1 // SPDX-License-Identifier: GPL-2.0 2 3 //! String representations. 4 5 use alloc::alloc::AllocError; 6 use alloc::vec::Vec; 7 use core::fmt::{self, Write}; 8 use core::ops::{self, Deref, DerefMut, Index}; 9 10 use crate::{ 11 bindings, 12 error::{code::*, Error}, 13 }; 14 15 /// Byte string without UTF-8 validity guarantee. 16 #[repr(transparent)] 17 pub struct BStr([u8]); 18 19 impl BStr { 20 /// Returns the length of this string. 21 #[inline] 22 pub const fn len(&self) -> usize { 23 self.0.len() 24 } 25 26 /// Returns `true` if the string is empty. 27 #[inline] 28 pub const fn is_empty(&self) -> bool { 29 self.len() == 0 30 } 31 32 /// Creates a [`BStr`] from a `[u8]`. 33 #[inline] 34 pub const fn from_bytes(bytes: &[u8]) -> &Self { 35 // SAFETY: `BStr` is transparent to `[u8]`. 36 unsafe { &*(bytes as *const [u8] as *const BStr) } 37 } 38 } 39 40 impl fmt::Display for BStr { 41 /// Formats printable ASCII characters, escaping the rest. 42 /// 43 /// ``` 44 /// # use kernel::{fmt, b_str, str::{BStr, CString}}; 45 /// let ascii = b_str!("Hello, BStr!"); 46 /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap(); 47 /// assert_eq!(s.as_bytes(), "Hello, BStr!".as_bytes()); 48 /// 49 /// let non_ascii = b_str!(""); 50 /// let s = CString::try_from_fmt(fmt!("{}", non_ascii)).unwrap(); 51 /// assert_eq!(s.as_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes()); 52 /// ``` 53 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 54 for &b in &self.0 { 55 match b { 56 // Common escape codes. 57 b'\t' => f.write_str("\\t")?, 58 b'\n' => f.write_str("\\n")?, 59 b'\r' => f.write_str("\\r")?, 60 // Printable characters. 61 0x20..=0x7e => f.write_char(b as char)?, 62 _ => write!(f, "\\x{:02x}", b)?, 63 } 64 } 65 Ok(()) 66 } 67 } 68 69 impl fmt::Debug for BStr { 70 /// Formats printable ASCII characters with a double quote on either end, 71 /// escaping the rest. 72 /// 73 /// ``` 74 /// # use kernel::{fmt, b_str, str::{BStr, CString}}; 75 /// // Embedded double quotes are escaped. 76 /// let ascii = b_str!("Hello, \"BStr\"!"); 77 /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap(); 78 /// assert_eq!(s.as_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes()); 79 /// 80 /// let non_ascii = b_str!(""); 81 /// let s = CString::try_from_fmt(fmt!("{:?}", non_ascii)).unwrap(); 82 /// assert_eq!(s.as_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes()); 83 /// ``` 84 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 85 f.write_char('"')?; 86 for &b in &self.0 { 87 match b { 88 // Common escape codes. 89 b'\t' => f.write_str("\\t")?, 90 b'\n' => f.write_str("\\n")?, 91 b'\r' => f.write_str("\\r")?, 92 // String escape characters. 93 b'\"' => f.write_str("\\\"")?, 94 b'\\' => f.write_str("\\\\")?, 95 // Printable characters. 96 0x20..=0x7e => f.write_char(b as char)?, 97 _ => write!(f, "\\x{:02x}", b)?, 98 } 99 } 100 f.write_char('"') 101 } 102 } 103 104 impl Deref for BStr { 105 type Target = [u8]; 106 107 #[inline] 108 fn deref(&self) -> &Self::Target { 109 &self.0 110 } 111 } 112 113 /// Creates a new [`BStr`] from a string literal. 114 /// 115 /// `b_str!` converts the supplied string literal to byte string, so non-ASCII 116 /// characters can be included. 117 /// 118 /// # Examples 119 /// 120 /// ``` 121 /// # use kernel::b_str; 122 /// # use kernel::str::BStr; 123 /// const MY_BSTR: &BStr = b_str!("My awesome BStr!"); 124 /// ``` 125 #[macro_export] 126 macro_rules! b_str { 127 ($str:literal) => {{ 128 const S: &'static str = $str; 129 const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes()); 130 C 131 }}; 132 } 133 134 /// Possible errors when using conversion functions in [`CStr`]. 135 #[derive(Debug, Clone, Copy)] 136 pub enum CStrConvertError { 137 /// Supplied bytes contain an interior `NUL`. 138 InteriorNul, 139 140 /// Supplied bytes are not terminated by `NUL`. 141 NotNulTerminated, 142 } 143 144 impl From<CStrConvertError> for Error { 145 #[inline] 146 fn from(_: CStrConvertError) -> Error { 147 EINVAL 148 } 149 } 150 151 /// A string that is guaranteed to have exactly one `NUL` byte, which is at the 152 /// end. 153 /// 154 /// Used for interoperability with kernel APIs that take C strings. 155 #[repr(transparent)] 156 pub struct CStr([u8]); 157 158 impl CStr { 159 /// Returns the length of this string excluding `NUL`. 160 #[inline] 161 pub const fn len(&self) -> usize { 162 self.len_with_nul() - 1 163 } 164 165 /// Returns the length of this string with `NUL`. 166 #[inline] 167 pub const fn len_with_nul(&self) -> usize { 168 // SAFETY: This is one of the invariant of `CStr`. 169 // We add a `unreachable_unchecked` here to hint the optimizer that 170 // the value returned from this function is non-zero. 171 if self.0.is_empty() { 172 unsafe { core::hint::unreachable_unchecked() }; 173 } 174 self.0.len() 175 } 176 177 /// Returns `true` if the string only includes `NUL`. 178 #[inline] 179 pub const fn is_empty(&self) -> bool { 180 self.len() == 0 181 } 182 183 /// Wraps a raw C string pointer. 184 /// 185 /// # Safety 186 /// 187 /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must 188 /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr` 189 /// must not be mutated. 190 #[inline] 191 pub unsafe fn from_char_ptr<'a>(ptr: *const core::ffi::c_char) -> &'a Self { 192 // SAFETY: The safety precondition guarantees `ptr` is a valid pointer 193 // to a `NUL`-terminated C string. 194 let len = unsafe { bindings::strlen(ptr) } + 1; 195 // SAFETY: Lifetime guaranteed by the safety precondition. 196 let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len as _) }; 197 // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`. 198 // As we have added 1 to `len`, the last byte is known to be `NUL`. 199 unsafe { Self::from_bytes_with_nul_unchecked(bytes) } 200 } 201 202 /// Creates a [`CStr`] from a `[u8]`. 203 /// 204 /// The provided slice must be `NUL`-terminated, does not contain any 205 /// interior `NUL` bytes. 206 pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> { 207 if bytes.is_empty() { 208 return Err(CStrConvertError::NotNulTerminated); 209 } 210 if bytes[bytes.len() - 1] != 0 { 211 return Err(CStrConvertError::NotNulTerminated); 212 } 213 let mut i = 0; 214 // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking, 215 // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`. 216 while i + 1 < bytes.len() { 217 if bytes[i] == 0 { 218 return Err(CStrConvertError::InteriorNul); 219 } 220 i += 1; 221 } 222 // SAFETY: We just checked that all properties hold. 223 Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) }) 224 } 225 226 /// Creates a [`CStr`] from a `[u8]` without performing any additional 227 /// checks. 228 /// 229 /// # Safety 230 /// 231 /// `bytes` *must* end with a `NUL` byte, and should only have a single 232 /// `NUL` byte (or the string will be truncated). 233 #[inline] 234 pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr { 235 // SAFETY: Properties of `bytes` guaranteed by the safety precondition. 236 unsafe { core::mem::transmute(bytes) } 237 } 238 239 /// Creates a mutable [`CStr`] from a `[u8]` without performing any 240 /// additional checks. 241 /// 242 /// # Safety 243 /// 244 /// `bytes` *must* end with a `NUL` byte, and should only have a single 245 /// `NUL` byte (or the string will be truncated). 246 #[inline] 247 pub unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut CStr { 248 // SAFETY: Properties of `bytes` guaranteed by the safety precondition. 249 unsafe { &mut *(bytes as *mut [u8] as *mut CStr) } 250 } 251 252 /// Returns a C pointer to the string. 253 #[inline] 254 pub const fn as_char_ptr(&self) -> *const core::ffi::c_char { 255 self.0.as_ptr() as _ 256 } 257 258 /// Convert the string to a byte slice without the trailing `NUL` byte. 259 #[inline] 260 pub fn as_bytes(&self) -> &[u8] { 261 &self.0[..self.len()] 262 } 263 264 /// Convert the string to a byte slice containing the trailing `NUL` byte. 265 #[inline] 266 pub const fn as_bytes_with_nul(&self) -> &[u8] { 267 &self.0 268 } 269 270 /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8. 271 /// 272 /// If the contents of the [`CStr`] are valid UTF-8 data, this 273 /// function will return the corresponding [`&str`] slice. Otherwise, 274 /// it will return an error with details of where UTF-8 validation failed. 275 /// 276 /// # Examples 277 /// 278 /// ``` 279 /// # use kernel::str::CStr; 280 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap(); 281 /// assert_eq!(cstr.to_str(), Ok("foo")); 282 /// ``` 283 #[inline] 284 pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> { 285 core::str::from_utf8(self.as_bytes()) 286 } 287 288 /// Unsafely convert this [`CStr`] into a [`&str`], without checking for 289 /// valid UTF-8. 290 /// 291 /// # Safety 292 /// 293 /// The contents must be valid UTF-8. 294 /// 295 /// # Examples 296 /// 297 /// ``` 298 /// # use kernel::c_str; 299 /// # use kernel::str::CStr; 300 /// let bar = c_str!("ツ"); 301 /// // SAFETY: String literals are guaranteed to be valid UTF-8 302 /// // by the Rust compiler. 303 /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ"); 304 /// ``` 305 #[inline] 306 pub unsafe fn as_str_unchecked(&self) -> &str { 307 unsafe { core::str::from_utf8_unchecked(self.as_bytes()) } 308 } 309 310 /// Convert this [`CStr`] into a [`CString`] by allocating memory and 311 /// copying over the string data. 312 pub fn to_cstring(&self) -> Result<CString, AllocError> { 313 CString::try_from(self) 314 } 315 316 /// Converts this [`CStr`] to its ASCII lower case equivalent in-place. 317 /// 318 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', 319 /// but non-ASCII letters are unchanged. 320 /// 321 /// To return a new lowercased value without modifying the existing one, use 322 /// [`to_ascii_lowercase()`]. 323 /// 324 /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase 325 pub fn make_ascii_lowercase(&mut self) { 326 // INVARIANT: This doesn't introduce or remove NUL bytes in the C 327 // string. 328 self.0.make_ascii_lowercase(); 329 } 330 331 /// Converts this [`CStr`] to its ASCII upper case equivalent in-place. 332 /// 333 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', 334 /// but non-ASCII letters are unchanged. 335 /// 336 /// To return a new uppercased value without modifying the existing one, use 337 /// [`to_ascii_uppercase()`]. 338 /// 339 /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase 340 pub fn make_ascii_uppercase(&mut self) { 341 // INVARIANT: This doesn't introduce or remove NUL bytes in the C 342 // string. 343 self.0.make_ascii_uppercase(); 344 } 345 346 /// Returns a copy of this [`CString`] where each character is mapped to its 347 /// ASCII lower case equivalent. 348 /// 349 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', 350 /// but non-ASCII letters are unchanged. 351 /// 352 /// To lowercase the value in-place, use [`make_ascii_lowercase`]. 353 /// 354 /// [`make_ascii_lowercase`]: str::make_ascii_lowercase 355 pub fn to_ascii_lowercase(&self) -> Result<CString, AllocError> { 356 let mut s = self.to_cstring()?; 357 358 s.make_ascii_lowercase(); 359 360 Ok(s) 361 } 362 363 /// Returns a copy of this [`CString`] where each character is mapped to its 364 /// ASCII upper case equivalent. 365 /// 366 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', 367 /// but non-ASCII letters are unchanged. 368 /// 369 /// To uppercase the value in-place, use [`make_ascii_uppercase`]. 370 /// 371 /// [`make_ascii_uppercase`]: str::make_ascii_uppercase 372 pub fn to_ascii_uppercase(&self) -> Result<CString, AllocError> { 373 let mut s = self.to_cstring()?; 374 375 s.make_ascii_uppercase(); 376 377 Ok(s) 378 } 379 } 380 381 impl fmt::Display for CStr { 382 /// Formats printable ASCII characters, escaping the rest. 383 /// 384 /// ``` 385 /// # use kernel::c_str; 386 /// # use kernel::fmt; 387 /// # use kernel::str::CStr; 388 /// # use kernel::str::CString; 389 /// let penguin = c_str!(""); 390 /// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap(); 391 /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes()); 392 /// 393 /// let ascii = c_str!("so \"cool\""); 394 /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap(); 395 /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes()); 396 /// ``` 397 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 398 for &c in self.as_bytes() { 399 if (0x20..0x7f).contains(&c) { 400 // Printable character. 401 f.write_char(c as char)?; 402 } else { 403 write!(f, "\\x{:02x}", c)?; 404 } 405 } 406 Ok(()) 407 } 408 } 409 410 impl fmt::Debug for CStr { 411 /// Formats printable ASCII characters with a double quote on either end, escaping the rest. 412 /// 413 /// ``` 414 /// # use kernel::c_str; 415 /// # use kernel::fmt; 416 /// # use kernel::str::CStr; 417 /// # use kernel::str::CString; 418 /// let penguin = c_str!(""); 419 /// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap(); 420 /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes()); 421 /// 422 /// // Embedded double quotes are escaped. 423 /// let ascii = c_str!("so \"cool\""); 424 /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap(); 425 /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes()); 426 /// ``` 427 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 428 f.write_str("\"")?; 429 for &c in self.as_bytes() { 430 match c { 431 // Printable characters. 432 b'\"' => f.write_str("\\\"")?, 433 0x20..=0x7e => f.write_char(c as char)?, 434 _ => write!(f, "\\x{:02x}", c)?, 435 } 436 } 437 f.write_str("\"") 438 } 439 } 440 441 impl AsRef<BStr> for CStr { 442 #[inline] 443 fn as_ref(&self) -> &BStr { 444 BStr::from_bytes(self.as_bytes()) 445 } 446 } 447 448 impl Deref for CStr { 449 type Target = BStr; 450 451 #[inline] 452 fn deref(&self) -> &Self::Target { 453 self.as_ref() 454 } 455 } 456 457 impl Index<ops::RangeFrom<usize>> for CStr { 458 type Output = CStr; 459 460 #[inline] 461 fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output { 462 // Delegate bounds checking to slice. 463 // Assign to _ to mute clippy's unnecessary operation warning. 464 let _ = &self.as_bytes()[index.start..]; 465 // SAFETY: We just checked the bounds. 466 unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) } 467 } 468 } 469 470 impl Index<ops::RangeFull> for CStr { 471 type Output = CStr; 472 473 #[inline] 474 fn index(&self, _index: ops::RangeFull) -> &Self::Output { 475 self 476 } 477 } 478 479 mod private { 480 use core::ops; 481 482 // Marker trait for index types that can be forward to `BStr`. 483 pub trait CStrIndex {} 484 485 impl CStrIndex for usize {} 486 impl CStrIndex for ops::Range<usize> {} 487 impl CStrIndex for ops::RangeInclusive<usize> {} 488 impl CStrIndex for ops::RangeToInclusive<usize> {} 489 } 490 491 impl<Idx> Index<Idx> for CStr 492 where 493 Idx: private::CStrIndex, 494 BStr: Index<Idx>, 495 { 496 type Output = <BStr as Index<Idx>>::Output; 497 498 #[inline] 499 fn index(&self, index: Idx) -> &Self::Output { 500 &self.as_ref()[index] 501 } 502 } 503 504 /// Creates a new [`CStr`] from a string literal. 505 /// 506 /// The string literal should not contain any `NUL` bytes. 507 /// 508 /// # Examples 509 /// 510 /// ``` 511 /// # use kernel::c_str; 512 /// # use kernel::str::CStr; 513 /// const MY_CSTR: &CStr = c_str!("My awesome CStr!"); 514 /// ``` 515 #[macro_export] 516 macro_rules! c_str { 517 ($str:expr) => {{ 518 const S: &str = concat!($str, "\0"); 519 const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) { 520 Ok(v) => v, 521 Err(_) => panic!("string contains interior NUL"), 522 }; 523 C 524 }}; 525 } 526 527 #[cfg(test)] 528 mod tests { 529 use super::*; 530 use alloc::format; 531 532 const ALL_ASCII_CHARS: &'static str = 533 "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\ 534 \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \ 535 !\"#$%&'()*+,-./0123456789:;<=>?@\ 536 ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\ 537 \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\ 538 \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\ 539 \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\ 540 \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\ 541 \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\ 542 \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\ 543 \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\ 544 \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff"; 545 546 #[test] 547 fn test_cstr_to_str() { 548 let good_bytes = b"\xf0\x9f\xa6\x80\0"; 549 let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); 550 let checked_str = checked_cstr.to_str().unwrap(); 551 assert_eq!(checked_str, ""); 552 } 553 554 #[test] 555 #[should_panic] 556 fn test_cstr_to_str_panic() { 557 let bad_bytes = b"\xc3\x28\0"; 558 let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap(); 559 checked_cstr.to_str().unwrap(); 560 } 561 562 #[test] 563 fn test_cstr_as_str_unchecked() { 564 let good_bytes = b"\xf0\x9f\x90\xA7\0"; 565 let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap(); 566 let unchecked_str = unsafe { checked_cstr.as_str_unchecked() }; 567 assert_eq!(unchecked_str, ""); 568 } 569 570 #[test] 571 fn test_cstr_display() { 572 let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap(); 573 assert_eq!(format!("{}", hello_world), "hello, world!"); 574 let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap(); 575 assert_eq!(format!("{}", non_printables), "\\x01\\x09\\x0a"); 576 let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap(); 577 assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu"); 578 let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap(); 579 assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80"); 580 } 581 582 #[test] 583 fn test_cstr_display_all_bytes() { 584 let mut bytes: [u8; 256] = [0; 256]; 585 // fill `bytes` with [1..=255] + [0] 586 for i in u8::MIN..=u8::MAX { 587 bytes[i as usize] = i.wrapping_add(1); 588 } 589 let cstr = CStr::from_bytes_with_nul(&bytes).unwrap(); 590 assert_eq!(format!("{}", cstr), ALL_ASCII_CHARS); 591 } 592 593 #[test] 594 fn test_cstr_debug() { 595 let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap(); 596 assert_eq!(format!("{:?}", hello_world), "\"hello, world!\""); 597 let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap(); 598 assert_eq!(format!("{:?}", non_printables), "\"\\x01\\x09\\x0a\""); 599 let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap(); 600 assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\""); 601 let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap(); 602 assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\""); 603 } 604 605 #[test] 606 fn test_bstr_display() { 607 let hello_world = BStr::from_bytes(b"hello, world!"); 608 assert_eq!(format!("{}", hello_world), "hello, world!"); 609 let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_"); 610 assert_eq!(format!("{}", escapes), "_\\t_\\n_\\r_\\_'_\"_"); 611 let others = BStr::from_bytes(b"\x01"); 612 assert_eq!(format!("{}", others), "\\x01"); 613 let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu"); 614 assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu"); 615 let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80"); 616 assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80"); 617 } 618 619 #[test] 620 fn test_bstr_debug() { 621 let hello_world = BStr::from_bytes(b"hello, world!"); 622 assert_eq!(format!("{:?}", hello_world), "\"hello, world!\""); 623 let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_"); 624 assert_eq!(format!("{:?}", escapes), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\""); 625 let others = BStr::from_bytes(b"\x01"); 626 assert_eq!(format!("{:?}", others), "\"\\x01\""); 627 let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu"); 628 assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\""); 629 let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80"); 630 assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\""); 631 } 632 } 633 634 /// Allows formatting of [`fmt::Arguments`] into a raw buffer. 635 /// 636 /// It does not fail if callers write past the end of the buffer so that they can calculate the 637 /// size required to fit everything. 638 /// 639 /// # Invariants 640 /// 641 /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos` 642 /// is less than `end`. 643 pub(crate) struct RawFormatter { 644 // Use `usize` to use `saturating_*` functions. 645 beg: usize, 646 pos: usize, 647 end: usize, 648 } 649 650 impl RawFormatter { 651 /// Creates a new instance of [`RawFormatter`] with an empty buffer. 652 fn new() -> Self { 653 // INVARIANT: The buffer is empty, so the region that needs to be writable is empty. 654 Self { 655 beg: 0, 656 pos: 0, 657 end: 0, 658 } 659 } 660 661 /// Creates a new instance of [`RawFormatter`] with the given buffer pointers. 662 /// 663 /// # Safety 664 /// 665 /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end` 666 /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`]. 667 pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self { 668 // INVARIANT: The safety requirements guarantee the type invariants. 669 Self { 670 beg: pos as _, 671 pos: pos as _, 672 end: end as _, 673 } 674 } 675 676 /// Creates a new instance of [`RawFormatter`] with the given buffer. 677 /// 678 /// # Safety 679 /// 680 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes 681 /// for the lifetime of the returned [`RawFormatter`]. 682 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { 683 let pos = buf as usize; 684 // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements 685 // guarantees that the memory region is valid for writes. 686 Self { 687 pos, 688 beg: pos, 689 end: pos.saturating_add(len), 690 } 691 } 692 693 /// Returns the current insert position. 694 /// 695 /// N.B. It may point to invalid memory. 696 pub(crate) fn pos(&self) -> *mut u8 { 697 self.pos as _ 698 } 699 700 /// Returns the number of bytes written to the formatter. 701 pub(crate) fn bytes_written(&self) -> usize { 702 self.pos - self.beg 703 } 704 } 705 706 impl fmt::Write for RawFormatter { 707 fn write_str(&mut self, s: &str) -> fmt::Result { 708 // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we 709 // don't want it to wrap around to 0. 710 let pos_new = self.pos.saturating_add(s.len()); 711 712 // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`. 713 let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos); 714 715 if len_to_copy > 0 { 716 // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end` 717 // yet, so it is valid for write per the type invariants. 718 unsafe { 719 core::ptr::copy_nonoverlapping( 720 s.as_bytes().as_ptr(), 721 self.pos as *mut u8, 722 len_to_copy, 723 ) 724 }; 725 } 726 727 self.pos = pos_new; 728 Ok(()) 729 } 730 } 731 732 /// Allows formatting of [`fmt::Arguments`] into a raw buffer. 733 /// 734 /// Fails if callers attempt to write more than will fit in the buffer. 735 pub(crate) struct Formatter(RawFormatter); 736 737 impl Formatter { 738 /// Creates a new instance of [`Formatter`] with the given buffer. 739 /// 740 /// # Safety 741 /// 742 /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes 743 /// for the lifetime of the returned [`Formatter`]. 744 pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { 745 // SAFETY: The safety requirements of this function satisfy those of the callee. 746 Self(unsafe { RawFormatter::from_buffer(buf, len) }) 747 } 748 } 749 750 impl Deref for Formatter { 751 type Target = RawFormatter; 752 753 fn deref(&self) -> &Self::Target { 754 &self.0 755 } 756 } 757 758 impl fmt::Write for Formatter { 759 fn write_str(&mut self, s: &str) -> fmt::Result { 760 self.0.write_str(s)?; 761 762 // Fail the request if we go past the end of the buffer. 763 if self.0.pos > self.0.end { 764 Err(fmt::Error) 765 } else { 766 Ok(()) 767 } 768 } 769 } 770 771 /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end. 772 /// 773 /// Used for interoperability with kernel APIs that take C strings. 774 /// 775 /// # Invariants 776 /// 777 /// The string is always `NUL`-terminated and contains no other `NUL` bytes. 778 /// 779 /// # Examples 780 /// 781 /// ``` 782 /// use kernel::{str::CString, fmt}; 783 /// 784 /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20)).unwrap(); 785 /// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes()); 786 /// 787 /// let tmp = "testing"; 788 /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123)).unwrap(); 789 /// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes()); 790 /// 791 /// // This fails because it has an embedded `NUL` byte. 792 /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123)); 793 /// assert_eq!(s.is_ok(), false); 794 /// ``` 795 pub struct CString { 796 buf: Vec<u8>, 797 } 798 799 impl CString { 800 /// Creates an instance of [`CString`] from the given formatted arguments. 801 pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> { 802 // Calculate the size needed (formatted string plus `NUL` terminator). 803 let mut f = RawFormatter::new(); 804 f.write_fmt(args)?; 805 f.write_str("\0")?; 806 let size = f.bytes_written(); 807 808 // Allocate a vector with the required number of bytes, and write to it. 809 let mut buf = Vec::try_with_capacity(size)?; 810 // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes. 811 let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) }; 812 f.write_fmt(args)?; 813 f.write_str("\0")?; 814 815 // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is 816 // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`. 817 unsafe { buf.set_len(f.bytes_written()) }; 818 819 // Check that there are no `NUL` bytes before the end. 820 // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size` 821 // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator) 822 // so `f.bytes_written() - 1` doesn't underflow. 823 let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, (f.bytes_written() - 1) as _) }; 824 if !ptr.is_null() { 825 return Err(EINVAL); 826 } 827 828 // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes 829 // exist in the buffer. 830 Ok(Self { buf }) 831 } 832 } 833 834 impl Deref for CString { 835 type Target = CStr; 836 837 fn deref(&self) -> &Self::Target { 838 // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no 839 // other `NUL` bytes exist. 840 unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) } 841 } 842 } 843 844 impl DerefMut for CString { 845 fn deref_mut(&mut self) -> &mut Self::Target { 846 // SAFETY: A `CString` is always NUL-terminated and contains no other 847 // NUL bytes. 848 unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) } 849 } 850 } 851 852 impl<'a> TryFrom<&'a CStr> for CString { 853 type Error = AllocError; 854 855 fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> { 856 let mut buf = Vec::new(); 857 858 buf.try_extend_from_slice(cstr.as_bytes_with_nul()) 859 .map_err(|_| AllocError)?; 860 861 // INVARIANT: The `CStr` and `CString` types have the same invariants for 862 // the string data, and we copied it over without changes. 863 Ok(CString { buf }) 864 } 865 } 866 867 impl fmt::Debug for CString { 868 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 869 fmt::Debug::fmt(&**self, f) 870 } 871 } 872 873 /// A convenience alias for [`core::format_args`]. 874 #[macro_export] 875 macro_rules! fmt { 876 ($($f:tt)*) => ( core::format_args!($($f)*) ) 877 } 878