1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Implementation of [`Box`]. 4 5 #[allow(unused_imports)] // Used in doc comments. 6 use super::allocator::{KVmalloc, Kmalloc, Vmalloc}; 7 use super::{AllocError, Allocator, Flags}; 8 use core::alloc::Layout; 9 use core::fmt; 10 use core::marker::PhantomData; 11 use core::mem::ManuallyDrop; 12 use core::mem::MaybeUninit; 13 use core::ops::{Deref, DerefMut}; 14 use core::pin::Pin; 15 use core::ptr::NonNull; 16 use core::result::Result; 17 18 use crate::init::InPlaceInit; 19 use crate::types::ForeignOwnable; 20 use pin_init::{InPlaceWrite, Init, PinInit, ZeroableOption}; 21 22 /// The kernel's [`Box`] type -- a heap allocation for a single value of type `T`. 23 /// 24 /// This is the kernel's version of the Rust stdlib's `Box`. There are several differences, 25 /// for example no `noalias` attribute is emitted and partially moving out of a `Box` is not 26 /// supported. There are also several API differences, e.g. `Box` always requires an [`Allocator`] 27 /// implementation to be passed as generic, page [`Flags`] when allocating memory and all functions 28 /// that may allocate memory are fallible. 29 /// 30 /// `Box` works with any of the kernel's allocators, e.g. [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]. 31 /// There are aliases for `Box` with these allocators ([`KBox`], [`VBox`], [`KVBox`]). 32 /// 33 /// When dropping a [`Box`], the value is also dropped and the heap memory is automatically freed. 34 /// 35 /// # Examples 36 /// 37 /// ``` 38 /// let b = KBox::<u64>::new(24_u64, GFP_KERNEL)?; 39 /// 40 /// assert_eq!(*b, 24_u64); 41 /// # Ok::<(), Error>(()) 42 /// ``` 43 /// 44 /// ``` 45 /// # use kernel::bindings; 46 /// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1; 47 /// struct Huge([u8; SIZE]); 48 /// 49 /// assert!(KBox::<Huge>::new_uninit(GFP_KERNEL | __GFP_NOWARN).is_err()); 50 /// ``` 51 /// 52 /// ``` 53 /// # use kernel::bindings; 54 /// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1; 55 /// struct Huge([u8; SIZE]); 56 /// 57 /// assert!(KVBox::<Huge>::new_uninit(GFP_KERNEL).is_ok()); 58 /// ``` 59 /// 60 /// # Invariants 61 /// 62 /// `self.0` is always properly aligned and either points to memory allocated with `A` or, for 63 /// zero-sized types, is a dangling, well aligned pointer. 64 #[repr(transparent)] 65 pub struct Box<T: ?Sized, A: Allocator>(NonNull<T>, PhantomData<A>); 66 67 /// Type alias for [`Box`] with a [`Kmalloc`] allocator. 68 /// 69 /// # Examples 70 /// 71 /// ``` 72 /// let b = KBox::new(24_u64, GFP_KERNEL)?; 73 /// 74 /// assert_eq!(*b, 24_u64); 75 /// # Ok::<(), Error>(()) 76 /// ``` 77 pub type KBox<T> = Box<T, super::allocator::Kmalloc>; 78 79 /// Type alias for [`Box`] with a [`Vmalloc`] allocator. 80 /// 81 /// # Examples 82 /// 83 /// ``` 84 /// let b = VBox::new(24_u64, GFP_KERNEL)?; 85 /// 86 /// assert_eq!(*b, 24_u64); 87 /// # Ok::<(), Error>(()) 88 /// ``` 89 pub type VBox<T> = Box<T, super::allocator::Vmalloc>; 90 91 /// Type alias for [`Box`] with a [`KVmalloc`] allocator. 92 /// 93 /// # Examples 94 /// 95 /// ``` 96 /// let b = KVBox::new(24_u64, GFP_KERNEL)?; 97 /// 98 /// assert_eq!(*b, 24_u64); 99 /// # Ok::<(), Error>(()) 100 /// ``` 101 pub type KVBox<T> = Box<T, super::allocator::KVmalloc>; 102 103 // SAFETY: All zeros is equivalent to `None` (option layout optimization guarantee). 104 // 105 // In this case we are allowed to use `T: ?Sized`, since all zeros is the `None` variant and there 106 // is no problem with a VTABLE pointer being null. 107 unsafe impl<T: ?Sized, A: Allocator> ZeroableOption for Box<T, A> {} 108 109 // SAFETY: `Box` is `Send` if `T` is `Send` because the `Box` owns a `T`. 110 unsafe impl<T, A> Send for Box<T, A> 111 where 112 T: Send + ?Sized, 113 A: Allocator, 114 { 115 } 116 117 // SAFETY: `Box` is `Sync` if `T` is `Sync` because the `Box` owns a `T`. 118 unsafe impl<T, A> Sync for Box<T, A> 119 where 120 T: Sync + ?Sized, 121 A: Allocator, 122 { 123 } 124 125 impl<T, A> Box<T, A> 126 where 127 T: ?Sized, 128 A: Allocator, 129 { 130 /// Creates a new `Box<T, A>` from a raw pointer. 131 /// 132 /// # Safety 133 /// 134 /// For non-ZSTs, `raw` must point at an allocation allocated with `A` that is sufficiently 135 /// aligned for and holds a valid `T`. The caller passes ownership of the allocation to the 136 /// `Box`. 137 /// 138 /// For ZSTs, `raw` must be a dangling, well aligned pointer. 139 #[inline] 140 pub const unsafe fn from_raw(raw: *mut T) -> Self { 141 // INVARIANT: Validity of `raw` is guaranteed by the safety preconditions of this function. 142 // SAFETY: By the safety preconditions of this function, `raw` is not a NULL pointer. 143 Self(unsafe { NonNull::new_unchecked(raw) }, PhantomData) 144 } 145 146 /// Consumes the `Box<T, A>` and returns a raw pointer. 147 /// 148 /// This will not run the destructor of `T` and for non-ZSTs the allocation will stay alive 149 /// indefinitely. Use [`Box::from_raw`] to recover the [`Box`], drop the value and free the 150 /// allocation, if any. 151 /// 152 /// # Examples 153 /// 154 /// ``` 155 /// let x = KBox::new(24, GFP_KERNEL)?; 156 /// let ptr = KBox::into_raw(x); 157 /// // SAFETY: `ptr` comes from a previous call to `KBox::into_raw`. 158 /// let x = unsafe { KBox::from_raw(ptr) }; 159 /// 160 /// assert_eq!(*x, 24); 161 /// # Ok::<(), Error>(()) 162 /// ``` 163 #[inline] 164 pub fn into_raw(b: Self) -> *mut T { 165 ManuallyDrop::new(b).0.as_ptr() 166 } 167 168 /// Consumes and leaks the `Box<T, A>` and returns a mutable reference. 169 /// 170 /// See [`Box::into_raw`] for more details. 171 #[inline] 172 pub fn leak<'a>(b: Self) -> &'a mut T { 173 // SAFETY: `Box::into_raw` always returns a properly aligned and dereferenceable pointer 174 // which points to an initialized instance of `T`. 175 unsafe { &mut *Box::into_raw(b) } 176 } 177 } 178 179 impl<T, A> Box<MaybeUninit<T>, A> 180 where 181 A: Allocator, 182 { 183 /// Converts a `Box<MaybeUninit<T>, A>` to a `Box<T, A>`. 184 /// 185 /// It is undefined behavior to call this function while the value inside of `b` is not yet 186 /// fully initialized. 187 /// 188 /// # Safety 189 /// 190 /// Callers must ensure that the value inside of `b` is in an initialized state. 191 pub unsafe fn assume_init(self) -> Box<T, A> { 192 let raw = Self::into_raw(self); 193 194 // SAFETY: `raw` comes from a previous call to `Box::into_raw`. By the safety requirements 195 // of this function, the value inside the `Box` is in an initialized state. Hence, it is 196 // safe to reconstruct the `Box` as `Box<T, A>`. 197 unsafe { Box::from_raw(raw.cast()) } 198 } 199 200 /// Writes the value and converts to `Box<T, A>`. 201 pub fn write(mut self, value: T) -> Box<T, A> { 202 (*self).write(value); 203 204 // SAFETY: We've just initialized `b`'s value. 205 unsafe { self.assume_init() } 206 } 207 } 208 209 impl<T, A> Box<T, A> 210 where 211 A: Allocator, 212 { 213 /// Creates a new `Box<T, A>` and initializes its contents with `x`. 214 /// 215 /// New memory is allocated with `A`. The allocation may fail, in which case an error is 216 /// returned. For ZSTs no memory is allocated. 217 pub fn new(x: T, flags: Flags) -> Result<Self, AllocError> { 218 let b = Self::new_uninit(flags)?; 219 Ok(Box::write(b, x)) 220 } 221 222 /// Creates a new `Box<T, A>` with uninitialized contents. 223 /// 224 /// New memory is allocated with `A`. The allocation may fail, in which case an error is 225 /// returned. For ZSTs no memory is allocated. 226 /// 227 /// # Examples 228 /// 229 /// ``` 230 /// let b = KBox::<u64>::new_uninit(GFP_KERNEL)?; 231 /// let b = KBox::write(b, 24); 232 /// 233 /// assert_eq!(*b, 24_u64); 234 /// # Ok::<(), Error>(()) 235 /// ``` 236 pub fn new_uninit(flags: Flags) -> Result<Box<MaybeUninit<T>, A>, AllocError> { 237 let layout = Layout::new::<MaybeUninit<T>>(); 238 let ptr = A::alloc(layout, flags)?; 239 240 // INVARIANT: `ptr` is either a dangling pointer or points to memory allocated with `A`, 241 // which is sufficient in size and alignment for storing a `T`. 242 Ok(Box(ptr.cast(), PhantomData)) 243 } 244 245 /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then `x` will be 246 /// pinned in memory and can't be moved. 247 #[inline] 248 pub fn pin(x: T, flags: Flags) -> Result<Pin<Box<T, A>>, AllocError> 249 where 250 A: 'static, 251 { 252 Ok(Self::new(x, flags)?.into()) 253 } 254 255 /// Convert a [`Box<T,A>`] to a [`Pin<Box<T,A>>`]. If `T` does not implement 256 /// [`Unpin`], then `x` will be pinned in memory and can't be moved. 257 pub fn into_pin(this: Self) -> Pin<Self> { 258 this.into() 259 } 260 261 /// Forgets the contents (does not run the destructor), but keeps the allocation. 262 fn forget_contents(this: Self) -> Box<MaybeUninit<T>, A> { 263 let ptr = Self::into_raw(this); 264 265 // SAFETY: `ptr` is valid, because it came from `Box::into_raw`. 266 unsafe { Box::from_raw(ptr.cast()) } 267 } 268 269 /// Drops the contents, but keeps the allocation. 270 /// 271 /// # Examples 272 /// 273 /// ``` 274 /// let value = KBox::new([0; 32], GFP_KERNEL)?; 275 /// assert_eq!(*value, [0; 32]); 276 /// let value = KBox::drop_contents(value); 277 /// // Now we can re-use `value`: 278 /// let value = KBox::write(value, [1; 32]); 279 /// assert_eq!(*value, [1; 32]); 280 /// # Ok::<(), Error>(()) 281 /// ``` 282 pub fn drop_contents(this: Self) -> Box<MaybeUninit<T>, A> { 283 let ptr = this.0.as_ptr(); 284 285 // SAFETY: `ptr` is valid, because it came from `this`. After this call we never access the 286 // value stored in `this` again. 287 unsafe { core::ptr::drop_in_place(ptr) }; 288 289 Self::forget_contents(this) 290 } 291 292 /// Moves the `Box`'s value out of the `Box` and consumes the `Box`. 293 pub fn into_inner(b: Self) -> T { 294 // SAFETY: By the type invariant `&*b` is valid for `read`. 295 let value = unsafe { core::ptr::read(&*b) }; 296 let _ = Self::forget_contents(b); 297 value 298 } 299 } 300 301 impl<T, A> From<Box<T, A>> for Pin<Box<T, A>> 302 where 303 T: ?Sized, 304 A: Allocator, 305 { 306 /// Converts a `Box<T, A>` into a `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then 307 /// `*b` will be pinned in memory and can't be moved. 308 /// 309 /// This moves `b` into `Pin` without moving `*b` or allocating and copying any memory. 310 fn from(b: Box<T, A>) -> Self { 311 // SAFETY: The value wrapped inside a `Pin<Box<T, A>>` cannot be moved or replaced as long 312 // as `T` does not implement `Unpin`. 313 unsafe { Pin::new_unchecked(b) } 314 } 315 } 316 317 impl<T, A> InPlaceWrite<T> for Box<MaybeUninit<T>, A> 318 where 319 A: Allocator + 'static, 320 { 321 type Initialized = Box<T, A>; 322 323 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> { 324 let slot = self.as_mut_ptr(); 325 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 326 // slot is valid. 327 unsafe { init.__init(slot)? }; 328 // SAFETY: All fields have been initialized. 329 Ok(unsafe { Box::assume_init(self) }) 330 } 331 332 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> { 333 let slot = self.as_mut_ptr(); 334 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 335 // slot is valid and will not be moved, because we pin it later. 336 unsafe { init.__pinned_init(slot)? }; 337 // SAFETY: All fields have been initialized. 338 Ok(unsafe { Box::assume_init(self) }.into()) 339 } 340 } 341 342 impl<T, A> InPlaceInit<T> for Box<T, A> 343 where 344 A: Allocator + 'static, 345 { 346 type PinnedSelf = Pin<Self>; 347 348 #[inline] 349 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E> 350 where 351 E: From<AllocError>, 352 { 353 Box::<_, A>::new_uninit(flags)?.write_pin_init(init) 354 } 355 356 #[inline] 357 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 358 where 359 E: From<AllocError>, 360 { 361 Box::<_, A>::new_uninit(flags)?.write_init(init) 362 } 363 } 364 365 impl<T: 'static, A> ForeignOwnable for Box<T, A> 366 where 367 A: Allocator, 368 { 369 type Borrowed<'a> = &'a T; 370 type BorrowedMut<'a> = &'a mut T; 371 372 fn into_foreign(self) -> *mut crate::ffi::c_void { 373 Box::into_raw(self).cast() 374 } 375 376 unsafe fn from_foreign(ptr: *mut crate::ffi::c_void) -> Self { 377 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 378 // call to `Self::into_foreign`. 379 unsafe { Box::from_raw(ptr.cast()) } 380 } 381 382 unsafe fn borrow<'a>(ptr: *mut crate::ffi::c_void) -> &'a T { 383 // SAFETY: The safety requirements of this method ensure that the object remains alive and 384 // immutable for the duration of 'a. 385 unsafe { &*ptr.cast() } 386 } 387 388 unsafe fn borrow_mut<'a>(ptr: *mut crate::ffi::c_void) -> &'a mut T { 389 let ptr = ptr.cast(); 390 // SAFETY: The safety requirements of this method ensure that the pointer is valid and that 391 // nothing else will access the value for the duration of 'a. 392 unsafe { &mut *ptr } 393 } 394 } 395 396 impl<T: 'static, A> ForeignOwnable for Pin<Box<T, A>> 397 where 398 A: Allocator, 399 { 400 type Borrowed<'a> = Pin<&'a T>; 401 type BorrowedMut<'a> = Pin<&'a mut T>; 402 403 fn into_foreign(self) -> *mut crate::ffi::c_void { 404 // SAFETY: We are still treating the box as pinned. 405 Box::into_raw(unsafe { Pin::into_inner_unchecked(self) }).cast() 406 } 407 408 unsafe fn from_foreign(ptr: *mut crate::ffi::c_void) -> Self { 409 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 410 // call to `Self::into_foreign`. 411 unsafe { Pin::new_unchecked(Box::from_raw(ptr.cast())) } 412 } 413 414 unsafe fn borrow<'a>(ptr: *mut crate::ffi::c_void) -> Pin<&'a T> { 415 // SAFETY: The safety requirements for this function ensure that the object is still alive, 416 // so it is safe to dereference the raw pointer. 417 // The safety requirements of `from_foreign` also ensure that the object remains alive for 418 // the lifetime of the returned value. 419 let r = unsafe { &*ptr.cast() }; 420 421 // SAFETY: This pointer originates from a `Pin<Box<T>>`. 422 unsafe { Pin::new_unchecked(r) } 423 } 424 425 unsafe fn borrow_mut<'a>(ptr: *mut crate::ffi::c_void) -> Pin<&'a mut T> { 426 let ptr = ptr.cast(); 427 // SAFETY: The safety requirements for this function ensure that the object is still alive, 428 // so it is safe to dereference the raw pointer. 429 // The safety requirements of `from_foreign` also ensure that the object remains alive for 430 // the lifetime of the returned value. 431 let r = unsafe { &mut *ptr }; 432 433 // SAFETY: This pointer originates from a `Pin<Box<T>>`. 434 unsafe { Pin::new_unchecked(r) } 435 } 436 } 437 438 impl<T, A> Deref for Box<T, A> 439 where 440 T: ?Sized, 441 A: Allocator, 442 { 443 type Target = T; 444 445 fn deref(&self) -> &T { 446 // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized 447 // instance of `T`. 448 unsafe { self.0.as_ref() } 449 } 450 } 451 452 impl<T, A> DerefMut for Box<T, A> 453 where 454 T: ?Sized, 455 A: Allocator, 456 { 457 fn deref_mut(&mut self) -> &mut T { 458 // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized 459 // instance of `T`. 460 unsafe { self.0.as_mut() } 461 } 462 } 463 464 impl<T, A> fmt::Display for Box<T, A> 465 where 466 T: ?Sized + fmt::Display, 467 A: Allocator, 468 { 469 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 470 <T as fmt::Display>::fmt(&**self, f) 471 } 472 } 473 474 impl<T, A> fmt::Debug for Box<T, A> 475 where 476 T: ?Sized + fmt::Debug, 477 A: Allocator, 478 { 479 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 480 <T as fmt::Debug>::fmt(&**self, f) 481 } 482 } 483 484 impl<T, A> Drop for Box<T, A> 485 where 486 T: ?Sized, 487 A: Allocator, 488 { 489 fn drop(&mut self) { 490 let layout = Layout::for_value::<T>(self); 491 492 // SAFETY: The pointer in `self.0` is guaranteed to be valid by the type invariant. 493 unsafe { core::ptr::drop_in_place::<T>(self.deref_mut()) }; 494 495 // SAFETY: 496 // - `self.0` was previously allocated with `A`. 497 // - `layout` is equal to the `Layout´ `self.0` was allocated with. 498 unsafe { A::free(self.0.cast(), layout) }; 499 } 500 } 501