xref: /linux-6.15/rust/kernel/workqueue.rs (revision c34aa00d)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Work queues.
4 //!
5 //! This file has two components: The raw work item API, and the safe work item API.
6 //!
7 //! One pattern that is used in both APIs is the `ID` const generic, which exists to allow a single
8 //! type to define multiple `work_struct` fields. This is done by choosing an id for each field,
9 //! and using that id to specify which field you wish to use. (The actual value doesn't matter, as
10 //! long as you use different values for different fields of the same struct.) Since these IDs are
11 //! generic, they are used only at compile-time, so they shouldn't exist in the final binary.
12 //!
13 //! # The raw API
14 //!
15 //! The raw API consists of the [`RawWorkItem`] trait, where the work item needs to provide an
16 //! arbitrary function that knows how to enqueue the work item. It should usually not be used
17 //! directly, but if you want to, you can use it without using the pieces from the safe API.
18 //!
19 //! # The safe API
20 //!
21 //! The safe API is used via the [`Work`] struct and [`WorkItem`] traits. Furthermore, it also
22 //! includes a trait called [`WorkItemPointer`], which is usually not used directly by the user.
23 //!
24 //!  * The [`Work`] struct is the Rust wrapper for the C `work_struct` type.
25 //!  * The [`WorkItem`] trait is implemented for structs that can be enqueued to a workqueue.
26 //!  * The [`WorkItemPointer`] trait is implemented for the pointer type that points at a something
27 //!    that implements [`WorkItem`].
28 //!
29 //! ## Example
30 //!
31 //! This example defines a struct that holds an integer and can be scheduled on the workqueue. When
32 //! the struct is executed, it will print the integer. Since there is only one `work_struct` field,
33 //! we do not need to specify ids for the fields.
34 //!
35 //! ```
36 //! use kernel::prelude::*;
37 //! use kernel::sync::Arc;
38 //! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem};
39 //!
40 //! #[pin_data]
41 //! struct MyStruct {
42 //!     value: i32,
43 //!     #[pin]
44 //!     work: Work<MyStruct>,
45 //! }
46 //!
47 //! impl_has_work! {
48 //!     impl HasWork<Self> for MyStruct { self.work }
49 //! }
50 //!
51 //! impl MyStruct {
52 //!     fn new(value: i32) -> Result<Arc<Self>> {
53 //!         Arc::pin_init(pin_init!(MyStruct {
54 //!             value,
55 //!             work <- new_work!("MyStruct::work"),
56 //!         }), GFP_KERNEL)
57 //!     }
58 //! }
59 //!
60 //! impl WorkItem for MyStruct {
61 //!     type Pointer = Arc<MyStruct>;
62 //!
63 //!     fn run(this: Arc<MyStruct>) {
64 //!         pr_info!("The value is: {}", this.value);
65 //!     }
66 //! }
67 //!
68 //! /// This method will enqueue the struct for execution on the system workqueue, where its value
69 //! /// will be printed.
70 //! fn print_later(val: Arc<MyStruct>) {
71 //!     let _ = workqueue::system().enqueue(val);
72 //! }
73 //! ```
74 //!
75 //! The following example shows how multiple `work_struct` fields can be used:
76 //!
77 //! ```
78 //! use kernel::prelude::*;
79 //! use kernel::sync::Arc;
80 //! use kernel::workqueue::{self, impl_has_work, new_work, Work, WorkItem};
81 //!
82 //! #[pin_data]
83 //! struct MyStruct {
84 //!     value_1: i32,
85 //!     value_2: i32,
86 //!     #[pin]
87 //!     work_1: Work<MyStruct, 1>,
88 //!     #[pin]
89 //!     work_2: Work<MyStruct, 2>,
90 //! }
91 //!
92 //! impl_has_work! {
93 //!     impl HasWork<Self, 1> for MyStruct { self.work_1 }
94 //!     impl HasWork<Self, 2> for MyStruct { self.work_2 }
95 //! }
96 //!
97 //! impl MyStruct {
98 //!     fn new(value_1: i32, value_2: i32) -> Result<Arc<Self>> {
99 //!         Arc::pin_init(pin_init!(MyStruct {
100 //!             value_1,
101 //!             value_2,
102 //!             work_1 <- new_work!("MyStruct::work_1"),
103 //!             work_2 <- new_work!("MyStruct::work_2"),
104 //!         }), GFP_KERNEL)
105 //!     }
106 //! }
107 //!
108 //! impl WorkItem<1> for MyStruct {
109 //!     type Pointer = Arc<MyStruct>;
110 //!
111 //!     fn run(this: Arc<MyStruct>) {
112 //!         pr_info!("The value is: {}", this.value_1);
113 //!     }
114 //! }
115 //!
116 //! impl WorkItem<2> for MyStruct {
117 //!     type Pointer = Arc<MyStruct>;
118 //!
119 //!     fn run(this: Arc<MyStruct>) {
120 //!         pr_info!("The second value is: {}", this.value_2);
121 //!     }
122 //! }
123 //!
124 //! fn print_1_later(val: Arc<MyStruct>) {
125 //!     let _ = workqueue::system().enqueue::<Arc<MyStruct>, 1>(val);
126 //! }
127 //!
128 //! fn print_2_later(val: Arc<MyStruct>) {
129 //!     let _ = workqueue::system().enqueue::<Arc<MyStruct>, 2>(val);
130 //! }
131 //! ```
132 //!
133 //! C header: [`include/linux/workqueue.h`](srctree/include/linux/workqueue.h)
134 
135 use crate::alloc::Flags;
136 use crate::{bindings, prelude::*, sync::Arc, sync::LockClassKey, types::Opaque};
137 use alloc::alloc::AllocError;
138 use alloc::boxed::Box;
139 use core::marker::PhantomData;
140 use core::pin::Pin;
141 
142 /// Creates a [`Work`] initialiser with the given name and a newly-created lock class.
143 #[macro_export]
144 macro_rules! new_work {
145     ($($name:literal)?) => {
146         $crate::workqueue::Work::new($crate::optional_name!($($name)?), $crate::static_lock_class!())
147     };
148 }
149 pub use new_work;
150 
151 /// A kernel work queue.
152 ///
153 /// Wraps the kernel's C `struct workqueue_struct`.
154 ///
155 /// It allows work items to be queued to run on thread pools managed by the kernel. Several are
156 /// always available, for example, `system`, `system_highpri`, `system_long`, etc.
157 #[repr(transparent)]
158 pub struct Queue(Opaque<bindings::workqueue_struct>);
159 
160 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe.
161 unsafe impl Send for Queue {}
162 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe.
163 unsafe impl Sync for Queue {}
164 
165 impl Queue {
166     /// Use the provided `struct workqueue_struct` with Rust.
167     ///
168     /// # Safety
169     ///
170     /// The caller must ensure that the provided raw pointer is not dangling, that it points at a
171     /// valid workqueue, and that it remains valid until the end of `'a`.
172     pub unsafe fn from_raw<'a>(ptr: *const bindings::workqueue_struct) -> &'a Queue {
173         // SAFETY: The `Queue` type is `#[repr(transparent)]`, so the pointer cast is valid. The
174         // caller promises that the pointer is not dangling.
175         unsafe { &*(ptr as *const Queue) }
176     }
177 
178     /// Enqueues a work item.
179     ///
180     /// This may fail if the work item is already enqueued in a workqueue.
181     ///
182     /// The work item will be submitted using `WORK_CPU_UNBOUND`.
183     pub fn enqueue<W, const ID: u64>(&self, w: W) -> W::EnqueueOutput
184     where
185         W: RawWorkItem<ID> + Send + 'static,
186     {
187         let queue_ptr = self.0.get();
188 
189         // SAFETY: We only return `false` if the `work_struct` is already in a workqueue. The other
190         // `__enqueue` requirements are not relevant since `W` is `Send` and static.
191         //
192         // The call to `bindings::queue_work_on` will dereference the provided raw pointer, which
193         // is ok because `__enqueue` guarantees that the pointer is valid for the duration of this
194         // closure.
195         //
196         // Furthermore, if the C workqueue code accesses the pointer after this call to
197         // `__enqueue`, then the work item was successfully enqueued, and `bindings::queue_work_on`
198         // will have returned true. In this case, `__enqueue` promises that the raw pointer will
199         // stay valid until we call the function pointer in the `work_struct`, so the access is ok.
200         unsafe {
201             w.__enqueue(move |work_ptr| {
202                 bindings::queue_work_on(
203                     bindings::wq_misc_consts_WORK_CPU_UNBOUND as _,
204                     queue_ptr,
205                     work_ptr,
206                 )
207             })
208         }
209     }
210 
211     /// Tries to spawn the given function or closure as a work item.
212     ///
213     /// This method can fail because it allocates memory to store the work item.
214     pub fn try_spawn<T: 'static + Send + FnOnce()>(
215         &self,
216         flags: Flags,
217         func: T,
218     ) -> Result<(), AllocError> {
219         let init = pin_init!(ClosureWork {
220             work <- new_work!("Queue::try_spawn"),
221             func: Some(func),
222         });
223 
224         self.enqueue(Box::pin_init(init, flags).map_err(|_| AllocError)?);
225         Ok(())
226     }
227 }
228 
229 /// A helper type used in [`try_spawn`].
230 ///
231 /// [`try_spawn`]: Queue::try_spawn
232 #[pin_data]
233 struct ClosureWork<T> {
234     #[pin]
235     work: Work<ClosureWork<T>>,
236     func: Option<T>,
237 }
238 
239 impl<T> ClosureWork<T> {
240     fn project(self: Pin<&mut Self>) -> &mut Option<T> {
241         // SAFETY: The `func` field is not structurally pinned.
242         unsafe { &mut self.get_unchecked_mut().func }
243     }
244 }
245 
246 impl<T: FnOnce()> WorkItem for ClosureWork<T> {
247     type Pointer = Pin<Box<Self>>;
248 
249     fn run(mut this: Pin<Box<Self>>) {
250         if let Some(func) = this.as_mut().project().take() {
251             (func)()
252         }
253     }
254 }
255 
256 /// A raw work item.
257 ///
258 /// This is the low-level trait that is designed for being as general as possible.
259 ///
260 /// The `ID` parameter to this trait exists so that a single type can provide multiple
261 /// implementations of this trait. For example, if a struct has multiple `work_struct` fields, then
262 /// you will implement this trait once for each field, using a different id for each field. The
263 /// actual value of the id is not important as long as you use different ids for different fields
264 /// of the same struct. (Fields of different structs need not use different ids.)
265 ///
266 /// Note that the id is used only to select the right method to call during compilation. It won't be
267 /// part of the final executable.
268 ///
269 /// # Safety
270 ///
271 /// Implementers must ensure that any pointers passed to a `queue_work_on` closure by [`__enqueue`]
272 /// remain valid for the duration specified in the guarantees section of the documentation for
273 /// [`__enqueue`].
274 ///
275 /// [`__enqueue`]: RawWorkItem::__enqueue
276 pub unsafe trait RawWorkItem<const ID: u64> {
277     /// The return type of [`Queue::enqueue`].
278     type EnqueueOutput;
279 
280     /// Enqueues this work item on a queue using the provided `queue_work_on` method.
281     ///
282     /// # Guarantees
283     ///
284     /// If this method calls the provided closure, then the raw pointer is guaranteed to point at a
285     /// valid `work_struct` for the duration of the call to the closure. If the closure returns
286     /// true, then it is further guaranteed that the pointer remains valid until someone calls the
287     /// function pointer stored in the `work_struct`.
288     ///
289     /// # Safety
290     ///
291     /// The provided closure may only return `false` if the `work_struct` is already in a workqueue.
292     ///
293     /// If the work item type is annotated with any lifetimes, then you must not call the function
294     /// pointer after any such lifetime expires. (Never calling the function pointer is okay.)
295     ///
296     /// If the work item type is not [`Send`], then the function pointer must be called on the same
297     /// thread as the call to `__enqueue`.
298     unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
299     where
300         F: FnOnce(*mut bindings::work_struct) -> bool;
301 }
302 
303 /// Defines the method that should be called directly when a work item is executed.
304 ///
305 /// This trait is implemented by `Pin<Box<T>>` and [`Arc<T>`], and is mainly intended to be
306 /// implemented for smart pointer types. For your own structs, you would implement [`WorkItem`]
307 /// instead. The [`run`] method on this trait will usually just perform the appropriate
308 /// `container_of` translation and then call into the [`run`][WorkItem::run] method from the
309 /// [`WorkItem`] trait.
310 ///
311 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper.
312 ///
313 /// # Safety
314 ///
315 /// Implementers must ensure that [`__enqueue`] uses a `work_struct` initialized with the [`run`]
316 /// method of this trait as the function pointer.
317 ///
318 /// [`__enqueue`]: RawWorkItem::__enqueue
319 /// [`run`]: WorkItemPointer::run
320 pub unsafe trait WorkItemPointer<const ID: u64>: RawWorkItem<ID> {
321     /// Run this work item.
322     ///
323     /// # Safety
324     ///
325     /// The provided `work_struct` pointer must originate from a previous call to [`__enqueue`]
326     /// where the `queue_work_on` closure returned true, and the pointer must still be valid.
327     ///
328     /// [`__enqueue`]: RawWorkItem::__enqueue
329     unsafe extern "C" fn run(ptr: *mut bindings::work_struct);
330 }
331 
332 /// Defines the method that should be called when this work item is executed.
333 ///
334 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper.
335 pub trait WorkItem<const ID: u64 = 0> {
336     /// The pointer type that this struct is wrapped in. This will typically be `Arc<Self>` or
337     /// `Pin<Box<Self>>`.
338     type Pointer: WorkItemPointer<ID>;
339 
340     /// The method that should be called when this work item is executed.
341     fn run(this: Self::Pointer);
342 }
343 
344 /// Links for a work item.
345 ///
346 /// This struct contains a function pointer to the [`run`] function from the [`WorkItemPointer`]
347 /// trait, and defines the linked list pointers necessary to enqueue a work item in a workqueue.
348 ///
349 /// Wraps the kernel's C `struct work_struct`.
350 ///
351 /// This is a helper type used to associate a `work_struct` with the [`WorkItem`] that uses it.
352 ///
353 /// [`run`]: WorkItemPointer::run
354 #[pin_data]
355 #[repr(transparent)]
356 pub struct Work<T: ?Sized, const ID: u64 = 0> {
357     #[pin]
358     work: Opaque<bindings::work_struct>,
359     _inner: PhantomData<T>,
360 }
361 
362 // SAFETY: Kernel work items are usable from any thread.
363 //
364 // We do not need to constrain `T` since the work item does not actually contain a `T`.
365 unsafe impl<T: ?Sized, const ID: u64> Send for Work<T, ID> {}
366 // SAFETY: Kernel work items are usable from any thread.
367 //
368 // We do not need to constrain `T` since the work item does not actually contain a `T`.
369 unsafe impl<T: ?Sized, const ID: u64> Sync for Work<T, ID> {}
370 
371 impl<T: ?Sized, const ID: u64> Work<T, ID> {
372     /// Creates a new instance of [`Work`].
373     #[inline]
374     #[allow(clippy::new_ret_no_self)]
375     pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self>
376     where
377         T: WorkItem<ID>,
378     {
379         pin_init!(Self {
380             work <- Opaque::ffi_init(|slot| {
381                 // SAFETY: The `WorkItemPointer` implementation promises that `run` can be used as
382                 // the work item function.
383                 unsafe {
384                     bindings::init_work_with_key(
385                         slot,
386                         Some(T::Pointer::run),
387                         false,
388                         name.as_char_ptr(),
389                         key.as_ptr(),
390                     )
391                 }
392             }),
393             _inner: PhantomData,
394         })
395     }
396 
397     /// Get a pointer to the inner `work_struct`.
398     ///
399     /// # Safety
400     ///
401     /// The provided pointer must not be dangling and must be properly aligned. (But the memory
402     /// need not be initialized.)
403     #[inline]
404     pub unsafe fn raw_get(ptr: *const Self) -> *mut bindings::work_struct {
405         // SAFETY: The caller promises that the pointer is aligned and not dangling.
406         //
407         // A pointer cast would also be ok due to `#[repr(transparent)]`. We use `addr_of!` so that
408         // the compiler does not complain that the `work` field is unused.
409         unsafe { Opaque::raw_get(core::ptr::addr_of!((*ptr).work)) }
410     }
411 }
412 
413 /// Declares that a type has a [`Work<T, ID>`] field.
414 ///
415 /// The intended way of using this trait is via the [`impl_has_work!`] macro. You can use the macro
416 /// like this:
417 ///
418 /// ```no_run
419 /// use kernel::prelude::*;
420 /// use kernel::workqueue::{impl_has_work, Work};
421 ///
422 /// struct MyWorkItem {
423 ///     work_field: Work<MyWorkItem, 1>,
424 /// }
425 ///
426 /// impl_has_work! {
427 ///     impl HasWork<MyWorkItem, 1> for MyWorkItem { self.work_field }
428 /// }
429 /// ```
430 ///
431 /// Note that since the [`Work`] type is annotated with an id, you can have several `work_struct`
432 /// fields by using a different id for each one.
433 ///
434 /// # Safety
435 ///
436 /// The [`OFFSET`] constant must be the offset of a field in `Self` of type [`Work<T, ID>`]. The
437 /// methods on this trait must have exactly the behavior that the definitions given below have.
438 ///
439 /// [`impl_has_work!`]: crate::impl_has_work
440 /// [`OFFSET`]: HasWork::OFFSET
441 pub unsafe trait HasWork<T, const ID: u64 = 0> {
442     /// The offset of the [`Work<T, ID>`] field.
443     const OFFSET: usize;
444 
445     /// Returns the offset of the [`Work<T, ID>`] field.
446     ///
447     /// This method exists because the [`OFFSET`] constant cannot be accessed if the type is not
448     /// [`Sized`].
449     ///
450     /// [`OFFSET`]: HasWork::OFFSET
451     #[inline]
452     fn get_work_offset(&self) -> usize {
453         Self::OFFSET
454     }
455 
456     /// Returns a pointer to the [`Work<T, ID>`] field.
457     ///
458     /// # Safety
459     ///
460     /// The provided pointer must point at a valid struct of type `Self`.
461     #[inline]
462     unsafe fn raw_get_work(ptr: *mut Self) -> *mut Work<T, ID> {
463         // SAFETY: The caller promises that the pointer is valid.
464         unsafe { (ptr as *mut u8).add(Self::OFFSET) as *mut Work<T, ID> }
465     }
466 
467     /// Returns a pointer to the struct containing the [`Work<T, ID>`] field.
468     ///
469     /// # Safety
470     ///
471     /// The pointer must point at a [`Work<T, ID>`] field in a struct of type `Self`.
472     #[inline]
473     unsafe fn work_container_of(ptr: *mut Work<T, ID>) -> *mut Self
474     where
475         Self: Sized,
476     {
477         // SAFETY: The caller promises that the pointer points at a field of the right type in the
478         // right kind of struct.
479         unsafe { (ptr as *mut u8).sub(Self::OFFSET) as *mut Self }
480     }
481 }
482 
483 /// Used to safely implement the [`HasWork<T, ID>`] trait.
484 ///
485 /// # Examples
486 ///
487 /// ```
488 /// use kernel::sync::Arc;
489 /// use kernel::workqueue::{self, impl_has_work, Work};
490 ///
491 /// struct MyStruct {
492 ///     work_field: Work<MyStruct, 17>,
493 /// }
494 ///
495 /// impl_has_work! {
496 ///     impl HasWork<MyStruct, 17> for MyStruct { self.work_field }
497 /// }
498 /// ```
499 #[macro_export]
500 macro_rules! impl_has_work {
501     ($(impl$(<$($implarg:ident),*>)?
502        HasWork<$work_type:ty $(, $id:tt)?>
503        for $self:ident $(<$($selfarg:ident),*>)?
504        { self.$field:ident }
505     )*) => {$(
506         // SAFETY: The implementation of `raw_get_work` only compiles if the field has the right
507         // type.
508         unsafe impl$(<$($implarg),*>)? $crate::workqueue::HasWork<$work_type $(, $id)?> for $self $(<$($selfarg),*>)? {
509             const OFFSET: usize = ::core::mem::offset_of!(Self, $field) as usize;
510 
511             #[inline]
512             unsafe fn raw_get_work(ptr: *mut Self) -> *mut $crate::workqueue::Work<$work_type $(, $id)?> {
513                 // SAFETY: The caller promises that the pointer is not dangling.
514                 unsafe {
515                     ::core::ptr::addr_of_mut!((*ptr).$field)
516                 }
517             }
518         }
519     )*};
520 }
521 pub use impl_has_work;
522 
523 impl_has_work! {
524     impl<T> HasWork<Self> for ClosureWork<T> { self.work }
525 }
526 
527 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Arc<T>
528 where
529     T: WorkItem<ID, Pointer = Self>,
530     T: HasWork<T, ID>,
531 {
532     unsafe extern "C" fn run(ptr: *mut bindings::work_struct) {
533         // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`.
534         let ptr = ptr as *mut Work<T, ID>;
535         // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`.
536         let ptr = unsafe { T::work_container_of(ptr) };
537         // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership.
538         let arc = unsafe { Arc::from_raw(ptr) };
539 
540         T::run(arc)
541     }
542 }
543 
544 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Arc<T>
545 where
546     T: WorkItem<ID, Pointer = Self>,
547     T: HasWork<T, ID>,
548 {
549     type EnqueueOutput = Result<(), Self>;
550 
551     unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
552     where
553         F: FnOnce(*mut bindings::work_struct) -> bool,
554     {
555         // Casting between const and mut is not a problem as long as the pointer is a raw pointer.
556         let ptr = Arc::into_raw(self).cast_mut();
557 
558         // SAFETY: Pointers into an `Arc` point at a valid value.
559         let work_ptr = unsafe { T::raw_get_work(ptr) };
560         // SAFETY: `raw_get_work` returns a pointer to a valid value.
561         let work_ptr = unsafe { Work::raw_get(work_ptr) };
562 
563         if queue_work_on(work_ptr) {
564             Ok(())
565         } else {
566             // SAFETY: The work queue has not taken ownership of the pointer.
567             Err(unsafe { Arc::from_raw(ptr) })
568         }
569     }
570 }
571 
572 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Pin<Box<T>>
573 where
574     T: WorkItem<ID, Pointer = Self>,
575     T: HasWork<T, ID>,
576 {
577     unsafe extern "C" fn run(ptr: *mut bindings::work_struct) {
578         // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`.
579         let ptr = ptr as *mut Work<T, ID>;
580         // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`.
581         let ptr = unsafe { T::work_container_of(ptr) };
582         // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership.
583         let boxed = unsafe { Box::from_raw(ptr) };
584         // SAFETY: The box was already pinned when it was enqueued.
585         let pinned = unsafe { Pin::new_unchecked(boxed) };
586 
587         T::run(pinned)
588     }
589 }
590 
591 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Pin<Box<T>>
592 where
593     T: WorkItem<ID, Pointer = Self>,
594     T: HasWork<T, ID>,
595 {
596     type EnqueueOutput = ();
597 
598     unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
599     where
600         F: FnOnce(*mut bindings::work_struct) -> bool,
601     {
602         // SAFETY: We're not going to move `self` or any of its fields, so its okay to temporarily
603         // remove the `Pin` wrapper.
604         let boxed = unsafe { Pin::into_inner_unchecked(self) };
605         let ptr = Box::into_raw(boxed);
606 
607         // SAFETY: Pointers into a `Box` point at a valid value.
608         let work_ptr = unsafe { T::raw_get_work(ptr) };
609         // SAFETY: `raw_get_work` returns a pointer to a valid value.
610         let work_ptr = unsafe { Work::raw_get(work_ptr) };
611 
612         if !queue_work_on(work_ptr) {
613             // SAFETY: This method requires exclusive ownership of the box, so it cannot be in a
614             // workqueue.
615             unsafe { ::core::hint::unreachable_unchecked() }
616         }
617     }
618 }
619 
620 /// Returns the system work queue (`system_wq`).
621 ///
622 /// It is the one used by `schedule[_delayed]_work[_on]()`. Multi-CPU multi-threaded. There are
623 /// users which expect relatively short queue flush time.
624 ///
625 /// Callers shouldn't queue work items which can run for too long.
626 pub fn system() -> &'static Queue {
627     // SAFETY: `system_wq` is a C global, always available.
628     unsafe { Queue::from_raw(bindings::system_wq) }
629 }
630 
631 /// Returns the system high-priority work queue (`system_highpri_wq`).
632 ///
633 /// It is similar to the one returned by [`system`] but for work items which require higher
634 /// scheduling priority.
635 pub fn system_highpri() -> &'static Queue {
636     // SAFETY: `system_highpri_wq` is a C global, always available.
637     unsafe { Queue::from_raw(bindings::system_highpri_wq) }
638 }
639 
640 /// Returns the system work queue for potentially long-running work items (`system_long_wq`).
641 ///
642 /// It is similar to the one returned by [`system`] but may host long running work items. Queue
643 /// flushing might take relatively long.
644 pub fn system_long() -> &'static Queue {
645     // SAFETY: `system_long_wq` is a C global, always available.
646     unsafe { Queue::from_raw(bindings::system_long_wq) }
647 }
648 
649 /// Returns the system unbound work queue (`system_unbound_wq`).
650 ///
651 /// Workers are not bound to any specific CPU, not concurrency managed, and all queued work items
652 /// are executed immediately as long as `max_active` limit is not reached and resources are
653 /// available.
654 pub fn system_unbound() -> &'static Queue {
655     // SAFETY: `system_unbound_wq` is a C global, always available.
656     unsafe { Queue::from_raw(bindings::system_unbound_wq) }
657 }
658 
659 /// Returns the system freezable work queue (`system_freezable_wq`).
660 ///
661 /// It is equivalent to the one returned by [`system`] except that it's freezable.
662 ///
663 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work
664 /// items on the workqueue are drained and no new work item starts execution until thawed.
665 pub fn system_freezable() -> &'static Queue {
666     // SAFETY: `system_freezable_wq` is a C global, always available.
667     unsafe { Queue::from_raw(bindings::system_freezable_wq) }
668 }
669 
670 /// Returns the system power-efficient work queue (`system_power_efficient_wq`).
671 ///
672 /// It is inclined towards saving power and is converted to "unbound" variants if the
673 /// `workqueue.power_efficient` kernel parameter is specified; otherwise, it is similar to the one
674 /// returned by [`system`].
675 pub fn system_power_efficient() -> &'static Queue {
676     // SAFETY: `system_power_efficient_wq` is a C global, always available.
677     unsafe { Queue::from_raw(bindings::system_power_efficient_wq) }
678 }
679 
680 /// Returns the system freezable power-efficient work queue (`system_freezable_power_efficient_wq`).
681 ///
682 /// It is similar to the one returned by [`system_power_efficient`] except that is freezable.
683 ///
684 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work
685 /// items on the workqueue are drained and no new work item starts execution until thawed.
686 pub fn system_freezable_power_efficient() -> &'static Queue {
687     // SAFETY: `system_freezable_power_efficient_wq` is a C global, always available.
688     unsafe { Queue::from_raw(bindings::system_freezable_power_efficient_wq) }
689 }
690