1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 //! API to safely and fallibly initialize pinned `struct`s using in-place constructors. 4 //! 5 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack 6 //! overflow. 7 //! 8 //! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential 9 //! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move. 10 //! 11 //! # Overview 12 //! 13 //! To initialize a `struct` with an in-place constructor you will need two things: 14 //! - an in-place constructor, 15 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`], 16 //! [`UniqueArc<T>`], [`Box<T>`] or any other smart pointer that implements [`InPlaceInit`]). 17 //! 18 //! To get an in-place constructor there are generally three options: 19 //! - directly creating an in-place constructor using the [`pin_init!`] macro, 20 //! - a custom function/macro returning an in-place constructor provided by someone else, 21 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer. 22 //! 23 //! Aside from pinned initialization, this API also supports in-place construction without pinning, 24 //! the macros/types/functions are generally named like the pinned variants without the `pin` 25 //! prefix. 26 //! 27 //! # Examples 28 //! 29 //! ## Using the [`pin_init!`] macro 30 //! 31 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with 32 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for 33 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via 34 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is 35 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place. 36 //! 37 //! ```rust 38 //! # #![allow(clippy::disallowed_names)] 39 //! use kernel::sync::{new_mutex, Mutex}; 40 //! # use core::pin::Pin; 41 //! #[pin_data] 42 //! struct Foo { 43 //! #[pin] 44 //! a: Mutex<usize>, 45 //! b: u32, 46 //! } 47 //! 48 //! let foo = pin_init!(Foo { 49 //! a <- new_mutex!(42, "Foo::a"), 50 //! b: 24, 51 //! }); 52 //! ``` 53 //! 54 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like 55 //! (or just the stack) to actually initialize a `Foo`: 56 //! 57 //! ```rust 58 //! # #![allow(clippy::disallowed_names)] 59 //! # use kernel::sync::{new_mutex, Mutex}; 60 //! # use core::pin::Pin; 61 //! # #[pin_data] 62 //! # struct Foo { 63 //! # #[pin] 64 //! # a: Mutex<usize>, 65 //! # b: u32, 66 //! # } 67 //! # let foo = pin_init!(Foo { 68 //! # a <- new_mutex!(42, "Foo::a"), 69 //! # b: 24, 70 //! # }); 71 //! let foo: Result<Pin<Box<Foo>>> = Box::pin_init(foo, GFP_KERNEL); 72 //! ``` 73 //! 74 //! For more information see the [`pin_init!`] macro. 75 //! 76 //! ## Using a custom function/macro that returns an initializer 77 //! 78 //! Many types from the kernel supply a function/macro that returns an initializer, because the 79 //! above method only works for types where you can access the fields. 80 //! 81 //! ```rust 82 //! # use kernel::sync::{new_mutex, Arc, Mutex}; 83 //! let mtx: Result<Arc<Mutex<usize>>> = 84 //! Arc::pin_init(new_mutex!(42, "example::mtx"), GFP_KERNEL); 85 //! ``` 86 //! 87 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]: 88 //! 89 //! ```rust 90 //! # use kernel::{sync::Mutex, new_mutex, init::PinInit, try_pin_init}; 91 //! #[pin_data] 92 //! struct DriverData { 93 //! #[pin] 94 //! status: Mutex<i32>, 95 //! buffer: Box<[u8; 1_000_000]>, 96 //! } 97 //! 98 //! impl DriverData { 99 //! fn new() -> impl PinInit<Self, Error> { 100 //! try_pin_init!(Self { 101 //! status <- new_mutex!(0, "DriverData::status"), 102 //! buffer: Box::init(kernel::init::zeroed(), GFP_KERNEL)?, 103 //! }) 104 //! } 105 //! } 106 //! ``` 107 //! 108 //! ## Manual creation of an initializer 109 //! 110 //! Often when working with primitives the previous approaches are not sufficient. That is where 111 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a 112 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure 113 //! actually does the initialization in the correct way. Here are the things to look out for 114 //! (we are calling the parameter to the closure `slot`): 115 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so 116 //! `slot` now contains a valid bit pattern for the type `T`, 117 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so 118 //! you need to take care to clean up anything if your initialization fails mid-way, 119 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of 120 //! `slot` gets called. 121 //! 122 //! ```rust 123 //! # #![allow(unreachable_pub, clippy::disallowed_names)] 124 //! use kernel::{init, types::Opaque}; 125 //! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin}; 126 //! # mod bindings { 127 //! # #![allow(non_camel_case_types)] 128 //! # pub struct foo; 129 //! # pub unsafe fn init_foo(_ptr: *mut foo) {} 130 //! # pub unsafe fn destroy_foo(_ptr: *mut foo) {} 131 //! # pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 } 132 //! # } 133 //! # // `Error::from_errno` is `pub(crate)` in the `kernel` crate, thus provide a workaround. 134 //! # trait FromErrno { 135 //! # fn from_errno(errno: core::ffi::c_int) -> Error { 136 //! # // Dummy error that can be constructed outside the `kernel` crate. 137 //! # Error::from(core::fmt::Error) 138 //! # } 139 //! # } 140 //! # impl FromErrno for Error {} 141 //! /// # Invariants 142 //! /// 143 //! /// `foo` is always initialized 144 //! #[pin_data(PinnedDrop)] 145 //! pub struct RawFoo { 146 //! #[pin] 147 //! foo: Opaque<bindings::foo>, 148 //! #[pin] 149 //! _p: PhantomPinned, 150 //! } 151 //! 152 //! impl RawFoo { 153 //! pub fn new(flags: u32) -> impl PinInit<Self, Error> { 154 //! // SAFETY: 155 //! // - when the closure returns `Ok(())`, then it has successfully initialized and 156 //! // enabled `foo`, 157 //! // - when it returns `Err(e)`, then it has cleaned up before 158 //! unsafe { 159 //! init::pin_init_from_closure(move |slot: *mut Self| { 160 //! // `slot` contains uninit memory, avoid creating a reference. 161 //! let foo = addr_of_mut!((*slot).foo); 162 //! 163 //! // Initialize the `foo` 164 //! bindings::init_foo(Opaque::raw_get(foo)); 165 //! 166 //! // Try to enable it. 167 //! let err = bindings::enable_foo(Opaque::raw_get(foo), flags); 168 //! if err != 0 { 169 //! // Enabling has failed, first clean up the foo and then return the error. 170 //! bindings::destroy_foo(Opaque::raw_get(foo)); 171 //! return Err(Error::from_errno(err)); 172 //! } 173 //! 174 //! // All fields of `RawFoo` have been initialized, since `_p` is a ZST. 175 //! Ok(()) 176 //! }) 177 //! } 178 //! } 179 //! } 180 //! 181 //! #[pinned_drop] 182 //! impl PinnedDrop for RawFoo { 183 //! fn drop(self: Pin<&mut Self>) { 184 //! // SAFETY: Since `foo` is initialized, destroying is safe. 185 //! unsafe { bindings::destroy_foo(self.foo.get()) }; 186 //! } 187 //! } 188 //! ``` 189 //! 190 //! For the special case where initializing a field is a single FFI-function call that cannot fail, 191 //! there exist the helper function [`Opaque::ffi_init`]. This function initialize a single 192 //! [`Opaque`] field by just delegating to the supplied closure. You can use these in combination 193 //! with [`pin_init!`]. 194 //! 195 //! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside 196 //! the `kernel` crate. The [`sync`] module is a good starting point. 197 //! 198 //! [`sync`]: kernel::sync 199 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html 200 //! [structurally pinned fields]: 201 //! https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field 202 //! [stack]: crate::stack_pin_init 203 //! [`Arc<T>`]: crate::sync::Arc 204 //! [`impl PinInit<Foo>`]: PinInit 205 //! [`impl PinInit<T, E>`]: PinInit 206 //! [`impl Init<T, E>`]: Init 207 //! [`Opaque`]: kernel::types::Opaque 208 //! [`Opaque::ffi_init`]: kernel::types::Opaque::ffi_init 209 //! [`pin_data`]: ::macros::pin_data 210 //! [`pin_init!`]: crate::pin_init! 211 212 use crate::{ 213 alloc::{box_ext::BoxExt, AllocError, Flags}, 214 error::{self, Error}, 215 sync::Arc, 216 sync::UniqueArc, 217 types::{Opaque, ScopeGuard}, 218 }; 219 use alloc::boxed::Box; 220 use core::{ 221 cell::UnsafeCell, 222 convert::Infallible, 223 marker::PhantomData, 224 mem::MaybeUninit, 225 num::*, 226 pin::Pin, 227 ptr::{self, NonNull}, 228 }; 229 230 #[doc(hidden)] 231 pub mod __internal; 232 #[doc(hidden)] 233 pub mod macros; 234 235 /// Initialize and pin a type directly on the stack. 236 /// 237 /// # Examples 238 /// 239 /// ```rust 240 /// # #![allow(clippy::disallowed_names)] 241 /// # use kernel::{init, macros::pin_data, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex}; 242 /// # use core::pin::Pin; 243 /// #[pin_data] 244 /// struct Foo { 245 /// #[pin] 246 /// a: Mutex<usize>, 247 /// b: Bar, 248 /// } 249 /// 250 /// #[pin_data] 251 /// struct Bar { 252 /// x: u32, 253 /// } 254 /// 255 /// stack_pin_init!(let foo = pin_init!(Foo { 256 /// a <- new_mutex!(42), 257 /// b: Bar { 258 /// x: 64, 259 /// }, 260 /// })); 261 /// let foo: Pin<&mut Foo> = foo; 262 /// pr_info!("a: {}", &*foo.a.lock()); 263 /// ``` 264 /// 265 /// # Syntax 266 /// 267 /// A normal `let` binding with optional type annotation. The expression is expected to implement 268 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error 269 /// type, then use [`stack_try_pin_init!`]. 270 /// 271 /// [`stack_try_pin_init!`]: crate::stack_try_pin_init! 272 #[macro_export] 273 macro_rules! stack_pin_init { 274 (let $var:ident $(: $t:ty)? = $val:expr) => { 275 let val = $val; 276 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 277 let mut $var = match $crate::init::__internal::StackInit::init($var, val) { 278 Ok(res) => res, 279 Err(x) => { 280 let x: ::core::convert::Infallible = x; 281 match x {} 282 } 283 }; 284 }; 285 } 286 287 /// Initialize and pin a type directly on the stack. 288 /// 289 /// # Examples 290 /// 291 /// ```rust,ignore 292 /// # #![allow(clippy::disallowed_names)] 293 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex}; 294 /// # use macros::pin_data; 295 /// # use core::{alloc::AllocError, pin::Pin}; 296 /// #[pin_data] 297 /// struct Foo { 298 /// #[pin] 299 /// a: Mutex<usize>, 300 /// b: Box<Bar>, 301 /// } 302 /// 303 /// struct Bar { 304 /// x: u32, 305 /// } 306 /// 307 /// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo { 308 /// a <- new_mutex!(42), 309 /// b: Box::new(Bar { 310 /// x: 64, 311 /// }, GFP_KERNEL)?, 312 /// })); 313 /// let foo = foo.unwrap(); 314 /// pr_info!("a: {}", &*foo.a.lock()); 315 /// ``` 316 /// 317 /// ```rust,ignore 318 /// # #![allow(clippy::disallowed_names)] 319 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex}; 320 /// # use macros::pin_data; 321 /// # use core::{alloc::AllocError, pin::Pin}; 322 /// #[pin_data] 323 /// struct Foo { 324 /// #[pin] 325 /// a: Mutex<usize>, 326 /// b: Box<Bar>, 327 /// } 328 /// 329 /// struct Bar { 330 /// x: u32, 331 /// } 332 /// 333 /// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo { 334 /// a <- new_mutex!(42), 335 /// b: Box::new(Bar { 336 /// x: 64, 337 /// }, GFP_KERNEL)?, 338 /// })); 339 /// pr_info!("a: {}", &*foo.a.lock()); 340 /// # Ok::<_, AllocError>(()) 341 /// ``` 342 /// 343 /// # Syntax 344 /// 345 /// A normal `let` binding with optional type annotation. The expression is expected to implement 346 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the 347 /// `=` will propagate this error. 348 #[macro_export] 349 macro_rules! stack_try_pin_init { 350 (let $var:ident $(: $t:ty)? = $val:expr) => { 351 let val = $val; 352 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 353 let mut $var = $crate::init::__internal::StackInit::init($var, val); 354 }; 355 (let $var:ident $(: $t:ty)? =? $val:expr) => { 356 let val = $val; 357 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 358 let mut $var = $crate::init::__internal::StackInit::init($var, val)?; 359 }; 360 } 361 362 /// Construct an in-place, pinned initializer for `struct`s. 363 /// 364 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use 365 /// [`try_pin_init!`]. 366 /// 367 /// The syntax is almost identical to that of a normal `struct` initializer: 368 /// 369 /// ```rust 370 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 371 /// # use core::pin::Pin; 372 /// #[pin_data] 373 /// struct Foo { 374 /// a: usize, 375 /// b: Bar, 376 /// } 377 /// 378 /// #[pin_data] 379 /// struct Bar { 380 /// x: u32, 381 /// } 382 /// 383 /// # fn demo() -> impl PinInit<Foo> { 384 /// let a = 42; 385 /// 386 /// let initializer = pin_init!(Foo { 387 /// a, 388 /// b: Bar { 389 /// x: 64, 390 /// }, 391 /// }); 392 /// # initializer } 393 /// # Box::pin_init(demo(), GFP_KERNEL).unwrap(); 394 /// ``` 395 /// 396 /// Arbitrary Rust expressions can be used to set the value of a variable. 397 /// 398 /// The fields are initialized in the order that they appear in the initializer. So it is possible 399 /// to read already initialized fields using raw pointers. 400 /// 401 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the 402 /// initializer. 403 /// 404 /// # Init-functions 405 /// 406 /// When working with this API it is often desired to let others construct your types without 407 /// giving access to all fields. This is where you would normally write a plain function `new` 408 /// that would return a new instance of your type. With this API that is also possible. 409 /// However, there are a few extra things to keep in mind. 410 /// 411 /// To create an initializer function, simply declare it like this: 412 /// 413 /// ```rust 414 /// # use kernel::{init, pin_init, init::*}; 415 /// # use core::pin::Pin; 416 /// # #[pin_data] 417 /// # struct Foo { 418 /// # a: usize, 419 /// # b: Bar, 420 /// # } 421 /// # #[pin_data] 422 /// # struct Bar { 423 /// # x: u32, 424 /// # } 425 /// impl Foo { 426 /// fn new() -> impl PinInit<Self> { 427 /// pin_init!(Self { 428 /// a: 42, 429 /// b: Bar { 430 /// x: 64, 431 /// }, 432 /// }) 433 /// } 434 /// } 435 /// ``` 436 /// 437 /// Users of `Foo` can now create it like this: 438 /// 439 /// ```rust 440 /// # #![allow(clippy::disallowed_names)] 441 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 442 /// # use core::pin::Pin; 443 /// # #[pin_data] 444 /// # struct Foo { 445 /// # a: usize, 446 /// # b: Bar, 447 /// # } 448 /// # #[pin_data] 449 /// # struct Bar { 450 /// # x: u32, 451 /// # } 452 /// # impl Foo { 453 /// # fn new() -> impl PinInit<Self> { 454 /// # pin_init!(Self { 455 /// # a: 42, 456 /// # b: Bar { 457 /// # x: 64, 458 /// # }, 459 /// # }) 460 /// # } 461 /// # } 462 /// let foo = Box::pin_init(Foo::new(), GFP_KERNEL); 463 /// ``` 464 /// 465 /// They can also easily embed it into their own `struct`s: 466 /// 467 /// ```rust 468 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 469 /// # use core::pin::Pin; 470 /// # #[pin_data] 471 /// # struct Foo { 472 /// # a: usize, 473 /// # b: Bar, 474 /// # } 475 /// # #[pin_data] 476 /// # struct Bar { 477 /// # x: u32, 478 /// # } 479 /// # impl Foo { 480 /// # fn new() -> impl PinInit<Self> { 481 /// # pin_init!(Self { 482 /// # a: 42, 483 /// # b: Bar { 484 /// # x: 64, 485 /// # }, 486 /// # }) 487 /// # } 488 /// # } 489 /// #[pin_data] 490 /// struct FooContainer { 491 /// #[pin] 492 /// foo1: Foo, 493 /// #[pin] 494 /// foo2: Foo, 495 /// other: u32, 496 /// } 497 /// 498 /// impl FooContainer { 499 /// fn new(other: u32) -> impl PinInit<Self> { 500 /// pin_init!(Self { 501 /// foo1 <- Foo::new(), 502 /// foo2 <- Foo::new(), 503 /// other, 504 /// }) 505 /// } 506 /// } 507 /// ``` 508 /// 509 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`. 510 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just 511 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`. 512 /// 513 /// # Syntax 514 /// 515 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with 516 /// the following modifications is expected: 517 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`. 518 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`] 519 /// pointer named `this` inside of the initializer. 520 /// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the 521 /// struct, this initializes every field with 0 and then runs all initializers specified in the 522 /// body. This can only be done if [`Zeroable`] is implemented for the struct. 523 /// 524 /// For instance: 525 /// 526 /// ```rust 527 /// # use kernel::{macros::{Zeroable, pin_data}, pin_init}; 528 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned}; 529 /// #[pin_data] 530 /// #[derive(Zeroable)] 531 /// struct Buf { 532 /// // `ptr` points into `buf`. 533 /// ptr: *mut u8, 534 /// buf: [u8; 64], 535 /// #[pin] 536 /// pin: PhantomPinned, 537 /// } 538 /// pin_init!(&this in Buf { 539 /// buf: [0; 64], 540 /// // SAFETY: TODO. 541 /// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() }, 542 /// pin: PhantomPinned, 543 /// }); 544 /// pin_init!(Buf { 545 /// buf: [1; 64], 546 /// ..Zeroable::zeroed() 547 /// }); 548 /// ``` 549 /// 550 /// [`try_pin_init!`]: kernel::try_pin_init 551 /// [`NonNull<Self>`]: core::ptr::NonNull 552 // For a detailed example of how this macro works, see the module documentation of the hidden 553 // module `__internal` inside of `init/__internal.rs`. 554 #[macro_export] 555 macro_rules! pin_init { 556 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 557 $($fields:tt)* 558 }) => { 559 $crate::__init_internal!( 560 @this($($this)?), 561 @typ($t $(::<$($generics),*>)?), 562 @fields($($fields)*), 563 @error(::core::convert::Infallible), 564 @data(PinData, use_data), 565 @has_data(HasPinData, __pin_data), 566 @construct_closure(pin_init_from_closure), 567 @munch_fields($($fields)*), 568 ) 569 }; 570 } 571 572 /// Construct an in-place, fallible pinned initializer for `struct`s. 573 /// 574 /// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`]. 575 /// 576 /// You can use the `?` operator or use `return Err(err)` inside the initializer to stop 577 /// initialization and return the error. 578 /// 579 /// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when 580 /// initialization fails, the memory can be safely deallocated without any further modifications. 581 /// 582 /// This macro defaults the error to [`Error`]. 583 /// 584 /// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type` 585 /// after the `struct` initializer to specify the error type you want to use. 586 /// 587 /// # Examples 588 /// 589 /// ```rust 590 /// # #![feature(new_uninit)] 591 /// use kernel::{init::{self, PinInit}, error::Error}; 592 /// #[pin_data] 593 /// struct BigBuf { 594 /// big: Box<[u8; 1024 * 1024 * 1024]>, 595 /// small: [u8; 1024 * 1024], 596 /// ptr: *mut u8, 597 /// } 598 /// 599 /// impl BigBuf { 600 /// fn new() -> impl PinInit<Self, Error> { 601 /// try_pin_init!(Self { 602 /// big: Box::init(init::zeroed(), GFP_KERNEL)?, 603 /// small: [0; 1024 * 1024], 604 /// ptr: core::ptr::null_mut(), 605 /// }? Error) 606 /// } 607 /// } 608 /// ``` 609 // For a detailed example of how this macro works, see the module documentation of the hidden 610 // module `__internal` inside of `init/__internal.rs`. 611 #[macro_export] 612 macro_rules! try_pin_init { 613 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 614 $($fields:tt)* 615 }) => { 616 $crate::__init_internal!( 617 @this($($this)?), 618 @typ($t $(::<$($generics),*>)? ), 619 @fields($($fields)*), 620 @error($crate::error::Error), 621 @data(PinData, use_data), 622 @has_data(HasPinData, __pin_data), 623 @construct_closure(pin_init_from_closure), 624 @munch_fields($($fields)*), 625 ) 626 }; 627 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 628 $($fields:tt)* 629 }? $err:ty) => { 630 $crate::__init_internal!( 631 @this($($this)?), 632 @typ($t $(::<$($generics),*>)? ), 633 @fields($($fields)*), 634 @error($err), 635 @data(PinData, use_data), 636 @has_data(HasPinData, __pin_data), 637 @construct_closure(pin_init_from_closure), 638 @munch_fields($($fields)*), 639 ) 640 }; 641 } 642 643 /// Construct an in-place initializer for `struct`s. 644 /// 645 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use 646 /// [`try_init!`]. 647 /// 648 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply: 649 /// - `unsafe` code must guarantee either full initialization or return an error and allow 650 /// deallocation of the memory. 651 /// - the fields are initialized in the order given in the initializer. 652 /// - no references to fields are allowed to be created inside of the initializer. 653 /// 654 /// This initializer is for initializing data in-place that might later be moved. If you want to 655 /// pin-initialize, use [`pin_init!`]. 656 /// 657 /// [`try_init!`]: crate::try_init! 658 // For a detailed example of how this macro works, see the module documentation of the hidden 659 // module `__internal` inside of `init/__internal.rs`. 660 #[macro_export] 661 macro_rules! init { 662 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 663 $($fields:tt)* 664 }) => { 665 $crate::__init_internal!( 666 @this($($this)?), 667 @typ($t $(::<$($generics),*>)?), 668 @fields($($fields)*), 669 @error(::core::convert::Infallible), 670 @data(InitData, /*no use_data*/), 671 @has_data(HasInitData, __init_data), 672 @construct_closure(init_from_closure), 673 @munch_fields($($fields)*), 674 ) 675 } 676 } 677 678 /// Construct an in-place fallible initializer for `struct`s. 679 /// 680 /// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use 681 /// [`init!`]. 682 /// 683 /// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error, 684 /// append `? $type` after the `struct` initializer. 685 /// The safety caveats from [`try_pin_init!`] also apply: 686 /// - `unsafe` code must guarantee either full initialization or return an error and allow 687 /// deallocation of the memory. 688 /// - the fields are initialized in the order given in the initializer. 689 /// - no references to fields are allowed to be created inside of the initializer. 690 /// 691 /// # Examples 692 /// 693 /// ```rust 694 /// use kernel::{init::{PinInit, zeroed}, error::Error}; 695 /// struct BigBuf { 696 /// big: Box<[u8; 1024 * 1024 * 1024]>, 697 /// small: [u8; 1024 * 1024], 698 /// } 699 /// 700 /// impl BigBuf { 701 /// fn new() -> impl Init<Self, Error> { 702 /// try_init!(Self { 703 /// big: Box::init(zeroed(), GFP_KERNEL)?, 704 /// small: [0; 1024 * 1024], 705 /// }? Error) 706 /// } 707 /// } 708 /// ``` 709 // For a detailed example of how this macro works, see the module documentation of the hidden 710 // module `__internal` inside of `init/__internal.rs`. 711 #[macro_export] 712 macro_rules! try_init { 713 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 714 $($fields:tt)* 715 }) => { 716 $crate::__init_internal!( 717 @this($($this)?), 718 @typ($t $(::<$($generics),*>)?), 719 @fields($($fields)*), 720 @error($crate::error::Error), 721 @data(InitData, /*no use_data*/), 722 @has_data(HasInitData, __init_data), 723 @construct_closure(init_from_closure), 724 @munch_fields($($fields)*), 725 ) 726 }; 727 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 728 $($fields:tt)* 729 }? $err:ty) => { 730 $crate::__init_internal!( 731 @this($($this)?), 732 @typ($t $(::<$($generics),*>)?), 733 @fields($($fields)*), 734 @error($err), 735 @data(InitData, /*no use_data*/), 736 @has_data(HasInitData, __init_data), 737 @construct_closure(init_from_closure), 738 @munch_fields($($fields)*), 739 ) 740 }; 741 } 742 743 /// Asserts that a field on a struct using `#[pin_data]` is marked with `#[pin]` ie. that it is 744 /// structurally pinned. 745 /// 746 /// # Example 747 /// 748 /// This will succeed: 749 /// ``` 750 /// use kernel::assert_pinned; 751 /// #[pin_data] 752 /// struct MyStruct { 753 /// #[pin] 754 /// some_field: u64, 755 /// } 756 /// 757 /// assert_pinned!(MyStruct, some_field, u64); 758 /// ``` 759 /// 760 /// This will fail: 761 // TODO: replace with `compile_fail` when supported. 762 /// ```ignore 763 /// use kernel::assert_pinned; 764 /// #[pin_data] 765 /// struct MyStruct { 766 /// some_field: u64, 767 /// } 768 /// 769 /// assert_pinned!(MyStruct, some_field, u64); 770 /// ``` 771 /// 772 /// Some uses of the macro may trigger the `can't use generic parameters from outer item` error. To 773 /// work around this, you may pass the `inline` parameter to the macro. The `inline` parameter can 774 /// only be used when the macro is invoked from a function body. 775 /// ``` 776 /// use kernel::assert_pinned; 777 /// #[pin_data] 778 /// struct Foo<T> { 779 /// #[pin] 780 /// elem: T, 781 /// } 782 /// 783 /// impl<T> Foo<T> { 784 /// fn project(self: Pin<&mut Self>) -> Pin<&mut T> { 785 /// assert_pinned!(Foo<T>, elem, T, inline); 786 /// 787 /// // SAFETY: The field is structurally pinned. 788 /// unsafe { self.map_unchecked_mut(|me| &mut me.elem) } 789 /// } 790 /// } 791 /// ``` 792 #[macro_export] 793 macro_rules! assert_pinned { 794 ($ty:ty, $field:ident, $field_ty:ty, inline) => { 795 let _ = move |ptr: *mut $field_ty| { 796 // SAFETY: This code is unreachable. 797 let data = unsafe { <$ty as $crate::init::__internal::HasPinData>::__pin_data() }; 798 let init = $crate::init::__internal::AlwaysFail::<$field_ty>::new(); 799 // SAFETY: This code is unreachable. 800 unsafe { data.$field(ptr, init) }.ok(); 801 }; 802 }; 803 804 ($ty:ty, $field:ident, $field_ty:ty) => { 805 const _: () = { 806 $crate::assert_pinned!($ty, $field, $field_ty, inline); 807 }; 808 }; 809 } 810 811 /// A pin-initializer for the type `T`. 812 /// 813 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 814 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the 815 /// [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this. 816 /// 817 /// Also see the [module description](self). 818 /// 819 /// # Safety 820 /// 821 /// When implementing this trait you will need to take great care. Also there are probably very few 822 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible. 823 /// 824 /// The [`PinInit::__pinned_init`] function: 825 /// - returns `Ok(())` if it initialized every field of `slot`, 826 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 827 /// - `slot` can be deallocated without UB occurring, 828 /// - `slot` does not need to be dropped, 829 /// - `slot` is not partially initialized. 830 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 831 /// 832 /// [`Arc<T>`]: crate::sync::Arc 833 /// [`Arc::pin_init`]: crate::sync::Arc::pin_init 834 #[must_use = "An initializer must be used in order to create its value."] 835 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized { 836 /// Initializes `slot`. 837 /// 838 /// # Safety 839 /// 840 /// - `slot` is a valid pointer to uninitialized memory. 841 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 842 /// deallocate. 843 /// - `slot` will not move until it is dropped, i.e. it will be pinned. 844 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>; 845 846 /// First initializes the value using `self` then calls the function `f` with the initialized 847 /// value. 848 /// 849 /// If `f` returns an error the value is dropped and the initializer will forward the error. 850 /// 851 /// # Examples 852 /// 853 /// ```rust 854 /// # #![allow(clippy::disallowed_names)] 855 /// use kernel::{types::Opaque, init::pin_init_from_closure}; 856 /// #[repr(C)] 857 /// struct RawFoo([u8; 16]); 858 /// extern { 859 /// fn init_foo(_: *mut RawFoo); 860 /// } 861 /// 862 /// #[pin_data] 863 /// struct Foo { 864 /// #[pin] 865 /// raw: Opaque<RawFoo>, 866 /// } 867 /// 868 /// impl Foo { 869 /// fn setup(self: Pin<&mut Self>) { 870 /// pr_info!("Setting up foo"); 871 /// } 872 /// } 873 /// 874 /// let foo = pin_init!(Foo { 875 /// // SAFETY: TODO. 876 /// raw <- unsafe { 877 /// Opaque::ffi_init(|s| { 878 /// init_foo(s); 879 /// }) 880 /// }, 881 /// }).pin_chain(|foo| { 882 /// foo.setup(); 883 /// Ok(()) 884 /// }); 885 /// ``` 886 fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E> 887 where 888 F: FnOnce(Pin<&mut T>) -> Result<(), E>, 889 { 890 ChainPinInit(self, f, PhantomData) 891 } 892 } 893 894 /// An initializer returned by [`PinInit::pin_chain`]. 895 pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>); 896 897 // SAFETY: The `__pinned_init` function is implemented such that it 898 // - returns `Ok(())` on successful initialization, 899 // - returns `Err(err)` on error and in this case `slot` will be dropped. 900 // - considers `slot` pinned. 901 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E> 902 where 903 I: PinInit<T, E>, 904 F: FnOnce(Pin<&mut T>) -> Result<(), E>, 905 { 906 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 907 // SAFETY: All requirements fulfilled since this function is `__pinned_init`. 908 unsafe { self.0.__pinned_init(slot)? }; 909 // SAFETY: The above call initialized `slot` and we still have unique access. 910 let val = unsafe { &mut *slot }; 911 // SAFETY: `slot` is considered pinned. 912 let val = unsafe { Pin::new_unchecked(val) }; 913 // SAFETY: `slot` was initialized above. 914 (self.1)(val).inspect_err(|_| unsafe { core::ptr::drop_in_place(slot) }) 915 } 916 } 917 918 /// An initializer for `T`. 919 /// 920 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 921 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the 922 /// [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because 923 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well. 924 /// 925 /// Also see the [module description](self). 926 /// 927 /// # Safety 928 /// 929 /// When implementing this trait you will need to take great care. Also there are probably very few 930 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible. 931 /// 932 /// The [`Init::__init`] function: 933 /// - returns `Ok(())` if it initialized every field of `slot`, 934 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 935 /// - `slot` can be deallocated without UB occurring, 936 /// - `slot` does not need to be dropped, 937 /// - `slot` is not partially initialized. 938 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 939 /// 940 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same 941 /// code as `__init`. 942 /// 943 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to 944 /// move the pointee after initialization. 945 /// 946 /// [`Arc<T>`]: crate::sync::Arc 947 #[must_use = "An initializer must be used in order to create its value."] 948 pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> { 949 /// Initializes `slot`. 950 /// 951 /// # Safety 952 /// 953 /// - `slot` is a valid pointer to uninitialized memory. 954 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 955 /// deallocate. 956 unsafe fn __init(self, slot: *mut T) -> Result<(), E>; 957 958 /// First initializes the value using `self` then calls the function `f` with the initialized 959 /// value. 960 /// 961 /// If `f` returns an error the value is dropped and the initializer will forward the error. 962 /// 963 /// # Examples 964 /// 965 /// ```rust 966 /// # #![allow(clippy::disallowed_names)] 967 /// use kernel::{types::Opaque, init::{self, init_from_closure}}; 968 /// struct Foo { 969 /// buf: [u8; 1_000_000], 970 /// } 971 /// 972 /// impl Foo { 973 /// fn setup(&mut self) { 974 /// pr_info!("Setting up foo"); 975 /// } 976 /// } 977 /// 978 /// let foo = init!(Foo { 979 /// buf <- init::zeroed() 980 /// }).chain(|foo| { 981 /// foo.setup(); 982 /// Ok(()) 983 /// }); 984 /// ``` 985 fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E> 986 where 987 F: FnOnce(&mut T) -> Result<(), E>, 988 { 989 ChainInit(self, f, PhantomData) 990 } 991 } 992 993 /// An initializer returned by [`Init::chain`]. 994 pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>); 995 996 // SAFETY: The `__init` function is implemented such that it 997 // - returns `Ok(())` on successful initialization, 998 // - returns `Err(err)` on error and in this case `slot` will be dropped. 999 unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E> 1000 where 1001 I: Init<T, E>, 1002 F: FnOnce(&mut T) -> Result<(), E>, 1003 { 1004 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 1005 // SAFETY: All requirements fulfilled since this function is `__init`. 1006 unsafe { self.0.__pinned_init(slot)? }; 1007 // SAFETY: The above call initialized `slot` and we still have unique access. 1008 (self.1)(unsafe { &mut *slot }).inspect_err(|_| 1009 // SAFETY: `slot` was initialized above. 1010 unsafe { core::ptr::drop_in_place(slot) }) 1011 } 1012 } 1013 1014 // SAFETY: `__pinned_init` behaves exactly the same as `__init`. 1015 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E> 1016 where 1017 I: Init<T, E>, 1018 F: FnOnce(&mut T) -> Result<(), E>, 1019 { 1020 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 1021 // SAFETY: `__init` has less strict requirements compared to `__pinned_init`. 1022 unsafe { self.__init(slot) } 1023 } 1024 } 1025 1026 /// Creates a new [`PinInit<T, E>`] from the given closure. 1027 /// 1028 /// # Safety 1029 /// 1030 /// The closure: 1031 /// - returns `Ok(())` if it initialized every field of `slot`, 1032 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 1033 /// - `slot` can be deallocated without UB occurring, 1034 /// - `slot` does not need to be dropped, 1035 /// - `slot` is not partially initialized. 1036 /// - may assume that the `slot` does not move if `T: !Unpin`, 1037 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 1038 #[inline] 1039 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>( 1040 f: impl FnOnce(*mut T) -> Result<(), E>, 1041 ) -> impl PinInit<T, E> { 1042 __internal::InitClosure(f, PhantomData) 1043 } 1044 1045 /// Creates a new [`Init<T, E>`] from the given closure. 1046 /// 1047 /// # Safety 1048 /// 1049 /// The closure: 1050 /// - returns `Ok(())` if it initialized every field of `slot`, 1051 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 1052 /// - `slot` can be deallocated without UB occurring, 1053 /// - `slot` does not need to be dropped, 1054 /// - `slot` is not partially initialized. 1055 /// - the `slot` may move after initialization. 1056 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 1057 #[inline] 1058 pub const unsafe fn init_from_closure<T: ?Sized, E>( 1059 f: impl FnOnce(*mut T) -> Result<(), E>, 1060 ) -> impl Init<T, E> { 1061 __internal::InitClosure(f, PhantomData) 1062 } 1063 1064 /// An initializer that leaves the memory uninitialized. 1065 /// 1066 /// The initializer is a no-op. The `slot` memory is not changed. 1067 #[inline] 1068 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> { 1069 // SAFETY: The memory is allowed to be uninitialized. 1070 unsafe { init_from_closure(|_| Ok(())) } 1071 } 1072 1073 /// Initializes an array by initializing each element via the provided initializer. 1074 /// 1075 /// # Examples 1076 /// 1077 /// ```rust 1078 /// use kernel::{error::Error, init::init_array_from_fn}; 1079 /// let array: Box<[usize; 1_000]> = Box::init::<Error>(init_array_from_fn(|i| i), GFP_KERNEL).unwrap(); 1080 /// assert_eq!(array.len(), 1_000); 1081 /// ``` 1082 pub fn init_array_from_fn<I, const N: usize, T, E>( 1083 mut make_init: impl FnMut(usize) -> I, 1084 ) -> impl Init<[T; N], E> 1085 where 1086 I: Init<T, E>, 1087 { 1088 let init = move |slot: *mut [T; N]| { 1089 let slot = slot.cast::<T>(); 1090 // Counts the number of initialized elements and when dropped drops that many elements from 1091 // `slot`. 1092 let mut init_count = ScopeGuard::new_with_data(0, |i| { 1093 // We now free every element that has been initialized before. 1094 // SAFETY: The loop initialized exactly the values from 0..i and since we 1095 // return `Err` below, the caller will consider the memory at `slot` as 1096 // uninitialized. 1097 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 1098 }); 1099 for i in 0..N { 1100 let init = make_init(i); 1101 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 1102 let ptr = unsafe { slot.add(i) }; 1103 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 1104 // requirements. 1105 unsafe { init.__init(ptr) }?; 1106 *init_count += 1; 1107 } 1108 init_count.dismiss(); 1109 Ok(()) 1110 }; 1111 // SAFETY: The initializer above initializes every element of the array. On failure it drops 1112 // any initialized elements and returns `Err`. 1113 unsafe { init_from_closure(init) } 1114 } 1115 1116 /// Initializes an array by initializing each element via the provided initializer. 1117 /// 1118 /// # Examples 1119 /// 1120 /// ```rust 1121 /// use kernel::{sync::{Arc, Mutex}, init::pin_init_array_from_fn, new_mutex}; 1122 /// let array: Arc<[Mutex<usize>; 1_000]> = 1123 /// Arc::pin_init(pin_init_array_from_fn(|i| new_mutex!(i)), GFP_KERNEL).unwrap(); 1124 /// assert_eq!(array.len(), 1_000); 1125 /// ``` 1126 pub fn pin_init_array_from_fn<I, const N: usize, T, E>( 1127 mut make_init: impl FnMut(usize) -> I, 1128 ) -> impl PinInit<[T; N], E> 1129 where 1130 I: PinInit<T, E>, 1131 { 1132 let init = move |slot: *mut [T; N]| { 1133 let slot = slot.cast::<T>(); 1134 // Counts the number of initialized elements and when dropped drops that many elements from 1135 // `slot`. 1136 let mut init_count = ScopeGuard::new_with_data(0, |i| { 1137 // We now free every element that has been initialized before. 1138 // SAFETY: The loop initialized exactly the values from 0..i and since we 1139 // return `Err` below, the caller will consider the memory at `slot` as 1140 // uninitialized. 1141 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 1142 }); 1143 for i in 0..N { 1144 let init = make_init(i); 1145 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 1146 let ptr = unsafe { slot.add(i) }; 1147 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 1148 // requirements. 1149 unsafe { init.__pinned_init(ptr) }?; 1150 *init_count += 1; 1151 } 1152 init_count.dismiss(); 1153 Ok(()) 1154 }; 1155 // SAFETY: The initializer above initializes every element of the array. On failure it drops 1156 // any initialized elements and returns `Err`. 1157 unsafe { pin_init_from_closure(init) } 1158 } 1159 1160 // SAFETY: Every type can be initialized by-value. 1161 unsafe impl<T, E> Init<T, E> for T { 1162 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 1163 // SAFETY: TODO. 1164 unsafe { slot.write(self) }; 1165 Ok(()) 1166 } 1167 } 1168 1169 // SAFETY: Every type can be initialized by-value. `__pinned_init` calls `__init`. 1170 unsafe impl<T, E> PinInit<T, E> for T { 1171 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 1172 // SAFETY: TODO. 1173 unsafe { self.__init(slot) } 1174 } 1175 } 1176 1177 /// Smart pointer that can initialize memory in-place. 1178 pub trait InPlaceInit<T>: Sized { 1179 /// Pinned version of `Self`. 1180 /// 1181 /// If a type already implicitly pins its pointee, `Pin<Self>` is unnecessary. In this case use 1182 /// `Self`, otherwise just use `Pin<Self>`. 1183 type PinnedSelf; 1184 1185 /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this 1186 /// type. 1187 /// 1188 /// If `T: !Unpin` it will not be able to move afterwards. 1189 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 1190 where 1191 E: From<AllocError>; 1192 1193 /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this 1194 /// type. 1195 /// 1196 /// If `T: !Unpin` it will not be able to move afterwards. 1197 fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> error::Result<Self::PinnedSelf> 1198 where 1199 Error: From<E>, 1200 { 1201 // SAFETY: We delegate to `init` and only change the error type. 1202 let init = unsafe { 1203 pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e))) 1204 }; 1205 Self::try_pin_init(init, flags) 1206 } 1207 1208 /// Use the given initializer to in-place initialize a `T`. 1209 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 1210 where 1211 E: From<AllocError>; 1212 1213 /// Use the given initializer to in-place initialize a `T`. 1214 fn init<E>(init: impl Init<T, E>, flags: Flags) -> error::Result<Self> 1215 where 1216 Error: From<E>, 1217 { 1218 // SAFETY: We delegate to `init` and only change the error type. 1219 let init = unsafe { 1220 init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e))) 1221 }; 1222 Self::try_init(init, flags) 1223 } 1224 } 1225 1226 impl<T> InPlaceInit<T> for Arc<T> { 1227 type PinnedSelf = Self; 1228 1229 #[inline] 1230 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 1231 where 1232 E: From<AllocError>, 1233 { 1234 UniqueArc::try_pin_init(init, flags).map(|u| u.into()) 1235 } 1236 1237 #[inline] 1238 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 1239 where 1240 E: From<AllocError>, 1241 { 1242 UniqueArc::try_init(init, flags).map(|u| u.into()) 1243 } 1244 } 1245 1246 impl<T> InPlaceInit<T> for Box<T> { 1247 type PinnedSelf = Pin<Self>; 1248 1249 #[inline] 1250 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 1251 where 1252 E: From<AllocError>, 1253 { 1254 <Box<_> as BoxExt<_>>::new_uninit(flags)?.write_pin_init(init) 1255 } 1256 1257 #[inline] 1258 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 1259 where 1260 E: From<AllocError>, 1261 { 1262 <Box<_> as BoxExt<_>>::new_uninit(flags)?.write_init(init) 1263 } 1264 } 1265 1266 impl<T> InPlaceInit<T> for UniqueArc<T> { 1267 type PinnedSelf = Pin<Self>; 1268 1269 #[inline] 1270 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 1271 where 1272 E: From<AllocError>, 1273 { 1274 UniqueArc::new_uninit(flags)?.write_pin_init(init) 1275 } 1276 1277 #[inline] 1278 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 1279 where 1280 E: From<AllocError>, 1281 { 1282 UniqueArc::new_uninit(flags)?.write_init(init) 1283 } 1284 } 1285 1286 /// Smart pointer containing uninitialized memory and that can write a value. 1287 pub trait InPlaceWrite<T> { 1288 /// The type `Self` turns into when the contents are initialized. 1289 type Initialized; 1290 1291 /// Use the given initializer to write a value into `self`. 1292 /// 1293 /// Does not drop the current value and considers it as uninitialized memory. 1294 fn write_init<E>(self, init: impl Init<T, E>) -> Result<Self::Initialized, E>; 1295 1296 /// Use the given pin-initializer to write a value into `self`. 1297 /// 1298 /// Does not drop the current value and considers it as uninitialized memory. 1299 fn write_pin_init<E>(self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>; 1300 } 1301 1302 impl<T> InPlaceWrite<T> for Box<MaybeUninit<T>> { 1303 type Initialized = Box<T>; 1304 1305 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> { 1306 let slot = self.as_mut_ptr(); 1307 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1308 // slot is valid. 1309 unsafe { init.__init(slot)? }; 1310 // SAFETY: All fields have been initialized. 1311 Ok(unsafe { self.assume_init() }) 1312 } 1313 1314 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> { 1315 let slot = self.as_mut_ptr(); 1316 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1317 // slot is valid and will not be moved, because we pin it later. 1318 unsafe { init.__pinned_init(slot)? }; 1319 // SAFETY: All fields have been initialized. 1320 Ok(unsafe { self.assume_init() }.into()) 1321 } 1322 } 1323 1324 impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> { 1325 type Initialized = UniqueArc<T>; 1326 1327 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> { 1328 let slot = self.as_mut_ptr(); 1329 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1330 // slot is valid. 1331 unsafe { init.__init(slot)? }; 1332 // SAFETY: All fields have been initialized. 1333 Ok(unsafe { self.assume_init() }) 1334 } 1335 1336 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> { 1337 let slot = self.as_mut_ptr(); 1338 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1339 // slot is valid and will not be moved, because we pin it later. 1340 unsafe { init.__pinned_init(slot)? }; 1341 // SAFETY: All fields have been initialized. 1342 Ok(unsafe { self.assume_init() }.into()) 1343 } 1344 } 1345 1346 /// Trait facilitating pinned destruction. 1347 /// 1348 /// Use [`pinned_drop`] to implement this trait safely: 1349 /// 1350 /// ```rust 1351 /// # use kernel::sync::Mutex; 1352 /// use kernel::macros::pinned_drop; 1353 /// use core::pin::Pin; 1354 /// #[pin_data(PinnedDrop)] 1355 /// struct Foo { 1356 /// #[pin] 1357 /// mtx: Mutex<usize>, 1358 /// } 1359 /// 1360 /// #[pinned_drop] 1361 /// impl PinnedDrop for Foo { 1362 /// fn drop(self: Pin<&mut Self>) { 1363 /// pr_info!("Foo is being dropped!"); 1364 /// } 1365 /// } 1366 /// ``` 1367 /// 1368 /// # Safety 1369 /// 1370 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl. 1371 /// 1372 /// [`pinned_drop`]: kernel::macros::pinned_drop 1373 pub unsafe trait PinnedDrop: __internal::HasPinData { 1374 /// Executes the pinned destructor of this type. 1375 /// 1376 /// While this function is marked safe, it is actually unsafe to call it manually. For this 1377 /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code 1378 /// and thus prevents this function from being called where it should not. 1379 /// 1380 /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute 1381 /// automatically. 1382 fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop); 1383 } 1384 1385 /// Marker trait for types that can be initialized by writing just zeroes. 1386 /// 1387 /// # Safety 1388 /// 1389 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words, 1390 /// this is not UB: 1391 /// 1392 /// ```rust,ignore 1393 /// let val: Self = unsafe { core::mem::zeroed() }; 1394 /// ``` 1395 pub unsafe trait Zeroable {} 1396 1397 /// Create a new zeroed T. 1398 /// 1399 /// The returned initializer will write `0x00` to every byte of the given `slot`. 1400 #[inline] 1401 pub fn zeroed<T: Zeroable>() -> impl Init<T> { 1402 // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T` 1403 // and because we write all zeroes, the memory is initialized. 1404 unsafe { 1405 init_from_closure(|slot: *mut T| { 1406 slot.write_bytes(0, 1); 1407 Ok(()) 1408 }) 1409 } 1410 } 1411 1412 macro_rules! impl_zeroable { 1413 ($($({$($generics:tt)*})? $t:ty, )*) => { 1414 // SAFETY: Safety comments written in the macro invocation. 1415 $(unsafe impl$($($generics)*)? Zeroable for $t {})* 1416 }; 1417 } 1418 1419 impl_zeroable! { 1420 // SAFETY: All primitives that are allowed to be zero. 1421 bool, 1422 char, 1423 u8, u16, u32, u64, u128, usize, 1424 i8, i16, i32, i64, i128, isize, 1425 f32, f64, 1426 1427 // Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list; 1428 // creating an instance of an uninhabited type is immediate undefined behavior. For more on 1429 // uninhabited/empty types, consult The Rustonomicon: 1430 // <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference 1431 // also has information on undefined behavior: 1432 // <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>. 1433 // 1434 // SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists. 1435 {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (), 1436 1437 // SAFETY: Type is allowed to take any value, including all zeros. 1438 {<T>} MaybeUninit<T>, 1439 // SAFETY: Type is allowed to take any value, including all zeros. 1440 {<T>} Opaque<T>, 1441 1442 // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`. 1443 {<T: ?Sized + Zeroable>} UnsafeCell<T>, 1444 1445 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). 1446 Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>, 1447 Option<NonZeroU128>, Option<NonZeroUsize>, 1448 Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>, 1449 Option<NonZeroI128>, Option<NonZeroIsize>, 1450 1451 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). 1452 // 1453 // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant. 1454 {<T: ?Sized>} Option<NonNull<T>>, 1455 {<T: ?Sized>} Option<Box<T>>, 1456 1457 // SAFETY: `null` pointer is valid. 1458 // 1459 // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be 1460 // null. 1461 // 1462 // When `Pointee` gets stabilized, we could use 1463 // `T: ?Sized where <T as Pointee>::Metadata: Zeroable` 1464 {<T>} *mut T, {<T>} *const T, 1465 1466 // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be 1467 // zero. 1468 {<T>} *mut [T], {<T>} *const [T], *mut str, *const str, 1469 1470 // SAFETY: `T` is `Zeroable`. 1471 {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>, 1472 } 1473 1474 macro_rules! impl_tuple_zeroable { 1475 ($(,)?) => {}; 1476 ($first:ident, $($t:ident),* $(,)?) => { 1477 // SAFETY: All elements are zeroable and padding can be zero. 1478 unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {} 1479 impl_tuple_zeroable!($($t),* ,); 1480 } 1481 } 1482 1483 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J); 1484