xref: /linux-6.15/rust/kernel/list.rs (revision deeecc9c)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 // Copyright (C) 2024 Google LLC.
4 
5 //! A linked list implementation.
6 
7 use crate::init::PinInit;
8 use crate::sync::ArcBorrow;
9 use crate::types::Opaque;
10 use core::iter::{DoubleEndedIterator, FusedIterator};
11 use core::marker::PhantomData;
12 use core::ptr;
13 
14 mod impl_list_item_mod;
15 pub use self::impl_list_item_mod::{impl_has_list_links, impl_list_item, HasListLinks};
16 
17 mod arc;
18 pub use self::arc::{impl_list_arc_safe, AtomicTracker, ListArc, ListArcSafe, TryNewListArc};
19 
20 /// A linked list.
21 ///
22 /// All elements in this linked list will be [`ListArc`] references to the value. Since a value can
23 /// only have one `ListArc` (for each pair of prev/next pointers), this ensures that the same
24 /// prev/next pointers are not used for several linked lists.
25 ///
26 /// # Invariants
27 ///
28 /// * If the list is empty, then `first` is null. Otherwise, `first` points at the `ListLinks`
29 ///   field of the first element in the list.
30 /// * All prev/next pointers in `ListLinks` fields of items in the list are valid and form a cycle.
31 /// * For every item in the list, the list owns the associated [`ListArc`] reference and has
32 ///   exclusive access to the `ListLinks` field.
33 pub struct List<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
34     first: *mut ListLinksFields,
35     _ty: PhantomData<ListArc<T, ID>>,
36 }
37 
38 // SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
39 // type of access to the `ListArc<T, ID>` elements.
40 unsafe impl<T, const ID: u64> Send for List<T, ID>
41 where
42     ListArc<T, ID>: Send,
43     T: ?Sized + ListItem<ID>,
44 {
45 }
46 // SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
47 // type of access to the `ListArc<T, ID>` elements.
48 unsafe impl<T, const ID: u64> Sync for List<T, ID>
49 where
50     ListArc<T, ID>: Sync,
51     T: ?Sized + ListItem<ID>,
52 {
53 }
54 
55 /// Implemented by types where a [`ListArc<Self>`] can be inserted into a [`List`].
56 ///
57 /// # Safety
58 ///
59 /// Implementers must ensure that they provide the guarantees documented on methods provided by
60 /// this trait.
61 ///
62 /// [`ListArc<Self>`]: ListArc
63 pub unsafe trait ListItem<const ID: u64 = 0>: ListArcSafe<ID> {
64     /// Views the [`ListLinks`] for this value.
65     ///
66     /// # Guarantees
67     ///
68     /// If there is a previous call to `prepare_to_insert` and there is no call to `post_remove`
69     /// since the most recent such call, then this returns the same pointer as the one returned by
70     /// the most recent call to `prepare_to_insert`.
71     ///
72     /// Otherwise, the returned pointer points at a read-only [`ListLinks`] with two null pointers.
73     ///
74     /// # Safety
75     ///
76     /// The provided pointer must point at a valid value. (It need not be in an `Arc`.)
77     unsafe fn view_links(me: *const Self) -> *mut ListLinks<ID>;
78 
79     /// View the full value given its [`ListLinks`] field.
80     ///
81     /// Can only be used when the value is in a list.
82     ///
83     /// # Guarantees
84     ///
85     /// * Returns the same pointer as the one passed to the most recent call to `prepare_to_insert`.
86     /// * The returned pointer is valid until the next call to `post_remove`.
87     ///
88     /// # Safety
89     ///
90     /// * The provided pointer must originate from the most recent call to `prepare_to_insert`, or
91     ///   from a call to `view_links` that happened after the most recent call to
92     ///   `prepare_to_insert`.
93     /// * Since the most recent call to `prepare_to_insert`, the `post_remove` method must not have
94     ///   been called.
95     unsafe fn view_value(me: *mut ListLinks<ID>) -> *const Self;
96 
97     /// This is called when an item is inserted into a [`List`].
98     ///
99     /// # Guarantees
100     ///
101     /// The caller is granted exclusive access to the returned [`ListLinks`] until `post_remove` is
102     /// called.
103     ///
104     /// # Safety
105     ///
106     /// * The provided pointer must point at a valid value in an [`Arc`].
107     /// * Calls to `prepare_to_insert` and `post_remove` on the same value must alternate.
108     /// * The caller must own the [`ListArc`] for this value.
109     /// * The caller must not give up ownership of the [`ListArc`] unless `post_remove` has been
110     ///   called after this call to `prepare_to_insert`.
111     ///
112     /// [`Arc`]: crate::sync::Arc
113     unsafe fn prepare_to_insert(me: *const Self) -> *mut ListLinks<ID>;
114 
115     /// This undoes a previous call to `prepare_to_insert`.
116     ///
117     /// # Guarantees
118     ///
119     /// The returned pointer is the pointer that was originally passed to `prepare_to_insert`.
120     ///
121     /// # Safety
122     ///
123     /// The provided pointer must be the pointer returned by the most recent call to
124     /// `prepare_to_insert`.
125     unsafe fn post_remove(me: *mut ListLinks<ID>) -> *const Self;
126 }
127 
128 #[repr(C)]
129 #[derive(Copy, Clone)]
130 struct ListLinksFields {
131     next: *mut ListLinksFields,
132     prev: *mut ListLinksFields,
133 }
134 
135 /// The prev/next pointers for an item in a linked list.
136 ///
137 /// # Invariants
138 ///
139 /// The fields are null if and only if this item is not in a list.
140 #[repr(transparent)]
141 pub struct ListLinks<const ID: u64 = 0> {
142     // This type is `!Unpin` for aliasing reasons as the pointers are part of an intrusive linked
143     // list.
144     inner: Opaque<ListLinksFields>,
145 }
146 
147 // SAFETY: The only way to access/modify the pointers inside of `ListLinks<ID>` is via holding the
148 // associated `ListArc<T, ID>`. Since that type correctly implements `Send`, it is impossible to
149 // move this an instance of this type to a different thread if the pointees are `!Send`.
150 unsafe impl<const ID: u64> Send for ListLinks<ID> {}
151 // SAFETY: The type is opaque so immutable references to a ListLinks are useless. Therefore, it's
152 // okay to have immutable access to a ListLinks from several threads at once.
153 unsafe impl<const ID: u64> Sync for ListLinks<ID> {}
154 
155 impl<const ID: u64> ListLinks<ID> {
156     /// Creates a new initializer for this type.
157     pub fn new() -> impl PinInit<Self> {
158         // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
159         // not be constructed in an `Arc` that already has a `ListArc`.
160         ListLinks {
161             inner: Opaque::new(ListLinksFields {
162                 prev: ptr::null_mut(),
163                 next: ptr::null_mut(),
164             }),
165         }
166     }
167 
168     /// # Safety
169     ///
170     /// `me` must be dereferenceable.
171     #[inline]
172     unsafe fn fields(me: *mut Self) -> *mut ListLinksFields {
173         // SAFETY: The caller promises that the pointer is valid.
174         unsafe { Opaque::raw_get(ptr::addr_of!((*me).inner)) }
175     }
176 
177     /// # Safety
178     ///
179     /// `me` must be dereferenceable.
180     #[inline]
181     unsafe fn from_fields(me: *mut ListLinksFields) -> *mut Self {
182         me.cast()
183     }
184 }
185 
186 impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> {
187     /// Creates a new empty list.
188     pub const fn new() -> Self {
189         Self {
190             first: ptr::null_mut(),
191             _ty: PhantomData,
192         }
193     }
194 
195     /// Returns whether this list is empty.
196     pub fn is_empty(&self) -> bool {
197         self.first.is_null()
198     }
199 
200     /// Add the provided item to the back of the list.
201     pub fn push_back(&mut self, item: ListArc<T, ID>) {
202         let raw_item = ListArc::into_raw(item);
203         // SAFETY:
204         // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
205         // * Since we have ownership of the `ListArc`, `post_remove` must have been called after
206         //   the most recent call to `prepare_to_insert`, if any.
207         // * We own the `ListArc`.
208         // * Removing items from this list is always done using `remove_internal_inner`, which
209         //   calls `post_remove` before giving up ownership.
210         let list_links = unsafe { T::prepare_to_insert(raw_item) };
211         // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
212         let item = unsafe { ListLinks::fields(list_links) };
213 
214         if self.first.is_null() {
215             self.first = item;
216             // SAFETY: The caller just gave us ownership of these fields.
217             // INVARIANT: A linked list with one item should be cyclic.
218             unsafe {
219                 (*item).next = item;
220                 (*item).prev = item;
221             }
222         } else {
223             let next = self.first;
224             // SAFETY: By the type invariant, this pointer is valid or null. We just checked that
225             // it's not null, so it must be valid.
226             let prev = unsafe { (*next).prev };
227             // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
228             // ownership of the fields on `item`.
229             // INVARIANT: This correctly inserts `item` between `prev` and `next`.
230             unsafe {
231                 (*item).next = next;
232                 (*item).prev = prev;
233                 (*prev).next = item;
234                 (*next).prev = item;
235             }
236         }
237     }
238 
239     /// Add the provided item to the front of the list.
240     pub fn push_front(&mut self, item: ListArc<T, ID>) {
241         let raw_item = ListArc::into_raw(item);
242         // SAFETY:
243         // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
244         // * If this requirement is violated, then the previous caller of `prepare_to_insert`
245         //   violated the safety requirement that they can't give up ownership of the `ListArc`
246         //   until they call `post_remove`.
247         // * We own the `ListArc`.
248         // * Removing items] from this list is always done using `remove_internal_inner`, which
249         //   calls `post_remove` before giving up ownership.
250         let list_links = unsafe { T::prepare_to_insert(raw_item) };
251         // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
252         let item = unsafe { ListLinks::fields(list_links) };
253 
254         if self.first.is_null() {
255             // SAFETY: The caller just gave us ownership of these fields.
256             // INVARIANT: A linked list with one item should be cyclic.
257             unsafe {
258                 (*item).next = item;
259                 (*item).prev = item;
260             }
261         } else {
262             let next = self.first;
263             // SAFETY: We just checked that `next` is non-null.
264             let prev = unsafe { (*next).prev };
265             // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
266             // ownership of the fields on `item`.
267             // INVARIANT: This correctly inserts `item` between `prev` and `next`.
268             unsafe {
269                 (*item).next = next;
270                 (*item).prev = prev;
271                 (*prev).next = item;
272                 (*next).prev = item;
273             }
274         }
275         self.first = item;
276     }
277 
278     /// Removes the last item from this list.
279     pub fn pop_back(&mut self) -> Option<ListArc<T, ID>> {
280         if self.first.is_null() {
281             return None;
282         }
283 
284         // SAFETY: We just checked that the list is not empty.
285         let last = unsafe { (*self.first).prev };
286         // SAFETY: The last item of this list is in this list.
287         Some(unsafe { self.remove_internal(last) })
288     }
289 
290     /// Removes the first item from this list.
291     pub fn pop_front(&mut self) -> Option<ListArc<T, ID>> {
292         if self.first.is_null() {
293             return None;
294         }
295 
296         // SAFETY: The first item of this list is in this list.
297         Some(unsafe { self.remove_internal(self.first) })
298     }
299 
300     /// Removes the provided item from this list and returns it.
301     ///
302     /// This returns `None` if the item is not in the list. (Note that by the safety requirements,
303     /// this means that the item is not in any list.)
304     ///
305     /// # Safety
306     ///
307     /// `item` must not be in a different linked list (with the same id).
308     pub unsafe fn remove(&mut self, item: &T) -> Option<ListArc<T, ID>> {
309         let mut item = unsafe { ListLinks::fields(T::view_links(item)) };
310         // SAFETY: The user provided a reference, and reference are never dangling.
311         //
312         // As for why this is not a data race, there are two cases:
313         //
314         //  * If `item` is not in any list, then these fields are read-only and null.
315         //  * If `item` is in this list, then we have exclusive access to these fields since we
316         //    have a mutable reference to the list.
317         //
318         // In either case, there's no race.
319         let ListLinksFields { next, prev } = unsafe { *item };
320 
321         debug_assert_eq!(next.is_null(), prev.is_null());
322         if !next.is_null() {
323             // This is really a no-op, but this ensures that `item` is a raw pointer that was
324             // obtained without going through a pointer->reference->pointer conversion roundtrip.
325             // This ensures that the list is valid under the more restrictive strict provenance
326             // ruleset.
327             //
328             // SAFETY: We just checked that `next` is not null, and it's not dangling by the
329             // list invariants.
330             unsafe {
331                 debug_assert_eq!(item, (*next).prev);
332                 item = (*next).prev;
333             }
334 
335             // SAFETY: We just checked that `item` is in a list, so the caller guarantees that it
336             // is in this list. The pointers are in the right order.
337             Some(unsafe { self.remove_internal_inner(item, next, prev) })
338         } else {
339             None
340         }
341     }
342 
343     /// Removes the provided item from the list.
344     ///
345     /// # Safety
346     ///
347     /// `item` must point at an item in this list.
348     unsafe fn remove_internal(&mut self, item: *mut ListLinksFields) -> ListArc<T, ID> {
349         // SAFETY: The caller promises that this pointer is not dangling, and there's no data race
350         // since we have a mutable reference to the list containing `item`.
351         let ListLinksFields { next, prev } = unsafe { *item };
352         // SAFETY: The pointers are ok and in the right order.
353         unsafe { self.remove_internal_inner(item, next, prev) }
354     }
355 
356     /// Removes the provided item from the list.
357     ///
358     /// # Safety
359     ///
360     /// The `item` pointer must point at an item in this list, and we must have `(*item).next ==
361     /// next` and `(*item).prev == prev`.
362     unsafe fn remove_internal_inner(
363         &mut self,
364         item: *mut ListLinksFields,
365         next: *mut ListLinksFields,
366         prev: *mut ListLinksFields,
367     ) -> ListArc<T, ID> {
368         // SAFETY: We have exclusive access to the pointers of items in the list, and the prev/next
369         // pointers are always valid for items in a list.
370         //
371         // INVARIANT: There are three cases:
372         //  * If the list has at least three items, then after removing the item, `prev` and `next`
373         //    will be next to each other.
374         //  * If the list has two items, then the remaining item will point at itself.
375         //  * If the list has one item, then `next == prev == item`, so these writes have no
376         //    effect. The list remains unchanged and `item` is still in the list for now.
377         unsafe {
378             (*next).prev = prev;
379             (*prev).next = next;
380         }
381         // SAFETY: We have exclusive access to items in the list.
382         // INVARIANT: `item` is being removed, so the pointers should be null.
383         unsafe {
384             (*item).prev = ptr::null_mut();
385             (*item).next = ptr::null_mut();
386         }
387         // INVARIANT: There are three cases:
388         //  * If `item` was not the first item, then `self.first` should remain unchanged.
389         //  * If `item` was the first item and there is another item, then we just updated
390         //    `prev->next` to `next`, which is the new first item, and setting `item->next` to null
391         //    did not modify `prev->next`.
392         //  * If `item` was the only item in the list, then `prev == item`, and we just set
393         //    `item->next` to null, so this correctly sets `first` to null now that the list is
394         //    empty.
395         if self.first == item {
396             // SAFETY: The `prev` pointer is the value that `item->prev` had when it was in this
397             // list, so it must be valid. There is no race since `prev` is still in the list and we
398             // still have exclusive access to the list.
399             self.first = unsafe { (*prev).next };
400         }
401 
402         // SAFETY: `item` used to be in the list, so it is dereferenceable by the type invariants
403         // of `List`.
404         let list_links = unsafe { ListLinks::from_fields(item) };
405         // SAFETY: Any pointer in the list originates from a `prepare_to_insert` call.
406         let raw_item = unsafe { T::post_remove(list_links) };
407         // SAFETY: The above call to `post_remove` guarantees that we can recreate the `ListArc`.
408         unsafe { ListArc::from_raw(raw_item) }
409     }
410 
411     /// Moves all items from `other` into `self`.
412     ///
413     /// The items of `other` are added to the back of `self`, so the last item of `other` becomes
414     /// the last item of `self`.
415     pub fn push_all_back(&mut self, other: &mut List<T, ID>) {
416         // First, we insert the elements into `self`. At the end, we make `other` empty.
417         if self.is_empty() {
418             // INVARIANT: All of the elements in `other` become elements of `self`.
419             self.first = other.first;
420         } else if !other.is_empty() {
421             let other_first = other.first;
422             // SAFETY: The other list is not empty, so this pointer is valid.
423             let other_last = unsafe { (*other_first).prev };
424             let self_first = self.first;
425             // SAFETY: The self list is not empty, so this pointer is valid.
426             let self_last = unsafe { (*self_first).prev };
427 
428             // SAFETY: We have exclusive access to both lists, so we can update the pointers.
429             // INVARIANT: This correctly sets the pointers to merge both lists. We do not need to
430             // update `self.first` because the first element of `self` does not change.
431             unsafe {
432                 (*self_first).prev = other_last;
433                 (*other_last).next = self_first;
434                 (*self_last).next = other_first;
435                 (*other_first).prev = self_last;
436             }
437         }
438 
439         // INVARIANT: The other list is now empty, so update its pointer.
440         other.first = ptr::null_mut();
441     }
442 
443     /// Creates an iterator over the list.
444     pub fn iter(&self) -> Iter<'_, T, ID> {
445         // INVARIANT: If the list is empty, both pointers are null. Otherwise, both pointers point
446         // at the first element of the same list.
447         Iter {
448             current: self.first,
449             stop: self.first,
450             _ty: PhantomData,
451         }
452     }
453 }
454 
455 impl<T: ?Sized + ListItem<ID>, const ID: u64> Default for List<T, ID> {
456     fn default() -> Self {
457         List::new()
458     }
459 }
460 
461 impl<T: ?Sized + ListItem<ID>, const ID: u64> Drop for List<T, ID> {
462     fn drop(&mut self) {
463         while let Some(item) = self.pop_front() {
464             drop(item);
465         }
466     }
467 }
468 
469 /// An iterator over a [`List`].
470 ///
471 /// # Invariants
472 ///
473 /// * There must be a [`List`] that is immutably borrowed for the duration of `'a`.
474 /// * The `current` pointer is null or points at a value in that [`List`].
475 /// * The `stop` pointer is equal to the `first` field of that [`List`].
476 #[derive(Clone)]
477 pub struct Iter<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
478     current: *mut ListLinksFields,
479     stop: *mut ListLinksFields,
480     _ty: PhantomData<&'a ListArc<T, ID>>,
481 }
482 
483 impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Iterator for Iter<'a, T, ID> {
484     type Item = ArcBorrow<'a, T>;
485 
486     fn next(&mut self) -> Option<ArcBorrow<'a, T>> {
487         if self.current.is_null() {
488             return None;
489         }
490 
491         let current = self.current;
492 
493         // SAFETY: We just checked that `current` is not null, so it is in a list, and hence not
494         // dangling. There's no race because the iterator holds an immutable borrow to the list.
495         let next = unsafe { (*current).next };
496         // INVARIANT: If `current` was the last element of the list, then this updates it to null.
497         // Otherwise, we update it to the next element.
498         self.current = if next != self.stop {
499             next
500         } else {
501             ptr::null_mut()
502         };
503 
504         // SAFETY: The `current` pointer points at a value in the list.
505         let item = unsafe { T::view_value(ListLinks::from_fields(current)) };
506         // SAFETY:
507         // * All values in a list are stored in an `Arc`.
508         // * The value cannot be removed from the list for the duration of the lifetime annotated
509         //   on the returned `ArcBorrow`, because removing it from the list would require mutable
510         //   access to the list. However, the `ArcBorrow` is annotated with the iterator's
511         //   lifetime, and the list is immutably borrowed for that lifetime.
512         // * Values in a list never have a `UniqueArc` reference.
513         Some(unsafe { ArcBorrow::from_raw(item) })
514     }
515 }
516 
517 impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for Iter<'a, T, ID> {}
518 
519 impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for &'a List<T, ID> {
520     type IntoIter = Iter<'a, T, ID>;
521     type Item = ArcBorrow<'a, T>;
522 
523     fn into_iter(self) -> Iter<'a, T, ID> {
524         self.iter()
525     }
526 }
527 
528 /// An owning iterator into a [`List`].
529 pub struct IntoIter<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
530     list: List<T, ID>,
531 }
532 
533 impl<T: ?Sized + ListItem<ID>, const ID: u64> Iterator for IntoIter<T, ID> {
534     type Item = ListArc<T, ID>;
535 
536     fn next(&mut self) -> Option<ListArc<T, ID>> {
537         self.list.pop_front()
538     }
539 }
540 
541 impl<T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for IntoIter<T, ID> {}
542 
543 impl<T: ?Sized + ListItem<ID>, const ID: u64> DoubleEndedIterator for IntoIter<T, ID> {
544     fn next_back(&mut self) -> Option<ListArc<T, ID>> {
545         self.list.pop_back()
546     }
547 }
548 
549 impl<T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for List<T, ID> {
550     type IntoIter = IntoIter<T, ID>;
551     type Item = ListArc<T, ID>;
552 
553     fn into_iter(self) -> IntoIter<T, ID> {
554         IntoIter { list: self }
555     }
556 }
557