xref: /linux-6.15/rust/kernel/init.rs (revision 7eeb0e7a)
1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2 
3 //! API to safely and fallibly initialize pinned `struct`s using in-place constructors.
4 //!
5 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack
6 //! overflow.
7 //!
8 //! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential
9 //! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move.
10 //!
11 //! # Overview
12 //!
13 //! To initialize a `struct` with an in-place constructor you will need two things:
14 //! - an in-place constructor,
15 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
16 //!   [`UniqueArc<T>`], [`KBox<T>`] or any other smart pointer that implements [`InPlaceInit`]).
17 //!
18 //! To get an in-place constructor there are generally three options:
19 //! - directly creating an in-place constructor using the [`pin_init!`] macro,
20 //! - a custom function/macro returning an in-place constructor provided by someone else,
21 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
22 //!
23 //! Aside from pinned initialization, this API also supports in-place construction without pinning,
24 //! the macros/types/functions are generally named like the pinned variants without the `pin`
25 //! prefix.
26 //!
27 //! # Examples
28 //!
29 //! ## Using the [`pin_init!`] macro
30 //!
31 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with
32 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
33 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
34 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
35 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
36 //!
37 //! ```rust
38 //! # #![expect(clippy::disallowed_names)]
39 //! use kernel::sync::{new_mutex, Mutex};
40 //! # use core::pin::Pin;
41 //! #[pin_data]
42 //! struct Foo {
43 //!     #[pin]
44 //!     a: Mutex<usize>,
45 //!     b: u32,
46 //! }
47 //!
48 //! let foo = pin_init!(Foo {
49 //!     a <- new_mutex!(42, "Foo::a"),
50 //!     b: 24,
51 //! });
52 //! ```
53 //!
54 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
55 //! (or just the stack) to actually initialize a `Foo`:
56 //!
57 //! ```rust
58 //! # #![expect(clippy::disallowed_names)]
59 //! # use kernel::sync::{new_mutex, Mutex};
60 //! # use core::pin::Pin;
61 //! # #[pin_data]
62 //! # struct Foo {
63 //! #     #[pin]
64 //! #     a: Mutex<usize>,
65 //! #     b: u32,
66 //! # }
67 //! # let foo = pin_init!(Foo {
68 //! #     a <- new_mutex!(42, "Foo::a"),
69 //! #     b: 24,
70 //! # });
71 //! let foo: Result<Pin<KBox<Foo>>> = KBox::pin_init(foo, GFP_KERNEL);
72 //! ```
73 //!
74 //! For more information see the [`pin_init!`] macro.
75 //!
76 //! ## Using a custom function/macro that returns an initializer
77 //!
78 //! Many types from the kernel supply a function/macro that returns an initializer, because the
79 //! above method only works for types where you can access the fields.
80 //!
81 //! ```rust
82 //! # use kernel::sync::{new_mutex, Arc, Mutex};
83 //! let mtx: Result<Arc<Mutex<usize>>> =
84 //!     Arc::pin_init(new_mutex!(42, "example::mtx"), GFP_KERNEL);
85 //! ```
86 //!
87 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
88 //!
89 //! ```rust
90 //! # use kernel::{sync::Mutex, new_mutex, init::PinInit, try_pin_init};
91 //! #[pin_data]
92 //! struct DriverData {
93 //!     #[pin]
94 //!     status: Mutex<i32>,
95 //!     buffer: KBox<[u8; 1_000_000]>,
96 //! }
97 //!
98 //! impl DriverData {
99 //!     fn new() -> impl PinInit<Self, Error> {
100 //!         try_pin_init!(Self {
101 //!             status <- new_mutex!(0, "DriverData::status"),
102 //!             buffer: KBox::init(kernel::init::zeroed(), GFP_KERNEL)?,
103 //!         })
104 //!     }
105 //! }
106 //! ```
107 //!
108 //! ## Manual creation of an initializer
109 //!
110 //! Often when working with primitives the previous approaches are not sufficient. That is where
111 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
112 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
113 //! actually does the initialization in the correct way. Here are the things to look out for
114 //! (we are calling the parameter to the closure `slot`):
115 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so
116 //!   `slot` now contains a valid bit pattern for the type `T`,
117 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
118 //!   you need to take care to clean up anything if your initialization fails mid-way,
119 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of
120 //!   `slot` gets called.
121 //!
122 //! ```rust
123 //! # #![expect(unreachable_pub, clippy::disallowed_names)]
124 //! use kernel::{init, types::Opaque};
125 //! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin};
126 //! # mod bindings {
127 //! #     #![expect(non_camel_case_types)]
128 //! #     #![expect(clippy::missing_safety_doc)]
129 //! #     pub struct foo;
130 //! #     pub unsafe fn init_foo(_ptr: *mut foo) {}
131 //! #     pub unsafe fn destroy_foo(_ptr: *mut foo) {}
132 //! #     pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 }
133 //! # }
134 //! # // `Error::from_errno` is `pub(crate)` in the `kernel` crate, thus provide a workaround.
135 //! # trait FromErrno {
136 //! #     fn from_errno(errno: kernel::ffi::c_int) -> Error {
137 //! #         // Dummy error that can be constructed outside the `kernel` crate.
138 //! #         Error::from(core::fmt::Error)
139 //! #     }
140 //! # }
141 //! # impl FromErrno for Error {}
142 //! /// # Invariants
143 //! ///
144 //! /// `foo` is always initialized
145 //! #[pin_data(PinnedDrop)]
146 //! pub struct RawFoo {
147 //!     #[pin]
148 //!     foo: Opaque<bindings::foo>,
149 //!     #[pin]
150 //!     _p: PhantomPinned,
151 //! }
152 //!
153 //! impl RawFoo {
154 //!     pub fn new(flags: u32) -> impl PinInit<Self, Error> {
155 //!         // SAFETY:
156 //!         // - when the closure returns `Ok(())`, then it has successfully initialized and
157 //!         //   enabled `foo`,
158 //!         // - when it returns `Err(e)`, then it has cleaned up before
159 //!         unsafe {
160 //!             init::pin_init_from_closure(move |slot: *mut Self| {
161 //!                 // `slot` contains uninit memory, avoid creating a reference.
162 //!                 let foo = addr_of_mut!((*slot).foo);
163 //!
164 //!                 // Initialize the `foo`
165 //!                 bindings::init_foo(Opaque::raw_get(foo));
166 //!
167 //!                 // Try to enable it.
168 //!                 let err = bindings::enable_foo(Opaque::raw_get(foo), flags);
169 //!                 if err != 0 {
170 //!                     // Enabling has failed, first clean up the foo and then return the error.
171 //!                     bindings::destroy_foo(Opaque::raw_get(foo));
172 //!                     return Err(Error::from_errno(err));
173 //!                 }
174 //!
175 //!                 // All fields of `RawFoo` have been initialized, since `_p` is a ZST.
176 //!                 Ok(())
177 //!             })
178 //!         }
179 //!     }
180 //! }
181 //!
182 //! #[pinned_drop]
183 //! impl PinnedDrop for RawFoo {
184 //!     fn drop(self: Pin<&mut Self>) {
185 //!         // SAFETY: Since `foo` is initialized, destroying is safe.
186 //!         unsafe { bindings::destroy_foo(self.foo.get()) };
187 //!     }
188 //! }
189 //! ```
190 //!
191 //! For the special case where initializing a field is a single FFI-function call that cannot fail,
192 //! there exist the helper function [`Opaque::ffi_init`]. This function initialize a single
193 //! [`Opaque`] field by just delegating to the supplied closure. You can use these in combination
194 //! with [`pin_init!`].
195 //!
196 //! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside
197 //! the `kernel` crate. The [`sync`] module is a good starting point.
198 //!
199 //! [`sync`]: kernel::sync
200 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html
201 //! [structurally pinned fields]:
202 //!     https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field
203 //! [stack]: crate::stack_pin_init
204 //! [`Arc<T>`]: crate::sync::Arc
205 //! [`impl PinInit<Foo>`]: PinInit
206 //! [`impl PinInit<T, E>`]: PinInit
207 //! [`impl Init<T, E>`]: Init
208 //! [`Opaque`]: kernel::types::Opaque
209 //! [`Opaque::ffi_init`]: kernel::types::Opaque::ffi_init
210 //! [`pin_data`]: ::macros::pin_data
211 //! [`pin_init!`]: crate::pin_init!
212 
213 use crate::{
214     alloc::{AllocError, Flags, KBox},
215     error::{self, Error},
216     sync::Arc,
217     sync::UniqueArc,
218     types::{Opaque, ScopeGuard},
219 };
220 use core::{
221     cell::UnsafeCell,
222     convert::Infallible,
223     marker::PhantomData,
224     mem::MaybeUninit,
225     num::*,
226     pin::Pin,
227     ptr::{self, NonNull},
228 };
229 
230 #[doc(hidden)]
231 pub mod __internal;
232 #[doc(hidden)]
233 pub mod macros;
234 
235 /// Initialize and pin a type directly on the stack.
236 ///
237 /// # Examples
238 ///
239 /// ```rust
240 /// # #![expect(clippy::disallowed_names)]
241 /// # use kernel::{init, macros::pin_data, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex};
242 /// # use core::pin::Pin;
243 /// #[pin_data]
244 /// struct Foo {
245 ///     #[pin]
246 ///     a: Mutex<usize>,
247 ///     b: Bar,
248 /// }
249 ///
250 /// #[pin_data]
251 /// struct Bar {
252 ///     x: u32,
253 /// }
254 ///
255 /// stack_pin_init!(let foo = pin_init!(Foo {
256 ///     a <- new_mutex!(42),
257 ///     b: Bar {
258 ///         x: 64,
259 ///     },
260 /// }));
261 /// let foo: Pin<&mut Foo> = foo;
262 /// pr_info!("a: {}", &*foo.a.lock());
263 /// ```
264 ///
265 /// # Syntax
266 ///
267 /// A normal `let` binding with optional type annotation. The expression is expected to implement
268 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error
269 /// type, then use [`stack_try_pin_init!`].
270 ///
271 /// [`stack_try_pin_init!`]: crate::stack_try_pin_init!
272 #[macro_export]
273 macro_rules! stack_pin_init {
274     (let $var:ident $(: $t:ty)? = $val:expr) => {
275         let val = $val;
276         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
277         let mut $var = match $crate::init::__internal::StackInit::init($var, val) {
278             Ok(res) => res,
279             Err(x) => {
280                 let x: ::core::convert::Infallible = x;
281                 match x {}
282             }
283         };
284     };
285 }
286 
287 /// Initialize and pin a type directly on the stack.
288 ///
289 /// # Examples
290 ///
291 /// ```rust,ignore
292 /// # #![expect(clippy::disallowed_names)]
293 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
294 /// # use macros::pin_data;
295 /// # use core::{alloc::AllocError, pin::Pin};
296 /// #[pin_data]
297 /// struct Foo {
298 ///     #[pin]
299 ///     a: Mutex<usize>,
300 ///     b: KBox<Bar>,
301 /// }
302 ///
303 /// struct Bar {
304 ///     x: u32,
305 /// }
306 ///
307 /// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo {
308 ///     a <- new_mutex!(42),
309 ///     b: KBox::new(Bar {
310 ///         x: 64,
311 ///     }, GFP_KERNEL)?,
312 /// }));
313 /// let foo = foo.unwrap();
314 /// pr_info!("a: {}", &*foo.a.lock());
315 /// ```
316 ///
317 /// ```rust,ignore
318 /// # #![expect(clippy::disallowed_names)]
319 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
320 /// # use macros::pin_data;
321 /// # use core::{alloc::AllocError, pin::Pin};
322 /// #[pin_data]
323 /// struct Foo {
324 ///     #[pin]
325 ///     a: Mutex<usize>,
326 ///     b: KBox<Bar>,
327 /// }
328 ///
329 /// struct Bar {
330 ///     x: u32,
331 /// }
332 ///
333 /// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo {
334 ///     a <- new_mutex!(42),
335 ///     b: KBox::new(Bar {
336 ///         x: 64,
337 ///     }, GFP_KERNEL)?,
338 /// }));
339 /// pr_info!("a: {}", &*foo.a.lock());
340 /// # Ok::<_, AllocError>(())
341 /// ```
342 ///
343 /// # Syntax
344 ///
345 /// A normal `let` binding with optional type annotation. The expression is expected to implement
346 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the
347 /// `=` will propagate this error.
348 #[macro_export]
349 macro_rules! stack_try_pin_init {
350     (let $var:ident $(: $t:ty)? = $val:expr) => {
351         let val = $val;
352         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
353         let mut $var = $crate::init::__internal::StackInit::init($var, val);
354     };
355     (let $var:ident $(: $t:ty)? =? $val:expr) => {
356         let val = $val;
357         let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
358         let mut $var = $crate::init::__internal::StackInit::init($var, val)?;
359     };
360 }
361 
362 /// Construct an in-place, pinned initializer for `struct`s.
363 ///
364 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
365 /// [`try_pin_init!`].
366 ///
367 /// The syntax is almost identical to that of a normal `struct` initializer:
368 ///
369 /// ```rust
370 /// # use kernel::{init, pin_init, macros::pin_data, init::*};
371 /// # use core::pin::Pin;
372 /// #[pin_data]
373 /// struct Foo {
374 ///     a: usize,
375 ///     b: Bar,
376 /// }
377 ///
378 /// #[pin_data]
379 /// struct Bar {
380 ///     x: u32,
381 /// }
382 ///
383 /// # fn demo() -> impl PinInit<Foo> {
384 /// let a = 42;
385 ///
386 /// let initializer = pin_init!(Foo {
387 ///     a,
388 ///     b: Bar {
389 ///         x: 64,
390 ///     },
391 /// });
392 /// # initializer }
393 /// # KBox::pin_init(demo(), GFP_KERNEL).unwrap();
394 /// ```
395 ///
396 /// Arbitrary Rust expressions can be used to set the value of a variable.
397 ///
398 /// The fields are initialized in the order that they appear in the initializer. So it is possible
399 /// to read already initialized fields using raw pointers.
400 ///
401 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the
402 /// initializer.
403 ///
404 /// # Init-functions
405 ///
406 /// When working with this API it is often desired to let others construct your types without
407 /// giving access to all fields. This is where you would normally write a plain function `new`
408 /// that would return a new instance of your type. With this API that is also possible.
409 /// However, there are a few extra things to keep in mind.
410 ///
411 /// To create an initializer function, simply declare it like this:
412 ///
413 /// ```rust
414 /// # use kernel::{init, pin_init, init::*};
415 /// # use core::pin::Pin;
416 /// # #[pin_data]
417 /// # struct Foo {
418 /// #     a: usize,
419 /// #     b: Bar,
420 /// # }
421 /// # #[pin_data]
422 /// # struct Bar {
423 /// #     x: u32,
424 /// # }
425 /// impl Foo {
426 ///     fn new() -> impl PinInit<Self> {
427 ///         pin_init!(Self {
428 ///             a: 42,
429 ///             b: Bar {
430 ///                 x: 64,
431 ///             },
432 ///         })
433 ///     }
434 /// }
435 /// ```
436 ///
437 /// Users of `Foo` can now create it like this:
438 ///
439 /// ```rust
440 /// # #![expect(clippy::disallowed_names)]
441 /// # use kernel::{init, pin_init, macros::pin_data, init::*};
442 /// # use core::pin::Pin;
443 /// # #[pin_data]
444 /// # struct Foo {
445 /// #     a: usize,
446 /// #     b: Bar,
447 /// # }
448 /// # #[pin_data]
449 /// # struct Bar {
450 /// #     x: u32,
451 /// # }
452 /// # impl Foo {
453 /// #     fn new() -> impl PinInit<Self> {
454 /// #         pin_init!(Self {
455 /// #             a: 42,
456 /// #             b: Bar {
457 /// #                 x: 64,
458 /// #             },
459 /// #         })
460 /// #     }
461 /// # }
462 /// let foo = KBox::pin_init(Foo::new(), GFP_KERNEL);
463 /// ```
464 ///
465 /// They can also easily embed it into their own `struct`s:
466 ///
467 /// ```rust
468 /// # use kernel::{init, pin_init, macros::pin_data, init::*};
469 /// # use core::pin::Pin;
470 /// # #[pin_data]
471 /// # struct Foo {
472 /// #     a: usize,
473 /// #     b: Bar,
474 /// # }
475 /// # #[pin_data]
476 /// # struct Bar {
477 /// #     x: u32,
478 /// # }
479 /// # impl Foo {
480 /// #     fn new() -> impl PinInit<Self> {
481 /// #         pin_init!(Self {
482 /// #             a: 42,
483 /// #             b: Bar {
484 /// #                 x: 64,
485 /// #             },
486 /// #         })
487 /// #     }
488 /// # }
489 /// #[pin_data]
490 /// struct FooContainer {
491 ///     #[pin]
492 ///     foo1: Foo,
493 ///     #[pin]
494 ///     foo2: Foo,
495 ///     other: u32,
496 /// }
497 ///
498 /// impl FooContainer {
499 ///     fn new(other: u32) -> impl PinInit<Self> {
500 ///         pin_init!(Self {
501 ///             foo1 <- Foo::new(),
502 ///             foo2 <- Foo::new(),
503 ///             other,
504 ///         })
505 ///     }
506 /// }
507 /// ```
508 ///
509 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`.
510 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just
511 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`.
512 ///
513 /// # Syntax
514 ///
515 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with
516 /// the following modifications is expected:
517 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
518 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
519 ///   pointer named `this` inside of the initializer.
520 /// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the
521 ///   struct, this initializes every field with 0 and then runs all initializers specified in the
522 ///   body. This can only be done if [`Zeroable`] is implemented for the struct.
523 ///
524 /// For instance:
525 ///
526 /// ```rust
527 /// # use kernel::{macros::{Zeroable, pin_data}, pin_init};
528 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned};
529 /// #[pin_data]
530 /// #[derive(Zeroable)]
531 /// struct Buf {
532 ///     // `ptr` points into `buf`.
533 ///     ptr: *mut u8,
534 ///     buf: [u8; 64],
535 ///     #[pin]
536 ///     pin: PhantomPinned,
537 /// }
538 /// pin_init!(&this in Buf {
539 ///     buf: [0; 64],
540 ///     // SAFETY: TODO.
541 ///     ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() },
542 ///     pin: PhantomPinned,
543 /// });
544 /// pin_init!(Buf {
545 ///     buf: [1; 64],
546 ///     ..Zeroable::zeroed()
547 /// });
548 /// ```
549 ///
550 /// [`try_pin_init!`]: kernel::try_pin_init
551 /// [`NonNull<Self>`]: core::ptr::NonNull
552 // For a detailed example of how this macro works, see the module documentation of the hidden
553 // module `__internal` inside of `init/__internal.rs`.
554 #[macro_export]
555 macro_rules! pin_init {
556     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
557         $($fields:tt)*
558     }) => {
559         $crate::__init_internal!(
560             @this($($this)?),
561             @typ($t $(::<$($generics),*>)?),
562             @fields($($fields)*),
563             @error(::core::convert::Infallible),
564             @data(PinData, use_data),
565             @has_data(HasPinData, __pin_data),
566             @construct_closure(pin_init_from_closure),
567             @munch_fields($($fields)*),
568         )
569     };
570 }
571 
572 /// Construct an in-place, fallible pinned initializer for `struct`s.
573 ///
574 /// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`].
575 ///
576 /// You can use the `?` operator or use `return Err(err)` inside the initializer to stop
577 /// initialization and return the error.
578 ///
579 /// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when
580 /// initialization fails, the memory can be safely deallocated without any further modifications.
581 ///
582 /// This macro defaults the error to [`Error`].
583 ///
584 /// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type`
585 /// after the `struct` initializer to specify the error type you want to use.
586 ///
587 /// # Examples
588 ///
589 /// ```rust
590 /// use kernel::{init::{self, PinInit}, error::Error};
591 /// #[pin_data]
592 /// struct BigBuf {
593 ///     big: KBox<[u8; 1024 * 1024 * 1024]>,
594 ///     small: [u8; 1024 * 1024],
595 ///     ptr: *mut u8,
596 /// }
597 ///
598 /// impl BigBuf {
599 ///     fn new() -> impl PinInit<Self, Error> {
600 ///         try_pin_init!(Self {
601 ///             big: KBox::init(init::zeroed(), GFP_KERNEL)?,
602 ///             small: [0; 1024 * 1024],
603 ///             ptr: core::ptr::null_mut(),
604 ///         }? Error)
605 ///     }
606 /// }
607 /// ```
608 // For a detailed example of how this macro works, see the module documentation of the hidden
609 // module `__internal` inside of `init/__internal.rs`.
610 #[macro_export]
611 macro_rules! try_pin_init {
612     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
613         $($fields:tt)*
614     }) => {
615         $crate::__init_internal!(
616             @this($($this)?),
617             @typ($t $(::<$($generics),*>)? ),
618             @fields($($fields)*),
619             @error($crate::error::Error),
620             @data(PinData, use_data),
621             @has_data(HasPinData, __pin_data),
622             @construct_closure(pin_init_from_closure),
623             @munch_fields($($fields)*),
624         )
625     };
626     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
627         $($fields:tt)*
628     }? $err:ty) => {
629         $crate::__init_internal!(
630             @this($($this)?),
631             @typ($t $(::<$($generics),*>)? ),
632             @fields($($fields)*),
633             @error($err),
634             @data(PinData, use_data),
635             @has_data(HasPinData, __pin_data),
636             @construct_closure(pin_init_from_closure),
637             @munch_fields($($fields)*),
638         )
639     };
640 }
641 
642 /// Construct an in-place initializer for `struct`s.
643 ///
644 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
645 /// [`try_init!`].
646 ///
647 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply:
648 /// - `unsafe` code must guarantee either full initialization or return an error and allow
649 ///   deallocation of the memory.
650 /// - the fields are initialized in the order given in the initializer.
651 /// - no references to fields are allowed to be created inside of the initializer.
652 ///
653 /// This initializer is for initializing data in-place that might later be moved. If you want to
654 /// pin-initialize, use [`pin_init!`].
655 ///
656 /// [`try_init!`]: crate::try_init!
657 // For a detailed example of how this macro works, see the module documentation of the hidden
658 // module `__internal` inside of `init/__internal.rs`.
659 #[macro_export]
660 macro_rules! init {
661     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
662         $($fields:tt)*
663     }) => {
664         $crate::__init_internal!(
665             @this($($this)?),
666             @typ($t $(::<$($generics),*>)?),
667             @fields($($fields)*),
668             @error(::core::convert::Infallible),
669             @data(InitData, /*no use_data*/),
670             @has_data(HasInitData, __init_data),
671             @construct_closure(init_from_closure),
672             @munch_fields($($fields)*),
673         )
674     }
675 }
676 
677 /// Construct an in-place fallible initializer for `struct`s.
678 ///
679 /// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use
680 /// [`init!`].
681 ///
682 /// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error,
683 /// append `? $type` after the `struct` initializer.
684 /// The safety caveats from [`try_pin_init!`] also apply:
685 /// - `unsafe` code must guarantee either full initialization or return an error and allow
686 ///   deallocation of the memory.
687 /// - the fields are initialized in the order given in the initializer.
688 /// - no references to fields are allowed to be created inside of the initializer.
689 ///
690 /// # Examples
691 ///
692 /// ```rust
693 /// use kernel::{alloc::KBox, init::{PinInit, zeroed}, error::Error};
694 /// struct BigBuf {
695 ///     big: KBox<[u8; 1024 * 1024 * 1024]>,
696 ///     small: [u8; 1024 * 1024],
697 /// }
698 ///
699 /// impl BigBuf {
700 ///     fn new() -> impl Init<Self, Error> {
701 ///         try_init!(Self {
702 ///             big: KBox::init(zeroed(), GFP_KERNEL)?,
703 ///             small: [0; 1024 * 1024],
704 ///         }? Error)
705 ///     }
706 /// }
707 /// ```
708 // For a detailed example of how this macro works, see the module documentation of the hidden
709 // module `__internal` inside of `init/__internal.rs`.
710 #[macro_export]
711 macro_rules! try_init {
712     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
713         $($fields:tt)*
714     }) => {
715         $crate::__init_internal!(
716             @this($($this)?),
717             @typ($t $(::<$($generics),*>)?),
718             @fields($($fields)*),
719             @error($crate::error::Error),
720             @data(InitData, /*no use_data*/),
721             @has_data(HasInitData, __init_data),
722             @construct_closure(init_from_closure),
723             @munch_fields($($fields)*),
724         )
725     };
726     ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
727         $($fields:tt)*
728     }? $err:ty) => {
729         $crate::__init_internal!(
730             @this($($this)?),
731             @typ($t $(::<$($generics),*>)?),
732             @fields($($fields)*),
733             @error($err),
734             @data(InitData, /*no use_data*/),
735             @has_data(HasInitData, __init_data),
736             @construct_closure(init_from_closure),
737             @munch_fields($($fields)*),
738         )
739     };
740 }
741 
742 /// Asserts that a field on a struct using `#[pin_data]` is marked with `#[pin]` ie. that it is
743 /// structurally pinned.
744 ///
745 /// # Example
746 ///
747 /// This will succeed:
748 /// ```
749 /// use kernel::assert_pinned;
750 /// #[pin_data]
751 /// struct MyStruct {
752 ///     #[pin]
753 ///     some_field: u64,
754 /// }
755 ///
756 /// assert_pinned!(MyStruct, some_field, u64);
757 /// ```
758 ///
759 /// This will fail:
760 // TODO: replace with `compile_fail` when supported.
761 /// ```ignore
762 /// use kernel::assert_pinned;
763 /// #[pin_data]
764 /// struct MyStruct {
765 ///     some_field: u64,
766 /// }
767 ///
768 /// assert_pinned!(MyStruct, some_field, u64);
769 /// ```
770 ///
771 /// Some uses of the macro may trigger the `can't use generic parameters from outer item` error. To
772 /// work around this, you may pass the `inline` parameter to the macro. The `inline` parameter can
773 /// only be used when the macro is invoked from a function body.
774 /// ```
775 /// use kernel::assert_pinned;
776 /// #[pin_data]
777 /// struct Foo<T> {
778 ///     #[pin]
779 ///     elem: T,
780 /// }
781 ///
782 /// impl<T> Foo<T> {
783 ///     fn project(self: Pin<&mut Self>) -> Pin<&mut T> {
784 ///         assert_pinned!(Foo<T>, elem, T, inline);
785 ///
786 ///         // SAFETY: The field is structurally pinned.
787 ///         unsafe { self.map_unchecked_mut(|me| &mut me.elem) }
788 ///     }
789 /// }
790 /// ```
791 #[macro_export]
792 macro_rules! assert_pinned {
793     ($ty:ty, $field:ident, $field_ty:ty, inline) => {
794         let _ = move |ptr: *mut $field_ty| {
795             // SAFETY: This code is unreachable.
796             let data = unsafe { <$ty as $crate::init::__internal::HasPinData>::__pin_data() };
797             let init = $crate::init::__internal::AlwaysFail::<$field_ty>::new();
798             // SAFETY: This code is unreachable.
799             unsafe { data.$field(ptr, init) }.ok();
800         };
801     };
802 
803     ($ty:ty, $field:ident, $field_ty:ty) => {
804         const _: () = {
805             $crate::assert_pinned!($ty, $field, $field_ty, inline);
806         };
807     };
808 }
809 
810 /// A pin-initializer for the type `T`.
811 ///
812 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
813 /// be [`KBox<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use
814 /// the [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this.
815 ///
816 /// Also see the [module description](self).
817 ///
818 /// # Safety
819 ///
820 /// When implementing this trait you will need to take great care. Also there are probably very few
821 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible.
822 ///
823 /// The [`PinInit::__pinned_init`] function:
824 /// - returns `Ok(())` if it initialized every field of `slot`,
825 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
826 ///     - `slot` can be deallocated without UB occurring,
827 ///     - `slot` does not need to be dropped,
828 ///     - `slot` is not partially initialized.
829 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
830 ///
831 /// [`Arc<T>`]: crate::sync::Arc
832 /// [`Arc::pin_init`]: crate::sync::Arc::pin_init
833 #[must_use = "An initializer must be used in order to create its value."]
834 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized {
835     /// Initializes `slot`.
836     ///
837     /// # Safety
838     ///
839     /// - `slot` is a valid pointer to uninitialized memory.
840     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
841     ///   deallocate.
842     /// - `slot` will not move until it is dropped, i.e. it will be pinned.
843     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>;
844 
845     /// First initializes the value using `self` then calls the function `f` with the initialized
846     /// value.
847     ///
848     /// If `f` returns an error the value is dropped and the initializer will forward the error.
849     ///
850     /// # Examples
851     ///
852     /// ```rust
853     /// # #![expect(clippy::disallowed_names)]
854     /// use kernel::{types::Opaque, init::pin_init_from_closure};
855     /// #[repr(C)]
856     /// struct RawFoo([u8; 16]);
857     /// extern {
858     ///     fn init_foo(_: *mut RawFoo);
859     /// }
860     ///
861     /// #[pin_data]
862     /// struct Foo {
863     ///     #[pin]
864     ///     raw: Opaque<RawFoo>,
865     /// }
866     ///
867     /// impl Foo {
868     ///     fn setup(self: Pin<&mut Self>) {
869     ///         pr_info!("Setting up foo");
870     ///     }
871     /// }
872     ///
873     /// let foo = pin_init!(Foo {
874     ///     // SAFETY: TODO.
875     ///     raw <- unsafe {
876     ///         Opaque::ffi_init(|s| {
877     ///             init_foo(s);
878     ///         })
879     ///     },
880     /// }).pin_chain(|foo| {
881     ///     foo.setup();
882     ///     Ok(())
883     /// });
884     /// ```
885     fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E>
886     where
887         F: FnOnce(Pin<&mut T>) -> Result<(), E>,
888     {
889         ChainPinInit(self, f, PhantomData)
890     }
891 }
892 
893 /// An initializer returned by [`PinInit::pin_chain`].
894 pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, KBox<T>)>);
895 
896 // SAFETY: The `__pinned_init` function is implemented such that it
897 // - returns `Ok(())` on successful initialization,
898 // - returns `Err(err)` on error and in this case `slot` will be dropped.
899 // - considers `slot` pinned.
900 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E>
901 where
902     I: PinInit<T, E>,
903     F: FnOnce(Pin<&mut T>) -> Result<(), E>,
904 {
905     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
906         // SAFETY: All requirements fulfilled since this function is `__pinned_init`.
907         unsafe { self.0.__pinned_init(slot)? };
908         // SAFETY: The above call initialized `slot` and we still have unique access.
909         let val = unsafe { &mut *slot };
910         // SAFETY: `slot` is considered pinned.
911         let val = unsafe { Pin::new_unchecked(val) };
912         // SAFETY: `slot` was initialized above.
913         (self.1)(val).inspect_err(|_| unsafe { core::ptr::drop_in_place(slot) })
914     }
915 }
916 
917 /// An initializer for `T`.
918 ///
919 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can
920 /// be [`KBox<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use
921 /// the [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because
922 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well.
923 ///
924 /// Also see the [module description](self).
925 ///
926 /// # Safety
927 ///
928 /// When implementing this trait you will need to take great care. Also there are probably very few
929 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible.
930 ///
931 /// The [`Init::__init`] function:
932 /// - returns `Ok(())` if it initialized every field of `slot`,
933 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
934 ///     - `slot` can be deallocated without UB occurring,
935 ///     - `slot` does not need to be dropped,
936 ///     - `slot` is not partially initialized.
937 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
938 ///
939 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same
940 /// code as `__init`.
941 ///
942 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to
943 /// move the pointee after initialization.
944 ///
945 /// [`Arc<T>`]: crate::sync::Arc
946 #[must_use = "An initializer must be used in order to create its value."]
947 pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> {
948     /// Initializes `slot`.
949     ///
950     /// # Safety
951     ///
952     /// - `slot` is a valid pointer to uninitialized memory.
953     /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to
954     ///   deallocate.
955     unsafe fn __init(self, slot: *mut T) -> Result<(), E>;
956 
957     /// First initializes the value using `self` then calls the function `f` with the initialized
958     /// value.
959     ///
960     /// If `f` returns an error the value is dropped and the initializer will forward the error.
961     ///
962     /// # Examples
963     ///
964     /// ```rust
965     /// # #![expect(clippy::disallowed_names)]
966     /// use kernel::{types::Opaque, init::{self, init_from_closure}};
967     /// struct Foo {
968     ///     buf: [u8; 1_000_000],
969     /// }
970     ///
971     /// impl Foo {
972     ///     fn setup(&mut self) {
973     ///         pr_info!("Setting up foo");
974     ///     }
975     /// }
976     ///
977     /// let foo = init!(Foo {
978     ///     buf <- init::zeroed()
979     /// }).chain(|foo| {
980     ///     foo.setup();
981     ///     Ok(())
982     /// });
983     /// ```
984     fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E>
985     where
986         F: FnOnce(&mut T) -> Result<(), E>,
987     {
988         ChainInit(self, f, PhantomData)
989     }
990 }
991 
992 /// An initializer returned by [`Init::chain`].
993 pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, KBox<T>)>);
994 
995 // SAFETY: The `__init` function is implemented such that it
996 // - returns `Ok(())` on successful initialization,
997 // - returns `Err(err)` on error and in this case `slot` will be dropped.
998 unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E>
999 where
1000     I: Init<T, E>,
1001     F: FnOnce(&mut T) -> Result<(), E>,
1002 {
1003     unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1004         // SAFETY: All requirements fulfilled since this function is `__init`.
1005         unsafe { self.0.__pinned_init(slot)? };
1006         // SAFETY: The above call initialized `slot` and we still have unique access.
1007         (self.1)(unsafe { &mut *slot }).inspect_err(|_|
1008             // SAFETY: `slot` was initialized above.
1009             unsafe { core::ptr::drop_in_place(slot) })
1010     }
1011 }
1012 
1013 // SAFETY: `__pinned_init` behaves exactly the same as `__init`.
1014 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E>
1015 where
1016     I: Init<T, E>,
1017     F: FnOnce(&mut T) -> Result<(), E>,
1018 {
1019     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1020         // SAFETY: `__init` has less strict requirements compared to `__pinned_init`.
1021         unsafe { self.__init(slot) }
1022     }
1023 }
1024 
1025 /// Creates a new [`PinInit<T, E>`] from the given closure.
1026 ///
1027 /// # Safety
1028 ///
1029 /// The closure:
1030 /// - returns `Ok(())` if it initialized every field of `slot`,
1031 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1032 ///     - `slot` can be deallocated without UB occurring,
1033 ///     - `slot` does not need to be dropped,
1034 ///     - `slot` is not partially initialized.
1035 /// - may assume that the `slot` does not move if `T: !Unpin`,
1036 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1037 #[inline]
1038 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>(
1039     f: impl FnOnce(*mut T) -> Result<(), E>,
1040 ) -> impl PinInit<T, E> {
1041     __internal::InitClosure(f, PhantomData)
1042 }
1043 
1044 /// Creates a new [`Init<T, E>`] from the given closure.
1045 ///
1046 /// # Safety
1047 ///
1048 /// The closure:
1049 /// - returns `Ok(())` if it initialized every field of `slot`,
1050 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means:
1051 ///     - `slot` can be deallocated without UB occurring,
1052 ///     - `slot` does not need to be dropped,
1053 ///     - `slot` is not partially initialized.
1054 /// - the `slot` may move after initialization.
1055 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`.
1056 #[inline]
1057 pub const unsafe fn init_from_closure<T: ?Sized, E>(
1058     f: impl FnOnce(*mut T) -> Result<(), E>,
1059 ) -> impl Init<T, E> {
1060     __internal::InitClosure(f, PhantomData)
1061 }
1062 
1063 /// An initializer that leaves the memory uninitialized.
1064 ///
1065 /// The initializer is a no-op. The `slot` memory is not changed.
1066 #[inline]
1067 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> {
1068     // SAFETY: The memory is allowed to be uninitialized.
1069     unsafe { init_from_closure(|_| Ok(())) }
1070 }
1071 
1072 /// Initializes an array by initializing each element via the provided initializer.
1073 ///
1074 /// # Examples
1075 ///
1076 /// ```rust
1077 /// use kernel::{alloc::KBox, error::Error, init::init_array_from_fn};
1078 /// let array: KBox<[usize; 1_000]> =
1079 ///     KBox::init::<Error>(init_array_from_fn(|i| i), GFP_KERNEL)?;
1080 /// assert_eq!(array.len(), 1_000);
1081 /// # Ok::<(), Error>(())
1082 /// ```
1083 pub fn init_array_from_fn<I, const N: usize, T, E>(
1084     mut make_init: impl FnMut(usize) -> I,
1085 ) -> impl Init<[T; N], E>
1086 where
1087     I: Init<T, E>,
1088 {
1089     let init = move |slot: *mut [T; N]| {
1090         let slot = slot.cast::<T>();
1091         // Counts the number of initialized elements and when dropped drops that many elements from
1092         // `slot`.
1093         let mut init_count = ScopeGuard::new_with_data(0, |i| {
1094             // We now free every element that has been initialized before.
1095             // SAFETY: The loop initialized exactly the values from 0..i and since we
1096             // return `Err` below, the caller will consider the memory at `slot` as
1097             // uninitialized.
1098             unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1099         });
1100         for i in 0..N {
1101             let init = make_init(i);
1102             // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1103             let ptr = unsafe { slot.add(i) };
1104             // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1105             // requirements.
1106             unsafe { init.__init(ptr) }?;
1107             *init_count += 1;
1108         }
1109         init_count.dismiss();
1110         Ok(())
1111     };
1112     // SAFETY: The initializer above initializes every element of the array. On failure it drops
1113     // any initialized elements and returns `Err`.
1114     unsafe { init_from_closure(init) }
1115 }
1116 
1117 /// Initializes an array by initializing each element via the provided initializer.
1118 ///
1119 /// # Examples
1120 ///
1121 /// ```rust
1122 /// use kernel::{sync::{Arc, Mutex}, init::pin_init_array_from_fn, new_mutex};
1123 /// let array: Arc<[Mutex<usize>; 1_000]> =
1124 ///     Arc::pin_init(pin_init_array_from_fn(|i| new_mutex!(i)), GFP_KERNEL)?;
1125 /// assert_eq!(array.len(), 1_000);
1126 /// # Ok::<(), Error>(())
1127 /// ```
1128 pub fn pin_init_array_from_fn<I, const N: usize, T, E>(
1129     mut make_init: impl FnMut(usize) -> I,
1130 ) -> impl PinInit<[T; N], E>
1131 where
1132     I: PinInit<T, E>,
1133 {
1134     let init = move |slot: *mut [T; N]| {
1135         let slot = slot.cast::<T>();
1136         // Counts the number of initialized elements and when dropped drops that many elements from
1137         // `slot`.
1138         let mut init_count = ScopeGuard::new_with_data(0, |i| {
1139             // We now free every element that has been initialized before.
1140             // SAFETY: The loop initialized exactly the values from 0..i and since we
1141             // return `Err` below, the caller will consider the memory at `slot` as
1142             // uninitialized.
1143             unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) };
1144         });
1145         for i in 0..N {
1146             let init = make_init(i);
1147             // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`.
1148             let ptr = unsafe { slot.add(i) };
1149             // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init`
1150             // requirements.
1151             unsafe { init.__pinned_init(ptr) }?;
1152             *init_count += 1;
1153         }
1154         init_count.dismiss();
1155         Ok(())
1156     };
1157     // SAFETY: The initializer above initializes every element of the array. On failure it drops
1158     // any initialized elements and returns `Err`.
1159     unsafe { pin_init_from_closure(init) }
1160 }
1161 
1162 // SAFETY: Every type can be initialized by-value.
1163 unsafe impl<T, E> Init<T, E> for T {
1164     unsafe fn __init(self, slot: *mut T) -> Result<(), E> {
1165         // SAFETY: TODO.
1166         unsafe { slot.write(self) };
1167         Ok(())
1168     }
1169 }
1170 
1171 // SAFETY: Every type can be initialized by-value. `__pinned_init` calls `__init`.
1172 unsafe impl<T, E> PinInit<T, E> for T {
1173     unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> {
1174         // SAFETY: TODO.
1175         unsafe { self.__init(slot) }
1176     }
1177 }
1178 
1179 /// Smart pointer that can initialize memory in-place.
1180 pub trait InPlaceInit<T>: Sized {
1181     /// Pinned version of `Self`.
1182     ///
1183     /// If a type already implicitly pins its pointee, `Pin<Self>` is unnecessary. In this case use
1184     /// `Self`, otherwise just use `Pin<Self>`.
1185     type PinnedSelf;
1186 
1187     /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
1188     /// type.
1189     ///
1190     /// If `T: !Unpin` it will not be able to move afterwards.
1191     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
1192     where
1193         E: From<AllocError>;
1194 
1195     /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this
1196     /// type.
1197     ///
1198     /// If `T: !Unpin` it will not be able to move afterwards.
1199     fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> error::Result<Self::PinnedSelf>
1200     where
1201         Error: From<E>,
1202     {
1203         // SAFETY: We delegate to `init` and only change the error type.
1204         let init = unsafe {
1205             pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
1206         };
1207         Self::try_pin_init(init, flags)
1208     }
1209 
1210     /// Use the given initializer to in-place initialize a `T`.
1211     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
1212     where
1213         E: From<AllocError>;
1214 
1215     /// Use the given initializer to in-place initialize a `T`.
1216     fn init<E>(init: impl Init<T, E>, flags: Flags) -> error::Result<Self>
1217     where
1218         Error: From<E>,
1219     {
1220         // SAFETY: We delegate to `init` and only change the error type.
1221         let init = unsafe {
1222             init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e)))
1223         };
1224         Self::try_init(init, flags)
1225     }
1226 }
1227 
1228 impl<T> InPlaceInit<T> for Arc<T> {
1229     type PinnedSelf = Self;
1230 
1231     #[inline]
1232     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
1233     where
1234         E: From<AllocError>,
1235     {
1236         UniqueArc::try_pin_init(init, flags).map(|u| u.into())
1237     }
1238 
1239     #[inline]
1240     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
1241     where
1242         E: From<AllocError>,
1243     {
1244         UniqueArc::try_init(init, flags).map(|u| u.into())
1245     }
1246 }
1247 
1248 impl<T> InPlaceInit<T> for UniqueArc<T> {
1249     type PinnedSelf = Pin<Self>;
1250 
1251     #[inline]
1252     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E>
1253     where
1254         E: From<AllocError>,
1255     {
1256         UniqueArc::new_uninit(flags)?.write_pin_init(init)
1257     }
1258 
1259     #[inline]
1260     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
1261     where
1262         E: From<AllocError>,
1263     {
1264         UniqueArc::new_uninit(flags)?.write_init(init)
1265     }
1266 }
1267 
1268 /// Smart pointer containing uninitialized memory and that can write a value.
1269 pub trait InPlaceWrite<T> {
1270     /// The type `Self` turns into when the contents are initialized.
1271     type Initialized;
1272 
1273     /// Use the given initializer to write a value into `self`.
1274     ///
1275     /// Does not drop the current value and considers it as uninitialized memory.
1276     fn write_init<E>(self, init: impl Init<T, E>) -> Result<Self::Initialized, E>;
1277 
1278     /// Use the given pin-initializer to write a value into `self`.
1279     ///
1280     /// Does not drop the current value and considers it as uninitialized memory.
1281     fn write_pin_init<E>(self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>;
1282 }
1283 
1284 impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> {
1285     type Initialized = UniqueArc<T>;
1286 
1287     fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
1288         let slot = self.as_mut_ptr();
1289         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1290         // slot is valid.
1291         unsafe { init.__init(slot)? };
1292         // SAFETY: All fields have been initialized.
1293         Ok(unsafe { self.assume_init() })
1294     }
1295 
1296     fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
1297         let slot = self.as_mut_ptr();
1298         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
1299         // slot is valid and will not be moved, because we pin it later.
1300         unsafe { init.__pinned_init(slot)? };
1301         // SAFETY: All fields have been initialized.
1302         Ok(unsafe { self.assume_init() }.into())
1303     }
1304 }
1305 
1306 /// Trait facilitating pinned destruction.
1307 ///
1308 /// Use [`pinned_drop`] to implement this trait safely:
1309 ///
1310 /// ```rust
1311 /// # use kernel::sync::Mutex;
1312 /// use kernel::macros::pinned_drop;
1313 /// use core::pin::Pin;
1314 /// #[pin_data(PinnedDrop)]
1315 /// struct Foo {
1316 ///     #[pin]
1317 ///     mtx: Mutex<usize>,
1318 /// }
1319 ///
1320 /// #[pinned_drop]
1321 /// impl PinnedDrop for Foo {
1322 ///     fn drop(self: Pin<&mut Self>) {
1323 ///         pr_info!("Foo is being dropped!");
1324 ///     }
1325 /// }
1326 /// ```
1327 ///
1328 /// # Safety
1329 ///
1330 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl.
1331 ///
1332 /// [`pinned_drop`]: kernel::macros::pinned_drop
1333 pub unsafe trait PinnedDrop: __internal::HasPinData {
1334     /// Executes the pinned destructor of this type.
1335     ///
1336     /// While this function is marked safe, it is actually unsafe to call it manually. For this
1337     /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code
1338     /// and thus prevents this function from being called where it should not.
1339     ///
1340     /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute
1341     /// automatically.
1342     fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop);
1343 }
1344 
1345 /// Marker trait for types that can be initialized by writing just zeroes.
1346 ///
1347 /// # Safety
1348 ///
1349 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words,
1350 /// this is not UB:
1351 ///
1352 /// ```rust,ignore
1353 /// let val: Self = unsafe { core::mem::zeroed() };
1354 /// ```
1355 pub unsafe trait Zeroable {}
1356 
1357 /// Create a new zeroed T.
1358 ///
1359 /// The returned initializer will write `0x00` to every byte of the given `slot`.
1360 #[inline]
1361 pub fn zeroed<T: Zeroable>() -> impl Init<T> {
1362     // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T`
1363     // and because we write all zeroes, the memory is initialized.
1364     unsafe {
1365         init_from_closure(|slot: *mut T| {
1366             slot.write_bytes(0, 1);
1367             Ok(())
1368         })
1369     }
1370 }
1371 
1372 macro_rules! impl_zeroable {
1373     ($($({$($generics:tt)*})? $t:ty, )*) => {
1374         // SAFETY: Safety comments written in the macro invocation.
1375         $(unsafe impl$($($generics)*)? Zeroable for $t {})*
1376     };
1377 }
1378 
1379 impl_zeroable! {
1380     // SAFETY: All primitives that are allowed to be zero.
1381     bool,
1382     char,
1383     u8, u16, u32, u64, u128, usize,
1384     i8, i16, i32, i64, i128, isize,
1385     f32, f64,
1386 
1387     // Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list;
1388     // creating an instance of an uninhabited type is immediate undefined behavior. For more on
1389     // uninhabited/empty types, consult The Rustonomicon:
1390     // <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference
1391     // also has information on undefined behavior:
1392     // <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>.
1393     //
1394     // SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists.
1395     {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (),
1396 
1397     // SAFETY: Type is allowed to take any value, including all zeros.
1398     {<T>} MaybeUninit<T>,
1399     // SAFETY: Type is allowed to take any value, including all zeros.
1400     {<T>} Opaque<T>,
1401 
1402     // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`.
1403     {<T: ?Sized + Zeroable>} UnsafeCell<T>,
1404 
1405     // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
1406     Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>,
1407     Option<NonZeroU128>, Option<NonZeroUsize>,
1408     Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>,
1409     Option<NonZeroI128>, Option<NonZeroIsize>,
1410 
1411     // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee).
1412     //
1413     // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant.
1414     {<T: ?Sized>} Option<NonNull<T>>,
1415     {<T: ?Sized>} Option<KBox<T>>,
1416 
1417     // SAFETY: `null` pointer is valid.
1418     //
1419     // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be
1420     // null.
1421     //
1422     // When `Pointee` gets stabilized, we could use
1423     // `T: ?Sized where <T as Pointee>::Metadata: Zeroable`
1424     {<T>} *mut T, {<T>} *const T,
1425 
1426     // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be
1427     // zero.
1428     {<T>} *mut [T], {<T>} *const [T], *mut str, *const str,
1429 
1430     // SAFETY: `T` is `Zeroable`.
1431     {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>,
1432 }
1433 
1434 macro_rules! impl_tuple_zeroable {
1435     ($(,)?) => {};
1436     ($first:ident, $($t:ident),* $(,)?) => {
1437         // SAFETY: All elements are zeroable and padding can be zero.
1438         unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {}
1439         impl_tuple_zeroable!($($t),* ,);
1440     }
1441 }
1442 
1443 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J);
1444