xref: /linux-6.15/rust/kernel/task.rs (revision e7572e5d)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Tasks (threads and processes).
4 //!
5 //! C header: [`include/linux/sched.h`](srctree/include/linux/sched.h).
6 
7 use crate::{
8     bindings,
9     types::{NotThreadSafe, Opaque},
10 };
11 use core::{
12     ffi::{c_int, c_long, c_uint},
13     ops::Deref,
14     ptr,
15 };
16 
17 /// A sentinel value used for infinite timeouts.
18 pub const MAX_SCHEDULE_TIMEOUT: c_long = c_long::MAX;
19 
20 /// Bitmask for tasks that are sleeping in an interruptible state.
21 pub const TASK_INTERRUPTIBLE: c_int = bindings::TASK_INTERRUPTIBLE as c_int;
22 /// Bitmask for tasks that are sleeping in an uninterruptible state.
23 pub const TASK_UNINTERRUPTIBLE: c_int = bindings::TASK_UNINTERRUPTIBLE as c_int;
24 /// Convenience constant for waking up tasks regardless of whether they are in interruptible or
25 /// uninterruptible sleep.
26 pub const TASK_NORMAL: c_uint = bindings::TASK_NORMAL as c_uint;
27 
28 /// Returns the currently running task.
29 #[macro_export]
30 macro_rules! current {
31     () => {
32         // SAFETY: Deref + addr-of below create a temporary `TaskRef` that cannot outlive the
33         // caller.
34         unsafe { &*$crate::task::Task::current() }
35     };
36 }
37 
38 /// Wraps the kernel's `struct task_struct`.
39 ///
40 /// # Invariants
41 ///
42 /// All instances are valid tasks created by the C portion of the kernel.
43 ///
44 /// Instances of this type are always refcounted, that is, a call to `get_task_struct` ensures
45 /// that the allocation remains valid at least until the matching call to `put_task_struct`.
46 ///
47 /// # Examples
48 ///
49 /// The following is an example of getting the PID of the current thread with zero additional cost
50 /// when compared to the C version:
51 ///
52 /// ```
53 /// let pid = current!().pid();
54 /// ```
55 ///
56 /// Getting the PID of the current process, also zero additional cost:
57 ///
58 /// ```
59 /// let pid = current!().group_leader().pid();
60 /// ```
61 ///
62 /// Getting the current task and storing it in some struct. The reference count is automatically
63 /// incremented when creating `State` and decremented when it is dropped:
64 ///
65 /// ```
66 /// use kernel::{task::Task, types::ARef};
67 ///
68 /// struct State {
69 ///     creator: ARef<Task>,
70 ///     index: u32,
71 /// }
72 ///
73 /// impl State {
74 ///     fn new() -> Self {
75 ///         Self {
76 ///             creator: current!().into(),
77 ///             index: 0,
78 ///         }
79 ///     }
80 /// }
81 /// ```
82 #[repr(transparent)]
83 pub struct Task(pub(crate) Opaque<bindings::task_struct>);
84 
85 // SAFETY: By design, the only way to access a `Task` is via the `current` function or via an
86 // `ARef<Task>` obtained through the `AlwaysRefCounted` impl. This means that the only situation in
87 // which a `Task` can be accessed mutably is when the refcount drops to zero and the destructor
88 // runs. It is safe for that to happen on any thread, so it is ok for this type to be `Send`.
89 unsafe impl Send for Task {}
90 
91 // SAFETY: It's OK to access `Task` through shared references from other threads because we're
92 // either accessing properties that don't change (e.g., `pid`, `group_leader`) or that are properly
93 // synchronised by C code (e.g., `signal_pending`).
94 unsafe impl Sync for Task {}
95 
96 /// The type of process identifiers (PIDs).
97 type Pid = bindings::pid_t;
98 
99 impl Task {
100     /// Returns a task reference for the currently executing task/thread.
101     ///
102     /// The recommended way to get the current task/thread is to use the
103     /// [`current`] macro because it is safe.
104     ///
105     /// # Safety
106     ///
107     /// Callers must ensure that the returned object doesn't outlive the current task/thread.
108     pub unsafe fn current() -> impl Deref<Target = Task> {
109         struct TaskRef<'a> {
110             task: &'a Task,
111             _not_send: NotThreadSafe,
112         }
113 
114         impl Deref for TaskRef<'_> {
115             type Target = Task;
116 
117             fn deref(&self) -> &Self::Target {
118                 self.task
119             }
120         }
121 
122         // SAFETY: Just an FFI call with no additional safety requirements.
123         let ptr = unsafe { bindings::get_current() };
124 
125         TaskRef {
126             // SAFETY: If the current thread is still running, the current task is valid. Given
127             // that `TaskRef` is not `Send`, we know it cannot be transferred to another thread
128             // (where it could potentially outlive the caller).
129             task: unsafe { &*ptr.cast() },
130             _not_send: NotThreadSafe,
131         }
132     }
133 
134     /// Returns the group leader of the given task.
135     pub fn group_leader(&self) -> &Task {
136         // SAFETY: By the type invariant, we know that `self.0` is a valid task. Valid tasks always
137         // have a valid `group_leader`.
138         let ptr = unsafe { *ptr::addr_of!((*self.0.get()).group_leader) };
139 
140         // SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`,
141         // and given that a task has a reference to its group leader, we know it must be valid for
142         // the lifetime of the returned task reference.
143         unsafe { &*ptr.cast() }
144     }
145 
146     /// Returns the PID of the given task.
147     pub fn pid(&self) -> Pid {
148         // SAFETY: By the type invariant, we know that `self.0` is a valid task. Valid tasks always
149         // have a valid pid.
150         unsafe { *ptr::addr_of!((*self.0.get()).pid) }
151     }
152 
153     /// Determines whether the given task has pending signals.
154     pub fn signal_pending(&self) -> bool {
155         // SAFETY: By the type invariant, we know that `self.0` is valid.
156         unsafe { bindings::signal_pending(self.0.get()) != 0 }
157     }
158 
159     /// Wakes up the task.
160     pub fn wake_up(&self) {
161         // SAFETY: By the type invariant, we know that `self.0.get()` is non-null and valid.
162         // And `wake_up_process` is safe to be called for any valid task, even if the task is
163         // running.
164         unsafe { bindings::wake_up_process(self.0.get()) };
165     }
166 }
167 
168 // SAFETY: The type invariants guarantee that `Task` is always refcounted.
169 unsafe impl crate::types::AlwaysRefCounted for Task {
170     fn inc_ref(&self) {
171         // SAFETY: The existence of a shared reference means that the refcount is nonzero.
172         unsafe { bindings::get_task_struct(self.0.get()) };
173     }
174 
175     unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
176         // SAFETY: The safety requirements guarantee that the refcount is nonzero.
177         unsafe { bindings::put_task_struct(obj.cast().as_ptr()) }
178     }
179 }
180