xref: /linux-6.15/rust/kernel/str.rs (revision d2e3f798)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! String representations.
4 
5 use crate::alloc::{flags::*, AllocError, KVec};
6 use core::fmt::{self, Write};
7 use core::ops::{self, Deref, DerefMut, Index};
8 
9 use crate::error::{code::*, Error};
10 
11 /// Byte string without UTF-8 validity guarantee.
12 #[repr(transparent)]
13 pub struct BStr([u8]);
14 
15 impl BStr {
16     /// Returns the length of this string.
17     #[inline]
18     pub const fn len(&self) -> usize {
19         self.0.len()
20     }
21 
22     /// Returns `true` if the string is empty.
23     #[inline]
24     pub const fn is_empty(&self) -> bool {
25         self.len() == 0
26     }
27 
28     /// Creates a [`BStr`] from a `[u8]`.
29     #[inline]
30     pub const fn from_bytes(bytes: &[u8]) -> &Self {
31         // SAFETY: `BStr` is transparent to `[u8]`.
32         unsafe { &*(bytes as *const [u8] as *const BStr) }
33     }
34 }
35 
36 impl fmt::Display for BStr {
37     /// Formats printable ASCII characters, escaping the rest.
38     ///
39     /// ```
40     /// # use kernel::{fmt, b_str, str::{BStr, CString}};
41     /// let ascii = b_str!("Hello, BStr!");
42     /// let s = CString::try_from_fmt(fmt!("{}", ascii))?;
43     /// assert_eq!(s.as_bytes(), "Hello, BStr!".as_bytes());
44     ///
45     /// let non_ascii = b_str!("��");
46     /// let s = CString::try_from_fmt(fmt!("{}", non_ascii))?;
47     /// assert_eq!(s.as_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes());
48     /// # Ok::<(), kernel::error::Error>(())
49     /// ```
50     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
51         for &b in &self.0 {
52             match b {
53                 // Common escape codes.
54                 b'\t' => f.write_str("\\t")?,
55                 b'\n' => f.write_str("\\n")?,
56                 b'\r' => f.write_str("\\r")?,
57                 // Printable characters.
58                 0x20..=0x7e => f.write_char(b as char)?,
59                 _ => write!(f, "\\x{:02x}", b)?,
60             }
61         }
62         Ok(())
63     }
64 }
65 
66 impl fmt::Debug for BStr {
67     /// Formats printable ASCII characters with a double quote on either end,
68     /// escaping the rest.
69     ///
70     /// ```
71     /// # use kernel::{fmt, b_str, str::{BStr, CString}};
72     /// // Embedded double quotes are escaped.
73     /// let ascii = b_str!("Hello, \"BStr\"!");
74     /// let s = CString::try_from_fmt(fmt!("{:?}", ascii))?;
75     /// assert_eq!(s.as_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes());
76     ///
77     /// let non_ascii = b_str!("��");
78     /// let s = CString::try_from_fmt(fmt!("{:?}", non_ascii))?;
79     /// assert_eq!(s.as_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes());
80     /// # Ok::<(), kernel::error::Error>(())
81     /// ```
82     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
83         f.write_char('"')?;
84         for &b in &self.0 {
85             match b {
86                 // Common escape codes.
87                 b'\t' => f.write_str("\\t")?,
88                 b'\n' => f.write_str("\\n")?,
89                 b'\r' => f.write_str("\\r")?,
90                 // String escape characters.
91                 b'\"' => f.write_str("\\\"")?,
92                 b'\\' => f.write_str("\\\\")?,
93                 // Printable characters.
94                 0x20..=0x7e => f.write_char(b as char)?,
95                 _ => write!(f, "\\x{:02x}", b)?,
96             }
97         }
98         f.write_char('"')
99     }
100 }
101 
102 impl Deref for BStr {
103     type Target = [u8];
104 
105     #[inline]
106     fn deref(&self) -> &Self::Target {
107         &self.0
108     }
109 }
110 
111 impl PartialEq for BStr {
112     fn eq(&self, other: &Self) -> bool {
113         self.deref().eq(other.deref())
114     }
115 }
116 
117 impl<Idx> Index<Idx> for BStr
118 where
119     [u8]: Index<Idx, Output = [u8]>,
120 {
121     type Output = Self;
122 
123     fn index(&self, index: Idx) -> &Self::Output {
124         BStr::from_bytes(&self.0[index])
125     }
126 }
127 
128 impl AsRef<BStr> for [u8] {
129     fn as_ref(&self) -> &BStr {
130         BStr::from_bytes(self)
131     }
132 }
133 
134 impl AsRef<BStr> for BStr {
135     fn as_ref(&self) -> &BStr {
136         self
137     }
138 }
139 
140 /// Creates a new [`BStr`] from a string literal.
141 ///
142 /// `b_str!` converts the supplied string literal to byte string, so non-ASCII
143 /// characters can be included.
144 ///
145 /// # Examples
146 ///
147 /// ```
148 /// # use kernel::b_str;
149 /// # use kernel::str::BStr;
150 /// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
151 /// ```
152 #[macro_export]
153 macro_rules! b_str {
154     ($str:literal) => {{
155         const S: &'static str = $str;
156         const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes());
157         C
158     }};
159 }
160 
161 /// Possible errors when using conversion functions in [`CStr`].
162 #[derive(Debug, Clone, Copy)]
163 pub enum CStrConvertError {
164     /// Supplied bytes contain an interior `NUL`.
165     InteriorNul,
166 
167     /// Supplied bytes are not terminated by `NUL`.
168     NotNulTerminated,
169 }
170 
171 impl From<CStrConvertError> for Error {
172     #[inline]
173     fn from(_: CStrConvertError) -> Error {
174         EINVAL
175     }
176 }
177 
178 /// A string that is guaranteed to have exactly one `NUL` byte, which is at the
179 /// end.
180 ///
181 /// Used for interoperability with kernel APIs that take C strings.
182 #[repr(transparent)]
183 pub struct CStr([u8]);
184 
185 impl CStr {
186     /// Returns the length of this string excluding `NUL`.
187     #[inline]
188     pub const fn len(&self) -> usize {
189         self.len_with_nul() - 1
190     }
191 
192     /// Returns the length of this string with `NUL`.
193     #[inline]
194     pub const fn len_with_nul(&self) -> usize {
195         if self.0.is_empty() {
196             // SAFETY: This is one of the invariant of `CStr`.
197             // We add a `unreachable_unchecked` here to hint the optimizer that
198             // the value returned from this function is non-zero.
199             unsafe { core::hint::unreachable_unchecked() };
200         }
201         self.0.len()
202     }
203 
204     /// Returns `true` if the string only includes `NUL`.
205     #[inline]
206     pub const fn is_empty(&self) -> bool {
207         self.len() == 0
208     }
209 
210     /// Wraps a raw C string pointer.
211     ///
212     /// # Safety
213     ///
214     /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
215     /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
216     /// must not be mutated.
217     #[inline]
218     pub unsafe fn from_char_ptr<'a>(ptr: *const crate::ffi::c_char) -> &'a Self {
219         // SAFETY: The safety precondition guarantees `ptr` is a valid pointer
220         // to a `NUL`-terminated C string.
221         let len = unsafe { bindings::strlen(ptr) } + 1;
222         // SAFETY: Lifetime guaranteed by the safety precondition.
223         let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len) };
224         // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`.
225         // As we have added 1 to `len`, the last byte is known to be `NUL`.
226         unsafe { Self::from_bytes_with_nul_unchecked(bytes) }
227     }
228 
229     /// Creates a [`CStr`] from a `[u8]`.
230     ///
231     /// The provided slice must be `NUL`-terminated, does not contain any
232     /// interior `NUL` bytes.
233     pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> {
234         if bytes.is_empty() {
235             return Err(CStrConvertError::NotNulTerminated);
236         }
237         if bytes[bytes.len() - 1] != 0 {
238             return Err(CStrConvertError::NotNulTerminated);
239         }
240         let mut i = 0;
241         // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking,
242         // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`.
243         while i + 1 < bytes.len() {
244             if bytes[i] == 0 {
245                 return Err(CStrConvertError::InteriorNul);
246             }
247             i += 1;
248         }
249         // SAFETY: We just checked that all properties hold.
250         Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
251     }
252 
253     /// Creates a [`CStr`] from a `[u8]` without performing any additional
254     /// checks.
255     ///
256     /// # Safety
257     ///
258     /// `bytes` *must* end with a `NUL` byte, and should only have a single
259     /// `NUL` byte (or the string will be truncated).
260     #[inline]
261     pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
262         // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
263         unsafe { core::mem::transmute(bytes) }
264     }
265 
266     /// Creates a mutable [`CStr`] from a `[u8]` without performing any
267     /// additional checks.
268     ///
269     /// # Safety
270     ///
271     /// `bytes` *must* end with a `NUL` byte, and should only have a single
272     /// `NUL` byte (or the string will be truncated).
273     #[inline]
274     pub unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut CStr {
275         // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
276         unsafe { &mut *(bytes as *mut [u8] as *mut CStr) }
277     }
278 
279     /// Returns a C pointer to the string.
280     #[inline]
281     pub const fn as_char_ptr(&self) -> *const crate::ffi::c_char {
282         self.0.as_ptr()
283     }
284 
285     /// Convert the string to a byte slice without the trailing `NUL` byte.
286     #[inline]
287     pub fn as_bytes(&self) -> &[u8] {
288         &self.0[..self.len()]
289     }
290 
291     /// Convert the string to a byte slice containing the trailing `NUL` byte.
292     #[inline]
293     pub const fn as_bytes_with_nul(&self) -> &[u8] {
294         &self.0
295     }
296 
297     /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8.
298     ///
299     /// If the contents of the [`CStr`] are valid UTF-8 data, this
300     /// function will return the corresponding [`&str`] slice. Otherwise,
301     /// it will return an error with details of where UTF-8 validation failed.
302     ///
303     /// # Examples
304     ///
305     /// ```
306     /// # use kernel::str::CStr;
307     /// let cstr = CStr::from_bytes_with_nul(b"foo\0")?;
308     /// assert_eq!(cstr.to_str(), Ok("foo"));
309     /// # Ok::<(), kernel::error::Error>(())
310     /// ```
311     #[inline]
312     pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> {
313         core::str::from_utf8(self.as_bytes())
314     }
315 
316     /// Unsafely convert this [`CStr`] into a [`&str`], without checking for
317     /// valid UTF-8.
318     ///
319     /// # Safety
320     ///
321     /// The contents must be valid UTF-8.
322     ///
323     /// # Examples
324     ///
325     /// ```
326     /// # use kernel::c_str;
327     /// # use kernel::str::CStr;
328     /// let bar = c_str!("ツ");
329     /// // SAFETY: String literals are guaranteed to be valid UTF-8
330     /// // by the Rust compiler.
331     /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ");
332     /// ```
333     #[inline]
334     pub unsafe fn as_str_unchecked(&self) -> &str {
335         // SAFETY: TODO.
336         unsafe { core::str::from_utf8_unchecked(self.as_bytes()) }
337     }
338 
339     /// Convert this [`CStr`] into a [`CString`] by allocating memory and
340     /// copying over the string data.
341     pub fn to_cstring(&self) -> Result<CString, AllocError> {
342         CString::try_from(self)
343     }
344 
345     /// Converts this [`CStr`] to its ASCII lower case equivalent in-place.
346     ///
347     /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
348     /// but non-ASCII letters are unchanged.
349     ///
350     /// To return a new lowercased value without modifying the existing one, use
351     /// [`to_ascii_lowercase()`].
352     ///
353     /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
354     pub fn make_ascii_lowercase(&mut self) {
355         // INVARIANT: This doesn't introduce or remove NUL bytes in the C
356         // string.
357         self.0.make_ascii_lowercase();
358     }
359 
360     /// Converts this [`CStr`] to its ASCII upper case equivalent in-place.
361     ///
362     /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
363     /// but non-ASCII letters are unchanged.
364     ///
365     /// To return a new uppercased value without modifying the existing one, use
366     /// [`to_ascii_uppercase()`].
367     ///
368     /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
369     pub fn make_ascii_uppercase(&mut self) {
370         // INVARIANT: This doesn't introduce or remove NUL bytes in the C
371         // string.
372         self.0.make_ascii_uppercase();
373     }
374 
375     /// Returns a copy of this [`CString`] where each character is mapped to its
376     /// ASCII lower case equivalent.
377     ///
378     /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
379     /// but non-ASCII letters are unchanged.
380     ///
381     /// To lowercase the value in-place, use [`make_ascii_lowercase`].
382     ///
383     /// [`make_ascii_lowercase`]: str::make_ascii_lowercase
384     pub fn to_ascii_lowercase(&self) -> Result<CString, AllocError> {
385         let mut s = self.to_cstring()?;
386 
387         s.make_ascii_lowercase();
388 
389         Ok(s)
390     }
391 
392     /// Returns a copy of this [`CString`] where each character is mapped to its
393     /// ASCII upper case equivalent.
394     ///
395     /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
396     /// but non-ASCII letters are unchanged.
397     ///
398     /// To uppercase the value in-place, use [`make_ascii_uppercase`].
399     ///
400     /// [`make_ascii_uppercase`]: str::make_ascii_uppercase
401     pub fn to_ascii_uppercase(&self) -> Result<CString, AllocError> {
402         let mut s = self.to_cstring()?;
403 
404         s.make_ascii_uppercase();
405 
406         Ok(s)
407     }
408 }
409 
410 impl fmt::Display for CStr {
411     /// Formats printable ASCII characters, escaping the rest.
412     ///
413     /// ```
414     /// # use kernel::c_str;
415     /// # use kernel::fmt;
416     /// # use kernel::str::CStr;
417     /// # use kernel::str::CString;
418     /// let penguin = c_str!("��");
419     /// let s = CString::try_from_fmt(fmt!("{}", penguin))?;
420     /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
421     ///
422     /// let ascii = c_str!("so \"cool\"");
423     /// let s = CString::try_from_fmt(fmt!("{}", ascii))?;
424     /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes());
425     /// # Ok::<(), kernel::error::Error>(())
426     /// ```
427     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
428         for &c in self.as_bytes() {
429             if (0x20..0x7f).contains(&c) {
430                 // Printable character.
431                 f.write_char(c as char)?;
432             } else {
433                 write!(f, "\\x{:02x}", c)?;
434             }
435         }
436         Ok(())
437     }
438 }
439 
440 impl fmt::Debug for CStr {
441     /// Formats printable ASCII characters with a double quote on either end, escaping the rest.
442     ///
443     /// ```
444     /// # use kernel::c_str;
445     /// # use kernel::fmt;
446     /// # use kernel::str::CStr;
447     /// # use kernel::str::CString;
448     /// let penguin = c_str!("��");
449     /// let s = CString::try_from_fmt(fmt!("{:?}", penguin))?;
450     /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes());
451     ///
452     /// // Embedded double quotes are escaped.
453     /// let ascii = c_str!("so \"cool\"");
454     /// let s = CString::try_from_fmt(fmt!("{:?}", ascii))?;
455     /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes());
456     /// # Ok::<(), kernel::error::Error>(())
457     /// ```
458     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
459         f.write_str("\"")?;
460         for &c in self.as_bytes() {
461             match c {
462                 // Printable characters.
463                 b'\"' => f.write_str("\\\"")?,
464                 0x20..=0x7e => f.write_char(c as char)?,
465                 _ => write!(f, "\\x{:02x}", c)?,
466             }
467         }
468         f.write_str("\"")
469     }
470 }
471 
472 impl AsRef<BStr> for CStr {
473     #[inline]
474     fn as_ref(&self) -> &BStr {
475         BStr::from_bytes(self.as_bytes())
476     }
477 }
478 
479 impl Deref for CStr {
480     type Target = BStr;
481 
482     #[inline]
483     fn deref(&self) -> &Self::Target {
484         self.as_ref()
485     }
486 }
487 
488 impl Index<ops::RangeFrom<usize>> for CStr {
489     type Output = CStr;
490 
491     #[inline]
492     fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output {
493         // Delegate bounds checking to slice.
494         // Assign to _ to mute clippy's unnecessary operation warning.
495         let _ = &self.as_bytes()[index.start..];
496         // SAFETY: We just checked the bounds.
497         unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) }
498     }
499 }
500 
501 impl Index<ops::RangeFull> for CStr {
502     type Output = CStr;
503 
504     #[inline]
505     fn index(&self, _index: ops::RangeFull) -> &Self::Output {
506         self
507     }
508 }
509 
510 mod private {
511     use core::ops;
512 
513     // Marker trait for index types that can be forward to `BStr`.
514     pub trait CStrIndex {}
515 
516     impl CStrIndex for usize {}
517     impl CStrIndex for ops::Range<usize> {}
518     impl CStrIndex for ops::RangeInclusive<usize> {}
519     impl CStrIndex for ops::RangeToInclusive<usize> {}
520 }
521 
522 impl<Idx> Index<Idx> for CStr
523 where
524     Idx: private::CStrIndex,
525     BStr: Index<Idx>,
526 {
527     type Output = <BStr as Index<Idx>>::Output;
528 
529     #[inline]
530     fn index(&self, index: Idx) -> &Self::Output {
531         &self.as_ref()[index]
532     }
533 }
534 
535 /// Creates a new [`CStr`] from a string literal.
536 ///
537 /// The string literal should not contain any `NUL` bytes.
538 ///
539 /// # Examples
540 ///
541 /// ```
542 /// # use kernel::c_str;
543 /// # use kernel::str::CStr;
544 /// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
545 /// ```
546 #[macro_export]
547 macro_rules! c_str {
548     ($str:expr) => {{
549         const S: &str = concat!($str, "\0");
550         const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
551             Ok(v) => v,
552             Err(_) => panic!("string contains interior NUL"),
553         };
554         C
555     }};
556 }
557 
558 #[cfg(test)]
559 #[expect(clippy::items_after_test_module)]
560 mod tests {
561     use super::*;
562 
563     struct String(CString);
564 
565     impl String {
566         fn from_fmt(args: fmt::Arguments<'_>) -> Self {
567             String(CString::try_from_fmt(args).unwrap())
568         }
569     }
570 
571     impl Deref for String {
572         type Target = str;
573 
574         fn deref(&self) -> &str {
575             self.0.to_str().unwrap()
576         }
577     }
578 
579     macro_rules! format {
580         ($($f:tt)*) => ({
581             &*String::from_fmt(kernel::fmt!($($f)*))
582         })
583     }
584 
585     const ALL_ASCII_CHARS: &str =
586         "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\
587         \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \
588         !\"#$%&'()*+,-./0123456789:;<=>?@\
589         ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\
590         \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\
591         \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\
592         \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\
593         \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\
594         \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\
595         \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\
596         \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\
597         \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff";
598 
599     #[test]
600     fn test_cstr_to_str() {
601         let good_bytes = b"\xf0\x9f\xa6\x80\0";
602         let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
603         let checked_str = checked_cstr.to_str().unwrap();
604         assert_eq!(checked_str, "��");
605     }
606 
607     #[test]
608     #[should_panic]
609     fn test_cstr_to_str_panic() {
610         let bad_bytes = b"\xc3\x28\0";
611         let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap();
612         checked_cstr.to_str().unwrap();
613     }
614 
615     #[test]
616     fn test_cstr_as_str_unchecked() {
617         let good_bytes = b"\xf0\x9f\x90\xA7\0";
618         let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
619         // SAFETY: The contents come from a string literal which contains valid UTF-8.
620         let unchecked_str = unsafe { checked_cstr.as_str_unchecked() };
621         assert_eq!(unchecked_str, "��");
622     }
623 
624     #[test]
625     fn test_cstr_display() {
626         let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap();
627         assert_eq!(format!("{}", hello_world), "hello, world!");
628         let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap();
629         assert_eq!(format!("{}", non_printables), "\\x01\\x09\\x0a");
630         let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap();
631         assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu");
632         let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap();
633         assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80");
634     }
635 
636     #[test]
637     fn test_cstr_display_all_bytes() {
638         let mut bytes: [u8; 256] = [0; 256];
639         // fill `bytes` with [1..=255] + [0]
640         for i in u8::MIN..=u8::MAX {
641             bytes[i as usize] = i.wrapping_add(1);
642         }
643         let cstr = CStr::from_bytes_with_nul(&bytes).unwrap();
644         assert_eq!(format!("{}", cstr), ALL_ASCII_CHARS);
645     }
646 
647     #[test]
648     fn test_cstr_debug() {
649         let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap();
650         assert_eq!(format!("{:?}", hello_world), "\"hello, world!\"");
651         let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap();
652         assert_eq!(format!("{:?}", non_printables), "\"\\x01\\x09\\x0a\"");
653         let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap();
654         assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\"");
655         let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap();
656         assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\"");
657     }
658 
659     #[test]
660     fn test_bstr_display() {
661         let hello_world = BStr::from_bytes(b"hello, world!");
662         assert_eq!(format!("{}", hello_world), "hello, world!");
663         let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
664         assert_eq!(format!("{}", escapes), "_\\t_\\n_\\r_\\_'_\"_");
665         let others = BStr::from_bytes(b"\x01");
666         assert_eq!(format!("{}", others), "\\x01");
667         let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
668         assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu");
669         let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
670         assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80");
671     }
672 
673     #[test]
674     fn test_bstr_debug() {
675         let hello_world = BStr::from_bytes(b"hello, world!");
676         assert_eq!(format!("{:?}", hello_world), "\"hello, world!\"");
677         let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
678         assert_eq!(format!("{:?}", escapes), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\"");
679         let others = BStr::from_bytes(b"\x01");
680         assert_eq!(format!("{:?}", others), "\"\\x01\"");
681         let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
682         assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\"");
683         let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
684         assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\"");
685     }
686 }
687 
688 /// Allows formatting of [`fmt::Arguments`] into a raw buffer.
689 ///
690 /// It does not fail if callers write past the end of the buffer so that they can calculate the
691 /// size required to fit everything.
692 ///
693 /// # Invariants
694 ///
695 /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
696 /// is less than `end`.
697 pub(crate) struct RawFormatter {
698     // Use `usize` to use `saturating_*` functions.
699     beg: usize,
700     pos: usize,
701     end: usize,
702 }
703 
704 impl RawFormatter {
705     /// Creates a new instance of [`RawFormatter`] with an empty buffer.
706     fn new() -> Self {
707         // INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
708         Self {
709             beg: 0,
710             pos: 0,
711             end: 0,
712         }
713     }
714 
715     /// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
716     ///
717     /// # Safety
718     ///
719     /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
720     /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
721     pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
722         // INVARIANT: The safety requirements guarantee the type invariants.
723         Self {
724             beg: pos as _,
725             pos: pos as _,
726             end: end as _,
727         }
728     }
729 
730     /// Creates a new instance of [`RawFormatter`] with the given buffer.
731     ///
732     /// # Safety
733     ///
734     /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
735     /// for the lifetime of the returned [`RawFormatter`].
736     pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
737         let pos = buf as usize;
738         // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements
739         // guarantees that the memory region is valid for writes.
740         Self {
741             pos,
742             beg: pos,
743             end: pos.saturating_add(len),
744         }
745     }
746 
747     /// Returns the current insert position.
748     ///
749     /// N.B. It may point to invalid memory.
750     pub(crate) fn pos(&self) -> *mut u8 {
751         self.pos as _
752     }
753 
754     /// Returns the number of bytes written to the formatter.
755     pub(crate) fn bytes_written(&self) -> usize {
756         self.pos - self.beg
757     }
758 }
759 
760 impl fmt::Write for RawFormatter {
761     fn write_str(&mut self, s: &str) -> fmt::Result {
762         // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
763         // don't want it to wrap around to 0.
764         let pos_new = self.pos.saturating_add(s.len());
765 
766         // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
767         let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
768 
769         if len_to_copy > 0 {
770             // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
771             // yet, so it is valid for write per the type invariants.
772             unsafe {
773                 core::ptr::copy_nonoverlapping(
774                     s.as_bytes().as_ptr(),
775                     self.pos as *mut u8,
776                     len_to_copy,
777                 )
778             };
779         }
780 
781         self.pos = pos_new;
782         Ok(())
783     }
784 }
785 
786 /// Allows formatting of [`fmt::Arguments`] into a raw buffer.
787 ///
788 /// Fails if callers attempt to write more than will fit in the buffer.
789 pub(crate) struct Formatter(RawFormatter);
790 
791 impl Formatter {
792     /// Creates a new instance of [`Formatter`] with the given buffer.
793     ///
794     /// # Safety
795     ///
796     /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
797     /// for the lifetime of the returned [`Formatter`].
798     pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
799         // SAFETY: The safety requirements of this function satisfy those of the callee.
800         Self(unsafe { RawFormatter::from_buffer(buf, len) })
801     }
802 }
803 
804 impl Deref for Formatter {
805     type Target = RawFormatter;
806 
807     fn deref(&self) -> &Self::Target {
808         &self.0
809     }
810 }
811 
812 impl fmt::Write for Formatter {
813     fn write_str(&mut self, s: &str) -> fmt::Result {
814         self.0.write_str(s)?;
815 
816         // Fail the request if we go past the end of the buffer.
817         if self.0.pos > self.0.end {
818             Err(fmt::Error)
819         } else {
820             Ok(())
821         }
822     }
823 }
824 
825 /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
826 ///
827 /// Used for interoperability with kernel APIs that take C strings.
828 ///
829 /// # Invariants
830 ///
831 /// The string is always `NUL`-terminated and contains no other `NUL` bytes.
832 ///
833 /// # Examples
834 ///
835 /// ```
836 /// use kernel::{str::CString, fmt};
837 ///
838 /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20))?;
839 /// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes());
840 ///
841 /// let tmp = "testing";
842 /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123))?;
843 /// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes());
844 ///
845 /// // This fails because it has an embedded `NUL` byte.
846 /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
847 /// assert_eq!(s.is_ok(), false);
848 /// # Ok::<(), kernel::error::Error>(())
849 /// ```
850 pub struct CString {
851     buf: KVec<u8>,
852 }
853 
854 impl CString {
855     /// Creates an instance of [`CString`] from the given formatted arguments.
856     pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
857         // Calculate the size needed (formatted string plus `NUL` terminator).
858         let mut f = RawFormatter::new();
859         f.write_fmt(args)?;
860         f.write_str("\0")?;
861         let size = f.bytes_written();
862 
863         // Allocate a vector with the required number of bytes, and write to it.
864         let mut buf = KVec::with_capacity(size, GFP_KERNEL)?;
865         // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
866         let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
867         f.write_fmt(args)?;
868         f.write_str("\0")?;
869 
870         // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
871         // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
872         unsafe { buf.set_len(f.bytes_written()) };
873 
874         // Check that there are no `NUL` bytes before the end.
875         // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
876         // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
877         // so `f.bytes_written() - 1` doesn't underflow.
878         let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, f.bytes_written() - 1) };
879         if !ptr.is_null() {
880             return Err(EINVAL);
881         }
882 
883         // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
884         // exist in the buffer.
885         Ok(Self { buf })
886     }
887 }
888 
889 impl Deref for CString {
890     type Target = CStr;
891 
892     fn deref(&self) -> &Self::Target {
893         // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
894         // other `NUL` bytes exist.
895         unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
896     }
897 }
898 
899 impl DerefMut for CString {
900     fn deref_mut(&mut self) -> &mut Self::Target {
901         // SAFETY: A `CString` is always NUL-terminated and contains no other
902         // NUL bytes.
903         unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) }
904     }
905 }
906 
907 impl<'a> TryFrom<&'a CStr> for CString {
908     type Error = AllocError;
909 
910     fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
911         let mut buf = KVec::new();
912 
913         buf.extend_from_slice(cstr.as_bytes_with_nul(), GFP_KERNEL)?;
914 
915         // INVARIANT: The `CStr` and `CString` types have the same invariants for
916         // the string data, and we copied it over without changes.
917         Ok(CString { buf })
918     }
919 }
920 
921 impl fmt::Debug for CString {
922     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
923         fmt::Debug::fmt(&**self, f)
924     }
925 }
926 
927 /// A convenience alias for [`core::format_args`].
928 #[macro_export]
929 macro_rules! fmt {
930     ($($f:tt)*) => ( core::format_args!($($f)*) )
931 }
932