1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Implementation of [`Box`]. 4 5 #[allow(unused_imports)] // Used in doc comments. 6 use super::allocator::{KVmalloc, Kmalloc, Vmalloc}; 7 use super::{AllocError, Allocator, Flags}; 8 use core::alloc::Layout; 9 use core::fmt; 10 use core::marker::PhantomData; 11 use core::mem::ManuallyDrop; 12 use core::mem::MaybeUninit; 13 use core::ops::{Deref, DerefMut}; 14 use core::pin::Pin; 15 use core::ptr::NonNull; 16 use core::result::Result; 17 18 use crate::init::{InPlaceWrite, Init, PinInit}; 19 use crate::init_ext::InPlaceInit; 20 use crate::types::ForeignOwnable; 21 22 /// The kernel's [`Box`] type -- a heap allocation for a single value of type `T`. 23 /// 24 /// This is the kernel's version of the Rust stdlib's `Box`. There are several differences, 25 /// for example no `noalias` attribute is emitted and partially moving out of a `Box` is not 26 /// supported. There are also several API differences, e.g. `Box` always requires an [`Allocator`] 27 /// implementation to be passed as generic, page [`Flags`] when allocating memory and all functions 28 /// that may allocate memory are fallible. 29 /// 30 /// `Box` works with any of the kernel's allocators, e.g. [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]. 31 /// There are aliases for `Box` with these allocators ([`KBox`], [`VBox`], [`KVBox`]). 32 /// 33 /// When dropping a [`Box`], the value is also dropped and the heap memory is automatically freed. 34 /// 35 /// # Examples 36 /// 37 /// ``` 38 /// let b = KBox::<u64>::new(24_u64, GFP_KERNEL)?; 39 /// 40 /// assert_eq!(*b, 24_u64); 41 /// # Ok::<(), Error>(()) 42 /// ``` 43 /// 44 /// ``` 45 /// # use kernel::bindings; 46 /// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1; 47 /// struct Huge([u8; SIZE]); 48 /// 49 /// assert!(KBox::<Huge>::new_uninit(GFP_KERNEL | __GFP_NOWARN).is_err()); 50 /// ``` 51 /// 52 /// ``` 53 /// # use kernel::bindings; 54 /// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1; 55 /// struct Huge([u8; SIZE]); 56 /// 57 /// assert!(KVBox::<Huge>::new_uninit(GFP_KERNEL).is_ok()); 58 /// ``` 59 /// 60 /// # Invariants 61 /// 62 /// `self.0` is always properly aligned and either points to memory allocated with `A` or, for 63 /// zero-sized types, is a dangling, well aligned pointer. 64 #[repr(transparent)] 65 pub struct Box<T: ?Sized, A: Allocator>(NonNull<T>, PhantomData<A>); 66 67 /// Type alias for [`Box`] with a [`Kmalloc`] allocator. 68 /// 69 /// # Examples 70 /// 71 /// ``` 72 /// let b = KBox::new(24_u64, GFP_KERNEL)?; 73 /// 74 /// assert_eq!(*b, 24_u64); 75 /// # Ok::<(), Error>(()) 76 /// ``` 77 pub type KBox<T> = Box<T, super::allocator::Kmalloc>; 78 79 /// Type alias for [`Box`] with a [`Vmalloc`] allocator. 80 /// 81 /// # Examples 82 /// 83 /// ``` 84 /// let b = VBox::new(24_u64, GFP_KERNEL)?; 85 /// 86 /// assert_eq!(*b, 24_u64); 87 /// # Ok::<(), Error>(()) 88 /// ``` 89 pub type VBox<T> = Box<T, super::allocator::Vmalloc>; 90 91 /// Type alias for [`Box`] with a [`KVmalloc`] allocator. 92 /// 93 /// # Examples 94 /// 95 /// ``` 96 /// let b = KVBox::new(24_u64, GFP_KERNEL)?; 97 /// 98 /// assert_eq!(*b, 24_u64); 99 /// # Ok::<(), Error>(()) 100 /// ``` 101 pub type KVBox<T> = Box<T, super::allocator::KVmalloc>; 102 103 // SAFETY: `Box` is `Send` if `T` is `Send` because the `Box` owns a `T`. 104 unsafe impl<T, A> Send for Box<T, A> 105 where 106 T: Send + ?Sized, 107 A: Allocator, 108 { 109 } 110 111 // SAFETY: `Box` is `Sync` if `T` is `Sync` because the `Box` owns a `T`. 112 unsafe impl<T, A> Sync for Box<T, A> 113 where 114 T: Sync + ?Sized, 115 A: Allocator, 116 { 117 } 118 119 impl<T, A> Box<T, A> 120 where 121 T: ?Sized, 122 A: Allocator, 123 { 124 /// Creates a new `Box<T, A>` from a raw pointer. 125 /// 126 /// # Safety 127 /// 128 /// For non-ZSTs, `raw` must point at an allocation allocated with `A` that is sufficiently 129 /// aligned for and holds a valid `T`. The caller passes ownership of the allocation to the 130 /// `Box`. 131 /// 132 /// For ZSTs, `raw` must be a dangling, well aligned pointer. 133 #[inline] 134 pub const unsafe fn from_raw(raw: *mut T) -> Self { 135 // INVARIANT: Validity of `raw` is guaranteed by the safety preconditions of this function. 136 // SAFETY: By the safety preconditions of this function, `raw` is not a NULL pointer. 137 Self(unsafe { NonNull::new_unchecked(raw) }, PhantomData) 138 } 139 140 /// Consumes the `Box<T, A>` and returns a raw pointer. 141 /// 142 /// This will not run the destructor of `T` and for non-ZSTs the allocation will stay alive 143 /// indefinitely. Use [`Box::from_raw`] to recover the [`Box`], drop the value and free the 144 /// allocation, if any. 145 /// 146 /// # Examples 147 /// 148 /// ``` 149 /// let x = KBox::new(24, GFP_KERNEL)?; 150 /// let ptr = KBox::into_raw(x); 151 /// // SAFETY: `ptr` comes from a previous call to `KBox::into_raw`. 152 /// let x = unsafe { KBox::from_raw(ptr) }; 153 /// 154 /// assert_eq!(*x, 24); 155 /// # Ok::<(), Error>(()) 156 /// ``` 157 #[inline] 158 pub fn into_raw(b: Self) -> *mut T { 159 ManuallyDrop::new(b).0.as_ptr() 160 } 161 162 /// Consumes and leaks the `Box<T, A>` and returns a mutable reference. 163 /// 164 /// See [`Box::into_raw`] for more details. 165 #[inline] 166 pub fn leak<'a>(b: Self) -> &'a mut T { 167 // SAFETY: `Box::into_raw` always returns a properly aligned and dereferenceable pointer 168 // which points to an initialized instance of `T`. 169 unsafe { &mut *Box::into_raw(b) } 170 } 171 } 172 173 impl<T, A> Box<MaybeUninit<T>, A> 174 where 175 A: Allocator, 176 { 177 /// Converts a `Box<MaybeUninit<T>, A>` to a `Box<T, A>`. 178 /// 179 /// It is undefined behavior to call this function while the value inside of `b` is not yet 180 /// fully initialized. 181 /// 182 /// # Safety 183 /// 184 /// Callers must ensure that the value inside of `b` is in an initialized state. 185 pub unsafe fn assume_init(self) -> Box<T, A> { 186 let raw = Self::into_raw(self); 187 188 // SAFETY: `raw` comes from a previous call to `Box::into_raw`. By the safety requirements 189 // of this function, the value inside the `Box` is in an initialized state. Hence, it is 190 // safe to reconstruct the `Box` as `Box<T, A>`. 191 unsafe { Box::from_raw(raw.cast()) } 192 } 193 194 /// Writes the value and converts to `Box<T, A>`. 195 pub fn write(mut self, value: T) -> Box<T, A> { 196 (*self).write(value); 197 198 // SAFETY: We've just initialized `b`'s value. 199 unsafe { self.assume_init() } 200 } 201 } 202 203 impl<T, A> Box<T, A> 204 where 205 A: Allocator, 206 { 207 /// Creates a new `Box<T, A>` and initializes its contents with `x`. 208 /// 209 /// New memory is allocated with `A`. The allocation may fail, in which case an error is 210 /// returned. For ZSTs no memory is allocated. 211 pub fn new(x: T, flags: Flags) -> Result<Self, AllocError> { 212 let b = Self::new_uninit(flags)?; 213 Ok(Box::write(b, x)) 214 } 215 216 /// Creates a new `Box<T, A>` with uninitialized contents. 217 /// 218 /// New memory is allocated with `A`. The allocation may fail, in which case an error is 219 /// returned. For ZSTs no memory is allocated. 220 /// 221 /// # Examples 222 /// 223 /// ``` 224 /// let b = KBox::<u64>::new_uninit(GFP_KERNEL)?; 225 /// let b = KBox::write(b, 24); 226 /// 227 /// assert_eq!(*b, 24_u64); 228 /// # Ok::<(), Error>(()) 229 /// ``` 230 pub fn new_uninit(flags: Flags) -> Result<Box<MaybeUninit<T>, A>, AllocError> { 231 let layout = Layout::new::<MaybeUninit<T>>(); 232 let ptr = A::alloc(layout, flags)?; 233 234 // INVARIANT: `ptr` is either a dangling pointer or points to memory allocated with `A`, 235 // which is sufficient in size and alignment for storing a `T`. 236 Ok(Box(ptr.cast(), PhantomData)) 237 } 238 239 /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then `x` will be 240 /// pinned in memory and can't be moved. 241 #[inline] 242 pub fn pin(x: T, flags: Flags) -> Result<Pin<Box<T, A>>, AllocError> 243 where 244 A: 'static, 245 { 246 Ok(Self::new(x, flags)?.into()) 247 } 248 249 /// Forgets the contents (does not run the destructor), but keeps the allocation. 250 fn forget_contents(this: Self) -> Box<MaybeUninit<T>, A> { 251 let ptr = Self::into_raw(this); 252 253 // SAFETY: `ptr` is valid, because it came from `Box::into_raw`. 254 unsafe { Box::from_raw(ptr.cast()) } 255 } 256 257 /// Drops the contents, but keeps the allocation. 258 /// 259 /// # Examples 260 /// 261 /// ``` 262 /// let value = KBox::new([0; 32], GFP_KERNEL)?; 263 /// assert_eq!(*value, [0; 32]); 264 /// let value = KBox::drop_contents(value); 265 /// // Now we can re-use `value`: 266 /// let value = KBox::write(value, [1; 32]); 267 /// assert_eq!(*value, [1; 32]); 268 /// # Ok::<(), Error>(()) 269 /// ``` 270 pub fn drop_contents(this: Self) -> Box<MaybeUninit<T>, A> { 271 let ptr = this.0.as_ptr(); 272 273 // SAFETY: `ptr` is valid, because it came from `this`. After this call we never access the 274 // value stored in `this` again. 275 unsafe { core::ptr::drop_in_place(ptr) }; 276 277 Self::forget_contents(this) 278 } 279 280 /// Moves the `Box`'s value out of the `Box` and consumes the `Box`. 281 pub fn into_inner(b: Self) -> T { 282 // SAFETY: By the type invariant `&*b` is valid for `read`. 283 let value = unsafe { core::ptr::read(&*b) }; 284 let _ = Self::forget_contents(b); 285 value 286 } 287 } 288 289 impl<T, A> From<Box<T, A>> for Pin<Box<T, A>> 290 where 291 T: ?Sized, 292 A: Allocator, 293 { 294 /// Converts a `Box<T, A>` into a `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then 295 /// `*b` will be pinned in memory and can't be moved. 296 /// 297 /// This moves `b` into `Pin` without moving `*b` or allocating and copying any memory. 298 fn from(b: Box<T, A>) -> Self { 299 // SAFETY: The value wrapped inside a `Pin<Box<T, A>>` cannot be moved or replaced as long 300 // as `T` does not implement `Unpin`. 301 unsafe { Pin::new_unchecked(b) } 302 } 303 } 304 305 impl<T, A> InPlaceWrite<T> for Box<MaybeUninit<T>, A> 306 where 307 A: Allocator + 'static, 308 { 309 type Initialized = Box<T, A>; 310 311 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> { 312 let slot = self.as_mut_ptr(); 313 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 314 // slot is valid. 315 unsafe { init.__init(slot)? }; 316 // SAFETY: All fields have been initialized. 317 Ok(unsafe { Box::assume_init(self) }) 318 } 319 320 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> { 321 let slot = self.as_mut_ptr(); 322 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 323 // slot is valid and will not be moved, because we pin it later. 324 unsafe { init.__pinned_init(slot)? }; 325 // SAFETY: All fields have been initialized. 326 Ok(unsafe { Box::assume_init(self) }.into()) 327 } 328 } 329 330 impl<T, A> InPlaceInit<T> for Box<T, A> 331 where 332 A: Allocator + 'static, 333 { 334 type PinnedSelf = Pin<Self>; 335 336 #[inline] 337 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E> 338 where 339 E: From<AllocError>, 340 { 341 Box::<_, A>::new_uninit(flags)?.write_pin_init(init) 342 } 343 344 #[inline] 345 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 346 where 347 E: From<AllocError>, 348 { 349 Box::<_, A>::new_uninit(flags)?.write_init(init) 350 } 351 } 352 353 impl<T: 'static, A> ForeignOwnable for Box<T, A> 354 where 355 A: Allocator, 356 { 357 type Borrowed<'a> = &'a T; 358 type BorrowedMut<'a> = &'a mut T; 359 360 fn into_foreign(self) -> *mut crate::ffi::c_void { 361 Box::into_raw(self).cast() 362 } 363 364 unsafe fn from_foreign(ptr: *mut crate::ffi::c_void) -> Self { 365 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 366 // call to `Self::into_foreign`. 367 unsafe { Box::from_raw(ptr.cast()) } 368 } 369 370 unsafe fn borrow<'a>(ptr: *mut crate::ffi::c_void) -> &'a T { 371 // SAFETY: The safety requirements of this method ensure that the object remains alive and 372 // immutable for the duration of 'a. 373 unsafe { &*ptr.cast() } 374 } 375 376 unsafe fn borrow_mut<'a>(ptr: *mut crate::ffi::c_void) -> &'a mut T { 377 let ptr = ptr.cast(); 378 // SAFETY: The safety requirements of this method ensure that the pointer is valid and that 379 // nothing else will access the value for the duration of 'a. 380 unsafe { &mut *ptr } 381 } 382 } 383 384 impl<T: 'static, A> ForeignOwnable for Pin<Box<T, A>> 385 where 386 A: Allocator, 387 { 388 type Borrowed<'a> = Pin<&'a T>; 389 type BorrowedMut<'a> = Pin<&'a mut T>; 390 391 fn into_foreign(self) -> *mut crate::ffi::c_void { 392 // SAFETY: We are still treating the box as pinned. 393 Box::into_raw(unsafe { Pin::into_inner_unchecked(self) }).cast() 394 } 395 396 unsafe fn from_foreign(ptr: *mut crate::ffi::c_void) -> Self { 397 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 398 // call to `Self::into_foreign`. 399 unsafe { Pin::new_unchecked(Box::from_raw(ptr.cast())) } 400 } 401 402 unsafe fn borrow<'a>(ptr: *mut crate::ffi::c_void) -> Pin<&'a T> { 403 // SAFETY: The safety requirements for this function ensure that the object is still alive, 404 // so it is safe to dereference the raw pointer. 405 // The safety requirements of `from_foreign` also ensure that the object remains alive for 406 // the lifetime of the returned value. 407 let r = unsafe { &*ptr.cast() }; 408 409 // SAFETY: This pointer originates from a `Pin<Box<T>>`. 410 unsafe { Pin::new_unchecked(r) } 411 } 412 413 unsafe fn borrow_mut<'a>(ptr: *mut crate::ffi::c_void) -> Pin<&'a mut T> { 414 let ptr = ptr.cast(); 415 // SAFETY: The safety requirements for this function ensure that the object is still alive, 416 // so it is safe to dereference the raw pointer. 417 // The safety requirements of `from_foreign` also ensure that the object remains alive for 418 // the lifetime of the returned value. 419 let r = unsafe { &mut *ptr }; 420 421 // SAFETY: This pointer originates from a `Pin<Box<T>>`. 422 unsafe { Pin::new_unchecked(r) } 423 } 424 } 425 426 impl<T, A> Deref for Box<T, A> 427 where 428 T: ?Sized, 429 A: Allocator, 430 { 431 type Target = T; 432 433 fn deref(&self) -> &T { 434 // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized 435 // instance of `T`. 436 unsafe { self.0.as_ref() } 437 } 438 } 439 440 impl<T, A> DerefMut for Box<T, A> 441 where 442 T: ?Sized, 443 A: Allocator, 444 { 445 fn deref_mut(&mut self) -> &mut T { 446 // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized 447 // instance of `T`. 448 unsafe { self.0.as_mut() } 449 } 450 } 451 452 impl<T, A> fmt::Display for Box<T, A> 453 where 454 T: ?Sized + fmt::Display, 455 A: Allocator, 456 { 457 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 458 <T as fmt::Display>::fmt(&**self, f) 459 } 460 } 461 462 impl<T, A> fmt::Debug for Box<T, A> 463 where 464 T: ?Sized + fmt::Debug, 465 A: Allocator, 466 { 467 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 468 <T as fmt::Debug>::fmt(&**self, f) 469 } 470 } 471 472 impl<T, A> Drop for Box<T, A> 473 where 474 T: ?Sized, 475 A: Allocator, 476 { 477 fn drop(&mut self) { 478 let layout = Layout::for_value::<T>(self); 479 480 // SAFETY: The pointer in `self.0` is guaranteed to be valid by the type invariant. 481 unsafe { core::ptr::drop_in_place::<T>(self.deref_mut()) }; 482 483 // SAFETY: 484 // - `self.0` was previously allocated with `A`. 485 // - `layout` is equal to the `Layout´ `self.0` was allocated with. 486 unsafe { A::free(self.0.cast(), layout) }; 487 } 488 } 489