xref: /linux-6.15/rust/kernel/sync/arc.rs (revision bfa7dff0)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A reference-counted pointer.
4 //!
5 //! This module implements a way for users to create reference-counted objects and pointers to
6 //! them. Such a pointer automatically increments and decrements the count, and drops the
7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple
8 //! threads.
9 //!
10 //! It is different from the standard library's [`Arc`] in a few ways:
11 //! 1. It is backed by the kernel's `refcount_t` type.
12 //! 2. It does not support weak references, which allows it to be half the size.
13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold.
14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
15 //!
16 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
17 
18 use crate::{
19     bindings,
20     error::{self, Error},
21     init::{self, InPlaceInit, Init, PinInit},
22     try_init,
23     types::{ForeignOwnable, Opaque},
24 };
25 use alloc::boxed::Box;
26 use core::{
27     alloc::AllocError,
28     fmt,
29     marker::{PhantomData, Unsize},
30     mem::{ManuallyDrop, MaybeUninit},
31     ops::{Deref, DerefMut},
32     pin::Pin,
33     ptr::NonNull,
34 };
35 use macros::pin_data;
36 
37 mod std_vendor;
38 
39 /// A reference-counted pointer to an instance of `T`.
40 ///
41 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented
42 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
43 ///
44 /// # Invariants
45 ///
46 /// The reference count on an instance of [`Arc`] is always non-zero.
47 /// The object pointed to by [`Arc`] is always pinned.
48 ///
49 /// # Examples
50 ///
51 /// ```
52 /// use kernel::sync::Arc;
53 ///
54 /// struct Example {
55 ///     a: u32,
56 ///     b: u32,
57 /// }
58 ///
59 /// // Create a ref-counted instance of `Example`.
60 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
61 ///
62 /// // Get a new pointer to `obj` and increment the refcount.
63 /// let cloned = obj.clone();
64 ///
65 /// // Assert that both `obj` and `cloned` point to the same underlying object.
66 /// assert!(core::ptr::eq(&*obj, &*cloned));
67 ///
68 /// // Destroy `obj` and decrement its refcount.
69 /// drop(obj);
70 ///
71 /// // Check that the values are still accessible through `cloned`.
72 /// assert_eq!(cloned.a, 10);
73 /// assert_eq!(cloned.b, 20);
74 ///
75 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
76 /// # Ok::<(), Error>(())
77 /// ```
78 ///
79 /// Using `Arc<T>` as the type of `self`:
80 ///
81 /// ```
82 /// use kernel::sync::Arc;
83 ///
84 /// struct Example {
85 ///     a: u32,
86 ///     b: u32,
87 /// }
88 ///
89 /// impl Example {
90 ///     fn take_over(self: Arc<Self>) {
91 ///         // ...
92 ///     }
93 ///
94 ///     fn use_reference(self: &Arc<Self>) {
95 ///         // ...
96 ///     }
97 /// }
98 ///
99 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
100 /// obj.use_reference();
101 /// obj.take_over();
102 /// # Ok::<(), Error>(())
103 /// ```
104 ///
105 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
106 ///
107 /// ```
108 /// use kernel::sync::{Arc, ArcBorrow};
109 ///
110 /// trait MyTrait {
111 ///     // Trait has a function whose `self` type is `Arc<Self>`.
112 ///     fn example1(self: Arc<Self>) {}
113 ///
114 ///     // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
115 ///     fn example2(self: ArcBorrow<'_, Self>) {}
116 /// }
117 ///
118 /// struct Example;
119 /// impl MyTrait for Example {}
120 ///
121 /// // `obj` has type `Arc<Example>`.
122 /// let obj: Arc<Example> = Arc::try_new(Example)?;
123 ///
124 /// // `coerced` has type `Arc<dyn MyTrait>`.
125 /// let coerced: Arc<dyn MyTrait> = obj;
126 /// # Ok::<(), Error>(())
127 /// ```
128 pub struct Arc<T: ?Sized> {
129     ptr: NonNull<ArcInner<T>>,
130     _p: PhantomData<ArcInner<T>>,
131 }
132 
133 #[pin_data]
134 #[repr(C)]
135 struct ArcInner<T: ?Sized> {
136     refcount: Opaque<bindings::refcount_t>,
137     data: T,
138 }
139 
140 // This is to allow [`Arc`] (and variants) to be used as the type of `self`.
141 impl<T: ?Sized> core::ops::Receiver for Arc<T> {}
142 
143 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
144 // dynamically-sized type (DST) `U`.
145 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
146 
147 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
148 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
149 
150 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
151 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
152 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
153 // mutable reference when the reference count reaches zero and `T` is dropped.
154 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
155 
156 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
157 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
158 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
159 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
160 // the reference count reaches zero and `T` is dropped.
161 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
162 
163 impl<T> Arc<T> {
164     /// Constructs a new reference counted instance of `T`.
165     pub fn try_new(contents: T) -> Result<Self, AllocError> {
166         // INVARIANT: The refcount is initialised to a non-zero value.
167         let value = ArcInner {
168             // SAFETY: There are no safety requirements for this FFI call.
169             refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
170             data: contents,
171         };
172 
173         let inner = Box::try_new(value)?;
174 
175         // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
176         // `Arc` object.
177         Ok(unsafe { Self::from_inner(Box::leak(inner).into()) })
178     }
179 
180     /// Use the given initializer to in-place initialize a `T`.
181     ///
182     /// If `T: !Unpin` it will not be able to move afterwards.
183     #[inline]
184     pub fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Self>
185     where
186         Error: From<E>,
187     {
188         UniqueArc::pin_init(init).map(|u| u.into())
189     }
190 
191     /// Use the given initializer to in-place initialize a `T`.
192     ///
193     /// This is equivalent to [`Arc<T>::pin_init`], since an [`Arc`] is always pinned.
194     #[inline]
195     pub fn init<E>(init: impl Init<T, E>) -> error::Result<Self>
196     where
197         Error: From<E>,
198     {
199         UniqueArc::init(init).map(|u| u.into())
200     }
201 }
202 
203 impl<T: ?Sized> Arc<T> {
204     /// Constructs a new [`Arc`] from an existing [`ArcInner`].
205     ///
206     /// # Safety
207     ///
208     /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
209     /// count, one of which will be owned by the new [`Arc`] instance.
210     unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
211         // INVARIANT: By the safety requirements, the invariants hold.
212         Arc {
213             ptr: inner,
214             _p: PhantomData,
215         }
216     }
217 
218     /// Returns an [`ArcBorrow`] from the given [`Arc`].
219     ///
220     /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
221     /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
222     #[inline]
223     pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
224         // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
225         // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
226         // reference can be created.
227         unsafe { ArcBorrow::new(self.ptr) }
228     }
229 
230     /// Compare whether two [`Arc`] pointers reference the same underlying object.
231     pub fn ptr_eq(this: &Self, other: &Self) -> bool {
232         core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
233     }
234 }
235 
236 impl<T: 'static> ForeignOwnable for Arc<T> {
237     type Borrowed<'a> = ArcBorrow<'a, T>;
238 
239     fn into_foreign(self) -> *const core::ffi::c_void {
240         ManuallyDrop::new(self).ptr.as_ptr() as _
241     }
242 
243     unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> {
244         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
245         // a previous call to `Arc::into_foreign`.
246         let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap();
247 
248         // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
249         // for the lifetime of the returned value. Additionally, the safety requirements of
250         // `ForeignOwnable::borrow_mut` ensure that no new mutable references are created.
251         unsafe { ArcBorrow::new(inner) }
252     }
253 
254     unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self {
255         // SAFETY: By the safety requirement of this function, we know that `ptr` came from
256         // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
257         // holds a reference count increment that is transferrable to us.
258         unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) }
259     }
260 }
261 
262 impl<T: ?Sized> Deref for Arc<T> {
263     type Target = T;
264 
265     fn deref(&self) -> &Self::Target {
266         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
267         // safe to dereference it.
268         unsafe { &self.ptr.as_ref().data }
269     }
270 }
271 
272 impl<T: ?Sized> AsRef<T> for Arc<T> {
273     fn as_ref(&self) -> &T {
274         self.deref()
275     }
276 }
277 
278 impl<T: ?Sized> Clone for Arc<T> {
279     fn clone(&self) -> Self {
280         // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
281         // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
282         // safe to increment the refcount.
283         unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) };
284 
285         // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
286         unsafe { Self::from_inner(self.ptr) }
287     }
288 }
289 
290 impl<T: ?Sized> Drop for Arc<T> {
291     fn drop(&mut self) {
292         // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
293         // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
294         // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
295         // freed/invalid memory as long as it is never dereferenced.
296         let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
297 
298         // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
299         // this instance is being dropped, so the broken invariant is not observable.
300         // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
301         let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
302         if is_zero {
303             // The count reached zero, we must free the memory.
304             //
305             // SAFETY: The pointer was initialised from the result of `Box::leak`.
306             unsafe { Box::from_raw(self.ptr.as_ptr()) };
307         }
308     }
309 }
310 
311 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
312     fn from(item: UniqueArc<T>) -> Self {
313         item.inner
314     }
315 }
316 
317 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
318     fn from(item: Pin<UniqueArc<T>>) -> Self {
319         // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
320         unsafe { Pin::into_inner_unchecked(item).inner }
321     }
322 }
323 
324 /// A borrowed reference to an [`Arc`] instance.
325 ///
326 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
327 /// to use just `&T`, which we can trivially get from an `Arc<T>` instance.
328 ///
329 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
330 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
331 /// to a pointer (`Arc<T>`) to the object (`T`). An [`ArcBorrow`] eliminates this double
332 /// indirection while still allowing one to increment the refcount and getting an `Arc<T>` when/if
333 /// needed.
334 ///
335 /// # Invariants
336 ///
337 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the
338 /// lifetime of the [`ArcBorrow`] instance.
339 ///
340 /// # Example
341 ///
342 /// ```
343 /// use kernel::sync::{Arc, ArcBorrow};
344 ///
345 /// struct Example;
346 ///
347 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
348 ///     e.into()
349 /// }
350 ///
351 /// let obj = Arc::try_new(Example)?;
352 /// let cloned = do_something(obj.as_arc_borrow());
353 ///
354 /// // Assert that both `obj` and `cloned` point to the same underlying object.
355 /// assert!(core::ptr::eq(&*obj, &*cloned));
356 /// # Ok::<(), Error>(())
357 /// ```
358 ///
359 /// Using `ArcBorrow<T>` as the type of `self`:
360 ///
361 /// ```
362 /// use kernel::sync::{Arc, ArcBorrow};
363 ///
364 /// struct Example {
365 ///     a: u32,
366 ///     b: u32,
367 /// }
368 ///
369 /// impl Example {
370 ///     fn use_reference(self: ArcBorrow<'_, Self>) {
371 ///         // ...
372 ///     }
373 /// }
374 ///
375 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?;
376 /// obj.as_arc_borrow().use_reference();
377 /// # Ok::<(), Error>(())
378 /// ```
379 pub struct ArcBorrow<'a, T: ?Sized + 'a> {
380     inner: NonNull<ArcInner<T>>,
381     _p: PhantomData<&'a ()>,
382 }
383 
384 // This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`.
385 impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {}
386 
387 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
388 // `ArcBorrow<U>`.
389 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
390     for ArcBorrow<'_, T>
391 {
392 }
393 
394 impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
395     fn clone(&self) -> Self {
396         *self
397     }
398 }
399 
400 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
401 
402 impl<T: ?Sized> ArcBorrow<'_, T> {
403     /// Creates a new [`ArcBorrow`] instance.
404     ///
405     /// # Safety
406     ///
407     /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
408     /// 1. That `inner` remains valid;
409     /// 2. That no mutable references to `inner` are created.
410     unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
411         // INVARIANT: The safety requirements guarantee the invariants.
412         Self {
413             inner,
414             _p: PhantomData,
415         }
416     }
417 }
418 
419 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
420     fn from(b: ArcBorrow<'_, T>) -> Self {
421         // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
422         // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
423         // increment.
424         ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
425             .deref()
426             .clone()
427     }
428 }
429 
430 impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
431     type Target = T;
432 
433     fn deref(&self) -> &Self::Target {
434         // SAFETY: By the type invariant, the underlying object is still alive with no mutable
435         // references to it, so it is safe to create a shared reference.
436         unsafe { &self.inner.as_ref().data }
437     }
438 }
439 
440 /// A refcounted object that is known to have a refcount of 1.
441 ///
442 /// It is mutable and can be converted to an [`Arc`] so that it can be shared.
443 ///
444 /// # Invariants
445 ///
446 /// `inner` always has a reference count of 1.
447 ///
448 /// # Examples
449 ///
450 /// In the following example, we make changes to the inner object before turning it into an
451 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
452 /// cannot fail.
453 ///
454 /// ```
455 /// use kernel::sync::{Arc, UniqueArc};
456 ///
457 /// struct Example {
458 ///     a: u32,
459 ///     b: u32,
460 /// }
461 ///
462 /// fn test() -> Result<Arc<Example>> {
463 ///     let mut x = UniqueArc::try_new(Example { a: 10, b: 20 })?;
464 ///     x.a += 1;
465 ///     x.b += 1;
466 ///     Ok(x.into())
467 /// }
468 ///
469 /// # test().unwrap();
470 /// ```
471 ///
472 /// In the following example we first allocate memory for a ref-counted `Example` but we don't
473 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
474 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
475 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
476 ///
477 /// ```
478 /// use kernel::sync::{Arc, UniqueArc};
479 ///
480 /// struct Example {
481 ///     a: u32,
482 ///     b: u32,
483 /// }
484 ///
485 /// fn test() -> Result<Arc<Example>> {
486 ///     let x = UniqueArc::try_new_uninit()?;
487 ///     Ok(x.write(Example { a: 10, b: 20 }).into())
488 /// }
489 ///
490 /// # test().unwrap();
491 /// ```
492 ///
493 /// In the last example below, the caller gets a pinned instance of `Example` while converting to
494 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
495 /// initialisation, for example, when initialising fields that are wrapped in locks.
496 ///
497 /// ```
498 /// use kernel::sync::{Arc, UniqueArc};
499 ///
500 /// struct Example {
501 ///     a: u32,
502 ///     b: u32,
503 /// }
504 ///
505 /// fn test() -> Result<Arc<Example>> {
506 ///     let mut pinned = Pin::from(UniqueArc::try_new(Example { a: 10, b: 20 })?);
507 ///     // We can modify `pinned` because it is `Unpin`.
508 ///     pinned.as_mut().a += 1;
509 ///     Ok(pinned.into())
510 /// }
511 ///
512 /// # test().unwrap();
513 /// ```
514 pub struct UniqueArc<T: ?Sized> {
515     inner: Arc<T>,
516 }
517 
518 impl<T> UniqueArc<T> {
519     /// Tries to allocate a new [`UniqueArc`] instance.
520     pub fn try_new(value: T) -> Result<Self, AllocError> {
521         Ok(Self {
522             // INVARIANT: The newly-created object has a ref-count of 1.
523             inner: Arc::try_new(value)?,
524         })
525     }
526 
527     /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
528     pub fn try_new_uninit() -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
529         // INVARIANT: The refcount is initialised to a non-zero value.
530         let inner = Box::try_init::<AllocError>(try_init!(ArcInner {
531             // SAFETY: There are no safety requirements for this FFI call.
532             refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
533             data <- init::uninit::<T, AllocError>(),
534         }? AllocError))?;
535         Ok(UniqueArc {
536             // INVARIANT: The newly-created object has a ref-count of 1.
537             // SAFETY: The pointer from the `Box` is valid.
538             inner: unsafe { Arc::from_inner(Box::leak(inner).into()) },
539         })
540     }
541 }
542 
543 impl<T> UniqueArc<MaybeUninit<T>> {
544     /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
545     pub fn write(mut self, value: T) -> UniqueArc<T> {
546         self.deref_mut().write(value);
547         // SAFETY: We just wrote the value to be initialized.
548         unsafe { self.assume_init() }
549     }
550 
551     /// Unsafely assume that `self` is initialized.
552     ///
553     /// # Safety
554     ///
555     /// The caller guarantees that the value behind this pointer has been initialized. It is
556     /// *immediate* UB to call this when the value is not initialized.
557     pub unsafe fn assume_init(self) -> UniqueArc<T> {
558         let inner = ManuallyDrop::new(self).inner.ptr;
559         UniqueArc {
560             // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
561             // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
562             inner: unsafe { Arc::from_inner(inner.cast()) },
563         }
564     }
565 
566     /// Initialize `self` using the given initializer.
567     pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
568         // SAFETY: The supplied pointer is valid for initialization.
569         match unsafe { init.__init(self.as_mut_ptr()) } {
570             // SAFETY: Initialization completed successfully.
571             Ok(()) => Ok(unsafe { self.assume_init() }),
572             Err(err) => Err(err),
573         }
574     }
575 
576     /// Pin-initialize `self` using the given pin-initializer.
577     pub fn pin_init_with<E>(
578         mut self,
579         init: impl PinInit<T, E>,
580     ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
581         // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
582         // to ensure it does not move.
583         match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
584             // SAFETY: Initialization completed successfully.
585             Ok(()) => Ok(unsafe { self.assume_init() }.into()),
586             Err(err) => Err(err),
587         }
588     }
589 }
590 
591 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
592     fn from(obj: UniqueArc<T>) -> Self {
593         // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
594         // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
595         unsafe { Pin::new_unchecked(obj) }
596     }
597 }
598 
599 impl<T: ?Sized> Deref for UniqueArc<T> {
600     type Target = T;
601 
602     fn deref(&self) -> &Self::Target {
603         self.inner.deref()
604     }
605 }
606 
607 impl<T: ?Sized> DerefMut for UniqueArc<T> {
608     fn deref_mut(&mut self) -> &mut Self::Target {
609         // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
610         // it is safe to dereference it. Additionally, we know there is only one reference when
611         // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
612         unsafe { &mut self.inner.ptr.as_mut().data }
613     }
614 }
615 
616 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
617     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
618         fmt::Display::fmt(self.deref(), f)
619     }
620 }
621 
622 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
623     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
624         fmt::Display::fmt(self.deref(), f)
625     }
626 }
627 
628 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
629     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
630         fmt::Debug::fmt(self.deref(), f)
631     }
632 }
633 
634 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
635     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
636         fmt::Debug::fmt(self.deref(), f)
637     }
638 }
639