeCell,
140 //!     pin::Pin,
141 //!     mem::MaybeUninit,
142 //! };
143 //! mod bindings {
144 //!     extern "C" {
145 //!         pub type foo;
146 //!         pub fn init_foo(ptr: *mut foo);
147 //!         pub fn destroy_foo(ptr: *mut foo);
148 //!         #[must_use = "you must check the error return code"]
149 //!         pub fn enable_foo(ptr: *mut foo, flags: u32) -> i32;
150 //!     }
151 //! }
152 //!
153 //! /// # Invariants
154 //! ///
155 //! /// `foo` is always initialized
156 //! #[pin_data(PinnedDrop)]
157 //! pub struct RawFoo {
158 //!     #[pin]
159 //!     _p: PhantomPinned,
160 //!     #[pin]
161 //!     foo: UnsafeCell<MaybeUninit<bindings::foo>>,
162 //! }
163 //!
164 //! impl RawFoo {
165 //!     pub fn new(flags: u32) -> impl PinInit<Self, i32> {
166 //!         // SAFETY:
167 //!         // - when the closure returns `Ok(())`, then it has successfully initialized and
168 //!         //   enabled `foo`,
169 //!         // - when it returns `Err(e)`, then it has cleaned up before
170 //!         unsafe {
171 //!             pin_init_from_closure(move |slot: *mut Self| {
172 //!                 // `slot` contains uninit memory, avoid creating a reference.
173 //!                 let foo = addr_of_mut!((*slot).foo);
174 //!                 let foo = UnsafeCell::raw_get(foo).cast::<bindings::foo>();
175 //!
176 //!                 // Initialize the `foo`
177 //!                 bindings::init_foo(foo);
178 //!
179 //!                 // Try to enable it.
180 //!                 let err = bindings::enable_foo(foo, flags);
181 //!                 if err != 0 {
182 //!                     // Enabling has failed, first clean up the foo and then return the error.
183 //!                     bindings::destroy_foo(foo);
184 //!                     Err(err)
185 //!                 } else {
186 //!                     // All fields of `RawFoo` have been initialized, since `_p` is a ZST.
187 //!                     Ok(())
188 //!                 }
189 //!             })
190 //!         }
191 //!     }
192 //! }
193 //!
194 //! #[pinned_drop]
195 //! impl PinnedDrop for RawFoo {
196 //!     fn drop(self: Pin<&mut Self>) {
197 //!         // SAFETY: Since `foo` is initialized, destroying is safe.
198 //!         unsafe { bindings::destroy_foo(self.foo.get().cast::<bindings::foo>()) };
199 //!     }
200 //! }
201 //! ```
202 //!
203 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html
204 //! [structurally pinned fields]:
205 //!     https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field
206 //! [stack]: crate::stack_pin_init
207 //! [`Arc<T>`]: crate::sync::Arc
208 //! [`impl PinInit<Foo>`]: PinInit
209 //! [`impl PinInit<T, E>`]: PinInit
210 //! [`impl Init<T, E>`]: Init
211 //! [`pin_data`]: ::macros::pin_data
212 //! [`pin_init!`]: crate::pin_init!
213 
214 use crate::{
215     alloc::{AllocError, Flags, KBox},
216     error::{self, Error},
217     sync::Arc,
218     sync::UniqueArc,
219     types::{Opaque, ScopeGuard},
220 };
221 use core::{
222     cell::UnsafeCell,
223     convert::Infallible,
224     marker::PhantomData,
225     mem::MaybeUninit,
226     num::*,
227     pin::Pin,
228     ptr::{self, NonNull},
229 };
230 
231 #[doc(hidden)]
232 pub mod __internal;
233 #[doc(hidden)]
234 pub mod macros;
235 
236 /// Used to specify the pinning information of the fields of a struct.
237 ///
238 /// This is somewhat similar in purpose as
239 /// [pin-project-lite](https://crates.io/crates/pin-project-lite).
240 /// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each
241 /// field you want to structurally pin.
242 ///
243 /// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`,
244 /// then `#[pin]` directs the type of initializer that is required.
245 ///
246 /// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this
247 /// macro, and change your `Drop` implementation to `PinnedDrop` annotated with
248 /// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care.
249 ///
250 /// # Examples
251 ///
252 /// ```ignore
253 /// # #![feature(allocator_api)]
254 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
255 /// use pin_init::pin_data;
256 ///
257 /// enum Command {
258 ///     /* ... */
259 /// }
260 ///
261 /// #[pin_data]
262 /// struct DriverData {
263 ///     #[pin]
264 ///     queue: CMutex<Vec<Command>>,
265 ///     buf: Box<[u8; 1024 * 1024]>,
266 /// }
267 /// ```
268 ///
269 /// ```ignore
270 /// # #![feature(allocator_api)]
271 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
272 /// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} }
273 /// use core::pin::Pin;
274 /// use pin_init::{pin_data, pinned_drop, PinnedDrop};
275 ///
276 /// enum Command {
277 ///     /* ... */
278 /// }
279 ///
280 /// #[pin_data(PinnedDrop)]
281 /// struct DriverData {
282 ///     #[pin]
283 ///     queue: CMutex<Vec<Command>>,
284 ///     buf: Box<[u8; 1024 * 1024]>,
285 ///     raw_info: *mut bindings::info,
286 /// }
287 ///
288 /// #[pinned_drop]
289 /// impl PinnedDrop for DriverData {
290 ///     fn drop(self: Pin<&mut Self>) {
291 ///         unsafe { bindings::destroy_info(self.raw_info) };
292 ///     }
293 /// }
294 /// ```
295 ///
296 /// [`pin_init!`]: crate::pin_init
297 pub use ::macros::pin_data;
298 
299 /// Used to implement `PinnedDrop` safely.
300 ///
301 /// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`.
302 ///
303 /// # Examples
304 ///
305 /// ```ignore
306 /// # #![feature(allocator_api)]
307 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
308 /// # mod bindings { pub struct info; pub unsafe fn destroy_info(_: *mut info) {} }
309 /// use core::pin::Pin;
310 /// use pin_init::{pin_data, pinned_drop, PinnedDrop};
311 ///
312 /// enum Command {
313 ///     /* ... */
314 /// }
315 ///
316 /// #[pin_data(PinnedDrop)]
317 /// struct DriverData {
318 ///     #[pin]
319 ///     queue: CMutex<Vec<Command>>,
320 ///     buf: Box<[u8; 1024 * 1024]>,
321 ///     raw_info: *mut bindings::info,
322 /// }
323 ///
324 /// #[pinned_drop]
325 /// impl PinnedDrop for DriverData {
326 ///     fn drop(self: Pin<&mut Self>) {
327 ///         unsafe { bindings::destroy_info(self.raw_info) };
328 ///     }
329 /// }
330 /// ```
331 pub use ::macros::pinned_drop;
332 
333 /// Derives the [`Zeroable`] trait for the given struct.
334 ///
335 /// This can only be used for structs where every field implements the [`Zeroable`] trait.
336 ///
337 /// # Examples
338 ///
339 /// ```ignore
340 /// use pin_init::Zeroable;
341 ///
342 /// #[derive(Zeroable)]
343 /// pub struct DriverData {
344 ///     id: i64,
345 ///     buf_ptr: *mut u8,
346 ///     len: usize,
347 /// }
348 /// ```
349 pub use ::macros::Zeroable;
350 
351 /// Initialize and pin a type directly on the stack.
352 ///
353 /// # Examples
354 ///
355 /// ```rust,ignore
356 /// # #![expect(clippy::disallowed_names)]
357 /// # #![feature(allocator_api)]
358 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
359 /// # use pin_init::*;
360 /// # use core::pin::Pin;
361 /// #[pin_data]
362 /// struct Foo {
363 ///     #[pin]
364 ///     a: CMutex<usize>,
365 ///     b: Bar,
366 /// }
367 ///
368 /// #[pin_data]
369 /// struct Bar {
370 ///     x: u32,
371 /// }
372 ///
373 /// stack_pin_init!(let foo = pin_init!(Foo {
374 ///     a <- CMutex::new(42),
375 ///     b: Bar {
376 ///         x: 64,
377 ///     },
378 /// }));
379 /// let foo: Pin<&mut Foo> = foo;
380 /// println!("a: {}", &*foo.a.lock());
381 /// ```
382 ///
383 /// # Syntax
384 ///
385 /// A normal `let` binding with optional type annotation. The expression is expected to implement
386 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error
387 /// type, then use [`stack_try_pin_init!`].
388 ///
389 /// [`stack_try_pin_init!`]: crate::stack_try_pin_init!
390 #[macro_export]
391 macro_rules! stack_pin_init {
392     (let $var:ident $(: $t:ty)? = $val:expr) => {
393         let val = $val;
394         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
395         let mut $var = match $crate::init::__internal::StackInit::init($var, val) {
396             Ok(res) => res,
397             Err(x) => {
398                 let x: ::core::convert::Infallible = x;
399                 match x {}
400             }
401         };
402     };
403 }
404 
405 /// Initialize and pin a type directly on the stack.
406 ///
407 /// # Examples
408 ///
409 /// ```rust,ignore
410 /// # #![expect(clippy::disallowed_names)]
411 /// # #![feature(allocator_api)]
412 /// # #[path = "../examples/error.rs"] mod error; use error::Error;
413 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
414 /// # use pin_init::*;
415 /// #[pin_data]
416 /// struct Foo {
417 ///     #[pin]
418 ///     a: CMutex<usize>,
419 ///     b: Box<Bar>,
420 /// }
421 ///
422 /// struct Bar {
423 ///     x: u32,
424 /// }
425 ///
426 /// stack_try_pin_init!(let foo: Foo = try_pin_init!(Foo {
427 ///     a <- CMutex::new(42),
428 ///     b: Box::try_new(Bar {
429 ///         x: 64,
430 ///     })?,
431 /// }? Error));
432 /// let foo = foo.unwrap();
433 /// println!("a: {}", &*foo.a.lock());
434 /// ```
435 ///
436 /// ```rust,ignore
437 /// # #![expect(clippy::disallowed_names)]
438 /// # #![feature(allocator_api)]
439 /// # #[path = "../examples/error.rs"] mod error; use error::Error;
440 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
441 /// # use pin_init::*;
442 /// #[pin_data]
443 /// struct Foo {
444 ///     #[pin]
445 ///     a: CMutex<usize>,
446 ///     b: Box<Bar>,
447 /// }
448 ///
449 /// struct Bar {
450 ///     x: u32,
451 /// }
452 ///
453 /// stack_try_pin_init!(let foo: Foo =? try_pin_init!(Foo {
454 ///     a <- CMutex::new(42),
455 ///     b: Box::try_new(Bar {
456 ///         x: 64,
457 ///     })?,
458 /// }? Error));
459 /// println!("a: {}", &*foo.a.lock());
460 /// # Ok::<_, Error>(())
461 /// ```
462 ///
463 /// # Syntax
464 ///
465 /// A normal `let` binding with optional type annotation. The expression is expected to implement
466 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the
467 /// `=` will propagate this error.
468 #[macro_export]
469 macro_rules! stack_try_pin_init {
470     (let $var:ident $(: $t:ty)? = $val:expr) => {
471         let val = $val;
472         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
473         let mut $var = $crate::init::__internal::StackInit::init($var, val);
474     };
475     (let $var:ident $(: $t:ty)? =? $val:expr) => {
476         let val = $val;
477         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
478         let mut $var = $crate::init::__internal::StackInit::init($var, val)?;
479     };
480 }
481 
482 /// Construct an in-place, pinned initializer for `struct`s.
483 ///
484 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
485 /// [`try_pin_init!`].
486 ///
487 /// The syntax is almost identical to that of a normal `struct` initializer:
488 ///
489 /// ```rust,ignore
490 /// # use pin_init::*;
491 /// # use core::pin::Pin;
492 /// #[pin_data]
493 /// struct Foo {
494 ///     a: usize,
495 ///     b: Bar,
496 /// }
497 ///
498 /// #[pin_data]
499 /// struct Bar {
500 ///     x: u32,
501 /// }
502 ///
503 /// # fn demo() -> impl PinInit<Foo> {
504 /// let a = 42;
505 ///
506 /// let initializer = pin_init!(Foo {
507 ///     a,
508 ///     b: Bar {
509 ///         x: 64,
510 ///     },
511 /// });
512 /// # initializer }
513 /// # Box::pin_init(demo()).unwrap();
514 /// ```
515 ///
516 /// Arbitrary Rust expressions can be used to set the value of a variable.
517 ///
518 /// The fields are initialized in the order that they appear in the initializer. So it is possible
519 /// to read already initialized fields using raw pointers.
520 ///
521 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the
522 /// initializer.
523 ///
524 /// # Init-functions
525 ///
526 /// When working with this API it is often desired to let others construct your types without
527 /// giving access to all fields. This is where you would normally write a plain function `new`
528 /// that would return a new instance of your type. With this API that is also possible.
529 /// However, there are a few extra things to keep in mind.
530 ///
531 /// To create an initializer function, simply declare it like this:
532 ///
533 /// ```rust,ignore
534 /// # use pin_init::*;
535 /// # use core::pin::Pin;
536 /// # #[pin_data]
537 /// # struct Foo {
538 /// #     a: usize,
539 /// #     b: Bar,
540 /// # }
541 /// # #[pin_data]
542 /// # struct Bar {
543 /// #     x: u32,
544 /// # }
545 /// impl Foo {
546 ///     fn new() -> impl PinInit<Self> {
547 ///         pin_init!(Self {
548 ///             a: 42,
549 ///             b: Bar {
550 ///                 x: 64,
551 ///             },
552 ///         })
553 ///     }
554 /// }
555 /// ```
556 ///
557 /// Users of `Foo` can now create it like this:
558 ///
559 /// ```rust,ignore
560 /// # #![expect(clippy::disallowed_names)]
561 /// # use pin_init::*;
562 /// # use core::pin::Pin;
563 /// # #[pin_data]
564 /// # struct Foo {
565 /// #     a: usize,
566 /// #     b: Bar,
567 /// # }
568 /// # #[pin_data]
569 /// # struct Bar {
570 /// #     x: u32,
571 /// # }
572 /// # impl Foo {
573 /// #     fn new() -> impl PinInit<Self> {
574 /// #         pin_init!(Self {
575 /// #             a: 42,
576 /// #             b: Bar {
577 /// #                 x: 64,
578 /// #             },
579 /// #         })
580 /// #     }
581 /// # }
582 /// let foo = Box::pin_init(Foo::new());
583 /// ```
584 ///
585 /// They can also easily embed it into their own `struct`s:
586 ///
587 /// ```rust,ignore
588 /// # use pin_init::*;
589 /// # use core::pin::Pin;
590 /// # #[pin_data]
591 /// # struct Foo {
592 /// #     a: usize,
593 /// #     b: Bar,
594 /// # }
595 /// # #[pin_data]
596 /// # struct Bar {
597 /// #     x: u32,
598 /// # }
599 /// # impl Foo {
600 /// #     fn new() -> impl PinInit<Self> {
601 /// #         pin_init!(Self {
602 /// #             a: 42,
603 /// #             b: Bar {
604 /// #                 x: 64,
605 /// #             },
606 /// #         })
607 /// #     }
608 /// # }
609 /// #[pin_data]
610 /// struct FooContainer {
611 ///     #[pin]
612 ///     foo1: Foo,
613 ///     #[pin]
614 ///     foo2: Foo,
615 ///     other: u32,
616 /// }
617 ///
618 /// impl FooContainer {
619 ///     fn new(other: u32) -> impl PinInit<Self> {
620 ///         pin_init!(Self {
621 ///             foo1 <- Foo::new(),
622 ///             foo2 <- Foo::new(),
623 ///             other,
624 ///         })
625 ///     }
626 /// }
627 /// ```
628 ///
629 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`.
630 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just
631 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`.
632 ///
633 /// # Syntax
634 ///
635 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with
636 /// the following modifications is expected:
637 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
638 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
639 ///   pointer named `this` inside of the initializer.
640 /// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the
641 ///   struct, this initializes every field with 0 and then runs all initializers specified in the
642 ///   body. This can only be done if [`Zeroable`] is implemented for the struct.
643 ///
644 /// For instance:
645 ///
646 /// ```rust,ignore
647 /// # use pin_init::*;
648 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned};
649 /// #[pin_data]
650 /// #[derive(Zeroable)]
651 /// struct Buf {
652 ///     // `ptr` points into `buf`.
653 ///     ptr: *mut u8,
654 ///     buf: [u8; 64],
655 ///     #[pin]
656 ///     pin: PhantomPinned,
657 /// }
658 /// pin_init!(&this in Buf {
659 ///     buf: [0; 64],
660 ///     // SAFETY: TODO.
661 ///     ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() },
662 ///     pin: PhantomPinned,
663 /// });
664 /// pin_init!(Buf {
665 ///     buf: [1; 64],
666 ///     ..Zeroable::zeroed()
667 /// });
668 /// ```
669 ///
670 /// [`try_pin_init!`]: kernel::try_pin_init
671 /// [`NonNull<Self>`]: core::ptr::NonNull
672 // For a detailed example of how this macro works, see the module documentation of the hidden
673 // module `__internal` inside of `init/__internal.rs`.
674 #[macro_export]
675 macro_rules! pin_init {
676     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
677         $($fields:tt)*
678     }) => {
679         $crate::try_pin_init!($(&$this in)? $t $(::<$($generics),*>)? {
680             $($fields)*
681         }? ::core::convert::Infallible)
682     };
683 }
684 
685 /// Construct an in-place, fallible pinned initializer for `struct`s.
686 ///
687 /// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`].
688 ///
689 /// You can use the `?` operator or use `return Err(err)` inside the initializer to stop
690 /// initialization and return the error.
691 ///
692 /// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when
693 /// initialization fails, the memory can be safely deallocated without any further modifications.
694 ///
695 /// This macro defaults the error to [`Error`].
696 ///
697 /// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type`
698 /// after the `struct` initializer to specify the error type you want to use.
699 ///
700 /// # Examples
701 ///
702 /// ```rust,ignore
703 /// # #![feature(allocator_api)]
704 /// # #[path = "../examples/error.rs"] mod error; use error::Error;
705 /// use pin_init::*;
706 /// #[pin_data]
707 /// struct BigBuf {
708 ///     big: Box<[u8; 1024 * 1024 * 1024]>,
709 ///     small: [u8; 1024 * 1024],
710 ///     ptr: *mut u8,
711 /// }
712 ///
713 /// impl BigBuf {
714 ///     fn new() -> impl PinInit<Self, Error> {
715 ///         try_pin_init!(Self {
716 ///             big: Box::init(init::zeroed())?,
717 ///             small: [0; 1024 * 1024],
718 ///             ptr: core::ptr::null_mut(),
719 ///         }? Error)
720 ///     }
721 /// }
722 /// # let _ = Box::pin_init(BigBuf::new());
723 /// ```
724 // For a detailed example of how this macro works, see the module documentation of the hidden
725 // module `__internal` inside of `init/__internal.rs`.
726 #[macro_export]
727 macro_rules! try_pin_init {
728     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
729         $($fields:tt)*
730     }) => {
731         $crate::__init_internal!(
732             @this($($this)?),
733             @typ($t $(::<$($generics),*>)? ),
734             @fields($($fields)*),
735             @error($crate::error::Error),
736             @data(PinData, use_data),
737             @has_data(HasPinData, __pin_data),
738             @construct_closure(pin_init_from_closure),
739             @munch_fields($($fields)*),
740         )
741     };
742     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
743         $($fields:tt)*
744     }? $err:ty) => {
745         $crate::__init_internal!(
746             @this($($this)?),
747             @typ($t $(::<$($generics),*>)? ),
748             @fields($($fields)*),
749             @error($err),
750             @data(PinData, use_data),
751             @has_data(HasPinData, __pin_data),
752             @construct_closure(pin_init_from_closure),
753             @munch_fields($($fields)*),
754         )
755     };
756 }
757 
758 /// Construct an in-place initializer for `struct`s.
759 ///
760 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
761 /// [`try_init!`].
762 ///
763 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply:
764 /// - `unsafe` code must guarantee either full initialization or return an error and allow
765 ///   deallocation of the memory.
766 /// - the fields are initialized in the order given in the initializer.
767 /// - no references to fields are allowed to be created inside of the initializer.
768 ///
769 /// This initializer is for initializing data in-place that might later be moved. If you want to
770 /// pin-initialize, use [`pin_init!`].
771 ///
772 /// [`try_init!`]: crate::try_init!
773 // For a detailed example of how this macro works, see the module documentation of the hidden
774 // module `__internal` inside of `init/__internal.rs`.
775 #[macro_export]
776 macro_rules! init {
777     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
778         $($fields:tt)*
779     }) => {
780         $crate::try_init!($(&$this in)? $t $(::<$($generics),*>)? {
781             $($fields)*
782         }? ::core::convert::Infallible)
783     }
784 }
785 
786 /// Construct an in-place fallible initializer for `struct`s.
787 ///
788 /// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use
789 /// [`init!`].
790 ///
791 /// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error,
792 /// append `? $type` after the `struct` initializer.
793 /// The safety caveats from [`try_pin_init!`] also apply:
794 /// - `unsafe` code must guarantee either full initialization or return an error and allow
795 ///   deallocation of the memory.
796 /// - the fields are initialized in the order given in the initializer.
797 /// - no references to fields are allowed to be created inside of the initializer.
798 ///
799 /// # Examples
800 ///
801 /// ```rust,ignore
802 /// # #![feature(allocator_api)]
803 /// # use core::alloc::AllocError;
804 /// use pin_init::*;
805 /// struct BigBuf {
806 ///     big: Box<[u8; 1024 * 1024 * 1024]>,
807 ///     small: [u8; 1024 * 1024],
808 /// }
809 ///
810 /// impl BigBuf {
811 ///     fn new() -> impl Init<Self, AllocError> {
812 ///         try_init!(Self {
813 ///             big: Box::init(zeroed())?,
814 ///             small: [0; 1024 * 1024],
815 ///         }? AllocError)
816 ///     }
817 /// }
818 /// ```
819 // For a detailed example of how this macro works, see the module documentation of the hidden
820 // module `__internal` inside of `init/__internal.rs`.
821 #[macro_export]
822 macro_rules! try_init {
823     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
824         $($fields:tt)*
825     }) => {
826         $crate::__init_internal!(
827             @this($($this)?),
828             @typ($t $(::<$($generics),*>)?),
829             @fields($($fields)*),
830             @error($crate::error::Error),
831             @data(InitData, /*no use_data*/),
832             @has_data(HasInitData, __init_data),
833             @construct_closure(init_from_closure),
834             @munch_fields($($fields)*),
835         )
836     };
837     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
838         $($fields:tt)*
839     }? $err:ty) => {
840         $crate::__init_internal!(
841             @this($($this)?),
842             @typ($t $(::<$($generics),*>)?),
843             @fields($($fields)*),
844             @error($err),
845             @data(InitData, /*no use_data*/),
846             @has_data(HasInitData, __init_data),
847             @construct_closure(init_from_closure),
848             @munch_fields($($fields)*),
849         )
850     };
851 }
852 
853 /// Asserts that a field on a struct using `#[pin_data]` is marked with `#[pin]` ie. that it is
854 /// structurally pinned.
855 ///
856 /// # Example
857 ///
858 /// This will succeed:
859 /// ```ignore
860 /// use pin_init::assert_pinned;
861 /// #[pin_data]
862 /// struct MyStruct {
863 ///     #[pin]
864 ///     some_field: u64,
865 /// }
866 ///
867 /// assert_pinned!(MyStruct, some_field, u64);
868 /// ```
869 ///
870 /// This will fail:
871 /// ```compile_fail,ignore
872 /// use pin_init::assert_pinned;
873 /// #[pin_data]
874 /// struct MyStruct {
875 ///     some_field: u64,
876 /// }
877 ///
878 /// assert_pinned!(MyStruct, some_field, u64);
879 /// ```
880 ///
881 /// Some uses of the macro may trigger the `can't use generic parameters from outer item` error. To
882 /// work around this, you may pass the `inline` parameter to the macro. The `inline` parameter can
883 /// only be used when the macro is invoked from a function body.
884 /// ```ignore
885 /// use pin_init::assert_pinned;
886 /// #[pin_data]
887 /// struct Foo<T> {
888 ///     #[pin]
889 ///     elem: T,
890 /// }
891 ///
892 /// impl<T> Foo<T> {
893 ///     fn project(self: Pin<&mut Self>) -> Pin<&mut T> {
894 ///         assert_pinned!(Foo<T>, elem, T, inline);
895 ///
896 ///         // SAFETY: The field is structurally pinned.
897 ///         unsafe { self.map_unchecked_mut(|me| &mut me.elem) }
898 ///     }
899 /// }
900 /// ```
901 #[macro_export]
902 macro_rules! assert_pinned {
903     ($ty:ty, $field:ident, $field_ty:ty, inline) => {
904         let _ = move |ptr: *mut $field_ty| {
905             // SAFETY: This code is unreachable.
906             let data = unsafe { <$ty as $crate::init::__internal::HasPinData>::__pin_data() };
907             let init = $crate::init::__internal::AlwaysFail::<$field_ty>::new();
908             // SAFETY: This code is unreachable.
909             unsafe { data.$field(ptr, init) }.ok();
910         };
911     };
912 
913     ($ty:ty, $field:ident, $field_ty:ty) => {
914         const _: () = {
915             $crate::assert_pinned!($ty, $field, $field_ty, inline);
916         };
917     };
918 }
919 
920 /// A pin-initializer for the type `T`.
921 ///
922 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
923 /// be [`KBox<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use
924 /// the [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this.
925 ///
926 /// Also see the [module description](self).
927 ///
928 /// # Safety
929 ///
930 /// When implementing this trait you will need to take great care. Also there are probably very few
931 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible.
932 ///
933 /// The [`PinInit::__pinned_init`] function:
934 /// - returns `Ok(())` if it initialized every field of `slot`,
935 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
936 ///     - `slot` can be deallocated without UB occurring,
937 ///     - `slot` does not need to be dropped,
938 ///     - `slot` is not partially initialized.
939 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
940 ///
941 /// [`Arc<T>`]: crate::sync::Arc
942 /// [`Arc::pin_init`]: crate::sync::Arc::pin_init
943 #[must_use = "An initializer must be used in order to create its value."]
944 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized {
945     /// Initializes `slot`.
946     ///
947     /// # Safety
948     ///
949     /// - `slot` is a valid pointer to uninitialized memory.
950     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
951     ///   deallocate.
952     /// - `slot` will not move until it is dropped, i.e. it will be pinned.
953     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>;
954 
955     /// First initializes the value using `self` then calls the function `f` with the initialized
956     /// value.
957     ///
958     /// If `f` returns an error the value is dropped and the initializer will forward the error.
959     ///
960     /// # Examples
961     ///
962     /// ```rust,ignore
963     /// # #![feature(allocator_api)]
964     /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
965     /// # use pin_init::*;
966     /// let mtx_init = CMutex::new(42);
967     /// // Make the initializer print the value.
968     /// let mtx_init = mtx_init.pin_chain(|mtx| {
969     ///     println!("{:?}", mtx.get_data_mut());
970     ///     Ok(())
971     /// });
972     /// ```
973     fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E>
974     where
975         F: FnOnce(Pin<&mut T>) -> Result<(), E>,
976     {
977         ChainPinInit(self, f, PhantomData)
978     }
979 }
980 
981 /// An initializer returned by [`PinInit::pin_chain`].
982 pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, KBox<T>)>);
983 
984 // SAFETY: The `__pinned_init` function is implemented such that it
985 // - returns `Ok(())` on successful initialization,
986 // - returns `Err(err)` on error and in this case `slot` will be dropped.
987 // - considers `slot` pinned.
988 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E>
989 where
990     I: PinInit<T, E>,
991     F: FnOnce(Pin<&mut T>) -> Result<(), E>,
992 {
993     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
994         // SAFETY: All requirements fulfilled since this function is `__pinned_init`.
995         unsafe { self.0.__pinned_init(slot)? };
996         // SAFETY: The above call initialized `slot` and we still have unique access.
997         let val = unsafe { &mut *slot };
998         // SAFETY: `slot` is considered pinned.
999         let val = unsafe { Pin::new_unchecked(val) };
1000         // SAFETY: `slot` was initialized above.
1001         (self.1)(val).inspect_err(|_| unsafe { core::ptr::drop_in_place(slot) })
1002     }
1003 }
1004 
1005 /// An initializer for `T`.
1006 ///
1007 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
1008 /// be [`KBox<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use
1009 /// the [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because
1010 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well.
1011 ///
1012 /// Also see the [module description](self).
1013 ///
1014 /// # Safety
1015 ///
1016 /// When implementing this trait you will need to take great care. Also there are probably very few
1017 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible.
1018 ///
1019 /// The [`Init::__init`] function:
1020 /// - returns `Ok(())` if it initialized every field of `slot`,
1021 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1022 ///     - `slot` can be deallocated without UB occurring,
1023 ///     - `slot` does not need to be dropped,
1024 ///     - `slot` is not partially initialized.
1025 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1026 ///
1027 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same
1028 /// code as `__init`.
1029 ///
1030 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to
1031 /// move the pointee after initialization.
1032 ///
1033 /// [`Arc<T>`]: crate::sync::Arc
1034 #[must_use = "An initializer must be used in order to create its value."]
1035 pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> {
1036     /// Initializes `slot`.
1037     ///
1038     /// # Safety
1039     ///
1040     /// - `slot` is a valid pointer to uninitialized memory.
1041     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
1042     ///   deallocate.
1043     unsafe fn __init(self, slot: *mut T) -> Result<(), E>;
1044 
1045     /// First initializes the value using `self` then calls the function `f` with the initialized
1046     /// value.
1047     ///
1048     /// If `f` returns an error the value is dropped and the initializer will forward the error.
1049     ///
1050     /// # Examples
1051     ///
1052     /// ```rust,ignore
1053     /// # #![expect(clippy::disallowed_names)]
1054     /// use pin_init::{init_from_closure, zeroed};
1055     /// struct Foo {
1056     ///     buf: [u8; 1_000_000],
1057     /// }
1058     ///
1059     /// impl Foo {
1060     ///     fn setup(&mut self) {
1061     ///         pr_info!("Setting up foo");
1062     ///     }
1063     /// }
1064     ///
1065     /// let foo = init!(Foo {
1066     ///     buf <- zeroed()
1067     /// }).chain(|foo| {
1068     ///     foo.setup();
1069     ///     Ok(())
1070     /// });
1071     /// ```
1072     fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E>
1073     where
1074         F: FnOnce(&mut T) -> Result<(), E>,
1075     {
1076         ChainInit(self, f, PhantomData)
1077     }
1078 }
1079 
1080 /// An initializer returned by [`Init::chain`].
1081 pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, KBox<T>)>);
1082 
1083 // SAFETY: The `__init` function is implemented such that it
1084 // - returns `Ok(())` on successful initialization,
1085 // - returns `Err(err)` on error and in this case `slot` will be dropped.
1086 unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E>
1087 where
1088     I: Init<T, E>,
1089     F: FnOnce(&mut T) -> Result<(), E>,
1090 {
1091     unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1092         // SAFETY: All requirements fulfilled since this function is `__init`.
1093         unsafe { self.0.__pinned_init(slot)? };
1094         // SAFETY: The above call initialized `slot` and we still have unique access.
1095         (self.1)(unsafe { &mut *slot }).inspect_err(|_|
1096             // SAFETY: `slot` was initialized above.
1097             unsafe { core::ptr::drop_in_place(slot) })
1098     }
1099 }
1100 
1101 // SAFETY: `__pinned_init` behaves exactly the same as `__init`.
1102 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E>
1103 where
1104     I: Init<T, E>,
1105     F: FnOnce(&mut T) -> Result<(), E>,
1106 {
1107     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1108         // SAFETY: `__init` has less strict requirements compared to `__pinned_init`.
1109         unsafe { self.__init(slot) }
1110     }
1111 }
1112 
1113 /// Creates a new [`PinInit<T, E>`] from the given closure.
1114 ///
1115 /// # Safety
1116 ///
1117 /// The closure:
1118 /// - returns `Ok(())` if it initialized every field of `slot`,
1119 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1120 ///     - `slot` can be deallocated without UB occurring,
1121 ///     - `slot` does not need to be dropped,
1122 ///     - `slot` is not partially initialized.
1123 /// - may assume that the `slot` does not move if `T: !Unpin`,
1124 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1125 #[inline]
1126 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>(
1127     f: impl FnOnce(*mut T) -> Result<(), E>,
1128 ) -> impl PinInit<T, E> {
1129     __internal::InitClosure(f, PhantomData)
1130 }
1131 
1132 /// Creates a new [`Init<T, E>`] from the given closure.
1133 ///
1134 /// # Safety
1135 ///
1136 /// The closure:
1137 /// - returns `Ok(())` if it initialized every field of `slot`,
1138 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1139 ///     - `slot` can be deallocated without UB occurring,
1140 ///     - `slot` does not need to be dropped,
1141 ///     - `slot` is not partially initialized.
1142 /// - the `slot` may move after initialization.
1143 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1144 #[inline]
1145 pub const unsafe fn init_from_closure<T: ?Sized, E>(
1146     f: impl FnOnce(*mut T) -> Result<(), E>,
1147 ) -> impl Init<T, E> {
1148     __internal::InitClosure(f, PhantomData)
1149 }
1150 
1151 /// An initializer that leaves the memory uninitialized.
1152 ///
1153 /// The initializer is a no-op. The `slot` memory is not changed.
1154 #[inline]
1155 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> {
1156     // SAFETY: The memory is allowed to be uninitialized.
1157     unsafe { init_from_closure(|_| Ok(())) }
1158 }
1159 
1160 /// Initializes an array by initializing each element via the provided initializer.
1161 ///
1162 /// # Examples
1163 ///
1164 /// ```rust,ignore
1165 /// # use pin_init::*;
1166 /// use pin_init::init_array_from_fn;
1167 /// let array: Box<[usize; 1_000]> = Box::init(init_array_from_fn(|i| i)).unwrap();
1168 /// assert_eq!(array.len(), 1_000);
1169 /// ```
1170 pub fn init_array_from_fn<I, const N: usize, T, E>(
1171     mut make_init: impl FnMut(usize) -> I,
1172 ) -> impl Init<[T; N], E>
1173 where
1174     I: Init<T, E>,
1175 {
1176     let init = move |slot: *mut [T; N]| {
1177         let slot = slot.cast::<T>();
1178         // Counts the number of initialized elements and when dropped drops that many elements from
1179         // `slot`.
1180         let mut init_count = ScopeGuard::new_with_data(0, |i| {
1181             // We now free every element that has been initialized before.
1182             // SAFETY: The loop initialized exactly the values from 0..i and since we
1183             // return `Err` below, the caller will consider the memory at `slot` as
1184             // uninitialized.
1185             unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1186         });
1187         for i in 0..N {
1188             let init = make_init(i);
1189             // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1190             let ptr = unsafe { slot.add(i) };
1191             // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1192             // requirements.
1193             unsafe { init.__init(ptr) }?;
1194             *init_count += 1;
1195         }
1196         init_count.dismiss();
1197         Ok(())
1198     };
1199     // SAFETY: The initializer above initializes every element of the array. On failure it drops
1200     // any initialized elements and returns `Err`.
1201     unsafe { init_from_closure(init) }
1202 }
1203 
1204 /// Initializes an array by initializing each element via the provided initializer.
1205 ///
1206 /// # Examples
1207 ///
1208 /// ```rust,ignore
1209 /// # #![feature(allocator_api)]
1210 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
1211 /// # use pin_init::*;
1212 /// # use core::pin::Pin;
1213 /// use pin_init::pin_init_array_from_fn;
1214 /// use std::sync::Arc;
1215 /// let array: Pin<Arc<[CMutex<usize>; 1_000]>> =
1216 ///     Arc::pin_init(pin_init_array_from_fn(|i| CMutex::new(i))).unwrap();
1217 /// assert_eq!(array.len(), 1_000);
1218 /// ```
1219 pub fn pin_init_array_from_fn<I, const N: usize, T, E>(
1220     mut make_init: impl FnMut(usize) -> I,
1221 ) -> impl PinInit<[T; N], E>
1222 where
1223     I: PinInit<T, E>,
1224 {
1225     let init = move |slot: *mut [T; N]| {
1226         let slot = slot.cast::<T>();
1227         // Counts the number of initialized elements and when dropped drops that many elements from
1228         // `slot`.
1229         let mut init_count = ScopeGuard::new_with_data(0, |i| {
1230             // We now free every element that has been initialized before.
1231             // SAFETY: The loop initialized exactly the values from 0..i and since we
1232             // return `Err` below, the caller will consider the memory at `slot` as
1233             // uninitialized.
1234             unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1235         });
1236         for i in 0..N {
1237             let init = make_init(i);
1238             // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1239             let ptr = unsafe { slot.add(i) };
1240             // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1241             // requirements.
1242             unsafe { init.__pinned_init(ptr) }?;
1243             *init_count += 1;
1244         }
1245         init_count.dismiss();
1246         Ok(())
1247     };
1248     // SAFETY: The initializer above initializes every element of the array. On failure it drops
1249     // any initialized elements and returns `Err`.
1250     unsafe { pin_init_from_closure(init) }
1251 }
1252 
1253 // SAFETY: Every type can be initialized by-value.
1254 unsafe impl<T, E> Init<T, E> for T {
1255     unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1256         // SAFETY: TODO.
1257         unsafe { slot.write(self) };
1258         Ok(())
1259     }
1260 }
1261 
1262 // SAFETY: Every type can be initialized by-value. `__pinned_init` calls `__init`.
1263 unsafe impl<T, E> PinInit<T, E> for T {
1264     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1265         // SAFETY: TODO.
1266         unsafe { self.__init(slot) }
1267     }
1268 }
1269 
1270 /// Smart pointer that can initialize memory in-place.
1271 pub trait InPlaceInit<T>: Sized {
1272     /// Pinned version of `Self`.
1273     ///
1274     /// If a type already implicitly pins its pointee, `Pin<Self>` is unnecessary. In this case use
1275     /// `Self`, otherwise just use `Pin<Self>`.
1276     type PinnedSelf;
1277 
1278     /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
1279     /// type.
1280     ///
1281     /// If `T: !Unpin` it will not be able to move afterwards.
1282     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
1283     where
1284         E: From<AllocError>;
1285 
1286     /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
1287     /// type.
1288     ///
1289     /// If `T: !Unpin` it will not be able to move afterwards.
1290     fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> error::Result<Self::PinnedSelf>
1291     where
1292         Error: From<E>,
1293     {
1294         // SAFETY: We delegate to `init` and only change the error type.
1295         let init = unsafe {
1296             pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
1297         };
1298         Self::try_pin_init(init, flags)
1299     }
1300 
1301     /// Use the given initializer to in-place initialize a `T`.
1302     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
1303     where
1304         E: From<AllocError>;
1305 
1306     /// Use the given initializer to in-place initialize a `T`.
1307     fn init<E>(init: impl Init<T, E>, flags: Flags) -> error::Result<Self>
1308     where
1309         Error: From<E>,
1310     {
1311         // SAFETY: We delegate to `init` and only change the error type.
1312         let init = unsafe {
1313             init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
1314         };
1315         Self::try_init(init, flags)
1316     }
1317 }
1318 
1319 impl<T> InPlaceInit<T> for Arc<T> {
1320     type PinnedSelf = Self;
1321 
1322     #[inline]
1323     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
1324     where
1325         E: From<AllocError>,
1326     {
1327         UniqueArc::try_pin_init(init, flags).map(|u| u.into())
1328     }
1329 
1330     #[inline]
1331     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
1332     where
1333         E: From<AllocError>,
1334     {
1335         UniqueArc::try_init(init, flags).map(|u| u.into())
1336     }
1337 }
1338 
1339 impl<T> InPlaceInit<T> for UniqueArc<T> {
1340     type PinnedSelf = Pin<Self>;
1341 
1342     #[inline]
1343     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
1344     where
1345         E: From<AllocError>,
1346     {
1347         UniqueArc::new_uninit(flags)?.write_pin_init(init)
1348     }
1349 
1350     #[inline]
1351     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
1352     where
1353         E: From<AllocError>,
1354     {
1355         UniqueArc::new_uninit(flags)?.write_init(init)
1356     }
1357 }
1358 
1359 /// Smart pointer containing uninitialized memory and that can write a value.
1360 pub trait InPlaceWrite<T> {
1361     /// The type `Self` turns into when the contents are initialized.
1362     type Initialized;
1363 
1364     /// Use the given initializer to write a value into `self`.
1365     ///
1366     /// Does not drop the current value and considers it as uninitialized memory.
1367     fn write_init<E>(self, init: impl Init<T, E>) -> Result<Self::Initialized, E>;
1368 
1369     /// Use the given pin-initializer to write a value into `self`.
1370     ///
1371     /// Does not drop the current value and considers it as uninitialized memory.
1372     fn write_pin_init<E>(self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>;
1373 }
1374 
1375 impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> {
1376     type Initialized = UniqueArc<T>;
1377 
1378     fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
1379         let slot = self.as_mut_ptr();
1380         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1381         // slot is valid.
1382         unsafe { init.__init(slot)? };
1383         // SAFETY: All fields have been initialized.
1384         Ok(unsafe { self.assume_init() })
1385     }
1386 
1387     fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
1388         let slot = self.as_mut_ptr();
1389         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1390         // slot is valid and will not be moved, because we pin it later.
1391         unsafe { init.__pinned_init(slot)? };
1392         // SAFETY: All fields have been initialized.
1393         Ok(unsafe { self.assume_init() }.into())
1394     }
1395 }
1396 
1397 /// Trait facilitating pinned destruction.
1398 ///
1399 /// Use [`pinned_drop`] to implement this trait safely:
1400 ///
1401 /// ```rust,ignore
1402 /// # #![feature(allocator_api)]
1403 /// # #[path = "../examples/mutex.rs"] mod mutex; use mutex::*;
1404 /// # use pin_init::*;
1405 /// use core::pin::Pin;
1406 /// #[pin_data(PinnedDrop)]
1407 /// struct Foo {
1408 ///     #[pin]
1409 ///     mtx: CMutex<usize>,
1410 /// }
1411 ///
1412 /// #[pinned_drop]
1413 /// impl PinnedDrop for Foo {
1414 ///     fn drop(self: Pin<&mut Self>) {
1415 ///         println!("Foo is being dropped!");
1416 ///     }
1417 /// }
1418 /// ```
1419 ///
1420 /// # Safety
1421 ///
1422 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl.
1423 ///
1424 /// [`pinned_drop`]: kernel::macros::pinned_drop
1425 pub unsafe trait PinnedDrop: __internal::HasPinData {
1426     /// Executes the pinned destructor of this type.
1427     ///
1428     /// While this function is marked safe, it is actually unsafe to call it manually. For this
1429     /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code
1430     /// and thus prevents this function from being called where it should not.
1431     ///
1432     /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute
1433     /// automatically.
1434     fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop);
1435 }
1436 
1437 /// Marker trait for types that can be initialized by writing just zeroes.
1438 ///
1439 /// # Safety
1440 ///
1441 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words,
1442 /// this is not UB:
1443 ///
1444 /// ```rust,ignore
1445 /// let val: Self = unsafe { core::mem::zeroed() };
1446 /// ```
1447 pub unsafe trait Zeroable {}
1448 
1449 /// Create a new zeroed T.
1450 ///
1451 /// The returned initializer will write `0x00` to every byte of the given `slot`.
1452 #[inline]
1453 pub fn zeroed<T: Zeroable>() -> impl Init<T> {
1454     // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T`
1455     // and because we write all zeroes, the memory is initialized.
1456     unsafe {
1457         init_from_closure(|slot: *mut T| {
1458             slot.write_bytes(0, 1);
1459             Ok(())
1460         })
1461     }
1462 }
1463 
1464 macro_rules! impl_zeroable {
1465     ($($({$($generics:tt)*})? $t:ty, )*) => {
1466         // SAFETY: Safety comments written in the macro invocation.
1467         $(unsafe impl$($($generics)*)? Zeroable for $t {})*
1468     };
1469 }
1470 
1471 impl_zeroable! {
1472     // SAFETY: All primitives that are allowed to be zero.
1473     bool,
1474     char,
1475     u8, u16, u32, u64, u128, usize,
1476     i8, i16, i32, i64, i128, isize,
1477     f32, f64,
1478 
1479     // Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list;
1480     // creating an instance of an uninhabited type is immediate undefined behavior. For more on
1481     // uninhabited/empty types, consult The Rustonomicon:
1482     // <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference
1483     // also has information on undefined behavior:
1484     // <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>.
1485     //
1486     // SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists.
1487     {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (),
1488 
1489     // SAFETY: Type is allowed to take any value, including all zeros.
1490     {<T>} MaybeUninit<T>,
1491     // SAFETY: Type is allowed to take any value, including all zeros.
1492     {<T>} Opaque<T>,
1493 
1494     // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`.
1495     {<T: ?Sized + Zeroable>} UnsafeCell<T>,
1496 
1497     // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
1498     Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>,
1499     Option<NonZeroU128>, Option<NonZeroUsize>,
1500     Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>,
1501     Option<NonZeroI128>, Option<NonZeroIsize>,
1502 
1503     // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
1504     //
1505     // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant.
1506     {<T: ?Sized>} Option<NonNull<T>>,
1507     {<T: ?Sized>} Option<KBox<T>>,
1508 
1509     // SAFETY: `null` pointer is valid.
1510     //
1511     // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be
1512     // null.
1513     //
1514     // When `Pointee` gets stabilized, we could use
1515     // `T: ?Sized where <T as Pointee>::Metadata: Zeroable`
1516     {<T>} *mut T, {<T>} *const T,
1517 
1518     // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be
1519     // zero.
1520     {<T>} *mut [T], {<T>} *const [T], *mut str, *const str,
1521 
1522     // SAFETY: `T` is `Zeroable`.
1523     {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>,
1524 }
1525 
1526 macro_rules! impl_tuple_zeroable {
1527     ($(,)?) => {};
1528     ($first:ident, $($t:ident),* $(,)?) => {
1529         // SAFETY: All elements are zeroable and padding can be zero.
1530         unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {}
1531         impl_tuple_zeroable!($($t),* ,);
1532     }
1533 }
1534 
1535 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J);
1536