1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 //! API to safely and fallibly initialize pinned `struct`s using in-place constructors. 4 //! 5 //! It also allows in-place initialization of big `struct`s that would otherwise produce a stack 6 //! overflow. 7 //! 8 //! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential 9 //! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move. 10 //! 11 //! # Overview 12 //! 13 //! To initialize a `struct` with an in-place constructor you will need two things: 14 //! - an in-place constructor, 15 //! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`], 16 //! [`UniqueArc<T>`], [`Box<T>`] or any other smart pointer that implements [`InPlaceInit`]). 17 //! 18 //! To get an in-place constructor there are generally three options: 19 //! - directly creating an in-place constructor using the [`pin_init!`] macro, 20 //! - a custom function/macro returning an in-place constructor provided by someone else, 21 //! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer. 22 //! 23 //! Aside from pinned initialization, this API also supports in-place construction without pinning, 24 //! the macros/types/functions are generally named like the pinned variants without the `pin` 25 //! prefix. 26 //! 27 //! # Examples 28 //! 29 //! ## Using the [`pin_init!`] macro 30 //! 31 //! If you want to use [`PinInit`], then you will have to annotate your `struct` with 32 //! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for 33 //! [structurally pinned fields]. After doing this, you can then create an in-place constructor via 34 //! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is 35 //! that you need to write `<-` instead of `:` for fields that you want to initialize in-place. 36 //! 37 //! ```rust 38 //! # #![allow(clippy::disallowed_names)] 39 //! use kernel::sync::{new_mutex, Mutex}; 40 //! # use core::pin::Pin; 41 //! #[pin_data] 42 //! struct Foo { 43 //! #[pin] 44 //! a: Mutex<usize>, 45 //! b: u32, 46 //! } 47 //! 48 //! let foo = pin_init!(Foo { 49 //! a <- new_mutex!(42, "Foo::a"), 50 //! b: 24, 51 //! }); 52 //! ``` 53 //! 54 //! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like 55 //! (or just the stack) to actually initialize a `Foo`: 56 //! 57 //! ```rust 58 //! # #![allow(clippy::disallowed_names)] 59 //! # use kernel::sync::{new_mutex, Mutex}; 60 //! # use core::pin::Pin; 61 //! # #[pin_data] 62 //! # struct Foo { 63 //! # #[pin] 64 //! # a: Mutex<usize>, 65 //! # b: u32, 66 //! # } 67 //! # let foo = pin_init!(Foo { 68 //! # a <- new_mutex!(42, "Foo::a"), 69 //! # b: 24, 70 //! # }); 71 //! let foo: Result<Pin<Box<Foo>>> = Box::pin_init(foo, GFP_KERNEL); 72 //! ``` 73 //! 74 //! For more information see the [`pin_init!`] macro. 75 //! 76 //! ## Using a custom function/macro that returns an initializer 77 //! 78 //! Many types from the kernel supply a function/macro that returns an initializer, because the 79 //! above method only works for types where you can access the fields. 80 //! 81 //! ```rust 82 //! # use kernel::sync::{new_mutex, Arc, Mutex}; 83 //! let mtx: Result<Arc<Mutex<usize>>> = 84 //! Arc::pin_init(new_mutex!(42, "example::mtx"), GFP_KERNEL); 85 //! ``` 86 //! 87 //! To declare an init macro/function you just return an [`impl PinInit<T, E>`]: 88 //! 89 //! ```rust 90 //! # #![allow(clippy::disallowed_names)] 91 //! # use kernel::{sync::Mutex, new_mutex, init::PinInit, try_pin_init}; 92 //! #[pin_data] 93 //! struct DriverData { 94 //! #[pin] 95 //! status: Mutex<i32>, 96 //! buffer: Box<[u8; 1_000_000]>, 97 //! } 98 //! 99 //! impl DriverData { 100 //! fn new() -> impl PinInit<Self, Error> { 101 //! try_pin_init!(Self { 102 //! status <- new_mutex!(0, "DriverData::status"), 103 //! buffer: Box::init(kernel::init::zeroed(), GFP_KERNEL)?, 104 //! }) 105 //! } 106 //! } 107 //! ``` 108 //! 109 //! ## Manual creation of an initializer 110 //! 111 //! Often when working with primitives the previous approaches are not sufficient. That is where 112 //! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a 113 //! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure 114 //! actually does the initialization in the correct way. Here are the things to look out for 115 //! (we are calling the parameter to the closure `slot`): 116 //! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so 117 //! `slot` now contains a valid bit pattern for the type `T`, 118 //! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so 119 //! you need to take care to clean up anything if your initialization fails mid-way, 120 //! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of 121 //! `slot` gets called. 122 //! 123 //! ```rust 124 //! # #![allow(unreachable_pub, clippy::disallowed_names)] 125 //! use kernel::{init, types::Opaque}; 126 //! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin}; 127 //! # mod bindings { 128 //! # #![allow(non_camel_case_types)] 129 //! # pub struct foo; 130 //! # pub unsafe fn init_foo(_ptr: *mut foo) {} 131 //! # pub unsafe fn destroy_foo(_ptr: *mut foo) {} 132 //! # pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 } 133 //! # } 134 //! # // `Error::from_errno` is `pub(crate)` in the `kernel` crate, thus provide a workaround. 135 //! # trait FromErrno { 136 //! # fn from_errno(errno: core::ffi::c_int) -> Error { 137 //! # // Dummy error that can be constructed outside the `kernel` crate. 138 //! # Error::from(core::fmt::Error) 139 //! # } 140 //! # } 141 //! # impl FromErrno for Error {} 142 //! /// # Invariants 143 //! /// 144 //! /// `foo` is always initialized 145 //! #[pin_data(PinnedDrop)] 146 //! pub struct RawFoo { 147 //! #[pin] 148 //! foo: Opaque<bindings::foo>, 149 //! #[pin] 150 //! _p: PhantomPinned, 151 //! } 152 //! 153 //! impl RawFoo { 154 //! pub fn new(flags: u32) -> impl PinInit<Self, Error> { 155 //! // SAFETY: 156 //! // - when the closure returns `Ok(())`, then it has successfully initialized and 157 //! // enabled `foo`, 158 //! // - when it returns `Err(e)`, then it has cleaned up before 159 //! unsafe { 160 //! init::pin_init_from_closure(move |slot: *mut Self| { 161 //! // `slot` contains uninit memory, avoid creating a reference. 162 //! let foo = addr_of_mut!((*slot).foo); 163 //! 164 //! // Initialize the `foo` 165 //! bindings::init_foo(Opaque::raw_get(foo)); 166 //! 167 //! // Try to enable it. 168 //! let err = bindings::enable_foo(Opaque::raw_get(foo), flags); 169 //! if err != 0 { 170 //! // Enabling has failed, first clean up the foo and then return the error. 171 //! bindings::destroy_foo(Opaque::raw_get(foo)); 172 //! return Err(Error::from_errno(err)); 173 //! } 174 //! 175 //! // All fields of `RawFoo` have been initialized, since `_p` is a ZST. 176 //! Ok(()) 177 //! }) 178 //! } 179 //! } 180 //! } 181 //! 182 //! #[pinned_drop] 183 //! impl PinnedDrop for RawFoo { 184 //! fn drop(self: Pin<&mut Self>) { 185 //! // SAFETY: Since `foo` is initialized, destroying is safe. 186 //! unsafe { bindings::destroy_foo(self.foo.get()) }; 187 //! } 188 //! } 189 //! ``` 190 //! 191 //! For the special case where initializing a field is a single FFI-function call that cannot fail, 192 //! there exist the helper function [`Opaque::ffi_init`]. This function initialize a single 193 //! [`Opaque`] field by just delegating to the supplied closure. You can use these in combination 194 //! with [`pin_init!`]. 195 //! 196 //! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside 197 //! the `kernel` crate. The [`sync`] module is a good starting point. 198 //! 199 //! [`sync`]: kernel::sync 200 //! [pinning]: https://doc.rust-lang.org/std/pin/index.html 201 //! [structurally pinned fields]: 202 //! https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field 203 //! [stack]: crate::stack_pin_init 204 //! [`Arc<T>`]: crate::sync::Arc 205 //! [`impl PinInit<Foo>`]: PinInit 206 //! [`impl PinInit<T, E>`]: PinInit 207 //! [`impl Init<T, E>`]: Init 208 //! [`Opaque`]: kernel::types::Opaque 209 //! [`Opaque::ffi_init`]: kernel::types::Opaque::ffi_init 210 //! [`pin_data`]: ::macros::pin_data 211 //! [`pin_init!`]: crate::pin_init! 212 213 use crate::{ 214 alloc::{box_ext::BoxExt, AllocError, Flags}, 215 error::{self, Error}, 216 sync::Arc, 217 sync::UniqueArc, 218 types::{Opaque, ScopeGuard}, 219 }; 220 use alloc::boxed::Box; 221 use core::{ 222 cell::UnsafeCell, 223 convert::Infallible, 224 marker::PhantomData, 225 mem::MaybeUninit, 226 num::*, 227 pin::Pin, 228 ptr::{self, NonNull}, 229 }; 230 231 #[doc(hidden)] 232 pub mod __internal; 233 #[doc(hidden)] 234 pub mod macros; 235 236 /// Initialize and pin a type directly on the stack. 237 /// 238 /// # Examples 239 /// 240 /// ```rust 241 /// # #![allow(clippy::disallowed_names)] 242 /// # use kernel::{init, macros::pin_data, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex}; 243 /// # use core::pin::Pin; 244 /// #[pin_data] 245 /// struct Foo { 246 /// #[pin] 247 /// a: Mutex<usize>, 248 /// b: Bar, 249 /// } 250 /// 251 /// #[pin_data] 252 /// struct Bar { 253 /// x: u32, 254 /// } 255 /// 256 /// stack_pin_init!(let foo = pin_init!(Foo { 257 /// a <- new_mutex!(42), 258 /// b: Bar { 259 /// x: 64, 260 /// }, 261 /// })); 262 /// let foo: Pin<&mut Foo> = foo; 263 /// pr_info!("a: {}", &*foo.a.lock()); 264 /// ``` 265 /// 266 /// # Syntax 267 /// 268 /// A normal `let` binding with optional type annotation. The expression is expected to implement 269 /// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error 270 /// type, then use [`stack_try_pin_init!`]. 271 /// 272 /// [`stack_try_pin_init!`]: crate::stack_try_pin_init! 273 #[macro_export] 274 macro_rules! stack_pin_init { 275 (let $var:ident $(: $t:ty)? = $val:expr) => { 276 let val = $val; 277 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 278 let mut $var = match $crate::init::__internal::StackInit::init($var, val) { 279 Ok(res) => res, 280 Err(x) => { 281 let x: ::core::convert::Infallible = x; 282 match x {} 283 } 284 }; 285 }; 286 } 287 288 /// Initialize and pin a type directly on the stack. 289 /// 290 /// # Examples 291 /// 292 /// ```rust,ignore 293 /// # #![allow(clippy::disallowed_names)] 294 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex}; 295 /// # use macros::pin_data; 296 /// # use core::{alloc::AllocError, pin::Pin}; 297 /// #[pin_data] 298 /// struct Foo { 299 /// #[pin] 300 /// a: Mutex<usize>, 301 /// b: Box<Bar>, 302 /// } 303 /// 304 /// struct Bar { 305 /// x: u32, 306 /// } 307 /// 308 /// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo { 309 /// a <- new_mutex!(42), 310 /// b: Box::new(Bar { 311 /// x: 64, 312 /// }, GFP_KERNEL)?, 313 /// })); 314 /// let foo = foo.unwrap(); 315 /// pr_info!("a: {}", &*foo.a.lock()); 316 /// ``` 317 /// 318 /// ```rust,ignore 319 /// # #![allow(clippy::disallowed_names)] 320 /// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex}; 321 /// # use macros::pin_data; 322 /// # use core::{alloc::AllocError, pin::Pin}; 323 /// #[pin_data] 324 /// struct Foo { 325 /// #[pin] 326 /// a: Mutex<usize>, 327 /// b: Box<Bar>, 328 /// } 329 /// 330 /// struct Bar { 331 /// x: u32, 332 /// } 333 /// 334 /// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo { 335 /// a <- new_mutex!(42), 336 /// b: Box::new(Bar { 337 /// x: 64, 338 /// }, GFP_KERNEL)?, 339 /// })); 340 /// pr_info!("a: {}", &*foo.a.lock()); 341 /// # Ok::<_, AllocError>(()) 342 /// ``` 343 /// 344 /// # Syntax 345 /// 346 /// A normal `let` binding with optional type annotation. The expression is expected to implement 347 /// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the 348 /// `=` will propagate this error. 349 #[macro_export] 350 macro_rules! stack_try_pin_init { 351 (let $var:ident $(: $t:ty)? = $val:expr) => { 352 let val = $val; 353 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 354 let mut $var = $crate::init::__internal::StackInit::init($var, val); 355 }; 356 (let $var:ident $(: $t:ty)? =? $val:expr) => { 357 let val = $val; 358 let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit()); 359 let mut $var = $crate::init::__internal::StackInit::init($var, val)?; 360 }; 361 } 362 363 /// Construct an in-place, pinned initializer for `struct`s. 364 /// 365 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use 366 /// [`try_pin_init!`]. 367 /// 368 /// The syntax is almost identical to that of a normal `struct` initializer: 369 /// 370 /// ```rust 371 /// # #![allow(clippy::disallowed_names)] 372 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 373 /// # use core::pin::Pin; 374 /// #[pin_data] 375 /// struct Foo { 376 /// a: usize, 377 /// b: Bar, 378 /// } 379 /// 380 /// #[pin_data] 381 /// struct Bar { 382 /// x: u32, 383 /// } 384 /// 385 /// # fn demo() -> impl PinInit<Foo> { 386 /// let a = 42; 387 /// 388 /// let initializer = pin_init!(Foo { 389 /// a, 390 /// b: Bar { 391 /// x: 64, 392 /// }, 393 /// }); 394 /// # initializer } 395 /// # Box::pin_init(demo(), GFP_KERNEL).unwrap(); 396 /// ``` 397 /// 398 /// Arbitrary Rust expressions can be used to set the value of a variable. 399 /// 400 /// The fields are initialized in the order that they appear in the initializer. So it is possible 401 /// to read already initialized fields using raw pointers. 402 /// 403 /// IMPORTANT: You are not allowed to create references to fields of the struct inside of the 404 /// initializer. 405 /// 406 /// # Init-functions 407 /// 408 /// When working with this API it is often desired to let others construct your types without 409 /// giving access to all fields. This is where you would normally write a plain function `new` 410 /// that would return a new instance of your type. With this API that is also possible. 411 /// However, there are a few extra things to keep in mind. 412 /// 413 /// To create an initializer function, simply declare it like this: 414 /// 415 /// ```rust 416 /// # #![allow(clippy::disallowed_names)] 417 /// # use kernel::{init, pin_init, init::*}; 418 /// # use core::pin::Pin; 419 /// # #[pin_data] 420 /// # struct Foo { 421 /// # a: usize, 422 /// # b: Bar, 423 /// # } 424 /// # #[pin_data] 425 /// # struct Bar { 426 /// # x: u32, 427 /// # } 428 /// impl Foo { 429 /// fn new() -> impl PinInit<Self> { 430 /// pin_init!(Self { 431 /// a: 42, 432 /// b: Bar { 433 /// x: 64, 434 /// }, 435 /// }) 436 /// } 437 /// } 438 /// ``` 439 /// 440 /// Users of `Foo` can now create it like this: 441 /// 442 /// ```rust 443 /// # #![allow(clippy::disallowed_names)] 444 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 445 /// # use core::pin::Pin; 446 /// # #[pin_data] 447 /// # struct Foo { 448 /// # a: usize, 449 /// # b: Bar, 450 /// # } 451 /// # #[pin_data] 452 /// # struct Bar { 453 /// # x: u32, 454 /// # } 455 /// # impl Foo { 456 /// # fn new() -> impl PinInit<Self> { 457 /// # pin_init!(Self { 458 /// # a: 42, 459 /// # b: Bar { 460 /// # x: 64, 461 /// # }, 462 /// # }) 463 /// # } 464 /// # } 465 /// let foo = Box::pin_init(Foo::new(), GFP_KERNEL); 466 /// ``` 467 /// 468 /// They can also easily embed it into their own `struct`s: 469 /// 470 /// ```rust 471 /// # #![allow(clippy::disallowed_names)] 472 /// # use kernel::{init, pin_init, macros::pin_data, init::*}; 473 /// # use core::pin::Pin; 474 /// # #[pin_data] 475 /// # struct Foo { 476 /// # a: usize, 477 /// # b: Bar, 478 /// # } 479 /// # #[pin_data] 480 /// # struct Bar { 481 /// # x: u32, 482 /// # } 483 /// # impl Foo { 484 /// # fn new() -> impl PinInit<Self> { 485 /// # pin_init!(Self { 486 /// # a: 42, 487 /// # b: Bar { 488 /// # x: 64, 489 /// # }, 490 /// # }) 491 /// # } 492 /// # } 493 /// #[pin_data] 494 /// struct FooContainer { 495 /// #[pin] 496 /// foo1: Foo, 497 /// #[pin] 498 /// foo2: Foo, 499 /// other: u32, 500 /// } 501 /// 502 /// impl FooContainer { 503 /// fn new(other: u32) -> impl PinInit<Self> { 504 /// pin_init!(Self { 505 /// foo1 <- Foo::new(), 506 /// foo2 <- Foo::new(), 507 /// other, 508 /// }) 509 /// } 510 /// } 511 /// ``` 512 /// 513 /// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`. 514 /// This signifies that the given field is initialized in-place. As with `struct` initializers, just 515 /// writing the field (in this case `other`) without `:` or `<-` means `other: other,`. 516 /// 517 /// # Syntax 518 /// 519 /// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with 520 /// the following modifications is expected: 521 /// - Fields that you want to initialize in-place have to use `<-` instead of `:`. 522 /// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`] 523 /// pointer named `this` inside of the initializer. 524 /// - Using struct update syntax one can place `..Zeroable::zeroed()` at the very end of the 525 /// struct, this initializes every field with 0 and then runs all initializers specified in the 526 /// body. This can only be done if [`Zeroable`] is implemented for the struct. 527 /// 528 /// For instance: 529 /// 530 /// ```rust 531 /// # use kernel::{macros::{Zeroable, pin_data}, pin_init}; 532 /// # use core::{ptr::addr_of_mut, marker::PhantomPinned}; 533 /// #[pin_data] 534 /// #[derive(Zeroable)] 535 /// struct Buf { 536 /// // `ptr` points into `buf`. 537 /// ptr: *mut u8, 538 /// buf: [u8; 64], 539 /// #[pin] 540 /// pin: PhantomPinned, 541 /// } 542 /// pin_init!(&this in Buf { 543 /// buf: [0; 64], 544 /// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() }, 545 /// pin: PhantomPinned, 546 /// }); 547 /// pin_init!(Buf { 548 /// buf: [1; 64], 549 /// ..Zeroable::zeroed() 550 /// }); 551 /// ``` 552 /// 553 /// [`try_pin_init!`]: kernel::try_pin_init 554 /// [`NonNull<Self>`]: core::ptr::NonNull 555 // For a detailed example of how this macro works, see the module documentation of the hidden 556 // module `__internal` inside of `init/__internal.rs`. 557 #[macro_export] 558 macro_rules! pin_init { 559 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 560 $($fields:tt)* 561 }) => { 562 $crate::__init_internal!( 563 @this($($this)?), 564 @typ($t $(::<$($generics),*>)?), 565 @fields($($fields)*), 566 @error(::core::convert::Infallible), 567 @data(PinData, use_data), 568 @has_data(HasPinData, __pin_data), 569 @construct_closure(pin_init_from_closure), 570 @munch_fields($($fields)*), 571 ) 572 }; 573 } 574 575 /// Construct an in-place, fallible pinned initializer for `struct`s. 576 /// 577 /// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`]. 578 /// 579 /// You can use the `?` operator or use `return Err(err)` inside the initializer to stop 580 /// initialization and return the error. 581 /// 582 /// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when 583 /// initialization fails, the memory can be safely deallocated without any further modifications. 584 /// 585 /// This macro defaults the error to [`Error`]. 586 /// 587 /// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type` 588 /// after the `struct` initializer to specify the error type you want to use. 589 /// 590 /// # Examples 591 /// 592 /// ```rust 593 /// # #![feature(new_uninit)] 594 /// use kernel::{init::{self, PinInit}, error::Error}; 595 /// #[pin_data] 596 /// struct BigBuf { 597 /// big: Box<[u8; 1024 * 1024 * 1024]>, 598 /// small: [u8; 1024 * 1024], 599 /// ptr: *mut u8, 600 /// } 601 /// 602 /// impl BigBuf { 603 /// fn new() -> impl PinInit<Self, Error> { 604 /// try_pin_init!(Self { 605 /// big: Box::init(init::zeroed(), GFP_KERNEL)?, 606 /// small: [0; 1024 * 1024], 607 /// ptr: core::ptr::null_mut(), 608 /// }? Error) 609 /// } 610 /// } 611 /// ``` 612 // For a detailed example of how this macro works, see the module documentation of the hidden 613 // module `__internal` inside of `init/__internal.rs`. 614 #[macro_export] 615 macro_rules! try_pin_init { 616 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 617 $($fields:tt)* 618 }) => { 619 $crate::__init_internal!( 620 @this($($this)?), 621 @typ($t $(::<$($generics),*>)? ), 622 @fields($($fields)*), 623 @error($crate::error::Error), 624 @data(PinData, use_data), 625 @has_data(HasPinData, __pin_data), 626 @construct_closure(pin_init_from_closure), 627 @munch_fields($($fields)*), 628 ) 629 }; 630 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 631 $($fields:tt)* 632 }? $err:ty) => { 633 $crate::__init_internal!( 634 @this($($this)?), 635 @typ($t $(::<$($generics),*>)? ), 636 @fields($($fields)*), 637 @error($err), 638 @data(PinData, use_data), 639 @has_data(HasPinData, __pin_data), 640 @construct_closure(pin_init_from_closure), 641 @munch_fields($($fields)*), 642 ) 643 }; 644 } 645 646 /// Construct an in-place initializer for `struct`s. 647 /// 648 /// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use 649 /// [`try_init!`]. 650 /// 651 /// The syntax is identical to [`pin_init!`] and its safety caveats also apply: 652 /// - `unsafe` code must guarantee either full initialization or return an error and allow 653 /// deallocation of the memory. 654 /// - the fields are initialized in the order given in the initializer. 655 /// - no references to fields are allowed to be created inside of the initializer. 656 /// 657 /// This initializer is for initializing data in-place that might later be moved. If you want to 658 /// pin-initialize, use [`pin_init!`]. 659 /// 660 /// [`try_init!`]: crate::try_init! 661 // For a detailed example of how this macro works, see the module documentation of the hidden 662 // module `__internal` inside of `init/__internal.rs`. 663 #[macro_export] 664 macro_rules! init { 665 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 666 $($fields:tt)* 667 }) => { 668 $crate::__init_internal!( 669 @this($($this)?), 670 @typ($t $(::<$($generics),*>)?), 671 @fields($($fields)*), 672 @error(::core::convert::Infallible), 673 @data(InitData, /*no use_data*/), 674 @has_data(HasInitData, __init_data), 675 @construct_closure(init_from_closure), 676 @munch_fields($($fields)*), 677 ) 678 } 679 } 680 681 /// Construct an in-place fallible initializer for `struct`s. 682 /// 683 /// This macro defaults the error to [`Error`]. If you need [`Infallible`], then use 684 /// [`init!`]. 685 /// 686 /// The syntax is identical to [`try_pin_init!`]. If you want to specify a custom error, 687 /// append `? $type` after the `struct` initializer. 688 /// The safety caveats from [`try_pin_init!`] also apply: 689 /// - `unsafe` code must guarantee either full initialization or return an error and allow 690 /// deallocation of the memory. 691 /// - the fields are initialized in the order given in the initializer. 692 /// - no references to fields are allowed to be created inside of the initializer. 693 /// 694 /// # Examples 695 /// 696 /// ```rust 697 /// use kernel::{init::{PinInit, zeroed}, error::Error}; 698 /// struct BigBuf { 699 /// big: Box<[u8; 1024 * 1024 * 1024]>, 700 /// small: [u8; 1024 * 1024], 701 /// } 702 /// 703 /// impl BigBuf { 704 /// fn new() -> impl Init<Self, Error> { 705 /// try_init!(Self { 706 /// big: Box::init(zeroed(), GFP_KERNEL)?, 707 /// small: [0; 1024 * 1024], 708 /// }? Error) 709 /// } 710 /// } 711 /// ``` 712 // For a detailed example of how this macro works, see the module documentation of the hidden 713 // module `__internal` inside of `init/__internal.rs`. 714 #[macro_export] 715 macro_rules! try_init { 716 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 717 $($fields:tt)* 718 }) => { 719 $crate::__init_internal!( 720 @this($($this)?), 721 @typ($t $(::<$($generics),*>)?), 722 @fields($($fields)*), 723 @error($crate::error::Error), 724 @data(InitData, /*no use_data*/), 725 @has_data(HasInitData, __init_data), 726 @construct_closure(init_from_closure), 727 @munch_fields($($fields)*), 728 ) 729 }; 730 ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? { 731 $($fields:tt)* 732 }? $err:ty) => { 733 $crate::__init_internal!( 734 @this($($this)?), 735 @typ($t $(::<$($generics),*>)?), 736 @fields($($fields)*), 737 @error($err), 738 @data(InitData, /*no use_data*/), 739 @has_data(HasInitData, __init_data), 740 @construct_closure(init_from_closure), 741 @munch_fields($($fields)*), 742 ) 743 }; 744 } 745 746 /// A pin-initializer for the type `T`. 747 /// 748 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 749 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the 750 /// [`InPlaceInit::pin_init`] function of a smart pointer like [`Arc<T>`] on this. 751 /// 752 /// Also see the [module description](self). 753 /// 754 /// # Safety 755 /// 756 /// When implementing this trait you will need to take great care. Also there are probably very few 757 /// cases where a manual implementation is necessary. Use [`pin_init_from_closure`] where possible. 758 /// 759 /// The [`PinInit::__pinned_init`] function: 760 /// - returns `Ok(())` if it initialized every field of `slot`, 761 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 762 /// - `slot` can be deallocated without UB occurring, 763 /// - `slot` does not need to be dropped, 764 /// - `slot` is not partially initialized. 765 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 766 /// 767 /// [`Arc<T>`]: crate::sync::Arc 768 /// [`Arc::pin_init`]: crate::sync::Arc::pin_init 769 #[must_use = "An initializer must be used in order to create its value."] 770 pub unsafe trait PinInit<T: ?Sized, E = Infallible>: Sized { 771 /// Initializes `slot`. 772 /// 773 /// # Safety 774 /// 775 /// - `slot` is a valid pointer to uninitialized memory. 776 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 777 /// deallocate. 778 /// - `slot` will not move until it is dropped, i.e. it will be pinned. 779 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E>; 780 781 /// First initializes the value using `self` then calls the function `f` with the initialized 782 /// value. 783 /// 784 /// If `f` returns an error the value is dropped and the initializer will forward the error. 785 /// 786 /// # Examples 787 /// 788 /// ```rust 789 /// # #![allow(clippy::disallowed_names)] 790 /// use kernel::{types::Opaque, init::pin_init_from_closure}; 791 /// #[repr(C)] 792 /// struct RawFoo([u8; 16]); 793 /// extern { 794 /// fn init_foo(_: *mut RawFoo); 795 /// } 796 /// 797 /// #[pin_data] 798 /// struct Foo { 799 /// #[pin] 800 /// raw: Opaque<RawFoo>, 801 /// } 802 /// 803 /// impl Foo { 804 /// fn setup(self: Pin<&mut Self>) { 805 /// pr_info!("Setting up foo"); 806 /// } 807 /// } 808 /// 809 /// let foo = pin_init!(Foo { 810 /// raw <- unsafe { 811 /// Opaque::ffi_init(|s| { 812 /// init_foo(s); 813 /// }) 814 /// }, 815 /// }).pin_chain(|foo| { 816 /// foo.setup(); 817 /// Ok(()) 818 /// }); 819 /// ``` 820 fn pin_chain<F>(self, f: F) -> ChainPinInit<Self, F, T, E> 821 where 822 F: FnOnce(Pin<&mut T>) -> Result<(), E>, 823 { 824 ChainPinInit(self, f, PhantomData) 825 } 826 } 827 828 /// An initializer returned by [`PinInit::pin_chain`]. 829 pub struct ChainPinInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>); 830 831 // SAFETY: The `__pinned_init` function is implemented such that it 832 // - returns `Ok(())` on successful initialization, 833 // - returns `Err(err)` on error and in this case `slot` will be dropped. 834 // - considers `slot` pinned. 835 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainPinInit<I, F, T, E> 836 where 837 I: PinInit<T, E>, 838 F: FnOnce(Pin<&mut T>) -> Result<(), E>, 839 { 840 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 841 // SAFETY: All requirements fulfilled since this function is `__pinned_init`. 842 unsafe { self.0.__pinned_init(slot)? }; 843 // SAFETY: The above call initialized `slot` and we still have unique access. 844 let val = unsafe { &mut *slot }; 845 // SAFETY: `slot` is considered pinned. 846 let val = unsafe { Pin::new_unchecked(val) }; 847 // SAFETY: `slot` was initialized above. 848 (self.1)(val).inspect_err(|_| unsafe { core::ptr::drop_in_place(slot) }) 849 } 850 } 851 852 /// An initializer for `T`. 853 /// 854 /// To use this initializer, you will need a suitable memory location that can hold a `T`. This can 855 /// be [`Box<T>`], [`Arc<T>`], [`UniqueArc<T>`] or even the stack (see [`stack_pin_init!`]). Use the 856 /// [`InPlaceInit::init`] function of a smart pointer like [`Arc<T>`] on this. Because 857 /// [`PinInit<T, E>`] is a super trait, you can use every function that takes it as well. 858 /// 859 /// Also see the [module description](self). 860 /// 861 /// # Safety 862 /// 863 /// When implementing this trait you will need to take great care. Also there are probably very few 864 /// cases where a manual implementation is necessary. Use [`init_from_closure`] where possible. 865 /// 866 /// The [`Init::__init`] function: 867 /// - returns `Ok(())` if it initialized every field of `slot`, 868 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 869 /// - `slot` can be deallocated without UB occurring, 870 /// - `slot` does not need to be dropped, 871 /// - `slot` is not partially initialized. 872 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 873 /// 874 /// The `__pinned_init` function from the supertrait [`PinInit`] needs to execute the exact same 875 /// code as `__init`. 876 /// 877 /// Contrary to its supertype [`PinInit<T, E>`] the caller is allowed to 878 /// move the pointee after initialization. 879 /// 880 /// [`Arc<T>`]: crate::sync::Arc 881 #[must_use = "An initializer must be used in order to create its value."] 882 pub unsafe trait Init<T: ?Sized, E = Infallible>: PinInit<T, E> { 883 /// Initializes `slot`. 884 /// 885 /// # Safety 886 /// 887 /// - `slot` is a valid pointer to uninitialized memory. 888 /// - the caller does not touch `slot` when `Err` is returned, they are only permitted to 889 /// deallocate. 890 unsafe fn __init(self, slot: *mut T) -> Result<(), E>; 891 892 /// First initializes the value using `self` then calls the function `f` with the initialized 893 /// value. 894 /// 895 /// If `f` returns an error the value is dropped and the initializer will forward the error. 896 /// 897 /// # Examples 898 /// 899 /// ```rust 900 /// # #![allow(clippy::disallowed_names)] 901 /// use kernel::{types::Opaque, init::{self, init_from_closure}}; 902 /// struct Foo { 903 /// buf: [u8; 1_000_000], 904 /// } 905 /// 906 /// impl Foo { 907 /// fn setup(&mut self) { 908 /// pr_info!("Setting up foo"); 909 /// } 910 /// } 911 /// 912 /// let foo = init!(Foo { 913 /// buf <- init::zeroed() 914 /// }).chain(|foo| { 915 /// foo.setup(); 916 /// Ok(()) 917 /// }); 918 /// ``` 919 fn chain<F>(self, f: F) -> ChainInit<Self, F, T, E> 920 where 921 F: FnOnce(&mut T) -> Result<(), E>, 922 { 923 ChainInit(self, f, PhantomData) 924 } 925 } 926 927 /// An initializer returned by [`Init::chain`]. 928 pub struct ChainInit<I, F, T: ?Sized, E>(I, F, __internal::Invariant<(E, Box<T>)>); 929 930 // SAFETY: The `__init` function is implemented such that it 931 // - returns `Ok(())` on successful initialization, 932 // - returns `Err(err)` on error and in this case `slot` will be dropped. 933 unsafe impl<T: ?Sized, E, I, F> Init<T, E> for ChainInit<I, F, T, E> 934 where 935 I: Init<T, E>, 936 F: FnOnce(&mut T) -> Result<(), E>, 937 { 938 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 939 // SAFETY: All requirements fulfilled since this function is `__init`. 940 unsafe { self.0.__pinned_init(slot)? }; 941 // SAFETY: The above call initialized `slot` and we still have unique access. 942 (self.1)(unsafe { &mut *slot }).inspect_err(|_| 943 // SAFETY: `slot` was initialized above. 944 unsafe { core::ptr::drop_in_place(slot) }) 945 } 946 } 947 948 // SAFETY: `__pinned_init` behaves exactly the same as `__init`. 949 unsafe impl<T: ?Sized, E, I, F> PinInit<T, E> for ChainInit<I, F, T, E> 950 where 951 I: Init<T, E>, 952 F: FnOnce(&mut T) -> Result<(), E>, 953 { 954 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 955 // SAFETY: `__init` has less strict requirements compared to `__pinned_init`. 956 unsafe { self.__init(slot) } 957 } 958 } 959 960 /// Creates a new [`PinInit<T, E>`] from the given closure. 961 /// 962 /// # Safety 963 /// 964 /// The closure: 965 /// - returns `Ok(())` if it initialized every field of `slot`, 966 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 967 /// - `slot` can be deallocated without UB occurring, 968 /// - `slot` does not need to be dropped, 969 /// - `slot` is not partially initialized. 970 /// - may assume that the `slot` does not move if `T: !Unpin`, 971 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 972 #[inline] 973 pub const unsafe fn pin_init_from_closure<T: ?Sized, E>( 974 f: impl FnOnce(*mut T) -> Result<(), E>, 975 ) -> impl PinInit<T, E> { 976 __internal::InitClosure(f, PhantomData) 977 } 978 979 /// Creates a new [`Init<T, E>`] from the given closure. 980 /// 981 /// # Safety 982 /// 983 /// The closure: 984 /// - returns `Ok(())` if it initialized every field of `slot`, 985 /// - returns `Err(err)` if it encountered an error and then cleaned `slot`, this means: 986 /// - `slot` can be deallocated without UB occurring, 987 /// - `slot` does not need to be dropped, 988 /// - `slot` is not partially initialized. 989 /// - the `slot` may move after initialization. 990 /// - while constructing the `T` at `slot` it upholds the pinning invariants of `T`. 991 #[inline] 992 pub const unsafe fn init_from_closure<T: ?Sized, E>( 993 f: impl FnOnce(*mut T) -> Result<(), E>, 994 ) -> impl Init<T, E> { 995 __internal::InitClosure(f, PhantomData) 996 } 997 998 /// An initializer that leaves the memory uninitialized. 999 /// 1000 /// The initializer is a no-op. The `slot` memory is not changed. 1001 #[inline] 1002 pub fn uninit<T, E>() -> impl Init<MaybeUninit<T>, E> { 1003 // SAFETY: The memory is allowed to be uninitialized. 1004 unsafe { init_from_closure(|_| Ok(())) } 1005 } 1006 1007 /// Initializes an array by initializing each element via the provided initializer. 1008 /// 1009 /// # Examples 1010 /// 1011 /// ```rust 1012 /// use kernel::{error::Error, init::init_array_from_fn}; 1013 /// let array: Box<[usize; 1_000]> = Box::init::<Error>(init_array_from_fn(|i| i), GFP_KERNEL).unwrap(); 1014 /// assert_eq!(array.len(), 1_000); 1015 /// ``` 1016 pub fn init_array_from_fn<I, const N: usize, T, E>( 1017 mut make_init: impl FnMut(usize) -> I, 1018 ) -> impl Init<[T; N], E> 1019 where 1020 I: Init<T, E>, 1021 { 1022 let init = move |slot: *mut [T; N]| { 1023 let slot = slot.cast::<T>(); 1024 // Counts the number of initialized elements and when dropped drops that many elements from 1025 // `slot`. 1026 let mut init_count = ScopeGuard::new_with_data(0, |i| { 1027 // We now free every element that has been initialized before. 1028 // SAFETY: The loop initialized exactly the values from 0..i and since we 1029 // return `Err` below, the caller will consider the memory at `slot` as 1030 // uninitialized. 1031 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 1032 }); 1033 for i in 0..N { 1034 let init = make_init(i); 1035 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 1036 let ptr = unsafe { slot.add(i) }; 1037 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 1038 // requirements. 1039 unsafe { init.__init(ptr) }?; 1040 *init_count += 1; 1041 } 1042 init_count.dismiss(); 1043 Ok(()) 1044 }; 1045 // SAFETY: The initializer above initializes every element of the array. On failure it drops 1046 // any initialized elements and returns `Err`. 1047 unsafe { init_from_closure(init) } 1048 } 1049 1050 /// Initializes an array by initializing each element via the provided initializer. 1051 /// 1052 /// # Examples 1053 /// 1054 /// ```rust 1055 /// use kernel::{sync::{Arc, Mutex}, init::pin_init_array_from_fn, new_mutex}; 1056 /// let array: Arc<[Mutex<usize>; 1_000]> = 1057 /// Arc::pin_init(pin_init_array_from_fn(|i| new_mutex!(i)), GFP_KERNEL).unwrap(); 1058 /// assert_eq!(array.len(), 1_000); 1059 /// ``` 1060 pub fn pin_init_array_from_fn<I, const N: usize, T, E>( 1061 mut make_init: impl FnMut(usize) -> I, 1062 ) -> impl PinInit<[T; N], E> 1063 where 1064 I: PinInit<T, E>, 1065 { 1066 let init = move |slot: *mut [T; N]| { 1067 let slot = slot.cast::<T>(); 1068 // Counts the number of initialized elements and when dropped drops that many elements from 1069 // `slot`. 1070 let mut init_count = ScopeGuard::new_with_data(0, |i| { 1071 // We now free every element that has been initialized before. 1072 // SAFETY: The loop initialized exactly the values from 0..i and since we 1073 // return `Err` below, the caller will consider the memory at `slot` as 1074 // uninitialized. 1075 unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(slot, i)) }; 1076 }); 1077 for i in 0..N { 1078 let init = make_init(i); 1079 // SAFETY: Since 0 <= `i` < N, it is still in bounds of `[T; N]`. 1080 let ptr = unsafe { slot.add(i) }; 1081 // SAFETY: The pointer is derived from `slot` and thus satisfies the `__init` 1082 // requirements. 1083 unsafe { init.__pinned_init(ptr) }?; 1084 *init_count += 1; 1085 } 1086 init_count.dismiss(); 1087 Ok(()) 1088 }; 1089 // SAFETY: The initializer above initializes every element of the array. On failure it drops 1090 // any initialized elements and returns `Err`. 1091 unsafe { pin_init_from_closure(init) } 1092 } 1093 1094 // SAFETY: Every type can be initialized by-value. 1095 unsafe impl<T, E> Init<T, E> for T { 1096 unsafe fn __init(self, slot: *mut T) -> Result<(), E> { 1097 unsafe { slot.write(self) }; 1098 Ok(()) 1099 } 1100 } 1101 1102 // SAFETY: Every type can be initialized by-value. `__pinned_init` calls `__init`. 1103 unsafe impl<T, E> PinInit<T, E> for T { 1104 unsafe fn __pinned_init(self, slot: *mut T) -> Result<(), E> { 1105 unsafe { self.__init(slot) } 1106 } 1107 } 1108 1109 /// Smart pointer that can initialize memory in-place. 1110 pub trait InPlaceInit<T>: Sized { 1111 /// Pinned version of `Self`. 1112 /// 1113 /// If a type already implicitly pins its pointee, `Pin<Self>` is unnecessary. In this case use 1114 /// `Self`, otherwise just use `Pin<Self>`. 1115 type PinnedSelf; 1116 1117 /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this 1118 /// type. 1119 /// 1120 /// If `T: !Unpin` it will not be able to move afterwards. 1121 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 1122 where 1123 E: From<AllocError>; 1124 1125 /// Use the given pin-initializer to pin-initialize a `T` inside of a new smart pointer of this 1126 /// type. 1127 /// 1128 /// If `T: !Unpin` it will not be able to move afterwards. 1129 fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> error::Result<Self::PinnedSelf> 1130 where 1131 Error: From<E>, 1132 { 1133 // SAFETY: We delegate to `init` and only change the error type. 1134 let init = unsafe { 1135 pin_init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e))) 1136 }; 1137 Self::try_pin_init(init, flags) 1138 } 1139 1140 /// Use the given initializer to in-place initialize a `T`. 1141 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 1142 where 1143 E: From<AllocError>; 1144 1145 /// Use the given initializer to in-place initialize a `T`. 1146 fn init<E>(init: impl Init<T, E>, flags: Flags) -> error::Result<Self> 1147 where 1148 Error: From<E>, 1149 { 1150 // SAFETY: We delegate to `init` and only change the error type. 1151 let init = unsafe { 1152 init_from_closure(|slot| init.__pinned_init(slot).map_err(|e| Error::from(e))) 1153 }; 1154 Self::try_init(init, flags) 1155 } 1156 } 1157 1158 impl<T> InPlaceInit<T> for Arc<T> { 1159 type PinnedSelf = Self; 1160 1161 #[inline] 1162 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 1163 where 1164 E: From<AllocError>, 1165 { 1166 UniqueArc::try_pin_init(init, flags).map(|u| u.into()) 1167 } 1168 1169 #[inline] 1170 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 1171 where 1172 E: From<AllocError>, 1173 { 1174 UniqueArc::try_init(init, flags).map(|u| u.into()) 1175 } 1176 } 1177 1178 impl<T> InPlaceInit<T> for Box<T> { 1179 type PinnedSelf = Pin<Self>; 1180 1181 #[inline] 1182 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 1183 where 1184 E: From<AllocError>, 1185 { 1186 <Box<_> as BoxExt<_>>::new_uninit(flags)?.write_pin_init(init) 1187 } 1188 1189 #[inline] 1190 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 1191 where 1192 E: From<AllocError>, 1193 { 1194 <Box<_> as BoxExt<_>>::new_uninit(flags)?.write_init(init) 1195 } 1196 } 1197 1198 impl<T> InPlaceInit<T> for UniqueArc<T> { 1199 type PinnedSelf = Pin<Self>; 1200 1201 #[inline] 1202 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self::PinnedSelf, E> 1203 where 1204 E: From<AllocError>, 1205 { 1206 UniqueArc::new_uninit(flags)?.write_pin_init(init) 1207 } 1208 1209 #[inline] 1210 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 1211 where 1212 E: From<AllocError>, 1213 { 1214 UniqueArc::new_uninit(flags)?.write_init(init) 1215 } 1216 } 1217 1218 /// Smart pointer containing uninitialized memory and that can write a value. 1219 pub trait InPlaceWrite<T> { 1220 /// The type `Self` turns into when the contents are initialized. 1221 type Initialized; 1222 1223 /// Use the given initializer to write a value into `self`. 1224 /// 1225 /// Does not drop the current value and considers it as uninitialized memory. 1226 fn write_init<E>(self, init: impl Init<T, E>) -> Result<Self::Initialized, E>; 1227 1228 /// Use the given pin-initializer to write a value into `self`. 1229 /// 1230 /// Does not drop the current value and considers it as uninitialized memory. 1231 fn write_pin_init<E>(self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>; 1232 } 1233 1234 impl<T> InPlaceWrite<T> for Box<MaybeUninit<T>> { 1235 type Initialized = Box<T>; 1236 1237 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> { 1238 let slot = self.as_mut_ptr(); 1239 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1240 // slot is valid. 1241 unsafe { init.__init(slot)? }; 1242 // SAFETY: All fields have been initialized. 1243 Ok(unsafe { self.assume_init() }) 1244 } 1245 1246 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> { 1247 let slot = self.as_mut_ptr(); 1248 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1249 // slot is valid and will not be moved, because we pin it later. 1250 unsafe { init.__pinned_init(slot)? }; 1251 // SAFETY: All fields have been initialized. 1252 Ok(unsafe { self.assume_init() }.into()) 1253 } 1254 } 1255 1256 impl<T> InPlaceWrite<T> for UniqueArc<MaybeUninit<T>> { 1257 type Initialized = UniqueArc<T>; 1258 1259 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> { 1260 let slot = self.as_mut_ptr(); 1261 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1262 // slot is valid. 1263 unsafe { init.__init(slot)? }; 1264 // SAFETY: All fields have been initialized. 1265 Ok(unsafe { self.assume_init() }) 1266 } 1267 1268 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> { 1269 let slot = self.as_mut_ptr(); 1270 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 1271 // slot is valid and will not be moved, because we pin it later. 1272 unsafe { init.__pinned_init(slot)? }; 1273 // SAFETY: All fields have been initialized. 1274 Ok(unsafe { self.assume_init() }.into()) 1275 } 1276 } 1277 1278 /// Trait facilitating pinned destruction. 1279 /// 1280 /// Use [`pinned_drop`] to implement this trait safely: 1281 /// 1282 /// ```rust 1283 /// # use kernel::sync::Mutex; 1284 /// use kernel::macros::pinned_drop; 1285 /// use core::pin::Pin; 1286 /// #[pin_data(PinnedDrop)] 1287 /// struct Foo { 1288 /// #[pin] 1289 /// mtx: Mutex<usize>, 1290 /// } 1291 /// 1292 /// #[pinned_drop] 1293 /// impl PinnedDrop for Foo { 1294 /// fn drop(self: Pin<&mut Self>) { 1295 /// pr_info!("Foo is being dropped!"); 1296 /// } 1297 /// } 1298 /// ``` 1299 /// 1300 /// # Safety 1301 /// 1302 /// This trait must be implemented via the [`pinned_drop`] proc-macro attribute on the impl. 1303 /// 1304 /// [`pinned_drop`]: kernel::macros::pinned_drop 1305 pub unsafe trait PinnedDrop: __internal::HasPinData { 1306 /// Executes the pinned destructor of this type. 1307 /// 1308 /// While this function is marked safe, it is actually unsafe to call it manually. For this 1309 /// reason it takes an additional parameter. This type can only be constructed by `unsafe` code 1310 /// and thus prevents this function from being called where it should not. 1311 /// 1312 /// This extra parameter will be generated by the `#[pinned_drop]` proc-macro attribute 1313 /// automatically. 1314 fn drop(self: Pin<&mut Self>, only_call_from_drop: __internal::OnlyCallFromDrop); 1315 } 1316 1317 /// Marker trait for types that can be initialized by writing just zeroes. 1318 /// 1319 /// # Safety 1320 /// 1321 /// The bit pattern consisting of only zeroes is a valid bit pattern for this type. In other words, 1322 /// this is not UB: 1323 /// 1324 /// ```rust,ignore 1325 /// let val: Self = unsafe { core::mem::zeroed() }; 1326 /// ``` 1327 pub unsafe trait Zeroable {} 1328 1329 /// Create a new zeroed T. 1330 /// 1331 /// The returned initializer will write `0x00` to every byte of the given `slot`. 1332 #[inline] 1333 pub fn zeroed<T: Zeroable>() -> impl Init<T> { 1334 // SAFETY: Because `T: Zeroable`, all bytes zero is a valid bit pattern for `T` 1335 // and because we write all zeroes, the memory is initialized. 1336 unsafe { 1337 init_from_closure(|slot: *mut T| { 1338 slot.write_bytes(0, 1); 1339 Ok(()) 1340 }) 1341 } 1342 } 1343 1344 macro_rules! impl_zeroable { 1345 ($($({$($generics:tt)*})? $t:ty, )*) => { 1346 $(unsafe impl$($($generics)*)? Zeroable for $t {})* 1347 }; 1348 } 1349 1350 impl_zeroable! { 1351 // SAFETY: All primitives that are allowed to be zero. 1352 bool, 1353 char, 1354 u8, u16, u32, u64, u128, usize, 1355 i8, i16, i32, i64, i128, isize, 1356 f32, f64, 1357 1358 // Note: do not add uninhabited types (such as `!` or `core::convert::Infallible`) to this list; 1359 // creating an instance of an uninhabited type is immediate undefined behavior. For more on 1360 // uninhabited/empty types, consult The Rustonomicon: 1361 // <https://doc.rust-lang.org/stable/nomicon/exotic-sizes.html#empty-types>. The Rust Reference 1362 // also has information on undefined behavior: 1363 // <https://doc.rust-lang.org/stable/reference/behavior-considered-undefined.html>. 1364 // 1365 // SAFETY: These are inhabited ZSTs; there is nothing to zero and a valid value exists. 1366 {<T: ?Sized>} PhantomData<T>, core::marker::PhantomPinned, (), 1367 1368 // SAFETY: Type is allowed to take any value, including all zeros. 1369 {<T>} MaybeUninit<T>, 1370 // SAFETY: Type is allowed to take any value, including all zeros. 1371 {<T>} Opaque<T>, 1372 1373 // SAFETY: `T: Zeroable` and `UnsafeCell` is `repr(transparent)`. 1374 {<T: ?Sized + Zeroable>} UnsafeCell<T>, 1375 1376 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). 1377 Option<NonZeroU8>, Option<NonZeroU16>, Option<NonZeroU32>, Option<NonZeroU64>, 1378 Option<NonZeroU128>, Option<NonZeroUsize>, 1379 Option<NonZeroI8>, Option<NonZeroI16>, Option<NonZeroI32>, Option<NonZeroI64>, 1380 Option<NonZeroI128>, Option<NonZeroIsize>, 1381 1382 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). 1383 // 1384 // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant. 1385 {<T: ?Sized>} Option<NonNull<T>>, 1386 {<T: ?Sized>} Option<Box<T>>, 1387 1388 // SAFETY: `null` pointer is valid. 1389 // 1390 // We cannot use `T: ?Sized`, since the VTABLE pointer part of fat pointers is not allowed to be 1391 // null. 1392 // 1393 // When `Pointee` gets stabilized, we could use 1394 // `T: ?Sized where <T as Pointee>::Metadata: Zeroable` 1395 {<T>} *mut T, {<T>} *const T, 1396 1397 // SAFETY: `null` pointer is valid and the metadata part of these fat pointers is allowed to be 1398 // zero. 1399 {<T>} *mut [T], {<T>} *const [T], *mut str, *const str, 1400 1401 // SAFETY: `T` is `Zeroable`. 1402 {<const N: usize, T: Zeroable>} [T; N], {<T: Zeroable>} Wrapping<T>, 1403 } 1404 1405 macro_rules! impl_tuple_zeroable { 1406 ($(,)?) => {}; 1407 ($first:ident, $($t:ident),* $(,)?) => { 1408 // SAFETY: All elements are zeroable and padding can be zero. 1409 unsafe impl<$first: Zeroable, $($t: Zeroable),*> Zeroable for ($first, $($t),*) {} 1410 impl_tuple_zeroable!($($t),* ,); 1411 } 1412 } 1413 1414 impl_tuple_zeroable!(A, B, C, D, E, F, G, H, I, J); 1415