xref: /linux-6.15/rust/kernel/init.rs (revision c34aa00d)
1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2 
3 //! API to safely and fallibly initialize pinned `struct`s using in-place constructors.
4 //!
5 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack
6 //! overflow.
7 //!
8 //! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential
9 //! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move.
10 //!
11 //! # Overview
12 //!
13 //! To initialize a `struct` with an in-place constructor you will need two things:
14 //! - an in-place constructor,
15 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
16 //!   [`UniqueArc<T>`], [`Box<T>`] or any other smart pointer that implements [`InPlaceInit`]).
17 //!
18 //! To get an in-place constructor there are generally three options:
19 //! - directly creating an in-place constructor using the [`pin_init!`] macro,
20 //! - a custom function/macro returning an in-place constructor provided by someone else,
21 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
22 //!
23 //! Aside from pinned initialization, this API also supports in-place construction without pinning,
24 //! the macros/types/functions are generally named like the pinned variants without the `pin`
25 //! prefix.
26 //!
27 //! # Examples
28 //!
29 //! ## Using the [`pin_init!`] macro
30 //!
31 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with
32 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
33 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
34 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
35 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
36 //!
37 //! ```rust
38 //! # #![allow(clippy::disallowed_names)]
39 //! use kernel::sync::{new_mutex, Mutex};
40 //! # use core::pin::Pin;
41 //! #[pin_data]
42 //! struct Foo {
43 //!     #[pin]
44 //!     a: Mutex<usize>,
45 //!     b: u32,
46 //! }
47 //!
48 //! let foo = pin_init!(Foo {
49 //!     a <- new_mutex!(42, "Foo::a"),
50 //!     b: 24,
51 //! });
52 //! ```
53 //!
54 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
55 //! (or just the stack) to actually initialize a `Foo`:
56 //!
57 //! ```rust
58 //! # #![allow(clippy::disallowed_names)]
59 //! # use kernel::sync::{new_mutex, Mutex};
60 //! # use core::pin::Pin;
61 //! # #[pin_data]
62 //! # struct Foo {
63 //! #     #[pin]
64 //! #     a: Mutex<usize>,
65 //! #     b: u32,
66 //! # }
67 //! # let foo = pin_init!(Foo {
68 //! #     a <- new_mutex!(42, "Foo::a"),
69 //! #     b: 24,
70 //! # });
71 //! let foo: Result<Pin<Box<Foo>>> = Box::pin_init(foo, GFP_KERNEL);
72 //! ```
73 //!
74 //! For more information see the [`pin_init!`] macro.
75 //!
76 //! ## Using a custom function/macro that returns an initializer
77 //!
78 //! Many types from the kernel supply a function/macro that returns an initializer, because the
79 //! above method only works for types where you can access the fields.
80 //!
81 //! ```rust
82 //! # use kernel::sync::{new_mutex, Arc, Mutex};
83 //! let mtx: Result<Arc<Mutex<usize>>> =
84 //!     Arc::pin_init(new_mutex!(42, "example::mtx"), GFP_KERNEL);
85 //! ```
86 //!
87 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
88 //!
89 //! ```rust
90 //! # #![allow(clippy::disallowed_names)]
91 //! # use kernel::{sync::Mutex, prelude::*, new_mutex, init::PinInit, try_pin_init};
92 //! #[pin_data]
93 //! struct DriverData {
94 //!     #[pin]
95 //!     status: Mutex<i32>,
96 //!     buffer: Box<[u8; 1_000_000]>,
97 //! }
98 //!
99 //! impl DriverData {
100 //!     fn new() -> impl PinInit<Self, Error> {
101 //!         try_pin_init!(Self {
102 //!             status <- new_mutex!(0, "DriverData::status"),
103 //!             buffer: Box::init(kernel::init::zeroed(), GFP_KERNEL)?,
104 //!         })
105 //!     }
106 //! }
107 //! ```
108 //!
109 //! ## Manual creation of an initializer
110 //!
111 //! Often when working with primitives the previous approaches are not sufficient. That is where
112 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
113 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
114 //! actually does the initialization in the correct way. Here are the things to look out for
115 //! (we are calling the parameter to the closure `slot`):
116 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so
117 //!   `slot` now contains a valid bit pattern for the type `T`,
118 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
119 //!   you need to take care to clean up anything if your initialization fails mid-way,
120 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of
121 //!   `slot` gets called.
122 //!
123 //! ```rust
124 //! # #![allow(unreachable_pub, clippy::disallowed_names)]
125 //! use kernel::{prelude::*, init, types::Opaque};
126 //! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin};
127 //! # mod bindings {
128 //! #     #![allow(non_camel_case_types)]
129 //! #     pub struct foo;
130 //! #     pub unsafe fn init_foo(_ptr: *mut foo) {}
131 //! #     pub unsafe fn destroy_foo(_ptr: *mut foo) {}
132 //! #     pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 }
133 //! # }
134 //! # // `Error::from_errno` is `pub(crate)` in the `kernel` crate, thus provide a workaround.
135 //! # trait FromErrno {
136 //! #     fn from_errno(errno: core::ffi::c_int) -> Error {
137 //! #         // Dummy error that can be constructed outside the `kernel` crate.
138 //! #         Error::from(core::fmt::Error)
139 //! #     }
140 //! # }
141 //! # impl FromErrno for Error {}
142 //! /// # Invariants
143 //! ///
144 //! /// `foo` is always initialized
145 //! #[pin_data(PinnedDrop)]
146 //! pub struct RawFoo {
147 //!     #[pin]
148 //!     foo: Opaque<bindings::foo>,
149 //!     #[pin]
150 //!     _p: PhantomPinned,
151 //! }
152 //!
153 //! impl RawFoo {
154 //!     pub fn new(flags: u32) -> impl PinInit<Self, Error> {
155 //!         // SAFETY:
156 //!         // - when the closure returns `Ok(())`, then it has successfully initialized and
157 //!         //   enabled `foo`,
158 //!         // - when it returns `Err(e)`, then it has cleaned up before
159 //!         unsafe {
160 //!             init::pin_init_from_closure(move |slot: *mut Self| {
161 //!                 // `slot` contains uninit memory, avoid creating a reference.
162 //!                 let foo = addr_of_mut!((*slot).foo);
163 //!
164 //!                 // Initialize the `foo`
165 //!                 bindings::init_foo(Opaque::raw_get(foo));
166 //!
167 //!                 // Try to enable it.
168 //!                 let err = bindings::enable_foo(Opaque::raw_get(foo), flags);
169 //!                 if err != 0 {
170 //!                     // Enabling has failed, first clean up the foo and then return the error.
171 //!                     bindings::destroy_foo(Opaque::raw_get(foo));
172 //!                     return Err(Error::from_errno(err));
173 //!                 }
174 //!
175 //!                 // All fields of `RawFoo` have been initialized, since `_p` is a ZST.
176 //!                 Ok(())
177 //!             })
178 //!         }
179 //!     }
180 //! }
181 //!
182 //! #[pinned_drop]
183 //! impl PinnedDrop for RawFoo {
184 //!     fn drop(self: Pin<&mut Self>) {
185 //!         // SAFETY: Since `foo` is initialized, destroying is safe.
186 //!         unsafe { bindings::destroy_foo(self.foo.get()) };
187 //!     }
188 //! }
189 //! ```
190 //!
191 //! For the special case where initializing a field is a single FFI-function call that cannot fail,
192 //! there exist the helper function [`Opaque::ffi_init`]. This function initialize a single
193 //! [`Opaque`] field by just delegating to the supplied closure. You can use these in combination
194 //! with [`pin_init!`].
195 //!
196 //! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside
197 //! the `kernel` crate. The [`sync`] module is a good starting point.
198 //!
199 //! [`sync`]: kernel::sync
200 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html
201 //! [structurally pinned fields]:
202 //!     https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field
203 //! [stack]: crate::stack_pin_init
204 //! [`Arc<T>`]: crate::sync::Arc
205 //! [`impl PinInit<Foo>`]: PinInit
206 //! [`impl PinInit<T, E>`]: PinInit
207 //! [`impl Init<T, E>`]: Init
208 //! [`Opaque`]: kernel::types::Opaque
209 //! [`Opaque::ffi_init`]: kernel::types::Opaque::ffi_init
210 //! [`pin_data`]: ::macros::pin_data
211 //! [`pin_init!`]: crate::pin_init!
212 
213 use crate::{
214     alloc::{box_ext::BoxExt, Flags},
215     error::{self, Error},
216     sync::UniqueArc,
217     types::{Opaque, ScopeGuard},
218 };
219 use alloc::boxed::Box;
220 use core::{
221     alloc::AllocError,
222     cell::UnsafeCell,
223     convert::Infallible,
224     marker::PhantomData,
225     mem::MaybeUninit,
226     num::*,
227     pin::Pin,
228     ptr::{self, NonNull},
229 };
230 
231 #[doc(hidden)]
232 pub mod __internal;
233 #[doc(hidden)]
234 pub mod macros;
235 
236 /// Initialize and pin a type directly on the stack.
237 ///
238 /// # Examples
239 ///
240 /// ```rust
241 /// # #![allow(clippy::disallowed_names)]
242 /// # use kernel::{init, macros::pin_data, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex};
243 /// # use core::pin::Pin;
244 /// #[pin_data]
245 /// struct Foo {
246 ///     #[pin]
247 ///     a: Mutex<usize>,
248 ///     b: Bar,
249 /// }
250 ///
251 /// #[pin_data]
252 /// struct Bar {
253 ///     x: u32,
254 /// }
255 ///
256 /// stack_pin_init!(let foo = pin_init!(Foo {
257 ///     a <- new_mutex!(42),
258 ///     b: Bar {
259 ///         x: 64,
260 ///     },
261 /// }));
262 /// let foo: Pin<&mut Foo> = foo;
263 /// pr_info!("a: {}", &*foo.a.lock());
264 /// ```
265 ///
266 /// # Syntax
267 ///
268 /// A normal `let` binding with optional type annotation. The expression is expected to implement
269 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error
270 /// type, then use [`stack_try_pin_init!`].
271 ///
272 /// [`stack_try_pin_init!`]: crate::stack_try_pin_init!
273 #[macro_export]
274 macro_rules! stack_pin_init {
275     (let $var:ident $(: $t:ty)? = $val:expr) => {
276         let val = $val;
277         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
278         let mut $var = match $crate::init::__internal::StackInit::init($var, val) {
279             Ok(res) => res,
280             Err(x) => {
281                 let x: ::core::convert::Infallible = x;
282                 match x {}
283             }
284         };
285     };
286 }
287 
288 /// Initialize and pin a type directly on the stack.
289 ///
290 /// # Examples
291 ///
292 /// ```rust,ignore
293 /// # #![allow(clippy::disallowed_names)]
294 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
295 /// # use macros::pin_data;
296 /// # use core::{alloc::AllocError, pin::Pin};
297 /// #[pin_data]
298 /// struct Foo {
299 ///     #[pin]
300 ///     a: Mutex<usize>,
301 ///     b: Box<Bar>,
302 /// }
303 ///
304 /// struct Bar {
305 ///     x: u32,
306 /// }
307 ///
308 /// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo {
309 ///     a <- new_mutex!(42),
310 ///     b: Box::new(Bar {
311 ///         x: 64,
312 ///     }, GFP_KERNEL)?,
313 /// }));
314 /// let foo = foo.unwrap();
315 /// pr_info!("a: {}", &*foo.a.lock());
316 /// ```
317 ///
318 /// ```rust,ignore
319 /// # #![allow(clippy::disallowed_names)]
320 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
321 /// # use macros::pin_data;
322 /// # use core::{alloc::AllocError, pin::Pin};
323 /// #[pin_data]
324 /// struct Foo {
325 ///     #[pin]
326 ///     a: Mutex<usize>,
327 ///     b: Box<Bar>,
328 /// }
329 ///
330 /// struct Bar {
331 ///     x: u32,
332 /// }
333 ///
334 /// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo {
335 ///     a <- new_mutex!(42),
336 ///     b: Box::new(Bar {
337 ///         x: 64,
338 ///     }, GFP_KERNEL)?,
339 /// }));
340 /// pr_info!("a: {}", &*foo.a.lock());
341 /// # Ok::<_, AllocError>(())
342 /// ```
343 ///
344 /// # Syntax
345 ///
346 /// A normal `let` binding with optional type annotation. The expression is expected to implement
347 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the
348 /// `=` will propagate this error.
349 #[macro_export]
350 macro_rules! stack_try_pin_init {
351     (let $var:ident $(: $t:ty)? = $val:expr) => {
352         let val = $val;
353         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
354         let mut $var = $crate::init::__internal::StackInit::init($var, val);
355     };
356     (let $var:ident $(: $t:ty)? =? $val:expr) => {
357         let val = $val;
358         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
359         let mut $var = $crate::init::__internal::StackInit::init($var, val)?;
360     };
361 }
362 
363 /// Construct an in-place, pinned initializer for `struct`s.
364 ///
365 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
366 /// [`try_pin_init!`].
367 ///
368 /// The syntax is almost identical to that of a normal `struct` initializer:
369 ///
370 /// ```rust
371 /// # #![allow(clippy::disallowed_names)]
372 /// # use kernel::{init, pin_init, macros::pin_data, init::*};
373 /// # use core::pin::Pin;
374 /// #[pin_data]
375 /// struct Foo {
376 ///     a: usize,
377 ///     b: Bar,
378 /// }
379 ///
380 /// #[pin_data]
381 /// struct Bar {
382 ///     x: u32,
383 /// }
384 ///
385 /// # fn demo() -> impl PinInit<Foo> {
386 /// let a = 42;
387 ///
388 /// let initializer = pin_init!(Foo {
389 ///     a,
390 ///     b: Bar {
391 ///         x: 64,
392 ///     },
393 /// });
394 /// # initializer }
395 /// # Box::pin_init(demo(), GFP_KERNEL).unwrap();
396 /// ```
397 ///
398 /// Arbitrary Rust expressions can be used to set the value of a variable.
399 ///
400 /// The fields are initialized in the order that they appear in the initializer. So it is possible
401 /// to read already initialized fields using raw pointers.
402 ///
403 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the
404 /// initializer.
405 ///
406 /// # Init-functions
407 ///
408 /// When working with this API it is often desired to let others construct your types without
409 /// giving access to all fields. This is where you would normally write a plain function `new`
410 /// that would return a new instance of your type. With this API that is also possible.
411 /// However, there are a few extra things to keep in mind.
412 ///
413 /// To create an initializer function, simply declare it like this:
414 ///
415 /// ```rust
416 /// # #![allow(clippy::disallowed_names)]
417 /// # use kernel::{init, pin_init, prelude::*, init::*};
418 /// # use core::pin::Pin;
419 /// # #[pin_data]
420 /// # struct Foo {
421 /// #     a: usize,
422 /// #     b: Bar,
423 /// # }
424 /// # #[pin_data]
425 /// # struct Bar {
426 /// #     x: u32,
427 /// # }
428 /// impl Foo {
429 ///     fn new() -> impl PinInit<Self> {
430 ///         pin_init!(Self {
431 ///             a: 42,
432 ///             b: Bar {
433 ///                 x: 64,
434 ///             },
435 ///         })
436 ///     }
437 /// }
438 /// ```
439 ///
440 /// Users of `Foo` can now create it like this:
441 ///
442 /// ```rust
443 /// # #![allow(clippy::disallowed_names)]
444 /// # use kernel::{init, pin_init, macros::pin_data, init::*};
445 /// # use core::pin::Pin;
446 /// # #[pin_data]
447 /// # struct Foo {
448 /// #     a: usize,
449 /// #     b: Bar,
450 /// # }
451 /// # #[pin_data]
452 /// # struct Bar {
453 /// #     x: u32,
454 /// # }
455 /// # impl Foo {
456 /// #     fn new() -> impl PinInit<Self> {
457 /// #         pin_init!(Self {
458 /// #             a: 42,
459 /// #             b: Bar {
460 /// #                 x: 64,
461 /// #             },
462 /// #         })
463 /// #     }
464 /// # }
465 /// let foo = Box::pin_init(Foo::new(), GFP_KERNEL);
466 /// ```
467 ///
468 /// They can also easily embed it into their own `struct`s:
469 ///
470 /// ```rust
471 /// # #![allow(clippy::disallowed_names)]
472 /// # use kernel::{init, pin_init, macros::pin_data, init::*};
473 /// # use core::pin::Pin;
474 /// # #[pin_data]
475 /// # struct Foo {
476 /// #     a: usize,
477 /// #     b: Bar,
478 /// # }
479 /// # #[pin_data]
480 /// # struct Bar {
481 /// #     x: u32,
482 /// # }
483 /// # impl Foo {
484 /// #     fn new() -> impl PinInit<Self> {
485 /// #         pin_init!(Self {
486 /// #             a: 42,
487 /// #             b: Bar {
488 /// #                 x: 64,
489 /// #             },
490 /// #         })
491 /// #     }
492 /// # }
493 /// #[pin_data]
494 /// struct FooContainer {
495 ///     #[pin]
496 ///     foo1: Foo,
497 ///     #[pin]
498 ///     foo2: Foo,
499 ///     other: u32,
500 /// }
501 ///
502 /// impl FooContainer {
503 ///     fn new(other: u32) -> impl PinInit<Self> {
504 ///         pin_init!(Self {
505 ///             foo1 <- Foo::new(),
506 ///             foo2 <- Foo::new(),
507 ///             other,
508 ///         })
509 ///     }
510 /// }
511 /// ```
512 ///
513 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`.
514 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just
515 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`.
516 ///
517 /// # Syntax
518 ///
519 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with
520 /// the following modifications is expected:
521 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
522 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
523 ///   pointer named `this` inside of the initializer.
524 /// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the
525 ///   struct, this initializes every field with 0 and then runs all initializers specified in the
526 ///   body. This can only be done if [`Zeroable`] is implemented for the struct.
527 ///
528 /// For instance:
529 ///
530 /// ```rust
531 /// # use kernel::{macros::{Zeroable, pin_data}, pin_init};
532 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned};
533 /// #[pin_data]
534 /// #[derive(Zeroable)]
535 /// struct Buf {
536 ///     // `ptr` points into `buf`.
537 ///     ptr: *mut u8,
538 ///     buf: [u8; 64],
539 ///     #[pin]
540 ///     pin: PhantomPinned,
541 /// }
542 /// pin_init!(&this in Buf {
543 ///     buf: [0; 64],
544 ///     ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() },
545 ///     pin: PhantomPinned,
546 /// });
547 /// pin_init!(Buf {
548 ///     buf: [1; 64],
549 ///     ..Zeroable::zeroed()
550 /// });
551 /// ```
552 ///
553 /// [`try_pin_init!`]: kernel::try_pin_init
554 /// [`NonNull<Self>`]: core::ptr::NonNull
555 // For a detailed example of how this macro works, see the module documentation of the hidden
556 // module `__internal` inside of `init/__internal.rs`.
557 #[macro_export]
558 macro_rules! pin_init {
559     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
560         $($fields:tt)*
561     }) => {
562         $crate::__init_internal!(
563             @this($($this)?),
564             @typ($t $(::<$($generics),*>)?),
565             @fields($($fields)*),
566             @error(::core::convert::Infallible),
567             @data(PinData, use_data),
568             @has_data(HasPinData, __pin_data),
569             @construct_closure(pin_init_from_closure),
570             @munch_fields($($fields)*),
571         )
572     };
573 }
574 
575 /// Construct an in-place, fallible pinned initializer for `struct`s.
576 ///
577 /// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`].
578 ///
579 /// You can use the `?` operator or use `return Err(err)` inside the initializer to stop
580 /// initialization and return the error.
581 ///
582 /// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when
583 /// initialization fails, the memory can be safely deallocated without any further modifications.
584 ///
585 /// This macro defaults the error to [`Error`].
586 ///
587 /// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type`
588 /// after the `struct` initializer to specify the error type you want to use.
589 ///
590 /// # Examples
591 ///
592 /// ```rust
593 /// # #![feature(new_uninit)]
594 /// use kernel::{init::{self, PinInit}, error::Error};
595 /// #[pin_data]
596 /// struct BigBuf {
597 ///     big: Box<[u8; 1024 * 1024 * 1024]>,
598 ///     small: [u8; 1024 * 1024],
599 ///     ptr: *mut u8,
600 /// }
601 ///
602 /// impl BigBuf {
603 ///     fn new() -> impl PinInit<Self, Error> {
604 ///         try_pin_init!(Self {
605 ///             big: Box::init(init::zeroed(), GFP_KERNEL)?,
606 ///             small: [0; 1024 * 1024],
607 ///             ptr: core::ptr::null_mut(),
608 ///         }? Error)
609 ///     }
610 /// }
611 /// ```
612 // For a detailed example of how this macro works, see the module documentation of the hidden
613 // module `__internal` inside of `init/__internal.rs`.
614 #[macro_export]
615 macro_rules! try_pin_init {
616     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
617         $($fields:tt)*
618     }) => {
619         $crate::__init_internal!(
620             @this($($this)?),
621             @typ($t $(::<$($generics),*>)? ),
622             @fields($($fields)*),
623             @error($crate::error::Error),
624             @data(PinData, use_data),
625             @has_data(HasPinData, __pin_data),
626             @construct_closure(pin_init_from_closure),
627             @munch_fields($($fields)*),
628         )
629     };
630     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
631         $($fields:tt)*
632     }? $err:ty) => {
633         $crate::__init_internal!(
634             @this($($this)?),
635             @typ($t $(::<$($generics),*>)? ),
636             @fields($($fields)*),
637             @error($err),
638             @data(PinData, use_data),
639             @has_data(HasPinData, __pin_data),
640             @construct_closure(pin_init_from_closure),
641             @munch_fields($($fields)*),
642         )
643     };
644 }
645 
646 /// Construct an in-place initializer for `struct`s.
647 ///
648 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
649 /// [`try_init!`].
650 ///
651 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply:
652 /// - `unsafe` code must guarantee either full initialization or return an error and allow
653 ///   deallocation of the memory.
654 /// - the fields are initialized in the order given in the initializer.
655 /// - no references to fields are allowed to be created inside of the initializer.
656 ///
657 /// This initializer is for initializing data in-place that might later be moved. If you want to
658 /// pin-initialize, use [`pin_init!`].
659 ///
660 /// [`try_init!`]: crate::try_init!
661 // For a detailed example of how this macro works, see the module documentation of the hidden
662 // module `__internal` inside of `init/__internal.rs`.
663 #[macro_export]
664 macro_rules! init {
665     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
666         $($fields:tt)*
667     }) => {
668         $crate::__init_internal!(
669             @this($($this)?),
670             @typ($t $(::<$($generics),*>)?),
671             @fields($($fields)*),
672             @error(::core::convert::Infallible),
673             @data(InitData, /*no use_data*/),
674             @has_data(HasInitData, __init_data),
675             @construct_closure(init_from_closure),
676             @munch_fields($($fields)*),
677         )
678     }
679 }
680 
681 /// Construct an in-place fallible initializer for `struct`s.
682 ///
683 /// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use
684 /// [`init!`].
685 ///
686 /// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error,
687 /// append `? $type` after the `struct` initializer.
688 /// The safety caveats from [`try_pin_init!`] also apply:
689 /// - `unsafe` code must guarantee either full initialization or return an error and allow
690 ///   deallocation of the memory.
691 /// - the fields are initialized in the order given in the initializer.
692 /// - no references to fields are allowed to be created inside of the initializer.
693 ///
694 /// # Examples
695 ///
696 /// ```rust
697 /// use kernel::{init::{PinInit, zeroed}, error::Error};
698 /// struct BigBuf {
699 ///     big: Box<[u8; 1024 * 1024 * 1024]>,
700 ///     small: [u8; 1024 * 1024],
701 /// }
702 ///
703 /// impl BigBuf {
704 ///     fn new() -> impl Init<Self, Error> {
705 ///         try_init!(Self {
706 ///             big: Box::init(zeroed(), GFP_KERNEL)?,
707 ///             small: [0; 1024 * 1024],
708 ///         }? Error)
709 ///     }
710 /// }
711 /// ```
712 // For a detailed example of how this macro works, see the module documentation of the hidden
713 // module `__internal` inside of `init/__internal.rs`.
714 #[macro_export]
715 macro_rules! try_init {
716     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
717         $($fields:tt)*
718     }) => {
719         $crate::__init_internal!(
720             @this($($this)?),
721             @typ($t $(::<$($generics),*>)?),
722             @fields($($fields)*),
723             @error($crate::error::Error),
724             @data(InitData, /*no use_data*/),
725             @has_data(HasInitData, __init_data),
726             @construct_closure(init_from_closure),
727             @munch_fields($($fields)*),
728         )
729     };
730     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
731         $($fields:tt)*
732     }? $err:ty) => {
733         $crate::__init_internal!(
734             @this($($this)?),
735             @typ($t $(::<$($generics),*>)?),
736             @fields($($fields)*),
737             @error($err),
738             @data(InitData, /*no use_data*/),
739             @has_data(HasInitData, __init_data),
740             @construct_closure(init_from_closure),
741             @munch_fields($($fields)*),
742         )
743     };
744 }
745 
746 /// A pin-initializer for the type `T`.
747 ///
748 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
749 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the
750 /// [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this.
751 ///
752 /// Also see the [module description](self).
753 ///
754 /// # Safety
755 ///
756 /// When implementing this trait you will need to take great care. Also there are probably very few
757 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible.
758 ///
759 /// The [`PinInit::__pinned_init`] function:
760 /// - returns `Ok(())` if it initialized every field of `slot`,
761 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
762 ///     - `slot` can be deallocated without UB occurring,
763 ///     - `slot` does not need to be dropped,
764 ///     - `slot` is not partially initialized.
765 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
766 ///
767 /// [`Arc<T>`]: crate::sync::Arc
768 /// [`Arc::pin_init`]: crate::sync::Arc::pin_init
769 #[must_use = "An initializer must be used in order to create its value."]
770 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized {
771     /// Initializes `slot`.
772     ///
773     /// # Safety
774     ///
775     /// - `slot` is a valid pointer to uninitialized memory.
776     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
777     ///   deallocate.
778     /// - `slot` will not move until it is dropped, i.e. it will be pinned.
779     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>;
780 
781     /// First initializes the value using `self` then calls the function `f` with the initialized
782     /// value.
783     ///
784     /// If `f` returns an error the value is dropped and the initializer will forward the error.
785     ///
786     /// # Examples
787     ///
788     /// ```rust
789     /// # #![allow(clippy::disallowed_names)]
790     /// use kernel::{types::Opaque, init::pin_init_from_closure};
791     /// #[repr(C)]
792     /// struct RawFoo([u8; 16]);
793     /// extern {
794     ///     fn init_foo(_: *mut RawFoo);
795     /// }
796     ///
797     /// #[pin_data]
798     /// struct Foo {
799     ///     #[pin]
800     ///     raw: Opaque<RawFoo>,
801     /// }
802     ///
803     /// impl Foo {
804     ///     fn setup(self: Pin<&mut Self>) {
805     ///         pr_info!("Setting up foo");
806     ///     }
807     /// }
808     ///
809     /// let foo = pin_init!(Foo {
810     ///     raw <- unsafe {
811     ///         Opaque::ffi_init(|s| {
812     ///             init_foo(s);
813     ///         })
814     ///     },
815     /// }).pin_chain(|foo| {
816     ///     foo.setup();
817     ///     Ok(())
818     /// });
819     /// ```
820     fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E>
821     where
822         F: FnOnce(Pin<&mut T>) -> Result<(), E>,
823     {
824         ChainPinInit(self, f, PhantomData)
825     }
826 }
827 
828 /// An initializer returned by [`PinInit::pin_chain`].
829 pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>);
830 
831 // SAFETY: The `__pinned_init` function is implemented such that it
832 // - returns `Ok(())` on successful initialization,
833 // - returns `Err(err)` on error and in this case `slot` will be dropped.
834 // - considers `slot` pinned.
835 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E>
836 where
837     I: PinInit<T, E>,
838     F: FnOnce(Pin<&mut T>) -> Result<(), E>,
839 {
840     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
841         // SAFETY: All requirements fulfilled since this function is `__pinned_init`.
842         unsafe { self.0.__pinned_init(slot)? };
843         // SAFETY: The above call initialized `slot` and we still have unique access.
844         let val = unsafe { &mut *slot };
845         // SAFETY: `slot` is considered pinned.
846         let val = unsafe { Pin::new_unchecked(val) };
847         (self.1)(val).map_err(|e| {
848             // SAFETY: `slot` was initialized above.
849             unsafe { core::ptr::drop_in_place(slot) };
850             e
851         })
852     }
853 }
854 
855 /// An initializer for `T`.
856 ///
857 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
858 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the
859 /// [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because
860 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well.
861 ///
862 /// Also see the [module description](self).
863 ///
864 /// # Safety
865 ///
866 /// When implementing this trait you will need to take great care. Also there are probably very few
867 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible.
868 ///
869 /// The [`Init::__init`] function:
870 /// - returns `Ok(())` if it initialized every field of `slot`,
871 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
872 ///     - `slot` can be deallocated without UB occurring,
873 ///     - `slot` does not need to be dropped,
874 ///     - `slot` is not partially initialized.
875 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
876 ///
877 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same
878 /// code as `__init`.
879 ///
880 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to
881 /// move the pointee after initialization.
882 ///
883 /// [`Arc<T>`]: crate::sync::Arc
884 #[must_use = "An initializer must be used in order to create its value."]
885 pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> {
886     /// Initializes `slot`.
887     ///
888     /// # Safety
889     ///
890     /// - `slot` is a valid pointer to uninitialized memory.
891     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
892     ///   deallocate.
893     unsafe fn __init(self, slot: *mut T) -> Result<(), E>;
894 
895     /// First initializes the value using `self` then calls the function `f` with the initialized
896     /// value.
897     ///
898     /// If `f` returns an error the value is dropped and the initializer will forward the error.
899     ///
900     /// # Examples
901     ///
902     /// ```rust
903     /// # #![allow(clippy::disallowed_names)]
904     /// use kernel::{types::Opaque, init::{self, init_from_closure}};
905     /// struct Foo {
906     ///     buf: [u8; 1_000_000],
907     /// }
908     ///
909     /// impl Foo {
910     ///     fn setup(&mut self) {
911     ///         pr_info!("Setting up foo");
912     ///     }
913     /// }
914     ///
915     /// let foo = init!(Foo {
916     ///     buf <- init::zeroed()
917     /// }).chain(|foo| {
918     ///     foo.setup();
919     ///     Ok(())
920     /// });
921     /// ```
922     fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E>
923     where
924         F: FnOnce(&mut T) -> Result<(), E>,
925     {
926         ChainInit(self, f, PhantomData)
927     }
928 }
929 
930 /// An initializer returned by [`Init::chain`].
931 pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>);
932 
933 // SAFETY: The `__init` function is implemented such that it
934 // - returns `Ok(())` on successful initialization,
935 // - returns `Err(err)` on error and in this case `slot` will be dropped.
936 unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E>
937 where
938     I: Init<T, E>,
939     F: FnOnce(&mut T) -> Result<(), E>,
940 {
941     unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
942         // SAFETY: All requirements fulfilled since this function is `__init`.
943         unsafe { self.0.__pinned_init(slot)? };
944         // SAFETY: The above call initialized `slot` and we still have unique access.
945         (self.1)(unsafe { &mut *slot }).map_err(|e| {
946             // SAFETY: `slot` was initialized above.
947             unsafe { core::ptr::drop_in_place(slot) };
948             e
949         })
950     }
951 }
952 
953 // SAFETY: `__pinned_init` behaves exactly the same as `__init`.
954 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E>
955 where
956     I: Init<T, E>,
957     F: FnOnce(&mut T) -> Result<(), E>,
958 {
959     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
960         // SAFETY: `__init` has less strict requirements compared to `__pinned_init`.
961         unsafe { self.__init(slot) }
962     }
963 }
964 
965 /// Creates a new [`PinInit<T, E>`] from the given closure.
966 ///
967 /// # Safety
968 ///
969 /// The closure:
970 /// - returns `Ok(())` if it initialized every field of `slot`,
971 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
972 ///     - `slot` can be deallocated without UB occurring,
973 ///     - `slot` does not need to be dropped,
974 ///     - `slot` is not partially initialized.
975 /// - may assume that the `slot` does not move if `T: !Unpin`,
976 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
977 #[inline]
978 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>(
979     f: impl FnOnce(*mut T) -> Result<(), E>,
980 ) -> impl PinInit<T, E> {
981     __internal::InitClosure(f, PhantomData)
982 }
983 
984 /// Creates a new [`Init<T, E>`] from the given closure.
985 ///
986 /// # Safety
987 ///
988 /// The closure:
989 /// - returns `Ok(())` if it initialized every field of `slot`,
990 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
991 ///     - `slot` can be deallocated without UB occurring,
992 ///     - `slot` does not need to be dropped,
993 ///     - `slot` is not partially initialized.
994 /// - the `slot` may move after initialization.
995 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
996 #[inline]
997 pub const unsafe fn init_from_closure<T: ?Sized, E>(
998     f: impl FnOnce(*mut T) -> Result<(), E>,
999 ) -> impl Init<T, E> {
1000     __internal::InitClosure(f, PhantomData)
1001 }
1002 
1003 /// An initializer that leaves the memory uninitialized.
1004 ///
1005 /// The initializer is a no-op. The `slot` memory is not changed.
1006 #[inline]
1007 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> {
1008     // SAFETY: The memory is allowed to be uninitialized.
1009     unsafe { init_from_closure(|_| Ok(())) }
1010 }
1011 
1012 /// Initializes an array by initializing each element via the provided initializer.
1013 ///
1014 /// # Examples
1015 ///
1016 /// ```rust
1017 /// use kernel::{error::Error, init::init_array_from_fn};
1018 /// let array: Box<[usize; 1_000]> = Box::init::<Error>(init_array_from_fn(|i| i), GFP_KERNEL).unwrap();
1019 /// assert_eq!(array.len(), 1_000);
1020 /// ```
1021 pub fn init_array_from_fn<I, const N: usize, T, E>(
1022     mut make_init: impl FnMut(usize) -> I,
1023 ) -> impl Init<[T; N], E>
1024 where
1025     I: Init<T, E>,
1026 {
1027     let init = move |slot: *mut [T; N]| {
1028         let slot = slot.cast::<T>();
1029         // Counts the number of initialized elements and when dropped drops that many elements from
1030         // `slot`.
1031         let mut init_count = ScopeGuard::new_with_data(0, |i| {
1032             // We now free every element that has been initialized before.
1033             // SAFETY: The loop initialized exactly the values from 0..i and since we
1034             // return `Err` below, the caller will consider the memory at `slot` as
1035             // uninitialized.
1036             unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1037         });
1038         for i in 0..N {
1039             let init = make_init(i);
1040             // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1041             let ptr = unsafe { slot.add(i) };
1042             // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1043             // requirements.
1044             unsafe { init.__init(ptr) }?;
1045             *init_count += 1;
1046         }
1047         init_count.dismiss();
1048         Ok(())
1049     };
1050     // SAFETY: The initializer above initializes every element of the array. On failure it drops
1051     // any initialized elements and returns `Err`.
1052     unsafe { init_from_closure(init) }
1053 }
1054 
1055 /// Initializes an array by initializing each element via the provided initializer.
1056 ///
1057 /// # Examples
1058 ///
1059 /// ```rust
1060 /// use kernel::{sync::{Arc, Mutex}, init::pin_init_array_from_fn, new_mutex};
1061 /// let array: Arc<[Mutex<usize>; 1_000]> =
1062 ///     Arc::pin_init(pin_init_array_from_fn(|i| new_mutex!(i)), GFP_KERNEL).unwrap();
1063 /// assert_eq!(array.len(), 1_000);
1064 /// ```
1065 pub fn pin_init_array_from_fn<I, const N: usize, T, E>(
1066     mut make_init: impl FnMut(usize) -> I,
1067 ) -> impl PinInit<[T; N], E>
1068 where
1069     I: PinInit<T, E>,
1070 {
1071     let init = move |slot: *mut [T; N]| {
1072         let slot = slot.cast::<T>();
1073         // Counts the number of initialized elements and when dropped drops that many elements from
1074         // `slot`.
1075         let mut init_count = ScopeGuard::new_with_data(0, |i| {
1076             // We now free every element that has been initialized before.
1077             // SAFETY: The loop initialized exactly the values from 0..i and since we
1078             // return `Err` below, the caller will consider the memory at `slot` as
1079             // uninitialized.
1080             unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1081         });
1082         for i in 0..N {
1083             let init = make_init(i);
1084             // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1085             let ptr = unsafe { slot.add(i) };
1086             // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1087             // requirements.
1088             unsafe { init.__pinned_init(ptr) }?;
1089             *init_count += 1;
1090         }
1091         init_count.dismiss();
1092         Ok(())
1093     };
1094     // SAFETY: The initializer above initializes every element of the array. On failure it drops
1095     // any initialized elements and returns `Err`.
1096     unsafe { pin_init_from_closure(init) }
1097 }
1098 
1099 // SAFETY: Every type can be initialized by-value.
1100 unsafe impl<T, E> Init<T, E> for T {
1101     unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1102         unsafe { slot.write(self) };
1103         Ok(())
1104     }
1105 }
1106 
1107 // SAFETY: Every type can be initialized by-value. `__pinned_init` calls `__init`.
1108 unsafe impl<T, E> PinInit<T, E> for T {
1109     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1110         unsafe { self.__init(slot) }
1111     }
1112 }
1113 
1114 /// Smart pointer that can initialize memory in-place.
1115 pub trait InPlaceInit<T>: Sized {
1116     /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
1117     /// type.
1118     ///
1119     /// If `T: !Unpin` it will not be able to move afterwards.
1120     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E>
1121     where
1122         E: From<AllocError>;
1123 
1124     /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
1125     /// type.
1126     ///
1127     /// If `T: !Unpin` it will not be able to move afterwards.
1128     fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> error::Result<Pin<Self>>
1129     where
1130         Error: From<E>,
1131     {
1132         // SAFETY: We delegate to `init` and only change the error type.
1133         let init = unsafe {
1134             pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
1135         };
1136         Self::try_pin_init(init, flags)
1137     }
1138 
1139     /// Use the given initializer to in-place initialize a `T`.
1140     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
1141     where
1142         E: From<AllocError>;
1143 
1144     /// Use the given initializer to in-place initialize a `T`.
1145     fn init<E>(init: impl Init<T, E>, flags: Flags) -> error::Result<Self>
1146     where
1147         Error: From<E>,
1148     {
1149         // SAFETY: We delegate to `init` and only change the error type.
1150         let init = unsafe {
1151             init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
1152         };
1153         Self::try_init(init, flags)
1154     }
1155 }
1156 
1157 impl<T> InPlaceInit<T> for Box<T> {
1158     #[inline]
1159     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E>
1160     where
1161         E: From<AllocError>,
1162     {
1163         let mut this = <Box<_> as BoxExt<_>>::new_uninit(flags)?;
1164         let slot = this.as_mut_ptr();
1165         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1166         // slot is valid and will not be moved, because we pin it later.
1167         unsafe { init.__pinned_init(slot)? };
1168         // SAFETY: All fields have been initialized.
1169         Ok(unsafe { this.assume_init() }.into())
1170     }
1171 
1172     #[inline]
1173     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
1174     where
1175         E: From<AllocError>,
1176     {
1177         let mut this = <Box<_> as BoxExt<_>>::new_uninit(flags)?;
1178         let slot = this.as_mut_ptr();
1179         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1180         // slot is valid.
1181         unsafe { init.__init(slot)? };
1182         // SAFETY: All fields have been initialized.
1183         Ok(unsafe { this.assume_init() })
1184     }
1185 }
1186 
1187 impl<T> InPlaceInit<T> for UniqueArc<T> {
1188     #[inline]
1189     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E>
1190     where
1191         E: From<AllocError>,
1192     {
1193         let mut this = UniqueArc::new_uninit(flags)?;
1194         let slot = this.as_mut_ptr();
1195         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1196         // slot is valid and will not be moved, because we pin it later.
1197         unsafe { init.__pinned_init(slot)? };
1198         // SAFETY: All fields have been initialized.
1199         Ok(unsafe { this.assume_init() }.into())
1200     }
1201 
1202     #[inline]
1203     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
1204     where
1205         E: From<AllocError>,
1206     {
1207         let mut this = UniqueArc::new_uninit(flags)?;
1208         let slot = this.as_mut_ptr();
1209         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1210         // slot is valid.
1211         unsafe { init.__init(slot)? };
1212         // SAFETY: All fields have been initialized.
1213         Ok(unsafe { this.assume_init() })
1214     }
1215 }
1216 
1217 /// Trait facilitating pinned destruction.
1218 ///
1219 /// Use [`pinned_drop`] to implement this trait safely:
1220 ///
1221 /// ```rust
1222 /// # use kernel::sync::Mutex;
1223 /// use kernel::macros::pinned_drop;
1224 /// use core::pin::Pin;
1225 /// #[pin_data(PinnedDrop)]
1226 /// struct Foo {
1227 ///     #[pin]
1228 ///     mtx: Mutex<usize>,
1229 /// }
1230 ///
1231 /// #[pinned_drop]
1232 /// impl PinnedDrop for Foo {
1233 ///     fn drop(self: Pin<&mut Self>) {
1234 ///         pr_info!("Foo is being dropped!");
1235 ///     }
1236 /// }
1237 /// ```
1238 ///
1239 /// # Safety
1240 ///
1241 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl.
1242 ///
1243 /// [`pinned_drop`]: kernel::macros::pinned_drop
1244 pub unsafe trait PinnedDrop: __internal::HasPinData {
1245     /// Executes the pinned destructor of this type.
1246     ///
1247     /// While this function is marked safe, it is actually unsafe to call it manually. For this
1248     /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code
1249     /// and thus prevents this function from being called where it should not.
1250     ///
1251     /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute
1252     /// automatically.
1253     fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop);
1254 }
1255 
1256 /// Marker trait for types that can be initialized by writing just zeroes.
1257 ///
1258 /// # Safety
1259 ///
1260 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words,
1261 /// this is not UB:
1262 ///
1263 /// ```rust,ignore
1264 /// let val: Self = unsafe { core::mem::zeroed() };
1265 /// ```
1266 pub unsafe trait Zeroable {}
1267 
1268 /// Create a new zeroed T.
1269 ///
1270 /// The returned initializer will write `0x00` to every byte of the given `slot`.
1271 #[inline]
1272 pub fn zeroed<T: Zeroable>() -> impl Init<T> {
1273     // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T`
1274     // and because we write all zeroes, the memory is initialized.
1275     unsafe {
1276         init_from_closure(|slot: *mut T| {
1277             slot.write_bytes(0, 1);
1278             Ok(())
1279         })
1280     }
1281 }
1282 
1283 macro_rules! impl_zeroable {
1284     ($($({$($generics:tt)*})? $t:ty, )*) => {
1285         $(unsafe impl$($($generics)*)? Zeroable for $t {})*
1286     };
1287 }
1288 
1289 impl_zeroable! {
1290     // SAFETY: All primitives that are allowed to be zero.
1291     bool,
1292     char,
1293     u8, u16, u32, u64, u128, usize,
1294     i8, i16, i32, i64, i128, isize,
1295     f32, f64,
1296 
1297     // SAFETY: These are ZSTs, there is nothing to zero.
1298     {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, Infallible, (),
1299 
1300     // SAFETY: Type is allowed to take any value, including all zeros.
1301     {<T>} MaybeUninit<T>,
1302     // SAFETY: Type is allowed to take any value, including all zeros.
1303     {<T>} Opaque<T>,
1304 
1305     // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`.
1306     {<T: ?Sized + Zeroable>} UnsafeCell<T>,
1307 
1308     // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
1309     Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>,
1310     Option<NonZeroU128>, Option<NonZeroUsize>,
1311     Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>,
1312     Option<NonZeroI128>, Option<NonZeroIsize>,
1313 
1314     // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
1315     //
1316     // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant.
1317     {<T: ?Sized>} Option<NonNull<T>>,
1318     {<T: ?Sized>} Option<Box<T>>,
1319 
1320     // SAFETY: `null` pointer is valid.
1321     //
1322     // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be
1323     // null.
1324     //
1325     // When `Pointee` gets stabilized, we could use
1326     // `T: ?Sized where <T as Pointee>::Metadata: Zeroable`
1327     {<T>} *mut T, {<T>} *const T,
1328 
1329     // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be
1330     // zero.
1331     {<T>} *mut [T], {<T>} *const [T], *mut str, *const str,
1332 
1333     // SAFETY: `T` is `Zeroable`.
1334     {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>,
1335 }
1336 
1337 macro_rules! impl_tuple_zeroable {
1338     ($(,)?) => {};
1339     ($first:ident, $($t:ident),* $(,)?) => {
1340         // SAFETY: All elements are zeroable and padding can be zero.
1341         unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {}
1342         impl_tuple_zeroable!($($t),* ,);
1343     }
1344 }
1345 
1346 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J);
1347