1 // SPDX-License-Identifier: GPL-2.0 2 3 //! A reference-counted pointer. 4 //! 5 //! This module implements a way for users to create reference-counted objects and pointers to 6 //! them. Such a pointer automatically increments and decrements the count, and drops the 7 //! underlying object when it reaches zero. It is also safe to use concurrently from multiple 8 //! threads. 9 //! 10 //! It is different from the standard library's [`Arc`] in a few ways: 11 //! 1. It is backed by the kernel's `refcount_t` type. 12 //! 2. It does not support weak references, which allows it to be half the size. 13 //! 3. It saturates the reference count instead of aborting when it goes over a threshold. 14 //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned. 15 //! 16 //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html 17 18 use crate::{ 19 alloc::{box_ext::BoxExt, flags::*}, 20 bindings, 21 error::{self, Error}, 22 init::{self, InPlaceInit, Init, PinInit}, 23 try_init, 24 types::{ForeignOwnable, Opaque}, 25 }; 26 use alloc::boxed::Box; 27 use core::{ 28 alloc::{AllocError, Layout}, 29 fmt, 30 marker::{PhantomData, Unsize}, 31 mem::{ManuallyDrop, MaybeUninit}, 32 ops::{Deref, DerefMut}, 33 pin::Pin, 34 ptr::NonNull, 35 }; 36 use macros::pin_data; 37 38 mod std_vendor; 39 40 /// A reference-counted pointer to an instance of `T`. 41 /// 42 /// The reference count is incremented when new instances of [`Arc`] are created, and decremented 43 /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped. 44 /// 45 /// # Invariants 46 /// 47 /// The reference count on an instance of [`Arc`] is always non-zero. 48 /// The object pointed to by [`Arc`] is always pinned. 49 /// 50 /// # Examples 51 /// 52 /// ``` 53 /// use kernel::sync::Arc; 54 /// 55 /// struct Example { 56 /// a: u32, 57 /// b: u32, 58 /// } 59 /// 60 /// // Create a refcounted instance of `Example`. 61 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?; 62 /// 63 /// // Get a new pointer to `obj` and increment the refcount. 64 /// let cloned = obj.clone(); 65 /// 66 /// // Assert that both `obj` and `cloned` point to the same underlying object. 67 /// assert!(core::ptr::eq(&*obj, &*cloned)); 68 /// 69 /// // Destroy `obj` and decrement its refcount. 70 /// drop(obj); 71 /// 72 /// // Check that the values are still accessible through `cloned`. 73 /// assert_eq!(cloned.a, 10); 74 /// assert_eq!(cloned.b, 20); 75 /// 76 /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed. 77 /// # Ok::<(), Error>(()) 78 /// ``` 79 /// 80 /// Using `Arc<T>` as the type of `self`: 81 /// 82 /// ``` 83 /// use kernel::sync::Arc; 84 /// 85 /// struct Example { 86 /// a: u32, 87 /// b: u32, 88 /// } 89 /// 90 /// impl Example { 91 /// fn take_over(self: Arc<Self>) { 92 /// // ... 93 /// } 94 /// 95 /// fn use_reference(self: &Arc<Self>) { 96 /// // ... 97 /// } 98 /// } 99 /// 100 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?; 101 /// obj.use_reference(); 102 /// obj.take_over(); 103 /// # Ok::<(), Error>(()) 104 /// ``` 105 /// 106 /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`: 107 /// 108 /// ``` 109 /// use kernel::sync::{Arc, ArcBorrow}; 110 /// 111 /// trait MyTrait { 112 /// // Trait has a function whose `self` type is `Arc<Self>`. 113 /// fn example1(self: Arc<Self>) {} 114 /// 115 /// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`. 116 /// fn example2(self: ArcBorrow<'_, Self>) {} 117 /// } 118 /// 119 /// struct Example; 120 /// impl MyTrait for Example {} 121 /// 122 /// // `obj` has type `Arc<Example>`. 123 /// let obj: Arc<Example> = Arc::try_new(Example)?; 124 /// 125 /// // `coerced` has type `Arc<dyn MyTrait>`. 126 /// let coerced: Arc<dyn MyTrait> = obj; 127 /// # Ok::<(), Error>(()) 128 /// ``` 129 pub struct Arc<T: ?Sized> { 130 ptr: NonNull<ArcInner<T>>, 131 _p: PhantomData<ArcInner<T>>, 132 } 133 134 #[pin_data] 135 #[repr(C)] 136 struct ArcInner<T: ?Sized> { 137 refcount: Opaque<bindings::refcount_t>, 138 data: T, 139 } 140 141 // This is to allow [`Arc`] (and variants) to be used as the type of `self`. 142 impl<T: ?Sized> core::ops::Receiver for Arc<T> {} 143 144 // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the 145 // dynamically-sized type (DST) `U`. 146 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {} 147 148 // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`. 149 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {} 150 151 // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because 152 // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs 153 // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a 154 // mutable reference when the reference count reaches zero and `T` is dropped. 155 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {} 156 157 // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync` 158 // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, 159 // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an 160 // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when 161 // the reference count reaches zero and `T` is dropped. 162 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {} 163 164 impl<T> Arc<T> { 165 /// Constructs a new reference counted instance of `T`. 166 pub fn try_new(contents: T) -> Result<Self, AllocError> { 167 // INVARIANT: The refcount is initialised to a non-zero value. 168 let value = ArcInner { 169 // SAFETY: There are no safety requirements for this FFI call. 170 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 171 data: contents, 172 }; 173 174 let inner = <Box<_> as BoxExt<_>>::new(value, GFP_KERNEL)?; 175 176 // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new 177 // `Arc` object. 178 Ok(unsafe { Self::from_inner(Box::leak(inner).into()) }) 179 } 180 181 /// Use the given initializer to in-place initialize a `T`. 182 /// 183 /// If `T: !Unpin` it will not be able to move afterwards. 184 #[inline] 185 pub fn pin_init<E>(init: impl PinInit<T, E>) -> error::Result<Self> 186 where 187 Error: From<E>, 188 { 189 UniqueArc::pin_init(init).map(|u| u.into()) 190 } 191 192 /// Use the given initializer to in-place initialize a `T`. 193 /// 194 /// This is equivalent to [`Arc<T>::pin_init`], since an [`Arc`] is always pinned. 195 #[inline] 196 pub fn init<E>(init: impl Init<T, E>) -> error::Result<Self> 197 where 198 Error: From<E>, 199 { 200 UniqueArc::init(init).map(|u| u.into()) 201 } 202 } 203 204 impl<T: ?Sized> Arc<T> { 205 /// Constructs a new [`Arc`] from an existing [`ArcInner`]. 206 /// 207 /// # Safety 208 /// 209 /// The caller must ensure that `inner` points to a valid location and has a non-zero reference 210 /// count, one of which will be owned by the new [`Arc`] instance. 211 unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self { 212 // INVARIANT: By the safety requirements, the invariants hold. 213 Arc { 214 ptr: inner, 215 _p: PhantomData, 216 } 217 } 218 219 /// Convert the [`Arc`] into a raw pointer. 220 /// 221 /// The raw pointer has ownership of the refcount that this Arc object owned. 222 pub fn into_raw(self) -> *const T { 223 let ptr = self.ptr.as_ptr(); 224 core::mem::forget(self); 225 // SAFETY: The pointer is valid. 226 unsafe { core::ptr::addr_of!((*ptr).data) } 227 } 228 229 /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`]. 230 /// 231 /// # Safety 232 /// 233 /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it 234 /// must not be called more than once for each previous call to [`Arc::into_raw`]. 235 pub unsafe fn from_raw(ptr: *const T) -> Self { 236 let refcount_layout = Layout::new::<bindings::refcount_t>(); 237 // SAFETY: The caller guarantees that the pointer is valid. 238 let val_layout = Layout::for_value(unsafe { &*ptr }); 239 // SAFETY: We're computing the layout of a real struct that existed when compiling this 240 // binary, so its layout is not so large that it can trigger arithmetic overflow. 241 let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 }; 242 243 // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and 244 // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field. 245 // 246 // This is documented at: 247 // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>. 248 let ptr = ptr as *const ArcInner<T>; 249 250 // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the 251 // pointer, since it originates from a previous call to `Arc::into_raw` and is still valid. 252 let ptr = unsafe { ptr.byte_sub(val_offset) }; 253 254 // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the 255 // reference count held then will be owned by the new `Arc` object. 256 unsafe { Self::from_inner(NonNull::new_unchecked(ptr.cast_mut())) } 257 } 258 259 /// Returns an [`ArcBorrow`] from the given [`Arc`]. 260 /// 261 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method 262 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised. 263 #[inline] 264 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> { 265 // SAFETY: The constraint that the lifetime of the shared reference must outlive that of 266 // the returned `ArcBorrow` ensures that the object remains alive and that no mutable 267 // reference can be created. 268 unsafe { ArcBorrow::new(self.ptr) } 269 } 270 271 /// Compare whether two [`Arc`] pointers reference the same underlying object. 272 pub fn ptr_eq(this: &Self, other: &Self) -> bool { 273 core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr()) 274 } 275 } 276 277 impl<T: 'static> ForeignOwnable for Arc<T> { 278 type Borrowed<'a> = ArcBorrow<'a, T>; 279 280 fn into_foreign(self) -> *const core::ffi::c_void { 281 ManuallyDrop::new(self).ptr.as_ptr() as _ 282 } 283 284 unsafe fn borrow<'a>(ptr: *const core::ffi::c_void) -> ArcBorrow<'a, T> { 285 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 286 // a previous call to `Arc::into_foreign`. 287 let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap(); 288 289 // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive 290 // for the lifetime of the returned value. 291 unsafe { ArcBorrow::new(inner) } 292 } 293 294 unsafe fn from_foreign(ptr: *const core::ffi::c_void) -> Self { 295 // SAFETY: By the safety requirement of this function, we know that `ptr` came from 296 // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and 297 // holds a reference count increment that is transferrable to us. 298 unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) } 299 } 300 } 301 302 impl<T: ?Sized> Deref for Arc<T> { 303 type Target = T; 304 305 fn deref(&self) -> &Self::Target { 306 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 307 // safe to dereference it. 308 unsafe { &self.ptr.as_ref().data } 309 } 310 } 311 312 impl<T: ?Sized> AsRef<T> for Arc<T> { 313 fn as_ref(&self) -> &T { 314 self.deref() 315 } 316 } 317 318 impl<T: ?Sized> Clone for Arc<T> { 319 fn clone(&self) -> Self { 320 // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero. 321 // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is 322 // safe to increment the refcount. 323 unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) }; 324 325 // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`. 326 unsafe { Self::from_inner(self.ptr) } 327 } 328 } 329 330 impl<T: ?Sized> Drop for Arc<T> { 331 fn drop(&mut self) { 332 // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot 333 // touch `refcount` after it's decremented to a non-zero value because another thread/CPU 334 // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to 335 // freed/invalid memory as long as it is never dereferenced. 336 let refcount = unsafe { self.ptr.as_ref() }.refcount.get(); 337 338 // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and 339 // this instance is being dropped, so the broken invariant is not observable. 340 // SAFETY: Also by the type invariant, we are allowed to decrement the refcount. 341 let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) }; 342 if is_zero { 343 // The count reached zero, we must free the memory. 344 // 345 // SAFETY: The pointer was initialised from the result of `Box::leak`. 346 unsafe { drop(Box::from_raw(self.ptr.as_ptr())) }; 347 } 348 } 349 } 350 351 impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> { 352 fn from(item: UniqueArc<T>) -> Self { 353 item.inner 354 } 355 } 356 357 impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> { 358 fn from(item: Pin<UniqueArc<T>>) -> Self { 359 // SAFETY: The type invariants of `Arc` guarantee that the data is pinned. 360 unsafe { Pin::into_inner_unchecked(item).inner } 361 } 362 } 363 364 /// A borrowed reference to an [`Arc`] instance. 365 /// 366 /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler 367 /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance. 368 /// 369 /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>` 370 /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference) 371 /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double 372 /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if 373 /// needed. 374 /// 375 /// # Invariants 376 /// 377 /// There are no mutable references to the underlying [`Arc`], and it remains valid for the 378 /// lifetime of the [`ArcBorrow`] instance. 379 /// 380 /// # Example 381 /// 382 /// ``` 383 /// use kernel::sync::{Arc, ArcBorrow}; 384 /// 385 /// struct Example; 386 /// 387 /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> { 388 /// e.into() 389 /// } 390 /// 391 /// let obj = Arc::try_new(Example)?; 392 /// let cloned = do_something(obj.as_arc_borrow()); 393 /// 394 /// // Assert that both `obj` and `cloned` point to the same underlying object. 395 /// assert!(core::ptr::eq(&*obj, &*cloned)); 396 /// # Ok::<(), Error>(()) 397 /// ``` 398 /// 399 /// Using `ArcBorrow<T>` as the type of `self`: 400 /// 401 /// ``` 402 /// use kernel::sync::{Arc, ArcBorrow}; 403 /// 404 /// struct Example { 405 /// a: u32, 406 /// b: u32, 407 /// } 408 /// 409 /// impl Example { 410 /// fn use_reference(self: ArcBorrow<'_, Self>) { 411 /// // ... 412 /// } 413 /// } 414 /// 415 /// let obj = Arc::try_new(Example { a: 10, b: 20 })?; 416 /// obj.as_arc_borrow().use_reference(); 417 /// # Ok::<(), Error>(()) 418 /// ``` 419 pub struct ArcBorrow<'a, T: ?Sized + 'a> { 420 inner: NonNull<ArcInner<T>>, 421 _p: PhantomData<&'a ()>, 422 } 423 424 // This is to allow [`ArcBorrow`] (and variants) to be used as the type of `self`. 425 impl<T: ?Sized> core::ops::Receiver for ArcBorrow<'_, T> {} 426 427 // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into 428 // `ArcBorrow<U>`. 429 impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>> 430 for ArcBorrow<'_, T> 431 { 432 } 433 434 impl<T: ?Sized> Clone for ArcBorrow<'_, T> { 435 fn clone(&self) -> Self { 436 *self 437 } 438 } 439 440 impl<T: ?Sized> Copy for ArcBorrow<'_, T> {} 441 442 impl<T: ?Sized> ArcBorrow<'_, T> { 443 /// Creates a new [`ArcBorrow`] instance. 444 /// 445 /// # Safety 446 /// 447 /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance: 448 /// 1. That `inner` remains valid; 449 /// 2. That no mutable references to `inner` are created. 450 unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self { 451 // INVARIANT: The safety requirements guarantee the invariants. 452 Self { 453 inner, 454 _p: PhantomData, 455 } 456 } 457 } 458 459 impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> { 460 fn from(b: ArcBorrow<'_, T>) -> Self { 461 // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop` 462 // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the 463 // increment. 464 ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) }) 465 .deref() 466 .clone() 467 } 468 } 469 470 impl<T: ?Sized> Deref for ArcBorrow<'_, T> { 471 type Target = T; 472 473 fn deref(&self) -> &Self::Target { 474 // SAFETY: By the type invariant, the underlying object is still alive with no mutable 475 // references to it, so it is safe to create a shared reference. 476 unsafe { &self.inner.as_ref().data } 477 } 478 } 479 480 /// A refcounted object that is known to have a refcount of 1. 481 /// 482 /// It is mutable and can be converted to an [`Arc`] so that it can be shared. 483 /// 484 /// # Invariants 485 /// 486 /// `inner` always has a reference count of 1. 487 /// 488 /// # Examples 489 /// 490 /// In the following example, we make changes to the inner object before turning it into an 491 /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()` 492 /// cannot fail. 493 /// 494 /// ``` 495 /// use kernel::sync::{Arc, UniqueArc}; 496 /// 497 /// struct Example { 498 /// a: u32, 499 /// b: u32, 500 /// } 501 /// 502 /// fn test() -> Result<Arc<Example>> { 503 /// let mut x = UniqueArc::try_new(Example { a: 10, b: 20 })?; 504 /// x.a += 1; 505 /// x.b += 1; 506 /// Ok(x.into()) 507 /// } 508 /// 509 /// # test().unwrap(); 510 /// ``` 511 /// 512 /// In the following example we first allocate memory for a refcounted `Example` but we don't 513 /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`], 514 /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens 515 /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic): 516 /// 517 /// ``` 518 /// use kernel::sync::{Arc, UniqueArc}; 519 /// 520 /// struct Example { 521 /// a: u32, 522 /// b: u32, 523 /// } 524 /// 525 /// fn test() -> Result<Arc<Example>> { 526 /// let x = UniqueArc::try_new_uninit()?; 527 /// Ok(x.write(Example { a: 10, b: 20 }).into()) 528 /// } 529 /// 530 /// # test().unwrap(); 531 /// ``` 532 /// 533 /// In the last example below, the caller gets a pinned instance of `Example` while converting to 534 /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during 535 /// initialisation, for example, when initialising fields that are wrapped in locks. 536 /// 537 /// ``` 538 /// use kernel::sync::{Arc, UniqueArc}; 539 /// 540 /// struct Example { 541 /// a: u32, 542 /// b: u32, 543 /// } 544 /// 545 /// fn test() -> Result<Arc<Example>> { 546 /// let mut pinned = Pin::from(UniqueArc::try_new(Example { a: 10, b: 20 })?); 547 /// // We can modify `pinned` because it is `Unpin`. 548 /// pinned.as_mut().a += 1; 549 /// Ok(pinned.into()) 550 /// } 551 /// 552 /// # test().unwrap(); 553 /// ``` 554 pub struct UniqueArc<T: ?Sized> { 555 inner: Arc<T>, 556 } 557 558 impl<T> UniqueArc<T> { 559 /// Tries to allocate a new [`UniqueArc`] instance. 560 pub fn try_new(value: T) -> Result<Self, AllocError> { 561 Ok(Self { 562 // INVARIANT: The newly-created object has a refcount of 1. 563 inner: Arc::try_new(value)?, 564 }) 565 } 566 567 /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet. 568 pub fn try_new_uninit() -> Result<UniqueArc<MaybeUninit<T>>, AllocError> { 569 // INVARIANT: The refcount is initialised to a non-zero value. 570 let inner = Box::try_init::<AllocError>(try_init!(ArcInner { 571 // SAFETY: There are no safety requirements for this FFI call. 572 refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }), 573 data <- init::uninit::<T, AllocError>(), 574 }? AllocError))?; 575 Ok(UniqueArc { 576 // INVARIANT: The newly-created object has a refcount of 1. 577 // SAFETY: The pointer from the `Box` is valid. 578 inner: unsafe { Arc::from_inner(Box::leak(inner).into()) }, 579 }) 580 } 581 } 582 583 impl<T> UniqueArc<MaybeUninit<T>> { 584 /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it. 585 pub fn write(mut self, value: T) -> UniqueArc<T> { 586 self.deref_mut().write(value); 587 // SAFETY: We just wrote the value to be initialized. 588 unsafe { self.assume_init() } 589 } 590 591 /// Unsafely assume that `self` is initialized. 592 /// 593 /// # Safety 594 /// 595 /// The caller guarantees that the value behind this pointer has been initialized. It is 596 /// *immediate* UB to call this when the value is not initialized. 597 pub unsafe fn assume_init(self) -> UniqueArc<T> { 598 let inner = ManuallyDrop::new(self).inner.ptr; 599 UniqueArc { 600 // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be 601 // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`. 602 inner: unsafe { Arc::from_inner(inner.cast()) }, 603 } 604 } 605 606 /// Initialize `self` using the given initializer. 607 pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> { 608 // SAFETY: The supplied pointer is valid for initialization. 609 match unsafe { init.__init(self.as_mut_ptr()) } { 610 // SAFETY: Initialization completed successfully. 611 Ok(()) => Ok(unsafe { self.assume_init() }), 612 Err(err) => Err(err), 613 } 614 } 615 616 /// Pin-initialize `self` using the given pin-initializer. 617 pub fn pin_init_with<E>( 618 mut self, 619 init: impl PinInit<T, E>, 620 ) -> core::result::Result<Pin<UniqueArc<T>>, E> { 621 // SAFETY: The supplied pointer is valid for initialization and we will later pin the value 622 // to ensure it does not move. 623 match unsafe { init.__pinned_init(self.as_mut_ptr()) } { 624 // SAFETY: Initialization completed successfully. 625 Ok(()) => Ok(unsafe { self.assume_init() }.into()), 626 Err(err) => Err(err), 627 } 628 } 629 } 630 631 impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> { 632 fn from(obj: UniqueArc<T>) -> Self { 633 // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T` 634 // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`. 635 unsafe { Pin::new_unchecked(obj) } 636 } 637 } 638 639 impl<T: ?Sized> Deref for UniqueArc<T> { 640 type Target = T; 641 642 fn deref(&self) -> &Self::Target { 643 self.inner.deref() 644 } 645 } 646 647 impl<T: ?Sized> DerefMut for UniqueArc<T> { 648 fn deref_mut(&mut self) -> &mut Self::Target { 649 // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so 650 // it is safe to dereference it. Additionally, we know there is only one reference when 651 // it's inside a `UniqueArc`, so it is safe to get a mutable reference. 652 unsafe { &mut self.inner.ptr.as_mut().data } 653 } 654 } 655 656 impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> { 657 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 658 fmt::Display::fmt(self.deref(), f) 659 } 660 } 661 662 impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> { 663 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 664 fmt::Display::fmt(self.deref(), f) 665 } 666 } 667 668 impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> { 669 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 670 fmt::Debug::fmt(self.deref(), f) 671 } 672 } 673 674 impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> { 675 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 676 fmt::Debug::fmt(self.deref(), f) 677 } 678 } 679