xref: /linux-6.15/rust/kernel/str.rs (revision 50a5ff0a)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! String representations.
4 
5 use crate::alloc::{flags::*, AllocError, KVec};
6 use core::fmt::{self, Write};
7 use core::ops::{self, Deref, DerefMut, Index};
8 
9 use crate::error::{code::*, Error};
10 
11 /// Byte string without UTF-8 validity guarantee.
12 #[repr(transparent)]
13 pub struct BStr([u8]);
14 
15 impl BStr {
16     /// Returns the length of this string.
17     #[inline]
18     pub const fn len(&self) -> usize {
19         self.0.len()
20     }
21 
22     /// Returns `true` if the string is empty.
23     #[inline]
24     pub const fn is_empty(&self) -> bool {
25         self.len() == 0
26     }
27 
28     /// Creates a [`BStr`] from a `[u8]`.
29     #[inline]
30     pub const fn from_bytes(bytes: &[u8]) -> &Self {
31         // SAFETY: `BStr` is transparent to `[u8]`.
32         unsafe { &*(bytes as *const [u8] as *const BStr) }
33     }
34 }
35 
36 impl fmt::Display for BStr {
37     /// Formats printable ASCII characters, escaping the rest.
38     ///
39     /// ```
40     /// # use kernel::{fmt, b_str, str::{BStr, CString}};
41     /// let ascii = b_str!("Hello, BStr!");
42     /// let s = CString::try_from_fmt(fmt!("{}", ascii))?;
43     /// assert_eq!(s.as_bytes(), "Hello, BStr!".as_bytes());
44     ///
45     /// let non_ascii = b_str!("��");
46     /// let s = CString::try_from_fmt(fmt!("{}", non_ascii))?;
47     /// assert_eq!(s.as_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes());
48     /// # Ok::<(), kernel::error::Error>(())
49     /// ```
50     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
51         for &b in &self.0 {
52             match b {
53                 // Common escape codes.
54                 b'\t' => f.write_str("\\t")?,
55                 b'\n' => f.write_str("\\n")?,
56                 b'\r' => f.write_str("\\r")?,
57                 // Printable characters.
58                 0x20..=0x7e => f.write_char(b as char)?,
59                 _ => write!(f, "\\x{:02x}", b)?,
60             }
61         }
62         Ok(())
63     }
64 }
65 
66 impl fmt::Debug for BStr {
67     /// Formats printable ASCII characters with a double quote on either end,
68     /// escaping the rest.
69     ///
70     /// ```
71     /// # use kernel::{fmt, b_str, str::{BStr, CString}};
72     /// // Embedded double quotes are escaped.
73     /// let ascii = b_str!("Hello, \"BStr\"!");
74     /// let s = CString::try_from_fmt(fmt!("{:?}", ascii))?;
75     /// assert_eq!(s.as_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes());
76     ///
77     /// let non_ascii = b_str!("��");
78     /// let s = CString::try_from_fmt(fmt!("{:?}", non_ascii))?;
79     /// assert_eq!(s.as_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes());
80     /// # Ok::<(), kernel::error::Error>(())
81     /// ```
82     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
83         f.write_char('"')?;
84         for &b in &self.0 {
85             match b {
86                 // Common escape codes.
87                 b'\t' => f.write_str("\\t")?,
88                 b'\n' => f.write_str("\\n")?,
89                 b'\r' => f.write_str("\\r")?,
90                 // String escape characters.
91                 b'\"' => f.write_str("\\\"")?,
92                 b'\\' => f.write_str("\\\\")?,
93                 // Printable characters.
94                 0x20..=0x7e => f.write_char(b as char)?,
95                 _ => write!(f, "\\x{:02x}", b)?,
96             }
97         }
98         f.write_char('"')
99     }
100 }
101 
102 impl Deref for BStr {
103     type Target = [u8];
104 
105     #[inline]
106     fn deref(&self) -> &Self::Target {
107         &self.0
108     }
109 }
110 
111 impl PartialEq for BStr {
112     fn eq(&self, other: &Self) -> bool {
113         self.deref().eq(other.deref())
114     }
115 }
116 
117 impl<Idx> Index<Idx> for BStr
118 where
119     [u8]: Index<Idx, Output = [u8]>,
120 {
121     type Output = Self;
122 
123     fn index(&self, index: Idx) -> &Self::Output {
124         BStr::from_bytes(&self.0[index])
125     }
126 }
127 
128 /// Creates a new [`BStr`] from a string literal.
129 ///
130 /// `b_str!` converts the supplied string literal to byte string, so non-ASCII
131 /// characters can be included.
132 ///
133 /// # Examples
134 ///
135 /// ```
136 /// # use kernel::b_str;
137 /// # use kernel::str::BStr;
138 /// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
139 /// ```
140 #[macro_export]
141 macro_rules! b_str {
142     ($str:literal) => {{
143         const S: &'static str = $str;
144         const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes());
145         C
146     }};
147 }
148 
149 /// Possible errors when using conversion functions in [`CStr`].
150 #[derive(Debug, Clone, Copy)]
151 pub enum CStrConvertError {
152     /// Supplied bytes contain an interior `NUL`.
153     InteriorNul,
154 
155     /// Supplied bytes are not terminated by `NUL`.
156     NotNulTerminated,
157 }
158 
159 impl From<CStrConvertError> for Error {
160     #[inline]
161     fn from(_: CStrConvertError) -> Error {
162         EINVAL
163     }
164 }
165 
166 /// A string that is guaranteed to have exactly one `NUL` byte, which is at the
167 /// end.
168 ///
169 /// Used for interoperability with kernel APIs that take C strings.
170 #[repr(transparent)]
171 pub struct CStr([u8]);
172 
173 impl CStr {
174     /// Returns the length of this string excluding `NUL`.
175     #[inline]
176     pub const fn len(&self) -> usize {
177         self.len_with_nul() - 1
178     }
179 
180     /// Returns the length of this string with `NUL`.
181     #[inline]
182     pub const fn len_with_nul(&self) -> usize {
183         if self.0.is_empty() {
184             // SAFETY: This is one of the invariant of `CStr`.
185             // We add a `unreachable_unchecked` here to hint the optimizer that
186             // the value returned from this function is non-zero.
187             unsafe { core::hint::unreachable_unchecked() };
188         }
189         self.0.len()
190     }
191 
192     /// Returns `true` if the string only includes `NUL`.
193     #[inline]
194     pub const fn is_empty(&self) -> bool {
195         self.len() == 0
196     }
197 
198     /// Wraps a raw C string pointer.
199     ///
200     /// # Safety
201     ///
202     /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
203     /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
204     /// must not be mutated.
205     #[inline]
206     pub unsafe fn from_char_ptr<'a>(ptr: *const crate::ffi::c_char) -> &'a Self {
207         // SAFETY: The safety precondition guarantees `ptr` is a valid pointer
208         // to a `NUL`-terminated C string.
209         let len = unsafe { bindings::strlen(ptr) } + 1;
210         // SAFETY: Lifetime guaranteed by the safety precondition.
211         let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len) };
212         // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`.
213         // As we have added 1 to `len`, the last byte is known to be `NUL`.
214         unsafe { Self::from_bytes_with_nul_unchecked(bytes) }
215     }
216 
217     /// Creates a [`CStr`] from a `[u8]`.
218     ///
219     /// The provided slice must be `NUL`-terminated, does not contain any
220     /// interior `NUL` bytes.
221     pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> {
222         if bytes.is_empty() {
223             return Err(CStrConvertError::NotNulTerminated);
224         }
225         if bytes[bytes.len() - 1] != 0 {
226             return Err(CStrConvertError::NotNulTerminated);
227         }
228         let mut i = 0;
229         // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking,
230         // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`.
231         while i + 1 < bytes.len() {
232             if bytes[i] == 0 {
233                 return Err(CStrConvertError::InteriorNul);
234             }
235             i += 1;
236         }
237         // SAFETY: We just checked that all properties hold.
238         Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
239     }
240 
241     /// Creates a [`CStr`] from a `[u8]` without performing any additional
242     /// checks.
243     ///
244     /// # Safety
245     ///
246     /// `bytes` *must* end with a `NUL` byte, and should only have a single
247     /// `NUL` byte (or the string will be truncated).
248     #[inline]
249     pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
250         // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
251         unsafe { core::mem::transmute(bytes) }
252     }
253 
254     /// Creates a mutable [`CStr`] from a `[u8]` without performing any
255     /// additional checks.
256     ///
257     /// # Safety
258     ///
259     /// `bytes` *must* end with a `NUL` byte, and should only have a single
260     /// `NUL` byte (or the string will be truncated).
261     #[inline]
262     pub unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut CStr {
263         // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
264         unsafe { &mut *(bytes as *mut [u8] as *mut CStr) }
265     }
266 
267     /// Returns a C pointer to the string.
268     #[inline]
269     pub const fn as_char_ptr(&self) -> *const crate::ffi::c_char {
270         self.0.as_ptr()
271     }
272 
273     /// Convert the string to a byte slice without the trailing `NUL` byte.
274     #[inline]
275     pub fn as_bytes(&self) -> &[u8] {
276         &self.0[..self.len()]
277     }
278 
279     /// Convert the string to a byte slice containing the trailing `NUL` byte.
280     #[inline]
281     pub const fn as_bytes_with_nul(&self) -> &[u8] {
282         &self.0
283     }
284 
285     /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8.
286     ///
287     /// If the contents of the [`CStr`] are valid UTF-8 data, this
288     /// function will return the corresponding [`&str`] slice. Otherwise,
289     /// it will return an error with details of where UTF-8 validation failed.
290     ///
291     /// # Examples
292     ///
293     /// ```
294     /// # use kernel::str::CStr;
295     /// let cstr = CStr::from_bytes_with_nul(b"foo\0")?;
296     /// assert_eq!(cstr.to_str(), Ok("foo"));
297     /// # Ok::<(), kernel::error::Error>(())
298     /// ```
299     #[inline]
300     pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> {
301         core::str::from_utf8(self.as_bytes())
302     }
303 
304     /// Unsafely convert this [`CStr`] into a [`&str`], without checking for
305     /// valid UTF-8.
306     ///
307     /// # Safety
308     ///
309     /// The contents must be valid UTF-8.
310     ///
311     /// # Examples
312     ///
313     /// ```
314     /// # use kernel::c_str;
315     /// # use kernel::str::CStr;
316     /// let bar = c_str!("ツ");
317     /// // SAFETY: String literals are guaranteed to be valid UTF-8
318     /// // by the Rust compiler.
319     /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ");
320     /// ```
321     #[inline]
322     pub unsafe fn as_str_unchecked(&self) -> &str {
323         // SAFETY: TODO.
324         unsafe { core::str::from_utf8_unchecked(self.as_bytes()) }
325     }
326 
327     /// Convert this [`CStr`] into a [`CString`] by allocating memory and
328     /// copying over the string data.
329     pub fn to_cstring(&self) -> Result<CString, AllocError> {
330         CString::try_from(self)
331     }
332 
333     /// Converts this [`CStr`] to its ASCII lower case equivalent in-place.
334     ///
335     /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
336     /// but non-ASCII letters are unchanged.
337     ///
338     /// To return a new lowercased value without modifying the existing one, use
339     /// [`to_ascii_lowercase()`].
340     ///
341     /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
342     pub fn make_ascii_lowercase(&mut self) {
343         // INVARIANT: This doesn't introduce or remove NUL bytes in the C
344         // string.
345         self.0.make_ascii_lowercase();
346     }
347 
348     /// Converts this [`CStr`] to its ASCII upper case equivalent in-place.
349     ///
350     /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
351     /// but non-ASCII letters are unchanged.
352     ///
353     /// To return a new uppercased value without modifying the existing one, use
354     /// [`to_ascii_uppercase()`].
355     ///
356     /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
357     pub fn make_ascii_uppercase(&mut self) {
358         // INVARIANT: This doesn't introduce or remove NUL bytes in the C
359         // string.
360         self.0.make_ascii_uppercase();
361     }
362 
363     /// Returns a copy of this [`CString`] where each character is mapped to its
364     /// ASCII lower case equivalent.
365     ///
366     /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
367     /// but non-ASCII letters are unchanged.
368     ///
369     /// To lowercase the value in-place, use [`make_ascii_lowercase`].
370     ///
371     /// [`make_ascii_lowercase`]: str::make_ascii_lowercase
372     pub fn to_ascii_lowercase(&self) -> Result<CString, AllocError> {
373         let mut s = self.to_cstring()?;
374 
375         s.make_ascii_lowercase();
376 
377         Ok(s)
378     }
379 
380     /// Returns a copy of this [`CString`] where each character is mapped to its
381     /// ASCII upper case equivalent.
382     ///
383     /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
384     /// but non-ASCII letters are unchanged.
385     ///
386     /// To uppercase the value in-place, use [`make_ascii_uppercase`].
387     ///
388     /// [`make_ascii_uppercase`]: str::make_ascii_uppercase
389     pub fn to_ascii_uppercase(&self) -> Result<CString, AllocError> {
390         let mut s = self.to_cstring()?;
391 
392         s.make_ascii_uppercase();
393 
394         Ok(s)
395     }
396 }
397 
398 impl fmt::Display for CStr {
399     /// Formats printable ASCII characters, escaping the rest.
400     ///
401     /// ```
402     /// # use kernel::c_str;
403     /// # use kernel::fmt;
404     /// # use kernel::str::CStr;
405     /// # use kernel::str::CString;
406     /// let penguin = c_str!("��");
407     /// let s = CString::try_from_fmt(fmt!("{}", penguin))?;
408     /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
409     ///
410     /// let ascii = c_str!("so \"cool\"");
411     /// let s = CString::try_from_fmt(fmt!("{}", ascii))?;
412     /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes());
413     /// # Ok::<(), kernel::error::Error>(())
414     /// ```
415     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
416         for &c in self.as_bytes() {
417             if (0x20..0x7f).contains(&c) {
418                 // Printable character.
419                 f.write_char(c as char)?;
420             } else {
421                 write!(f, "\\x{:02x}", c)?;
422             }
423         }
424         Ok(())
425     }
426 }
427 
428 impl fmt::Debug for CStr {
429     /// Formats printable ASCII characters with a double quote on either end, escaping the rest.
430     ///
431     /// ```
432     /// # use kernel::c_str;
433     /// # use kernel::fmt;
434     /// # use kernel::str::CStr;
435     /// # use kernel::str::CString;
436     /// let penguin = c_str!("��");
437     /// let s = CString::try_from_fmt(fmt!("{:?}", penguin))?;
438     /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes());
439     ///
440     /// // Embedded double quotes are escaped.
441     /// let ascii = c_str!("so \"cool\"");
442     /// let s = CString::try_from_fmt(fmt!("{:?}", ascii))?;
443     /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes());
444     /// # Ok::<(), kernel::error::Error>(())
445     /// ```
446     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
447         f.write_str("\"")?;
448         for &c in self.as_bytes() {
449             match c {
450                 // Printable characters.
451                 b'\"' => f.write_str("\\\"")?,
452                 0x20..=0x7e => f.write_char(c as char)?,
453                 _ => write!(f, "\\x{:02x}", c)?,
454             }
455         }
456         f.write_str("\"")
457     }
458 }
459 
460 impl AsRef<BStr> for CStr {
461     #[inline]
462     fn as_ref(&self) -> &BStr {
463         BStr::from_bytes(self.as_bytes())
464     }
465 }
466 
467 impl Deref for CStr {
468     type Target = BStr;
469 
470     #[inline]
471     fn deref(&self) -> &Self::Target {
472         self.as_ref()
473     }
474 }
475 
476 impl Index<ops::RangeFrom<usize>> for CStr {
477     type Output = CStr;
478 
479     #[inline]
480     fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output {
481         // Delegate bounds checking to slice.
482         // Assign to _ to mute clippy's unnecessary operation warning.
483         let _ = &self.as_bytes()[index.start..];
484         // SAFETY: We just checked the bounds.
485         unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) }
486     }
487 }
488 
489 impl Index<ops::RangeFull> for CStr {
490     type Output = CStr;
491 
492     #[inline]
493     fn index(&self, _index: ops::RangeFull) -> &Self::Output {
494         self
495     }
496 }
497 
498 mod private {
499     use core::ops;
500 
501     // Marker trait for index types that can be forward to `BStr`.
502     pub trait CStrIndex {}
503 
504     impl CStrIndex for usize {}
505     impl CStrIndex for ops::Range<usize> {}
506     impl CStrIndex for ops::RangeInclusive<usize> {}
507     impl CStrIndex for ops::RangeToInclusive<usize> {}
508 }
509 
510 impl<Idx> Index<Idx> for CStr
511 where
512     Idx: private::CStrIndex,
513     BStr: Index<Idx>,
514 {
515     type Output = <BStr as Index<Idx>>::Output;
516 
517     #[inline]
518     fn index(&self, index: Idx) -> &Self::Output {
519         &self.as_ref()[index]
520     }
521 }
522 
523 /// Creates a new [`CStr`] from a string literal.
524 ///
525 /// The string literal should not contain any `NUL` bytes.
526 ///
527 /// # Examples
528 ///
529 /// ```
530 /// # use kernel::c_str;
531 /// # use kernel::str::CStr;
532 /// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
533 /// ```
534 #[macro_export]
535 macro_rules! c_str {
536     ($str:expr) => {{
537         const S: &str = concat!($str, "\0");
538         const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
539             Ok(v) => v,
540             Err(_) => panic!("string contains interior NUL"),
541         };
542         C
543     }};
544 }
545 
546 #[cfg(test)]
547 #[expect(clippy::items_after_test_module)]
548 mod tests {
549     use super::*;
550 
551     struct String(CString);
552 
553     impl String {
554         fn from_fmt(args: fmt::Arguments<'_>) -> Self {
555             String(CString::try_from_fmt(args).unwrap())
556         }
557     }
558 
559     impl Deref for String {
560         type Target = str;
561 
562         fn deref(&self) -> &str {
563             self.0.to_str().unwrap()
564         }
565     }
566 
567     macro_rules! format {
568         ($($f:tt)*) => ({
569             &*String::from_fmt(kernel::fmt!($($f)*))
570         })
571     }
572 
573     const ALL_ASCII_CHARS: &str =
574         "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\
575         \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \
576         !\"#$%&'()*+,-./0123456789:;<=>?@\
577         ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\
578         \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\
579         \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\
580         \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\
581         \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\
582         \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\
583         \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\
584         \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\
585         \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff";
586 
587     #[test]
588     fn test_cstr_to_str() {
589         let good_bytes = b"\xf0\x9f\xa6\x80\0";
590         let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
591         let checked_str = checked_cstr.to_str().unwrap();
592         assert_eq!(checked_str, "��");
593     }
594 
595     #[test]
596     #[should_panic]
597     fn test_cstr_to_str_panic() {
598         let bad_bytes = b"\xc3\x28\0";
599         let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap();
600         checked_cstr.to_str().unwrap();
601     }
602 
603     #[test]
604     fn test_cstr_as_str_unchecked() {
605         let good_bytes = b"\xf0\x9f\x90\xA7\0";
606         let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
607         // SAFETY: The contents come from a string literal which contains valid UTF-8.
608         let unchecked_str = unsafe { checked_cstr.as_str_unchecked() };
609         assert_eq!(unchecked_str, "��");
610     }
611 
612     #[test]
613     fn test_cstr_display() {
614         let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap();
615         assert_eq!(format!("{}", hello_world), "hello, world!");
616         let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap();
617         assert_eq!(format!("{}", non_printables), "\\x01\\x09\\x0a");
618         let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap();
619         assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu");
620         let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap();
621         assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80");
622     }
623 
624     #[test]
625     fn test_cstr_display_all_bytes() {
626         let mut bytes: [u8; 256] = [0; 256];
627         // fill `bytes` with [1..=255] + [0]
628         for i in u8::MIN..=u8::MAX {
629             bytes[i as usize] = i.wrapping_add(1);
630         }
631         let cstr = CStr::from_bytes_with_nul(&bytes).unwrap();
632         assert_eq!(format!("{}", cstr), ALL_ASCII_CHARS);
633     }
634 
635     #[test]
636     fn test_cstr_debug() {
637         let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0").unwrap();
638         assert_eq!(format!("{:?}", hello_world), "\"hello, world!\"");
639         let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0").unwrap();
640         assert_eq!(format!("{:?}", non_printables), "\"\\x01\\x09\\x0a\"");
641         let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0").unwrap();
642         assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\"");
643         let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0").unwrap();
644         assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\"");
645     }
646 
647     #[test]
648     fn test_bstr_display() {
649         let hello_world = BStr::from_bytes(b"hello, world!");
650         assert_eq!(format!("{}", hello_world), "hello, world!");
651         let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
652         assert_eq!(format!("{}", escapes), "_\\t_\\n_\\r_\\_'_\"_");
653         let others = BStr::from_bytes(b"\x01");
654         assert_eq!(format!("{}", others), "\\x01");
655         let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
656         assert_eq!(format!("{}", non_ascii), "d\\xe9j\\xe0 vu");
657         let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
658         assert_eq!(format!("{}", good_bytes), "\\xf0\\x9f\\xa6\\x80");
659     }
660 
661     #[test]
662     fn test_bstr_debug() {
663         let hello_world = BStr::from_bytes(b"hello, world!");
664         assert_eq!(format!("{:?}", hello_world), "\"hello, world!\"");
665         let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
666         assert_eq!(format!("{:?}", escapes), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\"");
667         let others = BStr::from_bytes(b"\x01");
668         assert_eq!(format!("{:?}", others), "\"\\x01\"");
669         let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
670         assert_eq!(format!("{:?}", non_ascii), "\"d\\xe9j\\xe0 vu\"");
671         let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
672         assert_eq!(format!("{:?}", good_bytes), "\"\\xf0\\x9f\\xa6\\x80\"");
673     }
674 }
675 
676 /// Allows formatting of [`fmt::Arguments`] into a raw buffer.
677 ///
678 /// It does not fail if callers write past the end of the buffer so that they can calculate the
679 /// size required to fit everything.
680 ///
681 /// # Invariants
682 ///
683 /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
684 /// is less than `end`.
685 pub(crate) struct RawFormatter {
686     // Use `usize` to use `saturating_*` functions.
687     beg: usize,
688     pos: usize,
689     end: usize,
690 }
691 
692 impl RawFormatter {
693     /// Creates a new instance of [`RawFormatter`] with an empty buffer.
694     fn new() -> Self {
695         // INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
696         Self {
697             beg: 0,
698             pos: 0,
699             end: 0,
700         }
701     }
702 
703     /// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
704     ///
705     /// # Safety
706     ///
707     /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
708     /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
709     pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
710         // INVARIANT: The safety requirements guarantee the type invariants.
711         Self {
712             beg: pos as _,
713             pos: pos as _,
714             end: end as _,
715         }
716     }
717 
718     /// Creates a new instance of [`RawFormatter`] with the given buffer.
719     ///
720     /// # Safety
721     ///
722     /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
723     /// for the lifetime of the returned [`RawFormatter`].
724     pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
725         let pos = buf as usize;
726         // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements
727         // guarantees that the memory region is valid for writes.
728         Self {
729             pos,
730             beg: pos,
731             end: pos.saturating_add(len),
732         }
733     }
734 
735     /// Returns the current insert position.
736     ///
737     /// N.B. It may point to invalid memory.
738     pub(crate) fn pos(&self) -> *mut u8 {
739         self.pos as _
740     }
741 
742     /// Returns the number of bytes written to the formatter.
743     pub(crate) fn bytes_written(&self) -> usize {
744         self.pos - self.beg
745     }
746 }
747 
748 impl fmt::Write for RawFormatter {
749     fn write_str(&mut self, s: &str) -> fmt::Result {
750         // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
751         // don't want it to wrap around to 0.
752         let pos_new = self.pos.saturating_add(s.len());
753 
754         // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
755         let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
756 
757         if len_to_copy > 0 {
758             // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
759             // yet, so it is valid for write per the type invariants.
760             unsafe {
761                 core::ptr::copy_nonoverlapping(
762                     s.as_bytes().as_ptr(),
763                     self.pos as *mut u8,
764                     len_to_copy,
765                 )
766             };
767         }
768 
769         self.pos = pos_new;
770         Ok(())
771     }
772 }
773 
774 /// Allows formatting of [`fmt::Arguments`] into a raw buffer.
775 ///
776 /// Fails if callers attempt to write more than will fit in the buffer.
777 pub(crate) struct Formatter(RawFormatter);
778 
779 impl Formatter {
780     /// Creates a new instance of [`Formatter`] with the given buffer.
781     ///
782     /// # Safety
783     ///
784     /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
785     /// for the lifetime of the returned [`Formatter`].
786     pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
787         // SAFETY: The safety requirements of this function satisfy those of the callee.
788         Self(unsafe { RawFormatter::from_buffer(buf, len) })
789     }
790 }
791 
792 impl Deref for Formatter {
793     type Target = RawFormatter;
794 
795     fn deref(&self) -> &Self::Target {
796         &self.0
797     }
798 }
799 
800 impl fmt::Write for Formatter {
801     fn write_str(&mut self, s: &str) -> fmt::Result {
802         self.0.write_str(s)?;
803 
804         // Fail the request if we go past the end of the buffer.
805         if self.0.pos > self.0.end {
806             Err(fmt::Error)
807         } else {
808             Ok(())
809         }
810     }
811 }
812 
813 /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
814 ///
815 /// Used for interoperability with kernel APIs that take C strings.
816 ///
817 /// # Invariants
818 ///
819 /// The string is always `NUL`-terminated and contains no other `NUL` bytes.
820 ///
821 /// # Examples
822 ///
823 /// ```
824 /// use kernel::{str::CString, fmt};
825 ///
826 /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20))?;
827 /// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes());
828 ///
829 /// let tmp = "testing";
830 /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123))?;
831 /// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes());
832 ///
833 /// // This fails because it has an embedded `NUL` byte.
834 /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
835 /// assert_eq!(s.is_ok(), false);
836 /// # Ok::<(), kernel::error::Error>(())
837 /// ```
838 pub struct CString {
839     buf: KVec<u8>,
840 }
841 
842 impl CString {
843     /// Creates an instance of [`CString`] from the given formatted arguments.
844     pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
845         // Calculate the size needed (formatted string plus `NUL` terminator).
846         let mut f = RawFormatter::new();
847         f.write_fmt(args)?;
848         f.write_str("\0")?;
849         let size = f.bytes_written();
850 
851         // Allocate a vector with the required number of bytes, and write to it.
852         let mut buf = KVec::with_capacity(size, GFP_KERNEL)?;
853         // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
854         let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
855         f.write_fmt(args)?;
856         f.write_str("\0")?;
857 
858         // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
859         // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
860         unsafe { buf.set_len(f.bytes_written()) };
861 
862         // Check that there are no `NUL` bytes before the end.
863         // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
864         // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
865         // so `f.bytes_written() - 1` doesn't underflow.
866         let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, f.bytes_written() - 1) };
867         if !ptr.is_null() {
868             return Err(EINVAL);
869         }
870 
871         // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
872         // exist in the buffer.
873         Ok(Self { buf })
874     }
875 }
876 
877 impl Deref for CString {
878     type Target = CStr;
879 
880     fn deref(&self) -> &Self::Target {
881         // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
882         // other `NUL` bytes exist.
883         unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
884     }
885 }
886 
887 impl DerefMut for CString {
888     fn deref_mut(&mut self) -> &mut Self::Target {
889         // SAFETY: A `CString` is always NUL-terminated and contains no other
890         // NUL bytes.
891         unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) }
892     }
893 }
894 
895 impl<'a> TryFrom<&'a CStr> for CString {
896     type Error = AllocError;
897 
898     fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
899         let mut buf = KVec::new();
900 
901         buf.extend_from_slice(cstr.as_bytes_with_nul(), GFP_KERNEL)?;
902 
903         // INVARIANT: The `CStr` and `CString` types have the same invariants for
904         // the string data, and we copied it over without changes.
905         Ok(CString { buf })
906     }
907 }
908 
909 impl fmt::Debug for CString {
910     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
911         fmt::Debug::fmt(&**self, f)
912     }
913 }
914 
915 /// A convenience alias for [`core::format_args`].
916 #[macro_export]
917 macro_rules! fmt {
918     ($($f:tt)*) => ( core::format_args!($($f)*) )
919 }
920