xref: /linux-6.15/rust/kernel/firmware.rs (revision ef476b0d)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Firmware abstraction
4 //!
5 //! C header: [`include/linux/firmware.h`](srctree/include/linux/firmware.h)
6 
7 use crate::{bindings, device::Device, error::Error, error::Result, str::CStr};
8 use core::ptr::NonNull;
9 
10 /// # Invariants
11 ///
12 /// One of the following: `bindings::request_firmware`, `bindings::firmware_request_nowarn`,
13 /// `bindings::firmware_request_platform`, `bindings::request_firmware_direct`.
14 struct FwFunc(
15     unsafe extern "C" fn(*mut *const bindings::firmware, *const u8, *mut bindings::device) -> i32,
16 );
17 
18 impl FwFunc {
19     fn request() -> Self {
20         Self(bindings::request_firmware)
21     }
22 
23     fn request_nowarn() -> Self {
24         Self(bindings::firmware_request_nowarn)
25     }
26 }
27 
28 /// Abstraction around a C `struct firmware`.
29 ///
30 /// This is a simple abstraction around the C firmware API. Just like with the C API, firmware can
31 /// be requested. Once requested the abstraction provides direct access to the firmware buffer as
32 /// `&[u8]`. The firmware is released once [`Firmware`] is dropped.
33 ///
34 /// # Invariants
35 ///
36 /// The pointer is valid, and has ownership over the instance of `struct firmware`.
37 ///
38 /// The `Firmware`'s backing buffer is not modified.
39 ///
40 /// # Examples
41 ///
42 /// ```no_run
43 /// # use kernel::{c_str, device::Device, firmware::Firmware};
44 ///
45 /// # fn no_run() -> Result<(), Error> {
46 /// # // SAFETY: *NOT* safe, just for the example to get an `ARef<Device>` instance
47 /// # let dev = unsafe { Device::get_device(core::ptr::null_mut()) };
48 ///
49 /// let fw = Firmware::request(c_str!("path/to/firmware.bin"), &dev)?;
50 /// let blob = fw.data();
51 ///
52 /// # Ok(())
53 /// # }
54 /// ```
55 pub struct Firmware(NonNull<bindings::firmware>);
56 
57 impl Firmware {
58     fn request_internal(name: &CStr, dev: &Device, func: FwFunc) -> Result<Self> {
59         let mut fw: *mut bindings::firmware = core::ptr::null_mut();
60         let pfw: *mut *mut bindings::firmware = &mut fw;
61 
62         // SAFETY: `pfw` is a valid pointer to a NULL initialized `bindings::firmware` pointer.
63         // `name` and `dev` are valid as by their type invariants.
64         let ret = unsafe { func.0(pfw as _, name.as_char_ptr(), dev.as_raw()) };
65         if ret != 0 {
66             return Err(Error::from_errno(ret));
67         }
68 
69         // SAFETY: `func` not bailing out with a non-zero error code, guarantees that `fw` is a
70         // valid pointer to `bindings::firmware`.
71         Ok(Firmware(unsafe { NonNull::new_unchecked(fw) }))
72     }
73 
74     /// Send a firmware request and wait for it. See also `bindings::request_firmware`.
75     pub fn request(name: &CStr, dev: &Device) -> Result<Self> {
76         Self::request_internal(name, dev, FwFunc::request())
77     }
78 
79     /// Send a request for an optional firmware module. See also
80     /// `bindings::firmware_request_nowarn`.
81     pub fn request_nowarn(name: &CStr, dev: &Device) -> Result<Self> {
82         Self::request_internal(name, dev, FwFunc::request_nowarn())
83     }
84 
85     fn as_raw(&self) -> *mut bindings::firmware {
86         self.0.as_ptr()
87     }
88 
89     /// Returns the size of the requested firmware in bytes.
90     pub fn size(&self) -> usize {
91         // SAFETY: `self.as_raw()` is valid by the type invariant.
92         unsafe { (*self.as_raw()).size }
93     }
94 
95     /// Returns the requested firmware as `&[u8]`.
96     pub fn data(&self) -> &[u8] {
97         // SAFETY: `self.as_raw()` is valid by the type invariant. Additionally,
98         // `bindings::firmware` guarantees, if successfully requested, that
99         // `bindings::firmware::data` has a size of `bindings::firmware::size` bytes.
100         unsafe { core::slice::from_raw_parts((*self.as_raw()).data, self.size()) }
101     }
102 }
103 
104 impl Drop for Firmware {
105     fn drop(&mut self) {
106         // SAFETY: `self.as_raw()` is valid by the type invariant.
107         unsafe { bindings::release_firmware(self.as_raw()) };
108     }
109 }
110 
111 // SAFETY: `Firmware` only holds a pointer to a C `struct firmware`, which is safe to be used from
112 // any thread.
113 unsafe impl Send for Firmware {}
114 
115 // SAFETY: `Firmware` only holds a pointer to a C `struct firmware`, references to which are safe to
116 // be used from any thread.
117 unsafe impl Sync for Firmware {}
118 
119 /// Builder for firmware module info.
120 ///
121 /// [`ModInfoBuilder`] is a helper component to flexibly compose firmware paths strings for the
122 /// .modinfo section in const context.
123 ///
124 /// Therefore the [`ModInfoBuilder`] provides the methods [`ModInfoBuilder::new_entry`] and
125 /// [`ModInfoBuilder::push`], where the latter is used to push path components and the former to
126 /// mark the beginning of a new path string.
127 ///
128 /// [`ModInfoBuilder`] is meant to be used in combination with `kernel::module_firmware!`.
129 ///
130 /// The const generic `N` as well as the `module_name` parameter of [`ModInfoBuilder::new`] is an
131 /// internal implementation detail and supplied through the above macro.
132 pub struct ModInfoBuilder<const N: usize> {
133     buf: [u8; N],
134     n: usize,
135     module_name: &'static CStr,
136 }
137 
138 impl<const N: usize> ModInfoBuilder<N> {
139     /// Create an empty builder instance.
140     pub const fn new(module_name: &'static CStr) -> Self {
141         Self {
142             buf: [0; N],
143             n: 0,
144             module_name,
145         }
146     }
147 
148     const fn push_internal(mut self, bytes: &[u8]) -> Self {
149         let mut j = 0;
150 
151         if N == 0 {
152             self.n += bytes.len();
153             return self;
154         }
155 
156         while j < bytes.len() {
157             if self.n < N {
158                 self.buf[self.n] = bytes[j];
159             }
160             self.n += 1;
161             j += 1;
162         }
163         self
164     }
165 
166     /// Push an additional path component.
167     ///
168     /// Append path components to the [`ModInfoBuilder`] instance. Paths need to be separated
169     /// with [`ModInfoBuilder::new_entry`].
170     ///
171     /// # Example
172     ///
173     /// ```
174     /// use kernel::firmware::ModInfoBuilder;
175     ///
176     /// # const DIR: &str = "vendor/chip/";
177     /// # const fn no_run<const N: usize>(builder: ModInfoBuilder<N>) {
178     /// let builder = builder.new_entry()
179     ///     .push(DIR)
180     ///     .push("foo.bin")
181     ///     .new_entry()
182     ///     .push(DIR)
183     ///     .push("bar.bin");
184     /// # }
185     /// ```
186     pub const fn push(self, s: &str) -> Self {
187         // Check whether there has been an initial call to `next_entry()`.
188         if N != 0 && self.n == 0 {
189             crate::build_error!("Must call next_entry() before push().");
190         }
191 
192         self.push_internal(s.as_bytes())
193     }
194 
195     const fn push_module_name(self) -> Self {
196         let mut this = self;
197         let module_name = this.module_name;
198 
199         if !this.module_name.is_empty() {
200             this = this.push_internal(module_name.as_bytes_with_nul());
201 
202             if N != 0 {
203                 // Re-use the space taken by the NULL terminator and swap it with the '.' separator.
204                 this.buf[this.n - 1] = b'.';
205             }
206         }
207 
208         this
209     }
210 
211     /// Prepare the [`ModInfoBuilder`] for the next entry.
212     ///
213     /// This method acts as a separator between module firmware path entries.
214     ///
215     /// Must be called before constructing a new entry with subsequent calls to
216     /// [`ModInfoBuilder::push`].
217     ///
218     /// See [`ModInfoBuilder::push`] for an example.
219     pub const fn new_entry(self) -> Self {
220         self.push_internal(b"\0")
221             .push_module_name()
222             .push_internal(b"firmware=")
223     }
224 
225     /// Build the byte array.
226     pub const fn build(self) -> [u8; N] {
227         // Add the final NULL terminator.
228         let this = self.push_internal(b"\0");
229 
230         if this.n == N {
231             this.buf
232         } else {
233             crate::build_error!("Length mismatch.");
234         }
235     }
236 }
237 
238 impl ModInfoBuilder<0> {
239     /// Return the length of the byte array to build.
240     pub const fn build_length(self) -> usize {
241         // Compensate for the NULL terminator added by `build`.
242         self.n + 1
243     }
244 }
245