xref: /linux-6.15/rust/kernel/workqueue.rs (revision 4cb1ef64)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Work queues.
4 //!
5 //! This file has two components: The raw work item API, and the safe work item API.
6 //!
7 //! One pattern that is used in both APIs is the `ID` const generic, which exists to allow a single
8 //! type to define multiple `work_struct` fields. This is done by choosing an id for each field,
9 //! and using that id to specify which field you wish to use. (The actual value doesn't matter, as
10 //! long as you use different values for different fields of the same struct.) Since these IDs are
11 //! generic, they are used only at compile-time, so they shouldn't exist in the final binary.
12 //!
13 //! # The raw API
14 //!
15 //! The raw API consists of the `RawWorkItem` trait, where the work item needs to provide an
16 //! arbitrary function that knows how to enqueue the work item. It should usually not be used
17 //! directly, but if you want to, you can use it without using the pieces from the safe API.
18 //!
19 //! # The safe API
20 //!
21 //! The safe API is used via the `Work` struct and `WorkItem` traits. Furthermore, it also includes
22 //! a trait called `WorkItemPointer`, which is usually not used directly by the user.
23 //!
24 //!  * The `Work` struct is the Rust wrapper for the C `work_struct` type.
25 //!  * The `WorkItem` trait is implemented for structs that can be enqueued to a workqueue.
26 //!  * The `WorkItemPointer` trait is implemented for the pointer type that points at a something
27 //!    that implements `WorkItem`.
28 //!
29 //! ## Example
30 //!
31 //! This example defines a struct that holds an integer and can be scheduled on the workqueue. When
32 //! the struct is executed, it will print the integer. Since there is only one `work_struct` field,
33 //! we do not need to specify ids for the fields.
34 //!
35 //! ```
36 //! use kernel::prelude::*;
37 //! use kernel::sync::Arc;
38 //! use kernel::workqueue::{self, Work, WorkItem};
39 //! use kernel::{impl_has_work, new_work};
40 //!
41 //! #[pin_data]
42 //! struct MyStruct {
43 //!     value: i32,
44 //!     #[pin]
45 //!     work: Work<MyStruct>,
46 //! }
47 //!
48 //! impl_has_work! {
49 //!     impl HasWork<Self> for MyStruct { self.work }
50 //! }
51 //!
52 //! impl MyStruct {
53 //!     fn new(value: i32) -> Result<Arc<Self>> {
54 //!         Arc::pin_init(pin_init!(MyStruct {
55 //!             value,
56 //!             work <- new_work!("MyStruct::work"),
57 //!         }))
58 //!     }
59 //! }
60 //!
61 //! impl WorkItem for MyStruct {
62 //!     type Pointer = Arc<MyStruct>;
63 //!
64 //!     fn run(this: Arc<MyStruct>) {
65 //!         pr_info!("The value is: {}", this.value);
66 //!     }
67 //! }
68 //!
69 //! /// This method will enqueue the struct for execution on the system workqueue, where its value
70 //! /// will be printed.
71 //! fn print_later(val: Arc<MyStruct>) {
72 //!     let _ = workqueue::system().enqueue(val);
73 //! }
74 //! ```
75 //!
76 //! The following example shows how multiple `work_struct` fields can be used:
77 //!
78 //! ```
79 //! use kernel::prelude::*;
80 //! use kernel::sync::Arc;
81 //! use kernel::workqueue::{self, Work, WorkItem};
82 //! use kernel::{impl_has_work, new_work};
83 //!
84 //! #[pin_data]
85 //! struct MyStruct {
86 //!     value_1: i32,
87 //!     value_2: i32,
88 //!     #[pin]
89 //!     work_1: Work<MyStruct, 1>,
90 //!     #[pin]
91 //!     work_2: Work<MyStruct, 2>,
92 //! }
93 //!
94 //! impl_has_work! {
95 //!     impl HasWork<Self, 1> for MyStruct { self.work_1 }
96 //!     impl HasWork<Self, 2> for MyStruct { self.work_2 }
97 //! }
98 //!
99 //! impl MyStruct {
100 //!     fn new(value_1: i32, value_2: i32) -> Result<Arc<Self>> {
101 //!         Arc::pin_init(pin_init!(MyStruct {
102 //!             value_1,
103 //!             value_2,
104 //!             work_1 <- new_work!("MyStruct::work_1"),
105 //!             work_2 <- new_work!("MyStruct::work_2"),
106 //!         }))
107 //!     }
108 //! }
109 //!
110 //! impl WorkItem<1> for MyStruct {
111 //!     type Pointer = Arc<MyStruct>;
112 //!
113 //!     fn run(this: Arc<MyStruct>) {
114 //!         pr_info!("The value is: {}", this.value_1);
115 //!     }
116 //! }
117 //!
118 //! impl WorkItem<2> for MyStruct {
119 //!     type Pointer = Arc<MyStruct>;
120 //!
121 //!     fn run(this: Arc<MyStruct>) {
122 //!         pr_info!("The second value is: {}", this.value_2);
123 //!     }
124 //! }
125 //!
126 //! fn print_1_later(val: Arc<MyStruct>) {
127 //!     let _ = workqueue::system().enqueue::<Arc<MyStruct>, 1>(val);
128 //! }
129 //!
130 //! fn print_2_later(val: Arc<MyStruct>) {
131 //!     let _ = workqueue::system().enqueue::<Arc<MyStruct>, 2>(val);
132 //! }
133 //! ```
134 //!
135 //! C header: [`include/linux/workqueue.h`](srctree/include/linux/workqueue.h)
136 
137 use crate::{bindings, prelude::*, sync::Arc, sync::LockClassKey, types::Opaque};
138 use alloc::alloc::AllocError;
139 use alloc::boxed::Box;
140 use core::marker::PhantomData;
141 use core::pin::Pin;
142 
143 /// Creates a [`Work`] initialiser with the given name and a newly-created lock class.
144 #[macro_export]
145 macro_rules! new_work {
146     ($($name:literal)?) => {
147         $crate::workqueue::Work::new($crate::optional_name!($($name)?), $crate::static_lock_class!())
148     };
149 }
150 
151 /// A kernel work queue.
152 ///
153 /// Wraps the kernel's C `struct workqueue_struct`.
154 ///
155 /// It allows work items to be queued to run on thread pools managed by the kernel. Several are
156 /// always available, for example, `system`, `system_highpri`, `system_long`, etc.
157 #[repr(transparent)]
158 pub struct Queue(Opaque<bindings::workqueue_struct>);
159 
160 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe.
161 unsafe impl Send for Queue {}
162 // SAFETY: Accesses to workqueues used by [`Queue`] are thread-safe.
163 unsafe impl Sync for Queue {}
164 
165 impl Queue {
166     /// Use the provided `struct workqueue_struct` with Rust.
167     ///
168     /// # Safety
169     ///
170     /// The caller must ensure that the provided raw pointer is not dangling, that it points at a
171     /// valid workqueue, and that it remains valid until the end of 'a.
172     pub unsafe fn from_raw<'a>(ptr: *const bindings::workqueue_struct) -> &'a Queue {
173         // SAFETY: The `Queue` type is `#[repr(transparent)]`, so the pointer cast is valid. The
174         // caller promises that the pointer is not dangling.
175         unsafe { &*(ptr as *const Queue) }
176     }
177 
178     /// Enqueues a work item.
179     ///
180     /// This may fail if the work item is already enqueued in a workqueue.
181     ///
182     /// The work item will be submitted using `WORK_CPU_UNBOUND`.
183     pub fn enqueue<W, const ID: u64>(&self, w: W) -> W::EnqueueOutput
184     where
185         W: RawWorkItem<ID> + Send + 'static,
186     {
187         let queue_ptr = self.0.get();
188 
189         // SAFETY: We only return `false` if the `work_struct` is already in a workqueue. The other
190         // `__enqueue` requirements are not relevant since `W` is `Send` and static.
191         //
192         // The call to `bindings::queue_work_on` will dereference the provided raw pointer, which
193         // is ok because `__enqueue` guarantees that the pointer is valid for the duration of this
194         // closure.
195         //
196         // Furthermore, if the C workqueue code accesses the pointer after this call to
197         // `__enqueue`, then the work item was successfully enqueued, and `bindings::queue_work_on`
198         // will have returned true. In this case, `__enqueue` promises that the raw pointer will
199         // stay valid until we call the function pointer in the `work_struct`, so the access is ok.
200         unsafe {
201             w.__enqueue(move |work_ptr| {
202                 bindings::queue_work_on(
203                     bindings::wq_misc_consts_WORK_CPU_UNBOUND as _,
204                     queue_ptr,
205                     work_ptr,
206                 )
207             })
208         }
209     }
210 
211     /// Tries to spawn the given function or closure as a work item.
212     ///
213     /// This method can fail because it allocates memory to store the work item.
214     pub fn try_spawn<T: 'static + Send + FnOnce()>(&self, func: T) -> Result<(), AllocError> {
215         let init = pin_init!(ClosureWork {
216             work <- new_work!("Queue::try_spawn"),
217             func: Some(func),
218         });
219 
220         self.enqueue(Box::pin_init(init).map_err(|_| AllocError)?);
221         Ok(())
222     }
223 }
224 
225 /// A helper type used in `try_spawn`.
226 #[pin_data]
227 struct ClosureWork<T> {
228     #[pin]
229     work: Work<ClosureWork<T>>,
230     func: Option<T>,
231 }
232 
233 impl<T> ClosureWork<T> {
234     fn project(self: Pin<&mut Self>) -> &mut Option<T> {
235         // SAFETY: The `func` field is not structurally pinned.
236         unsafe { &mut self.get_unchecked_mut().func }
237     }
238 }
239 
240 impl<T: FnOnce()> WorkItem for ClosureWork<T> {
241     type Pointer = Pin<Box<Self>>;
242 
243     fn run(mut this: Pin<Box<Self>>) {
244         if let Some(func) = this.as_mut().project().take() {
245             (func)()
246         }
247     }
248 }
249 
250 /// A raw work item.
251 ///
252 /// This is the low-level trait that is designed for being as general as possible.
253 ///
254 /// The `ID` parameter to this trait exists so that a single type can provide multiple
255 /// implementations of this trait. For example, if a struct has multiple `work_struct` fields, then
256 /// you will implement this trait once for each field, using a different id for each field. The
257 /// actual value of the id is not important as long as you use different ids for different fields
258 /// of the same struct. (Fields of different structs need not use different ids.)
259 ///
260 /// Note that the id is used only to select the right method to call during compilation. It wont be
261 /// part of the final executable.
262 ///
263 /// # Safety
264 ///
265 /// Implementers must ensure that any pointers passed to a `queue_work_on` closure by `__enqueue`
266 /// remain valid for the duration specified in the guarantees section of the documentation for
267 /// `__enqueue`.
268 pub unsafe trait RawWorkItem<const ID: u64> {
269     /// The return type of [`Queue::enqueue`].
270     type EnqueueOutput;
271 
272     /// Enqueues this work item on a queue using the provided `queue_work_on` method.
273     ///
274     /// # Guarantees
275     ///
276     /// If this method calls the provided closure, then the raw pointer is guaranteed to point at a
277     /// valid `work_struct` for the duration of the call to the closure. If the closure returns
278     /// true, then it is further guaranteed that the pointer remains valid until someone calls the
279     /// function pointer stored in the `work_struct`.
280     ///
281     /// # Safety
282     ///
283     /// The provided closure may only return `false` if the `work_struct` is already in a workqueue.
284     ///
285     /// If the work item type is annotated with any lifetimes, then you must not call the function
286     /// pointer after any such lifetime expires. (Never calling the function pointer is okay.)
287     ///
288     /// If the work item type is not [`Send`], then the function pointer must be called on the same
289     /// thread as the call to `__enqueue`.
290     unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
291     where
292         F: FnOnce(*mut bindings::work_struct) -> bool;
293 }
294 
295 /// Defines the method that should be called directly when a work item is executed.
296 ///
297 /// This trait is implemented by `Pin<Box<T>>` and `Arc<T>`, and is mainly intended to be
298 /// implemented for smart pointer types. For your own structs, you would implement [`WorkItem`]
299 /// instead. The `run` method on this trait will usually just perform the appropriate
300 /// `container_of` translation and then call into the `run` method from the [`WorkItem`] trait.
301 ///
302 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper.
303 ///
304 /// # Safety
305 ///
306 /// Implementers must ensure that [`__enqueue`] uses a `work_struct` initialized with the [`run`]
307 /// method of this trait as the function pointer.
308 ///
309 /// [`__enqueue`]: RawWorkItem::__enqueue
310 /// [`run`]: WorkItemPointer::run
311 pub unsafe trait WorkItemPointer<const ID: u64>: RawWorkItem<ID> {
312     /// Run this work item.
313     ///
314     /// # Safety
315     ///
316     /// The provided `work_struct` pointer must originate from a previous call to `__enqueue` where
317     /// the `queue_work_on` closure returned true, and the pointer must still be valid.
318     unsafe extern "C" fn run(ptr: *mut bindings::work_struct);
319 }
320 
321 /// Defines the method that should be called when this work item is executed.
322 ///
323 /// This trait is used when the `work_struct` field is defined using the [`Work`] helper.
324 pub trait WorkItem<const ID: u64 = 0> {
325     /// The pointer type that this struct is wrapped in. This will typically be `Arc<Self>` or
326     /// `Pin<Box<Self>>`.
327     type Pointer: WorkItemPointer<ID>;
328 
329     /// The method that should be called when this work item is executed.
330     fn run(this: Self::Pointer);
331 }
332 
333 /// Links for a work item.
334 ///
335 /// This struct contains a function pointer to the `run` function from the [`WorkItemPointer`]
336 /// trait, and defines the linked list pointers necessary to enqueue a work item in a workqueue.
337 ///
338 /// Wraps the kernel's C `struct work_struct`.
339 ///
340 /// This is a helper type used to associate a `work_struct` with the [`WorkItem`] that uses it.
341 #[repr(transparent)]
342 pub struct Work<T: ?Sized, const ID: u64 = 0> {
343     work: Opaque<bindings::work_struct>,
344     _inner: PhantomData<T>,
345 }
346 
347 // SAFETY: Kernel work items are usable from any thread.
348 //
349 // We do not need to constrain `T` since the work item does not actually contain a `T`.
350 unsafe impl<T: ?Sized, const ID: u64> Send for Work<T, ID> {}
351 // SAFETY: Kernel work items are usable from any thread.
352 //
353 // We do not need to constrain `T` since the work item does not actually contain a `T`.
354 unsafe impl<T: ?Sized, const ID: u64> Sync for Work<T, ID> {}
355 
356 impl<T: ?Sized, const ID: u64> Work<T, ID> {
357     /// Creates a new instance of [`Work`].
358     #[inline]
359     #[allow(clippy::new_ret_no_self)]
360     pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self>
361     where
362         T: WorkItem<ID>,
363     {
364         // SAFETY: The `WorkItemPointer` implementation promises that `run` can be used as the work
365         // item function.
366         unsafe {
367             kernel::init::pin_init_from_closure(move |slot| {
368                 let slot = Self::raw_get(slot);
369                 bindings::init_work_with_key(
370                     slot,
371                     Some(T::Pointer::run),
372                     false,
373                     name.as_char_ptr(),
374                     key.as_ptr(),
375                 );
376                 Ok(())
377             })
378         }
379     }
380 
381     /// Get a pointer to the inner `work_struct`.
382     ///
383     /// # Safety
384     ///
385     /// The provided pointer must not be dangling and must be properly aligned. (But the memory
386     /// need not be initialized.)
387     #[inline]
388     pub unsafe fn raw_get(ptr: *const Self) -> *mut bindings::work_struct {
389         // SAFETY: The caller promises that the pointer is aligned and not dangling.
390         //
391         // A pointer cast would also be ok due to `#[repr(transparent)]`. We use `addr_of!` so that
392         // the compiler does not complain that the `work` field is unused.
393         unsafe { Opaque::raw_get(core::ptr::addr_of!((*ptr).work)) }
394     }
395 }
396 
397 /// Declares that a type has a [`Work<T, ID>`] field.
398 ///
399 /// The intended way of using this trait is via the [`impl_has_work!`] macro. You can use the macro
400 /// like this:
401 ///
402 /// ```no_run
403 /// use kernel::impl_has_work;
404 /// use kernel::prelude::*;
405 /// use kernel::workqueue::Work;
406 ///
407 /// struct MyWorkItem {
408 ///     work_field: Work<MyWorkItem, 1>,
409 /// }
410 ///
411 /// impl_has_work! {
412 ///     impl HasWork<MyWorkItem, 1> for MyWorkItem { self.work_field }
413 /// }
414 /// ```
415 ///
416 /// Note that since the `Work` type is annotated with an id, you can have several `work_struct`
417 /// fields by using a different id for each one.
418 ///
419 /// # Safety
420 ///
421 /// The [`OFFSET`] constant must be the offset of a field in Self of type [`Work<T, ID>`]. The methods on
422 /// this trait must have exactly the behavior that the definitions given below have.
423 ///
424 /// [`Work<T, ID>`]: Work
425 /// [`impl_has_work!`]: crate::impl_has_work
426 /// [`OFFSET`]: HasWork::OFFSET
427 pub unsafe trait HasWork<T, const ID: u64 = 0> {
428     /// The offset of the [`Work<T, ID>`] field.
429     ///
430     /// [`Work<T, ID>`]: Work
431     const OFFSET: usize;
432 
433     /// Returns the offset of the [`Work<T, ID>`] field.
434     ///
435     /// This method exists because the [`OFFSET`] constant cannot be accessed if the type is not Sized.
436     ///
437     /// [`Work<T, ID>`]: Work
438     /// [`OFFSET`]: HasWork::OFFSET
439     #[inline]
440     fn get_work_offset(&self) -> usize {
441         Self::OFFSET
442     }
443 
444     /// Returns a pointer to the [`Work<T, ID>`] field.
445     ///
446     /// # Safety
447     ///
448     /// The provided pointer must point at a valid struct of type `Self`.
449     ///
450     /// [`Work<T, ID>`]: Work
451     #[inline]
452     unsafe fn raw_get_work(ptr: *mut Self) -> *mut Work<T, ID> {
453         // SAFETY: The caller promises that the pointer is valid.
454         unsafe { (ptr as *mut u8).add(Self::OFFSET) as *mut Work<T, ID> }
455     }
456 
457     /// Returns a pointer to the struct containing the [`Work<T, ID>`] field.
458     ///
459     /// # Safety
460     ///
461     /// The pointer must point at a [`Work<T, ID>`] field in a struct of type `Self`.
462     ///
463     /// [`Work<T, ID>`]: Work
464     #[inline]
465     unsafe fn work_container_of(ptr: *mut Work<T, ID>) -> *mut Self
466     where
467         Self: Sized,
468     {
469         // SAFETY: The caller promises that the pointer points at a field of the right type in the
470         // right kind of struct.
471         unsafe { (ptr as *mut u8).sub(Self::OFFSET) as *mut Self }
472     }
473 }
474 
475 /// Used to safely implement the [`HasWork<T, ID>`] trait.
476 ///
477 /// # Examples
478 ///
479 /// ```
480 /// use kernel::impl_has_work;
481 /// use kernel::sync::Arc;
482 /// use kernel::workqueue::{self, Work};
483 ///
484 /// struct MyStruct {
485 ///     work_field: Work<MyStruct, 17>,
486 /// }
487 ///
488 /// impl_has_work! {
489 ///     impl HasWork<MyStruct, 17> for MyStruct { self.work_field }
490 /// }
491 /// ```
492 ///
493 /// [`HasWork<T, ID>`]: HasWork
494 #[macro_export]
495 macro_rules! impl_has_work {
496     ($(impl$(<$($implarg:ident),*>)?
497        HasWork<$work_type:ty $(, $id:tt)?>
498        for $self:ident $(<$($selfarg:ident),*>)?
499        { self.$field:ident }
500     )*) => {$(
501         // SAFETY: The implementation of `raw_get_work` only compiles if the field has the right
502         // type.
503         unsafe impl$(<$($implarg),*>)? $crate::workqueue::HasWork<$work_type $(, $id)?> for $self $(<$($selfarg),*>)? {
504             const OFFSET: usize = ::core::mem::offset_of!(Self, $field) as usize;
505 
506             #[inline]
507             unsafe fn raw_get_work(ptr: *mut Self) -> *mut $crate::workqueue::Work<$work_type $(, $id)?> {
508                 // SAFETY: The caller promises that the pointer is not dangling.
509                 unsafe {
510                     ::core::ptr::addr_of_mut!((*ptr).$field)
511                 }
512             }
513         }
514     )*};
515 }
516 
517 impl_has_work! {
518     impl<T> HasWork<Self> for ClosureWork<T> { self.work }
519 }
520 
521 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Arc<T>
522 where
523     T: WorkItem<ID, Pointer = Self>,
524     T: HasWork<T, ID>,
525 {
526     unsafe extern "C" fn run(ptr: *mut bindings::work_struct) {
527         // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`.
528         let ptr = ptr as *mut Work<T, ID>;
529         // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`.
530         let ptr = unsafe { T::work_container_of(ptr) };
531         // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership.
532         let arc = unsafe { Arc::from_raw(ptr) };
533 
534         T::run(arc)
535     }
536 }
537 
538 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Arc<T>
539 where
540     T: WorkItem<ID, Pointer = Self>,
541     T: HasWork<T, ID>,
542 {
543     type EnqueueOutput = Result<(), Self>;
544 
545     unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
546     where
547         F: FnOnce(*mut bindings::work_struct) -> bool,
548     {
549         // Casting between const and mut is not a problem as long as the pointer is a raw pointer.
550         let ptr = Arc::into_raw(self).cast_mut();
551 
552         // SAFETY: Pointers into an `Arc` point at a valid value.
553         let work_ptr = unsafe { T::raw_get_work(ptr) };
554         // SAFETY: `raw_get_work` returns a pointer to a valid value.
555         let work_ptr = unsafe { Work::raw_get(work_ptr) };
556 
557         if queue_work_on(work_ptr) {
558             Ok(())
559         } else {
560             // SAFETY: The work queue has not taken ownership of the pointer.
561             Err(unsafe { Arc::from_raw(ptr) })
562         }
563     }
564 }
565 
566 unsafe impl<T, const ID: u64> WorkItemPointer<ID> for Pin<Box<T>>
567 where
568     T: WorkItem<ID, Pointer = Self>,
569     T: HasWork<T, ID>,
570 {
571     unsafe extern "C" fn run(ptr: *mut bindings::work_struct) {
572         // SAFETY: The `__enqueue` method always uses a `work_struct` stored in a `Work<T, ID>`.
573         let ptr = ptr as *mut Work<T, ID>;
574         // SAFETY: This computes the pointer that `__enqueue` got from `Arc::into_raw`.
575         let ptr = unsafe { T::work_container_of(ptr) };
576         // SAFETY: This pointer comes from `Arc::into_raw` and we've been given back ownership.
577         let boxed = unsafe { Box::from_raw(ptr) };
578         // SAFETY: The box was already pinned when it was enqueued.
579         let pinned = unsafe { Pin::new_unchecked(boxed) };
580 
581         T::run(pinned)
582     }
583 }
584 
585 unsafe impl<T, const ID: u64> RawWorkItem<ID> for Pin<Box<T>>
586 where
587     T: WorkItem<ID, Pointer = Self>,
588     T: HasWork<T, ID>,
589 {
590     type EnqueueOutput = ();
591 
592     unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
593     where
594         F: FnOnce(*mut bindings::work_struct) -> bool,
595     {
596         // SAFETY: We're not going to move `self` or any of its fields, so its okay to temporarily
597         // remove the `Pin` wrapper.
598         let boxed = unsafe { Pin::into_inner_unchecked(self) };
599         let ptr = Box::into_raw(boxed);
600 
601         // SAFETY: Pointers into a `Box` point at a valid value.
602         let work_ptr = unsafe { T::raw_get_work(ptr) };
603         // SAFETY: `raw_get_work` returns a pointer to a valid value.
604         let work_ptr = unsafe { Work::raw_get(work_ptr) };
605 
606         if !queue_work_on(work_ptr) {
607             // SAFETY: This method requires exclusive ownership of the box, so it cannot be in a
608             // workqueue.
609             unsafe { ::core::hint::unreachable_unchecked() }
610         }
611     }
612 }
613 
614 /// Returns the system work queue (`system_wq`).
615 ///
616 /// It is the one used by `schedule[_delayed]_work[_on]()`. Multi-CPU multi-threaded. There are
617 /// users which expect relatively short queue flush time.
618 ///
619 /// Callers shouldn't queue work items which can run for too long.
620 pub fn system() -> &'static Queue {
621     // SAFETY: `system_wq` is a C global, always available.
622     unsafe { Queue::from_raw(bindings::system_wq) }
623 }
624 
625 /// Returns the system high-priority work queue (`system_highpri_wq`).
626 ///
627 /// It is similar to the one returned by [`system`] but for work items which require higher
628 /// scheduling priority.
629 pub fn system_highpri() -> &'static Queue {
630     // SAFETY: `system_highpri_wq` is a C global, always available.
631     unsafe { Queue::from_raw(bindings::system_highpri_wq) }
632 }
633 
634 /// Returns the system work queue for potentially long-running work items (`system_long_wq`).
635 ///
636 /// It is similar to the one returned by [`system`] but may host long running work items. Queue
637 /// flushing might take relatively long.
638 pub fn system_long() -> &'static Queue {
639     // SAFETY: `system_long_wq` is a C global, always available.
640     unsafe { Queue::from_raw(bindings::system_long_wq) }
641 }
642 
643 /// Returns the system unbound work queue (`system_unbound_wq`).
644 ///
645 /// Workers are not bound to any specific CPU, not concurrency managed, and all queued work items
646 /// are executed immediately as long as `max_active` limit is not reached and resources are
647 /// available.
648 pub fn system_unbound() -> &'static Queue {
649     // SAFETY: `system_unbound_wq` is a C global, always available.
650     unsafe { Queue::from_raw(bindings::system_unbound_wq) }
651 }
652 
653 /// Returns the system freezable work queue (`system_freezable_wq`).
654 ///
655 /// It is equivalent to the one returned by [`system`] except that it's freezable.
656 ///
657 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work
658 /// items on the workqueue are drained and no new work item starts execution until thawed.
659 pub fn system_freezable() -> &'static Queue {
660     // SAFETY: `system_freezable_wq` is a C global, always available.
661     unsafe { Queue::from_raw(bindings::system_freezable_wq) }
662 }
663 
664 /// Returns the system power-efficient work queue (`system_power_efficient_wq`).
665 ///
666 /// It is inclined towards saving power and is converted to "unbound" variants if the
667 /// `workqueue.power_efficient` kernel parameter is specified; otherwise, it is similar to the one
668 /// returned by [`system`].
669 pub fn system_power_efficient() -> &'static Queue {
670     // SAFETY: `system_power_efficient_wq` is a C global, always available.
671     unsafe { Queue::from_raw(bindings::system_power_efficient_wq) }
672 }
673 
674 /// Returns the system freezable power-efficient work queue (`system_freezable_power_efficient_wq`).
675 ///
676 /// It is similar to the one returned by [`system_power_efficient`] except that is freezable.
677 ///
678 /// A freezable workqueue participates in the freeze phase of the system suspend operations. Work
679 /// items on the workqueue are drained and no new work item starts execution until thawed.
680 pub fn system_freezable_power_efficient() -> &'static Queue {
681     // SAFETY: `system_freezable_power_efficient_wq` is a C global, always available.
682     unsafe { Queue::from_raw(bindings::system_freezable_power_efficient_wq) }
683 }
684