xref: /linux-6.15/rust/kernel/sync/lock.rs (revision daa03fe5)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Generic kernel lock and guard.
4 //!
5 //! It contains a generic Rust lock and guard that allow for different backends (e.g., mutexes,
6 //! spinlocks, raw spinlocks) to be provided with minimal effort.
7 
8 use super::LockClassKey;
9 use crate::{
10     init::PinInit,
11     pin_init,
12     str::CStr,
13     types::{NotThreadSafe, Opaque, ScopeGuard},
14 };
15 use core::{cell::UnsafeCell, marker::PhantomPinned};
16 use macros::pin_data;
17 
18 pub mod mutex;
19 pub mod spinlock;
20 
21 pub(super) mod global;
22 pub use global::{GlobalGuard, GlobalLock, GlobalLockBackend, GlobalLockedBy};
23 
24 /// The "backend" of a lock.
25 ///
26 /// It is the actual implementation of the lock, without the need to repeat patterns used in all
27 /// locks.
28 ///
29 /// # Safety
30 ///
31 /// - Implementers must ensure that only one thread/CPU may access the protected data once the lock
32 ///   is owned, that is, between calls to [`lock`] and [`unlock`].
33 /// - Implementers must also ensure that [`relock`] uses the same locking method as the original
34 ///   lock operation.
35 ///
36 /// [`lock`]: Backend::lock
37 /// [`unlock`]: Backend::unlock
38 /// [`relock`]: Backend::relock
39 pub unsafe trait Backend {
40     /// The state required by the lock.
41     type State;
42 
43     /// The state required to be kept between [`lock`] and [`unlock`].
44     ///
45     /// [`lock`]: Backend::lock
46     /// [`unlock`]: Backend::unlock
47     type GuardState;
48 
49     /// Initialises the lock.
50     ///
51     /// # Safety
52     ///
53     /// `ptr` must be valid for write for the duration of the call, while `name` and `key` must
54     /// remain valid for read indefinitely.
55     unsafe fn init(
56         ptr: *mut Self::State,
57         name: *const crate::ffi::c_char,
58         key: *mut bindings::lock_class_key,
59     );
60 
61     /// Acquires the lock, making the caller its owner.
62     ///
63     /// # Safety
64     ///
65     /// Callers must ensure that [`Backend::init`] has been previously called.
66     #[must_use]
67     unsafe fn lock(ptr: *mut Self::State) -> Self::GuardState;
68 
69     /// Tries to acquire the lock.
70     ///
71     /// # Safety
72     ///
73     /// Callers must ensure that [`Backend::init`] has been previously called.
74     unsafe fn try_lock(ptr: *mut Self::State) -> Option<Self::GuardState>;
75 
76     /// Releases the lock, giving up its ownership.
77     ///
78     /// # Safety
79     ///
80     /// It must only be called by the current owner of the lock.
81     unsafe fn unlock(ptr: *mut Self::State, guard_state: &Self::GuardState);
82 
83     /// Reacquires the lock, making the caller its owner.
84     ///
85     /// # Safety
86     ///
87     /// Callers must ensure that `guard_state` comes from a previous call to [`Backend::lock`] (or
88     /// variant) that has been unlocked with [`Backend::unlock`] and will be relocked now.
89     unsafe fn relock(ptr: *mut Self::State, guard_state: &mut Self::GuardState) {
90         // SAFETY: The safety requirements ensure that the lock is initialised.
91         *guard_state = unsafe { Self::lock(ptr) };
92     }
93 }
94 
95 /// A mutual exclusion primitive.
96 ///
97 /// Exposes one of the kernel locking primitives. Which one is exposed depends on the lock
98 /// [`Backend`] specified as the generic parameter `B`.
99 #[repr(C)]
100 #[pin_data]
101 pub struct Lock<T: ?Sized, B: Backend> {
102     /// The kernel lock object.
103     #[pin]
104     state: Opaque<B::State>,
105 
106     /// Some locks are known to be self-referential (e.g., mutexes), while others are architecture
107     /// or config defined (e.g., spinlocks). So we conservatively require them to be pinned in case
108     /// some architecture uses self-references now or in the future.
109     #[pin]
110     _pin: PhantomPinned,
111 
112     /// The data protected by the lock.
113     pub(crate) data: UnsafeCell<T>,
114 }
115 
116 // SAFETY: `Lock` can be transferred across thread boundaries iff the data it protects can.
117 unsafe impl<T: ?Sized + Send, B: Backend> Send for Lock<T, B> {}
118 
119 // SAFETY: `Lock` serialises the interior mutability it provides, so it is `Sync` as long as the
120 // data it protects is `Send`.
121 unsafe impl<T: ?Sized + Send, B: Backend> Sync for Lock<T, B> {}
122 
123 impl<T, B: Backend> Lock<T, B> {
124     /// Constructs a new lock initialiser.
125     pub fn new(t: T, name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> {
126         pin_init!(Self {
127             data: UnsafeCell::new(t),
128             _pin: PhantomPinned,
129             // SAFETY: `slot` is valid while the closure is called and both `name` and `key` have
130             // static lifetimes so they live indefinitely.
131             state <- Opaque::ffi_init(|slot| unsafe {
132                 B::init(slot, name.as_char_ptr(), key.as_ptr())
133             }),
134         })
135     }
136 }
137 
138 impl<B: Backend> Lock<(), B> {
139     /// Constructs a [`Lock`] from a raw pointer.
140     ///
141     /// This can be useful for interacting with a lock which was initialised outside of Rust.
142     ///
143     /// # Safety
144     ///
145     /// The caller promises that `ptr` points to a valid initialised instance of [`State`] during
146     /// the whole lifetime of `'a`.
147     ///
148     /// [`State`]: Backend::State
149     pub unsafe fn from_raw<'a>(ptr: *mut B::State) -> &'a Self {
150         // SAFETY:
151         // - By the safety contract `ptr` must point to a valid initialised instance of `B::State`
152         // - Since the lock data type is `()` which is a ZST, `state` is the only non-ZST member of
153         //   the struct
154         // - Combined with `#[repr(C)]`, this guarantees `Self` has an equivalent data layout to
155         //   `B::State`.
156         unsafe { &*ptr.cast() }
157     }
158 }
159 
160 impl<T: ?Sized, B: Backend> Lock<T, B> {
161     /// Acquires the lock and gives the caller access to the data protected by it.
162     pub fn lock(&self) -> Guard<'_, T, B> {
163         // SAFETY: The constructor of the type calls `init`, so the existence of the object proves
164         // that `init` was called.
165         let state = unsafe { B::lock(self.state.get()) };
166         // SAFETY: The lock was just acquired.
167         unsafe { Guard::new(self, state) }
168     }
169 
170     /// Tries to acquire the lock.
171     ///
172     /// Returns a guard that can be used to access the data protected by the lock if successful.
173     pub fn try_lock(&self) -> Option<Guard<'_, T, B>> {
174         // SAFETY: The constructor of the type calls `init`, so the existence of the object proves
175         // that `init` was called.
176         unsafe { B::try_lock(self.state.get()).map(|state| Guard::new(self, state)) }
177     }
178 }
179 
180 /// A lock guard.
181 ///
182 /// Allows mutual exclusion primitives that implement the [`Backend`] trait to automatically unlock
183 /// when a guard goes out of scope. It also provides a safe and convenient way to access the data
184 /// protected by the lock.
185 #[must_use = "the lock unlocks immediately when the guard is unused"]
186 pub struct Guard<'a, T: ?Sized, B: Backend> {
187     pub(crate) lock: &'a Lock<T, B>,
188     pub(crate) state: B::GuardState,
189     _not_send: NotThreadSafe,
190 }
191 
192 // SAFETY: `Guard` is sync when the data protected by the lock is also sync.
193 unsafe impl<T: Sync + ?Sized, B: Backend> Sync for Guard<'_, T, B> {}
194 
195 impl<T: ?Sized, B: Backend> Guard<'_, T, B> {
196     pub(crate) fn do_unlocked<U>(&mut self, cb: impl FnOnce() -> U) -> U {
197         // SAFETY: The caller owns the lock, so it is safe to unlock it.
198         unsafe { B::unlock(self.lock.state.get(), &self.state) };
199 
200         let _relock = ScopeGuard::new(||
201                 // SAFETY: The lock was just unlocked above and is being relocked now.
202                 unsafe { B::relock(self.lock.state.get(), &mut self.state) });
203 
204         cb()
205     }
206 }
207 
208 impl<T: ?Sized, B: Backend> core::ops::Deref for Guard<'_, T, B> {
209     type Target = T;
210 
211     fn deref(&self) -> &Self::Target {
212         // SAFETY: The caller owns the lock, so it is safe to deref the protected data.
213         unsafe { &*self.lock.data.get() }
214     }
215 }
216 
217 impl<T: ?Sized, B: Backend> core::ops::DerefMut for Guard<'_, T, B> {
218     fn deref_mut(&mut self) -> &mut Self::Target {
219         // SAFETY: The caller owns the lock, so it is safe to deref the protected data.
220         unsafe { &mut *self.lock.data.get() }
221     }
222 }
223 
224 impl<T: ?Sized, B: Backend> Drop for Guard<'_, T, B> {
225     fn drop(&mut self) {
226         // SAFETY: The caller owns the lock, so it is safe to unlock it.
227         unsafe { B::unlock(self.lock.state.get(), &self.state) };
228     }
229 }
230 
231 impl<'a, T: ?Sized, B: Backend> Guard<'a, T, B> {
232     /// Constructs a new immutable lock guard.
233     ///
234     /// # Safety
235     ///
236     /// The caller must ensure that it owns the lock.
237     pub unsafe fn new(lock: &'a Lock<T, B>, state: B::GuardState) -> Self {
238         Self {
239             lock,
240             state,
241             _not_send: NotThreadSafe,
242         }
243     }
244 }
245