1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A reference-counted pointer. 4 //! 5 //! This module implements a way for users to create reference-counted objects and pointers to 6 //! them. Such a pointer automatically increments and decrements the count, and drops the 7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple 8 //! threads. 9 //! 10 //! It is different from the standard library's [`Arc`] in a few ways: 11 //! 1. It is backed by the kernel's `refcount_t` type. 12 //! 2. It does not support weak references, which allows it to be half the size. 13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold. 14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned. 15 //! 5. The object in [`Arc`] is pinned implicitly. 16 //! 17 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html 18 19 use crate::{ 20 alloc::{AllocError, Flags, KBox}, 21 bindings, 22 init::InPlaceInit, 23 try_init, 24 types::{ForeignOwnable, Opaque}, 25 }; 26 use core::{ 27 alloc::Layout, 28 fmt, 29 marker::PhantomData, 30 mem::{ManuallyDrop, MaybeUninit}, 31 ops::{Deref, DerefMut}, 32 pin::Pin, 33 ptr::NonNull, 34 }; 35 use pin_init::{self, pin_data, InPlaceWrite, Init, PinInit}; 36 37 mod std_vendor; 38 39 /// A reference-counted pointer to an instance of `T`. 40 /// 41 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented 42 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped. 43 /// 44 /// # Invariants 45 /// 46 /// The reference count on an instance of [`Arc`] is always non-zero. 47 /// The object pointed to by [`Arc`] is always pinned. 48 /// 49 /// # Examples 50 /// 51 /// ``` 52 /// use kernel::sync::Arc; 53 /// 54 /// struct Example { 55 /// a: u32, 56 /// b: u32, 57 /// } 58 /// 59 /// // Create a refcounted instance of `Example`. 60 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 61 /// 62 /// // Get a new pointer to `obj` and increment the refcount. 63 /// let cloned = obj.clone(); 64 /// 65 /// // Assert that both `obj` and `cloned` point to the same underlying object. 66 /// assert!(core::ptr::eq(&*obj, &*cloned)); 67 /// 68 /// // Destroy `obj` and decrement its refcount. 69 /// drop(obj); 70 /// 71 /// // Check that the values are still accessible through `cloned`. 72 /// assert_eq!(cloned.a, 10); 73 /// assert_eq!(cloned.b, 20); 74 /// 75 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed. 76 /// # Ok::<(), Error>(()) 77 /// ``` 78 /// 79 /// Using `Arc<T>` as the type of `self`: 80 /// 81 /// ``` 82 /// use kernel::sync::Arc; 83 /// 84 /// struct Example { 85 /// a: u32, 86 /// b: u32, 87 /// } 88 /// 89 /// impl Example { 90 /// fn take_over(self: Arc<Self>) { 91 /// // ... 92 /// } 93 /// 94 /// fn use_reference(self: &Arc<Self>) { 95 /// // ... 96 /// } 97 /// } 98 /// 99 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 100 /// obj.use_reference(); 101 /// obj.take_over(); 102 /// # Ok::<(), Error>(()) 103 /// ``` 104 /// 105 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`: 106 /// 107 /// ``` 108 /// use kernel::sync::{Arc, ArcBorrow}; 109 /// 110 /// trait MyTrait { 111 /// // Trait has a function whose `self` type is `Arc<Self>`. 112 /// fn example1(self: Arc<Self>) {} 113 /// 114 /// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`. 115 /// fn example2(self: ArcBorrow<'_, Self>) {} 116 /// } 117 /// 118 /// struct Example; 119 /// impl MyTrait for Example {} 120 /// 121 /// // `obj` has type `Arc<Example>`. 122 /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?; 123 /// 124 /// // `coerced` has type `Arc<dyn MyTrait>`. 125 /// let coerced: Arc<dyn MyTrait> = obj; 126 /// # Ok::<(), Error>(()) 127 /// ``` 128 #[repr(transparent)] 129 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] 130 pub struct Arc<T: ?Sized> { 131 ptr: NonNull<ArcInner<T>>, 132 // NB: this informs dropck that objects of type `ArcInner<T>` may be used in `<Arc<T> as 133 // Drop>::drop`. Note that dropck already assumes that objects of type `T` may be used in 134 // `<Arc<T> as Drop>::drop` and the distinction between `T` and `ArcInner<T>` is not presently 135 // meaningful with respect to dropck - but this may change in the future so this is left here 136 // out of an abundance of caution. 137 // 138 // See https://doc.rust-lang.org/nomicon/phantom-data.html#generic-parameters-and-drop-checking 139 // for more detail on the semantics of dropck in the presence of `PhantomData`. 140 _p: PhantomData<ArcInner<T>>, 141 } 142 143 #[pin_data] 144 #[repr(C)] 145 struct ArcInner<T: ?Sized> { 146 refcount: Opaque<bindings::refcount_t>, 147 data: T, 148 } 149 150 impl<T: ?Sized> ArcInner<T> { 151 /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`]. 152 /// 153 /// # Safety 154 /// 155 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must 156 /// not yet have been destroyed. 157 unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> { 158 let refcount_layout = Layout::new::<bindings::refcount_t>(); 159 // SAFETY: The caller guarantees that the pointer is valid. 160 let val_layout = Layout::for_value(unsafe { &*ptr }); 161 // SAFETY: We're computing the layout of a real struct that existed when compiling this 162 // binary, so its layout is not so large that it can trigger arithmetic overflow. 163 let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 }; 164 165 // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and 166 // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field. 167 // 168 // This is documented at: 169 // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>. 170 let ptr = ptr as *const ArcInner<T>; 171 172 // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the 173 // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is 174 // still valid. 175 let ptr = unsafe { ptr.byte_sub(val_offset) }; 176 177 // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null 178 // address. 179 unsafe { NonNull::new_unchecked(ptr.cast_mut()) } 180 } 181 } 182 183 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the 184 // dynamically-sized type (DST) `U`. 185 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 186 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {} 187 188 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`. 189 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 190 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {} 191 192 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because 193 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs 194 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a 195 // mutable reference when the reference count reaches zero and `T` is dropped. 196 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {} 197 198 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` 199 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, 200 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an 201 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when 202 // the reference count reaches zero and `T` is dropped. 203 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {} 204 205 impl<T> InPlaceInit<T> for Arc<T> { 206 type PinnedSelf = Self; 207 208 #[inline] 209 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 210 where 211 E: From<AllocError>, 212 { 213 UniqueArc::try_pin_init(init, flags).map(|u| u.into()) 214 } 215 216 #[inline] 217 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 218 where 219 E: From<AllocError>, 220 { 221 UniqueArc::try_init(init, flags).map(|u| u.into()) 222 } 223 } 224 225 impl<T> Arc<T> { 226 /// Constructs a new reference counted instance of `T`. 227 pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> { 228 // INVARIANT: The refcount is initialised to a non-zero value. 229 let value = ArcInner { 230 // SAFETY: There are no safety requirements for this FFI call. 231 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 232 data: contents, 233 }; 234 235 let inner = KBox::new(value, flags)?; 236 let inner = KBox::leak(inner).into(); 237 238 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new 239 // `Arc` object. 240 Ok(unsafe { Self::from_inner(inner) }) 241 } 242 } 243 244 impl<T: ?Sized> Arc<T> { 245 /// Constructs a new [`Arc`] from an existing [`ArcInner`]. 246 /// 247 /// # Safety 248 /// 249 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference 250 /// count, one of which will be owned by the new [`Arc`] instance. 251 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self { 252 // INVARIANT: By the safety requirements, the invariants hold. 253 Arc { 254 ptr: inner, 255 _p: PhantomData, 256 } 257 } 258 259 /// Convert the [`Arc`] into a raw pointer. 260 /// 261 /// The raw pointer has ownership of the refcount that this Arc object owned. 262 pub fn into_raw(self) -> *const T { 263 let ptr = self.ptr.as_ptr(); 264 core::mem::forget(self); 265 // SAFETY: The pointer is valid. 266 unsafe { core::ptr::addr_of!((*ptr).data) } 267 } 268 269 /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`]. 270 /// 271 /// # Safety 272 /// 273 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it 274 /// must not be called more than once for each previous call to [`Arc::into_raw`]. 275 pub unsafe fn from_raw(ptr: *const T) -> Self { 276 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 277 // `Arc` that is still valid. 278 let ptr = unsafe { ArcInner::container_of(ptr) }; 279 280 // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the 281 // reference count held then will be owned by the new `Arc` object. 282 unsafe { Self::from_inner(ptr) } 283 } 284 285 /// Returns an [`ArcBorrow`] from the given [`Arc`]. 286 /// 287 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method 288 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. 289 #[inline] 290 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { 291 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of 292 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable 293 // reference can be created. 294 unsafe { ArcBorrow::new(self.ptr) } 295 } 296 297 /// Compare whether two [`Arc`] pointers reference the same underlying object. 298 pub fn ptr_eq(this: &Self, other: &Self) -> bool { 299 core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr()) 300 } 301 302 /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique. 303 /// 304 /// When this destroys the `Arc`, it does so while properly avoiding races. This means that 305 /// this method will never call the destructor of the value. 306 /// 307 /// # Examples 308 /// 309 /// ``` 310 /// use kernel::sync::{Arc, UniqueArc}; 311 /// 312 /// let arc = Arc::new(42, GFP_KERNEL)?; 313 /// let unique_arc = arc.into_unique_or_drop(); 314 /// 315 /// // The above conversion should succeed since refcount of `arc` is 1. 316 /// assert!(unique_arc.is_some()); 317 /// 318 /// assert_eq!(*(unique_arc.unwrap()), 42); 319 /// 320 /// # Ok::<(), Error>(()) 321 /// ``` 322 /// 323 /// ``` 324 /// use kernel::sync::{Arc, UniqueArc}; 325 /// 326 /// let arc = Arc::new(42, GFP_KERNEL)?; 327 /// let another = arc.clone(); 328 /// 329 /// let unique_arc = arc.into_unique_or_drop(); 330 /// 331 /// // The above conversion should fail since refcount of `arc` is >1. 332 /// assert!(unique_arc.is_none()); 333 /// 334 /// # Ok::<(), Error>(()) 335 /// ``` 336 pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> { 337 // We will manually manage the refcount in this method, so we disable the destructor. 338 let me = ManuallyDrop::new(self); 339 // SAFETY: We own a refcount, so the pointer is still valid. 340 let refcount = unsafe { me.ptr.as_ref() }.refcount.get(); 341 342 // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will 343 // return without further touching the `Arc`. If the refcount reaches zero, then there are 344 // no other arcs, and we can create a `UniqueArc`. 345 // 346 // SAFETY: We own a refcount, so the pointer is not dangling. 347 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 348 if is_zero { 349 // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized 350 // accesses to the refcount. 351 unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) }; 352 353 // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We 354 // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin 355 // their values. 356 Some(Pin::from(UniqueArc { 357 inner: ManuallyDrop::into_inner(me), 358 })) 359 } else { 360 None 361 } 362 } 363 } 364 365 impl<T: 'static> ForeignOwnable for Arc<T> { 366 type Borrowed<'a> = ArcBorrow<'a, T>; 367 type BorrowedMut<'a> = Self::Borrowed<'a>; 368 369 fn into_foreign(self) -> *mut crate::ffi::c_void { 370 ManuallyDrop::new(self).ptr.as_ptr().cast() 371 } 372 373 unsafe fn from_foreign(ptr: *mut crate::ffi::c_void) -> Self { 374 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 375 // call to `Self::into_foreign`. 376 let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) }; 377 378 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 379 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and 380 // holds a reference count increment that is transferrable to us. 381 unsafe { Self::from_inner(inner) } 382 } 383 384 unsafe fn borrow<'a>(ptr: *mut crate::ffi::c_void) -> ArcBorrow<'a, T> { 385 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 386 // call to `Self::into_foreign`. 387 let inner = unsafe { NonNull::new_unchecked(ptr.cast::<ArcInner<T>>()) }; 388 389 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive 390 // for the lifetime of the returned value. 391 unsafe { ArcBorrow::new(inner) } 392 } 393 394 unsafe fn borrow_mut<'a>(ptr: *mut crate::ffi::c_void) -> ArcBorrow<'a, T> { 395 // SAFETY: The safety requirements for `borrow_mut` are a superset of the safety 396 // requirements for `borrow`. 397 unsafe { Self::borrow(ptr) } 398 } 399 } 400 401 impl<T: ?Sized> Deref for Arc<T> { 402 type Target = T; 403 404 fn deref(&self) -> &Self::Target { 405 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 406 // safe to dereference it. 407 unsafe { &self.ptr.as_ref().data } 408 } 409 } 410 411 impl<T: ?Sized> AsRef<T> for Arc<T> { 412 fn as_ref(&self) -> &T { 413 self.deref() 414 } 415 } 416 417 impl<T: ?Sized> Clone for Arc<T> { 418 fn clone(&self) -> Self { 419 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 420 // safe to dereference it. 421 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 422 423 // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero. 424 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 425 // safe to increment the refcount. 426 unsafe { bindings::refcount_inc(refcount) }; 427 428 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`. 429 unsafe { Self::from_inner(self.ptr) } 430 } 431 } 432 433 impl<T: ?Sized> Drop for Arc<T> { 434 fn drop(&mut self) { 435 // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot 436 // touch `refcount` after it's decremented to a non-zero value because another thread/CPU 437 // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to 438 // freed/invalid memory as long as it is never dereferenced. 439 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 440 441 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and 442 // this instance is being dropped, so the broken invariant is not observable. 443 // SAFETY: Also by the type invariant, we are allowed to decrement the refcount. 444 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 445 if is_zero { 446 // The count reached zero, we must free the memory. 447 // 448 // SAFETY: The pointer was initialised from the result of `KBox::leak`. 449 unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) }; 450 } 451 } 452 } 453 454 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> { 455 fn from(item: UniqueArc<T>) -> Self { 456 item.inner 457 } 458 } 459 460 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> { 461 fn from(item: Pin<UniqueArc<T>>) -> Self { 462 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned. 463 unsafe { Pin::into_inner_unchecked(item).inner } 464 } 465 } 466 467 /// A borrowed reference to an [`Arc`] instance. 468 /// 469 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler 470 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance. 471 /// 472 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>` 473 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference) 474 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double 475 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if 476 /// needed. 477 /// 478 /// # Invariants 479 /// 480 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the 481 /// lifetime of the [`ArcBorrow`] instance. 482 /// 483 /// # Example 484 /// 485 /// ``` 486 /// use kernel::sync::{Arc, ArcBorrow}; 487 /// 488 /// struct Example; 489 /// 490 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> { 491 /// e.into() 492 /// } 493 /// 494 /// let obj = Arc::new(Example, GFP_KERNEL)?; 495 /// let cloned = do_something(obj.as_arc_borrow()); 496 /// 497 /// // Assert that both `obj` and `cloned` point to the same underlying object. 498 /// assert!(core::ptr::eq(&*obj, &*cloned)); 499 /// # Ok::<(), Error>(()) 500 /// ``` 501 /// 502 /// Using `ArcBorrow<T>` as the type of `self`: 503 /// 504 /// ``` 505 /// use kernel::sync::{Arc, ArcBorrow}; 506 /// 507 /// struct Example { 508 /// a: u32, 509 /// b: u32, 510 /// } 511 /// 512 /// impl Example { 513 /// fn use_reference(self: ArcBorrow<'_, Self>) { 514 /// // ... 515 /// } 516 /// } 517 /// 518 /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 519 /// obj.as_arc_borrow().use_reference(); 520 /// # Ok::<(), Error>(()) 521 /// ``` 522 #[repr(transparent)] 523 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] 524 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 525 inner: NonNull<ArcInner<T>>, 526 _p: PhantomData<&'a ()>, 527 } 528 529 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into 530 // `ArcBorrow<U>`. 531 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 532 impl<T: ?Sized + core::marker::Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>> 533 for ArcBorrow<'_, T> 534 { 535 } 536 537 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { 538 fn clone(&self) -> Self { 539 *self 540 } 541 } 542 543 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 544 545 impl<T: ?Sized> ArcBorrow<'_, T> { 546 /// Creates a new [`ArcBorrow`] instance. 547 /// 548 /// # Safety 549 /// 550 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance: 551 /// 1. That `inner` remains valid; 552 /// 2. That no mutable references to `inner` are created. 553 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self { 554 // INVARIANT: The safety requirements guarantee the invariants. 555 Self { 556 inner, 557 _p: PhantomData, 558 } 559 } 560 561 /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with 562 /// [`Arc::into_raw`]. 563 /// 564 /// # Safety 565 /// 566 /// * The provided pointer must originate from a call to [`Arc::into_raw`]. 567 /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must 568 /// not hit zero. 569 /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a 570 /// [`UniqueArc`] reference to this value. 571 pub unsafe fn from_raw(ptr: *const T) -> Self { 572 // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an 573 // `Arc` that is still valid. 574 let ptr = unsafe { ArcInner::container_of(ptr) }; 575 576 // SAFETY: The caller promises that the value remains valid since the reference count must 577 // not hit zero, and no mutable reference will be created since that would involve a 578 // `UniqueArc`. 579 unsafe { Self::new(ptr) } 580 } 581 } 582 583 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> { 584 fn from(b: ArcBorrow<'_, T>) -> Self { 585 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop` 586 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the 587 // increment. 588 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) }) 589 .deref() 590 .clone() 591 } 592 } 593 594 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 595 type Target = T; 596 597 fn deref(&self) -> &Self::Target { 598 // SAFETY: By the type invariant, the underlying object is still alive with no mutable 599 // references to it, so it is safe to create a shared reference. 600 unsafe { &self.inner.as_ref().data } 601 } 602 } 603 604 /// A refcounted object that is known to have a refcount of 1. 605 /// 606 /// It is mutable and can be converted to an [`Arc`] so that it can be shared. 607 /// 608 /// # Invariants 609 /// 610 /// `inner` always has a reference count of 1. 611 /// 612 /// # Examples 613 /// 614 /// In the following example, we make changes to the inner object before turning it into an 615 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()` 616 /// cannot fail. 617 /// 618 /// ``` 619 /// use kernel::sync::{Arc, UniqueArc}; 620 /// 621 /// struct Example { 622 /// a: u32, 623 /// b: u32, 624 /// } 625 /// 626 /// fn test() -> Result<Arc<Example>> { 627 /// let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?; 628 /// x.a += 1; 629 /// x.b += 1; 630 /// Ok(x.into()) 631 /// } 632 /// 633 /// # test().unwrap(); 634 /// ``` 635 /// 636 /// In the following example we first allocate memory for a refcounted `Example` but we don't 637 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`], 638 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens 639 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic): 640 /// 641 /// ``` 642 /// use kernel::sync::{Arc, UniqueArc}; 643 /// 644 /// struct Example { 645 /// a: u32, 646 /// b: u32, 647 /// } 648 /// 649 /// fn test() -> Result<Arc<Example>> { 650 /// let x = UniqueArc::new_uninit(GFP_KERNEL)?; 651 /// Ok(x.write(Example { a: 10, b: 20 }).into()) 652 /// } 653 /// 654 /// # test().unwrap(); 655 /// ``` 656 /// 657 /// In the last example below, the caller gets a pinned instance of `Example` while converting to 658 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during 659 /// initialisation, for example, when initialising fields that are wrapped in locks. 660 /// 661 /// ``` 662 /// use kernel::sync::{Arc, UniqueArc}; 663 /// 664 /// struct Example { 665 /// a: u32, 666 /// b: u32, 667 /// } 668 /// 669 /// fn test() -> Result<Arc<Example>> { 670 /// let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?); 671 /// // We can modify `pinned` because it is `Unpin`. 672 /// pinned.as_mut().a += 1; 673 /// Ok(pinned.into()) 674 /// } 675 /// 676 /// # test().unwrap(); 677 /// ``` 678 pub struct UniqueArc<T: ?Sized> { 679 inner: Arc<T>, 680 } 681 682 impl<T> InPlaceInit<T> for UniqueArc<T> { 683 type PinnedSelf = Pin<Self>; 684 685 #[inline] 686 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 687 where 688 E: From<AllocError>, 689 { 690 UniqueArc::new_uninit(flags)?.write_pin_init(init) 691 } 692 693 #[inline] 694 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 695 where 696 E: From<AllocError>, 697 { 698 UniqueArc::new_uninit(flags)?.write_init(init) 699 } 700 } 701 702 impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> { 703 type Initialized = UniqueArc<T>; 704 705 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> { 706 let slot = self.as_mut_ptr(); 707 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 708 // slot is valid. 709 unsafe { init.__init(slot)? }; 710 // SAFETY: All fields have been initialized. 711 Ok(unsafe { self.assume_init() }) 712 } 713 714 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> { 715 let slot = self.as_mut_ptr(); 716 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 717 // slot is valid and will not be moved, because we pin it later. 718 unsafe { init.__pinned_init(slot)? }; 719 // SAFETY: All fields have been initialized. 720 Ok(unsafe { self.assume_init() }.into()) 721 } 722 } 723 724 impl<T> UniqueArc<T> { 725 /// Tries to allocate a new [`UniqueArc`] instance. 726 pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> { 727 Ok(Self { 728 // INVARIANT: The newly-created object has a refcount of 1. 729 inner: Arc::new(value, flags)?, 730 }) 731 } 732 733 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet. 734 pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> { 735 // INVARIANT: The refcount is initialised to a non-zero value. 736 let inner = KBox::try_init::<AllocError>( 737 try_init!(ArcInner { 738 // SAFETY: There are no safety requirements for this FFI call. 739 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 740 data <- pin_init::uninit::<T, AllocError>(), 741 }? AllocError), 742 flags, 743 )?; 744 Ok(UniqueArc { 745 // INVARIANT: The newly-created object has a refcount of 1. 746 // SAFETY: The pointer from the `KBox` is valid. 747 inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) }, 748 }) 749 } 750 } 751 752 impl<T> UniqueArc<MaybeUninit<T>> { 753 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it. 754 pub fn write(mut self, value: T) -> UniqueArc<T> { 755 self.deref_mut().write(value); 756 // SAFETY: We just wrote the value to be initialized. 757 unsafe { self.assume_init() } 758 } 759 760 /// Unsafely assume that `self` is initialized. 761 /// 762 /// # Safety 763 /// 764 /// The caller guarantees that the value behind this pointer has been initialized. It is 765 /// *immediate* UB to call this when the value is not initialized. 766 pub unsafe fn assume_init(self) -> UniqueArc<T> { 767 let inner = ManuallyDrop::new(self).inner.ptr; 768 UniqueArc { 769 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be 770 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`. 771 inner: unsafe { Arc::from_inner(inner.cast()) }, 772 } 773 } 774 775 /// Initialize `self` using the given initializer. 776 pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> { 777 // SAFETY: The supplied pointer is valid for initialization. 778 match unsafe { init.__init(self.as_mut_ptr()) } { 779 // SAFETY: Initialization completed successfully. 780 Ok(()) => Ok(unsafe { self.assume_init() }), 781 Err(err) => Err(err), 782 } 783 } 784 785 /// Pin-initialize `self` using the given pin-initializer. 786 pub fn pin_init_with<E>( 787 mut self, 788 init: impl PinInit<T, E>, 789 ) -> core::result::Result<Pin<UniqueArc<T>>, E> { 790 // SAFETY: The supplied pointer is valid for initialization and we will later pin the value 791 // to ensure it does not move. 792 match unsafe { init.__pinned_init(self.as_mut_ptr()) } { 793 // SAFETY: Initialization completed successfully. 794 Ok(()) => Ok(unsafe { self.assume_init() }.into()), 795 Err(err) => Err(err), 796 } 797 } 798 } 799 800 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> { 801 fn from(obj: UniqueArc<T>) -> Self { 802 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T` 803 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`. 804 unsafe { Pin::new_unchecked(obj) } 805 } 806 } 807 808 impl<T: ?Sized> Deref for UniqueArc<T> { 809 type Target = T; 810 811 fn deref(&self) -> &Self::Target { 812 self.inner.deref() 813 } 814 } 815 816 impl<T: ?Sized> DerefMut for UniqueArc<T> { 817 fn deref_mut(&mut self) -> &mut Self::Target { 818 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so 819 // it is safe to dereference it. Additionally, we know there is only one reference when 820 // it's inside a `UniqueArc`, so it is safe to get a mutable reference. 821 unsafe { &mut self.inner.ptr.as_mut().data } 822 } 823 } 824 825 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> { 826 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 827 fmt::Display::fmt(self.deref(), f) 828 } 829 } 830 831 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> { 832 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 833 fmt::Display::fmt(self.deref(), f) 834 } 835 } 836 837 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> { 838 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 839 fmt::Debug::fmt(self.deref(), f) 840 } 841 } 842 843 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> { 844 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 845 fmt::Debug::fmt(self.deref(), f) 846 } 847 } 848