1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Work queues. 4 //! 5 //! This file has two components: The raw work item API, and the safe work item API. 6 //! 7 //! One pattern that is used in both APIs is the `ID` const generic, which exists to allow a single 8 //! type to define multiple `work_struct` fields. This is done by choosing an id for each field, 9 //! and using that id to specify which field you wish to use. (The actual value doesn't matter, as 10 //! long as you use different values for different fields of the same struct.) Since these IDs are 11 //! generic, they are used only at compile-time, so they shouldn't exist in the final binary. 12 //! 13 //! # The raw API 14 //! 15 //! The raw API consists of the `RawWorkItem` trait, where the work item needs to provide an 16 //! arbitrary function that knows how to enqueue the work item. It should usually not be used 17 //! directly, but if you want to, you can use it without using the pieces from the safe API. 18 //! 19 //! # The safe API 20 //! 21 //! The safe API is used via the `Work` struct and `WorkItem` traits. Furthermore, it also includes 22 //! a trait called `WorkItemPointer`, which is usually not used directly by the user. 23 //! 24 //! * The `Work` struct is the Rust wrapper for the C `work_struct` type. 25 //! * The `WorkItem` trait is implemented for structs that can be enqueued to a workqueue. 26 //! * The `WorkItemPointer` trait is implemented for the pointer type that points at a something 27 //! that implements `WorkItem`. 28 //! 29 //! ## Example 30 //! 31 //! This example defines a struct that holds an integer and can be scheduled on the workqueue. When 32 //! the struct is executed, it will print the integer. Since there is only one `work_struct` field, 33 //! we do not need to specify ids for the fields. 34 //! 35 //! ``` 36 //! use kernel::prelude::*; 37 //! use kernel::sync::Arc; 38 //! use kernel::workqueue::{self, Work, WorkItem}; 39 //! use kernel::{impl_has_work, new_work}; 40 //! 41 //! #[pin_data] 42 //! struct MyStruct { 43 //! value: i32, 44 //! #[pin] 45 //! work: Work<MyStruct>, 46 //! } 47 //! 48 //! impl_has_work! { 49 //! impl HasWork<Self> for MyStruct { self.work } 50 //! } 51 //! 52 //! impl MyStruct { 53 //! fn new(value: i32) -> Result<Arc<Self>> { 54 //! Arc::pin_init(pin_init!(MyStruct { 55 //! value, 56 //! work <- new_work!("MyStruct::work"), 57 //! })) 58 //! } 59 //! } 60 //! 61 //! impl WorkItem for MyStruct { 62 //! type Pointer = Arc<MyStruct>; 63 //! 64 //! fn run(this: Arc<MyStruct>) { 65 //! pr_info!("The value is: {}", this.value); 66 //! } 67 //! } 68 //! 69 //! /// This method will enqueue the struct for execution on the system workqueue, where its value 70 //! /// will be printed. 71 //! fn print_later(val: Arc<MyStruct>) { 72 //! let _ = workqueue::system().enqueue(val); 73 //! } 74 //! ``` 75 //! 76 //! The following example shows how multiple `work_struct` fields can be used: 77 //! 78 //! ``` 79 //! use kernel::prelude::*; 80 //! use kernel::sync::Arc; 81 //! use kernel::workqueue::{self, Work, WorkItem}; 82 //! use kernel::{impl_has_work, new_work}; 83 //! 84 //! #[pin_data] 85 //! struct MyStruct { 86 //! value_1: i32, 87 //! value_2: i32, 88 //! #[pin] 89 //! work_1: Work<MyStruct, 1>, 90 //! #[pin] 91 //! work_2: Work<MyStruct, 2>, 92 //! } 93 //! 94 //! impl_has_work! { 95 //! impl HasWork<Self, 1> for MyStruct { self.work_1 } 96 //! impl HasWork<Self, 2> for MyStruct { self.work_2 } 97 //! } 98 //! 99 //! impl MyStruct { 100 //! fn new(value_1: i32, value_2: i32) -> Result<Arc<Self>> { 101 //! Arc::pin_init(pin_init!(MyStruct { 102 //! value_1, 103 //! value_2, 104 //! work_1 <- new_work!("MyStruct::work_1"), 105 //! work_2 <- new_work!("MyStruct::work_2"), 106 //! })) 107 //! } 108 //! } 109 //! 110 //! impl WorkItem<1> for MyStruct { 111 //! type Pointer = Arc<MyStruct>; 112 //! 113 //! fn run(this: Arc<MyStruct>) { 114 //! pr_info!("The value is: {}", this.value_1); 115 //! } 116 //! } 117 //! 118 //! impl WorkItem<2> for MyStruct { 119 //! type Pointer = Arc<MyStruct>; 120 //! 121 //! fn run(this: Arc<MyStruct>) { 122 //! pr_info!("The second value is: {}", this.value_2); 123 //! } 124 //! } 125 //! 126 //! fn print_1_later(val: Arc<MyStruct>) { 127 //! let _ = workqueue::system().enqueue::<Arc<MyStruct>, 1>(val); 128 //! } 129 //! 130 //! fn print_2_later(val: Arc<MyStruct>) { 131 //! let _ = workqueue::system().enqueue::<Arc<MyStruct>, 2>(val); 132 //! } 133 //! ``` 134 //! 135 //! C header: [`include/linux/workqueue.h`](srctree/include/linux/workqueue.h) 136 137 use crate::{bindings, prelude::*, sync::Arc, sync::LockClassKey, types::Opaque}; 138 use alloc::alloc::AllocError; 139 use alloc::boxed::Box; 140 use core::marker::PhantomData; 141 use core::pin::Pin; 142 143 /// Creates a [`Work`] initialiser with the given name and a newly-created lock class. 144 #[macro_export] 145 macro_rules! new_work { 146 ($($name:literal)?) => { 147 $crate::workqueue::Work::new($crate::optional_name!($($name)?), $crate::static_lock_class!()) 148 }; 149 } 150 151 /// A kernel work queue. 152 /// 153 /// Wraps the kernel's C `struct workqueue_struct`. 154 /// 155 /// It allows work items to be queued to run on thread pools managed by the kernel. Several are 156 /// always available, for example, `system`, `system_highpri`, `system_long`, etc. 157 #[repr(transparent)] 158 pub struct Queue(Opaque<bindings::workqueue_struct>); 159 160 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe. 161 unsafe impl Send for Queue {} 162 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe. 163 unsafe impl Sync for Queue {} 164 165 impl Queue { 166 /// Use the provided `struct workqueue_struct` with Rust. 167 /// 168 /// # Safety 169 /// 170 /// The caller must ensure that the provided raw pointer is not dangling, that it points at a 171 /// valid workqueue, and that it remains valid until the end of 'a. 172 pub unsafe fn from_raw<'a>(ptr: *const bindings::workqueue_struct) -> &'a Queue { 173 // SAFETY: The `Queue` type is `#[repr(transparent)]`, so the pointer cast is valid. The 174 // caller promises that the pointer is not dangling. 175 unsafe { &*(ptr as *const Queue) } 176 } 177 178 /// Enqueues a work item. 179 /// 180 /// This may fail if the work item is already enqueued in a workqueue. 181 /// 182 /// The work item will be submitted using `WORK_CPU_UNBOUND`. 183 pub fn enqueue<W, const ID: u64>(&self, w: W) -> W::EnqueueOutput 184 where 185 W: RawWorkItem<ID> + Send + 'static, 186 { 187 let queue_ptr = self.0.get(); 188 189 // SAFETY: We only return `false` if the `work_struct` is already in a workqueue. The other 190 // `__enqueue` requirements are not relevant since `W` is `Send` and static. 191 // 192 // The call to `bindings::queue_work_on` will dereference the provided raw pointer, which 193 // is ok because `__enqueue` guarantees that the pointer is valid for the duration of this 194 // closure. 195 // 196 // Furthermore, if the C workqueue code accesses the pointer after this call to 197 // `__enqueue`, then the work item was successfully enqueued, and `bindings::queue_work_on` 198 // will have returned true. In this case, `__enqueue` promises that the raw pointer will 199 // stay valid until we call the function pointer in the `work_struct`, so the access is ok. 200 unsafe { 201 w.__enqueue(move |work_ptr| { 202 bindings::queue_work_on( 203 bindings::wq_misc_consts_WORK_CPU_UNBOUND as _, 204 queue_ptr, 205 work_ptr, 206 ) 207 }) 208 } 209 } 210 211 /// Tries to spawn the given function or closure as a work item. 212 /// 213 /// This method can fail because it allocates memory to store the work item. 214 pub fn try_spawn<T: 'static + Send + FnOnce()>(&self, func: T) -> Result<(), AllocError> { 215 let init = pin_init!(ClosureWork { 216 work <- new_work!("Queue::try_spawn"), 217 func: Some(func), 218 }); 219 220 self.enqueue(Box::pin_init(init).map_err(|_| AllocError)?); 221 Ok(()) 222 } 223 } 224 225 /// A helper type used in `try_spawn`. 226 #[pin_data] 227 struct ClosureWork<T> { 228 #[pin] 229 work: Work<ClosureWork<T>>, 230 func: Option<T>, 231 } 232 233 impl<T> ClosureWork<T> { 234 fn project(self: Pin<&mut Self>) -> &mut Option<T> { 235 // SAFETY: The `func` field is not structurally pinned. 236 unsafe { &mut self.get_unchecked_mut().func } 237 } 238 } 239 240 impl<T: FnOnce()> WorkItem for ClosureWork<T> { 241 type Pointer = Pin<Box<Self>>; 242 243 fn run(mut this: Pin<Box<Self>>) { 244 if let Some(func) = this.as_mut().project().take() { 245 (func)() 246 } 247 } 248 } 249 250 /// A raw work item. 251 /// 252 /// This is the low-level trait that is designed for being as general as possible. 253 /// 254 /// The `ID` parameter to this trait exists so that a single type can provide multiple 255 /// implementations of this trait. For example, if a struct has multiple `work_struct` fields, then 256 /// you will implement this trait once for each field, using a different id for each field. The 257 /// actual value of the id is not important as long as you use different ids for different fields 258 /// of the same struct. (Fields of different structs need not use different ids.) 259 /// 260 /// Note that the id is used only to select the right method to call during compilation. It wont be 261 /// part of the final executable. 262 /// 263 /// # Safety 264 /// 265 /// Implementers must ensure that any pointers passed to a `queue_work_on` closure by `__enqueue` 266 /// remain valid for the duration specified in the guarantees section of the documentation for 267 /// `__enqueue`. 268 pub unsafe trait RawWorkItem<const ID: u64> { 269 /// The return type of [`Queue::enqueue`]. 270 type EnqueueOutput; 271 272 /// Enqueues this work item on a queue using the provided `queue_work_on` method. 273 /// 274 /// # Guarantees 275 /// 276 /// If this method calls the provided closure, then the raw pointer is guaranteed to point at a 277 /// valid `work_struct` for the duration of the call to the closure. If the closure returns 278 /// true, then it is further guaranteed that the pointer remains valid until someone calls the 279 /// function pointer stored in the `work_struct`. 280 /// 281 /// # Safety 282 /// 283 /// The provided closure may only return `false` if the `work_struct` is already in a workqueue. 284 /// 285 /// If the work item type is annotated with any lifetimes, then you must not call the function 286 /// pointer after any such lifetime expires. (Never calling the function pointer is okay.) 287 /// 288 /// If the work item type is not [`Send`], then the function pointer must be called on the same 289 /// thread as the call to `__enqueue`. 290 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput 291 where 292 F: FnOnce(*mut bindings::work_struct) -> bool; 293 } 294 295 /// Defines the method that should be called directly when a work item is executed. 296 /// 297 /// This trait is implemented by `Pin<Box<T>>` and `Arc<T>`, and is mainly intended to be 298 /// implemented for smart pointer types. For your own structs, you would implement [`WorkItem`] 299 /// instead. The `run` method on this trait will usually just perform the appropriate 300 /// `container_of` translation and then call into the `run` method from the [`WorkItem`] trait. 301 /// 302 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper. 303 /// 304 /// # Safety 305 /// 306 /// Implementers must ensure that [`__enqueue`] uses a `work_struct` initialized with the [`run`] 307 /// method of this trait as the function pointer. 308 /// 309 /// [`__enqueue`]: RawWorkItem::__enqueue 310 /// [`run`]: WorkItemPointer::run 311 pub unsafe trait WorkItemPointer<const ID: u64>: RawWorkItem<ID> { 312 /// Run this work item. 313 /// 314 /// # Safety 315 /// 316 /// The provided `work_struct` pointer must originate from a previous call to `__enqueue` where 317 /// the `queue_work_on` closure returned true, and the pointer must still be valid. 318 unsafe extern "C" fn run(ptr: *mut bindings::work_struct); 319 } 320 321 /// Defines the method that should be called when this work item is executed. 322 /// 323 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper. 324 pub trait WorkItem<const ID: u64 = 0> { 325 /// The pointer type that this struct is wrapped in. This will typically be `Arc<Self>` or 326 /// `Pin<Box<Self>>`. 327 type Pointer: WorkItemPointer<ID>; 328 329 /// The method that should be called when this work item is executed. 330 fn run(this: Self::Pointer); 331 } 332 333 /// Links for a work item. 334 /// 335 /// This struct contains a function pointer to the `run` function from the [`WorkItemPointer`] 336 /// trait, and defines the linked list pointers necessary to enqueue a work item in a workqueue. 337 /// 338 /// Wraps the kernel's C `struct work_struct`. 339 /// 340 /// This is a helper type used to associate a `work_struct` with the [`WorkItem`] that uses it. 341 #[repr(transparent)] 342 pub struct Work<T: ?Sized, const ID: u64 = 0> { 343 work: Opaque<bindings::work_struct>, 344 _inner: PhantomData<T>, 345 } 346 347 // SAFETY: Kernel work items are usable from any thread. 348 // 349 // We do not need to constrain `T` since the work item does not actually contain a `T`. 350 unsafe impl<T: ?Sized, const ID: u64> Send for Work<T, ID> {} 351 // SAFETY: Kernel work items are usable from any thread. 352 // 353 // We do not need to constrain `T` since the work item does not actually contain a `T`. 354 unsafe impl<T: ?Sized, const ID: u64> Sync for Work<T, ID> {} 355 356 impl<T: ?Sized, const ID: u64> Work<T, ID> { 357 /// Creates a new instance of [`Work`]. 358 #[inline] 359 #[allow(clippy::new_ret_no_self)] 360 pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> 361 where 362 T: WorkItem<ID>, 363 { 364 // SAFETY: The `WorkItemPointer` implementation promises that `run` can be used as the work 365 // item function. 366 unsafe { 367 kernel::init::pin_init_from_closure(move |slot| { 368 let slot = Self::raw_get(slot); 369 bindings::init_work_with_key( 370 slot, 371 Some(T::Pointer::run), 372 false, 373 name.as_char_ptr(), 374 key.as_ptr(), 375 ); 376 Ok(()) 377 }) 378 } 379 } 380 381 /// Get a pointer to the inner `work_struct`. 382 /// 383 /// # Safety 384 /// 385 /// The provided pointer must not be dangling and must be properly aligned. (But the memory 386 /// need not be initialized.) 387 #[inline] 388 pub unsafe fn raw_get(ptr: *const Self) -> *mut bindings::work_struct { 389 // SAFETY: The caller promises that the pointer is aligned and not dangling. 390 // 391 // A pointer cast would also be ok due to `#[repr(transparent)]`. We use `addr_of!` so that 392 // the compiler does not complain that the `work` field is unused. 393 unsafe { Opaque::raw_get(core::ptr::addr_of!((*ptr).work)) } 394 } 395 } 396 397 /// Declares that a type has a [`Work<T, ID>`] field. 398 /// 399 /// The intended way of using this trait is via the [`impl_has_work!`] macro. You can use the macro 400 /// like this: 401 /// 402 /// ```no_run 403 /// use kernel::impl_has_work; 404 /// use kernel::prelude::*; 405 /// use kernel::workqueue::Work; 406 /// 407 /// struct MyWorkItem { 408 /// work_field: Work<MyWorkItem, 1>, 409 /// } 410 /// 411 /// impl_has_work! { 412 /// impl HasWork<MyWorkItem, 1> for MyWorkItem { self.work_field } 413 /// } 414 /// ``` 415 /// 416 /// Note that since the `Work` type is annotated with an id, you can have several `work_struct` 417 /// fields by using a different id for each one. 418 /// 419 /// # Safety 420 /// 421 /// The [`OFFSET`] constant must be the offset of a field in Self of type [`Work<T, ID>`]. The methods on 422 /// this trait must have exactly the behavior that the definitions given below have. 423 /// 424 /// [`Work<T, ID>`]: Work 425 /// [`impl_has_work!`]: crate::impl_has_work 426 /// [`OFFSET`]: HasWork::OFFSET 427 pub unsafe trait HasWork<T, const ID: u64 = 0> { 428 /// The offset of the [`Work<T, ID>`] field. 429 /// 430 /// [`Work<T, ID>`]: Work 431 const OFFSET: usize; 432 433 /// Returns the offset of the [`Work<T, ID>`] field. 434 /// 435 /// This method exists because the [`OFFSET`] constant cannot be accessed if the type is not Sized. 436 /// 437 /// [`Work<T, ID>`]: Work 438 /// [`OFFSET`]: HasWork::OFFSET 439 #[inline] 440 fn get_work_offset(&self) -> usize { 441 Self::OFFSET 442 } 443 444 /// Returns a pointer to the [`Work<T, ID>`] field. 445 /// 446 /// # Safety 447 /// 448 /// The provided pointer must point at a valid struct of type `Self`. 449 /// 450 /// [`Work<T, ID>`]: Work 451 #[inline] 452 unsafe fn raw_get_work(ptr: *mut Self) -> *mut Work<T, ID> { 453 // SAFETY: The caller promises that the pointer is valid. 454 unsafe { (ptr as *mut u8).add(Self::OFFSET) as *mut Work<T, ID> } 455 } 456 457 /// Returns a pointer to the struct containing the [`Work<T, ID>`] field. 458 /// 459 /// # Safety 460 /// 461 /// The pointer must point at a [`Work<T, ID>`] field in a struct of type `Self`. 462 /// 463 /// [`Work<T, ID>`]: Work 464 #[inline] 465 unsafe fn work_container_of(ptr: *mut Work<T, ID>) -> *mut Self 466 where 467 Self: Sized, 468 { 469 // SAFETY: The caller promises that the pointer points at a field of the right type in the 470 // right kind of struct. 471 unsafe { (ptr as *mut u8).sub(Self::OFFSET) as *mut Self } 472 } 473 } 474 475 /// Used to safely implement the [`HasWork<T, ID>`] trait. 476 /// 477 /// # Examples 478 /// 479 /// ``` 480 /// use kernel::impl_has_work; 481 /// use kernel::sync::Arc; 482 /// use kernel::workqueue::{self, Work}; 483 /// 484 /// struct MyStruct { 485 /// work_field: Work<MyStruct, 17>, 486 /// } 487 /// 488 /// impl_has_work! { 489 /// impl HasWork<MyStruct, 17> for MyStruct { self.work_field } 490 /// } 491 /// ``` 492 /// 493 /// [`HasWork<T, ID>`]: HasWork 494 #[macro_export] 495 macro_rules! impl_has_work { 496 ($(impl$(<$($implarg:ident),*>)? 497 HasWork<$work_type:ty $(, $id:tt)?> 498 for $self:ident $(<$($selfarg:ident),*>)? 499 { self.$field:ident } 500 )*) => {$( 501 // SAFETY: The implementation of `raw_get_work` only compiles if the field has the right 502 // type. 503 unsafe impl$(<$($implarg),*>)? $crate::workqueue::HasWork<$work_type $(, $id)?> for $self $(<$($selfarg),*>)? { 504 const OFFSET: usize = ::core::mem::offset_of!(Self, $field) as usize; 505 506 #[inline] 507 unsafe fn raw_get_work(ptr: *mut Self) -> *mut $crate::workqueue::Work<$work_type $(, $id)?> { 508 // SAFETY: The caller promises that the pointer is not dangling. 509 unsafe { 510 ::core::ptr::addr_of_mut!((*ptr).$field) 511 } 512 } 513 } 514 )*}; 515 } 516 517 impl_has_work! { 518 impl<T> HasWork<Self> for ClosureWork<T> { self.work } 519 } 520 521 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Arc<T> 522 where 523 T: WorkItem<ID, Pointer = Self>, 524 T: HasWork<T, ID>, 525 { 526 unsafe extern "C" fn run(ptr: *mut bindings::work_struct) { 527 // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`. 528 let ptr = ptr as *mut Work<T, ID>; 529 // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`. 530 let ptr = unsafe { T::work_container_of(ptr) }; 531 // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership. 532 let arc = unsafe { Arc::from_raw(ptr) }; 533 534 T::run(arc) 535 } 536 } 537 538 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Arc<T> 539 where 540 T: WorkItem<ID, Pointer = Self>, 541 T: HasWork<T, ID>, 542 { 543 type EnqueueOutput = Result<(), Self>; 544 545 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput 546 where 547 F: FnOnce(*mut bindings::work_struct) -> bool, 548 { 549 // Casting between const and mut is not a problem as long as the pointer is a raw pointer. 550 let ptr = Arc::into_raw(self).cast_mut(); 551 552 // SAFETY: Pointers into an `Arc` point at a valid value. 553 let work_ptr = unsafe { T::raw_get_work(ptr) }; 554 // SAFETY: `raw_get_work` returns a pointer to a valid value. 555 let work_ptr = unsafe { Work::raw_get(work_ptr) }; 556 557 if queue_work_on(work_ptr) { 558 Ok(()) 559 } else { 560 // SAFETY: The work queue has not taken ownership of the pointer. 561 Err(unsafe { Arc::from_raw(ptr) }) 562 } 563 } 564 } 565 566 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Pin<Box<T>> 567 where 568 T: WorkItem<ID, Pointer = Self>, 569 T: HasWork<T, ID>, 570 { 571 unsafe extern "C" fn run(ptr: *mut bindings::work_struct) { 572 // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`. 573 let ptr = ptr as *mut Work<T, ID>; 574 // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`. 575 let ptr = unsafe { T::work_container_of(ptr) }; 576 // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership. 577 let boxed = unsafe { Box::from_raw(ptr) }; 578 // SAFETY: The box was already pinned when it was enqueued. 579 let pinned = unsafe { Pin::new_unchecked(boxed) }; 580 581 T::run(pinned) 582 } 583 } 584 585 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Pin<Box<T>> 586 where 587 T: WorkItem<ID, Pointer = Self>, 588 T: HasWork<T, ID>, 589 { 590 type EnqueueOutput = (); 591 592 unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput 593 where 594 F: FnOnce(*mut bindings::work_struct) -> bool, 595 { 596 // SAFETY: We're not going to move `self` or any of its fields, so its okay to temporarily 597 // remove the `Pin` wrapper. 598 let boxed = unsafe { Pin::into_inner_unchecked(self) }; 599 let ptr = Box::into_raw(boxed); 600 601 // SAFETY: Pointers into a `Box` point at a valid value. 602 let work_ptr = unsafe { T::raw_get_work(ptr) }; 603 // SAFETY: `raw_get_work` returns a pointer to a valid value. 604 let work_ptr = unsafe { Work::raw_get(work_ptr) }; 605 606 if !queue_work_on(work_ptr) { 607 // SAFETY: This method requires exclusive ownership of the box, so it cannot be in a 608 // workqueue. 609 unsafe { ::core::hint::unreachable_unchecked() } 610 } 611 } 612 } 613 614 /// Returns the system work queue (`system_wq`). 615 /// 616 /// It is the one used by `schedule[_delayed]_work[_on]()`. Multi-CPU multi-threaded. There are 617 /// users which expect relatively short queue flush time. 618 /// 619 /// Callers shouldn't queue work items which can run for too long. 620 pub fn system() -> &'static Queue { 621 // SAFETY: `system_wq` is a C global, always available. 622 unsafe { Queue::from_raw(bindings::system_wq) } 623 } 624 625 /// Returns the system high-priority work queue (`system_highpri_wq`). 626 /// 627 /// It is similar to the one returned by [`system`] but for work items which require higher 628 /// scheduling priority. 629 pub fn system_highpri() -> &'static Queue { 630 // SAFETY: `system_highpri_wq` is a C global, always available. 631 unsafe { Queue::from_raw(bindings::system_highpri_wq) } 632 } 633 634 /// Returns the system work queue for potentially long-running work items (`system_long_wq`). 635 /// 636 /// It is similar to the one returned by [`system`] but may host long running work items. Queue 637 /// flushing might take relatively long. 638 pub fn system_long() -> &'static Queue { 639 // SAFETY: `system_long_wq` is a C global, always available. 640 unsafe { Queue::from_raw(bindings::system_long_wq) } 641 } 642 643 /// Returns the system unbound work queue (`system_unbound_wq`). 644 /// 645 /// Workers are not bound to any specific CPU, not concurrency managed, and all queued work items 646 /// are executed immediately as long as `max_active` limit is not reached and resources are 647 /// available. 648 pub fn system_unbound() -> &'static Queue { 649 // SAFETY: `system_unbound_wq` is a C global, always available. 650 unsafe { Queue::from_raw(bindings::system_unbound_wq) } 651 } 652 653 /// Returns the system freezable work queue (`system_freezable_wq`). 654 /// 655 /// It is equivalent to the one returned by [`system`] except that it's freezable. 656 /// 657 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work 658 /// items on the workqueue are drained and no new work item starts execution until thawed. 659 pub fn system_freezable() -> &'static Queue { 660 // SAFETY: `system_freezable_wq` is a C global, always available. 661 unsafe { Queue::from_raw(bindings::system_freezable_wq) } 662 } 663 664 /// Returns the system power-efficient work queue (`system_power_efficient_wq`). 665 /// 666 /// It is inclined towards saving power and is converted to "unbound" variants if the 667 /// `workqueue.power_efficient` kernel parameter is specified; otherwise, it is similar to the one 668 /// returned by [`system`]. 669 pub fn system_power_efficient() -> &'static Queue { 670 // SAFETY: `system_power_efficient_wq` is a C global, always available. 671 unsafe { Queue::from_raw(bindings::system_power_efficient_wq) } 672 } 673 674 /// Returns the system freezable power-efficient work queue (`system_freezable_power_efficient_wq`). 675 /// 676 /// It is similar to the one returned by [`system_power_efficient`] except that is freezable. 677 /// 678 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work 679 /// items on the workqueue are drained and no new work item starts execution until thawed. 680 pub fn system_freezable_power_efficient() -> &'static Queue { 681 // SAFETY: `system_freezable_power_efficient_wq` is a C global, always available. 682 unsafe { Queue::from_raw(bindings::system_freezable_power_efficient_wq) } 683 } 684