1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Work queues. 4 //! 5 //! This file has two components: The raw work item API, and the safe work item API. 6 //! 7 //! One pattern that is used in both APIs is the `ID` const generic, which exists to allow a single 8 //! type to define multiple `work_struct` fields. This is done by choosing an id for each field, 9 //! and using that id to specify which field you wish to use. (The actual value doesn't matter, as 10 //! long as you use different values for different fields of the same struct.) Since these IDs are 11 //! generic, they are used only at compile-time, so they shouldn't exist in the final binary. 12 //! 13 //! # The raw API 14 //! 15 //! The raw API consists of the [`RawWorkItem`] trait, where the work item needs to provide an 16 //! arbitrary function that knows how to enqueue the work item. It should usually not be used 17 //! directly, but if you want to, you can use it without using the pieces from the safe API. 18 //! 19 //! # The safe API 20 //! 21 //! The safe API is used via the [`Work`] struct and [`WorkItem`] traits. Furthermore, it also 22 //! includes a trait called [`WorkItemPointer`], which is usually not used directly by the user. 23 //! 24 //! * The [`Work`] struct is the Rust wrapper for the C `work_struct` type. 25 //! * The [`WorkItem`] trait is implemented for structs that can be enqueued to a workqueue. 26 //! * The [`WorkItemPointer`] trait is implemented for the pointer type that points at a something 27 //! that implements [`WorkItem`]. 28 //! 29 //! ## Example 30 //! 31 //! This example defines a struct that holds an integer and can be scheduled on the workqueue. When 32 //! the struct is executed, it will print the integer. Since there is only one `work_struct` field, 33 //! we do not need to specify ids for the fields. 34 //! 35 //! ``` 36 //! use kernel::prelude::*; 37 //! use kernel::sync::Arc; 38 //! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem}; 39 //! 40 //! #[pin_data] 41 //! struct MyStruct { 42 //! value: i32, 43 //! #[pin] 44 //! work: Work<MyStruct>, 45 //! } 46 //! 47 //! impl_has_work! { 48 //! impl HasWork<Self> for MyStruct { self.work } 49 //! } 50 //! 51 //! impl MyStruct { 52 //! fn new(value: i32) -> Result<Arc<Self>> { 53 //! Arc::pin_init(pin_init!(MyStruct { 54 //! value, 55 //! work <- new_work!("MyStruct::work"), 56 //! }), GFP_KERNEL) 57 //! } 58 //! } 59 //! 60 //! impl WorkItem for MyStruct { 61 //! type Pointer = Arc<MyStruct>; 62 //! 63 //! fn run(this: Arc<MyStruct>) { 64 //! pr_info!("The value is: {}", this.value); 65 //! } 66 //! } 67 //! 68 //! /// This method will enqueue the struct for execution on the system workqueue, where its value 69 //! /// will be printed. 70 //! fn print_later(val: Arc<MyStruct>) { 71 //! let _ = workqueue::system().enqueue(val); 72 //! } 73 //! ``` 74 //! 75 //! The following example shows how multiple `work_struct` fields can be used: 76 //! 77 //! ``` 78 //! use kernel::prelude::*; 79 //! use kernel::sync::Arc; 80 //! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem}; 81 //! 82 //! #[pin_data] 83 //! struct MyStruct { 84 //! value_1: i32, 85 //! value_2: i32, 86 //! #[pin] 87 //! work_1: Work<MyStruct, 1>, 88 //! #[pin] 89 //! work_2: Work<MyStruct, 2>, 90 //! } 91 //! 92 //! impl_has_work! { 93 //! impl HasWork<Self, 1> for MyStruct { self.work_1 } 94 //! impl HasWork<Self, 2> for MyStruct { self.work_2 } 95 //! } 96 //! 97 //! impl MyStruct { 98 //! fn new(value_1: i32, value_2: i32) -> Result<Arc<Self>> { 99 //! Arc::pin_init(pin_init!(MyStruct { 100 //! value_1, 101 //! value_2, 102 //! work_1 <- new_work!("MyStruct::work_1"), 103 //! work_2 <- new_work!("MyStruct::work_2"), 104 //! }), GFP_KERNEL) 105 //! } 106 //! } 107 //! 108 //! impl WorkItem<1> for MyStruct { 109 //! type Pointer = Arc<MyStruct>; 110 //! 111 //! fn run(this: Arc<MyStruct>) { 112 //! pr_info!("The value is: {}", this.value_1); 113 //! } 114 //! } 115 //! 116 //! impl WorkItem<2> for MyStruct { 117 //! type Pointer = Arc<MyStruct>; 118 //! 119 //! fn run(this: Arc<MyStruct>) { 120 //! pr_info!("The second value is: {}", this.value_2); 121 //! } 122 //! } 123 //! 124 //! fn print_1_later(val: Arc<MyStruct>) { 125 //! let _ = workqueue::system().enqueue::<Arc<MyStruct>, 1>(val); 126 //! } 127 //! 128 //! fn print_2_later(val: Arc<MyStruct>) { 129 //! let _ = workqueue::system().enqueue::<Arc<MyStruct>, 2>(val); 130 //! } 131 //! ``` 132 //! 133 //! C header: [`include/linux/workqueue.h`](srctree/include/linux/workqueue.h) 134 135 use crate::alloc::Flags; 136 use crate::{bindings, prelude::*, sync::Arc, sync::LockClassKey, types::Opaque}; 137 use alloc::alloc::AllocError; 138 use alloc::boxed::Box; 139 use core::marker::PhantomData; 140 use core::pin::Pin; 141 142 /// Creates a [`Work`] initialiser with the given name and a newly-created lock class. 143 #[macro_export] 144 macro_rules! new_work { 145 ($($name:literal)?) => { 146 $crate::workqueue::Work::new($crate::optional_name!($($name)?), $crate::static_lock_class!()) 147 }; 148 } 149 pub use new_work; 150 151 /// A kernel work queue. 152 /// 153 /// Wraps the kernel's C `struct workqueue_struct`. 154 /// 155 /// It allows work items to be queued to run on thread pools managed by the kernel. Several are 156 /// always available, for example, `system`, `system_highpri`, `system_long`, etc. 157 #[repr(transparent)] 158 pub struct Queue(Opaque<bindings::workqueue_struct>); 159 160 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe. 161 unsafe impl Send for Queue {} 162 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe. 163 unsafe impl Sync for Queue {} 164 165 impl Queue { 166 /// Use the provided `struct workqueue_struct` with Rust. 167 /// 168 /// # Safety 169 /// 170 /// The caller must ensure that the provided raw pointer is not dangling, that it points at a 171 /// valid workqueue, and that it remains valid until the end of `'a`. 172 pub unsafe fn from_raw<'a>(ptr: *const bindings::workqueue_struct) -> &'a Queue { 173 // SAFETY: The `Queue` type is `#[repr(transparent)]`, so the pointer cast is valid. The 174 // caller promises that the pointer is not dangling. 175 unsafe { &*(ptr as *const Queue) } 176 } 177 178 /// Enqueues a work item. 179 /// 180 /// This may fail if the work item is already enqueued in a workqueue. 181 /// 182 /// The work item will be submitted using `WORK_CPU_UNBOUND`. 183 pub fn enqueue<W, const ID: u64>(&self, w: W) -> W::EnqueueOutput 184 where 185 W: RawWorkItem<ID> + Send + 'static, 186 { 187 let queue_ptr = self.0.get(); 188 189 // SAFETY: We only return `false` if the `work_struct` is already in a workqueue. The other 190 // `__enqueue` requirements are not relevant since `W` is `Send` and static. 191 // 192 // The call to `bindings::queue_work_on` will dereference the provided raw pointer, which 193 // is ok because `__enqueue` guarantees that the pointer is valid for the duration of this 194 // closure. 195 // 196 // Furthermore, if the C workqueue code accesses the pointer after this call to 197 // `__enqueue`, then the work item was successfully enqueued, and `bindings::queue_work_on` 198 // will have returned true. In this case, `__enqueue` promises that the raw pointer will 199 // stay valid until we call the function pointer in the `work_struct`, so the access is ok. 200 unsafe { 201 w.__enqueue(move |work_ptr| { 202 bindings::queue_work_on( 203 bindings::wq_misc_consts_WORK_CPU_UNBOUND as _, 204 queue_ptr, 205 work_ptr, 206 ) 207 }) 208 } 209 } 210 211 /// Tries to spawn the given function or closure as a work item. 212 /// 213 /// This method can fail because it allocates memory to store the work item. 214 pub fn try_spawn<T: 'static + Send + FnOnce()>( 215 &self, 216 flags: Flags, 217 func: T, 218 ) -> Result<(), AllocError> { 219 let init = pin_init!(ClosureWork { 220 work <- new_work!("Queue::try_spawn"), 221 func: Some(func), 222 }); 223 224 self.enqueue(Box::pin_init(init, flags).map_err(|_| AllocError)?); 225 Ok(()) 226 } 227 } 228 229 /// A helper type used in [`try_spawn`]. 230 /// 231 /// [`try_spawn`]: Queue::try_spawn 232 #[pin_data] 233 struct ClosureWork<T> { 234 #[pin] 235 work: Work<ClosureWork<T>>, 236 func: Option<T>, 237 } 238 239 impl<T> ClosureWork<T> { 240 fn project(self: Pin<&mut Self>) -> &mut Option<T> { 241 // SAFETY: The `func` field is not structurally pinned. 242 unsafe { &mut self.get_unchecked_mut().func } 243 } 244 } 245 246 impl<T: FnOnce()> WorkItem for ClosureWork<T> { 247 type Pointer = Pin<Box<Self>>; 248 249 fn run(mut this: Pin<Box<Self>>) { 250 if let Some(func) = this.as_mut().project().take() { 251 (func)() 252 } 253 } 254 } 255 256 /// A raw work item. 257 /// 258 /// This is the low-level trait that is designed for being as general as possible. 259 /// 260 /// The `ID` parameter to this trait exists so that a single type can provide multiple 261 /// implementations of this trait. For example, if a struct has multiple `work_struct` fields, then 262 /// you will implement this trait once for each field, using a different id for each field. The 263 /// actual value of the id is not important as long as you use different ids for different fields 264 /// of the same struct. (Fields of different structs need not use different ids.) 265 /// 266 /// Note that the id is used only to select the right method to call during compilation. It won't be 267 /// part of the final executable. 268 /// 269 /// # Safety 270 /// 271 /// Implementers must ensure that any pointers passed to a `queue_work_on` closure by [`__enqueue`] 272 /// remain valid for the duration specified in the guarantees section of the documentation for 273 /// [`__enqueue`]. 274 /// 275 /// [`__enqueue`]: RawWorkItem::__enqueue 276 pub unsafe trait RawWorkItem<const ID: u64> { 277 /// The return type of [`Queue::enqueue`]. 278 type EnqueueOutput; 279 280 /// Enqueues this work item on a queue using the provided `queue_work_on` method. 281 /// 282 /// # Guarantees 283 /// 284 /// If this method calls the provided closure, then the raw pointer is guaranteed to point at a 285 /// valid `work_struct` for the duration of the call to the closure. If the closure returns 286 /// true, then it is further guaranteed that the pointer remains valid until someone calls the 287 /// function pointer stored in the `work_struct`. 288 /// 289 /// # Safety 290 /// 291 /// The provided closure may only return `false` if the `work_struct` is already in a workqueue. 292 /// 293 /// If the work item type is annotated with any lifetimes, then you must not call the function 294 /// pointer after any such lifetime expires. (Never calling the function pointer is okay.) 295 /// 296 /// If the work item type is not [`Send`], then the function pointer must be called on the same 297 /// thread as the call to `__enqueue`. 298 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput 299 where 300 F: FnOnce(*mut bindings::work_struct) -> bool; 301 } 302 303 /// Defines the method that should be called directly when a work item is executed. 304 /// 305 /// This trait is implemented by `Pin<Box<T>>` and [`Arc<T>`], and is mainly intended to be 306 /// implemented for smart pointer types. For your own structs, you would implement [`WorkItem`] 307 /// instead. The [`run`] method on this trait will usually just perform the appropriate 308 /// `container_of` translation and then call into the [`run`][WorkItem::run] method from the 309 /// [`WorkItem`] trait. 310 /// 311 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper. 312 /// 313 /// # Safety 314 /// 315 /// Implementers must ensure that [`__enqueue`] uses a `work_struct` initialized with the [`run`] 316 /// method of this trait as the function pointer. 317 /// 318 /// [`__enqueue`]: RawWorkItem::__enqueue 319 /// [`run`]: WorkItemPointer::run 320 pub unsafe trait WorkItemPointer<const ID: u64>: RawWorkItem<ID> { 321 /// Run this work item. 322 /// 323 /// # Safety 324 /// 325 /// The provided `work_struct` pointer must originate from a previous call to [`__enqueue`] 326 /// where the `queue_work_on` closure returned true, and the pointer must still be valid. 327 /// 328 /// [`__enqueue`]: RawWorkItem::__enqueue 329 unsafe extern "C" fn run(ptr: *mut bindings::work_struct); 330 } 331 332 /// Defines the method that should be called when this work item is executed. 333 /// 334 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper. 335 pub trait WorkItem<const ID: u64 = 0> { 336 /// The pointer type that this struct is wrapped in. This will typically be `Arc<Self>` or 337 /// `Pin<Box<Self>>`. 338 type Pointer: WorkItemPointer<ID>; 339 340 /// The method that should be called when this work item is executed. 341 fn run(this: Self::Pointer); 342 } 343 344 /// Links for a work item. 345 /// 346 /// This struct contains a function pointer to the [`run`] function from the [`WorkItemPointer`] 347 /// trait, and defines the linked list pointers necessary to enqueue a work item in a workqueue. 348 /// 349 /// Wraps the kernel's C `struct work_struct`. 350 /// 351 /// This is a helper type used to associate a `work_struct` with the [`WorkItem`] that uses it. 352 /// 353 /// [`run`]: WorkItemPointer::run 354 #[pin_data] 355 #[repr(transparent)] 356 pub struct Work<T: ?Sized, const ID: u64 = 0> { 357 #[pin] 358 work: Opaque<bindings::work_struct>, 359 _inner: PhantomData<T>, 360 } 361 362 // SAFETY: Kernel work items are usable from any thread. 363 // 364 // We do not need to constrain `T` since the work item does not actually contain a `T`. 365 unsafe impl<T: ?Sized, const ID: u64> Send for Work<T, ID> {} 366 // SAFETY: Kernel work items are usable from any thread. 367 // 368 // We do not need to constrain `T` since the work item does not actually contain a `T`. 369 unsafe impl<T: ?Sized, const ID: u64> Sync for Work<T, ID> {} 370 371 impl<T: ?Sized, const ID: u64> Work<T, ID> { 372 /// Creates a new instance of [`Work`]. 373 #[inline] 374 #[allow(clippy::new_ret_no_self)] 375 pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> 376 where 377 T: WorkItem<ID>, 378 { 379 pin_init!(Self { 380 work <- Opaque::ffi_init(|slot| { 381 // SAFETY: The `WorkItemPointer` implementation promises that `run` can be used as 382 // the work item function. 383 unsafe { 384 bindings::init_work_with_key( 385 slot, 386 Some(T::Pointer::run), 387 false, 388 name.as_char_ptr(), 389 key.as_ptr(), 390 ) 391 } 392 }), 393 _inner: PhantomData, 394 }) 395 } 396 397 /// Get a pointer to the inner `work_struct`. 398 /// 399 /// # Safety 400 /// 401 /// The provided pointer must not be dangling and must be properly aligned. (But the memory 402 /// need not be initialized.) 403 #[inline] 404 pub unsafe fn raw_get(ptr: *const Self) -> *mut bindings::work_struct { 405 // SAFETY: The caller promises that the pointer is aligned and not dangling. 406 // 407 // A pointer cast would also be ok due to `#[repr(transparent)]`. We use `addr_of!` so that 408 // the compiler does not complain that the `work` field is unused. 409 unsafe { Opaque::raw_get(core::ptr::addr_of!((*ptr).work)) } 410 } 411 } 412 413 /// Declares that a type has a [`Work<T, ID>`] field. 414 /// 415 /// The intended way of using this trait is via the [`impl_has_work!`] macro. You can use the macro 416 /// like this: 417 /// 418 /// ```no_run 419 /// use kernel::prelude::*; 420 /// use kernel::workqueue::{impl_has_work, Work}; 421 /// 422 /// struct MyWorkItem { 423 /// work_field: Work<MyWorkItem, 1>, 424 /// } 425 /// 426 /// impl_has_work! { 427 /// impl HasWork<MyWorkItem, 1> for MyWorkItem { self.work_field } 428 /// } 429 /// ``` 430 /// 431 /// Note that since the [`Work`] type is annotated with an id, you can have several `work_struct` 432 /// fields by using a different id for each one. 433 /// 434 /// # Safety 435 /// 436 /// The [`OFFSET`] constant must be the offset of a field in `Self` of type [`Work<T, ID>`]. The 437 /// methods on this trait must have exactly the behavior that the definitions given below have. 438 /// 439 /// [`impl_has_work!`]: crate::impl_has_work 440 /// [`OFFSET`]: HasWork::OFFSET 441 pub unsafe trait HasWork<T, const ID: u64 = 0> { 442 /// The offset of the [`Work<T, ID>`] field. 443 const OFFSET: usize; 444 445 /// Returns the offset of the [`Work<T, ID>`] field. 446 /// 447 /// This method exists because the [`OFFSET`] constant cannot be accessed if the type is not 448 /// [`Sized`]. 449 /// 450 /// [`OFFSET`]: HasWork::OFFSET 451 #[inline] 452 fn get_work_offset(&self) -> usize { 453 Self::OFFSET 454 } 455 456 /// Returns a pointer to the [`Work<T, ID>`] field. 457 /// 458 /// # Safety 459 /// 460 /// The provided pointer must point at a valid struct of type `Self`. 461 #[inline] 462 unsafe fn raw_get_work(ptr: *mut Self) -> *mut Work<T, ID> { 463 // SAFETY: The caller promises that the pointer is valid. 464 unsafe { (ptr as *mut u8).add(Self::OFFSET) as *mut Work<T, ID> } 465 } 466 467 /// Returns a pointer to the struct containing the [`Work<T, ID>`] field. 468 /// 469 /// # Safety 470 /// 471 /// The pointer must point at a [`Work<T, ID>`] field in a struct of type `Self`. 472 #[inline] 473 unsafe fn work_container_of(ptr: *mut Work<T, ID>) -> *mut Self 474 where 475 Self: Sized, 476 { 477 // SAFETY: The caller promises that the pointer points at a field of the right type in the 478 // right kind of struct. 479 unsafe { (ptr as *mut u8).sub(Self::OFFSET) as *mut Self } 480 } 481 } 482 483 /// Used to safely implement the [`HasWork<T, ID>`] trait. 484 /// 485 /// # Examples 486 /// 487 /// ``` 488 /// use kernel::sync::Arc; 489 /// use kernel::workqueue::{self, impl_has_work, Work}; 490 /// 491 /// struct MyStruct { 492 /// work_field: Work<MyStruct, 17>, 493 /// } 494 /// 495 /// impl_has_work! { 496 /// impl HasWork<MyStruct, 17> for MyStruct { self.work_field } 497 /// } 498 /// ``` 499 #[macro_export] 500 macro_rules! impl_has_work { 501 ($(impl$(<$($implarg:ident),*>)? 502 HasWork<$work_type:ty $(, $id:tt)?> 503 for $self:ident $(<$($selfarg:ident),*>)? 504 { self.$field:ident } 505 )*) => {$( 506 // SAFETY: The implementation of `raw_get_work` only compiles if the field has the right 507 // type. 508 unsafe impl$(<$($implarg),*>)? $crate::workqueue::HasWork<$work_type $(, $id)?> for $self $(<$($selfarg),*>)? { 509 const OFFSET: usize = ::core::mem::offset_of!(Self, $field) as usize; 510 511 #[inline] 512 unsafe fn raw_get_work(ptr: *mut Self) -> *mut $crate::workqueue::Work<$work_type $(, $id)?> { 513 // SAFETY: The caller promises that the pointer is not dangling. 514 unsafe { 515 ::core::ptr::addr_of_mut!((*ptr).$field) 516 } 517 } 518 } 519 )*}; 520 } 521 pub use impl_has_work; 522 523 impl_has_work! { 524 impl<T> HasWork<Self> for ClosureWork<T> { self.work } 525 } 526 527 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Arc<T> 528 where 529 T: WorkItem<ID, Pointer = Self>, 530 T: HasWork<T, ID>, 531 { 532 unsafe extern "C" fn run(ptr: *mut bindings::work_struct) { 533 // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`. 534 let ptr = ptr as *mut Work<T, ID>; 535 // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`. 536 let ptr = unsafe { T::work_container_of(ptr) }; 537 // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership. 538 let arc = unsafe { Arc::from_raw(ptr) }; 539 540 T::run(arc) 541 } 542 } 543 544 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Arc<T> 545 where 546 T: WorkItem<ID, Pointer = Self>, 547 T: HasWork<T, ID>, 548 { 549 type EnqueueOutput = Result<(), Self>; 550 551 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput 552 where 553 F: FnOnce(*mut bindings::work_struct) -> bool, 554 { 555 // Casting between const and mut is not a problem as long as the pointer is a raw pointer. 556 let ptr = Arc::into_raw(self).cast_mut(); 557 558 // SAFETY: Pointers into an `Arc` point at a valid value. 559 let work_ptr = unsafe { T::raw_get_work(ptr) }; 560 // SAFETY: `raw_get_work` returns a pointer to a valid value. 561 let work_ptr = unsafe { Work::raw_get(work_ptr) }; 562 563 if queue_work_on(work_ptr) { 564 Ok(()) 565 } else { 566 // SAFETY: The work queue has not taken ownership of the pointer. 567 Err(unsafe { Arc::from_raw(ptr) }) 568 } 569 } 570 } 571 572 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Pin<Box<T>> 573 where 574 T: WorkItem<ID, Pointer = Self>, 575 T: HasWork<T, ID>, 576 { 577 unsafe extern "C" fn run(ptr: *mut bindings::work_struct) { 578 // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`. 579 let ptr = ptr as *mut Work<T, ID>; 580 // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`. 581 let ptr = unsafe { T::work_container_of(ptr) }; 582 // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership. 583 let boxed = unsafe { Box::from_raw(ptr) }; 584 // SAFETY: The box was already pinned when it was enqueued. 585 let pinned = unsafe { Pin::new_unchecked(boxed) }; 586 587 T::run(pinned) 588 } 589 } 590 591 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Pin<Box<T>> 592 where 593 T: WorkItem<ID, Pointer = Self>, 594 T: HasWork<T, ID>, 595 { 596 type EnqueueOutput = (); 597 598 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput 599 where 600 F: FnOnce(*mut bindings::work_struct) -> bool, 601 { 602 // SAFETY: We're not going to move `self` or any of its fields, so its okay to temporarily 603 // remove the `Pin` wrapper. 604 let boxed = unsafe { Pin::into_inner_unchecked(self) }; 605 let ptr = Box::into_raw(boxed); 606 607 // SAFETY: Pointers into a `Box` point at a valid value. 608 let work_ptr = unsafe { T::raw_get_work(ptr) }; 609 // SAFETY: `raw_get_work` returns a pointer to a valid value. 610 let work_ptr = unsafe { Work::raw_get(work_ptr) }; 611 612 if !queue_work_on(work_ptr) { 613 // SAFETY: This method requires exclusive ownership of the box, so it cannot be in a 614 // workqueue. 615 unsafe { ::core::hint::unreachable_unchecked() } 616 } 617 } 618 } 619 620 /// Returns the system work queue (`system_wq`). 621 /// 622 /// It is the one used by `schedule[_delayed]_work[_on]()`. Multi-CPU multi-threaded. There are 623 /// users which expect relatively short queue flush time. 624 /// 625 /// Callers shouldn't queue work items which can run for too long. 626 pub fn system() -> &'static Queue { 627 // SAFETY: `system_wq` is a C global, always available. 628 unsafe { Queue::from_raw(bindings::system_wq) } 629 } 630 631 /// Returns the system high-priority work queue (`system_highpri_wq`). 632 /// 633 /// It is similar to the one returned by [`system`] but for work items which require higher 634 /// scheduling priority. 635 pub fn system_highpri() -> &'static Queue { 636 // SAFETY: `system_highpri_wq` is a C global, always available. 637 unsafe { Queue::from_raw(bindings::system_highpri_wq) } 638 } 639 640 /// Returns the system work queue for potentially long-running work items (`system_long_wq`). 641 /// 642 /// It is similar to the one returned by [`system`] but may host long running work items. Queue 643 /// flushing might take relatively long. 644 pub fn system_long() -> &'static Queue { 645 // SAFETY: `system_long_wq` is a C global, always available. 646 unsafe { Queue::from_raw(bindings::system_long_wq) } 647 } 648 649 /// Returns the system unbound work queue (`system_unbound_wq`). 650 /// 651 /// Workers are not bound to any specific CPU, not concurrency managed, and all queued work items 652 /// are executed immediately as long as `max_active` limit is not reached and resources are 653 /// available. 654 pub fn system_unbound() -> &'static Queue { 655 // SAFETY: `system_unbound_wq` is a C global, always available. 656 unsafe { Queue::from_raw(bindings::system_unbound_wq) } 657 } 658 659 /// Returns the system freezable work queue (`system_freezable_wq`). 660 /// 661 /// It is equivalent to the one returned by [`system`] except that it's freezable. 662 /// 663 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work 664 /// items on the workqueue are drained and no new work item starts execution until thawed. 665 pub fn system_freezable() -> &'static Queue { 666 // SAFETY: `system_freezable_wq` is a C global, always available. 667 unsafe { Queue::from_raw(bindings::system_freezable_wq) } 668 } 669 670 /// Returns the system power-efficient work queue (`system_power_efficient_wq`). 671 /// 672 /// It is inclined towards saving power and is converted to "unbound" variants if the 673 /// `workqueue.power_efficient` kernel parameter is specified; otherwise, it is similar to the one 674 /// returned by [`system`]. 675 pub fn system_power_efficient() -> &'static Queue { 676 // SAFETY: `system_power_efficient_wq` is a C global, always available. 677 unsafe { Queue::from_raw(bindings::system_power_efficient_wq) } 678 } 679 680 /// Returns the system freezable power-efficient work queue (`system_freezable_power_efficient_wq`). 681 /// 682 /// It is similar to the one returned by [`system_power_efficient`] except that is freezable. 683 /// 684 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work 685 /// items on the workqueue are drained and no new work item starts execution until thawed. 686 pub fn system_freezable_power_efficient() -> &'static Queue { 687 // SAFETY: `system_freezable_power_efficient_wq` is a C global, always available. 688 unsafe { Queue::from_raw(bindings::system_freezable_power_efficient_wq) } 689 } 690